WorldWideScience

Sample records for high-temperature liquid-metal technology

  1. High-temperature liquid-metal technology review. A Bimonthly Technical Progress Review, Volume 7, Number 2, April 1969

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1969-04-01

    The purpose of the High-Temperature Liquid-Metal Technology Review is to provide up-to-date information on the various research and development programs in the United States in the field of high-temperature liquid-metal technology. The method is to publish reviews prepared by members of the Department of Applied Science of the Brookhaven National Laboratory on current topical and progress reports submitted by contracting organizations. When results and conclusions are reported, it is intended that the individual reviews become both summaries and critiques. Thirteen reviews are presented in this issue.

  2. High temperature interaction behavior at liquid metal-ceramic interfaces

    Science.gov (United States)

    McDeavitt, S. M.; Billings, G. W.; Indacochea, J. E.

    2002-08-01

    Liquid metal/ceramic interaction experiments were undertaken at elevated temperatures with the purpose of developing reusable crucibles for melting reactive metals. The metals used in this work included zirconium (Zr), Zr-8 wt.% stainless steel, and stainless steel containing 15 wt.% Zr. The ceramic substrates include yttria, Zr carbide, and hafnium (Hf) carbide. The metal-ceramic samples were placed on top of a tungsten (W) dish. These experiments were conducted with the temperature increasing at a controlled rate until reaching set points above 2000 °C; the systems were held at the peak temperature for about five min and then cooled. The atmosphere in the furnace was argon (Ar). An outside video recording system was used to monitor the changes on heating up and cooling down. All samples underwent a post-test metallurgical examination. Pure Zr was found to react with yttria, resulting in oxygen (O) evolution at the liquid metal-ceramic interface. In addition, dissolved O was observed in the as-cooled Zr metal. Yttrium (Y) was also present in the Zr metal, but it had segregated to the grain boundaries on cooling. Despite the normal expectations for reactive wetting, no transition interface was developed, but the Zr metal was tightly bound to yttria ceramic. Similar reactions occurred between the yttria and the Zr-stainless steel alloys. Two other ceramic samples were Zr carbide and Hf carbide; both carbide substrates were wetted readily by the molten Zr, which flowed easily to the sides of the substrates. The molten Zr caused a very limited dissolution of the Zr carbide, and it reacted more strongly with the Hf carbide. These reactive wetting results are relevant to the design of interfaces and the development of reactive filler metals for the fabrication of high temperature components through metal-ceramic joining. Parameters that have a marked impact on this interface reaction include the thermodynamic stability of the substrate, the properties of the modified

  3. A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys

    Science.gov (United States)

    Dubberstein, T.; Schürmann, M.; Chaves, H.; Heller, H.-P.; Aneziris, C. G.

    2016-10-01

    A novel vibrating finger viscometer for high-temperature measurement in liquid metals and alloys up to 1823 K was constructed. The dynamic viscosity (η ) of the liquid fluid is measured as a product of (ρ \\cdot η )^{0.5} and the relative change of the field coil input for a constant amplitude recording at the resonant frequency of the oscillator. The viscometer was calibrated at 298 K using reference silicon oils with varying kinematic viscosities (ν ), (0.79 to 200)× 10^{-6} m2\\cdot s^{-1}. In the present study, the viscosity of liquid gold (99.99 % Au), silver (99.9 % Ag), and tin (99.9 % Sn) was measured. The viscosities expressed as an Arrhenius function of temperature are: {for Au:}quad quad ln η= & {} -0.1990+2669/T {for Ag:} quad quad ln η= & {} -0.4631+2089/T {for Sn:} quad quad ln η= & {} -0.5472+671/T The viscosity values are consistent within the range of available literature data.

  4. Liquid metal reactor development. Development of LMR coolant technology

    Energy Technology Data Exchange (ETDEWEB)

    Nam, H. Y.; Choi, S. K.; Hwang, J. s.; Lee, Y. B.; Choi, B. H.; Kim, J. M.; Kim, Y. G.; Kim, M. J.; Lee, S. D.; Kang, Y. H.; Maeng, Y. Y.; Kim, T. R.; Park, J. H.; Park, S. J.; Cha, J. H.; Kim, D. H.; Oh, S. K.; Park, C. G.; Hong, S. H.; Lee, K. H.; Chun, M. H.; Moon, H. T.; Chang, S. H.; Lee, D. N.

    1997-07-15

    Following studies have been performed during last three years as the 1.2 phase study of the mid and long term nuclear technology development plan. First, the small scale experiments using the sodium have been performed such as the basic turbulent mixing experiment which is related to the design of a compact reactor, the flow reversal characteristics experiment by natural circulation which is necessary for the analysis of local flow reversal when the electromagnetic pump is installed, the feasibility test of the decay heat removal by wall cooling and the operation of electromagnetic pump. Second, the technology of operation mechanism of sodium facility is developed and the technical analysis and fundamental experiments of sodium measuring technology has been performed such as differential pressure measuring experiment, local flow rate measuring experimenter, sodium void fraction measuring experiment, under sodium facility, the free surface movement experiment and the side orifice pressure drop experiment. A new bounded convection scheme was introduced to the ELBO3D thermo-hydraulic computer code designed for analysis of experimental result. A three dimensional computer code was developed for the analysis of free surface movement and the analysis model of transmission of sodium void fraction was developed. Fourth, the small scale key components are developed. The submersible-in-pool type electromagnetic pump which can be used as primary pump in the liquid metal reactor is developed. The SASS which uses the Curie-point electromagnet and the mock-up of Pantograph type IVTM were manufactured and their feasibility was evaluated. Fifth, the high temperature characteristics experiment of stainless steel which is used as a major material for liquid metal reactor and the material characteristics experiment of magnet coil were performed. (author). 126 refs., 98 tabs., 296 figs.

  5. Liquid metal technology for concentrated solar power systems: Contributions by the German research program

    Directory of Open Access Journals (Sweden)

    Thomas Wetzel

    2014-03-01

    Full Text Available Concentrated solar power (CSP systems can play a major role as a renewable energy source with the inherent possibility of including a thermal energy storage subsystem for improving the plant dispatchability. Next-generation CSP systems have to provide an increased overall efficiency at reduced specific costs and they will require higher operating temperatures and larger heat flux densities. In that context, liquid metals are proposed as advanced high temperature heat transfer fluids, particularly for central receiver systems. Their main advantages are chemical stability at temperatures up to 900 ℃ and even beyond, as well as largely improved heat transfer when compared to conventional fluids like oil or salt mixtures, primarily due to their superior thermal conductivity. However, major issues here are the corrosion protection of structural materials and the development of technology components and control systems, as well as the development of indirect storage solutions, to circumvent the relatively small heat capacity of liquid metals. On the other hand, using liquid metals might enable alternative technologies like direct thermal-electric conversion or use of solar high-tem­perature heat in chemical processes. This article aims at describing research areas and research needs to be addressed for fully evaluating and subsequently utilizing the potential of liquid metals in CSP systems. A second aim of the article is a brief overview of the liquid metal research capabilities of Karlsruhe Institute of Technology (KIT, their background and their relation to CSP and the aforementioned research pathways.

  6. Conductor of high electrical current at high temperature in oxygen and liquid metal environment

    Energy Technology Data Exchange (ETDEWEB)

    Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth

    2016-01-12

    In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.

  7. Seismic base isolation technologies for Korea advanced liquid metal reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, B.; Lee, J.-H.; Koo, G.-H.; Lee, H.-Y.; Kim, J.-B. [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    2000-06-01

    This paper describes the status and prospects of the seismic base isolation technologies for Korea Advanced Liquid Metal Reactor (KALIMER). The research and development program on the seismic base isolation for KALIMER began in 1993 by KAERI under the national long-term R and D program. The objective of this program is to enhance the seismic safety, to accomplish the economic design, and to standardize the plant design through the establishment of technologies on seismic base isolation for liquid metal reactors. In this paper, tests and analyses performed in the program are presented. (orig.)

  8. Mating and Optimization Parameters for High-Temperature Liquid Metal Wetting on Solid Substrates

    Science.gov (United States)

    2014-04-01

    wicking thermal transport systems operating in a high temperature environment. Success in accomplishing the program objective would contribute to...enhancing the extreme cooling of shock wave heat from in-flight conditions experienced by supersonic/ hypersonic vehicles. The mating and optimization

  9. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    Science.gov (United States)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  10. Liquid metal Flow Meter - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  11. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  12. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications

    Directory of Open Access Journals (Sweden)

    Xuelin Wang

    2016-11-01

    Full Text Available This article presents an overview on typical properties, technologies, and applications of liquid metal based flexible printed electronics. The core manufacturing material—room-temperature liquid metal, currently mainly represented by gallium and its alloys with the properties of excellent resistivity, enormous bendability, low adhesion, and large surface tension, was focused on in particular. In addition, a series of recently developed printing technologies spanning from personal electronic circuit printing (direct painting or writing, mechanical system printing, mask layer based printing, high-resolution nanoimprinting, etc. to 3D room temperature liquid metal printing is comprehensively reviewed. Applications of these planar or three-dimensional printing technologies and the related liquid metal alloy inks in making flexible electronics, such as electronical components, health care sensors, and other functional devices were discussed. The significantly different adhesions of liquid metal inks on various substrates under different oxidation degrees, weakness of circuits, difficulty of fabricating high-accuracy devices, and low rate of good product—all of which are challenges faced by current liquid metal flexible printed electronics—are discussed. Prospects for liquid metal flexible printed electronics to develop ending user electronics and more extensive applications in the future are given.

  13. Liquid metal reactor development. Development of LMR design technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Cheol; Kim, Y. I.; Kim, Y. G.; Kim, E. K.; Song, H.; Chung, H. T.; Sim, Y. S.; Min, B. T.; Kim, Y. S.; Wi, M. H.; Yoo, B.; Lee, J. H.; Lee, H. Y.; Kim, J. B.; Koo, G. H.; Hahn, D. H.; Na, B. C.; Hwang, W.; Nam, C.; Ryu, W. S.; Lim, G. S.; Kim, D. H.; Kim, J. D.; Gil, C. S.

    1997-07-01

    This project was performed in five parts, the scope and contents of which are as follows: The nuclear data processing system was established and the KFS group constant library was improved and verified. Basic computation system was constructed by either developing or adding its function. Input/output (I/O) interface processing was developed to establish an integrated calculation system for LMR core nuclear rand thermal-hydraulic design and analysis. An experimental data analysis was performed to validate the constructed core neutronic calculation system. Using the established core calculation system and design technology, preliminary core design and performance analysis on the domestic LMR core design concept were carried out. To develop the basic technology of the LMR system analysis, LMR system behavior characteristics evaluation, thermal -fluid system analysis in the reactor pool, preliminary overall plant analysis and computer codes development have been performed. A porous model and simple one-dimensional model have been evaluated for the reactor pool analysis. The evaluation of the residual heat removal system on different design concepts has been also conducted. For the development of high temperature structural analysis, the heat transfer and thermal stress analyses were performed using finite element program with user subroutine that has been developed with an implementation of the Chaboche constitutive model for inelastic analysis capability, and the evaluation of creep-fatigue and ratcheting behavior of high temperature structure was carried out using this program. for development of the seismic isolation system and to predict the shear behavior for the laminated rubber bearing were established. And the behavior tests of isolation bearing and rubber specimens were carried out, and the seismic response tests for the isolation model structure were performed using the 30 ton shaking table. (author). 369 refs., 119 tabs., 320 figs.

  14. Development of liquid metal type TBM technology for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; Kwak, J. G.; Kim, Y. (and others)

    2008-03-15

    were developed. Since He cooling technology with such a high temperature and pressure conditions (500 .deg. C and 8 MPa) has been developed in the Gas Cooled Reactor (GCR) field. Since pressure drop by MHD effect is one of most important problem in liquid type TBM, this problem was evaluated with the CFX code and its EM module, which was newly adopted. In order to validate this module, a benchmarking problem was selected and the input data for the KO HCML TBM was prepared. In order to develop the Li technology, the test loop was designed schematically and design parameters were obtained. Main components such as EM pump and sump tank were designed specifically and fabricated.

  15. Component and Technology Development for Advanced Liquid Metal Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States)

    2017-01-30

    The following report details the significant developments to Sodium Fast Reactor (SFR) technologies made throughout the course of this funding. This report will begin with an overview of the sodium loop and the improvements made over the course of this research to make it a more advanced and capable facility. These improvements have much to do with oxygen control and diagnostics. Thus a detailed report of advancements with respect to the cold trap, plugging meter, vanadium equilibration loop, and electrochemical oxygen sensor is included. Further analysis of the university’s moving magnet pump was performed and included in a section of this report. A continuous electrical resistance based level sensor was built and tested in the sodium with favorable results. Materials testing was done on diffusion bonded samples of metal and the results are presented here as well. A significant portion of this work went into the development of optical fiber temperature sensors which could be deployed in an SFR environment. Thus, a section of this report presents the work done to develop an encapsulation method for these fibers inside of a stainless steel capillary tube. High temperature testing was then done on the optical fiber ex situ in a furnace. Thermal response time was also explored with the optical fiber temperature sensors. Finally these optical fibers were deployed successfully in a sodium environment for data acquisition. As a test of the sodium deployable optical fiber temperature sensors they were installed in a sub-loop of the sodium facility which was constructed to promote the thermal striping effect in sodium. The optical fibers performed exceptionally well, yielding unprecedented 2 dimensional temperature profiles with good temporal resolution. Finally, this thermal striping loop was used to perform cross correlation velocimetry successfully over a wide range of flow rates.

  16. Liquid metal technology of synthesis of AlOOH anisotropic nanostructured aerogel

    Directory of Open Access Journals (Sweden)

    R.Sh. Askhadullin

    2017-03-01

    Full Text Available New method for production of aerogel nanostructures (using the example of AlOOH aerogel with involvement of liquid metals is examined. In contrast with conventional sol–gel method for producing aerogels the role performed by the alcohol (aqueous solution is played in the new method by liquid metal in which the base of the future aerogel structure dissociates and assembling of the nanostructure takes place within the gas phase covering the liquid metal. The latter obstacle fundamentally distinguishes the liquid metal method from the conventional technology of aerogel synthesis. Assembling the aerogel structure in the sol–gel method takes place as the result of removal of liquid phase at supercritical parameters which ultimately determines the cost of the products. In the liquid-metal method there is no need to remove the liquid phase, because assembling of fractal nanostructure occurs in the gas phase. Liquid-metal aerogel production method is realized at low (usually atmospheric pressure without the need to use hazardous and corrosive reagents, and the heat released in the reaction is sufficient for maintaining the desired synthesis temperature. Results of studies of synthesis and properties of ultraporous aluminum oxyhydroxide Al2O3⋅n(H2O (AlOOH aerogel produced using the method of selective oxidation of Ga–Al and Bi–Al binary liquid metal fusions by water steam are presented in the present paper. Studies of aerogel properties were performed using methods of scanning electron microscopy (SEM, X-ray diffraction (XRD, synchronous differential scanning calorimetry and thermogravimetry (DSC/TG, as well as by energy dispersive X-ray (EDX spectroscopy. It was established on the basis of the microstructure analysis performed that the aerogel has space-oriented fibrous nanostructure with “tensile” type anisotropy and fiber diameters varying from 5nm to 15nm. It follows from XRD studies that AlOOH aerogel remains to be amorphous up to 1000

  17. Use of liquid metals in nuclear and thermonuclear engineering, and in other innovative technologies

    Science.gov (United States)

    Rachkov, V. I.; Arnol'dov, M. N.; Efanov, A. D.; Kalyakin, S. G.; Kozlov, F. A.; Loginov, N. I.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    By now, a good deal of experience has been gained with using liquid metals as coolants in nuclear power installations; extensive knowledge has been gained about the physical, thermophysical, and physicochemical properties of these coolants; and the scientific principles and a set of methods and means for handling liquid metals as coolants for nuclear power installations have been elaborated. Prototype and commercialgrade sodium-cooled NPP power units have been developed, including the BOR-60, BN-350, and BN-600 power units (the Soviet Union); the Rapsodie, Phenix, and Superphenix power units (France), the EBR-II power unit (the United States); and the PFR power unit (the United Kingdom). In Russia, dedicated nuclear power installations have been constructed, including those with a lead-bismuth coolant for nuclear submarines and with sodium-potassium alloy for spacecraft (the Buk and Topol installations), which have no analogs around the world. Liquid metals (primarily lithium and its alloy with lead) hold promise for use in thermonuclear power engineering, where they can serve not only as a coolant, but also as tritium-producing medium. In this article, the physicochemical properties of liquid metal coolants, as well as practical experience gained from using them in nuclear and thermonuclear power engineering and in innovative technologies are considered, and the lines of further research works are formulated. New results obtained from investigations carried out on the Pb-Bi and Pb for the SVBR and BREST fast-neutron reactors (referred to henceforth as fast reactors) and for controlled accelerator systems are described.

  18. Technology of high temperature organic coolant

    Energy Technology Data Exchange (ETDEWEB)

    Makin, R.S.; Vorobei, M.P.; Kuprienko, V.A.; Starkov, V.A.; Tsykanov, V.A.; Checketkin, Y.V. [Research Institute of Atomic Reactors, Ulyanovsk (Russian Federation)

    1993-12-31

    Research has been performed on the problems related to the use of high temperature organic coolants in small and medium nuclear power plants. The work performed and also the experience of operating the ARBUS reactor confirmed the inherent safety features, reliability, and enhanced safety margins of the plants with this type of coolants. The advantages of this system and research highlights are presented.

  19. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-03-27

    This current report is a summary of information obtained in the "Information Capture" task of the U.S. DOE-funded "Under Sodium Viewing (USV) Project." The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  20. Technological evolution of high temperature superconductors

    OpenAIRE

    White, Jordan R.

    2015-01-01

    Approved for public release; distribution is unlimited High temperature superconducting (HTS) cables are currently being used in the commercial energy industry primarily for demonstration purposes and to evaluate the feasibility of large-scale implementation into the electric grid. While still in the evaluation stage, the U.S. Navy is finding the test results promising and is investigating its potential use for future electric ships to supply power to electric propulsion motors and possibl...

  1. Technology of high-temperature organic coolant

    Energy Technology Data Exchange (ETDEWEB)

    Vorobei, M.P.; Makin, R.S.; Kuprienko, V.A. [and others

    1993-12-31

    A wide range of studies were carried out in RIAR on the problems connected with the use of high-temperature organic coolant at nuclear power plants. The work performed and successful experience gained in persistent operation of the ARBUS reactor confirmed the inherent safety characteristics, high operational reliability, as well as improved safety of stations with similar reactors. A large scope of studies were carried out at the ARBUS pilot reactor and loop with the organic coolant of the MIR reactor and a wide range of problems were solved. The studies are described.

  2. Liquid metal alloy ion sources—An alternative for focussed ion beam technology

    Science.gov (United States)

    Bischoff, Lothar; Mazarov, Paul; Bruchhaus, Lars; Gierak, Jacques

    2016-06-01

    Today, Focused Ion Beam (FIB) processing is nearly exclusively based on gallium Liquid Metal Ion Sources (LMIS). But, many applications in the μm- or nm range could benefit from ion species other than gallium: local ion implantation, ion beam mixing, ion beam synthesis, or Focused Ion Beam Lithography (IBL). Therefore, Liquid Metal Alloy Ion Sources (LMAIS) represent a promising alternative to expand the remarkable application fields for FIB. Especially, the IBL process shows potential advantages over, e.g., electron beam or other lithography techniques: direct, resistless, and three-dimensional patterning, enabling a simultaneous in-situ process control by cross-sectioning and inspection. Taking additionally into account that the used ion species influences significantly the physical and chemical nature of the resulting nanostructures—in particular, the electrical, optical, magnetic, and mechanic properties leading to a large potential application area which can be tuned by choosing a well suited LMAIS. Nearly half of the elements of the periodic table are recently available in the FIB technology as a result of continuous research in this area during the last forty years. Key features of a LMAIS are long life-time, high brightness, and stable ion current. Recent developments could make these sources feasible for nano patterning issues as an alternative technology more in research than in industry. The authors will review existing LMAIS, LMIS other than Ga, and binary and ternary alloys. These physical properties as well as the fabrication technology and prospective domains for modern FIB applications will similarly be reviewed. Other emerging ion sources will be also presented and their performances discussed.

  3. Technological monitoring of subgrade construction on high-temperature permafrost

    Institute of Scientific and Technical Information of China (English)

    Svyatoslav Ya. Lutskiy; Taisia V. Shepitko; Alexander M. Cherkasov

    2015-01-01

    Three stages of complex technological monitoring for the increase of high-temperature-permafrost soil bearing capacity are described. The feasibility of process monitoring to improve the targeted strength properties of subgrade bases on frozen soils is demonstrated. The rationale for the necessity of predictive modeling of freeze-thaw actions during the subgrade construction period is provided.

  4. Progress in advanced high temperature turbine materials, coatings, and technology

    Science.gov (United States)

    Freche, J. C.; Ault, G. M.

    1978-01-01

    Advanced materials, coatings, and cooling technology is assessed in terms of improved aircraft turbine engine performance. High cycle operating temperatures, lighter structural components, and adequate resistance to the various environmental factors associated with aircraft gas turbine engines are among the factors considered. Emphasis is placed on progress in development of high temperature materials for coating protection against oxidation, hot corrosion and erosion, and in turbine cooling technology. Specific topics discussed include metal matrix composites, superalloys, directionally solidified eutectics, and ceramics.

  5. Packaging Technologies for High Temperature Electronics and Sensors

    Science.gov (United States)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  6. High temperature solar thermal technology: The North Africa Market

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  7. High temperature solar thermal technology: The North Africa Market

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  8. Development of High Temperature Capacitor Technology and Manufacturing Capability

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: - Deeper oil exploration in higher temperature and pressure environments - Enabling power electronic and control equipment to operate in higher temperature environments - Enabling reduced cooling requirements of electronics - Increasing reliability and life of capacitors operating below rated temperature - Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: - FPE Film is difficult to handle and wind, resulting in poor yields - Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) - Encapsulation technologies must be improved to enable higher perature operation - Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/μm. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  9. Advancement of High Temperature Black Liquor Gasification Technology

    Energy Technology Data Exchange (ETDEWEB)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the

  10. Packaging Technology for SiC High Temperature Electronics

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.

    2017-01-01

    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  11. R&D-needs and opportunities to broaden the data base on materials and technology for liquid metal spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S.

    1996-06-01

    Liquid metals have so far only been used to a very limited extent as spallation targets, notably at the ISOLDE-facility at CERN (Pb and La) to produce radioactive isotopes. Virtually no systematic studies have been carried out so far. The available data base is by no means sufficient to answer conclusively very important questions such as predicting reliably the service time of medium-to-high power target systems or determining precisely what technological measures are required and appropriate to maintain an optimum coolant quality, to mitigate the effects of pressure waves in short pulse sources and others. During the workshop several areas have been identified, where there exists an urgent need for improved knowledge and reliable data, and opportunities have been presented to acquire such knowledge and to generate such data. Opportunities to do such research and pertinent know-how, although scarce, are spread over institutions in several countries, and efforts to use these opportunities often require substantial resources both in man power and money. The workshop participants therefore unanimously supported the view that a coordinated and internationally concerted effort should be undertaken to make the best possible use of existing opportunities and available resources in order to develop the knowledge and technology necessary for the deployment and safe operation of target systems suitable for pulsed spallation neutron sources in the multi-megawatt range of beam power.

  12. Lightweight high temperature test furnace. 21st century technology

    Energy Technology Data Exchange (ETDEWEB)

    De Groot, F.C.

    2004-02-01

    A new high-temperature lightweight furnace design offers potential energy savings, thus reducing emissions and costs, and improves product quality. The Gasunie Research 12 m3 test furnace results are: 36% less heat needed to heat up the furnace; first tests show that 18% of flue gas heat loss is saved through pulse/pause firing; reduced carbon dioxide and gaseous hydrogen fluorides (HF) emissions; improved temperature homogeneity in product batch enables higher throughput; new dust-free combination of Refractory Ceramic Fibres (RCFs) have been tested successfully up to 1250C; new high-temperature vitreous wool (RCFs) with high solubility in body fluids and hence no hazard classification has been successfully tested; furnace control system developed and tested with good results, based on a standard industrial PLC, within stringent gas safety requirements.

  13. Technology trends in high temperature pressure transducers: The impact of micromachining

    Science.gov (United States)

    Mallon, Joseph R., Jr.

    1992-01-01

    This paper discusses the implications of micromachining technology on the development of high temperature pressure transducers. The introduction puts forth the thesis that micromachining will be the technology of choice for the next generation of extended temperature range pressure transducers. The term micromachining is defined, the technology is discussed and examples are presented. Several technologies for high temperature pressure transducers are discussed, including silicon on insulator, capacitive, optical, and vibrating element. Specific conclusions are presented along with recommendations for development of the technology.

  14. Applications of high-temperature superconductors in power technology

    Science.gov (United States)

    Hull, John R.

    2003-11-01

    Since the discovery of the first high-temperature superconductors (HTSs) in the late 1980s, many materials and families of materials have been discovered that exhibit superconductivity at temperatures well above 20 K. Of these, several families of HTSs have been developed for use in electrical power applications. Demonstration of devices such as motors, generators, transmission lines, transformers, fault-current limiters, and flywheels in which HTSs and bulk HTSs have been used has proceeded to ever larger scales. First-generation wire, made from bismuth-based copper oxides, was used in many demonstrations. The rapid development of second-generation wire, made by depositing thin films of yttrium-based copper oxide on metallic substrates, is expected to further accelerate commercial applications. Bulk HTSs, in which large single-grain crystals are used as basic magnetic components, have also been developed and have potential for electrical power applications.

  15. Investigation of corrosion, water reaction, polonium evaporation and bismuth resource in liquid metal lead-bismuth technology

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Hideki; Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kitano, Teruaki [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan)

    2000-10-01

    Lead-bismuth is the first candidate material for liquid metal target find coolant of fueled blanket system in accelerator-driven system (ADS) studied at JAERI. Advantages of the lead-bismuth utilization are non-active material, very low capture cross section, low melting point of 125degC and high boiling point of 1670degC, and beside coolant void reactivity become negative. But problems are due to the high corrosivity to most of the structural materials and the corrosive data are scarcity. In this report, corrosivity, reaction with water, thermal-hydraulics, chemical toxicity etc. are studied by investigating some facilities utilized and researched really for lead or lead-bismuth. And, furthermore, polonium evaporation rate and bismuth resource are investigated. Main results obtained are as follows: (1) In a refinery, there are enough employment experience for liquid Pb-Bi in period of about 17 years and not corrosion for the thermal conductive materials (1Cr-0.5Mo steel) used under the condition of natural convection with temperature around 400degC. (2) In Russia, extensive experience in the use as Russian submarines and in R and D during about 50 years are available. And as a result, it will be able to lead approximately zero corrosion for Cr-Si materials by adjusting oxygen film with oxygen concentration control between 10{sup -7} to 10{sup -5}% mass. However, the corrosion data are not enough systematically collected involving them in radiation dose field. (3) In liquid-dropping experiment, it is shown that interaction between water and high temperature liquid Pb-Bi is reduced steeply with rising of atmosphere pressure. But, in order to design the second circuit removal model of ADS, the interaction should be evaluated by water continuous injection experiment. (4) Polonium forms PbPo in Pb-Bi, and the evaporation rate become less three factor than that of Po, and furthermore, the rate decreases in the atmosphere. The effects of Po on employee and environment

  16. Casting technology for ODS steels - dispersion of nanoparticles in liquid metals

    Science.gov (United States)

    Sarma, M.; Grants, I.; Kaldre, I.; Bojarevics, A.; Gerbeth, G.

    2017-07-01

    Dispersion of particles to produce metal matrix nanocomposites (MMNC) can be achieved by means of ultrasonic vibration of the melt using ultrasound transducers. However, a direct transfer of this method to produce steel composites is not feasible because of the much higher working temperature. Therefore, an inductive technology for contactless treatment by acoustic cavitation was developed. This report describes the samples produced to assess the feasibility of the proposed method for nano-particle separation in steel. Stainless steel samples with inclusions of TiB2, TiO2, Y2O3, CeO2, Al2O3 and TiN have been created and analyzed. Additional experiments have been performed using light metals with an increased value of the steady magnetic field using a superconducting magnet with a field strength of up to 5 T.

  17. Performance of digital integrated circuit technologies at very high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Prince, J.L.; Draper, B.L.; Rapp, E.A.; Kromberg, J.N.; Fitch, L.T.

    1980-01-01

    Results of investigations of the performance and reliability of digital bipolar and CMOS integrated circuits over the 25 to 340/sup 0/C range are reported. Included in these results are both parametric variation information and analysis of the functional failure mechanisms. Although most of the work was done using commercially available circuits (TTL and CMOS) and test chips from commercially compatible processes, some results of experimental simulations of dielectrically isolated CMOS are also discussed. It was found that commercial Schottky clamped TTL, and dielectrically isolated, low power Schottky-clamped TTL, functioned to junction temperatures in excess of 325/sup 0/C. Standard gold doped TTL functioned only to 250/sup 0/C, while commercial, isolated I/sup 2/L functioned to the range 250/sup 0/C to 275/sup 0/C. Commercial junction isolated CMOS, buffered and unbuffered, functioned to the range 280/sup 0/C to 310/sup 0/C/sup +/, depending on the manufacturer. Experimental simulations of simple dielectrically isolated CMOS integrated circuits, fabricated with heavier doping levels than normal, functioned to temperatures in excess of 340/sup 0/C. High temperature life testing of experimental, silicone-encapsulated simple TTL and CMOS integrated circuits have shown no obvious life limiting problems to date. No barrier to reliable functionality of TTL bipolar or CMOS integrated ciruits at temperatures in excess of 300/sup 0/C has been found.

  18. Review on an Advanced High-Temperature Measurement Technology: The Optical Fiber Thermometry

    Directory of Open Access Journals (Sweden)

    Y. B. Yu

    2009-01-01

    Full Text Available Optical fiber thermometry technology for high-temperature measurement is briefly reviewed in this paper. The principles, characteristics, recent progresses and advantages of the technology are described. Examples of using the technology are introduced. Many blackbody, infrared, and fluorescence optical thermometers are developed for practical applications.

  19. Liquid metal enabled microfluidics.

    Science.gov (United States)

    Khoshmanesh, Khashayar; Tang, Shi-Yang; Zhu, Jiu Yang; Schaefer, Samira; Mitchell, Arnan; Kalantar-Zadeh, Kourosh; Dickey, Michael D

    2017-03-14

    Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems.

  20. Liquid metal embrittlement mechanism

    Institute of Scientific and Technical Information of China (English)

    周国辉; 刘晓敏; 万发荣; 乔利杰; 褚武扬; 张文清; 陈难先; 周富信

    1999-01-01

    Liquid metal embrittlement was studied in the following two aspects. First the first principle and ChenNanxian three-dimensional lattice reverse method were employed to obtain the effective potentials for Al-Ga and GaGa. Then with the molecular dynamics simulation, the influence of liquid metal adsorption on dislocation emission was studied. The simulated result shows that after Ga atoms are adsorbed on the crack plane in Al crystal, the critical stress intensity factor decreases, which changes from 0.5 MPam1/2 (without adsorption) to 0.4 MPam1/2 (with adsorption). The reason for the reduction in the critical intensity stress factor is that Ga adsorption reduces the surface energy of the crack plane. Moreover, 7075 Al alloy adsorbing liquid metal (Hg+3atm%Ga) was in-situ studied in TEM by using a special constant deflection device. The experimental result showed that liquid metal adsorption could facilitate emission, multiplication and motion of dislocations. When this process reached a critical

  1. Thermodynamics of liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Kushnirenko, A.N.

    1988-01-01

    The thermodynamics of a liquid metal based on quantum-mechanical models of the crystal, electronic, and nuclear structures of the metal are derived in this paper. The models are based on such formulations as the Bohr radius, the Boltzmann constant, the Planck Law, the Fermi surface, and the Pauli principle.

  2. Direct energy conversion using liquid metals

    Directory of Open Access Journals (Sweden)

    Onea Alexandru

    2014-01-01

    Full Text Available Liquid metals have excellent properties to be used as heat transport fluids due to their high thermal conductivity and their wide applicable temperature range. The latter issue can be used to go beyond limitations of existing thermal solar energy systems. Furthermore, the direct energy converter Alkali Metal Thermo Electric Converter (AMTEC can be used to make intangible areas of energy conversion suitable for a wide range of applications. One objective is to investigate AMTEC as a complementary cycle for the next generation of concentrating solar power (CSP systems. The experimental research taking place in the Karlsruhe Institute of Technology (KIT is focused on the construction of a flexible AMTEC test facility, development, test and improvement of liquid-anode and vapor-anode AMTEC devices as well as the coupling of the AMTEC cold side to the heat storage tank proposed for the CSP system. Within this project, the investigations foreseen will focus on the analyses of BASE-metal interface, electrode materials and deposition techniques, corrosion and erosion of materials brought in contact with high temperature sodium. This prototype demonstrator is planned to be integrated in the KArlsruhe SOdium LAboratory (KASOLA, a flexible closed mid-size sodium loop, completely in-house designed, presently under construction at the Institute for Neutron Physics and Reactor Technology (INR within KIT.

  3. Direct energy conversion using liquid metals

    Science.gov (United States)

    Onea, Alexandru; Diez de los Rios Ramos, Nerea; Hering, Wolfgang; Stieglitz, Robert; Moster, Peter

    2014-12-01

    Liquid metals have excellent properties to be used as heat transport fluids due to their high thermal conductivity and their wide applicable temperature range. The latter issue can be used to go beyond limitations of existing thermal solar energy systems. Furthermore, the direct energy converter Alkali Metal Thermo Electric Converter (AMTEC) can be used to make intangible areas of energy conversion suitable for a wide range of applications. One objective is to investigate AMTEC as a complementary cycle for the next generation of concentrating solar power (CSP) systems. The experimental research taking place in the Karlsruhe Institute of Technology (KIT) is focused on the construction of a flexible AMTEC test facility, development, test and improvement of liquid-anode and vapor-anode AMTEC devices as well as the coupling of the AMTEC cold side to the heat storage tank proposed for the CSP system. Within this project, the investigations foreseen will focus on the analyses of BASE-metal interface, electrode materials and deposition techniques, corrosion and erosion of materials brought in contact with high temperature sodium. This prototype demonstrator is planned to be integrated in the KArlsruhe SOdium LAboratory (KASOLA), a flexible closed mid-size sodium loop, completely in-house designed, presently under construction at the Institute for Neutron Physics and Reactor Technology (INR) within KIT.

  4. High Temperature Superconducting Magnetic Energy Storage and Its Power Control Technology

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yuan Chen; Jian-Xun Jin; Kai-Meng Ma; Ju Wen; Ying Xin; Wei-Zhi Gong; An-Lin Ren; Jing-Yin Zhang

    2008-01-01

    High temperature superconducting (HTS) power inductor and its control technology have been studied and analyzed in the paper. Based on the results of simulations and practical experiments, a controlled release scheme has been proposed and verified for developing a practical HTS SMES prototype.

  5. High temperature superconductors as a technological discontinuity in the power cable industry

    Science.gov (United States)

    Beales, T. P.; Mccormack, J. S.

    1995-01-01

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibers. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables.

  6. High temperature superconductors as a technological discontinuity in the power cable industry

    Energy Technology Data Exchange (ETDEWEB)

    Beales, T.P.; McCormack, J.S. [BICC Cables Ltd., Hebburn (United Kingdom)

    1994-12-31

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibres. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables.

  7. Emerging challenges to structural integrity technology for high-temperature applications

    Institute of Scientific and Technical Information of China (English)

    TU Shantung

    2007-01-01

    Structural integrity technology has been widely used with great success for the design, manufacture and failure prevention of modem constructions such as chemical and petrochemical plants, power generation and energy conversion systems, as well as space and oceanic exploration.The modem needs of structural integrity technology are largely attributed to the increase of service temperature of the structures that results in the efficiency improvement in energy conversion and chemical processing technologies. Besides the needs arising from large-scale high-temperature plants,the high tech developments, such as micro chemo-mechanical systems and high-power electronics, provide new challenges to structural integrity technology. The present paper summarizes the recent technical progresses in large process plants and the aviation industry, micro chemo-mechanical systems,fuel cells, high-temperature electronics, and packaging and coating technologies. The state-of-the-art of structural integrity technology for high temperature applications is reviewed.Suggestions are provided for the improvement of current design and assessment methods.

  8. Commercial Practice on Technology for High- Temperature Cracking of C4 Fraction to Increase Propylene Yield

    Institute of Scientific and Technical Information of China (English)

    Yu Darong; Zhang Zhigang

    2003-01-01

    This article refers to the results of small-scale and commercial tests on high-temperature cracking of C4 fraction in FCC unit to increase the propylene yield. The bench tests revealed that the conversion rate of C4 fraction during high-temperature cracking reached 37.38 % and propylene yield was equal to 15.60 % with the conversion rate of C4 olefins equating around 50%. The results of commercial application showed that adoption of the technology for high-temperature cracking of C4 fraction in FCC unit had led to an increase of propylene yield by 2.16 % with no remarkable changes in the yields and properties of other products.

  9. Liquid metal cooled reactors for space power applications

    Science.gov (United States)

    Bailey, S.; Vaidyanathan, S.; Van Hoomissen, J.

    1985-01-01

    The technology basis for evaluation of liquid metal cooled space reactors is summarized. Requirements for space nuclear power which are relevant to selection of the reactor subsystem are then reviewed. The attributes of liquid metal cooled reactors are considered in relation to these requirements in the areas of liquid metal properties, neutron spectrum characteristics, and fuel form. Key features of typical reactor designs are illustrated. It is concluded that liquid metal cooled fast spectrum reactors provide a high confidence, flexible option for meeting requirements for SP-100 and beyond.

  10. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  11. High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies

    Science.gov (United States)

    Eberts, Kenneth; Ou, Runqing

    2013-01-01

    Aero-assist technologies are used to control the velocity of exploration vehicles (EVs) when entering Earth or other planetary atmospheres. Since entry of EVs in planetary atmospheres results in significant heating, thermally stable aero-assist technologies are required to avoid the high heating rates while maintaining low mass. Polymer adhesives are used in aero-assist structures because of the need for high flexibility and good bonding between layers of polymer films or fabrics. However, current polymer adhesives cannot withstand temperatures above 400 C. This innovation utilizes nanotechnology capabilities to address this need, leading to the development of high-temperature adhesives that exhibit high thermal conductivity in addition to increased thermal decomposition temperature. Enhanced thermal conductivity will help to dissipate heat quickly and effectively to avoid temperature rising to harmful levels. This, together with increased thermal decomposition temperature, will enable the adhesives to sustain transient high-temperature conditions.

  12. Paths of progress in liquid metal processing

    Science.gov (United States)

    McLean, A.; Soda, H.; Sommerville, I. D.

    1995-04-01

    Industry has identified three major issues as being fundamental to future technological developments: process step elimination, product-process integration, and intelligent processing. This article reviews these concepts by discussing recent research at the University of Toronto on plasma processing, netshape casting, and diagnostic sensors for the evaluation of liquid metal quality.

  13. Preform-based toughening technology for RTMable high-temperature aerospace composites

    Institute of Scientific and Technical Information of China (English)

    YI XiaoSu; CHENG QunFeng; LIU ZhiZhen

    2012-01-01

    This article describes the efforts that led to the development of surface-loaded preforms that may be used to significantly improve the compression-after-impact strength of high-temperature composites and correspondingly to dramatically reduce the area of damage because of impact.Moreover,by matching the toughening polymer surface-loaded and design of the surface pattern,in-plane mechanical properties are unaffected or even improved over laminates made from the identical materials.The proprietary preforms,so-called ESTM-Fabrics,may be handled and infused with the high-temperature RTMable resins such as bismaleimide and polyimide in exactly the same manner as traditional fabrics without surface modification.The RTM conditions for the preform-based toughening is fully compatible with the traditional process procedure,making the technology cost-effective in production.This technology represents a key enabler for the use of low-cost RTM processes for high-temperature resins to supplant prepreg as the building-block material of choice for aeronautical composite structures.

  14. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges

    Directory of Open Access Journals (Sweden)

    Sabharwall Piyush

    2015-01-01

    Full Text Available A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX and a secondary heat exchanger (SHX. Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 °C, high-pressure (7 MPa helium loop thermally integrated with a molten fluoride salt (KF-ZrF4 flow loop operating at low pressure (0.2 MPa, at a temperature of ∼450 °C. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift in measuring operational data for extended periods of times, as data collected will be

  15. Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk [Korea Atomic Energy Research Institute, 1045 Daedeok-daaro, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01

    The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

  16. Isolated Solid-State Packaging Technology of High-Temperature Pressure Sensor

    Institute of Scientific and Technical Information of China (English)

    张生才; 金鹏; 姚素英; 赵毅强; 曲宏伟

    2003-01-01

    The principle of miniature isolated solid-state encapsulation technology of high-temperature pressure sensor and the structure of packaging are discussed, including static electricity bonding, stainless steel diaphragm selection and rippled design, laser welding, silicon oil infilling, isolation and other techniques used in sensor packaging, which can affect the performance of the sensor. By adopting stainless steel diaphragm and high-temperature silicon oil as isolation materials, not only the encapsulation of the sensor is as small as 15 mm in diameter and under 1 mA drive, its full range output is 72 mV and zero stability is 0.48% F.S/mon, but also the reliability of the sensor is improved and its application is widely broadened.

  17. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  18. The 1992 NASA Langley Measurement Technology Conference: Measurement Technology for Aerospace Applications in High-Temperature Environments

    Science.gov (United States)

    Singh, Jag J. (Editor); Antcliff, Richard R. (Editor)

    1992-01-01

    An intensive 2-day conference to discuss the current status of measurement technology in the areas of temperature/heat flux, stress/strain, pressure, and flowfield diagnostics for high temperature aerospace applications was held at Langley Research Center, Hampton, Virginia, on April 22 and 23, 1993. Complete texts of the papers presented at the Conference are included in these proceedings.

  19. Magnesium-antimony liquid metal battery for stationary energy storage.

    Science.gov (United States)

    Bradwell, David J; Kim, Hojong; Sirk, Aislinn H C; Sadoway, Donald R

    2012-02-01

    Batteries are an attractive option for grid-scale energy storage applications because of their small footprint and flexible siting. A high-temperature (700 °C) magnesium-antimony (Mg||Sb) liquid metal battery comprising a negative electrode of Mg, a molten salt electrolyte (MgCl(2)-KCl-NaCl), and a positive electrode of Sb is proposed and characterized. Because of the immiscibility of the contiguous salt and metal phases, they stratify by density into three distinct layers. Cells were cycled at rates ranging from 50 to 200 mA/cm(2) and demonstrated up to 69% DC-DC energy efficiency. The self-segregating nature of the battery components and the use of low-cost materials results in a promising technology for stationary energy storage applications.

  20. Method of foaming a liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A.K.; Johnson, C.E.

    1980-01-15

    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.

  1. Method of foaming a liquid metal

    Science.gov (United States)

    Fischer, Albert K.; Johnson, Carl E.

    1980-01-01

    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.

  2. Liquid Metal Dynamo Measurements

    Science.gov (United States)

    Luh, W. J.; Choi, Y. H.; Hardy, B. S.; Brown, M. R.

    1997-11-01

    Detection of convected magnetic fields in a small-scale liquid metal dynamo is attempted. Initial experiments will focus on the conversion of toroidal to poloidal flux (a version of the ω effect). A precision vector magnetometer will be used to measure the effect of a rotating magnetofluid on a static magnetic field. Water will be used as a control medium and effects will be compared with a conducting medium (liquid sodium or NaK). A small spherical flask (0.16 m diameter) houses 2 liters of fluid, a teflon stirrer creates an asymmetrical flow pattern, and Helmholtz coils generate a constant magnetic field on the order of 10 gauss. The Reynold's number will be of order unity.

  3. Liquid-metal MHD energy conversion. Status report, March 1976--September 1977. [Coal combustion products are mixed with liquid copper and act as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M; Dunn, P F; Pierson, E S; Dauzvardis, P V; Pollack, I

    1979-05-01

    A new open-cycle coal-fired liquid-metal MHD concept has been developed, in which the combustion products are mixed directly with liquid copper and the mixture is then passed through the MHD generator. This concept yields a system with an efficiency comparable to that of open-cycle plasma MHD at combustor temperatures as much as 1000 K lower and MHD generator temperatures more than 1000 K lower than is the case for open-cycle plasma MHD. Significantly, the liquid-metal system uses components that are close to or within present-day technology, and it appears that readily available containment materials are compatible with the fluids. The first commercial system studies for the liquid-metal Rankine-cycle concept show that it yields a higher conversion efficiency than conventional steam cycles for lower-temperature heat sources, such as a liquid-metal fast-breeder reactor, a light-water reactor, or solar collectors without any potential for hazardous reactions betweeen liquid metals (e.g., sodium) and water. Fabrication of the high-temperature liquid-metal MHD facility has been completed, and shakedown runs have been performed, using a substitute mixer-generator test section. Data obtained in this test section agreed well with existing single-phase and newly-developed two-phase correlations for the pressure gradient.

  4. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  5. High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas

    Energy Technology Data Exchange (ETDEWEB)

    Horner, M.W.

    1980-12-01

    The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

  6. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  7. Actively convected liquid metal divertor

    Science.gov (United States)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  8. High-Temperature Gas-Cooled Reactor Technology Development Program: Annual progress report for period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.E.,Jr.; Kasten, P.R.; Rittenhouse, P.L.; Sanders, J.P.

    1989-03-01

    The High-Temperature Gas-Cooled Reactor (HTGR) Program being carried out under the US Department of Energy (DOE) continues to emphasize the development of modular high-temperature gas-cooled reactors (MHTGRs) possessing a high degree of inherent safety. The emphasis at this time is to develop the preliminary design of the reference MHTGR and to develop the associated technology base and licensing infrastructure in support of future reactor deployment. A longer-term objective is to realize the full high-temperature potential of HTGRs in gas turbine and high-temperature, process-heat applications. This document summarizes the activities of the HTGR Technology Development Program for the period ending December 31, 1987.

  9. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges

    OpenAIRE

    Sabharwall Piyush; O’Brien James E.; Yoon SuJong; Sun Xiaodong

    2015-01-01

    A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed includ...

  10. Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

    2012-09-01

    This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390°C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses

  11. Development of safety analysis technology for LMR; development of safety analysis technology for LMR/ development of radioactive source terms in liquid metal reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kamg, Chang Sun; Song, Jae Hyuk; Cho, Young Ho; Go, Hyun Seok; Lee, Young Wook; Jang, Mee [Seoul National Univ., Seoul (Korea)

    2002-05-01

    PRISM source term is reviewed that had much influence on development of KALIMER. A series of experiments and simulations made in many countries are studied and source terms for liquid metal reactors except for PRISM are also reviewed. Thus, KALIMER HCDA source term is determined reasonably and conservatively. Sodium pool fire and sodium spray fire are selected as HCDA scenarios for performance analysis for KALIMER containment dome. Performance analysis for KALIMER containment dome was carried out using CONTAIN-LMR code. Comparing code calculation results with containment design parameters, we determined whether KALIMER containment dome would fail or not. The major parameters are peak pressure and peak temperature. Then, using CONTAIN-LMR code and MACCS code, radiation dose at site boundary was calculated. By comparing code calculation results with PAG guideline and 10 CFR limit, radiological consequences for HCDA was evaluated. The performance analysis showed that KALIMER containment could maintain its integrity and achieve its purpose to mitigate accident consequences and prevent release of radioactive materials in case of HCDA. Sodium pool fire caused higher radiation doses than sodium spray fire. But, dose values evaluated for HCDA were much lower than dose limit values for both sodium pool fire and sodium spray fire. 23 refs., 55 figs., 21 tabs. (Author)

  12. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of

  13. Compatibility of materials with liquid metal targets for SNS

    Energy Technology Data Exchange (ETDEWEB)

    DiStefano, J.R.; Pawel, S.J.; DeVan, J.H.

    1996-06-01

    Several heavy liquid metals are candidates as the target in a spallation neutron source: Hg, Pb, Bi, and Pb-Bi eutectic. Systems with these liquid metals have been used in the past and a data-base on compatibility already exists. Two major compatibility issues have been identified when selecting a container material for these liquid metals: temperature gradient mass transfer and liquid metal embrittlement or LME. Temperature gradient mass transfer refers to dissolution of material from the high temperature portions of a system and its deposition in the lower temperature areas. Solution and deposition rate constants along with temperature, {Delta}T, and velocity are usually the most important parameters. For most candidate materials mass transfer corrosion has been found to be proportionately worse in Bi compared with Hg and Pb. For temperatures to {approx}550{degrees}C, ferritic/martensitic steels have been satisfactory in Pb or Hg systems and the maximum temperature can be extended to {approx}650{degrees}C with additions of inhibitors to the liquid metal, e.g. Mg, Ti, Zr. Above {approx}600{degrees}C, austenitic stainless steels have been reported to be unsatisfactory, largely because of the mass transfer of nickel. Blockage of flow from deposition of material is usually the life-limiting effect of this type of corrosion. However, mass transfer corrosion at lower temperatures has not been studied. At low temperatures (usually < 150{degrees}C), LME has been reported for some liquid metal/container alloy combinations. Liquid metal embrittlement, like hydrogen embrittlement, results in brittle fracture of a normally ductile material.

  14. Lessons Learned about Liquid Metal Reactors from FFTF Experience

    Energy Technology Data Exchange (ETDEWEB)

    Wootan, David W.; Casella, Andrew M.; Omberg, Ronald P.; Burke, Thomas M.; Grandy, Christopher

    2016-09-20

    The Fast Flux Test Facility (FFTF) is the most recent liquid-metal reactor (LMR) to operate in the United States, from 1982 to 1992. FFTF is located on the DOE Hanford Site near Richland, Washington. The 400-MWt sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission test reactor was designed specifically to irradiate Liquid Metal Fast Breeder Reactor (LMFBR) fuel and components in prototypical temperature and flux conditions. FFTF played a key role in LMFBR development and testing activities. The reactor provided extensive capability for in-core irradiation testing, including eight core positions that could be used with independent instrumentation for the test specimens. In addition to irradiation testing capabilities, FFTF provided long-term testing and evaluation of plant components and systems for LMFBRs. The FFTF was highly successful and demonstrated outstanding performance during its nearly 10 years of operation. The technology employed in designing and constructing this reactor, as well as information obtained from tests conducted during its operation, can significantly influence the development of new advanced reactor designs in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor operations. The FFTF complex included the reactor, as well as equipment and structures for heat removal, containment, core component handling and examination, instrumentation and control, and for supplying utilities and other essential services. The FFTF Plant was designed using a “system” concept. All drawings, specifications and other engineering documentation were organized by these systems. Efforts have been made to preserve important lessons learned during the nearly 10 years of reactor operation. A brief summary of Lessons Learned in the following areas will be discussed: Acceptance and Startup Testing of FFTF FFTF Cycle Reports

  15. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of

  16. Some Issues in Liquid Metals Research

    Directory of Open Access Journals (Sweden)

    Maria José Caturla

    2015-11-01

    Full Text Available The ten articles [1–10] included in this Special Issue on “Liquid Metals” do not intend to comprehensively cover this extensive field, but, rather, to highlight recent discoveries that have greatly broadened the scope of technological applications of these materials. Improvements in understanding the physics of liquid metals are, to a large extent, due to the powerful theoretical tools in the hands of scientists, either semi-empirical [1,5,6] or ab initio (molecular dynamics, see [7]. Surface tension and wetting at metal/ceramic interfaces is an everlasting field of fundamental research with important technological implications. The review of [2] is broad enough, as the work carried out at Grenoble covers almost all interesting matters in the field. Some issues of interest in geophysics and astrophysics are discussed in [3]. The recently discovered liquid–liquid transition in several metals is dealt with in [4]. The fifth contribution [5] discusses the role of icosahedral superclusters in crystallization. In [6], thermodynamic calculations are carried out to identify the regions of the ternary phase diagram of Al-Cu-Y, where the formation of amorphous alloys is most probable. Experimental data and ab initio calculations are presented in [7] to show that an optimal microstructure is obtained if Mg is added to the Al-Si melt before than the modifier AlP alloy. Shock-induced melting of metals by means of laser driven compression is discussed in [8]. With respect to recent discoveries, one of the most outstanding developments is that of gallium alloys that are liquid at room temperature [9], and that, due to the oxide layer that readily cover their surface, maintain some “stiffness”. This has opened the possibility of 3D printing with liquid metals. The last article in this Special Issue [10] describes nano-liquid metals, a suspension of liquid metal and its alloy containing nanometer-sized particles. A room-temperature nano-liquid metal

  17. Forces in Liquid Metal Contacts

    DEFF Research Database (Denmark)

    Duggen, Lars; Mátéfi-Tempfli, Stefan

    2014-01-01

    Using rather well known theory about capillary bridges between two electrodes we calculate the tensile force that can be applied to liquid metal contacts in the micrometer regime. Assuming circular symmetry, full wetting of the electrodes, and neglecting gravity, we present a brief review...

  18. High-temperature industrial process heat: technology assessment and introduction rationale

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-03

    Three specific topics of interest to DOE are addressed: to establish the significance and identify the role of high-temperature process heat in the nation's energy economy; to identify the role of solar thermal power in these high-temperature industrial applications in terms of possible markets and economic potential; and to recommend programmatic approaches for these solar thermal high-temperature process heat activities, including proposed content for initial Request for Proposals (RFPs) to accomplish such activities. The scope of the work required to accomplish these three purposes included the following: review of US industrial energy requirements, survey of current DOE low-temperature Agricultural and Industrial Process Heat Program, examination of high-temperature solar thermal electric systems already developed or under development by DOE and industry, and coordination with the high-energy user segments of industry (i.e., cement, chemical and petroleum) to find additional markets for some or all of the systems or components being developed in the DOE solar thermal electric program. Statistical data are presented identifying energy allocations to process heat and defining DOE's involvement. Three current fossil fuel process heat system examples are provided and the corresponding solar potential is identified.

  19. Liquid Metal Engineering by Application of Intensive Melt Shearing

    Science.gov (United States)

    Patel, Jayesh; Zuo, Yubo; Fan, Zhongyun

    In all casting processes, liquid metal treatment is an essential step in order to produce high quality cast products. A new liquid metal treatment technology has been developed which comprises of a rotor/stator set-up that delivers high shear rate to the liquid melt. It generates macro-flow in a volume of melt for distributive mixing and intensive shearing for dispersive mixing. The high shear device exhibits significantly enhanced kinetics for phase transformations, uniform dispersion, distribution and size reduction of solid particles and gas bubbles, improved homogenisation of chemical composition and temperature fields and also forced wetting of usually difficult-to-wet solid particles in the liquid metal. Hence, it can benefit various casting processes to produce high quality cast products with refined microstructure and enhanced mechanical properties. Here, we report an overview on the application of the new high shear technology to the processing of light metal alloys.

  20. LARC(tm) RP46 Polyimide Low Cost High Temperature Technology

    Science.gov (United States)

    Pater, Ruth H.

    2000-01-01

    The LARC(tm) RP46 polyimide was developed in 1991 at NASA Langley Research Center as an ultra-high-performance composite matrix resin for use in aircraft engine components, as well as a more environmentally friendly alternative to commercially available high temperature matrix resins. The LARC(tm) RP46 polyimide is prepared with non-toxic 3,4'-oxyldianiline(ODA). This chemistry has led to several improved performance characteristics over similar high temperature polyimides. These improvements include: (1) 700 F use temperature; (2) Significantly less moisture absorption; (3) Better chemical corrosion resistance; (4) Greater microcracking resistance; (5) Higher structural durability. The 700 F use temperature LARC(tm) RP46 is 150 F higher than that of commonly used PMR-type high temperature resins. In addition, it features significantly less moisture absorption and is therefore less susceptible to moisture induced damage. It also has better corrosion resistance to chemicals, greater microcracking resistance, and higher durability with regard to structural integrity.

  1. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.; Sanders, J.P.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  2. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.; Sanders, J.P.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  3. Characterisation of practical high temperature superconductors in pulsed magnetic fields and development of associated technology

    CERN Document Server

    Saleh, P M

    2000-01-01

    including a innovative design of a 100ms pulsed magnet solenoid. Critical current measurements on state of the art practical high temperature superconductors are presented. Bi sub 2 Sr sub 2 CaCu sub 2 O silver-alloy matrix powder-in-tube and silver-alloy substrate dip-coated tapes, formed into various geometries, have been tested in pulsed magnetic fields of various pulse lengths. These measurements have been compared to tests performed in continuous magnetic fields. A distinct discrepancy between pulsed and continuous measurements has been observed in these silver-alloy, high temperature superconductor composites. The critical current measured in pulsed fields is depressed compared to those measured in continuous fields. Evidence is provided to strongly suggest that eddy current heating in the silver-alloy substrate/sheath of the conductor is responsible for this discrepancy. A model is presented to predict the temperature rise due to eddy current heating. This model shows good agreement with observations. ...

  4. The high-temperature sodium coolant technology in nuclear power installations for hydrogen power engineering

    Science.gov (United States)

    Kozlov, F. A.; Sorokin, A. P.; Alekseev, V. V.; Konovalov, M. A.

    2014-05-01

    In the case of using high-temperature sodium-cooled nuclear power installations for obtaining hydrogen and for other innovative applications (gasification and fluidization of coal, deep petroleum refining, conversion of biomass into liquid fuel, in the chemical industry, metallurgy, food industry, etc.), the sources of hydrogen that enters from the reactor plant tertiary coolant circuit into its secondary coolant circuit have intensity two or three orders of magnitude higher than that of hydrogen sources at a nuclear power plant (NPP) equipped with a BN-600 reactor. Fundamentally new process solutions are proposed for such conditions. The main prerequisite for implementing them is that the hydrogen concentration in sodium coolant is a factor of 100-1000 higher than it is in modern NPPs taken in combination with removal of hydrogen from sodium by subjecting it to vacuum through membranes made of vanadium or niobium. Numerical investigations carried out using a diffusion model showed that, by varying such parameters as fuel rod cladding material, its thickness, and time of operation in developing the fuel rods for high-temperature nuclear power installations (HT NPIs) it is possible to exclude ingress of cesium into sodium through the sealed fuel rod cladding. However, if the fuel rod cladding loses its tightness, operation of the HT NPI with cesium in the sodium will be unavoidable. Under such conditions, measures must be taken for deeply purifying sodium from cesium in order to minimize the diffusion of cesium into the structural materials.

  5. Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation of siting an HTGR plant in a remote area supplying steam, electricity and high temperature gas for recovery and upgrading of unconventional crude oil from oil sands. The area selected for this evaluation is the Alberta Canada oil sands. This is a very fertile and active area for bitumen recovery and upgrading with significant quantities piped to refineries in Canada and the U.S Additionally data on the energy consumption and other factors that are required to complete the evaluation of HTGR application is readily available in the public domain. There is also interest by the Alberta oil sands producers (OSP) in identifying alternative energy sources for their operations. It should be noted, however, that the results of this evaluation could be applied to any similar oil sands area.

  6. Geothermal fracture stimulation technology. Volume II. High-temperature proppant testing

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Data were obtained from a newly built proppant tester, operated at actual geothermal temperatures. The short term test results show that most proppants are temperature sensitive, particularly at the higher closure stresses. Many materials have been tested using a standard short-term test, i.e., fracture-free sand, bauxite, and a resin-coated sand retained good permeability at the high fluid temperatures in brine over a range of closure stresses. The tests were designed to simulate normal closure stress ranges for geothermal wells which are estimated to be from 2000 to 6000 psi. Although the ultra high closure stresses in oil and gas wells need not be considered with present geothermal resources, there is a definite need for chemically inert proppants that will retain high permeability for long time periods in the high temperature formations.

  7. A review of liquid metal anode solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    ALIYA TOLEUOVA

    2013-06-01

    Full Text Available This review discusses recent advances in a solid oxide fuel cell (SOFC variant that uses liquid metal electrodes (anodes with the advantage of greater fuel tolerance and the ability to operate on solid fuel. Key features of the approach are discussed along with the technological and research challenges that need to be overcome for scale-up and commercialisation.

  8. High Temperature Shape Memory Alloy Technology for Inlet Flow Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent advances in propulsion, aerodynamic, and noise technologies have led to a revived interest in supersonic cruise aircraft; however, achieving economic...

  9. Liquid metals fire control engineering handbook

    Energy Technology Data Exchange (ETDEWEB)

    Ballif, J.L. (comp.)

    1979-02-01

    This handbook reviews the basic requirements of the use of liquid metals with emphasis on sodium which has the greatest current usage. It delineates the concepts necessary to design facilities both radioactive and nonradioactive for use with liquid metals. It further reviews the state-of-the-art in fire extinguishers and leak detection equipment and comments on their application and sensitivity. It also provides details on some engineering features of value to the designer of liquid metal facilities.

  10. Advanced High Temperature Adhesives for Thermally Stable Aero-assist Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aero-assist technologies are used to control the velocity of exploration vehicles (EV) when entering earth or other planetary atmospheres. Since entry of EVs in...

  11. Directional Solidification Assisted by Liquid Metal Cooling

    Institute of Scientific and Technical Information of China (English)

    Jian ZHANG; Langhong LOU

    2007-01-01

    An overview of the development and current status of the directional solidification process assisted by liquid metal cooling (LMC) has been presented in this paper. The driving force of the rapid development of the LMC process has been analyzed by considering the demands of (1) newer technologies that can provide higher thermal gradients for alleviated segregation in advanced alloy systems, and (2) better production yield of the large directionally solidified superalloy components. The brief history of the industrialization of the LMC process has been reviewed, followed by the discussion on the LMC parameters including selection of the cooling media, using of the dynamic baffle, and the influence of withdrawal rates and so on. The microstructure and mechanical properties of the traditional superalloys processed by LMC, as well as the new alloys particularly developed for LMC process were then described. Finally, future aspects concerning the LMC process have been summarized.

  12. Development of Nature Protection Technologies of Hydrocarbon Wastes Disposal on the Basis of High- Temperature Pyrolysis

    Science.gov (United States)

    Shantarin, V. D.; Zemenkova, M. Yu; Zemenkov, Yu D.

    2016-10-01

    The research shows the thermal balance of low-temperature pyrolysis of birch sawdust with the possibility of further development of nature protection technology of hydrocarbon wastes disposal with secondary useful products production. The actual problem was solved by preventing environmental pollution by greenhouse gases using pyrolysis process as a method of disposal of hydrocarbon wastes with secondary useful products production. The objective of paper is to study features of the processes of thermal processing of wastes and development of environmentally sound technology of disposal C-containing wastes, contributing to the implementation of the pollution prevention concept.

  13. High-Temperature-Turbine Technology Program: Phase II. Technology test and support studies. Design and development of the liquid-fueled high-temperature combustor for the Turbine Spool Technology Rig

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-06-01

    The concept selected by Curtiss-Wright for this DOE sponsored High Temperature Turbine Technology (HTTT) Program utilizes transpiration air-cooling of the turbine subsystem airfoils. With moderate quantities of cooling air, this method of cooling has been demonstrated to be effective in a 2600 to 3000/sup 0/F gas stream. Test results show that transpiration air-cooling also protects turbine components from the aggressive environment produced by the combustion of coal-derived fuels. A new single-stage, high work transpiration air-cooled turbine has been designed and fabricated for evaluation in a rotating test vehicle designated the Turbine Spool Technology Rig (TSTR). The design and development of the annular combustor for the TSTR are described. Some pertinent design characteristics of the combustor are: fuel, Jet A; inlet temperature, 525/sup 0/F; inlet pressure, 7.5 Atm; temperature rise, 2475/sup 0/F; efficiency, 98.5%; exit temperature pattern, 0.25; and exit mass flow, 92.7 pps. The development program was conducted on a 60/sup 0/ sector of the full-round annular combustor. Most design goals were achieved, with the exception of the peak gas exit temperature and local metal temperatures at the rear of the inner liner, both of which were higher than the design values. Subsequent turbine vane cascade testing established the need to reduce both the peak gas temperature (for optimum vane cooling) and the inner liner metal temperature (for combustor durability). Further development of the 60/sup 0/ combustor sector achieved the required temperature reductions and the final configuration was incorporated in the TSTR full-annular burner.

  14. Silicon-technology based microreactors for high-temperature heterogeneous partial oxidation reactions

    NARCIS (Netherlands)

    Tiggelaar, Roald Michel

    2004-01-01

    In this thesis the results of a study into the feasibility of silicon-technology based microreactors for fast oxidation reactions have been discussed. When designed properly, silicon microreactors are suitable for studying heterogeneous gas phase reactions, such as reaction kinetics of direct cataly

  15. High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Ben [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Turk, Brian [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Denton, David [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States)

    2015-09-30

    Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilot scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit

  16. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    Science.gov (United States)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  17. Phonon dispersion relation of liquid metals

    Indian Academy of Sciences (India)

    P B Thakor; P N Gajjar; A R Jani

    2009-06-01

    The phonon dispersion curves of some liquid metals, viz. Na ( = 1), Mg ( = 2), Al ( = 3) and Pb ( = 4), have been computed using our model potential. The charged hard sphere (CHS) reference system is applied to describe the structural information. Our model potential along with CHS reference system is capable of explaining the phonon dispersion relation for monovalent, divalent, trivalent and tetravalent liquid metals.

  18. Heat-Powered Pump for Liquid Metals

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  19. Heat-Powered Pump for Liquid Metals

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  20. Specifics of high-temperature sodium coolant purification technology in fast reactors for hydrogen production and other innovative applications

    Directory of Open Access Journals (Sweden)

    F.A. Kozlov

    2017-03-01

    Full Text Available In creating a large-scale atomic-hydrogen power industry, the resolution of technological issues associated with high temperatures in reactor plants (900°C and large hydrogen concentrations intended as long-term resources takes on particular importance. The paper considers technological aspects of removing impurities from high-temperature sodium used as a coolant in the high-temperature fast reactor (BN-HT 600MW (th. intended for the production of hydrogen as well as other innovative applications. The authors examine the behavior of impurities in the BN-HT circuits associated with the mass transfer intensification at high temperatures (Arrhenius law in different operating modes. Special attention is given to sodium purification from hydrogen, tritium and corrosion products in the BN-HT. Sodium purification from hydrogen and tritium by their evacuation through vanadium or niobium membranes will make it possible to develop compact highly-efficient sodium purification systems. It has been shown that sodium purification from tritium to concentrations providing the maximum permissible concentration of the produced hydrogen (3.6Bq/l according to NRB-99/2009 specifies more stringent requirements to the hydrogen removal system, i.e., the permeability index of the secondary tritium removal system should exceed 140kg/s. Provided that a BN-HN-type reactor meets these conditions, the bulk of tritium (98% will be accumulated in the compact sodium purification system of the secondary circuit, 0.6% (∼ 4·104Bq/s, will be released into the environment and 1.3% will enter the product (hydrogen. The intensity of corrosion products (CPs coming into sodium is determined by the corrosion rate of structural materials: at a high temperature level, a significant amount of corrosion products flows into sodium. The performed calculations showed that, for the primary BN-HT circuit, the amount of corrosion products formed at the oxygen concentration in sodium of 1mln

  1. Surface tension of liquid metals and alloys--recent developments.

    Science.gov (United States)

    Egry, I; Ricci, E; Novakovic, R; Ozawa, S

    2010-09-15

    Surface tension measurements are a central task in the study of surfaces and interfaces. For liquid metals, they are complicated by the high temperatures and the consequently high reactivity characterising these melts. In particular, oxidation of the liquid surface in combination with evaporation phenomena requires a stringent control of the experimental conditions, and an appropriate theoretical treatment. Recently, much progress has been made on both sides. In addition to improving the conventional sessile drop technique, new containerless methods have been developed for surface tension measurements. This paper reviews the experimental progress made in the last few years, and the theoretical framework required for modelling and understanding the relevant physico-chemical surface phenomena.

  2. Liquid Metal Thermal Electric Converter bench test module

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, L.L.; Andraka, C.E.; Moreno, J.B.

    1988-04-01

    This report describes the design, fabrication, and test of a Liquid Metal Thermal Electric Converter Bench Test Module. The work presented in this document was conducted as a part of Heat Engine Task of the US Department of Energy's (DOE) Solar Thermal Technology Program. The objective of this task is the development and evaluation of heat engine technologies applicable to distributed receiver systems, in particular, dish electric systems.

  3. Generation and characterization of gas bubbles in liquid metals

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, S.; Gerbeth, G.; Witke, W.

    1996-06-01

    There is an ongoing research performed in the RCR on local transport phenomena in turbulent liquid metal (LM) duct flows exposed to external magnetic fields. In this context so-called MHD flow phenomena can be observed, which are unknown in usual hydraulic engineering. The field of interest covers also the influence of magnetic fields on the behaviour of liquid metal - gas mixtures. Profound knowledge on these LMMHD two-phase flow plays an important role in a variety of technological applications, in particular, in the design of Liquid-Metal MHD generators or for several metallurgical processes employing gas-stirred reactors. However, the highly empirical nature of two-phase flow analysis gives little hope for the prediction of MHD two-phase flows without extensive experimental data. A summary is given about the authors research activities focussing on two directions: (a) Momentum transfer between gas and liquid metal in a bubbly flow regime to investigate the influence of the external magnetic field on the velocity slip ration S (b) Peculiarities of the MHD turbulence to use small gas bubbles as local tracers in order to study the turbulent mass transfer.

  4. A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance

    Directory of Open Access Journals (Sweden)

    Muneeb Irshad

    2016-03-01

    Full Text Available Today’s world needs highly efficient systems that can fulfill the growing demand for energy. One of the promising solutions is the fuel cell. Solid oxide fuel cell (SOFC is considered by many developed countries as an alternative solution of energy in near future. A lot of efforts have been made during last decade to make it commercial by reducing its cost and increasing its durability. Different materials, designs and fabrication technologies have been developed and tested to make it more cost effective and stable. This article is focused on the advancements made in the field of high temperature SOFC. High temperature SOFC does not need any precious catalyst for its operation, unlike in other types of fuel cell. Different conventional and innovative materials have been discussed along with properties and effects on the performance of SOFC’s components (electrolyte anode, cathode, interconnect and sealing materials. Advancements made in the field of cell and stack design are also explored along with hurdles coming in their fabrication and performance. This article also gives an overview of methods required for the fabrication of different components of SOFC. The flexibility of SOFC in terms fuel has also been discussed. Performance of the SOFC with varying combination of electrolyte, anode, cathode and fuel is also described in this article.

  5. Summary of Structural Concept Development and High Temperature Structural Integrity Evaluation Technology for a Gen-IV SFR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Joo, Young Sang; Lee, Hyeong Yeon (and others)

    2008-04-15

    The economic improvement is a hot issue as one of Gen IV nuclear plant goals. It requires many researches and development works to meet the goal by securing the same level of plant safety. One of the key research items is the increase of the plant capacity with the minimum number of components and loops. Through the successful conceptual design experience for the KALIMER-600, the structural design study for a 1200MWe large capacity of sodium-cooled fast reactor has been performed to achieve the above plant size effects. The component number and reactor structural sizing were determined based on the core and fluid system design information. Several researches were performed to reduce the construction cost of NSSS in structural point of view, for example, a simplified component arrangement, concept proposals of integrated components, a high temperature LBB application technology, and an innovative in-service inspection (ISI) tool, and a computer program development of the ASME-NH design procedure of the class 1 structure and component under high temperature over 500 .deg. C. The IHTS piping arrangement was also proposed to minimize the length through the properly locating the SG and pump by 126m. Further studies of these concepts are required to confirm on the fabricability and the structural integrity for the operating and design loads. The proposed concepts will be optimized to a unified conceptual design through several trade-off studies.

  6. High-temperature electron irradiation and radiation-thermal technology for utilization, purification and production of some metals

    CERN Document Server

    Solovetskii, Y; Lunin, V

    1998-01-01

    High-temperature irradiation by the beam of 1.2-1.6 MeV accelerated electrons has been used for production Pt, Pd, Mo, Co, Cu and Ni from desactivated Pt(Pd)-containing reforming catalysts, molybdenum sulfide hydrodesulphurization catalysts and hydrogenation catalyst waste material. The radiation-induced decomposition of supported Ni(Co)-Mo/Al sub 2 O sub 3 sulfide catalyst and organic fragments of hydrogenation catalyst wastes has been studied. Radiolysis product distributions are shown as function of time (time up to 1,0 h) and temperature (570-1400K). There was made a principle scheme of the first technological unit for radiation-thermal utilization, purification and production of some metals from solid wastes material.

  7. Sulfur Recovery from Acid Gas Using the Claus Process and High Temperature Air Combustion (HiTAC Technology

    Directory of Open Access Journals (Sweden)

    Mohamed Sassi

    2008-01-01

    Full Text Available Sulfur-bearing compounds are very detrimental to the environment and to industrial process equipment. They are often obtained or formed as a by-product of separation and thermal processing of fuels containing sulfur, such as coal, crude oil and natural gas. The two sulfur compounds, which need special attention, are: hydrogen sulfide (H2S and sulfur dioxide (SO2. H2S is a highly corrosive gas with a foul smell. SO2 is a toxic gas responsible for acid rain formation and equipment corrosion. Various methods of reducing pollutants containing sulfur are described in this paper, with a focus on the modified Claus process, enhanced by the use of High Temperature Air Combustion (HiTAC technology in the Claus furnace. The Claus process has been known and used in the industry for over 100 years. It involves thermal oxidation of hydrogen sulfide and its reaction with sulfur dioxide to form sulfur and water vapor. This process is equilibrium-limited and usually achieves efficiencies in the range of 94-97%, which have been regarded as acceptable in the past years. Nowadays strict air pollution regulations regarding hydrogen sulfide and sulfur dioxide emissions call for nearly 100% efficiency, which can only be achieved with process modifications. High temperature air combustion technology or otherwise called flameless (or colorless combustion is proposed here for application in Claus furnaces, especially those employing lean acid gas streams, which cannot be burned without the use of auxiliary fuel or oxygen enrichment under standard conditions. With the use of HiTAC it has been shown, however, that fuel-lean, Low Calorific Value (LCV fuels can be burned with very uniform thermal fields without the need for fuel enrichment or oxygen addition. The uniform temperature distribution favors clean and efficient burning with an additional advantage of significant reduction of NOx, CO and hydrocarbon emission.

  8. High temperature structure leak before break assessment guideline(draft)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Hyeong Yeon; Joo, Young Sang; Lee, Jae Han

    2005-03-15

    This study describes the Leak Before Break(LBB) procedure applicable to the reactor structure of Liquid Metal Reactor(LMR) which is operated at a high temperature. The purpose of LBB in LMR is to assure the defence in depth safety. The technically advanced countris of LMR development, such as Japan, UK and France, have their own LBB evaluation code and their procedures were investigated thoroughly to prepare the draft edition of high temperature LBB assessment guideline for the high temperature LMR structures under development in Korea. The key issues are the defect initiation, the defect propagation and the fast rupture of structures under the fatigue loading or the creep-fatigue loading condition. Additionlly, the detectable defect length and crack opening evaluation for the leakage detection method are analyzed and included in this guideline. This study is to prepare the draft edition of LBB for a high temperature structure and the additional item including the parameter analysis will be supplemented in future. Also, the evaluation procedure will be applied to a LMR structure and result will be compared with the test results so that the LBB technology will be complemented continuously.

  9. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  10. Development of insulating coatings for liquid metal blankets

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S.; Borgstedt, H.U. [Kernforschungszentrum Karlsruhe GmbH (Germany); Farnum, E.H. [Los Alamos National Lab., NM (United States); Natesan, K. [Argonne National Lab., IL (United States); Vitkovski, I.V. [Efremov Inst., St. Petersburg (Russian Federation). MHD-Machines Lab.

    1994-07-01

    It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed.

  11. Method of foaming a liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A.K.; Johnson, C.E.

    1978-07-28

    A method for promoting the formation of a foam and for improving bubble retention and foam lifetimes in liquid metal NaK or sodium used to generate power in two-phase liquid metal MHD generators is described. In a two-phase liquid metal MHD generator, a compressed, hot, inert gas is used as the thermodynamic working fluid to electrically drive a conductive liquid metal such as NaK, sodium or tin through the generator channel. The gas and liquid are mixed together just as the mixture enters the generator channel so that the expansion of the gas drives the conductive liquid across the magnetic field, generating electrical power. The two phases are then separated and returned to the mixer through different loops.

  12. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  13. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  14. Optical fiber chemical sensors with sol-gel derived nanomaterials for monitoring high temperature/high pressure reactions in clean energy technologies

    Science.gov (United States)

    Tao, Shiquan

    2010-04-01

    The development of sensor technologies for in situ, real time monitoring the high temperature/high pressure (HTP) chemical processes used in clean energy technologies is a tough challenge, due to the HTP, high dust and corrosive chemical environment of the reaction systems. A silica optical fiber is corrosive resistance, and can work in HTP conditions. This paper presents our effort in developing fiber optic sensors for in situ, real time monitoring the concentration of trace ammonia and hydrogen in high temperature gas samples. Preliminary test results illustrate the feasibility of using fiber optic sensor technologies for monitoring HTP processes for next generation energy industry.

  15. A high-temperature superconducting delta-sigma modulator based on a multilayer technology with bicrystal Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Ruck, B.; Chong, Y.; Dittmann, R.; Engelhardt, A.; Sodtke, E.; Siegel, M. [Institut fur Schicht- und Ionentechnik (ISI), Forschungszentrum Julich GmbH, 52425 Juelich (Germany)

    1999-11-01

    We have designed, fabricated and successfully tested a first-order delta-sigma modulator using a high-temperature superconducting multilayer technology with bicrystal Josephson junctions. The circuit has been fabricated on a SrTiO{sub 3} bicrystal substrate. The YBa{sub 2}Cu{sub 3}O{sub 7}/SrTiO{sub 3}/YBa{sub 2}Cu{sub 3}O{sub 7} trilayer was fabricated by laser deposition. The bottom layer served as a superconducting ground plane. The Josephson junctions were formed at the bicrystal line in the upper layer. The integrator resistance has been made from a Pd/Au thin film. The circuit consists of a dc-SFQ converter, a Josephson transmission line, a comparator, an L/R integrator and an output stage. The correct operation of the modulatorhas been tested using dc measurements. The linearity of the modulator was studied by measuring the harmonic distortions of a 19.5 kHz sine wave input signal. From the recorded spectrum, a minimum resolution of at least 5 bits can be estimated. This accuracy was limited by the noise of the preamplifier. The correct operation of the current feedback loop was demonstrated by cutting the feedback inductance. (author)

  16. A high-temperature superconducting delta-sigma modulator based on a multilayer technology with bicrystal Josephson junctions

    Science.gov (United States)

    Ruck, B.; Chong, Y.; Dittmann, R.; Engelhardt, A.; Sodtke, E.; Siegel, M.

    1999-11-01

    We have designed, fabricated and successfully tested a first-order delta-sigma modulator using a high-temperature superconducting multilayer technology with bicrystal Josephson junctions. The circuit has been fabricated on a SrTiO3 bicrystal substrate. The YBa2Cu3O7/SrTiO3/YBa2Cu3O7 trilayer was fabricated by laser deposition. The bottom layer served as a superconducting groundplane. The Josephson junctions were formed at the bicrystal line in the upper layer. The integrator resistance has been made from a Pd/Au thin film. The circuit consists of a dc-SFQ converter, a Josephson transmission line, a comparator, an L/R integrator and an output stage. The correct operation of the modulator has been tested using dc measurements. The linearity of the modulator was studied by measuring the harmonic distortions of a 19.5 kHz sine wave input signal. From the recorded spectrum, a minimum resolution of at least 5 bits can be estimated. This accuracy was limited by the noise of the preamplifier. The correct operation of the current feedback loop was demonstrated by cutting the feedback inductance.

  17. High-temperature-turbine technology program. Phase II. Technology test and support studies. Technical progress report, April 1, 1979-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Work performed on the High-Temperature-Turbine Technology Program, Phase II-Technology Test and Support Studies during the period from 1 April 1979 through 30 June 1979 is summarized. Objectives of the program elements as well as technical progress and problems during this Phase II quarterly reporting period are presented. Planned progress during the next quarterly reporting period is also defined. Testing of the LP rig engine with hot gas stream particulates simulating operation on low Btu gas is described. Fabrication of components and preparation of facilities for future tests of the Turbine Spool Technology Rig are discussed together with analytical reviews. Preparation of the low Btu gas synthesizing facility is discussed. Supporting Materials and Process investigations are described.

  18. Double-duct liquid metal magnetohydrodynamic engine

    Science.gov (United States)

    Haaland, Carsten M.

    1995-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  19. Experimental Research on the SizeMeasurement of the High Temperature ForgingBased on Multicolor CCD Technology

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    In order to determine the size measurement accuracy of the high temperature forging's multicolor CCD image by using computerprograms, this paper obtained the high temperature forging's CCD image by multicolor CCD camera and its fact size by thevernier caliper on the forging field, and then measured the size of the high temperature forging from its CCD image, compared thesize from the CCD image and the size from the vernier caliper, the result shows that the measurement accuracy satisfied theindustrial production.

  20. Crucial issues on liquid metal blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S. (Kernforschungszentrum Karlsruhe (Germany)); Leroy, P. (CEA, CEN Saclay, 91 - Gif-sur-Yvette (France)); Casini, G.P. (CEC, Joint Research Centre (JRC), Ispra (Italy)); Mattas, R.F. (Argonne National Lab., IL (United States)); Strebkov, Yu. (Research and Development Inst. of Power Engineering, Moscow (USSR))

    1991-12-01

    Typical design concepts of liquid metal breeder blankets for power reactors are explained and characterized. The major problems of these concepts are described for both water-cooled blankets and self-cooled blankets. Three crucial issues of liquid metal breeder blankets are investigated. They are in the fields of magnetohydrodynamics, tritium control and safety. The influence of the magnetic field on liquid metal flow is of special interest for self-cooled blankets. The main problems in this field and the status of the related R and D work are described. Tritium permeation losses to the cooling water is a crucial issue for water-cooled blankets. Methods for its reduction are discussed. An inherent problem of all liquid breeder blankets is the potential release of activated products in the case of chemical reactions between the breeder material and water or reactive gases. The most important issues in this field are described. (orig.).

  1. Analysis on liquid metal corrosion-oxidation interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinsuo [International and Nuclear System Engineering, MS K-575, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: jszhang@lanl.gov; Li Ning [International and Nuclear System Engineering, MS K-575, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2007-11-15

    The interaction between growing surface oxides and flowing liquid metals is of importance in many high temperature applications such as coolant systems using liquid lead or lead bismuth eutectic (LBE) in advanced nuclear energy systems. The impact of flow can manifest through particle erosion, mass transfer corrosion, stress scrape, etc. In the present study, we consider the continuous flow-induced corrosion by dissolution of steel components or dissociation of surface oxides. In oxygen controlled liquid lead or LBE systems, steels exposed to the liquid metals are subject to both oxidation and flow-induced corrosion. It is necessary and important to understand the corrosion-oxidation interactions for selecting structural materials and optimizing operating conditions. A comprehensive theoretical analysis of the key corrosion-oxidation interactions is presented here. Possible corrosion-oxidation mechanisms are considered and the corrosion-oxidation interactions are classified into different regimes. In each regime, a theoretical model is given. Based on the analysis, corrosion-oxidation maps are developed for selecting and optimizing the operation conditions for liquid lead-alloy systems.

  2. The current status of fluoride salt cooled high temperature reactor (FHR) technology and its overlap with HIF target chamber concepts

    Science.gov (United States)

    Scarlat, Raluca O.; Peterson, Per F.

    2014-01-01

    The fluoride salt cooled high temperature reactor (FHR) is a class of fission reactor designs that use liquid fluoride salt coolant, TRISO coated particle fuel, and graphite moderator. Heavy ion fusion (HIF) can likewise make use of liquid fluoride salts, to create thick or thin liquid layers to protect structures in the target chamber from ablation by target X-rays and damage from fusion neutron irradiation. This presentation summarizes ongoing work in support of design development and safety analysis of FHR systems. Development work for fluoride salt systems with application to both FHR and HIF includes thermal-hydraulic modeling and experimentation, salt chemistry control, tritium management, salt corrosion of metallic alloys, and development of major components (e.g., pumps, heat exchangers) and gas-Brayton cycle power conversion systems. In support of FHR development, a thermal-hydraulic experimental test bay for separate effects (SETs) and integral effect tests (IETs) was built at UC Berkeley, and a second IET facility is under design. The experiments investigate heat transfer and fluid dynamics and they make use of oils as simulant fluids at reduced scale, temperature, and power of the prototypical salt-cooled system. With direct application to HIF, vortex tube flow was investigated in scaled experiments with mineral oil. Liquid jets response to impulse loading was likewise studied using water as a simulant fluid. A set of four workshops engaging industry and national laboratory experts were completed in 2012, with the goal of developing a technology pathway to the design and licensing of a commercial FHR. The pathway will include experimental and modeling efforts at universities and national laboratories, requirements for a component test facility for reliability testing of fluoride salt equipment at prototypical conditions, requirements for an FHR test reactor, and development of a pre-conceptual design for a commercial reactor.

  3. The Review of Test Technology for the Ameriacan High Temperature Structural Seals%美国高温密封试验技术研究

    Institute of Scientific and Technical Information of China (English)

    张婕; 蒋军亮; 任青梅; 李玺

    2015-01-01

    高温密封是高超音速飞行器的关键技术.文章详细介绍了美国关于热密封结构所开展的试验技术研究,包括压力试验、热暴露试验、热摩擦试验、泄漏试验的试验方法和试验设备.%High temperature structural seals have been identified as a critical technology in the development of space-earth shuttle. Perfor-mance criteria and design criteria for high temperature Seals were introduced in this paper. A series of thermal/strengthen performance test technology and facility for the high temperature structural seals such as pressure tests, leak test, temperature exposure test, scrub test were discussed. It can be helpful for the development of seal test for us.

  4. Liquid Metal Cooled Reactor for Space Power

    Science.gov (United States)

    Weitzberg, Abraham

    2003-01-01

    The conceptual design is for a liquid metal (LM) cooled nuclear reactor that would provide heat to a closed Brayton cycle (CBC) power conversion subsystem to provide electricity for electric propulsion thrusters and spacecraft power. The baseline power level is 100 kWe to the user. For long term power generation, UN pin fuel with Nb1Zr alloy cladding was selected. As part of the SP-100 Program this fuel demonstrated lifetime with greater than six atom percent burnup, at temperatures in the range of 1400-1500 K. The CBC subsystem was selected because of the performance and lifetime database from commercial and aircraft applications and from prior NASA and DOE space programs. The high efficiency of the CBC also allows the reactor to operate at relatively low power levels over its 15-year life, minimizing the long-term power density and temperature of the fuel. The scope of this paper is limited to only the nuclear components that provide heated helium-xenon gas to the CBC subsystem. The principal challenge for the LM reactor concept was to design the reactor core, shield and primary heat transport subsystems to meet mission requirements in a low mass configuration. The LM concept design approach was to assemble components from prior programs and, with minimum change, determine if the system met the objective of the study. All of the components are based on technologies having substantial data bases. Nuclear, thermalhydraulic, stress, and shielding analyses were performed using available computer codes. Neutronics issues included maintaining adequate operating and shutdown reactivities, even under accident conditions. Thermalhydraulic and stress analyses calculated fuel and material temperatures, coolant flows and temperatures, and thermal stresses in the fuel pins, components and structures. Using conservative design assumptions and practices, consistent with the detailed design work performed during the SP-100 Program, the mass of the reactor, shield, primary heat

  5. Reliability and Maintainability Data for Liquid Metal Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles [Idaho National Laboratory

    2015-05-01

    One of the coolants of interest for future fusion breeding blankets is lead-lithium. As a liquid metal it offers the advantages of high temperature operation for good station efficiency, low pressure, and moderate flow rate. This coolant is also under examination for use in test blanket modules to be used in the ITER international project. To perform reliability, availability, maintainability and inspectability (RAMI) assessment as well as probabilistic safety assessment (PSA) of lead-lithium cooling systems, component failure rate data are needed to quantify the system models. RAMI assessment also requires repair time data and inspection time data. This paper presents a new survey of the data sets that are available at present to support RAMI and PSA quantification. Recommendations are given for the best data values to use when quantifying system models.

  6. Resistance of Cast Iron Unified Module Recuperator of Heating Furnaces with High-Temperature Thermal Technologies at Machine Building, Automotive and Tractor Enterprises

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchouk

    2010-01-01

    Full Text Available The paper contains a stress analysis in the field of elastic and elastic-plastic wall state of a cast iron module industrial recuperator of high-temperature technology furnaces applied in blank and mechanical assembly production at machine building enterprises.

  7. Specificity in liquid metal induced embrittlement

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1996-12-01

    Full Text Available compounds between the solid and liquid metals. To study the embrittlement of two brass alloys by molten gallium (Tm = 29.8 °C), Tensile tests on smooth, unnotched specimens were used. The alloys used were CZ106, a 70/30 alpha-brass, and CZ109, a 60/40 alpha...

  8. Stretchable and Soft Electronics using Liquid Metals.

    Science.gov (United States)

    Dickey, Michael D

    2017-07-01

    The use of liquid metals based on gallium for soft and stretchable electronics is discussed. This emerging class of electronics is motivated, in part, by the new opportunities that arise from devices that have mechanical properties similar to those encountered in the human experience, such as skin, tissue, textiles, and clothing. These types of electronics (e.g., wearable or implantable electronics, sensors for soft robotics, e-skin) must operate during deformation. Liquid metals are compelling materials for these applications because, in principle, they are infinitely deformable while retaining metallic conductivity. Liquid metals have been used for stretchable wires and interconnects, reconfigurable antennas, soft sensors, self-healing circuits, and conformal electrodes. In contrast to Hg, liquid metals based on gallium have low toxicity and essentially no vapor pressure and are therefore considered safe to handle. Whereas most liquids bead up to minimize surface energy, the presence of a surface oxide on these metals makes it possible to pattern them into useful shapes using a variety of techniques, including fluidic injection and 3D printing. In addition to forming excellent conductors, these metals can be used actively to form memory devices, sensors, and diodes that are completely built from soft materials. The properties of these materials, their applications within soft and stretchable electronics, and future opportunities and challenges are considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Current Sharing Technology in Transmission Conductors of Cold Dielectric High Temperature Superconducting Cables Using Second-generation HTS Wires

    Institute of Scientific and Technical Information of China (English)

    ZHU Jiahui; BAO Xuzheng; QIU Ming

    2012-01-01

    The cold dielectric high temperature superconducting (CD HTS) cable has multilayer conductors. The non-uniform AC current distribution in these multilayer conductors will increase the AC loss and decrease the current transmission efficiency. So it is important to understand the current sharing among layers in order to fully exploit the performance of the HTS cable.

  10. High temperature turbine technology program. Phase II. Technology test and support studies. Annual technical progress report, January 1, 1979-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Work performed on the High Temperature Turbine Technology Program, Phase II - Technology Test and Support Studies during the period from January 1, 1979 through December 31, 1979 is summarized. Objectives of the program elements as well as technical progress and problems encountered during this Phase II annual reporting period are presented. Progress on design, fabrication and checkout of test facilities and test rigs is described. LP turbine cascade tests were concluded. 350 hours of testing were conducted on the LP rig engine first with clean distillate fuel and then with fly ash particulates injected into the hot gas stream. Design and fabrication of the turbine spool technology rig components are described. TSTR 60/sup 0/ sector combustor rig fabrication and testing are reviewed. Progress in the design and fabrication of TSTR cascade rig components for operation on both distillate fuel and low Btu gas is described. The new coal-derived gaseous fuel synthesizing facility is reviewed. Results and future plans for the supporting metallurgical programs are discussed.

  11. High Temperature Electrostrictive Ceramics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  12. High Temperature Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The High Temperature Materials Lab provides the Navy and industry with affordable high temperature materials for advanced propulsion systems. Asset List: Arc Melter...

  13. Na-Zn liquid metal battery

    Science.gov (United States)

    Xu, Junli; Kjos, Ole Sigmund; Osen, Karen Sende; Martinez, Ana Maria; Kongstein, Ole Edvard; Haarberg, Geir Martin

    2016-11-01

    A new kind of membrane free liquid metal battery was developed. The battery employs liquid sodium and zinc as electrodes both in liquid state, and NaCl-CaCl2 molten salts as electrolyte. The discharge flat voltage is in the range of about 1.4 V-1.8 V, and the cycle efficiency achieved is about 90% at low discharge current densities (below 40 mA cm-2). Moreover, this battery can also be charged and discharged at high current density with good performance. The discharge flat voltage is above 1.1 V when it is discharged at 100 mA cm-2, while it is about 0.8 V with 100% cycle efficiency when it is discharged at 200 mA cm-2. Compared to other reported liquid metal battery, this battery has lower cost, which suggests broad application prospect in energy storage systems for power grid.

  14. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  15. Research and development of a high-temperature helium-leak detection system (joint research). Part 1 survey on leakage events and current leak detection technology

    Energy Technology Data Exchange (ETDEWEB)

    Sakaba, Nariaki; Nakazawa, Toshio; Kawasaki, Kozo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Urakami, Masao; Saisyu, Sadanori [Japan Atomic Power Co., Tokyo (Japan)

    2003-03-01

    In High Temperature Gas-cooled Reactors (HTGR), the detection of leakage of helium at an early stage is very important for the safety and stability of operations. Since helium is a colourless gas, it is generally difficult to identify the location and the amount of leakage when very little leakage has occurred. The purpose of this R and D is to develop a helium leak detection system for the high temperature environment appropriate to the HTGR. As the first step in the development, this paper describes the result of surveying leakage events at nuclear facilities inside and outside Japan and current gas leakage detection technology to adapt optical-fibre detection technology to HTGRs. (author)

  16. Mechanics and forming theory of liquid metal forging

    Institute of Scientific and Technical Information of China (English)

    罗守靖; 姜巨福; 王迎; 藤东东

    2003-01-01

    On the basis of steel liquid forging and aluminium alloy liquid forging, liquid metal forging was investigated, such as the assembly model, metal plastic flowing, the force-displacement curves, the harmonious equation, calculation of value of altitude deformation and determination of specific pressure of liquid metal forging. On the basis of the theory of metal plastic forming and the characteristics of liquid metal forging, the achievements on the mechanics and forming theory of liquid metal forging were given out by combining the theory and experiments systematically, and an important preparation for establishing liquid metal forging theory was suggested.

  17. Liquid metal ion source analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, P.

    1986-06-14

    An analysis system for angular and mass resolved energy distribution measurements of liquid metal ion source beams has been constructed. The energy analyser has been calibrated, and preliminary on-axis energy distribution measurements of a gallium source operating between 0.26 and 30.0 ..mu..A have been made. These results closely agree with measurements reported by other workers, confirming the unusual FWHM behaviour of gallium sources below approx. 2 ..mu..A.

  18. Soft-sphere model for liquid metals

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.

    1977-11-08

    A semi-empirical soft-sphere model of fluids is modified for application to the thermodynamic properties of liquid metals. Enthalpy, volume, and sound speed are computed as functions of temperature for 13 metals and compared with experimental data. Critical points and coexistence curves are also computed and compared with experimental data, where these have been measured. Strengths and weaknesses of the model are discussed.

  19. Inter-institutional decision making in the technology transfer process: Some preliminary issues in the evaluation of ORNL's High-Temperature Superconductivity Pilot Center

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, D.L.

    1989-09-01

    This report illuminates the decision-making processes affecting technology transfer at ORNL as they potentially impact upon development of high-temperature superconductors. The methodology of this report consists of an analysis of Oak Ridge National Laboratory (ORNL) documents laws, and regulations; a review of relevant literature on licensing, patents, and user center decision making; and interviews with persons directly involved in technology development and transfer at the laboratory. The process of technology development at ORNL encompasses, among other things, activities aimed at research and development (R D), technology transfer, and technology utilization. Each of these activities has officially become part of an overall laboratory mission referred to as technology development. 28 refs., 1 fig., 3 tabs.

  20. Stretchable Loudspeaker using Liquid Metal Microchannel

    Science.gov (United States)

    Jin, Sang Woo; Park, Jeongwon; Hong, Soo Yeong; Park, Heun; Jeong, Yu Ra; Park, Junhong; Lee, Sang-Soo; Ha, Jeong Sook

    2015-07-01

    Considering the various applications of wearable and bio-implantable devices, it is desirable to realize stretchable acoustic devices for body-attached applications such as sensing biological signals, hearing aids, and notification of information via sound. In this study, we demonstrate the facile fabrication of a Stretchable Acoustic Device (SAD) using liquid metal coil of Galinstan where the SAD is operated by the electromagnetic interaction between the liquid metal coil and a Neodymium (Nd) magnet. To fabricate a liquid metal coil, Galinstan was injected into a micro-patterned elastomer channel. This fabricated SAD was operated simultaneously as a loudspeaker and a microphone. Measurements of the frequency response confirmed that the SAD was mechanically stable under both 50% uniaxial and 30% biaxial strains. Furthermore, 2000 repetitive applications of a 50% uniaxial strain did not induce any noticeable degradation of the sound pressure. Both voice and the beeping sound of an alarm clock were successfully recorded and played back through our SAD while it was attached to the wrist under repeated deformation. These results demonstrate the high potential of the fabricated SAD using Galinstan voice coil in various research fields including stretchable, wearable, and bio-implantable acoustic devices.

  1. Commercial Test on Technology for High-Temperature Cracking of C5 Fraction to Decrease Olefin Content of Gasoline in DCCU

    Institute of Scientific and Technical Information of China (English)

    Luo Yong

    2005-01-01

    During June and July 2003, Jingmen Petrochemical Company carded out the commercial test on technology for high-temperature cracking of C5 fraction to decrease olefin content of gasoline in DCCU.The test results showed that the olefin content of DCC gasoline had decreased from 68.32m% to 42.5m%,meanwhile the propylene yield increased by 0.90m%.

  2. Dynamics of liquid metal droplets and jets influenced by a strong axial magnetic field

    Science.gov (United States)

    Hernández, D.; Karcher, Ch

    2017-07-01

    Non-contact electromagnetic control and shaping of liquid metal free surfaces is crucial in a number of high-temperature metallurgical processes like levitation melting and electromagnetic sealing, among others. Other examples are the electromagnetic bending or stabilization of liquid metal jets that frequently occur in casting or fusion applications. Within this context, we experimentally study the influence of strong axial magnetic fields on the dynamics of falling metal droplets and liquid metal jets. GaInSn in eutectic composition is used as test melt being liquid at room temperature. In the experiments, we use a cryogen-free superconducting magnet (CFM) providing steady homogeneous fields of up to 5 T and allowing a tilt angle between the falling melt and the magnet axis. We vary the magnetic flux density, the tilt angle, the liquid metal flow rate, and the diameter and material of the nozzle (electrically conducting/insulating). Hence, the experiments cover a parameter range of Hartmann numbers Ha, Reynolds numbers Re, and Weber numbers We within 0 magnetic field, droplet rotation ceases and the droplets are stretched in the field direction. Moreover, we observe that the jet breakup into droplets (spheroidization) is suppressed, and in the case of electrically conducting nozzles and tilt, the jets are bent towards the field axis.

  3. High Temperature Capacitor Development

    Energy Technology Data Exchange (ETDEWEB)

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  4. High temperature superconducting compounds

    Science.gov (United States)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  5. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

    Directory of Open Access Journals (Sweden)

    Carlos O. Maidana

    2017-02-01

    Full Text Available Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermo-magnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

  6. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Carlos O.; Nieminen, Juha E. [Maidana Research, Grandville (United States)

    2017-02-15

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermo-magnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

  7. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    Energy Technology Data Exchange (ETDEWEB)

    Vohra, Yogesh, K.

    2009-10-28

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

  8. Investigational study of the CO2 balance in high temperature CO2 separation technology; Nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    An investigational study was conducted to clarify the adaptable environment and effectivity of technologies of high temperature separation/recovery/reutilization of CO2. In the study, data collection, arrangement and comparison were made of various separation technologies such as the membrane method, absorption method, adsorption method, and cryogenic separation method. With the LNG-fired power generation as an example, the adaptable environment and effectivity were made clear by making models by a process simulator, ASPEN PLUS. Moreover, using this simulator, effects of replacing the conventional steam reforming of hydrocarbon with the CO2 reforming were made clear with the methanol synthesis as an example. As to the rock fixation treatment of high temperature CO2, collection/arrangement were made of the data on the fixation treatment of the CO2 separated at high temperature into basic rocks such as peridotite and serpentinite in order to clarify the adaptable environment and effectivity of the treatment. Besides, a potentiality of the fixation to concrete waste was made clear. 57 refs., 57 figs., 93 tabs.

  9. Preliminary Conceptual Design and Development of Core Technology of Very High Temperature Gas-Cooled Reactor Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jong Hwa; Kang, H. S.; Gil, C. S. and others

    2006-05-15

    For the nuclear hydrogen production system, the VHTR technology and the IS cycle technology are being developed. A comparative evaluation on the block type reactor and the pebble type reactor is performed to decide a proper nuclear hydrogen production reactor. 100MWt prismatic type reactor is tentatively decided and its safety characteristics are roughly investigated. Computation codes of nuclear design, thermo-fluid design, safety-performance analysis are developed and verified. Also, the development of a risk informed design technology is started. Experiments for metallic materials and graphites are carried out for the selection of materials of VHTR components. Diverse materials for process heat exchanger are studied in various corrosive environments. Pyrolytic carbon and SiC coating technology is developed and fuel manufacturing technology is basically established. Computer program is developed to evaluate the performance of coated particle fuels.

  10. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  11. Density Measurement of Liquid Metals Using Dilatometer

    Institute of Scientific and Technical Information of China (English)

    Lianwen WANG; Qingsong MEI

    2006-01-01

    The dilatometer method for density measurement of liquid metals was improved to give a high measurement accuracy with simple operation. The density of liquid tin was measured and the results are in agreement with values in literature. The melting point density of liquid Sn was measured to be 6.966×103 Kg·m-3 and the temperature (T) dependence of the density (ρ) for liquid Sn can be well described by a polynomial equation ρ(T)=7.406 - 9.94 × 10-4T + 2.12 × 10-7T2.

  12. Thermal convection in a liquid metal battery

    CERN Document Server

    Shen, Yuxin

    2015-01-01

    Generation of thermal convection flow in the liquid metal battery, a device recently proposed as a promising solution for the problem of the short-term energy storage, is analyzed using a numerical model. It is found that convection caused by Joule heating of electrolyte during charging or discharging is virtually unavoidable. It exists in laboratory prototypes larger than a few cm in size and should become much stronger in larger-scale batteries. The phenomenon needs further investigation in view of its positive (enhanced mixing of reactants) and negative (loss of efficiency and possible disruption of operation due to the flow-induced deformation of the electrolyte layer) effects.

  13. Thermal convection in a liquid metal battery

    Science.gov (United States)

    Shen, Yuxin; Zikanov, Oleg

    2016-08-01

    Generation of thermal convection flow in the liquid metal battery, a device recently proposed as a promising solution for the problem of the short-term energy storage, is analyzed using a numerical model. It is found that convection caused by Joule heating of electrolyte during charging or discharging is virtually unavoidable. It exists in laboratory prototypes larger than a few centimeters in size and should become much stronger in larger-scale batteries. The phenomenon needs further investigation in view of its positive (enhanced mixing of reactants) and negative (loss of efficiency and possible disruption of operation due to the flow-induced deformation of the electrolyte layer) effects.

  14. Metal pad instabilities in liquid metal batteries

    CERN Document Server

    Zikanov, Oleg

    2015-01-01

    A mechanical analogy is used to analyze the interaction between the magnetic field, electric current and deformation of interfaces in liquid metal batteries. It is found that, during charging or discharging, a sufficiently large battery is prone to instabilities of two types. One is similar to the metal pad instability known for aluminum reduction cells. Another type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field induced by the base current and the current perturbations caused by the local variations of the thickness of the electrolyte layer.

  15. Acoustic velocity measurement across the diameter of a liquid metal column

    Energy Technology Data Exchange (ETDEWEB)

    Calder, C.A.; Wilcox, W.W.

    1978-05-15

    Present techniques for measuring sound velocity in liquid metals have been limited by the use of transducers which cannot survive in extreme temperature conditions. These methods also require relatively long measurement times. An optical noncontacting method has been developed which may be used for extremely short experimental times and very high temperatures and pressures. This technique is being incorporated into an isobaric expansion apparatus in which a 1 mm diam wire sample in a high pressure argon gas environment is resistively heated to melt within a time period of only a few microseconds. Before instability of the liquid column occurs, thermal expansion, enthalpy, and temperature are measured. The addition of the sound velocity measurement permits a more complete determination of the thermophysical properties of the liquid metal.

  16. High-temperature gas-cooled reactor base-technology program. Progress report, January 1, 1974--June 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Coobs, J.H.; Kasten, P.R.

    1976-11-01

    Progress is reported in the following areas: PCRV development, studies on structural materials, fission product technology studies, kernel migration and irradiated fuel chemistry, coolant chemistry (steam-graphite reactions), fuel qualification, and characterization and standardization of graphite.

  17. Computer simulation of carburizers particles heating in liquid metal

    Directory of Open Access Journals (Sweden)

    K. Janerka

    2010-01-01

    Full Text Available In this article are introduced the problems of computer simulation of carburizers particles heating (anthracite, graphite and petroleum coke, which are present in liquid metal. The diameter of particles, their quantity, relative velocity of particles and liquid metal and the thermophysical properties of materials (thermal conductivity, specific heat and thermal diffusivity have been taken into account in calculations. The analysis has been carried out in the aspect of liquid metal carburization in metallurgical furnaces.

  18. Properties of structural materials in liquid metal environment. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Borgstedt, H.U. [ed.

    1991-12-15

    The International Working Group on Fast Reactors (IWGFR) Specialists Meeting on Properties of Structural Materials in Liquid Metal Environment was held during June 18 to June 20, 1991, at the Nuclear Research Centre (Kernforschungszentrum) in Karlsruhe, Germany. The Specialists Meeting was divided into five technical sessions which addressed topics as follows: Creep-Rupture Behaviour of Structural Materials in Liquid Metal Environment; Behaviour of Materials in Liquid Metal Environments under Off-Normal Conditions;Fatigue and Creep-Fatigue of Structural Materials in Liquid Metal Environment; Crack Propagation in Liquid Sodium; and Conclusions and recommendations. Individual papers have been cataloged separately.

  19. Collaborative Research and Development on Liquid Metal Plasma Facing Components

    Science.gov (United States)

    Jaworski, M. A.; Abrams, T.; Ellis, R.; Khodak, A.; Leblanc, B.; Menard, J.; Ono, M.; Skinner, C. H.; Stotler, D. P.; Detemmerman, G.; Gleeson, M. A.; Lof, A. R.; Scholten, J.; van den Berg, M. A.; van den Meiden, H. J.; Gray, T. K.; Sabbagh, S. A.; Soukhanovskii, V. A.; Hu, J.; Wang, L.; Zuo, G.

    2012-10-01

    Liquid metal plasma facing components (PFCs) provide the potential to avoid component replacement by continually replenishing the plasma-facing surface. Data during the NSTX liquid lithium divertor (LLD) campaign indicate that impurity accumulation on the static lithium resulted in a mixed-material surface. However, no lithium ejection nor substrate influx was observed during normal operation. This motivates research on flowing systems for near-term machines. Experiments on the Magnum-PSI linear test-stand and EAST tokamak have begun to explore issues related to near-surface lithium transport, surface evolution and coating lifetime for exposures of 5-10s. Technology development for a fully-flowing liquid lithium PFC is being conducted including construction of a liquid lithium flow loop and thermal-hydraulic studies of novel, capillary-restrained lithium PFCs for possible use on EAST and NSTX-U.

  20. High Temperature Capacitors for Venus Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR program, TRS Technologies has developed several new dielectrics for high temperature applications including signal conditioning, filtering and energy...

  1. 高温贫氧燃烧技术的研究与应用%Study and Application of High Temperature Air Combustion Technology

    Institute of Scientific and Technical Information of China (English)

    马宪国; 郑国耀; 李道林

    2001-01-01

    高温贫氧燃烧技术是90年代初在西方工业发达国家发展起来的一种新型燃烧技术,其特点是不存 在传统燃烧过程中出现的局部高温高氮区,炉膛传热效率显著提高,NOx的生成受到抑制。另外,还介绍了国 外在高温贫氧燃烧技术的最新实验室研究成果。图11参4%High temperature air combustion (HTAC) is a new burring technology developed in indus trial countries in recent years which can evidently enhance heat transfer in the chamber of a furnace and reduce NOx emission. A great deal of study has been done on the basic research and industrial ap plication of the HTAC technology. This paper gives a brief introduction on experimental studies of high temperature air combustion in developed countries. Figs 11 and refs 4.

  2. Small Liquid Metal Cooled Reactor Safety Study

    Energy Technology Data Exchange (ETDEWEB)

    Minato, A; Ueda, N; Wade, D; Greenspan, E; Brown, N

    2005-11-02

    The Small Liquid Metal Cooled Reactor Safety Study documents results from activities conducted under Small Liquid Metal Fast Reactor Coordination Program (SLMFR-CP) Agreement, January 2004, between the Central Research Institute of the Electric Power Industry (CRIEPI) of Japan and the Lawrence Livermore National Laboratory (LLNL)[1]. Evaluations were completed on topics that are important to the safety of small sodium cooled and lead alloy cooled reactors. CRIEPI investigated approaches for evaluating postulated severe accidents using the CANIS computer code. The methods being developed are improvements on codes such as SAS 4A used in the US to analyze sodium cooled reactors and they depend on calibration using safety testing of metal fuel that has been completed in the TREAT facility. The 4S and the small lead cooled reactors in the US are being designed to preclude core disruption from all mechanistic scenarios, including selected unprotected transients. However, postulated core disruption is being evaluated to support the risk analysis. Argonne National Laboratory and the University of California Berkeley also supported LLNL with evaluation of cores with small positive void worth and core designs that would limit void worth. Assessments were also completed for lead cooled reactors in the following areas: (1) continuing operations with cladding failure, (2) large bubbles passing through the core and (3) recommendations concerning reflector control. The design approach used in the US emphasizes reducing the reactivity in the control mechanisms with core designs that have essentially no, or a very small, reactivity change over the core life. This leads to some positive void worth in the core that is not considered to be safety problem because of the inability to identify scenarios that would lead to voiding of lead. It is also believed that the void worth will not dominate the severe accident analysis. The approach used by 4S requires negative void worth throughout

  3. Technologies of deep-oxidation under high temperature in wastewater treatment%废水高温深度氧化处理技术

    Institute of Scientific and Technical Information of China (English)

    赵国方; 赵红斌

    2001-01-01

    介绍了多种废水高温深度氧化技术,包括湿式空气氧化技术、催化湿式氧化技术、湿式过氧化物氧化技术、超临界水氧化技术和焚烧技术,其中着重比较了焚烧技术中四种炉型的特点。%Some technologies about deep-oxidation under high temperature in wastewater treatment were introduced, including wet air oxidation(WAO),catalyst wet air oxidation(CWAO),wet peroxide oxidation(WPO),supercritical water oxidation(SCWO),and incinerating technology.Four types of incinerators were compared by their features emphatically.

  4. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    Science.gov (United States)

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  5. Metal pad instabilities in liquid metal batteries

    Science.gov (United States)

    Zikanov, Oleg

    2016-11-01

    Strong variations between the electrical conductivities of electrolyte and metal layers in a liquid metal battery indicate the possibility of 'metal pad' instabilities. Deformations of the electrolyte-metal interfaces cause strong perturbations of electric currents, which, hypothetically, can generate Lorentz forces enhancing the deformations. We investigate this possibility using two models: a mechanical analogy and a two-dimensional linearized approximation. It is found that the battery is prone to instabilities of two types. One is similar to the sloshing-wave instability observed in the Hall-Héroult aluminum reduction cells. Another is new and related to the interactions of current perturbations with the azimuthal magnetic field induced by the base current. Financial support was provided by the U.S. National Science Foundation (Grant CBET 1435269).

  6. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  7. Ionic imbalance induced self-propulsion of liquid metals

    Science.gov (United States)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  8. High temperature polymer matrix composites

    Science.gov (United States)

    Serafini, Tito T. (Editor)

    1987-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) Characterization; (4) environmental effects; and (5) applications.

  9. Development of high-temperature turbine subsystem technology to a technology readiness status, Phase II. Quarterly report, January-March 1981

    Energy Technology Data Exchange (ETDEWEB)

    Horner, M.W.

    1981-04-01

    progress in developing a technical readiness vehicle (TRV) for demonstrating the performance of a combined-cycle power plant with high-temperature, 2600 to 3000/sup 0/F firing temperature, gas turbines using coal-derived gas fuel is reported. Work on the combined-cycle power plant and TRV design, component development, aerodynamics studies, simulation, and fuel gas cleanup systems is described. (LCL)

  10. The NDT methods under high temperature service environment

    Directory of Open Access Journals (Sweden)

    Zhang Zhen-guo

    2016-01-01

    Full Text Available Concerning the detective requirement of the equipment under high temperature running status, this paper summarizes the technical characteristics and related applications of several non-destructive testing methods(NDT, such as thermal infrared imaging technology in high temperature, ultrasonic testing technique in high temperature, pulsed eddy current technology in high temperature and magnetic powder flaw detection technology in high temperature, penetration testing technique in high temperature and indirect visual detection in high temperature and on-line monitoring system in high temperature.

  11. High-Temperature Optical Sensor

    Science.gov (United States)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  12. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    Directory of Open Access Journals (Sweden)

    Timothy D. Myles

    2015-10-01

    Full Text Available In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC. The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs manufactured by Reactive Spray Deposition Technology (RSDT. MEAs with varying ratios of PTFE binder to carbon support material (I/C ratio were manufactured and their performance at various operating temperatures was recorded. The semi-empirical model derivation was based on the coated film catalyst layer approach and was calibrated to the experimental data by a least squares method. The behavior of important physical parameters as a function of I/C ratio and operating temperature were explored.

  13. A Microfluidic Chip for Liquid Metal Droplet Generation and Sorting

    Directory of Open Access Journals (Sweden)

    Lu Tian

    2017-01-01

    Full Text Available A liquid metal based microfluidic system was proposed and demonstrated for the generation and sorting of liquid metal droplets. This micro system utilized silicon oil as the continuous phase and Ga66In20.5Sn13.5 (66.0 wt % Ga, 20.5 wt % In, 13.5 wt % Sn, melting point: 10.6 °C as the dispersed phase to generate liquid metal droplets on a three-channel F-junction generator. The F-junction is an updated design similar to the classical T-junction, which has a special branch channel added to a T-junction for the supplement of 30 wt % aqueous NaOH solution. To perform active sorting of liquid metal droplets by dielectrophoresis (DEP, the micro system utilized liquid-metal-filled microchannels as noncontact electrodes to induce electrical fields through the droplet channel. The electrode channels were symmetrically located on both sides of the droplet channel in the same horizontal level. According to the results, the micro system can generate uniformly spherical liquid metal droplets, and control the flow direction of the liquid metal droplets. To better understand the control mechanism, a numerical simulation of the electrical field was performed in detail in this work.

  14. Recent applications of liquid metals featuring nanoscale surface oxides

    Science.gov (United States)

    Neumann, Taylor V.; Dickey, Michael D.

    2016-05-01

    This proceeding describes recent efforts from our group to control the shape and actuation of liquid metal. The liquid metal is an alloy of gallium and indium which is non-toxic, has negligible vapor pressure, and develops a thin, passivating surface oxide layer. The surface oxide allows the liquid metal to be patterned and shaped into structures that do not minimize interfacial energy. The surface oxide can be selectively removed by changes in pH or by applying a voltage. The surface oxide allows the liquid metal to be 3D printed to form free-standing structures. It also allows for the liquid metal to be injected into microfluidic channels and to maintain its shape within the channels. The selective removal of the oxide results in drastic changes in surface tension that can be used to control the flow behavior of the liquid metal. The metal can also wet thin, solid films of metal that accelerates droplets of the liquid along the metal traces .Here we discuss the properties and applications of liquid metal to make soft, reconfigurable electronics.

  15. The New Energy Saving Technology of High Temperature Multifunctional Soil-geothermal Pump%高温多功能地源热泵节能新技术

    Institute of Scientific and Technical Information of China (English)

    孔令国; 秦松祥

    2013-01-01

    地源热泵技术是从近地表的地下摄取能源,该能源是一种取之不尽、用之不竭的可再生清洁能源,具有高能效、长寿命、环保、天然、绿色的特点。阐述了实施高温多功能地源热泵的设计措施,采用“二次冷凝制冷循环”技术、选用新型高效双螺杆压缩机,辅以压力、温度、过载、过热及断水延时自动保护等功能设计。经研究比较表明,应用该技术所生产的地源热泵产品与目前国内外同类产品相比具有出水温度高、高温不增压、运行噪声低、运转平稳安静的优势,并且可以制热、制冷、供生活热水同时进行,是一项值得大力推广应用的节能新技术。%Ground source heat pump technology is an inexhaustible renewable and clean energy , and has the characteristics with high energy efficiency , long life, environmental protection , natural production and green .It elaborates the design measures of implementing the high temperature multifunctional ground source heat pump , applies "quadratic congealed refrigerating cycle"technology , slects a new type highly efficient twin screw com-pressor .The functioning design includes pressure , temperature , overloading , superheating and automatic protec-tion of wate breaking of time delay .Comparing with like products at home and abroad , the testing result indicates that the productions of the ground source heat pump have the advantages of a high outlet water temperature in high temperatures , a lower operating noise and a smooth running .This technology can supply heating , refrigera-tion and hot living water simultaneously , and be a new energy-saving technology .

  16. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  17. Heavy liquid metals: Research programs at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Y.

    1996-06-01

    The author describes work at PSI on thermohydraulics, thermal shock, and material tests for mechnical properties. In the presentation, the focus is on two main programs. (1) SINQ LBE target: The phase II study program for SINQ is planned. A new LBE loop is being constructed. The study has the following three objectives: (a) Pump study - design work on an electromagnetic pump to be integrated into the target. (b) Heat pipe performance test - the use of heat pipes as an additional component of the target cooling system is being considered, and it may be a way to futher decouple the liquid metal and water coolant loops. (c) Mixed convection experiment - in order to find an optimal configuration of the additional flow guide for window cooling, mixed convection around the window is to be studied. The experiment will be started using water and then with LBE. (2) ESS Mercury target: For ESS target study, the following experimental studies are planned, some of which are exampled by trial experiments. (a) Flow around the window: Flow mapping around the hemi-cylindrical window will be made for optimising the flow channels and structures, (b) Geometry optimisation for minimizing a recirculation zone behind the edge of the flow separator, (c) Flow induced vibration and buckling problem for a optimised structure of the flow separator and (d) Gas-liquid two-phase flow will be studied by starting to establish the new experimental method of measuring various kinds of two-phase flow characteristics.

  18. Impact Dynamics of Oxidized Liquid Metal Drops

    CERN Document Server

    Xu, Qin; Jaeger, Heinrich M

    2013-01-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during the impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number $We^{\\star}$ is employed that uses an effective surface...

  19. Modern Aspects of Liquid Metal Engineering

    Science.gov (United States)

    Czerwinski, Frank

    2016-10-01

    Liquid metal engineering (LME) refers to a variety of physical and/or chemical treatments of molten metals aimed at influencing their solidification characteristics. Although the fundamentals have been known for decades, only recent progress in understanding solidification mechanisms has renewed an interest in opportunities this technique creates for an improvement of castings. This review covers conventional and novel concepts of LME with their application to modern manufacturing techniques based not only on liquid but also on semisolid routes. The role of external forces applied to the melt combined with grain nucleation control is explained along with laboratory- and commercial-scale equipment designed for implementation of various concepts exploring mechanical, electromagnetic, and ultrasound principles. An influence of melt treatments on quality of the final product is considered through distinguishing between internal integrity of net shape components and the alloy microstructure. Recent global developments indicate that exploring the synergy of melt chemistry and physical treatments achieved through LME allows creating the optimum conditions for nucleation and growth during solidification, positively affecting quality of castings.

  20. Production of Liquid Metal Spheres by Molding

    Directory of Open Access Journals (Sweden)

    Mohammed G. Mohammed

    2014-10-01

    Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.

  1. Modern Aspects of Liquid Metal Engineering

    Science.gov (United States)

    Czerwinski, Frank

    2017-02-01

    Liquid metal engineering (LME) refers to a variety of physical and/or chemical treatments of molten metals aimed at influencing their solidification characteristics. Although the fundamentals have been known for decades, only recent progress in understanding solidification mechanisms has renewed an interest in opportunities this technique creates for an improvement of castings. This review covers conventional and novel concepts of LME with their application to modern manufacturing techniques based not only on liquid but also on semisolid routes. The role of external forces applied to the melt combined with grain nucleation control is explained along with laboratory- and commercial-scale equipment designed for implementation of various concepts exploring mechanical, electromagnetic, and ultrasound principles. An influence of melt treatments on quality of the final product is considered through distinguishing between internal integrity of net shape components and the alloy microstructure. Recent global developments indicate that exploring the synergy of melt chemistry and physical treatments achieved through LME allows creating the optimum conditions for nucleation and growth during solidification, positively affecting quality of castings.

  2. Experimental Two-Phase Liquid-Metal Magnetohydrodynamic Generator Program

    Science.gov (United States)

    1979-04-01

    efficiencies in excess of 0.8 are attainable. Initial measurements of local flow parameters in a NaK -nitrogen two-phase liquid - metal MHD generator...hot liquid metals . Thus, the concept of using surface-active aaents in MHD generators can be evaluated more rapidly and inexpensively with NaK , the...describe this aggregation of bchbles as a foam. When the Ba- NaK solution was transferred, helium was blown under the surface of the liquid metal with the

  3. Advanced Machinery Liquid Metal Wetting, Cleaning and Materials Compatibility Study

    Science.gov (United States)

    1982-03-01

    barium doped NaK 7 8 at temperatures to lOO 0 C for 250 and 500 hours. Doping of the liquid metal created no compatibility... metal - solid metal interface specific contact resistance (ck). Two liquid metal compositions were used, NaK 7 8 and barium doped NaK 7 8 . The...three with NaK - barium as the liquid metal and eight with NaK . They were ranked in ascending value of mean interface specific contact

  4. The problem of introducing an electrical current into liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Yavoyskiy, V.I.; Khanov, V.K.; Kovalev, P.I.; Povkh, I.L.

    1984-01-01

    The question of introducing an electrical current into a liquid metal by means of steel electrode plates mounted in the walls of groove fettling is examined. The contact between the electrodes and the liquid cast iron and steel was accomplished through openings in the fettling. The supply of current was accomplished through a circuit in which an electrical current, which traveled along the electrode downward and then through the openings in the fettling into the liquid metal, is fed to the upper part of the electrode. The results are of interest for studies of liquid metallic magnetohydrodynamic installations.

  5. Liquid Metal Embrittlement in Resistance Spot Welding and Hot Tensile Tests of Surface-refined TWIP Steels

    Science.gov (United States)

    Barthelmie, J.; Schram, A.; Wesling, V.

    2016-03-01

    Automotive industry strives to reduce vehicle weight and therefore fuel consumption and carbon dioxide emissions. Especially in the auto body, material light weight construction is practiced, but the occupant safety must be ensured. These requirements demand high-strength steels with good forming and crash characteristics. Such an approach is the use of high- manganese-content TWIP steels, which achieve strengths of around 1,000 MPa and fracture strains of more than 60%. Welding surface-refined TWIP steels reduces their elongation at break and produces cracks due to the contact with liquid metal and the subsequent liquid metal embrittlement (LME). The results of resistance spot welds of mixed joints of high-manganese- content steel in combination with micro-alloyed ferritic steel and hot tensile tests are presented. The influence of different welding parameters on the sensitivity to liquid metal embrittlement is investigated by means of spot welding. In a high temperature tensile testing machine, the influence of different parameters is determined regardless of the welding process. Defined strains just below or above the yield point, and at 25% of elongation at break, show the correlation between the applied strain and liquid metal crack initiation. Due to the possibility to carry out tensile tests on a wide range of temperatures, dependencies of different temperatures of the zinc coating to the steel can be identified. Furthermore, the attack time of the zinc on the base material is investigated by defined heating periods.

  6. Applications of high-temperature superconductors in power technology[8470 High-current and high-voltage technology: power systems; power transmission lines and cables;

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R [Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2003-11-01

    Since the discovery of the first high-temperature superconductors (HTSs) in the late 1980s, many materials and families of materials have been discovered that exhibit superconductivity at temperatures well above 20 K. Of these, several families of HTSs have been developed for use in electrical power applications. Demonstration of devices such as motors, generators, transmission lines, transformers, fault-current limiters, and flywheels in which HTSs and bulk HTSs have been used has proceeded to ever larger scales. First-generation wire, made from bismuth-based copper oxides, was used in many demonstrations. The rapid development of second-generation wire, made by depositing thin films of yttrium-based copper oxide on metallic substrates, is expected to further accelerate commercial applications. Bulk HTSs, in which large single-grain crystals are used as basic magnetic components, have also been developed and have potential for electrical power applications.

  7. A New Model for Microstructure of Liquid Metals

    Institute of Scientific and Technical Information of China (English)

    田学雷; 沈军; 孙剑飞; 李庆春

    2004-01-01

    A nanocrystalline model for microstructures of liquid metals is constructed. According to the nanocrystalline model, the intensity curves of x-ray diffraction (XRD) on liquid Cu, Al and Al65Cu20Fe15 alloy are derived by broadening the XRD peaks of these metals in some crystal structures. These broadening intensity curves are identical with the results measured by an x-ray diffractometer on these liquid metals. The present results indicate that the nanocrystal model may be helpful to understand the microstructures of liquid metals and that there is aclose correlation between the short-range orders (SROs) of these liquid metals and some crystal lattice structures.That is, the SRO structures of liquid Cu, Al and Al65Cu20Fe15 alloy are fcc, bcc and icosahedron, respectively.

  8. Liquid metal heat sink for high-power laser diodes

    Science.gov (United States)

    Vetrovec, John; Litt, Amardeep S.; Copeland, Drew A.; Junghans, Jeremy; Durkee, Roger

    2013-02-01

    We report on the development of a novel, ultra-low thermal resistance active heat sink (AHS) for thermal management of high-power laser diodes (HPLD) and other electronic and photonic components. AHS uses a liquid metal coolant flowing at high speed in a miniature closed and sealed loop. The liquid metal coolant receives waste heat from an HPLD at high flux and transfers it at much reduced flux to environment, primary coolant fluid, heat pipe, or structure. Liquid metal flow is maintained electromagnetically without any moving parts. Velocity of liquid metal flow can be controlled electronically, thus allowing for temperature control of HPLD wavelength. This feature also enables operation at a stable wavelength over a broad range of ambient conditions. Results from testing an HPLD cooled by AHS are presented.

  9. Space-resolved Resistive Measurement of Liquid Metal Wall Thickness

    CERN Document Server

    Mirhoseini, S M H

    2016-01-01

    In a fusion reactor internally coated with liquid metal, it will be important to diagnose the thickness of the liquid at various locations in the vessel, as a function of time, and possibly respond to counteract undesired bulging or depletion. The electrical conductance between electrodes immersed in the liquid metal can be used as a simple proxy for the local thickness. Here a matrix of electrodes is shown to provide spatially resolved measurements of liquid metal thickness in the absence of plasma. First a theory is developed for mxn electrodes, and then it is experimentally demonstrated for 3x1 electrodes. The experiments were carried out with Galinstan, but are easily extended to Lithium or other liquid metals.

  10. Impact dynamics of oxidized liquid metal drops

    Science.gov (United States)

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M.

    2013-04-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor Pm=R0/Rm, given by the ratio of initial to maximum drop radius, and the impact number K=We/Re4/5, which scales with the effective Weber number We as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number Kc≈0.1.

  11. Science and technology of cuprate-based high temperature superconductor thin films, heterostructures and superlattices—the first 30 years (Review Article)

    Science.gov (United States)

    Habermeier, H.-U.

    2016-10-01

    During the three decades after the discovery of superconductivity at high temperatures in copper oxides, intense research activities generated a tremendous progress in both, mastering the scientific challenges underpinning the understanding of the properties of these chemically and structurally complex materials as well as achieving a mature technology in preparing single phase bulk specimens—including single crystals—and epitaxially grown single crystalline thin films. This review covers in addition to more basic physics oriented developments mainly technological aspects of complex oxide thin film deposition as an enabling technology to explore the physics of these materials. It consists of two parts: after a brief introduction to the materials development prior to the discovery of superconducting copper oxides, a description of the relevant properties of copper oxide superconductors with focus on YBa2Cu3O7-δ is given, followed by the coverage of essentials of complex oxide thin film deposition technology with the copper oxides at its core. Here, the major physical vapor deposition technologies (evaporation and oxide molecular beam technology, sputtering and pulsed laser deposition) are described followed by an overview of substrate requirements to deposit high quality thin films. Opportunities by choosing special substrates with unique properties far beyond the usual mechanical support for a film are introduced with examples aside from usual lattice mismatch induced strain effects. One is the continuous modification of the strain state by poling ferroelectric oxide substrates linked to a piezoelectric effect, the other is the nanoscale tailoring of substrate step-and-terrace structures resulting in a controllable generation of planar defects in complex oxides, thus contributing to the physics of flux-line pinning in cuprate superconductors. In the second part of this review, first some highlights of single layer thin film research are given such as to tailor

  12. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also...... input to the cell then hydrogen is produced giving syngas. This syngas can then be further reacted to form hydrocarbon fuels and chemicals. Operating at high temperature gives much higher efficiencies than can be achieved with low temperature electrolysis. Current state of the art SOECs utilise a dense...

  13. The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM Demonstration Power Plant: An Engineering and Technological Innovation

    Directory of Open Access Journals (Sweden)

    Zuoyi Zhang

    2016-03-01

    Full Text Available After the first concrete was poured on December 9, 2012 at the Shidao Bay site in Rongcheng, Shandong Province, China, the construction of the reactor building for the world's first high-temperature gas-cooled reactor pebble-bed module (HTR-PM demonstration power plant was completed in June, 2015. Installation of the main equipment then began, and the power plant is currently progressing well toward connecting to the grid at the end of 2017. The thermal power of a single HTR-PM reactor module is 250 MWth, the helium temperatures at the reactor core inlet/outlet are 250/750 °C, and a steam of 13.25 MPa/567 °C is produced at the steam generator outlet. Two HTR-PM reactor modules are connected to a steam turbine to form a 210 MWe nuclear power plant. Due to China's industrial capability, we were able to overcome great difficulties, manufacture first-of-a-kind equipment, and realize series major technological innovations. We have achieved successful results in many aspects, including planning and implementing R&D, establishing an industrial partnership, manufacturing equipment, fuel production, licensing, site preparation, and balancing safety and economics; these obtained experiences may also be referenced by the global nuclear community.

  14. HIGH TEMPERATURE DISPLACEMENT SENSOR

    Institute of Scientific and Technical Information of China (English)

    Xu Longxiang; Zhang Jinyu; Schweitzer Gerhard

    2005-01-01

    A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90~350 mV at 550℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2~3 V at 550℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550℃ in a magnetic bearing system for more than 100 h.

  15. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar

    2010-01-01

    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  16. Theory of the spin-1 bosonic liquid metal - Equilibrium properties of liquid metallic deuterium

    Science.gov (United States)

    Oliva, J.; Ashcroft, N. W.

    1984-01-01

    The theory of a two-component quantum fluid comprised of spin-1/2 fermions and nonzero spin bosons is examined. This system is of interest because it embodies a possible quantum liquid metallic phase of highly compressed deuterium. Bose condensation is assumed present and the two cases of nuclear-spin-polarized and -unpolarized systems are considered. A significant feature in the unpolarized case is the presence of a nonmagnetic mode with quadratic dispersion owing its existence to nonzero boson spin. The physical character of this mode is examined in detail within a Bogoliubov approach. The specific heat, bulk modulus, spin susceptibility, and thermal expansion are all determined. Striking contrasts in the specific heats and thermal-expansion coefficients of the liquid and corresponding normal solid metallic phase are predicted.

  17. Novel High Temperature Strain Gauge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  18. Desulfurization at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Panula-Nikkilae, E.; Kurkela, E.; Mojtahedi, W.

    1987-01-01

    Two high-temperature desulfurization methods, furnace injection and gasification-desulfurization are presented. In furnace injection, the efficiency of desulfurization is 50-60%, but this method is applied in energy production plants, where flue gas desulfurization cannot be used. Ca-based sorbents are used as desulfurization material. Factors affecting desulfurization and the effect of injection on the boiler and ash handling are discussed. In energy production based on gasification, very low sulfur emissions can be achieved by conventional low-temperature cleanup. However, high-temperature gas cleaning leads to higher efficiency and can be applied to smaller size classes. Ca-, Fe-, or Zn-based sorbents or mixed metals can be used for desulfurization. Most of the methods under development are based on the use of regenerative sorbents in a cleanup reactor located outside the gasifier. So far, only calcium compounds have been used for desulfurization inside the gasifier.

  19. High Temperature ESP Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  20. Strangeness at high temperatures

    CERN Document Server

    Schmidt, Christian

    2013-01-01

    We use up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number fluctuations to extract information on the strange meson and baryon contribution to the low temperature hadron resonance gas, the dissolution of strange hadronic states in the crossover region of the QCD transition and the quasi-particle nature of strange quark contributions to the high temperature quark-gluon plasma phase.

  1. American superconductor technology to help CERN to explore the mysteries of matter company's high temperature superconductor wire to be used in CERN's Large Hadron Collider

    CERN Multimedia

    2003-01-01

    American Superconductor Corporation has been selected by CERN, to provide 14,000 meters of high temperature superconductor (HTS) wire for current lead devices that will be used in CERN's Large Hadron Collider (1 page).

  2. Steering liquid metal flow in microchannels using low voltages.

    Science.gov (United States)

    Tang, Shi-Yang; Lin, Yiliang; Joshipura, Ishan D; Khoshmanesh, Khashayar; Dickey, Michael D

    2015-10-07

    Liquid metals based on gallium, such as eutectic gallium indium (EGaIn) and Galinstan, have been integrated as static components in microfluidic systems for a wide range of applications including soft electrodes, pumps, and stretchable electronics. However, there is also a possibility to continuously pump liquid metal into microchannels to create shape reconfigurable metallic structures. Enabling this concept necessitates a simple method to control dynamically the path the metal takes through branched microchannels with multiple outlets. This paper demonstrates a novel method for controlling the directional flow of EGaIn liquid metal in complex microfluidic networks by simply applying a low voltage to the metal. According to the polarity of the voltage applied between the inlet and an outlet, two distinct mechanisms can occur. The voltage can lower the interfacial tension of the metal via electrocapillarity to facilitate the flow of the metal towards outlets containing counter electrodes. Alternatively, the voltage can drive surface oxidation of the metal to form a mechanical impediment that redirects the movement of the metal towards alternative pathways. Thus, the method can be employed like a 'valve' to direct the pathway chosen by the metal without mechanical moving parts. The paper elucidates the operating mechanisms of this valving system and demonstrates proof-of-concept control over the flow of liquid metal towards single or multiple directions simultaneously. This method provides a simple route to direct the flow of liquid metal for applications in microfluidics, optics, electronics, and microelectromechanical systems.

  3. Efficient vacuum-free-processed quantum dot light-emitting diodes with printable liquid metal cathodes.

    Science.gov (United States)

    Peng, Huiren; Jiang, Yibin; Chen, Shuming

    2016-10-20

    Colloidal quantum dot light-emitting diodes (QLEDs) are recognized as promising candidates for next generation displays. QLEDs can be fabricated by low-cost solution processing except for the metal electrodes, which, in general, are deposited by costly vacuum evaporation. To be fully compatible with the low-cost solution process, we herein demonstrate vacuum-free and solvent-free fabrication of electrodes using a printable liquid metal. With eutectic gallium-indium (EGaIn) based liquid metal cathodes, vacuum-free-processed QLEDs are demonstrated with superior external quantum efficiencies of 11.51%, 12.85% and 5.03% for red, green and blue devices, respectively, which are about 2-, 1.5- and 1.1-fold higher than those of the devices with thermally evaporated Al cathodes. The improved performance is attributable to the reduction of electron injection by the native oxide of EGaIn, which serves as an electron-blocking layer for the devices and thus improves the balance of carrier injection. Also, the T50 half-lifetime of the vacuum-free-processed QLEDs is about 2-fold longer than that of the devices with Al cathodes. Our results demonstrate that EGaIn-based solvent-free liquid metals are promising printable electrodes for realizing efficient, low-cost and vacuum-free-processed QLEDs. The elimination of vacuum and high-temperature processes significantly reduces the production cost and paves the way for industrial roll-to-roll manufacturing of large area displays.

  4. Energy saving in thermal process technology with ultra light weight products made from high temperature insulating wool (HTIW); Energieeinsparung in der Thermoprozesstechnik durch Ultraleicht-Produkte aus Hochtemperaturwolle (HTW)

    Energy Technology Data Exchange (ETDEWEB)

    Springer, M. [Aug. Rath jun. GmbH, Vienna (Austria); Wimmer, H. [RATH GmbH, Moenchengladbach (Germany)

    2007-06-15

    On selected applications from the steel industry and the environmental technology the excellent chemical, physical and thermo mechanical properties of aluminium silicate (ALSITRA) and polycrystalline (ALTRA) high temperature insulating wool (HTIW) are shown. Every refractory material features technological and economic advantages and disadvantages in relation to any specific application. The correct selection of the refractory products and the appropriate usage requires cooperation in partnership between the operator of the plant, the kiln engineering and the supplier of refractory materials. In most cases a combination of refractory materials - balanced lining due to the requirements - is selected in consideration of technical and economical aspects. Concerning operating costs, investment volume, reliability, immediate equipment availability after installation or relining and overall efficiency of high temperature equipment materials made from High-Temperature Insulating Wool (HTIW) show significant advantages. (orig.)

  5. Hydrodynamics of heavy liquid metal coolant processes and filtering apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Albert K Papovyants; Yuri I Orlov; Pyotr N Martynov; Yuri D Boltoev [Institute for Physics and Power Engineering named after A.I. Leypunsky Bondarenko sq. 1, 249033, Obninsk, Kaluga region (Russian Federation)

    2005-07-01

    forces at a distance from the wall equal to S {<=} 0,2 d{sub p}. It is demonstrated that the filtration efficiency can be significantly influenced by the properties of the capillary-porous structure of the filter material: the fiber diameter, type of braiding providing the availability of stagnant zones, porosity and wetting angle. With some simplifying prerequisites, the evaluation of the dynamics of the sedimentation growth on the porous partition has been performed as a function of time. Analysis of the conditions of the hydrodynamic separation of filter entrained particles (d{sub p} {approx_equal} 2 {mu}m) by the coolant flow revealed that to realize this process, it is necessary that the wall flow velocity be about V = 0,2 m/s. The object of investigations was a broad class of filter materials, including metallo-ceramics, metallic grids, carbon cloth, glass-fibers, needle-pierced cloth made of metallic fibers, grainy materials (made of aluminium oxides). By the complex of technical characteristics, with the thermal stability, cleaning efficiency (fineness), impurity retention capacity and hydraulic resistance considered, the multi-layer siliceous textured cloth (SiO{sub 2}>95%, t 400 deg. C) and needle-pierced cloth made of 40 {mu}m-d. metallic fibers (X18H10T steel, t {<=} 400-550 deg. C) are recommended for HLMC cleaning. The routine monitoring of the filter operation is implemented based on its resistance and the reduction of the flow rate through the filter, induced by its clogging by impurities, the clogging being dependent on the concentration of suspensions in coolant. The investigations as conducted made it possible to construct high temperature filter specimens, including those for an output capacity of 900 m{sup 3}/h, in reference to operation and maintenance conditions of heavy liquid metal cooled nuclear power installations. (authors)

  6. Advanced High Temperature Reactor Systems and Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Qualls, A L [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience

  7. Free surface stability of liquid metal plasma facing components

    Science.gov (United States)

    Fiflis, P.; Christenson, M.; Szott, M.; Kalathiparambil, K.; Ruzic, D. N.

    2016-10-01

    An outstanding concern raised over the implementation of liquid metal plasma facing components in fusion reactors is the potential for ejection of liquid metal into the fusion plasma. The influences of Rayleigh-Taylor-like and Kelvin-Helmholtz-like instabilities were experimentally observed and quantified on the thermoelectric-driven liquid-metal plasma-facing structures (TELS) chamber at the University of Illinois at Urbana-Champaign. To probe the stability boundary, plasma currents and velocities were first characterized with a flush probe array. Subsequent observations of lithium ejection under exposure in the TELS chamber exhibited a departure from previous theory based on linear perturbation analysis. The stability boundary is mapped experimentally over the range of plasma impulses of which TELS is capable to deliver, and a new theory based on a modified set of the shallow water equations is presented which accurately predicts the stability of the lithium surface under plasma exposure.

  8. Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS

    Directory of Open Access Journals (Sweden)

    Kyeongseob Kim

    2016-04-01

    Full Text Available A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS. To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm to 6.4 cm.

  9. Development of oxygen sensors for use in liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Van Nieuwenhove, Rudi [Institutt for Energiteknikk, Halden, (Norway); Ejenstam, Jesper; Szakalos, Peter [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Stockholm, (Sweden)

    2015-07-01

    For generation IV reactor concepts, based on liquid metal cooling, there is a need for robust oxygen sensors which can be used in the core of the reactor since corrosion can only be kept sufficiently low by controlling the dissolved oxygen content in the liquid metal. A robust, ceramic membrane type sensor has been developed at IFE/Halden (Norway) and tested in an autoclave system at KTH (Sweden). The sensor has been tested in lead-bismuth at 550 deg. C and performed well. (authors)

  10. Problems and prospects connected with development of high-temperature filtration technology at nuclear power plants equipped with VVER-1000 reactors

    Science.gov (United States)

    Shchelik, S. V.; Pavlov, A. S.

    2013-07-01

    Results of work on restoring the service properties of filtering material used in the high-temperature reactor coolant purification system of a VVER-1000 reactor are presented. A quantitative assessment is given to the effect from subjecting a high-temperature sorbent to backwashing operations carried out with the use of regular capacities available in the design process circuit in the first years of operation of Unit 3 at the Kalinin nuclear power plant. Approaches to optimizing this process are suggested. A conceptual idea about comprehensively solving the problem of achieving more efficient and safe operation of the high-temperature active water treatment system (AWT-1) on a nuclear power industry-wide scale is outlined.

  11. Gas-cooled reactor programs: high-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    Information is presented concerning HTGR chemistry; fueled graphite development; irradiation services for General Atomic Company; prestressed concrete pressure vessel development; HTGR structural materials; graphite development; high-temperature reactor physics studies; shielding studies; component flow test loop studies; core support performance test; and application and project assessments.

  12. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

    Science.gov (United States)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4–8 GHz) and the X-band (8–12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels. PMID:27546310

  13. Handwritten, Soft Circuit Boards and Antennas Using Liquid Metal Nanoparticles.

    Science.gov (United States)

    Lin, Yiliang; Cooper, Christopher; Wang, Meng; Adams, Jacob J; Genzer, Jan; Dickey, Michael D

    2015-12-22

    Soft conductors are created by embedding liquid metal nanoparticles between two elastomeric sheets. Initially, the particles form an electrically insulating composite. Soft circuit boards can be handwritten by a stylus, which sinters the particles into conductive traces by applying localized mechanical pressure to the elastomeric sheets. Antennas with tunable frequencies are formed by sintering nanoparticles in microchannels.

  14. Liquid Metal Oscillation and Arc Behaviour during Welding

    NARCIS (Netherlands)

    Yudodibroto, B.Y.B.

    2010-01-01

    The purpose of this research is to obtain insight into the oscillation behaviour of the liquid metal and the arc behaviour during GMA welding. Observations of the weld pool and the arc were undertaken by visual means using a high-speed video and by analysis of the voltage. To deal with the complex p

  15. A superconductor to superfluid phase transition in liquid metallic hydrogen.

    Science.gov (United States)

    Babaev, Egor; Sudbø, Asle; Ashcroft, N W

    2004-10-07

    Although hydrogen is the simplest of atoms, it does not form the simplest of solids or liquids. Quantum effects in these phases are considerable (a consequence of the light proton mass) and they have a demonstrable and often puzzling influence on many physical properties, including spatial order. To date, the structure of dense hydrogen remains experimentally elusive. Recent studies of the melting curve of hydrogen indicate that at high (but experimentally accessible) pressures, compressed hydrogen will adopt a liquid state, even at low temperatures. In reaching this phase, hydrogen is also projected to pass through an insulator-to-metal transition. This raises the possibility of new state of matter: a near ground-state liquid metal, and its ordered states in the quantum domain. Ordered quantum fluids are traditionally categorized as superconductors or superfluids; these respective systems feature dissipationless electrical currents or mass flow. Here we report a topological analysis of the projected phase of liquid metallic hydrogen, finding that it may represent a new type of ordered quantum fluid. Specifically, we show that liquid metallic hydrogen cannot be categorized exclusively as a superconductor or superfluid. We predict that, in the presence of a magnetic field, liquid metallic hydrogen will exhibit several phase transitions to ordered states, ranging from superconductors to superfluids.

  16. Thermohydraulic safety issues for liquid metal cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, Gunter; Stefani, Frank [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Fluid Dynamics; Eckert, Sven

    2016-05-15

    In this paper recent developments of various techniques for single-phase and two-phase flow measurements with relevance to liquid metal cooled systems will be presented. Further, the status of the DRESDYN platform for large-scale experiments with liquid sodium is sketched.

  17. Cooling Technology of Rotor of High Temperature Superconducting Electrical Machines%高温超导电机转子冷却技术的研究

    Institute of Scientific and Technical Information of China (English)

    陈彪; 顾国彪

    2011-01-01

    Cooling technology of rotor is a key technology for high temperature superconducting electrical machines.Based on the theory of rotating piping flow and pool boiling,the heat transfer principles of cooling methods are proposed,which are including integrated rotating thermosyphon,distributed rotating thermosyphon,immersion cooling,layered open evaporative cooling,and rotating piping evaporative cooling,respectively.The temperature distributions of cooling methods of rotor section are simulated by ANSYS steady state model.An experimentally integrated test platform adaptable to five cooling methods is designed and built up.Experiments on characteristics of heat transfer and flow are investigated.The performances of five cooling methods were contrasted,and the results are that immersion cooling makes the best performance and the others are different with it.Moreover,the experimental results are compared with the simulated ones.It is verified that the simulations could match the experiments well.%本文针对高温超导电机关键技术之一的转子冷却技术,从旋转管道流动和池沸腾的基本理论出发,对现有的集中式旋转热管、浸泡式冷却方式和三种新型的冷却方式即:分布式旋转热管、分层开放式蒸发冷却和旋转管道蒸发冷却,总结并建立了分别适用于这些转子冷却方式的沸腾换热模型;另外对于旋转管道蒸发冷却的流体动力学问题,参照静止两相流流动阻力的计算模型来分析这种冷却方式的流动阻力。在模型计算、载荷和漏热等边界条件基础上,采用ANSYS温度场静态计算模块对各种冷却方式进行了仿真,得到各种工况的温度分布。建立了一台能实现五种高温超导电机冷却方式的综合性实验平台,对五种冷却方式进行了详细的换热和流动的实验研究,从温升和分布均匀度而言,浸泡式冷却的效果最好,其他几种方式次之。同时对比实验数据与仿真结果,

  18. Liquid metal cooling in thermal management of computer chips

    Institute of Scientific and Technical Information of China (English)

    MA Kunquan; LIU Jing

    2007-01-01

    With the rapid improvement of computer performance,tremendous heat generation in the chip becomes a major serious concern for thermal management.Meanwhile,CPU chips are becoming smaller and smaller with almost no room for the heat to escape.The total power-dissipation levels now reside on the order of 100 W with a peak power density of 400-500 W/cm2,and are still steadily climbing.As a result,it is extremely hard to attain higher performance and reliability.Because the conventional conduction and forcedair convection techniques are becoming incapable in providing adequate cooling for sophisticated electronic systems,new solutions such as liquid cooling,thermoelectric cooling,heat pipes,vapor chambers,etc.are being studied.Recently,it was realized that using a liquid metal or its alloys with a low melting point as coolant could significantly lower the chip temperature.This new generation heat transfer enhancement method raised many important fundamentals and practical issues to be solved.To accommodate to the coming endeavor in this area,this paper is dedicated to presenting an overall review on chip cooling using liquid metals or their alloys as coolant.Much more attention will be paid to the thermal properties of liquid metals with low melting points or their alloys and their potential applications in the chip cooling.Meanwhile,principles of several typical pumping methods such as mechanical,electromagnetic or peristaltic pumps will be illustrated.Some new advancement in making a liquid metal cooling device will be discussed.The liquid metal cooling is expected to open a new world for computer chip cooling because of its evident merits over traditional coolant.

  19. The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation

    CERN Document Server

    Fradera, Jorge

    2013-01-01

    The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in,e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAMR CFD tool for 0D to 3D simulations. Results for a 0D case show the impact of a He dispersed phase of na...

  20. A Personal Desktop Liquid-Metal Printer as a Pervasive Electronics Manufacturing Tool for Society in the Near Future

    Directory of Open Access Journals (Sweden)

    Yang Jun

    2015-12-01

    Full Text Available It has long been a dream in the electronics industry to be able to write out electronics directly, as simply as printing a picture onto paper with an office printer. The first-ever prototype of a liquid-metal printer has been invented and demonstrated by our lab, bringing this goal a key step closer. As part of a continuous endeavor, this work is dedicated to significantly extending such technology to the consumer level by making a very practical desktop liquid-metal printer for society in the near future. Through the industrial design and technical optimization of a series of key technical issues such as working reliability, printing resolution, automatic control, human-machine interface design, software, hardware, and integration between software and hardware, a high-quality personal desktop liquid-metal printer that is ready for mass production in industry was fabricated. Its basic features and important technical mechanisms are explained in this paper, along with demonstrations of several possible consumer end-uses for making functional devices such as light-emitting diode (LED displays. This liquid-metal printer is an automatic, easy-to-use, and low-cost personal electronics manufacturing tool with many possible applications. This paper discusses important roles that the new machine may play for a group of emerging needs. The prospective future of this cutting-edge technology is outlined, along with a comparative interpretation of several historical printing methods. This desktop liquid-metal printer is expected to become a basic electronics manufacturing tool for a wide variety of emerging practices in the academic realm, in industry, and in education as well as for individual end-users in the near future.

  1. HIGH TEMPERATURE VACUUM MIXER

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2015-01-01

    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  2. High temperature interfacial superconductivity

    Science.gov (United States)

    Bozovic, Ivan [Mount Sinai, NY; Logvenov, Gennady [Port Jefferson Station, NY; Gozar, Adrian Mihai [Port Jefferson, NY

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  3. High temperature interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gozar, A., E-mail: adrian.gozar@yale.edu [Yale University, New Haven, CT 06511 (United States); Bozovic, I. [Yale University, New Haven, CT 06511 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-02-15

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T{sub c} superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T{sub c} Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  4. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    OpenAIRE

    Myles, Timothy D.; Siwon Kim; Radenka Maric; Mustain, William E.

    2015-01-01

    In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC). The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs) were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs) manufactu...

  5. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  6. Magnetorotational Instability in Liquid Metal Couette Flow

    CERN Document Server

    Noguchi, K; Colgate, S A; Nordhaus, J; Beckley, H F

    2002-01-01

    Despite the importance of the magnetorotational instability (MRI) as a fundamental mechanism for angular momentum transport in magnetized accretion disks, it has yet to be demonstrated in the laboratory. A liquid sodium alpha-omega dynamo experiment at the New Mexico Institute of Mining and Technology provides an ideal environment to study the MRI in a rotating metal annulus (Couette flow). A local stability analysis is performed as a function of shear, magnetic field strength, magnetic Reynolds number, and turbulent Prandtl number. The later takes into account the minimum turbulence induced by the formation of an Ekman layer against the rigidly rotating end walls of a cylindrical vessel. Stability conditions are presented and unstable conditions for the sodium experiment are compared with another proposed MRI experiment with liquid gallium. Due to the relatively large magnetic Reynolds number achievable in the sodium experiment, it should be possible to observe the excitation of the MRI for a wide range of w...

  7. Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics

    Science.gov (United States)

    Zhang, Qin; Gao, Yunxia; Liu, Jing

    2014-09-01

    A direct electronics printing technique through atomized spraying for patterning room-temperature liquid metal droplets on desired substrate surfaces is proposed and experimentally demonstrated for the first time. This method is highly flexible and capable of fabricating electronic components on various target objects, with either flat or rough surfaces, made of different materials, or having different orientations from 2D to 3D geometrical configurations. With a pre-designed mask, the liquid metal ink can be directly deposited on the substrate to form various specific patterns which lead to the rapid prototyping of electronic devices. Further, extended printing strategies were also suggested to illustrate the adaptability of the method. For example, it can be used for making transparent conductive film with an optical transmittance of 47 % and a sheet resistance of 5.167Ω/□ due to natural porous structure. Different from the former direct writing technology where large surface tension and poor adhesion between the liquid metal and the substrate often impede the flexible printing process, the liquid metal here no longer needs to be pre-oxidized to guarantee its applicability on target substrates. One critical mechanism was that the atomized liquid metal microdroplets can be quickly oxidized in the air due to its large specific surface area, resulting in a significant increase of the adhesion capacity and thus firm deposition of the ink to the substrate. This study paved a generalized way for pervasively and directly printing electronics on various substrates which are expected to be significant in a wide spectrum of electrical engineering areas.

  8. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  9. Longtime resistant fibre reinforced ceramics for high temperature loaded components in power production technology. Final report; Langzeitbestaendige faserverstaerkte Keramiken fuer hochtemperaturbeanspruchte Komponenten der Energietechnik. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Leuchs, M.; Muehlratzer, A.

    2000-10-01

    1. Present status: Ceramic matrix composites (CMCs: C/SiC and SiC/SiC) do not have sufficient life time above 500 C in power production (turbines, heat exchangers) due to the oxygen sensible C- and SiC-fibres used in such ceramics. 2. Reasoning and goals: SiBNC-fibre have, produced on lab scale, shown excellent stability against oxygen up to temperatures of about 1400 C. The project had the goal to use these fibres for the manufacturing of high temperature resistant CMC and to develop, together with applicants, prototype components (turbine combustion chamber shindles, heat exchanger tubes). 3. Method: Phase 1: Proof of high temperature capabilities of CMC samples manufactured by CVI- and LPI-techniques (CVI=Chemical vapour infiltration, LPI=Liquid polymer infiltration). Phase 2: Development of prototype components together with applicants. 4. Results and Conclusions: The development of fibre manufacturing in technical quantities to be performed in a programme running parallel to this one did not succeed in the quality wanted and necessary. The CMC samples did not show sufficient improvements of high temperature properties. Further fundamental research is necessary before an application with long time high temperature loads can be considered. (orig.) [German] 1. Derzeitiger Stand von Wissenschaft und Technik: Verbundkeramik (C/SiC und SiC/SiC) hat wegen der Sauerstoffempfindlichkeit der verfuegbaren C- und SiC-Fasern bei Temperaturen ueber 500 C keine Lebensdauer wie sie fuer Anwendungen in der Energietechnik (Turbinen, Waermetauscher) gefordert werden. 2. Begruendung/Zielsetzung der Untersuchung: SiBNC-Fasern haben, im Labormassstab gefertigt, herausragende Bestaendigkeit gegen Sauerstoff bis zu Temperaturen von ca. 1400 C gezeigt. Das Vorhaben hatte das Ziel, diese Fasern fuer die Herstellung von hochtemperaturbestaendiger Verbundkeramik zu nutzen und gemeinsam mit Anwenderfirmen prototypische Komponenten (Turbinenbrennkammerauskleidung

  10. Seismic Base Isolation Analysis for PASCAR Liquid Metal Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuk Hee; Yoo, Bong; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of)

    2008-10-15

    This paper presents a study for developing a seismic isolation system for the PASCAR (Proliferation resistant, Accident-tolerant, Self-supported, Capsular and Assured Reactor) liquid metal reactor design. PASCAR use lead-bismuth eutectic (LBE) as coolant. Because the density (10,000kg/m{sup 3}) of LBE coolant is very heavier than sodium coolant and water, this presents a challenge to designers of the seismic isolation systems that will be used with these heavy liquid metal reactors. Finite element analysis is adapted to determine the characteristics of the isolator device. Results are presented from a study on the use of three-dimensional seismic isolation devices to the full-scale reactor. The seismic analysis responses of the two-dimensional and the three-dimensional isolation systems for the PASCAR are compared with that of the conventional fixed base system.

  11. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-08-27

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field.

  12. Sloshing instability and electrolyte layer rupture in liquid metal batteries

    Science.gov (United States)

    Weber, Norbert; Beckstein, Pascal; Herreman, Wietze; Horstmann, Gerrit Maik; Nore, Caroline; Stefani, Frank; Weier, Tom

    2017-05-01

    Liquid metal batteries (LMBs) are discussed today as a cheap grid scale energy storage, as required for the deployment of fluctuating renewable energies. Built as stable density stratification of two liquid metals separated by a thin molten salt layer, LMBs are susceptible to short-circuit by fluid flows. Using direct numerical simulation, we study a sloshing long wave interface instability in cylindrical cells, which is already known from aluminium reduction cells. After characterising the instability mechanism, we investigate the influence of cell current, layer thickness, density, viscosity, conductivity and magnetic background field. Finally we study the shape of the interface and give a dimensionless parameter for the onset of sloshing as well as for the short-circuit.

  13. Single-magnet rotary flowmeter for liquid metals

    CERN Document Server

    Priede, Jānis; Gerbeth, Gunter

    2010-01-01

    We present the theory of single-magnet flowmeter for liquid metals and compare it with experimental results. The flowmeter consists of a freely rotating permanent magnet, which is magnetized perpendicularly to the axle it is mounted on. When such a magnet is placed close to a tube carrying liquid metal flow, it rotates so that the driving torque due to the eddy currents induced by the flow is balanced by the braking torque induced by the rotation itself. The equilibrium rotation rate depends directly on the flow rate but not on the electrical conductivity of the metal or the magnet strength. We obtain simple analytical solutions for the force and torque on slowly moving and rotating magnets due to eddy currents in a layer of infinite horizontal extent. The predicted equilibrium rotation rate for a dipole agrees well with the magnet rotation rate measured at a stainless steel duct with a liquid sodium flow.

  14. Liquid Metallic Hydrogen: A Building Block for the Liquid Sun

    OpenAIRE

    Robitaille P.-M.

    2011-01-01

    Liquid metallic hydrogen provides a compelling material for constructing a condensed matter model of the Sun and the photosphere. Like diamond, metallic hydrogen might have the potential to be a metastable substance requiring high pressures for forma- tion. Once created, it would remain stable even at lower pressures. The metallic form of hydrogen was initially conceived in 1935 by Eugene Wigner and Hillard B. Huntington who indirectly anticipated its elevated critical temper...

  15. A unified equation for the viscosity of pure liquid metals

    Energy Technology Data Exchange (ETDEWEB)

    Kaptay, G. [Dept. of Chemistry, Univ. of Miskolc, Miskolc-Egyetemvaros (Hungary)

    2005-01-01

    The following unified equation has been elaborated in the present paper, to describe the viscosity of all liquid metals as a function of temperature: {eta}{sub i} = A . M{sub i}{sup 1/2} / V{sub i}{sup 2/3} . T{sup 1/2} . exp (B . T{sub m,i} / T) with {eta}{sub i}, M{sub i}, V{sub i}, T{sub m,i} being the dynamic viscosity, atomic mass, molar volume and melting point of the given metal i, and T is temperature. The above equation was tested on 101 measured points of 15 selected liquid metals, and the average values of the generally valid parameters were found as: A = (1.80 {+-} 0.39) . 10{sup -8} (J/Kmol{sup 1/3}){sup 1/2}, B = 2.34 {+-} 0.20. Based on these parameters, the temperature dependence of viscosity was estimated for 32 liquid metals. The above equation was derived by (i) combining Andrade's equation with the activation energy concept, and (ii) by combining Andrade's equation with the free volume concept. It is shown, that the activation energy and the free volume concepts have identical roots and lead to identical results. The above equation is shown to be valid for liquid semi-metals (Si,Ge,Sb,Bi), if their actual melting points are replaced by their corrected melting points, corresponding to (unstable) metallic solid crystals. The ratio of viscosity to surface tension of pure liquid metals is discussed, as well. (orig.)

  16. High Temperature Aquifer Storage

    Science.gov (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  17. Liquid metal reactor KALIMER development - Study on the high temperature properties of the steam generator tubing for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Soo; Kim, Soon Tae; Park, Hui Sang; Kim, Soo Han [Yonsei University, Seoul (Korea); Kim, Young Sik [Andong National University, Andong (Korea)

    1999-04-01

    This work dealt with the evaluation of super stainless steels for steam generator tubing of LMFBR. The experimental alloys were designed to simulate the elimination of alloying elements, in special, C and N. Regardless of carbon contents, super stainless steels showed the excellent properties (tensile properties and corrosion resistance) than those of 9Cr-1Mo steel. Nitrogen content has affected positively the ultimate tensile strength and yield strength by TT(Thermal Treatment), but the elongation was reduced by TT in case of nitrogen free alloy and the elongation was largely increased by TT in case of nitrogen bearing alloys. In acidic chloride environment, nitrogen has influenced a little on corrosion potential and critical current density, but largely on passive current density, especially, at high potential. However, the trend of corrosion potential and critical current density by nitrogen was similar to the results in acidic solutions, but passive current density was largely affected by nitrogen content of stainless steels. 29 refs., 24 figs., 8 tabs. (Author)

  18. High temperature propellant development

    Science.gov (United States)

    Anderson, F. A.

    1981-01-01

    It is reported that the neccessary technology has been developed and demonstrated for the manufacture of heat-sterilizable solid propellants which meet specific ballistic goals. It is shown that: (1) phosphate doping of ammonium perchlorate significantly enhances the thermal stability of the substance; (2) grinding the ammonium perchlorate to reduce particle size further increases thermal stability; and (3) unsaturated polymers such as the polybutadienes can be successfully used in a heat-sterilizable propellant system. Among the topics considered by the study are oxidizers, dopants, binders, and the thermal cycling of 70 lb and 600 lb propellant grains.

  19. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  20. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  1. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  2. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  3. Photoemission studies of high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Margaritondo, G. (Inst. de Physique Appliquee, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (CH))

    1990-11-01

    Photoemission spectroscopy has recently emerged as one of the leading techniques in the study of high-temperature superconductors. Relevant successes include the direct detection of the superconductivity gap, tests for departure from Fermi-liquid behavior, and many interface chemical studies with technological interest. The authors present a review of the fundamental and applied aspects of this technique.

  4. Research and survey report of FY 1997 on the CO2 balance for high-temperature CO2 fixation and utilization technology; 1997 nendo chosa hokokusho (nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this research is to clarify the application condition and effectiveness of high-temperature CO2 fixation and utilization technology. To evaluate the present process, it was compared with others, such as separation using a polymer membrane, physico-chemical absorption process, adsorption process, hydrogen contact reduction process, and biological fixation. The development trends of absorption, membrane, adsorption, and cryogenic separation were investigated. The questionnaire was carried out about the separation technologies which are in the stage of performance test using actual gas, to arrange and compare the data and information. The current trends of chemical and biological CO2 fixation and utilization technology were also investigated for arranging the subjects. High-temperature CO2 disposal by the carbonation in concrete waste has been studied, to clarify its application conditions and effectiveness. In order to compare the separation technologies, treatment processes of CO2 in the exhaust gas from boilers of LNG power generation and coal fired power generation were simulated. These processes were simulated by ASPEN PLUS for the modeling. Trends of application of ASPEN PLUS and collection of information were surveyed by participating in the ASPEN WORLD. 103 refs., 51 figs., 55 tabs.

  5. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism.

    Science.gov (United States)

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-04-04

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society.

  6. Investigation on heavy liquid metal cooling of ADS fuel pin assemblies

    Science.gov (United States)

    Litfin, K.; Batta, A.; Class, A. G.; Wetzel, Th.; Stieglitz, R.

    2011-08-01

    In the framework of accelerator driven sub-critical reactor systems heavy liquid metals are considered as coolant for the reactor core and the spallation target. In particular lead or lead bismuth eutectic (LBE) exhibit efficient heat removal properties and high production rate of neutrons. However, the excellent heat conductivity of LBE-flows expressed by a low molecular Prandtl number of the order 10 -2 requires improved modeling of the turbulent heat transfer. Although various models for thermal hydraulics of LBE flows are existing, validated heat transfer correlations for ADS-relevant conditions are still missing. In order to validate the sub-channel codes and computational fluid dynamics codes used to design fuel assemblies, the comparison with experimental data is inevitable. Therefore, an experimental program composed of three major experiments, a single electrically heated rod, a 19-pin hexagonal water rod bundle and a LBE rod bundle, has been initiated at the Karlsruhe Liquid metal Laboratory (KALLA) of the Karlsruhe Institute of Technology, in order to quantify and separate the individual phenomena occurring in the momentum and energy transfer of a fuel assembly.

  7. Heavy density liquid metal spallation target studies for Indian ADS programme

    Indian Academy of Sciences (India)

    P Sathamurthy; L M Gantayet; A K Ray

    2007-02-01

    Department of Atomic Energy, India has taken up the development of ADS in view of many attractive features like inherent safety, capability to transmute large quantities of nuclear waste, better utilization of thorium etc. A roadmap has been finalized for the development of ADS. One of the key components of the ADS is the spallation target. Considering the neutron yield, thermal-hydraulics and radiation damage issues, we are proposing to develop spallation target based on heavy density liquid metals like lead and lead-bismuth-eutectic (LBE). Both window and windowless target configurations are presently being studied. In view of the various advantages we are also studying liquid metal flow circulation based on gas lift mechanism. An R&D programme has been initiated to address various physics and technology issues of ADS target. Under this programme, mercury and LBE experimental facilities are presently being set up. Along with these facilities, computational tools related to spallation physics (FLUKA) and CFD are being developed, and the existing ones are utilized to design the entire target loop as well as sub-systems. In this presentation the details of these activities are presented.

  8. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism

    Science.gov (United States)

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-04-01

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society.

  9. Preparation of pre-reduced pellet using pyrite cinder containing nonferrous metals with high temperature chloridizing- reduction roasting technology-Effect of CaCl2 additive

    Institute of Scientific and Technical Information of China (English)

    陈栋; 朱德庆; 洪澜; 陈瑶; 许继芳; 伍凌

    2015-01-01

    The role of CaCl2 during the high temperature chloridizing-reduction roasting process was investigated, aiming at acquiring high strength blast furnace burden with high iron grade and low nonferrous metals content. The effects of CaCl2 dosage on pelletizing, preheating and reduction were investigated. The results show that CaCl2 can improve the wet drop strength but reduces the thermostability of pyrite cinder green balls. When the dosage of CaCl2 exceeds 1%, the compressive strength of preheated pellets decreases while the growth of iron oxide particles is improved. Furthermore, the compressive strength of pre-reduced pellets increases but the metallization degree of pre-reduced pellets decreases with CaCl2 additive. The removal tests indicate that Zn can be removed completely without CaCl2 additive, Cu is removed only under the condition with CaCl2 additive and part of Pb must be removed by CaCl2 additive.

  10. Electrically induced reorganization phenomena of liquid metal film printed on biological skin

    Science.gov (United States)

    Guo, Cangran; Yi, Liting; Yu, Yang; Liu, Jing

    2016-12-01

    Liquid metal has been demonstrated to be directly printable on biological skin as physiological measurement elements. However, many fundamental issues remained unclear so far. Here, we disclosed an intriguing phenomenon of electrically induced reorganization of liquid metal film. According to the experiments, when applying an external electric field to liquid metal films which were spray printed on biological skin, it would induce unexpected transformations of the liquid metals among different morphologies and configurations. These include shape shift from a large liquid metal film into a tiny sphere and contraction of liquid metal pool into spherical one. For comprehensively understanding the issues, the impacts of the size, voltage, orientations of the liquid metal electrodes, etc., were clarified. Further, effects of various substrates such as in vitro skin and in vivo skin affecting the liquid metal transformations were experimentally investigated. Compared to the intact tissues, the contraction magnitude of the liquid metal electrode appears weaker on in vivo skin of nude mice under the same electric field. The mechanisms lying behind such phenomena were interpreted through theoretical modeling. Lastly, typical applications of applying the current effect into practical elements such as electrical gating devices were also illustrated as an example. The present findings have both fundamental and practical values, which would help design future technical strategies in fabricating electronically controlled liquid metal electronics on skin.

  11. Undercooling experiments in a high temperature differential scanning calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Baricco, M.; Ferrari, E.; Battezzati, L. [Univ. di Torino (Italy)

    1996-12-31

    Several samples of metals and alloys have been undercooled during scanning in a high temperature DSC. Liquid Ni was undercooled of about 230 K when previously fluxed in molten B{sub 2}O{sub 3}. From enthalpy data of melting and solidification as a function of temperature, the excess heat capacity of liquid metals and alloys was evaluated. The specific heat of the liquid is definitely higher than that of the corresponding crystalline phases for glass-forming alloys, whereas it is close to that of the solid for pure metals. The Ni-B system has been studied in detail around the Ni-Ni{sub 3}B eutectic. On undercooling, a new metastable phase (Ni{sub 23}B{sub 6}) was produced. A metastable Ni-B phase diagram has been drawn using data of thermal analysis of several alloys containing the metastable phase.

  12. Gas-cooled reactor programs. High-temperature gas-cooled reactor base-technology program progress report for July 1, 1975--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Homan, F.J.; Kasten, P.R.

    1977-11-01

    Progress is reported in the following areas: prestressed concrete pressure vessel development, structural materials, fission product technology, kernel migration and irradiated fuel chemistry, coolant chemistry (steam-graphite reactions), fuel qualification, and characterization and standardization of graphite.

  13. Gas-Cooled Reactor Programs. High-Temperature Gas-Cooled Reactor Base-Technology Program. Annual progress report for period ending December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Homan, F.J.; Kasten, P.R.

    1978-07-01

    Progress in HTGR studies is reported in the following areas: fission product technology and coolant impurity effects, fueled graphite development, PCRV development, structural materials, characterization and standardization of graphite, and evaluation of the pebble-bed type HTR.

  14. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  15. Liquid-metal pumps for large-scale breeder-reactor plant (prototype pump)

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, M. (comp.)

    1976-07-01

    This report presents the recommended pump design for use in Large Scale Liquid Metal Fast Breeder Reactor plants. The base design for the pump will circulate 127,000 GPM of liquid sodium at temperatures up to 850/sup 0/F and with a total discharge head at the design point of 500 feet Na with an impeller that is 40 feet below the sodium seal. The pump design is predicated on developing an impeller design which will have a suction specific speed (S/sub n/) of about 20,000 with 20 feet NPSH available, which will result in a pump speed of 530 RPM at design conditions. The design is based on the technology developed in the design and fabrication of FFTF pumps, the design efforts for the Clinch River Breeder Reactor Pump design study and other technology.

  16. High temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  17. Electrowetting-actuated liquid metal for RF applications

    Science.gov (United States)

    Diebold, A. V.; Watson, A. M.; Holcomb, S.; Tabor, C.; Mast, D.; Dickey, M. D.; Heikenfeld, J.

    2017-02-01

    Electrowetting is well-established as a fluid manipulation technique in such areas as lab-on-a-chip, visible light optics, and displays, yet has seen far less implementation in the field of radio-frequency (RF) electronics and electromagnetics. This is primarily due to a lack of appropriate materials selection and control in these devices. Low loss RF conductive fluids such as room temperature liquid metals (i.e. Hg, EGaIn, Galinstan) are by far the leading choice of active material due to their superior electrical properties but require high actuating voltages due to their inherently high surface tensions (>400 mN m-1) which often lead to dielectric breakdown. While the toxicity of Hg encourages the pursuit of non-toxic alternatives such as gallium alloys, the native surface oxide formation often prohibits reliable device functionality. Additionally, traditional electrowetting architectures rely on lossy electrode materials which degrade RF transmission efficiencies and result in non-reversible material diffusion at the electrode/liquid metal contact. In this work, we report on approaches to utilize liquid metals in electrowetting on dielectric (EWOD) devices that resolve all of these challenges by judicious choice of novel electrode materials, dielectric fluid, and device architecture. A functional RF device, namely an electromagnetic polarizer, is demonstrated that can be activated on demand through EWOD and provides an average signal attenuation of 12.91 dB in the on state and 1.46 dB in the off state over the range of 8-9.2 GHz, with a switching speed of about 12 ms. These results can be further extended to other RF applications such as tunable antennas, transmission lines, and switchable metasurfaces.

  18. Liquid Metallic Hydrogen: A Building Block for the Liquid Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2011-07-01

    Full Text Available Liquid metallic hydrogen provides a compelling material for constructing a condensed matter model of the Sun and the photosphere. Like diamond, metallic hydrogen might have the potential to be a metastable substance requiring high pressures for forma- tion. Once created, it would remain stable even at lower pressures. The metallic form of hydrogen was initially conceived in 1935 by Eugene Wigner and Hillard B. Huntington who indirectly anticipated its elevated critical temperature for liquefaction (Wigner E. and Huntington H.B. On the possibility of a metallic modification of hydro- gen. J. Chem. Phys. , 1935, v.3, 764–770. At that time, solid metallic hydrogen was hypothesized to exist as a body centered cubic, although a more energetically accessible layered graphite-like lattice was also envisioned. Relative to solar emission, this struc- tural resemblance between graphite and layered metallic hydrogen should not be easily dismissed. In the laboratory, metallic hydrogen remains an elusive material. However, given the extensive observational evidence for a condensed Sun composed primarily of hydrogen, it is appropriate to consider metallic hydrogen as a solar building block. It is anticipated that solar liquid metallic hydrogen should possess at least some layered order. Since layered liquid metallic hydrogen would be essentially incompressible, its invocation as a solar constituent brings into question much of current stellar physics. The central proof of a liquid state remains the thermal spectrum of the Sun itself. Its proper understanding brings together all the great forces which shaped modern physics. Although other proofs exist for a liquid photosphere, our focus remains solidly on the generation of this light.

  19. The structure of liquid metals probed by XAS

    Science.gov (United States)

    Filipponi, Adriano; Di Cicco, Andrea; Iesari, Fabio; Trapananti, Angela

    2017-08-01

    X-ray absorption spectroscopy (XAS) is a powerful technique to investigate the short-range order around selected atomic species in condensed matter. The theoretical framework and previous applications to undercooled elemental liquid metals are briefly reviewed. Specific results on undercooled liquid Ni obtained using a peak fitting approach validated on the spectra of solid Ni are presented. This method provides a clear evidence that a signature from close packed triangular configurations of nearest neighbors survives in the liquid state and is clearly detectable below k ≈ 5 Å-1, stimulating the improvement of data-analysis methods that account properly for the ensemble average, such as Reverse Monte Carlo.

  20. Magnetorotational Instability in a Rotating Liquid Metal Annulus

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; Jeremy Goodman; Akira Kageyama

    2001-03-10

    Although the magnetorotational instability (MRI) has been widely accepted as a powerful accretion mechanism in magnetized accretion disks, it has not been realized in the laboratory. The possibility of studying MRI in a rotating liquid-metal annulus (Couette flow) is explored by local and global stability analysis and magnetohydrodynamic (MHD) simulations. Stability diagrams are drawn in dimensionless parameters, and also in terms of the angular velocities at the inner and outer cylinders. It is shown that MRI can be triggered in a moderately rapidly rotating table-top apparatus, using easy-to-handle metals such as gallium. Practical issues of this proposed experiment are discussed.

  1. Coalescence of Immiscible Liquid Metal Drop on Graphene

    Science.gov (United States)

    Li, Tao; Li, Jie; Wang, Long; Duan, Yunrui; Li, Hui

    2016-01-01

    Molecular dynamics simulations were performed to investigate the wetting and coalescence of liquid Al and Pb drops on four carbon-based substrates. We highlight the importance of the microstructure and surface topography of substrates in the coalescence process. Our results show that the effect of substrate on coalescence is achieved by changing the wettability of the Pb metal. Additionally, we determine the critical distance between nonadjacent Al and Pb films required for coalescence. These findings improve our understanding of the coalescence of immiscible liquid metals at the atomistic level. PMID:27667589

  2. Estimation of high temperature metal-silicate partition coefficients

    Science.gov (United States)

    Jones, John H.; Capobianco, Christopher J.; Drake, Michael J.

    1992-01-01

    It has been known for some time that abundances of siderophile elements in the upper mantle of the Earth are far in excess of those expected from equilibrium between metal and silicate at low pressures and temperatures. Murthy (1991) has re-examined this excess of siderophile element problem by estimating liquid metal/liquid silicate partition coefficients reduces from their measured values at a lower temperature, implying that siderophile elements become much less siderophilic at high temperatures. Murthy then draws the important conclusion that metal/silicate equilibrium at high temperatures can account for the abundances of siderophile elements in the Earth's mantle. Of course, his conclusion is critically dependent on the small values of the partition coefficients he calculates. Because the numerical values of most experimentally-determined partition coefficients increase with increasing temperature at both constant oxygen fugacity and at constant redox buffer, we think it is important to try an alternative extrapolation for comparison. We have computed high temperature metal/silicate partition coefficients under a different set of assumptions and show that such long temperature extrapolations yield values which are critically dependent upon the presumed chemical behavior of the siderophile elements in the system.

  3. Research Progress and Prospects of Wood High-temperature Heat Treatment Technology%木材高温热处理技术的研究进展及展望

    Institute of Scientific and Technical Information of China (English)

    王艳伟; 孙伟圣; 杨植辉; 徐立; 张子谷; 晁久; 冯燕飞

    2014-01-01

    The research progress of wood high-temperature heat treatment mechanism and technologies at home or abroad are introduced,wood heat treatment technologies at home and abroad are evaluated and the industrialization application prospects of wood heat treatment technologies are predicated,with several suggestions for technical research and development direction proposed for reference.%介绍了国内外木材高温热处理机理及其工艺的研究进展,并对目前国内外木材热处理工艺进行评价。展望了木材热处理技术的产业化应用前景,对该技术研究发展方向提出了几点参考建议。

  4. Exploring novel food proteins and processing technologies : a case study on quinoa protein and high pressure –high temperature processing

    NARCIS (Netherlands)

    Avila Ruiz, Geraldine

    2016-01-01

    Foods rich in protein are nowadays high in demand worldwide. To ensure a sustainable supply and a high quality of protein foods, novel food proteins and processing technologies need to be explored to understand whether they can be used for the development of high-quality protein foods. Therefore, th

  5. 超稠油高温调剖封窜技术%High Temperature Profile Control and Channel Blocking Sealing Technology for Super Heavy Oil Researviors

    Institute of Scientific and Technical Information of China (English)

    郝建玉

    2012-01-01

    The cyclic steam stimulation is a recovery method of super heavy oil in Liaohe oilfield. The porosity of Du84 block of Xinglongtai oilfield in super heavy oil reservoir is generally 25% to 30%, air permeability is generally higher than 1306 × 10-3 μm2. Because of its high porosity and high permeability, steam channeling easily occurs to cause that heat energy of the injected steam can not be fully utilized, which can reduce production effect of the steam injection well. Water cut in adjacent well after the steam channeling increases, temperature rises, which can affect the production or cause to shut in well. Steam channeling aggravates casing deformation or damage. The high temperature resistant plugging agent can effectively block high permeability layer, adjust the steam absorption difference between low permeability layer and high permeability layer, change the flow direction of injected steam, which can alleviate the steam channeling, eliminate interference among wells, expand the injected steam swept volume, improve cycle oil production.%蒸汽吞吐开采是辽河油田超稠油主要开采方式.曙光油田杜84块兴隆台超稠油油藏孔隙度一般为25%~30%,空气渗透率一般高于1306×10-3 μm2,具有高孔隙度,高渗透率的特点,极易发生汽窜,导致注入蒸汽热能不能充分利用,直接降低了注汽井生产效果,使油藏动用不均的矛盾加剧.邻井受窜后含水升高液量突升,温度升高,影响其生产效果或关井防喷.汽窜加剧油层套管变形或损坏.研制的耐高温堵剂有效封堵高渗透层,调整地层高低渗透层带间的吸汽差异,改变注入蒸汽的走向,达到缓解汽窜、消除井间干扰、扩大注入蒸汽波及体积、提高周期采油量的目的.

  6. Resistive sensor and electromagnetic actuator for feedback stabilization of liquid metal walls in fusion reactors

    CERN Document Server

    Mirhoseini, S H M

    2016-01-01

    Liquid metal walls in fusion reactors will be subject to instabilities, turbulence, induced currents, error fields and temperature gradients that will make them locally bulge, thus entering in contact with the plasma, or deplete, hence exposing the underlying solid substrate. To prevent this, research has begun to actively stabilize static or flowing liquid metal layers by locally applying forces in feedback with thickness measurements. Here we present resistive sensors of liquid metal thickness and demonstrate jxB actuators, to locally control it.

  7. Evaluation of High-temperature Physicochemical Interactions Between the H282Alloy Melt and Ceramic Material of the Crucible

    Directory of Open Access Journals (Sweden)

    Pirowski Z.

    2014-12-01

    Full Text Available Nickel alloys belong to the group of most resistant materials when used under the extreme operating conditions, including chemically aggressive environment, high temperature, and high loads applied over a long period of time. Although in the global technology market one can find several standard cast nickel alloys, the vast majority of components operating in machines and equipment are made from alloys processed by the costly metalworking operations. Analysis of the available literature and own studies have shown that the use of casting technology in the manufacture of components from nickel alloys poses a lot of difficulty. This is due to the adverse technological properties of these alloys, like poor fluidity, high casting shrinkage, and above all, high reactivity of liquid metal with the atmospheric air over the bath and with the ceramic material of both the crucible and foundry mold. The scale of these problems increases with the expected growth of performance properties which these alloys should offer to the user.

  8. High-Temperature Capacitor Polymer Films

    Science.gov (United States)

    Tan, Daniel; Zhang, Lili; Chen, Qin; Irwin, Patricia

    2014-12-01

    Film capacitor technology has been under development for over half a century to meet various applications such as direct-current link capacitors for transportation, converters/inverters for power electronics, controls for deep well drilling of oil and gas, direct energy weapons for military use, and high-frequency coupling circuitry. The biaxially oriented polypropylene film capacitor remains the state-of-the-art technology; however, it is not able to meet increasing demand for high-temperature (>125°C) applications. A number of dielectric materials capable of operating at high temperatures (>140°C) have attracted investigation, and their modifications are being pursued to achieve higher volumetric efficiency as well. This paper highlights the status of polymer dielectric film development and its feasibility for capacitor applications. High-temperature polymers such as polyetherimide (PEI), polyimide, and polyetheretherketone were the focus of our studies. PEI film was found to be the preferred choice for high-temperature film capacitor development due to its thermal stability, dielectric properties, and scalability.

  9. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  10. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and dev

  11. X-ray scattering: Liquid metal/vapor interfaces

    Science.gov (United States)

    Pershan, P. S.

    2011-05-01

    We will review the principal x-ray scattering measurements that have been carried out on the free surface of liquid metals over the past two decades. For metals such as K, Ga, In Sn, Bi etc the surface induces well-defined layering with atomic spacing `d' that penetrates into the bulk a distance of the order of the bulk liquid correlation length. As a consequence the angular dependence of the surface structure factor observed by x-ray reflectivity displays a broad peak at wavevector transfer ˜ 2π/ d with a half width that is comparable to the width of the bulk liquid structure factor. Quantitative measurement of this surface structure factor requires correction for a singular Debye-Waller like effect arising from thermally excited capillary waves. For liquid metal alloys the layering is accompanied by chemical segregation (i.e. Gibbs absorption) that can be characterized from the energy dependence of the reflectivity. Particularly interesting are the temperature dependence and elasticity of the two-dimensional surface frozen phases that form on the surface of the Au82Si18 liquid eutectic. Surface freezing, although not observed near the eutectic points of alloys such as Au-Ge, Pd-Ge and Pd-Si, has been observed at the free surface of the glass forming alloy Au49Ag5.5Pd2.3Cu26.9Si16.3.

  12. Specific power of liquid-metal-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dobranich, D.

    1987-10-01

    Calculations of the core specific power for conceptual space-based liquid-metal-cooled reactors, based on heat transfer considerations, are presented for three different fuel types: (1) pin-type fuel; (2) cermet fuel; and (3) thermionic fuel. The calculations are based on simple models and are intended to provide preliminary comparative results. The specific power is of interest because it is a measure of the core mass required to produce a given amount of power. Potential problems concerning zero-g critical heat flux and loss-of-coolant accidents are also discussed because these concerns may limit the core specific power. Insufficient experimental data exists to accurately determine the critical heat flux of liquid-metal-cooled reactors in space; however, preliminary calculations indicate that it may be a concern. Results also indicate that the specific power of the pin-type fuels can be increased significantly if the gap between the fuel and the clad is eliminated. Cermet reactors offer the highest specific power because of the excellent thermal conductivity of the core matrix material. However, it may not be possible to take fuel advantage of this characteristic when loss-of-coolant accidents are considered in the final core design. The specific power of the thermionic fuels is dependent mainly on the emitter temperature. The small diameter thermionic fuels have specific powers comparable to those of pin-type fuels. 11 refs., 12 figs, 2 tabs.

  13. Ultra-High Temperature Gratings

    Institute of Scientific and Technical Information of China (English)

    John Canning; Somnath Bandyopadhyay; Michael Stevenson; Kevin Cook

    2008-01-01

    Regenerated gratings seeded by type-Ⅰ gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.

  14. On-demand frequency tunability of fluidic antenna implemented with gallium-based liquid metal alloy

    Science.gov (United States)

    Kim, Daeyoung; Doo, Seok Joo; Won, Heong Sup; Lee, Woojin; Jeon, Jinpyo; Chung, Sang Kug; Lee, Gil-Young; Oh, Semyoung; Lee, Jeong-Bong

    2017-04-01

    We investigated frequency tunability of a microfluidic-based antenna using on-demand manipulation of a gallium-based liquid metal alloy. The fluidic antenna was fabricated by polydimethylsiloxane (PDMS) and filled with the gallium-based liquid metal alloy (Galinstan®). It is composed of a digital number "7"-shaped feedline, and a square-shaped and a digital number "6"-shaped patterns, which are all implemented with the liquid metal. The gallium-based liquid metal was adhered to the channel surface due to its viscous oxide layer originating from the gallium oxide forming when it exposed to the air environment. We treated the liquid metal with hydrochloric acid solution to remove the oxide layer on the surface resulting in easy movement of the liquid metal in the channel, as the liquid metal surface has been transformed to be non-wettable. We controlled the physical length of the liquid metal slug filled in feedline with an applied air pressure, resulting in tuning the resonant frequency ranging from 2.2 GHz to 9.3 GHz. The fluidic antenna properties using the liquid metal's electrical conductivity and mobility were characterized by measuring the return loss (S11), and also simulated with CST Microwave Studio.

  15. Liquid-Metal Electrode to Enable Ultra-Low Temperature Sodium-Beta Alumina Batteries for Renewable Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Mei, Donghai; Lemmon, John P.; Sprenkle, Vincent L.; Liu, Jun

    2014-08-01

    Metal electrodes have a high capacity for energy storage but have found limited applications in batteries because of dendrite formation and other problems. In this paper, we report a new alloying strategy that can significantly reduce the melting temperature and improve wetting with the electrolyte to allow the use of liquid metal as anode in sodium-beta alumina batteries (NBBs) at much lower temperatures (e.g., 95 to 175°C). Commercial NBBs such as sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries typically operate at relatively high temperatures (e.g., 300-350°C) due to poor wettability of sodium on the surface of β"-Al2O3. Our combined experimental and computational studies suggest that Na-Cs alloy can replace pure sodium as the anode material, which provides a significant improvement in wettability, particularly at lower temperatures (i.e., <200°C). Single cells with the Na-Cs alloy anode exhibit excellent cycling life over those with pure sodium anode at 175 and 150°C. The cells can even operate at 95°C, which is below the melting temperature of pure sodium. These results demonstrate that NBB can be operated at ultra lower temperatures with successfully solving the wetting issue. This work also suggests a new strategy to use liquid metal as the electrode materials for advanced batteries that can avoid the intrinsic safety issues associated with dendrite formation on the anode.

  16. Investigation on the Arc Ignition Characteristics and Energy Absorption of Liquid Metal Current Limiter Based on Self-Pinch Effect

    Institute of Scientific and Technical Information of China (English)

    JU Xingbao; SUN Haishun; YANG Zhuo; ZHANG Junmin

    2016-01-01

    The GaInSn liquid metal current limiter based on the fluid pinch effect has broad application prospects due to its particular properties.However,the limited rated current and ability of power dissipation are the critical problems for its wide application.Firstly,the temperature distribution of the liquid metal current limiter (LMCL) was obtained by experiments with a rated current of 1 kA and the arc ignition phenomenon was observed with 1.5 kA,which indicates that the rated current is mainly limited by the arc rather than the high temperature compared to the traditional switchgears.Furthermore,an improved method is proposed by adding the paralleled pure resistance,impedance or another LMCL element to protect the setup from the fault energy concentration in the setup.The problem of a slower arc voltage increasing rate can be solved by adding a paralleled impedance with suitable parameters.Finally,the current limiting properties based on the improved method were investigated and the alternating oscillating current was found between two paralleled LMCL elements owing to their deviation of arc ignition in reality.

  17. Preparation and high-temperature oxidation behavior of plasma Cr-Ni alloying on Ti6Al4V alloy based on double glow plasma surface metallurgy technology

    Science.gov (United States)

    Wei, Dong-Bo; Zhang, Ping-Ze; Yao, Zheng-Jun; Wei, Xiang-Fei; Zhou, Jin-Tang; Chen, Xiao-Hu

    2016-12-01

    To improve the oxidation resistance of Ti6Al4V alloy, it was coated with a Cr-Ni alloy with 20, 40, 60, and 80 at.% Ni content using the double-glow plasma surface metallurgy technology. The coatings were dense, uniform, and compact, including a complete structure of deposited layer, interdiffusion layer, and sputtering-affected zone. The effect of Ni content on the isothermal oxidation behavior of coating was investigated at 750, 850, and 950 °C. The results show that the oxide scale consisted of NiO and Cr2O3. The morphology and distribution of NiO in oxide scale were affected by oxidation temperature and Ni content. When the Ni content was ≤40 at.%, the oxidation resistance of the Cr-Ni alloy coating was enhanced.

  18. The Evolution of High Temperature Gas Sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, F. H. (Fernando H.); Brosha, E. L. (Eric L.); Mukundan, R. (Rangachary)

    2001-01-01

    Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.

  19. GRAPHENE PEEK COMPOSITES AS HIGH TEMPERATURE ADHESIVES

    Science.gov (United States)

    2017-09-05

    Price DW, Roberts JA, Scott JB, Wadhawan A, Ye Z, Tour JM. Nanotubes in microwave fields : light emission , intense heat, outgassing, and reconstruction...Arepalli S, Yowell LL, Tour JM. Carbon nanotube composite curing through absorption of microwave radiation. Composites Science and Technology. 2008 Dec...polymer that is suitable for high-temperature applications. Graphene is a two-dimensional form of carbon nanomaterial that has been studied

  20. HIGH TEMPERATURE MATERIALS AND STRENGTH STUDY IN CHINA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the past half century China has developed and formed her own system of high temperature materials for power, automobile and aero-engine industries in the temperature range from 550 ℃ to 1 100 ℃. These high temperature materials include heat-resisting steels, iron-base, nickel-iron-base and nickel-base superalloys. Some achievements in high temperature strength study, new technologies and new alloy development are also discussed.

  1. The stress analysis of a heavy liquid metal pump impeller

    Science.gov (United States)

    Ma, X. D.; Li, X. L.; Zhu, Z. Q.; Li, C. J.; Gao, S.

    2016-05-01

    Lead-based coolant reactor is a promising Generation-IV reactor. In the lead-based coolant reactor, the coolant is liquid lead or lead-bismuth eutectic. The main pump in the reactor is a very important device. It supplies force for the coolant circulation. The liquid metal has a very large density which is about ten times of the water. Also, the viscosity of the coolant is small which is about one sixth of the water. When the pump transports heavy liquid, the blade loading is heavy. The large force can cause the failure of the blade when the fatigue stress exceeds the allowable stress. The impeller fraction is a very serious accident which is strictly prohibited in the nuclear reactor. In this paper, the numerical method is used to simulate the flow field of a heavy liquid metal pump. The SST k-w turbulent model is used in the calculation to get a more precise flow structure. The hydraulic force is obtained with the one way fluid solid coupling. The maximum stress in the impeller is analyzed. The stress in the liquid metal pump is compared with that in the water pump. The calculation results show that the maximum stress of the impeller blade increases with increase of flow rate. In the design of the impeller blade thickness, the impeller strength in large operating condition should be considered. The maximum stress of the impeller blade located in the middle and near the hub of the leading edge. In this position, the blade is easy to fracture. The maximum deformation of the impeller firstly increase with increase of flow rate and then decrease with increase of flow rate. The maximum deformation exists in the middle of the leading edge when in small flow rate and in the out radius of the impeller when in large flow rate. Comparing the stress of the impeller when transporting water and LBE, the maximum stress is almost one-tenth of that in the LBE impeller which is the same ratio of the density. The static stress in different medium is proportional to the pressure

  2. 非固体电解质230℃高温全钽电容器制造技术的研究%Studies on Manufacturing Technology of Wet All Tantalum Capacitors with High Temperature Capability to 230 ℃

    Institute of Scientific and Technical Information of China (English)

    鄢波; 方鸣; 张选红; 王安玖; 王刚

    2013-01-01

    The factors affection the working stability and reliability of high temperature wet all tantalum capacitor were analyzed,through improving the anode,structure design and process.The manufacturing technology for wet all tantalum capacitors with high temperature capability to 230 ℃ was developed.The products of 50 V,160 μF were produced.The results show that it helps to enhance quality of capacitors' oxidation film and performance of working electrolyte in high temperature,improving anode,structure design,condition of formation and assembling process.This makes it able to meet various technical norms of capacitors to 230 ℃.%从阳极和结构设计、工艺改进,分析非固体电解质高温全钽电容器工作稳定性和可靠性的影响因素,提出了非固体电解质230℃高温全钽电容器制造技术.试制了50 V、160 μF规格产品,结果表明:通过改进阳极和结构设计、形成和装配工艺条件,可显著提高电容器氧化膜质量和工作电解液耐高温性能,确保电容器能满足230℃高温环境下的各项技术指标.

  3. A review on the development of the advanced fuel fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Lee, Yung Woo; Sohn, Dong Sung; Yang, Myung Seung; Bae, Kee Kwang; Nah, Sang Hoh; Kim, Han Soo; Kim, Bong Koo; Song, Keun Woo; Kim, See Hyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    In this state-of art report, the development status of the advanced nuclear fuel was investigated. The current fabrication technology for coated particle fuel and non-oxide fuel such as sol-gel technology, coating technology, and carbothermic reduction reaction has also been examined. In the view point of inherent safety and efficiency in the operation of power plant, the coated particle fuel will keep going on its reputation as nuclear fuel for a high temperature gas cooled reactor, and the nitride fuel is very prospective for the next liquid metal fast breeder reactor. 43 figs., 17 tabs., 96 refs. (Author).

  4. Optical Measurement Technologies for High Temperature, Radiation Exposure, and Corrosive Environments—Significant Activities and Findings: In-vessel Optical Measurements for Advanced SMRs

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong (Amy); Suter, Jonathan D.

    2012-09-01

    Development of advanced Small Modular Reactors (aSMRs) is key to providing the United States with a sustainable, economically viable, and carbon-neutral energy source. The aSMR designs have attractive economic factors that should compensate for the economies of scale that have driven development of large commercial nuclear power plants to date. For example, aSMRs can be manufactured at reduced capital costs in a factory and potentially shorter lead times and then be shipped to a site to provide power away from large grid systems. The integral, self-contained nature of aSMR designs is fundamentally different than conventional reactor designs. Future aSMR deployment will require new instrumentation and control (I&C) architectures to accommodate the integral design and withstand the extreme in-vessel environmental conditions. Operators will depend on sophisticated sensing and machine vision technologies that provide efficient human-machine interface for in-vessel telepresence, telerobotic control, and remote process operations. The future viability of aSMRs is dependent on understanding and overcoming the significant technical challenges involving in-vessel reactor sensing and monitoring under extreme temperatures, pressures, corrosive environments, and radiation fluxes

  5. Gallium phosphide high temperature diodes

    Science.gov (United States)

    Chaffin, R. J.; Dawson, L. R.

    1981-01-01

    High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  6. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard;

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  7. Experimental and numerical investigation of liquid-metal free-surface flows in spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Batta, A., E-mail: batta@kit.edu [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Class, A.G.; Litfin, K.; Wetzel, Th. [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Moreau, V.; Massidda, L. [CRS4 Centre for Advanced Studies, Research and Development in Sardinia, Polaris, Edificio 1, 09010 Pula, CA (Italy); Thomas, S.; Lakehal, D. [ASCOMP GmbH Zurich, Zurich (Switzerland); Angeli, D.; Losi, G. [DIEF – Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Mooney, K.G. [University of Massachusetts Amherst, Department of Mechanical and Industrial Engineering, Amherst (United States); Van Tichelen, K. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium)

    2015-08-15

    Highlights: • Experimental study of free surface for lead bismuth eutectic target. • Numerical investigation of free surface of a liquid metal target. • Advanced free surface modelling. - Abstract: Accelerator Driven Systems (ADS) are extensively investigated for the transmutation of high-level nuclear waste within many worldwide research programs. The first advanced design of an ADS system is currently developed in SCK• CEN, Mol, Belgium: the Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA). Many European research programs support the design of MYRRHA. In the framework of the Euratom project ‘Thermal Hydraulics of Innovative nuclear Systems (THINS)’ a liquid-metal free-surface experiment is performed at the Karlsruhe Liquid Metal Laboratory (KALLA) of Karlsruhe Institute of Technology (KIT). The experiment investigates a full-scale model of the concentric free-surface spallation target of MYRRHA using Lead Bismuth Eutectic (LBE) as coolant. In parallel, numerical free surface models are developed and tested which are reviewed in the article. A volume-of-fluid method, a moving mesh model, a free surface model combining the Level-Set method with Large-Eddy Simulation model and a smoothed-particle hydrodynamics approach are investigated. Verification of the tested models is based on the experimental results obtained within the THINS project and on previous water experiments performed at the University Catholic de Louvain (UCL) within the Euratom project ‘EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in Accelerator Driven System (EUROTRANS)’. The design of the target enables a high fluid velocity and a stable surface at the beam entry. The purpose of this paper is to present an overview of both experimental and numerical results obtained for free surface target characterization. Without entering in technical details, the status, the major achievements and lessons for the future with respect to

  8. Two cylinder permanent magnet stirrer for liquid metals

    Science.gov (United States)

    Bojarevičs, A.; Baranovskis, R.; Kaldre, I.; Milgrāvis, M.; Beinerts, T.

    2017-07-01

    To achieve a uniform liquid metal composition and temperature distribution, stirring is often necessary for industrial processes. Here, a novel permanent magnet system for liquid melt stirring is proposed. It promises very low energy consumption and options for multiple different flow types compared to traditional travelling magnetic field inductors or mechanical stirrers. The proposed system has a simple design: it consists of two rotating permanent magnet cylinders, which are magnetized transversely to the axis of the cylinders. The experimental device was developed and tested under various regimes using GaInSn alloy in a cylindrical crucible. Aluminum stirring by permanent magnets in laboratory scale is tested, and stirring impact on directional solidification of metallic alloys is experimentally investigated.

  9. Dispersion relations of the acoustic modes in divalent liquid metals

    Directory of Open Access Journals (Sweden)

    Inui Masanori

    2017-01-01

    Full Text Available Collective dynamics in liquid Ca and liquid Cd was studied by inelastic x-ray scattering (IXS. Using our experimental technique to prepare proper sample cells and high performance of an IXS beamline (BL35XU at SPring-8 in Japan, the dynamic structure factor with reasonable statistics was obtained for these divalent liquid metals. For both liquids, the dynamic structure factor at low Q exhibits a central peak with a shoulder or small hump clearly visible on each side, and the inelastic excitation energy determined using the model function composed of Lorentzian and the damped harmonic oscillator function disperses with increasing Q. The dispersion curves of these liquids were compared with that of the longitudinal acoustic phonon in each crystalline phase. From these results, clear difference in the interatomic interaction be- tween liquid Ca and liquid Cd was inferred.

  10. Testing of T91 steel in heavy liquid metals

    Science.gov (United States)

    Chocholoušek, M.; Fulín, Z.; Janoušek, J.; Špirit, Z.

    2017-02-01

    Tests of candidate construction materials for a heavy liquid metal environment are performed at Centrum Vyzkumu Rez. Tests are focused among other things on the influence of corrosive environments on the mechanical properties of T91 steel. Non-standard environments require special testing devices, which must be able to perform tests in liquid lead or liquid lead bismuth eutectic. An important issue is also the monitoring of the oxygen volume, which has an influence on the production and stability of oxide layers and therefore on crack initiation. This article presents the issue of testing steel T91 and the associated development of a testing device for slow strain rate tests, especially in liquid lead bismuth eutectic environment.

  11. Optical and thermodynamic property measurements of liquid metals and alloys

    Science.gov (United States)

    Weber, J. K. Richard; Krishnan, Shankar; Schiffman, Robert A.; Nordine, Paul C.

    Optical properties and spectral emissivities of liquid silicon, titanium, niobium, and zirconium were investigated by HeNe laser polarimetry at λ = 632.8 nm. The metals were of a high purity and, except for zirconium, clean. The more demanding environmental requirements for eliminating oxide or nitride phases from zirconium were not met. Containerless conditions were achieved by electromagnetic levitation and heating. CO2 laser beam heating was also used to extend the temperature range for stable levitation and to heat solid silicon to form the metallic liquid phase. Corrections to previously reported calorimetric measurements of the heat capacity of liquid niobium were derived from the measured temperature dependence of its spectral emissivity. Property measurements were obtained for supercooled liquid silicon and supercooling of liquid zirconium was accomplished. The purification of liquid metals and the extension of this work on liquids to the measurement of thermodynamic properties and phase equilibria are discussed.

  12. Effects of pulsed power input into a liquid metal target

    CERN Document Server

    Ni, L; Spitzer, H

    1999-01-01

    In order to validate the computations of stress generated in the target container by the sudden input of a large amount of power in the liquid metal of a high-power spallation target, first experimental investigations were carried out in an international collaboration. Temperature and beam profile measurements showed that up to 61% of the incoming beam power was deposited in the target. The spatial power distribution was reconstructed from the experimental data. A computational model with consideration of fluid-structure interface was employed to simulate the pressure waves in the liquid and the resulting dynamic stress on the container. The maximum stress on the container was found to be 13.6 MP. Although experimental data are still very preliminary, a comparison of the measured stress and deformation data with the computational results showed reasonable agreement in the amplitudes, which are the most important data for engineering design. Although the methods developed to measure the strain on the target su...

  13. Azimuthal swirl in liquid metal electrodes and batteries

    Science.gov (United States)

    Ashour, Rakan; Kelley, Douglas

    2016-11-01

    Liquid metal batteries consist of two molten metals with different electronegativity separated by molten salt. In these batteries, critical performance related factors such as the limiting current density are governed by fluid mixing in the positive electrode. In this work we present experimental results of a swirling flow in a layer of molten lead-bismuth alloy driven by electrical current. Using in-situ ultrasound velocimetery, we show that poloidal circulation appears at low current density, whereas azimuthal swirl becomes dominant at higher current density. The presence of thermal gradients produces buoyant forces, which are found to compete with those produced by current injection. Taking the ratio of the characteristic electromagnetic to buoyant flow velocity, we are able to predict the current density at which the flow becomes electromagnetically driven. Scaling arguments are also used to show that swirl is generated through self-interaction between the electrical current in the electrode with its own magnetic field.

  14. Cleavage crystallography of liquid metal embrittled aluminum alloys

    Science.gov (United States)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  15. Nuclear magnetic resonance studies of liquid metal alloys

    Science.gov (United States)

    Quitmann, D.

    1990-12-01

    The Knight shift K and quadrupolar relaxation rate Rq in liquid metallic systems, in which effects of bonding become increasingly prominent, are surveyed. In Rb, a theoretical calculation of Rq, including mode-coupling theory for the liquid, and the r-dependent Sternheimer factor, predicted closely the recent experimental redetermination. In Ge and in Cu-Ge and similar nearly free-electron systems, the quantitative analysis of K still poses problems, while qualitatively K(x) displays clearly a correspondence to the resistivity maximum. In metallic alloys with compound forming tendency, models based on an association (A+B from or to AB) connect K and Rq quantitatively with the heat of mixing, but the microscopic foundation of the association ansatz is uncertain.

  16. Light-driven liquid metal nanotransformers for biomedical theranostics

    Science.gov (United States)

    Chechetka, Svetlana A.; Yu, Yue; Zhen, Xu; Pramanik, Manojit; Pu, Kanyi; Miyako, Eijiro

    2017-05-01

    Room temperature liquid metals (LMs) represent a class of emerging multifunctional materials with attractive novel properties. Here, we show that photopolymerized LMs present a unique nanoscale capsule structure characterized by high water dispersibility and low toxicity. We also demonstrate that the LM nanocapsule generates heat and reactive oxygen species under biologically neutral near-infrared (NIR) laser irradiation. Concomitantly, NIR laser exposure induces a transformation in LM shape, destruction of the nanocapsules, contactless controlled release of the loaded drugs, optical manipulations of a microfluidic blood vessel model and spatiotemporal targeted marking for X-ray-enhanced imaging in biological organs and a living mouse. By exploiting the physicochemical properties of LMs, we achieve effective cancer cell elimination and control of intercellular calcium ion flux. In addition, LMs display a photoacoustic effect in living animals during NIR laser treatment, making this system a powerful tool for bioimaging.

  17. State-of-the-art report on the development of liquid metal reactor fuel cladding materials in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Kuk, Il Hiun; Ryu, Woo Seog; Jang, Jin Sung; Rhee, Chang Kyu; Kim, Dae Whan; Park, Soon Dong; Kim, Woo Gon; Chung, Man Kyo; Han, Chang Hee

    1998-01-01

    PNC 1520 and PNC-FM5 have been developed as a cladding materials for LMR in Japan. PNC 1520 has superior swelling resistance and high temperature properties to PNC 31.6. And PNC-FMS steel has shown a high rupture stress as well as good neutron irradiation performance. In addition oxide dispersed ferritic steel (PNC-ODS) and 12Cr-8Mo steel have been developed. This report will give an insight for choosing and developing the materials to be applied to the KAERI prototype liquid metal reactor which is going to be operable in 2010 by analysis of the characteristics of cladding materials developed in Japan. (author). 39 refs., 2 tabs., 23 figs

  18. Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment

    CERN Document Server

    Li, Haiyan; Wang, Lei; Gao, Yunxia; Liu, Jing

    2013-01-01

    In this article, the fluid dynamics of room temperature liquid metal (RTLM) droplet impacting onto a pool of the same liquid in ambient air was investigated. A series of experiments were conducted in order to disclose the influence of the oxidation effect on the impact dynamics. The droplet shape and impact phenomenology were recorded with the aid of a high-speed digital camera. The impact energy stored in the splash structures was estimated via a theoretical model and several morphological parameters obtained from instantaneous images of the splash. It was observed that the droplet shape and the splashing morphology of RTLM were drastically different from those of water, so was the impact dynamics between room temperature LM pool and high temperature LM pool. The energy analysis disclosed that the height of the jet is highly sensitive to the viscosity of the fluid, which is subjected to the oxidation effect and temperature effect simultaneously, and thus perfectly explained the phenomena. These basic finding...

  19. High temperature superconductor current leads

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  20. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  1. Microscopic dynamics in liquid metals: The experimental point of view

    Science.gov (United States)

    Scopigno, Tullio; Ruocco, Giancarlo; Sette, Francesco

    2005-07-01

    The experimental results relevant for the understanding of the microscopic dynamics in liquid metals are reviewed, with special regard to the ones achieved in the last two decades. Inelastic neutron scattering played a major role since the development of neutron facilities in the 1960s. The last ten years, however, saw the development of third generation radiation sources, which opened the possibility of performing inelastic scattering with x rays, thus disclosing previously unaccessible energy-momentum regions. The purely coherent response of x rays, moreover, combined with the mixed coherent or incoherent response typical of neutron scattering, provides enormous potentialities to disentangle aspects related to the collectivity of motion from the single-particle dynamics. If the last 20years saw major experimental developments, on the theoretical side fresh ideas came up to the side of the most traditional and established theories. Beside the raw experimental results therefore models and theoretical approaches are reviewed for the description of microscopic dynamics over different length scales, from the hydrodynamic region down to the single-particle regime, walking the perilous and sometimes uncharted path of the generalized hydrodynamics extension. Approaches peculiar of conductive systems, based on the ionic plasma theory, are also considered, as well as kinetic and mode coupling theory applied to hard-sphere systems, which turn out to mimic with remarkable detail the atomic dynamics of liquid metals. Finally, cutting edge issues and open problems, such as the ultimate origin of the anomalous acoustic dispersion or the relevance of transport properties of a conductive system in ruling the ionic dynamic structure factor, are discussed.

  2. Automated scoping methodology for liquid metal natural circulation small reactor

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hyung M.; Suh, Kune Y., E-mail: kysuh@snu.ac.kr

    2014-07-01

    Highlights: • Automated scoping methodology for natural circulation small modular reactor is developed. • In-house code is developed to carry out system analysis and core geometry generation during scoping. • Adjustment relations are obtained to correct the critical core geometry out of diffusion theory. • Optimized design specification is found using objective function value. • Convex hull volume is utilized to quantify the impact of different constraints on the scope range. - Abstract: A novel scoping method is proposed that can automatically generate design variable range of the natural circulation driven liquid metal cooled small reactor. From performance requirements based upon Generation IV system roadmap, appropriate structure materials are selected and engineering constraints are compiled based upon literature. Utilizing ASME codes and standards, appropriate geometric sizing criteria on constituting components are developed to ensure integrity of the system during its lifetime. In-house one dimensional thermo-hydraulic system analysis code is developed based upon momentum integral model and finite element methods to deal with non-uniform descritization of temperature nodes for convection and thermal diffusion equation of liquid metal coolant. In order to quickly generate critical core dimensions out of given unit cell information, an adjustment relation that relates the critical geometry estimated from one-group diffusion and that from MCNP code is constructed and utilized throughout the process. For the selected unit cell dimension ranges, burnup calculations are carried out to check the cores can generate energy over the reactor lifetime. Utilizing random method, sizing criteria, and in-house analysis codes, an automated scoping methodology is developed. The methodology is applied to nitride fueled integral type lead cooled natural circulation reactor concept to generate design scopes which satisfies given constraints. Three dimensional convex

  3. Usage of Liquid Metals in the Positron Production System of Linear Collider

    CERN Document Server

    Mikhailichenko, Alexander

    2015-01-01

    In this publication we collected descriptions of some installations with liquid metals which could be used for high-energy colliders, ILC particularly, for the purposes of targeting, collimation, cooling, collection of secondary particles etc. Some important components of the system with liquid metals, such as pumps, nozzles, windows, and the fluid dynamics in the Lithium lens are described also.

  4. Liquid metal embrittlement susceptibility of T91 steel by Lead-Bismuth

    OpenAIRE

    Auger, Thierry; Lorang, Gérard

    2004-01-01

    submitted to Scripta Materialia; Previous studies on T91 steel in its standard metallurgical state found no evidence for Liquid Metal Embrittlement (LME) by eutectic Pb-Bi. In this paper, we report clear evidence that this steel can be embrittled by Pb-Bi when direct contact between the steel and the liquid metal is obtained by prior ion beam sputtering.

  5. Quench in high temperature superconductor magnets

    CERN Document Server

    Schwartz, J

    2013-01-01

    High field superconducting magnets using high temperature superconductors are being developed for high energy physics, nuclear magnetic resonance and energy storage applications. Although the conductor technology has progressed to the point where such large magnets can be readily envisioned, quench protection remains a key challenge. It is well-established that quench propagation in HTS magnets is very slow and this brings new challenges that must be addressed. In this paper, these challenges are discussed and potential solutions, driven by new technologies such as optical fiber based sensors and thermally conducting electrical insulators, are reviewed.

  6. Aerospace applications of high temperature superconductivity

    Science.gov (United States)

    Heinen, V. O.; Connolly, D. J.

    1991-01-01

    Space application of high temperature superconducting (HTS) materials may occur before most terrestrial applications because of the passive cooling possibilities in space and because of the economic feasibility of introducing an expensive new technology which has a significant system benefit in space. NASA Lewis Research Center has an ongoing program to develop space technology capitalizing on the potential benefit of HTS materials. The applications being pursued include space communications, power and propulsion systems, and magnetic bearings. In addition, NASA Lewis is pursuing materials research to improve the performance of HTS materials for space applications.

  7. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    Science.gov (United States)

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  8. Interface high-temperature superconductivity

    Science.gov (United States)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  9. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  10. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  11. Properties of high temperature SQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Falco, C. M.; Wu, C. T.

    1978-01-01

    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb/sub 3/Sn is outlined, and comments are made on directions future work should take.

  12. 高温防腐涂料与热障防腐涂层技术的研究进展%Progress in Study on Technology of High Temperature Resistant and Thermal Barrier Anti-corrosion Coatings

    Institute of Scientific and Technical Information of China (English)

    张春华; 李克军; 李安学; 李春启; 左玉帮

    2011-01-01

    综述了国内外耐高温防腐有机、无机和有机-无机复合涂料和热障防腐涂层技术的研究与应用的新进展,介绍了有机硅树脂、有机氟树脂、无机硅酸盐基涂料、无机磷酸盐基涂料、陶瓷涂层和搪瓷涂层的发展现状和前景.%The progresses in application and study on technology of high temperature resistant anti-corrosion organic, inorganic and organic-inorganic composite coatings and thermal barrier anti-corrosion coatings are summarized. The development status and prospects of organic silicon resin, organic fluororesin, inorganic silicate based coating, inorganic phosphate based coating, ceramic and enamel coatings are introduced.

  13. Dynamic measurements of thermophysical properties of metals and alloys at high temperatures by subsecond pulse heating techniques

    Science.gov (United States)

    Cezairliyan, Ared

    1993-01-01

    Rapid (subsecond) heating techniques developed at the National Institute of Standards and Technology for the measurements of selected thermophysical and related properties of metals and alloys at high temperatures (above 1000 C) are described. The techniques are based on rapid resistive self-heating of the specimen from room temperature to the desired high temperature in short times and measuring the relevant experimental quantities, such as electrical current through the specimen, voltage across the specimen, specimen temperature, length, etc., with appropriate time resolution. The first technique, referred to as the millisecond-resolution technique, is for measurements on solid metals and alloys in the temperature range 1000 C to the melting temperature of the specimen. It utilizes a heavy battery bank for the energy source, and the total heating time of the specimen is typically in the range of 100-1000 ms. Data are recorded digitally every 0.5 ms with a full-scale resolution of about one part in 8000. The properties that can be measured with this system are as follows: specific heat, enthalpy, thermal expansion, electrical resistivity, normal spectral emissivity, hemispherical total emissivity, temperature and energy of solid-solid phase transformations, and melting temperature (solidus). The second technique, referred to as the microsecond-resolution technique, is for measurements on liquid metals and alloys in the temperature range 1200 to 6000 C. It utilizes a capacitor bank for the energy source, and the total heating time of the specimen is typically in the range 50-500 micro-s. Data are recorded digitally every 0.5 micro-s with a full-scale resolution of about one part in 4000. The properties that can be measured with this system are: melting temperature (solidus and liquidus), heat of fusion, specific heat, enthalpy, and electrical resistivity. The third technique is for measurements of the surface tension of liquid metals and alloys at their melting

  14. Technological Evolution of High Temperature Superconductors

    Science.gov (United States)

    2015-12-01

    power level would reach 250 kilowatts in a joint Navy-Advanced Research Projects Agency (the fore- runner to the Defense Advanced Research Projects...A1 2/22/2007 Method and apparatus for cooling a blade server H01L 021/66 US- 20060283620 A1 American Superconductor Corporation (United States

  15. High temperature superconductors: A technological revolution

    Science.gov (United States)

    1990-01-01

    The objectives are to demonstrate the Meissner effect through magnetic levitation, to demonstrate one application of the Meissner effect, the low friction magnetic rotation bearing, and to demonstrate magnetic flux penetration and the Type II nature of ceramic superconductors via the stacking of the superconductor disks. Experimental equipment and procedures are described.

  16. Radiation Shielding Utilizing A High Temperature Superconducting Magnet Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to leverage near-term high-temperature superconducting technologies to assess applicability of magnetic shielding for protecting against exposure...

  17. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  18. High Temperature Heat Exchanger Project

    Energy Technology Data Exchange (ETDEWEB)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  19. Motor for High Temperature Applications

    Science.gov (United States)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  20. Very High Temperature Sound Absorption Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase I demonstrated experimentally a very high temperature acoustically absorbing coating for ducted acoustics applications. High temperature survivability at 3500...

  1. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  2. High Temperature, High Power Piezoelectric Composite Transducers

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2014-08-01

    Full Text Available Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  3. High Temperature Mechanisms for Venus Exploration

    Science.gov (United States)

    Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven

    Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New

  4. Safety and core design of large liquid-metal cooled fast breeder reactors

    Science.gov (United States)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  5. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  6. Initial research on the technology of the tartary buckwheat by the high temperature short time air puffing%苦荞麦高温短时气流膨化工艺初步研究

    Institute of Scientific and Technical Information of China (English)

    龚丽; 毛新; 蒋爱民; 刘欣; 刘清化

    2011-01-01

    The tartary buckwheat was researched in the initial technology of high temperature short time air puffing.The expansion rate, rehydration rate, difference of color of the tartary buckwheat products were researched in effect by the sample mass, expansion temperature,expansion time anti water content. The results showed that:the best puffing technology were that the sample mass was 100 ~ 150g, the expansion temperature was 260℃, the expansion time was 40s and the sample water content was 10%.%时高温短时气流膨化苦荞麦工艺进行初步探讨,主要研究进料量、膨化温度、膨化时间和水分含量对产品膨化率、复水率和色差值三种指标的影响,得出较佳膨化工艺条件为物料进料量100~150g、膨化温度260℃、膨化时间40s、物料水分含量10%.

  7. High temperature superconductivity space experiment (HTSSE)

    Science.gov (United States)

    Ritter, J. C.; Nisenoff, M.; Price, G.; Wolf, S. A.

    1991-01-01

    An experiment dealing with high-temperature superconducting devices and components in space is discussed. A variety of devices (primarily passive microwave and millimeter-wave components) has been procured and will be integrated with a cryogenic refrigerating and data acquisition system to form the space package, which will be launched in late 1992. This space experiment is expected to demonstrate that this technology is sufficiently robust to survive the space environment and that the technology has the potential to improve the operation of space systems significantly. The devices for the initial launch have been evaluated electrically, thermally, and mechanically, and will be integrated into the final space package early in 1991. The performance of the devices is summarized, and some potential applications of this technology in space systems are outlined.

  8. The Atomic scale structure of liquid metal-electrolyte interfaces

    Science.gov (United States)

    Murphy, B. M.; Festersen, S.; Magnussen, O. M.

    2016-07-01

    Electrochemical interfaces between immiscible liquids have lately received renewed interest, both for gaining fundamental insight as well as for applications in nanomaterial synthesis. In this feature article we demonstrate that the atomic scale structure of these previously inaccessible interfaces nowadays can be explored by in situ synchrotron based X-ray scattering techniques. Exemplary studies of a prototypical electrochemical system - a liquid mercury electrode in pure NaCl solution - reveal that the liquid metal is terminated by a well-defined atomic layer. This layering decays on length scales of 0.5 nm into the Hg bulk and displays a potential and temperature dependent behaviour that can be explained by electrocapillary effects and contributions of the electronic charge distribution on the electrode. In similar studies of nanomaterial growth, performed for the electrochemical deposition of PbFBr, a complex nucleation and growth behaviour is found, involving a crystalline precursor layer prior to the 3D crystal growth. Operando X-ray scattering measurements provide detailed data on the processes of nanoscale film formation.

  9. Characterization of Ceramic Foam Filters Used for Liquid Metal Filtration

    Science.gov (United States)

    Kennedy, Mark William; Zhang, Kexu; Fritzsch, Robert; Akhtar, Shahid; Bakken, Jon Arne; Aune, Ragnhild E.

    2013-06-01

    In the current study, the morphology including tortuosity, and the permeability of 50-mm thick commercially available 30, 40, 50, and 80 pores per inch (PPI) alumina ceramic foam filters (CFFs) have been investigated. Measurements have been taken of cell (pore), window, and strut sizes, porosity, tortuosity, and liquid permeability. Water velocities from ~0.015 to 0.77 m/s have been used to derive both first-order (Darcy) and second-order (Non-Darcy) terms for being used with the Forchheimer equation. Measurements were made using 49-mm "straight through" and 101-mm diameter "expanding flow field" designs. Results from the two designs are compared with calculations made using COMSOL 4.2a® 2D axial symmetric finite element modeling (FEM), as a function of velocity and filter PPI. Permeability results are correlated using directly measurable parameters and compared with the previously published results. Development of improved wall sealing (49 mm) and elimination of wall effects (101 mm) have led to a high level of agreement between experimental, analytic, and FEM methods (±0 to 7 pct on predicted pressure drop) for both types of experiments. Tortuosity has been determined by two inductive methods, one using cold-solidified samples at 60 kHz and the other using liquid metal at 50 Hz, giving comparable results.

  10. Design analyses of self-cooled liquid metal blankets

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.

    1986-12-01

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, a study was carried out to assess the impact of different reactor design choices on the reactor performance parameters. The design choices include the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, and the coolant choice for the nonbreeding inboard blanket. In addition, tritium breeding benchmark calculations were performed using different transport codes and nuclear data libraries. The importance of the TBR in the blanket design motivated the benchmark calculations.

  11. Transport properties of liquid metal hydrogen under high pressures

    Science.gov (United States)

    Brown, R. C.; March, N. H.

    1972-01-01

    A theory is developed for the compressibility and transport properties of liquid metallic hydrogen, near to its melting point and under high pressure. The interionic force law is assumed to be of the screened Coulomb type, because hydrogen has no core electrons. The random phase approximation is used to obtain the structure factor S(k) of the system in terms of the Fourier transform of this force law. The long wavelenth limit of the structure factor S(o) is related to the compressibility, which is much lower than that of alkali metals at their melting points. The diffusion constant at the melting point is obtained in terms of the Debye frequency, using a frequency spectrum analogous with the phonon spectrum of a solid. A similar argument is used to obtain the combined shear and bulk viscosities, but these depend also on S(o). The transport coefficients are found to be about the same size as those of alkali metals at their melting points.

  12. Elevator mode convection in liquid metal blankets for fusion reactors

    Science.gov (United States)

    Zikanov, Oleg; Liu, Li

    2015-11-01

    The work is motivated by the design of liquid-metal blankets for nuclear fusion reactors. Mixed convection in a downward flow in a vertical duct with strong contant-rate heating of one wall (the Grashof number up to 1012) and strong transverse magnetic field (the Hartmann number up to 104) is considered. It is found that in an infinitely long duct the flow is dominated by exponentially growing elevator modes having the form of a combination of ascending and descending jets. An analytical solution approximating the growth rate of the modes is derived. Analogous flows in finite-length pipes and ducts are analyzed using the high-resolution numerical simulations. The results of the recent experiments are reproduced and explained. It is found that the flow evolves in cycles consisting of periods of exponential growth and breakdowns of the jets. The resulting high-amplitude fluctuations of temperature is a feature potentially dangerous for operation of a reactor blanket. Financial support was provided by the US NSF (Grant CBET 1232851).

  13. Numerical Modeling of Inclusion Behavior in Liquid Metal Processing

    Science.gov (United States)

    Bellot, Jean-Pierre; Descotes, Vincent; Jardy, Alain

    2013-09-01

    Thermomechanical performance of metallic alloys is directly related to the metal cleanliness that has always been a challenge for metallurgists. During liquid metal processing, particles can grow or decrease in size either by mass transfer with the liquid phase or by agglomeration/fragmentation mechanisms. As a function of numerical density of inclusions and of the hydrodynamics of the reactor, different numerical modeling approaches are proposed; in the case of an isolated particle, the Lagrangian technique coupled with a dissolution model is applied, whereas in the opposite case of large inclusion phase concentration, the population balance equation must be solved. Three examples of numerical modeling studies achieved at Institut Jean Lamour are discussed. They illustrate the application of the Lagrangian technique (for isolated exogenous inclusion in titanium bath) and the Eulerian technique without or with the aggregation process: for precipitation and growing of inclusions at the solidification front of a Maraging steel, and for endogenous inclusions in the molten steel bath of a gas-stirred ladle, respectively.

  14. Overview of progress on the Liquid Metal Experiment

    Science.gov (United States)

    Rhoads, J.; Arthurs, A.; Edlund, E.; Sloboda, P.; Spence, E.; Ji, H.

    2010-11-01

    A flowing liquid wall is an attractive plasma facing component in fusion devices due to the ability to withstand high heat and neutron fluxes. The Liquid Metal Experiment (LMX) consists of externally driven, free-surface flow through a wide-aspect ratio channel subjected to a strong magnetic field orthogonal to the surface of the flow; similar to the scenario of a toroidally flowing divertor. LMX has been modified to study heat transfer in addition to measuring fluctuations of the surface and mapping the velocity profile in open channel flow. A high-wattage resistive heater and an infrared camera have been installed to observe the effect of a magnetic field on heat transfer. Two position-sensitive diodes are in place to make measurements of the fluctuations of the surface, which can be correlated to underlying turbulent structures and track changes in the k-spectra. Also, an array of potential probes has been implemented in order to map the flow profile as the magnetic field is increased. All of these phenomena must be studied in order to determine how a flowing liquid divertor would respond in a reactor setting. An overview of the modifications and preliminary results will be presented.

  15. Study of liquid metals as a basis for nanoscience.

    Science.gov (United States)

    Yao, Makoto; Ohmasa, Yoshinori

    2008-03-19

    There are two ways to proceed with nanoscience: so-called top-down and bottom-up methods. Usually, the former methods are thought of as in the province of physicists and the latter in that of chemists. However, this is not entirely true because the physics of disordered matter, especially liquid metals, is well-developed bottom-up science and it has indeed provided nanoscience with basic ideas and theoretical tools such as ab initio molecular dynamics (MD) simulations. Here we wish to present experimental studies on such phenomena that originate from quantum mechanical properties and subsequently lead to classical non-equilibrium processes: among these are slow dynamics due to metal-nonmetal transitions in liquids, and wetting and dewetting transitions of liquid semiconductors. Since all these phenomena are related to a spatiotemporal range far wider than that treated by the present ab initio MD simulations, it is desirable that new progress in theoretical physics be stimulated, resulting in further developments in nanoscience.

  16. A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.; Adams, J. J., E-mail: jjadams2@ncsu.edu [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606 (United States); Trlica, C.; Khan, M. R.; Dickey, M. D. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606 (United States)

    2015-05-21

    We describe a new electrochemical method for reversible, pump-free control of liquid eutectic gallium and indium (EGaIn) in a capillary. Electrochemical deposition (or removal) of a surface oxide on the EGaIn significantly lowers (or increases) its interfacial tension as a means to induce the liquid metal in (or out) of the capillary. A fabricated prototype demonstrates this method in a reconfigurable antenna application in which EGaIn forms the radiating element. By inducing a change in the physical length of the EGaIn, the operating frequency of the antenna tunes over a large bandwidth. This purely electrochemical mechanism uses low, DC voltages to tune the antenna continuously and reversibly between 0.66 GHz and 3.4 GHz resulting in a 5:1 tuning range. Gain and radiation pattern measurements agree with electromagnetic simulations of the device, and its measured radiation efficiency varies from 41% to 70% over its tuning range.

  17. Preliminary Analysis of Liquid Metal MHD Pressure Drop in the Blanket for the FDS

    Institute of Scientific and Technical Information of China (English)

    王红艳; 吴宜灿; 何晓雄

    2002-01-01

    Preliminary analysis and calculation of liquid metal Li17Pb83 magnetohydrodynamic (MHD) pressure drop in the blanket for the FDS have been presented to evaluate the significance of MHD effects on the thermal-hydraulic design of the blanket. To decrease the liquid metal MHD pressure drop, Al2O3 is applied as an electronically insulated coating onto the inner surface of the ducts. The requirement for the insulated coating to reduce the additional leakage pressure drop caused by coating imperfections has been analyzed. Finally, the total liquid metal MHD pressure drop and magnetic pump power in the FDS blanket have been given.

  18. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  19. High Temperature Sorbents for Oxygen

    Science.gov (United States)

    Sharma, Pramod K. (Inventor)

    1996-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C is introduced. The sorbent comprises a porous alumina silicate support such as zeolite containing from 1 to 10 percent by weight of ion exchanged transition metal such as copper or cobalt ions and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum. The activation temperature, oxygen sorption and reducibility are all improved by the presence of the platinum activator.

  20. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  1. Contact-free measurement of the flow field of a liquid metal inside a closed container

    Directory of Open Access Journals (Sweden)

    Heinicke Christiane

    2014-03-01

    Full Text Available The measurement of flow velocities inside metal melts is particularly challenging. Due to the high temperatures of the melts it is impossible to employ measurement techniques that require either mechanical contact with the melt or are only adaptable to translucent fluids. In the past years a number of electromagnetic techniques have been developed that allows a contact-free measurement of volume flows. One of these techniques is the so-called Lorentz Force Velocimetry (LFV in which the metal flow is exposed to an external, permanent magnetic field. The interaction between the metal and the magnet not only leads to a force on the fluid, but also on the magnet. The force can be measured and is proportional to the velocity of the melt. Moreover, by using a small permanent magnet it is possible to resolve spatial structures inside the flow.We will demonstrate this using a model experiment that has been investigated with different reference techniques previously. The experimental setup is a cylindrical vessel filled with a eutectic alloy which is liquid at room temperature. The liquid metal can be set into motion by means of a propeller at the top of the liquid. Depending on the direction of rotation of the propeller, the flow inside the vessel takes on different states. Beside the vessel, we place a Lorentz Force Flowmeter (LFF equipped with a small permanent magnet. By measuring the force on the magnet at different positions and different rotation speeds, we demonstrate that we can qualitatively and quantitatively reconstruct the flow field inside the vessel.

  2. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  3. High temperature catalytic membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  4. Development of a Liquid Metal Based Fuel Gas Scrubbing System

    Energy Technology Data Exchange (ETDEWEB)

    Chang, B.F.; Swithenbank, J.; Sharifi, V.N.; Warner, N.

    2002-09-20

    The objective of this research project is to perform studies on an analogous room temperature packed bed scrubber operating under non-wetting conditions, providing insight and understanding towards the development of a high temperature packed bed gas scrubber irrigated by molten tin.

  5. 华北春玉米高温胁迫影响机理及其技术应对探讨%Effects of high temperature stress on spring maize and its technologic solutions in North China Plain

    Institute of Scientific and Technical Information of China (English)

    陶志强; 陈源泉; 隋鹏; 袁淑芬; 高旺盛

    2013-01-01

    This paper studied limiting factor (high temperature stress occurred during grain filling period) for high yield production of spring maize in North China Plain (NCP).By analyzing the available high yield technologic solutions for spring maize under high temperature stress (HTS),we expected that spring maize might break the barriers from HTS during grain filling period in NCP.The results showed that the main clinical manifestations of spring maize under HTS at filling stage included,shortened the linear growth stage of maize grain; reduced the grain size and the amount of assimilate transfer to grain,leading to a reduced grain filling rate; pollen abortion and mismatched pollination period which reduced seed setting rate; the temperature over 35 ℃ would reduce root growth rate and hindered the lateral root growth;reduced photosynthetic enzyme activity,chlorophyll content and PSI I function,which resulting in photosynthesis reduction;lowered leaf water status and plant nitrogen accumulation;induced sheath blight and bacterial wilt.To break the barrier exerted by HTS on spring maize during grain filling stage,the following practices could be used:advancing or delaying sowing date to avoid high temperature,breeding high temperature tolerant maize varieties; applying chemicals such as exogenous salicylic acid (SA),kinetin (BA) and abscisic acid (ABA) to improve the tolerance; pre-exercising with high temperature well before the grain filling stage; practicing agronomic and farming approaches to regulate the nutrition levels and soil and water and light properties.Based on this study,a design integrated technology of the individual techniques could be used to form an integrated technology system,thus to improve heat tolerance and increase spring maize yield under HTS in NCP.%本研究针对华北平原春玉米一熟制高产的限制因子(灌浆期高温胁迫)问题,在分析了国内外高温对玉米胁迫影响机理的相关研究基础上,

  6. Blanket-relevant liquid metal MHD channel flows: Data base and optimization simulation development

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, I.A.; Kirillov, I.R.; Sidorenkov, S.I. [D.V. Efremov Inst. of Electrophysical Apparatus, St Petersburg (Russian Federation)

    1995-12-31

    The problems of generalization and integration of test, theoretical and design data relevant to liquid metal (LM) blanket are discussed in present work. First results on MHD data base and LM blanket optimization codes are presented.

  7. CORRELATIONS CHARACTERISTICS OF THE STRUCTURE-SENSITIVE PROPERTIES OF LIQUID METALS

    Directory of Open Access Journals (Sweden)

    V. N. Tsurkin

    2016-01-01

    Full Text Available The interconditionality of characteristics of major structure-sensitive properties of the liquid metals and the some parameters of electronic and atomic structure such as the first coordination number, electron charge and Boltzmann constant are displayed.

  8. The effects of microstructure on crack initiation in liquid-metal environments

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1997-09-01

    Full Text Available Liquid-metal-induced embrittlement under tensile test conditions is identified by the existence of a characteristic ductility trough. In this study, the effect of molten gallium on the behaviour of two brass alloys with different microstructures...

  9. Modelling thermal development of liquid metal flow on rotating disc in centrifugal atomisation

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K.H.; Zhao, Y.Y

    2004-01-25

    In centrifugal atomisation the formation of a solid skull on the atomising disc is a major problem, which has adverse effects on the quality and quantity of the as-produced powder and also on the balance of the disc during atomisation. It is costly and difficult to study the flow behaviour because of the complex interaction between the liquid metal and the atomising disc. A computational fluid dynamics model has been developed using Flow-3D to simulate the thermal development of the liquid metal on the atomising disc. Under a fixed process condition, the liquid metal has a nearly constant solidification rate before the steady state is achieved and a solid skull is formed gradually. The volume of the skull decreases with increasing liquid metal flow rate, initial disc temperature and initial liquid temperature.

  10. The NASA high temperature superconductivity program

    Science.gov (United States)

    Sokoloski, Martin M.; Romanofsky, Robert R.

    1990-01-01

    It has been recognized from the onset that high temperature superconductivity held great promise for major advances across a broad range of NASA interests. The current effort is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAIO produced far superior RF characteristics when compared to metallic films on the same substrate. This achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high Q filters. Melt texturing and melt quenched techniques are being used to produce bulk materials with optimized magnetic properties. These yttrium enriched materials possess enhanced flux pinning characteristics and will lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies are being conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magneto-plasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar and Mars mission applications. The project direction and level of effort of the program are also described.

  11. Testing of Liquid Metal Components for Nuclear Surface Power Systems

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Godfroy, T. J.; Schoenfeld, M.; Webster, K.; Briggs, M. H.; Geng, S. M.; Adkins, H. E.; Werner, J. E.

    2010-01-01

    The capability to perform testing at both the module/component level and in near prototypic reactor configurations using a non-nuclear test methodology allowed for evaluation of two components critical to the development of a potential nuclear fission power system for the lunar surface. A pair of 1 kW Stirling power convertors, similar to the type that would be used in a reactor system to convert heat to electricity, were integrated into a reactor simulator system to determine their performance using pumped NaK as the hot side working fluid. The performance in the pumped-NaK system met or exceed the baseline performance measurements where the converters were electrically heated. At the maximum hot-side temperature of 550 C the maximum output power was 2375 watts. A specially-designed test apparatus was fabricated and used to quantify the performance of an annular linear induction pump that is similar to the type that could be used to circulate liquid metal through the core of a space reactor system. The errors on the measurements were generally much smaller than the magnitude of the measurements, permitting accurate performance evaluation over a wide range of operating conditions. The pump produced flow rates spanning roughly 0.16 to 5.7 l/s (2.5 to 90 GPM), and delta p levels from less than 1 kPa to 90 kPa (greater than 0.145 psi to roughly 13 psi). At the nominal FSP system operating temperature of 525 C the maximum efficiency was just over 4%.

  12. Destabilization of a liquid metal by nonuniform Joule heating

    Science.gov (United States)

    Renaudière de Vaux, Sébastien; Zamansky, Rémi; Bergez, Wladimir; Tordjeman, Philippe; Haquet, Jean-François

    2017-09-01

    We study the effect of an impressing AC magnetic field at the bottom of a liquid metal layer of thickness h . In this situation the fluid is set in motion by the buoyancy forces caused by internal heat sources. The heat sources, caused by the Joule effect induced by the AC field, present an exponentially decaying profile, with characteristic length δ . As the magnetic field is horizontal, the Lorentz force has no influence on the dynamics of the system since it contributes only to the magnetic pressure. We propose an analysis of both the transient and fully developed regimes using linear stability analysis (LSA) and direct numerical simulations (DNSs). The transient period is governed by the temporal evolution of the temperature field as well as the development of the convective instability, which can be concomitant and therefore requires adopting a transient LSA algorithm to track these two effects. The DNSs have been performed for various distributions of the heat sources and various total heat input. This corresponds to independently varying δ /h in the range 0.04 ≤δ /h ≤0.45 and a Rayleigh number 1.1 ×104≤Ra≤1.2 ×105 . We observe the relaxation of the temperature up to the steady conductive profile before the transition to the nonlinear regime when Ra is small, whereas for larger Ra, nonlinear effects appear during the relaxation of the temperature profile. The unsteadiness of the temperature field significantly alters the development of the instability because of a much smaller growth rate. Surprisingly, we observe that δ /h has only a limited influence on averaged quantities as well as on the patterns for both the linear and nonlinear regimes. This comes with the fact that the profiles present an apparent reflectional symmetry, despite the asymmetry of the governing equations.

  13. Giant and switchable surface activity of liquid metal via surface oxidation

    OpenAIRE

    Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.

    2014-01-01

    We present a method to control the interfacial energy of a liquid metal via electrochemical deposition (or removal) of an oxide layer on its surface. Unlike conventional surfactants, this approach can tune the interfacial tension of a metal significantly (from ∼7× that of water to near zero), rapidly, and reversibly using only modest voltages. These properties can be harnessed to induce previously unidentified electrohydrodynamic phenomena for manipulating liquid metal alloys based on gallium...

  14. Liquid-Metal Microdroplets Formed Dynamically with Electrical Control of Size and Rate.

    Science.gov (United States)

    Tang, Shi-Yang; Joshipura, Ishan D; Lin, Yiliang; Kalantar-Zadeh, Kourosh; Mitchell, Arnan; Khoshmanesh, Khashayar; Dickey, Michael D

    2016-01-27

    Liquid metal co-injected with electrolyte through a microfluidic flow-focusing orifice forms droplets with diameters and production frequencies controlled in real time by voltage. Applying voltage to the liquid metal controls the interfacial tension via a combination of electrochemistry and electrocapillarity. This simple and effective method can instantaneously tune the size of the microdroplets, which has applications in composites, catalysts, and microsystems.

  15. Robust Pressure-Actuated Liquid Metal Devices Showing Reconfigurable Electromagnetic Effects at GHz Frequencies (POSTPRINT)

    Science.gov (United States)

    2014-06-01

    actuated liquid metal devices are demonstrated for reconfigurable electromagnetic fundamentals at GHz frequencies, including tunable dipole antennas ...Mazlouman, A. Mahanfar, C. Menon et al., “Mechanically Reconfigurable Antennas using Electro-active Polymers (EAPs),” 2011 Ieee International Symposium...on Antennas and Propagation (Apsursi), pp. 742-745, 2011. [3] B. Cumby, G. Hayes, M. Dickey et al., “ Reconfigurable liquid metal circuits by

  16. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  17. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  18. Development of a fast thermal response microfluidic system using liquid metal

    Science.gov (United States)

    Gao, Meng; Gui, Lin

    2016-07-01

    Room temperature liquid metal gallium alloy has been widely used in many micro-electromechanical systems applications, such as on-chip electrical microheaters, micro temperature sensors, micro pumps and so on. Injecting liquid metal into microchannels can provide a simple, rapid, low-cost but efficient way to integrate these elements in microfluidic chips with high accuracy. The liquid metal-filled microstructures can be designed in any shape and easily integrated into microfluidic chips. In this paper, an on-chip liquid metal-based thermal microfluidic system is proposed for quick temperature control at the microscale. The micro system utilizes just one microfluidic chip as a basic working platform, which has liquid metal-based on-chip heaters, temperature sensors and electroosmotic flow pumps. Under the comprehensive control of these elements, the micro system can quickly change the temperature of a target fluid in the microfluidic chip. These liquid metal-based on-chip elements are very helpful for the fabrication and miniaturization of the microfluidic chip. In this paper, deionized water is used to test the temperature control performance of the thermal microfluidic system. According to the experimental results, the micro system can efficiently control the temperature of water ranging from 28 °C to 90 °C. The thermal microfluidic system has great potential for use in many microfluidic applications, such as on-chip polymerase chain reaction, temperature gradient focusing, protein crystallization and chemical synthesis.

  19. Nonlinear plasmonics at high temperatures

    CERN Document Server

    Sivan, Yonatan

    2016-01-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on {\\em experimentally}-measured data for the metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution, and thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modelling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high temperature non...

  20. Nonlinear plasmonics at high temperatures

    Directory of Open Access Journals (Sweden)

    Sivan Yonatan

    2017-01-01

    Full Text Available We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  1. High-temperature beryllium embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, A.S. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Fabritsiev, S.A. [D.V. Efremov Scientific Research Institute, 189631 St. Petersburg (Russian Federation); Bagautdinov, R.M. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Goncharenko, Yu.D. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation)

    1996-10-01

    The neutron irradiation effect on the mechanical properties, swelling and fracture surface structure of various beryllium grades was studied in the BOR-60 reactor at 340 to 350 C up to a fluence of 7.2 x 10{sup 21} n/cm{sup 2}. At a mechanical testing temperature of 400 C there was observed a strong anisotropy of plastic beryllium deformation depending on the direction of sample cutting relative to the pressing direction. An increase of the testing temperature up to 700 C resulted in an abrupt embrittlement of all irradiated samples. In the most part of the surface structure the intercrystallite fracture along the grain boundaries was covered entirely with large pores, 1 to 4 {mu}m in size. It was suggested that the increased rate of pore formation along the grain boundaries resulted from a high-temperature embrittlement under irradiation. (orig.).

  2. Nonlinear plasmonics at high temperatures

    Science.gov (United States)

    Sivan, Yonatan; Chu, Shi-Wei

    2017-01-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  3. Faraday imaging at high temperatures

    Science.gov (United States)

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  4. Report on the research and development under a consignment from NEDO of high temperature carbon dioxide fixation and utilization technology for fiscal 1996; 1996 nendo Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku gyomu seika hokokusho. Nisanka tanso koon bunri kaishu sairiyo gijutsu kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the prevention of global warming, this R and D is aimed at separating/recovering high temperature CO2 from high temperature gas at 300degC or above and developing technology for effective use of the recovered CO2 as measures taken for reduction in CO2 emissions from the fixed emission sources. In this fiscal year, the following were proceeded with: heightening of separation performance evaluation technology, promotion of technical development of ceramic separation membranes and supports, and development of element technology of modular integration. In the examinational research on separation technology and system optimization, the following were conducted: survey of trends of the technical development, conceptual design of plant and prediction of process behavior, assessment of applicability of the process, and study of effects of utilization/spread of the developmental technology. In the former R and D, borosilicate glass powder rich in alkali is formed on the ring by joining the trially manufactured hollow fiber type membrane and the same form alumina cylinder, and sealing property and strength which stand measurement of permeability were confirmed. In the latter, an innovative process applied with CO2 high temperature separation technology was studied to examine effects of the spread of high temperature gas separation technology. 403 refs., 478 figs., 134 tabs.

  5. High temperature control rod assembly

    Energy Technology Data Exchange (ETDEWEB)

    Vollman, Russell E. (Solana Beach, CA)

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  6. A High Temperature Liquid Plasma Model of the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff’s law of thermal emission. Along these lines, the model also emphasizes that radiative emission is a surface phenomenon. Evidence that the Sun is a high density/high energy plasma is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.

  7. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  8. A Study on the Influence of the Nozzle Lead Angle on the Performance of Liquid Metal Electromagnetic Micro-Jetting

    Directory of Open Access Journals (Sweden)

    Zhiwei Luo

    2016-12-01

    Full Text Available To improve the jetting performance of liquid metals, an electromagnetic micro-jetting (EMJ valve that realizes drop-on-demand (DOD jetting while not involving any valve core or moving parts was designed. The influence of the lead angle of the nozzle on the jetting of liquid metal gallium (Ga was investigated. It was found that the Lorentz force component parallel to the nozzle that jets the electrified liquid Ga is always larger than its internal friction; thus, jet can be generated with any lead angle but with different kinetic energies. Experimental results show that the mass of the jetting liquid, the jetting distance, the initial velocity of the jet, and the resulting kinetic energy of the jet increase first and then decrease. When the lead angle is 90°, the mass of the jetting liquid and the kinetic energy are at their maximum. When the angle is 80°, the initial velocity achieves its maximum, with a calculated value of 0.042 m/s. Moreover, very close and comparatively high kinetic energies are obtained at 80° and 90°, indicating that angles in between this range can produce a preferable performance. This work provides an important theoretical basis for the design of the EMJ valve, and may promote the development and application of micro electromagnetic jetting technology.

  9. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  10. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  11. High-temperature thermocouples and related methods

    Science.gov (United States)

    Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.; Wilkins, S. Curt

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  12. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.

    Directory of Open Access Journals (Sweden)

    Yang Yu

    Full Text Available BACKGROUND: Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs. METHODS: Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. RESULTS: With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as -0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs were lit and emitted colorful lights. CONCLUSIONS: The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and

  13. Advances in liquid metal cooled ADS systems, and useful results for the design of IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Massaut, V.; Debruyn, D. [SCK CEN, Mol (Belgium); Decreton, M. [Ghent Univ., Dept. of Applied Physics (Belgium)

    2007-07-01

    Full text of publication follows: Liquid metal cooled Accelerator Driven Systems (ADS) have a lot of design commonalities with the design of IFMIF. The use of a powerful accelerator and a liquid metal spallation source makes it similar to the main features of the IFMIF irradiator. Developments in the field of liquid metal ADS can thus be very useful for the design phase of IFMIF, and synergy between both domains should be enhanced to avoid dubbing work already done. The liquid metal ADS facilities are developed for testing materials under high fast (> 1 MeV) neutron flux, and also for studying the transmutation of actinides as foreseen in the P and T (Partitioning and Transmutation) strategy of future fission industry. The ADS are mostly constituted of a sub-critical fission fuel assembly matrix, a spallation source (situated at the centre of the fuel arrangement) and a powerful accelerator targeting the spallation source. In liquid metal ADS, the spallation source is a liquid metal (like Pb-Bi) which is actively cooled to remove the power generated by the particle beam, spallation reactions and neutrons. Based on an advanced ADS design (e.g. the MYRRHA/XT-ADS facility), the paper shows the various topics which are common for both facilities (ADS and IFMIF) and highlights their respective specificities, leading to focused R and D activities. This would certainly cover the common aspects related to high power accelerators, liquid metal targets and beam-target coupling. But problems of safety, radioprotection, source heating and cooling, neutrons shielding, etc... lead also to common features and developments. Results already obtained for the ADS development will illustrate this synergy. This paper will therefore allow to take profit of recent developments in both fission and fusion programs and enhance the collaboration among the R and D teams in both domains. (authors)

  14. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    Science.gov (United States)

    Irshad, Wasim

    detail and have proved pivotal to this work. The second part of the dissertation focuses on the Liquid Metal Droplet RF-MEMS. A novel tunable RF MEMS resonator that is based upon electrostatic control over the morphology of a liquid metal droplet (LMD) is conceived. We demonstrate an LMD evanescent-mode cavity resonator that simultaneously achieves wide analog tuning from 12 to 18 GHz with a measured quality factor of 1400-1840. A droplet of 250-mum diameter is utilized and the applied bias is limited to 100 V. This device operates on a principle called Electro-Wetting On Dielectric (EWOD). The liquid metal employed is a non-toxic eutectic alloy of Gallium, Indium and Tin known as Galinstan. This device also exploits interfacial surface energy and viscous body forces that dominate at nanoliter scale. We then apply our Liquid Metal Droplet (LMD) RF-MEMS architecture to demonstrate a continuously tunable electrostatic Ku-Band Filter. A 2-pole bandpass filter with measured insertion loss of less than 0.4dB and 3dB FBW of 3.4% is achieved using a Galinstan droplet of 250mum diameter and bias limited to 100V. We demonstrate that the LMD is insensitive to gravity by performing inversion and tilt experiments. In addition, we study its thermal tolerance by subjecting the LMD up to 150° C. The third part of the dissertation is dedicated to the Micro-Corrugated Diaphragm (MCD) RF-MEMS. We present an evanescent-mode cavity bandpass filter with state-of-the-art RF performance metrics like 4:1 tuning ratio from 5 to 20 GHz with less than 2dB insertion loss and 2-6% 3dB bandwidth. Micro-Corrugated Diaphragm (MCD) is a novel electrostatic MEMS design specifically engineered to provide large-scale analog deflections necessary for such continuous and wide tunable filtering with very high quality factor. We demonstrate a 1.25mm radius and 2mum thick Gold MCD which provides 30mum total deflection with nearly 60% analog range. We also present a detailed and systematic MCD design

  15. High temperature power electronics for space

    Science.gov (United States)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  16. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  17. Graphite thermal expansion reference for high temperature

    Science.gov (United States)

    Gaal, P. S.

    1974-01-01

    The design requirements of the aerospace and high-temperature nuclear reactor industries necessitate reliable thermal expansion data for graphite and other carbonaceous materials. The feasibility of an acceptable reference for calibration of expansion measuring systems that operate in carbon-rich atmospheres at temperatures ranging to 2500 C is the prime subject of this work. Present-day graphite technology provides acceptable materials for stable, reproducible references, as reflected by some of the candidate materials. The repeatability for a single specimen in a given expansion measuring system was found to be plus or minus 1%, while the combined results of several tests made on a number of samples fell within a plus or minus 2.5% band.

  18. High temperature suppression of dioxins.

    Science.gov (United States)

    Zhan, Ming-Xiu; Chen, Tong; Fu, Jian-Ying; Lin, Xiao-Qing; Lu, Sheng-Yong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-03-01

    Combined Sulphur-Nitrogen inhibitors, such as sewage sludge decomposition gases (SDG), thiourea and amidosulphonic acid have been observed to suppress the de novo synthesis of dioxins effectively. In this study, the inhibition of PCDD/Fs formation from model fly ash was investigated at unusually high temperatures (650 °C and 850 °C), well above the usual range of de novo tests (250-400 °C). At 650 °C it was found that SDG evolving from dried sewage sludge could suppress the formation of 2,3,7,8-substituted PCDD/Fs with high efficiency (90%), both in weight units and in I-TEQ units. Additionally, at 850 °C, three kinds of sulphur-amine or sulphur-ammonium compounds were tested to inhibit dioxins formation during laboratory-scale tests, simulating municipal solid waste incineration. The suppression efficiencies of PCDD/Fs formed through homogeneous gas phase reactions were all above 85% when 3 wt. % of thiourea (98.7%), aminosulphonic acid (96.0%) or ammonium thiosulphate (87.3%) was added. Differences in the ratio of PCDFs/PCDDs, in weight average chlorination level and in the congener distribution of the 17 toxic PCDD/Fs indicated that the three inhibitors tested followed distinct suppression pathways, possibly in relation to their different functional groups of nitrogen. Furthermore, thiourea reduced the (weight) average chlorinated level. In addition, the thermal decomposition of TUA was studied by means of thermogravimetry-fourier transform infrared spectroscopy (TG-FTIR) and the presence of SO2, SO3, NH3 and nitriles (N≡C bonds) was shown in the decomposition gases; these gaseous inhibitors might be the primary dioxins suppressants.

  19. Assessment of high-temperature battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R K

    1989-02-01

    Three classes of high-temperature batteries are being developed internationally with transportation and stationary energy storage applications in mind: sodium/sulfur, lithium/metal sulfide, and sodium/metal chloride. Most attention is being given to the sodium/sulfur system. The Office of Energy Storage and Distribution (OESD) and the Office of Transportation Systems (OTS) of the US Department of Energy (DOE) are actively supporting the development of this battery system. It is anticipated that pilot-scale production facilities for sodium/sulfur batteries will be in operation in the next couple of years. The lithium/metal sulfide and the sodium/metal chloride systems are not receiving the same level of attention as the sodium/sulfur battery. Both of these systems are in an earlier stage of development than sodium/sulfur. OTS and OESD are supporting work on the lithium/iron sulfide battery in collaboration with the Electric Power Research Institute (EPRI); the work is being carried out at Argonne National Laboratory (ANL). The sodium/metal chloride battery, the newest member of the group, is being developed by a Consortium of South African and British companies. Very little DOE funds are presently allocated for research on this battery. The purpose of this assessment is to evaluate the present status of the three technologies and to identify for each technology a prioritized list of R and D issues. Finally, the assessment includes recommendations to DOE for a proposed high-temperature battery research and development program. 18 figs., 21 tabs.

  20. Performance Testing of a Liquid Metal Pump for In-Space Power Systems

    Science.gov (United States)

    Polzin, Kurt

    2011-01-01

    Fission surface power (FSP) systems could be used to provide power on the surface of the moon, Mars, or other planets and moons of our solar system. Fission power systems could provide excellent performance at any location, including those near the poles or other permanently shaded regions, and offer the capability to provide on demand power at any time, even at large distances from the sun. Fission-based systems also offer the potential for outposts, crew and science instruments to operate in a power-rich environment. NASA has been exploring technologies with the goal of reducing the cost and technical risk of employing FSP systems. A reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass anywhere on the lunar surface. The reference FSP system is also readily extensible for use on Mars, where it would be capable of operating through global dust storms and providing year-round power at any Martian latitude. Detailed development of the FSP concept and the reference mission are documented in various other reports. The development discussed in this paper prepares the way for testing of the Technology Demonstration Unit (TDU), which is a 10 kWe end-to-end test of FSP technologies intended to raise the entire FSP system to technology readiness level (TRL) 6. The Early Flight Fission Test Facility (EFF-TF) was established by NASA s Marshall Space Flight Center (MSFC) to provide a capability for performing hardware-directed activities to support multiple in-space nuclear reactor concepts by using a nonnuclear test methodology. This includes fabrication and testing at both the module/component level and at near prototypic reactor components and configurations allowing for realistic thermal-hydraulic evaluations of systems. The liquid-metal pump associated with the FSP system must be compatible with the liquid NaK coolant and have adequate performance to enable a viable flight system. Idaho National

  1. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high temperature superconductors to 2nd generation (2G) YBCO based high temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current limiting matrix.

  2. Probing High Temperature Superconductors with Magnetometry in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-07-26

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and on potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.

  3. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  4. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  5. High-entropy alloys as high-temperature thermoelectric materials

    Science.gov (United States)

    Shafeie, Samrand; Guo, Sheng; Hu, Qiang; Fahlquist, Henrik; Erhart, Paul; Palmqvist, Anders

    2015-11-01

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  6. A liquid metal-based structurally embedded vascular antenna: I. Concept and multiphysical modeling

    Science.gov (United States)

    Hartl, D. J.; Frank, G. J.; Huff, G. H.; Baur, J. W.

    2017-02-01

    This work proposes a new concept for a reconfigurable structurally embedded vascular antenna (SEVA). The work builds on ongoing research of structurally embedded microvascular systems in laminated structures for thermal transport and self-healing and on studies of non-toxic liquid metals for reconfigurable electronics. In the example design, liquid metal-filled channels in a laminated composite act as radiating elements for a high-power planar zig-zag wire log periodic dipole antenna. Flow of liquid metal through the channels is used to limit the temperature of the composite in which the antenna is embedded. A multiphysics engineering model of the transmitting antenna is formulated that couples the electromagnetic, fluid, thermal, and mechanical responses. In part 1 of this two-part work, it is shown that the liquid metal antenna is highly reconfigurable in terms of its electromagnetic response and that dissipated thermal energy generated during high power operation can be offset by the action of circulating or cyclically replacing the liquid metal such that heat is continuously removed from the system. In fact, the SEVA can potentially outperform traditional copper-based antennas in high-power operational configurations. The coupled engineering model is implemented in an automated framework and a design of experiment study is performed to quantify first-order design trade-offs in this multifunctional structure. More rigorous design optimization is addressed in part 2.

  7. Fabrication methods and applications of microstructured gallium based liquid metal alloys

    Science.gov (United States)

    Khondoker, M. A. H.; Sameoto, D.

    2016-09-01

    This review contains a comparative study of reported fabrication techniques of gallium based liquid metal alloys embedded in elastomers such as polydimethylsiloxane or other rubbers as well as the primary challenges associated with their use. The eutectic gallium-indium binary alloy (EGaIn) and gallium-indium-tin ternary alloy (galinstan) are the most common non-toxic liquid metals in use today. Due to their deformability, non-toxicity and superior electrical conductivity, these alloys have become very popular among researchers for flexible and reconfigurable electronics applications. All the available manufacturing techniques have been grouped into four major classes. Among them, casting by needle injection is the most widely used technique as it is capable of producing features as small as 150 nm width by high-pressure infiltration. One particular fabrication challenge with gallium based liquid metals is that an oxide skin is rapidly formed on the entire exposed surface. This oxide skin increases wettability on many surfaces, which is excellent for keeping patterned metal in position, but is a drawback in applications like reconfigurable circuits, where the position of liquid metal needs to be altered and controlled accurately. The major challenges involved in many applications of liquid metal alloys have also been discussed thoroughly in this article.

  8. Experimental investigation on coupling flows between liquid and liquid metal layers

    Science.gov (United States)

    Yano, Kanako; Tasaka, Yuji; Murai, Yuichi; Takeda, Yasushi; Yanagisawa, Takatoshi

    2008-11-01

    This study aims to clarify coupling of flows between liquid metal and other usual liquids, e.g. water or oil, in fluid dynamical systems. In past studies for two-layer Rayleigh-Bénard system where the immiscible two liquids are layered, two types of coupling were observed; these are called as ``mechanical coupling'' and ``thermal coupling.'' As a typical character of low Pr fluid, large-scale structure in the liquid metal layer has oscillating motion. In this study we investigate ``thermal coupling'' especially how the oscillation of cells in the liquid metal layer propagates to the upper liquid layer and vice versa by changing a ratio of the height of the layers and viscosity of the upper layer fluid. Visualization of the liquid metal motion was conducted by means of ultrasonic velocity profiling, and then the oscillating motion is expressed on the space-time velocity map. PIV measurement of the upper, transparent fluid layer shows the modulation of the convective motion due to the oscillation in the liquid metal layer. Point-wise measurement of temperature at several positions in the fluid layer represents the modulation quantitatively.

  9. Electrical stimulation towards melanoma therapy via liquid metal printed electronics on skin.

    Science.gov (United States)

    Li, Jun; Guo, Cangran; Wang, Zhongshuai; Gao, Kai; Shi, Xudong; Liu, Jing

    2016-12-01

    We proposed a method of using electrical stimulation for treatment of malignant melanoma through directly spray-printing liquid metal on skin as soft electrodes to deliver low intensity, intermediate frequency electric fields. With patterned conductive liquid metal components on mice skin and under assistance of a signal generator, a sine wave electrical power with voltage of 5 V and 300 kHz could be administrated on treating malignant melanoma tumor. The experiments demonstrated that tumor volume was significantly reduced compared with that of the control group. Under the designed parameters (signal: sine wave, signal amplitude Vpp: 5 V and Vpp: 4 V, frequency: 300 kHz) of Tumor treating fields (TTFields) with the sprayed liquid metal electrode, four mice tumor groups became diminishing after 1 week of treatment. The only device-related side effect as seen was a mild to moderate contact dermatitis underneath the field delivering electrodes. The SEM images and pathological analysis demonstrated the targeted treating behavior of the malignant melanoma tumor. Further, thermal infrared imaging experiments indicated that there occur no evident heating effects in the course of treatment. Besides, the liquid metal is easy to remove through medical alcohol. Tumor treating fields through liquid metal electrode could offer a safe, straightforward and effective treatment modality which evidently slows down tumor growth in vivo. These promising results also raised the possibility of applying spray-printing TTFields as an easy going physical way for future cancer therapy.

  10. Thermodynamics of High Temperature Plasmas

    Directory of Open Access Journals (Sweden)

    Ettore Minardi

    2009-03-01

    Full Text Available In this work we discuss how and to what extent the thermodynamic concepts and the thermodynamic formalism can be extended to the description of high temperature states of the plasma not necessarily associated with a Boltzmann distribution and with thermal equilibrium.The discussion is based on the “magnetic or electrostatic entropy concept”, an interpretative and predictive tool based on probability and information, defined in a suitably coarse-grained possibility space of all current density or of all electric charge density distributions under testable constraints, and whose variation properties are proven to be related under certain conditions to the equilibrium and the stability of the system. In the case of magnetic equilibrium the potentiality of the magnetic entropy concept is illustrated by comparing the predictions of the current density and pressure profiles with the observations in different tokamak machines and different tokamak regimes, as well as by showing how the equilibrium and the stability in devices as different as the reversed field pinch or the magnetic well are described by the variation properties of the same entropy functional applied to the different situations. In fact it emerges that the maximum of the entropy can be seen in these different cases as an optimization constraint for the minimum of the magnetic energy. The application of the entropy concept to the electrostatic processes shows in particular that the so-called reactive instabilities (non-dissipative, non-resonant instabilities with a marginal point admit a neighboring state with higher entropy and are therefore of special relevance from the point of view of the physical evolution of the system. In this case the thermodynamic formalism allows the introduction of the concept of “thermodynamic fluctuations” of the macroscopic charge density and provides a method for the calculation of the “thermodynamic” fluctuation levels both on the stable as

  11. Remote Inspection Techniques for Reactor Internals of Liquid Metal Reactor by using Ultrasonic Waveguide Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Kim, Seok Hun; Lee, Jae Han

    2006-02-15

    The primary components such as a reactor core, heat exchangers, pumps and internal structures of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection and continuous monitoring as major in-service inspection (ISI) methods of reactor internal structures. Reactor core and internal structures of LMR can not be visually examined due to an opaque liquid sodium. The under-sodium viewing and remote inspection techniques by using an ultrasonic wave should be applied for the in-service inspection of reactor internals. The remote inspection techniques using ultrasonic wave have been developed and applied for the visualization and ISI of reactor internals. The under sodium viewing technique has a limitation for the application of LMR due to the high temperature and irradiation environment. In this study, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium viewing and remote inspection. The Lamb wave propagation of a waveguide sensor has been analyzed and the zero-order antisymmetric A{sub 0} plate wave was selected as the application mode of the sensor. The A{sub 0} plate wave can be propagated in the dispersive low frequency range by using a liquid wedge clamped to the waveguide. A new technique is presented which is capable of steering the radiation beam angle of a waveguide sensor without a mechanical movement of the sensor assembly. The steering function of the ultrasonic radiation beam can be achieved by a frequency tuning method of the excitation pulse in the dispersive range of the A{sub 0} mode. The technique provides an opportunity to overcome the scanning limitation of a waveguide sensor. The beam steering function has been evaluated by an experimental verification. The ultrasonic C-scanning experiments are performed in water and the feasibility of the ultrasonic waveguide sensor has been verified. The various remote

  12. NASA space applications of high-temperature superconductors

    Science.gov (United States)

    Heinen, Vernon O.; Sokoloski, Martin M.; Aron, Paul R.; Bhasin, Kul B.

    1992-01-01

    The application of superconducting technology in space has been limited by the requirement of cooling to near liquid helium temperatures. The only means of attaining these temperatures has been with cryogenic fluids which severely limits mission lifetime. The development of materials with superconducting transition temperatures (T sub c) above 77 K has made superconducting technology more attractive and feasible for employment in aerospace systems. Potential applications of high-temperature superconducting technology in cryocoolers and remote sensing, communications, and power systems are discussed.

  13. NASA Space applications of high-temperature superconductors

    Science.gov (United States)

    Heinen, Vernon O.; Sokoloski, Martin M.; Aron, Paul R.; Bhasin, Kul B.; Wintucky, Edwin G.; Connolly, Denis J.

    1992-01-01

    The application of superconducting technology in space has been limited by the requirement of cooling to near liquid helium temperatures. The only means of obtaining these temperatures has been with cryogenic fluids which severely limit mission lifetime. The development of materials with superconducting transition temperatures above 77 K has made superconducting technology more attractive and feasible for employment in aerospace systems. Here, potential applications of high temperature superconducting technology in cryocoolers, remote sensing, communications, and power systems are discussed.

  14. Performance test of electromagnetic pump on heavy liquid metal in PREKY-I facility

    Science.gov (United States)

    li, X. L.; Ma, X. D.; Zhu, Z. Q.; Li, Y.; Lv, K. F.

    2016-05-01

    Pump is a key sub-system which drives the heavy liquid metal circulation in experimental loops. In the paper, the hydraulic and mechanical performances of an electromagnetic pump (EMP) were tested in the liquid metal test facility named PREKY-I. The test results showed that the EMP worked at good state when the working current was up to 170 ampere. In this condition, the flow rate was 5m3/h, and pressure head 7.5bar, when the outlet temperature was kept at 380°C during the test. The performance was close to the expected design parameters. The EMP had run continuously for 200 hours with stable performance. From the test results, the EMP could be used in KYLIN-II loop, which is the upgrade liquid metal test loop of PREKY-I.

  15. Characteristics of triboelectrification on dielectric surfaces contacted with a liquid metal in different gases

    Science.gov (United States)

    Chen, Jian; Tang, Wei; Lu, Cunxin; Xu, Liang; Yang, Zhiwei; Chen, Baodong; Jiang, Tao; Lin Wang, Zhong

    2017-05-01

    Triboelectric nanogenerators attract more and more research attention, for their high efficiency, low fabrication cost, and high flexibility. However, the mechanism about triboelectrification remains highly debated. In this work, we constructed a liquid-metal based triboelectric nanogenerator (LM-TENG) and investigated the influence of the gas atmosphere on the triboelectrification between the liquid metal and the dielectric materials, such as PTFE, Kapton, and Nylon. It was found that the dielectric materials were negatively charged on contact with the liquid metal in ambient air. But in the nitrogen conditions, the polarity of the charges was reversed. Oxygen was excluded, which is responsible for the polarity reversal in contact electrification. Based on X-ray photoelectron spectroscopy, energy-dispersive X-ray, and SKFM data, a possible mechanism was proposed.

  16. Assessment of Electromagnetic Stirrer Agitated Liquid Metal Flows by Dynamic Neutron Radiography

    Science.gov (United States)

    Ščepanskis, Mihails; Sarma, Mārtiņš; Vontobel, Peter; Trtik, Pavel; Thomsen, Knud; Jakovičs, Andris; Beinerts, Toms

    2017-04-01

    This paper presents qualitative and quantitative characterization of two-phase liquid metal flows agitated by the stirrer on rotating permanent magnets. The stirrer was designed to fulfill various eddy flows, which may have different rates of solid particle entrapment from the liquid surface and their homogenization. The flow was characterized by visualization of the tailored tracer particles by means of dynamic neutron radiography, an experimental method well suited for liquid metal flows due to low opacity of some metals for neutrons. The rather high temporal resolution of the image acquisition (32 Hz image acquisition rate) allows for the quantitative investigation of the flows up to 30 cm/s using neutron particle image velocimetry. In situ visualization of the two-phase liquid metal flow is also demonstrated.

  17. The mechanism of liquid metal jet formation in the cathode spot of vacuum arc discharge

    Science.gov (United States)

    Gashkov, M. A.; Zubarev, N. M.; Mesyats, G. A.; Uimanov, I. V.

    2016-08-01

    We have theoretically studied the dynamics of molten metal during crater formation in the cathode spot of vacuum arc discharge. At the initial stage, a liquid-metal ridge is formed around the crater. This process has been numerically simulated in the framework of the two-dimensional axisymmetric heat and mass transfer problem in the approximation of viscous incompressible liquid. At a more developed stage, the motion of liquid metal loses axial symmetry, which corresponds to a tendency toward jet formation. The development of azimuthal instabilities of the ridge is analyzed in terms of dispersion relations for surface waves. It is shown that maximum increments correspond to instability of the Rayleigh-Plateau type. Estimations of the time of formation of liquid metal jets and their probable number are obtained.

  18. Numerical Study on the Magnetohydrodynamics of a Liquid Metal Oscillatory Flow under Inductionless Approximation

    Directory of Open Access Journals (Sweden)

    Jose Amilcar Rizzo Sierra

    2017-01-01

    Full Text Available A harmonically-driven, incompressible, electrically conducting, and viscous liquid metal magnetohydrodynamic flow through a thin walled duct of rectangular cross section interacting with a uniform magnetic field traverse to its motion direction is numerically investigated. Chebyshev spectral collocation method is used to solve the Navier-Stokes equation under the inductionless approximation for the magnetic field in the gradient formulation for the electric field. Flow is considered fully developed in the direction perpendicular to the applied magnetic field and laminar in regime. Validation of numerical calculations respect to analytical calculations is established. Flow structure and key magnetohydrodynamic features regarding eventual alternating power generation application in a rectangular channel liquid metal magnetohydrodynamic generator setup are numerically inquired. Influence of pertinent parameters such as Hartmann number, oscillatory interaction parameter and wall conductance ratio on magnetohydrodynamic flow characteristics is illustrated. Particularly, it is found that in the side layer and its vicinity the emerging flow structures/patterns depend mainly on the Hartmann number and oscillatory interaction parameter ratio, while the situation for the Hartmann layer and its vicinity is less eventful. A similar feature has been discussed in the literature for the steady liquid metal flow case and served as rationale for developing the composite core-side-layer approximation to study the magnetohydrodynamics of liquid metal flows usable in direct power generation. In this study that approximation is not considered and the analysis is performed on liquid metal oscillatory (i., e., unsteady flows usable in alternating power generation. Conversely, in terms of prospective practical applicability the formulation developed and tested with these calculations admits the implementation of a load resistance and walls conductivity optimization

  19. Cost Effective Growth of High Temperature Piezoelectrics for Adaptive Flow Control Actuators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies, Inc. in collaboration with The Pennsylvania State University propose to develop new families of high temperature piezoelectric materials for...

  20. Experimental analysis of liquid-metal reactor scram rod kinematic characteristics

    Science.gov (United States)

    Konovalenko, F. D.; Kondrashov, S. I.

    2017-01-01

    This article represents the results of computational and experimental research of liquid-metal research reactor control rod kinematics. In this research liquid-metal coolant (sodium) was simulated by water. Investigation of control rod scram-mode movement duration and investigation of velocity of movable parts near the bump of damper are the purposes of this research. Also mathematic simulation of control rod movement in scram mode was performed. Computational results for some modes of water circulation comply with experimental results well. Results of this work will be used for tests of scram rod drive of above-named research reactor. It will significantly simplify the scram rod drive testing stand construction.

  1. Experimental facility for studying MHD effects in liquid metal cooled blankets

    Science.gov (United States)

    Reed, C. B.; Picologlou, B. F.; Dauzvardis, P. V.

    The capabilities of a facility, brought into service to collect data on magnetohydrodynamic (MHD) effects, pertinent to liquid metal cooled fusion reactor blankets, are presented. The facility, design to extend significantly the existing data base on liquid metal MHD, employs eutectic NaK as the working fluid in a room temperature closed loop. The instrumentation system is capable of collecting detailed data on pressure, voltage, and velocity distributions at any axial position within the base of a 2 Tesla conventional magnet. The axial magnetic field distribution can be uniform or varying with either rapid or slow spatial variations.

  2. Structure of Some 4f Rare Earth Liquid Metals - A Charged Hard Sphere Approach

    Institute of Scientific and Technical Information of China (English)

    P.B. Thakor; P.N. Gajjar; A.R. Jani

    2006-01-01

    A well-established pseodopotential is used to study the structure of some 4f rare earth liquid metals (Ce,Pr, Eu, Gd, Tb, and Yb). The structure factor S(q), pair distribution function g(r), interatomic distance r1, and coordination number n1 are calculated using Charged Hard Sphere (CHS) reference system. To introduce the exchange and correlation effects, the local field correction due to Sarkar et al. (S) is applied. The present investigation is successful in generating the structural information of Ce, Pr, Eu, Gd, Tb, and Yb 4f rare earth liquid metals.

  3. Transient behaviour of deposition of liquid metal droplets on a solid substrate

    Science.gov (United States)

    Chapuis, J.; Romero, E.; Soulié, F.; Bordreuil, C.; Fras, G.

    2016-10-01

    This paper investigates the mechanisms that contribute to the spreading of liquid metal macro-drop deposited during Stationary Pulsed Gas Metal Arc Welding on an initially cold solid workpiece. Surface tension and inertial effects take an important part in the behaviour of the liquid metal macro-drop, but in this configuration the influence of energetic effects can also be significant. The experimental results are discussed in the light of dimensional analysis in order to appreciate the influence of the process parameters and the physical mechanisms involved on the spreading of a macro-drop. A law is established to model forced non-isothermal spreading.

  4. Magnetic trap effect to restrict motion of self-powered tiny liquid metal motors

    Science.gov (United States)

    Tan, Si-Cong; Gui, Han; Yuan, Bin; Liu, Jing

    2015-08-01

    We reported a phenomenon that the magnetic field can make up a boundary to restrict motion of the aluminum powered liquid metal motor. For the droplet motors with diameter below 1 mm, such magnetic trap effect will be strong enough to bounce them off the boundary. We attributed the effect to the electromagnetic mechanism. Owing to the Lorentz force, the high magnetic field will break up the directional running of the motor. The more aluminum added in the metal droplet, the stronger the trap effect. This phenomenon suggests an important way to control behavior of the liquid metal motors.

  5. The Internal Pressure and Cohesive Energy Density of Liquid Metallic Elements

    Science.gov (United States)

    Marcus, Yizhak

    2017-02-01

    The internal pressures, P_{int}, of practically all the liquid metallic elements in the periodic table up to plutonium (except highly radioactive ones) at their melting points were calculated from data in the literature. They are compared with the respective cohesive energy densities, ced, obtained from the literature data too. The ratios P_{int}{/}ced for various liquids are ranked as follows: molten salts < polar/hydrogen-bonded molecular solvents ˜ liquid metals < room temperature ionic liquids < nonpolar molecular solvents, and the reverse of this list reflects the relative strengths of the mutual interactions of the particles constituting these liquids.

  6. Study of iron structure stability in high temperature molten lead-bismuth eutectic with oxygen injection using molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Arkundato, Artoto [Physics Department, Faculty of Mathematical and Natural Sciences, Jember University, Jl. Kalimantan 37 Jember (Indonesia); Su' ud, Zaki [Physics Department, Faculty of Mathematical and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung (Indonesia); Sudarko [Chemistry Department, Faculty of Mathematical and Natural Sciences, Jember University, Jl. Kalimantan 37 Jember (Indonesia); Shafii, Mohammad Ali [Physics Department, Faculty of Mathematical and Natural Sciences, Andalas University, Padang (Indonesia); Celino, Massimo [ENEA, CR Casaccia, Via Anguillarese 301, Rome (Italy)

    2014-09-30

    Corrosion of structural materials in high temperature molten lead-bismuth eutectic is a major problem for design of PbBi cooled reactor. One technique to inhibit corrosion process is to inject oxygen into coolant. In this paper we study and focus on a way of inhibiting the corrosion of iron using molecular dynamics method. For the simulation results we concluded that effective corrosion inhibition of iron may be achieved by injection 0.0532 wt% to 0.1156 wt% oxygen into liquid lead-bismuth. At this oxygen concentration the structure of iron material will be maintained at about 70% in bcc crystal structure during interaction with liquid metal.

  7. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  8. High Temperature Materials for Chemical Propulsion Applications

    Science.gov (United States)

    Elam, Sandra; Hickman, Robert; O'Dell, Scott

    2007-01-01

    Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.

  9. High-temperature protective coatings on superalloys

    Institute of Scientific and Technical Information of China (English)

    刘培生; 梁开明; 周宏余

    2002-01-01

    Protective coatings are essential for superalloys to serve as blades of gas turb ines at high temperatures, and they primarily include aluminide coating, MCrAlY overlay coating, thermal barrier coating and microcrystalline coating. In this paper, all these high-temperature coatings are reviewed as well as their preparing techniques. Based on the most application and the main failure way, the importance is then presented for further deepgoing study on the high-temperature oxidation law of aluminide coatings.

  10. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  11. Ultrasonic Sensors for High Temperature Applications

    Science.gov (United States)

    Tittmann, Bernhard; Aslan, Mustafa

    1999-05-01

    Many processes take place under conditions other than ambient, and chief among these is high temperature. Examples of high temperature industrial processes are resin transfer molding, molten metal infiltration and rheocasting of composite metals alloys. The interaction of waves with viscous fluids is an additional complication adding to an already complicated problem of operating a sensor at high temperature for extended periods of time. This report attempts to provide an insight into the current state of the art of sensor techniques for in-situ high temperature monitoring.

  12. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  13. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  14. Liquid Metal Infiltration Processing of Metallic Composites: A Critical Review

    Science.gov (United States)

    Sree Manu, K. M.; Ajay Raag, L.; Rajan, T. P. D.; Gupta, Manoj; Pai, B. C.

    2016-10-01

    Metal matrix composites (MMC) are one of the advanced materials widely used for aerospace, automotive, defense, and general engineering applications. MMC can be tailored to have superior properties such as enhanced high-temperature performance, high specific strength and stiffness, increased wear resistance, better thermal and mechanical fatigue, and creep resistance than those of unreinforced alloys. To fabricate such composites with ideal properties, the processing technique has to ensure high volume fraction of reinforcement incorporation, uniform distribution of the reinforcement, and acceptable adhesion between the matrix and the reinforcing phase without unwanted interfacial reactions which degrades the mechanical properties. A number of processing techniques such as stir casting/vortex method, powder metallurgy, infiltration, casting etc. have been developed to synthesize MMC employing a variety of alloy and the reinforcement's combinations. Among these, infiltration process is widely used for making MMC with high volume fraction of reinforcements and offers many more advantages compared to other conventional manufacturing processes. The present paper critically reviews the various infiltration techniques used for making the MMC, their process parameters, characteristics, and selected studies carried out worldwide and by authors on the development of metal ceramic composites by squeeze infiltration process.

  15. Korea advanced liquid metal reactor development - Development of measuring techniques of the sodium two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moo Hwan; Cha, Jae Eun [Pohang University of Science and Technology, Pohang (Korea)

    2000-04-01

    The technology which models and measures the behavior of bubble in liquid sodium is very important to insure the safety of the liquid metal reactor. In this research, we designed/ manufactured each part and loop of experimental facility for sodium two phase flow, and applied a few possible methods, measured characteristic of two phase flow such as bubbly flow. A air-water loop similar to sodium loop on each measuring condition was designed/manufactured. This air-water loop was utilized to acquire many informations which were necessary in designing the two phase flow of sodium and manufacturing experimental facility. Before the manufacture of a electromagnetic flow meter for sodium, the experiment using each electromagnetic flow mete was developed and the air-water loop was performed to understand flow characteristics. Experiments for observing the signal characteristics of flow were performed by flowing two phase mixture into the electromagnetic flow mete. From these experiments, the electromagnetic flow meter was designed and constructed by virtual electrode, its signal processing circuit and micro electro magnet. It was developed to be applicable to low conductivity fluid very successfully. By this experiment with the electromagnetic flow meter, we observed that the flow signal was very different according to void fraction in two phase flow and that probability density function which was made by statistical signal treatment is also different according to flow patterns. From this result, we confirmed that the electromagnetic flow meter could be used to understand the parameters of two phase flow of sodium. By this study, the experimental facility for two phase flow of sodium was constricted. Also the new electromagnetic flow meter was designed/manufactured, and experimental apparatus for two phase flow of air-water. Finally, this study will be a basic tool for measurement of two phase flow of sodium. As the fundamental technique for the applications of sodium at

  16. Lithium-antimony-lead liquid metal battery for grid-level energy storage

    Science.gov (United States)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J.; Boysen, Dane A.; Bradwell, David J.; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R.

    2014-10-01

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this finding

  17. Microstructure Evolution of Ti-47Al-2Cr-2Nb Alloy in the Liquid-Metal-Cooling (LMC) Directional-Solidification Process

    Institute of Scientific and Technical Information of China (English)

    XIAO Zhixia; ZHENG Lijing; WANG Lei; YANG Lili; ZHANG Hu

    2011-01-01

    The microstructure evolution of Ti-47Al-2Cr-2Nb alloy was investigated on liquid metal cooling type directional solidified apparatus at high temperature gradient. The analysis shows that it is solidified with primaryβ cells/dendrites, and then α phase is formed through peritectic reaction.Once the columnar grains grow into the steady state, the lameilar orientation inclined with the angle of 45° to the withdrawal direction is more favored than that with parallel to the withdrawal direction. In addition, α phase grain nucleates from β-interdendrite regions, and grows up to the dendritic trunk. If no other α grain hinders its growth, it would occupy the whole dendrite, or it would stop at the dendritic trunk for the weakened motivating drive in theβ dendritic core.

  18. High Temperature Thermoacoustic Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-07-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. Thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestic and office energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6 % and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  19. Angular resolved energy analysis of /sup 69/Ga/sup +/ions from a gallium liquid metal ion source

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, P.

    1987-11-01

    An analysis system has been designed and built to characterise liquid metal ion source beams. Both mass and angular resolved energy distribution measurements can be made, from which both FWHM energy spreads and energy deficits can be obtained. This paper briefly describes the system and presents and discusses the first off-axis results taken with a gallium liquid metal ion source.

  20. Investigation of hydrodynamics and heat transfer at liquid metal downflow in a rectangular duct in a coplanar magnetic field

    Science.gov (United States)

    Poddubnyi, I. I.; Razuvanov, N. G.

    2016-02-01

    Hydrodynamics and heat transfer in a liquid metal downflow in a rectangular duct with an aspect ratio of approximately 3/1 in a coplanar magnetic field (MF) are studied upon inhomogeneous (one-sided) heating of the duct. The flow in the heat-transfer duct of the cooling system of a liquid-metal blanket module of the tokamak-type thermonuclear reactor is modeled. Experiments were carried out at the mercury magnetohydrodynamic (MHD) test facility, which is a part of the MHD-complex of Moscow Power Engineering Institute-Joint Institute for High Temperatures of the Russian Academy of Sciences. A probe technique is used for measurements in the flow. The studies are performed within the following ranges of regime parameters: Reynolds numbers Re = 10000-55000, Hartmann numbers Ha = 0-800, and Grashof numbers Grq = 0-6 × 108. Averaged profiles of velocity, temperature, temperature fluctuations of the flow, and duct wall temperature are presented for two typical flow regimes. Detailed measurements are performed in the duct cross-section distant from the heating beginning in the region of homogeneous MF. MF leads to the turbulent transport suppression, owing to which the temperature on the heated wall increases. A considerable influence of the heat-gravitational counter-convection, the interaction of which with the external MF leads in some regimes to the appearance and development of instabilities in the laminarized flow, is revealed under the downflow conditions. Generation of large-scale secondary vortices with the axis parallel to the MF induction causes temperature fluctuations of the abnormal intensity that considerably exceeds the level of turbulent fluctuations. Such temperature fluctuations easily penetrate into the duct wall and can lead to the fatigue breakdown of thermonuclear reactor cooling paths. Ranges of unallowable regime parameters are determined and the boundary in coordinates Gr-Re is presented, where this effect is revealed or vanishes. The numerical

  1. GaBi alloy liquid metal ion source for microelectronics research.

    Science.gov (United States)

    Bischoff, L; Pilz, W; Ganetsos, Th; Forbes, R G; Akhmadaliev, Ch

    2007-09-01

    A GaBi alloy liquid metal ion source has been studied. From an analysis of the source mass spectra as a function of emission current, a mechanism is suggested for the production of single- and double-charged ions. There is good agreement with the results of Swanson's investigations of a pure Bi source.

  2. A liquid-metal filling system for pumped primary loop space reactors

    Science.gov (United States)

    Crandall, D. L.; Reed, W. C.

    Some concepts for the SP-100 space nuclear power reactor use liquid metal as the primary coolant in a pumped loop. Prior to filling ground engineering test articles or reactor systems, the liquid metal must be purified and circulated through the reactor primary system to remove contaminants. If not removed, these contaminants enhance corrosion and reduce reliability. A facility was designed and built to support Department of Energy Liquid Metal Fast Breeder Reactor tests conducted at the Idaho National Engineering Laboratory. This test program used liquid sodium to cool nuclear fuel in in-pile experiments; thus, a system was needed to store and purify sodium inventories and fill the experiment assemblies. This same system, with modifications and potential changeover to lithium or sodium-potassium (NaK), can be used in the Space Nuclear Power Reactor Program. This paper addresses the requirements, description, modifications, operation, and appropriateness of using this liquid-metal system to support the SP-100 space reactor program.

  3. Bellows-Type Accumulators for Liquid Metal Loops of Space Reactor Power Systems

    Science.gov (United States)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2006-01-01

    In many space nuclear power systems, the primary and/or secondary loops use liquid metal working fluids, and require accumulators to accommodate the change in the liquid metal volume and maintain sufficient subcooling to avoid boiling. This paper developed redundant and light-weight bellows-type accumulators with and without a mechanical spring, and compared the operating condition and mass of the accumulators for different types of liquid metal working fluids and operating temperatures: potassium, NaK-78, sodium and lithium loops of a total capacity of 50 liters and nominal operating temperatures of 840 K, 860 K, 950 K and 1340 K, respectively. The effects of using a mechanical spring and different structural materials on the design, operation and mass of the accumulators are also investigated. The structure materials considered include SS-316, Hastelloy-X, C-103 and Mo-14Re. The accumulator without a mechanical spring weighs 23 kg and 40 kg for a coolant subcooling of 50 K and 100 K, respectively, following a loss of the fill gas. The addition of a mechanical spring comes with a mass penalty, in favor of higher redundancy and maintaining a higher liquid metal subcooling.

  4. Investigation of the susceptibility of EUROFER97 in lead-lithium to liquid metal embrittlement (LME)

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, R.W. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium)], E-mail: rbosch@sckcen.be; Dyck, S. van; Al Mazouzi, A. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium)

    2007-10-15

    Liquid metal embrittlement (LME) is defined as the brittle fracture (loss of ductility) of usually ductile materials in the presence of a liquid metal. The sensitivity to LME is likely to increase with irradiation hardening as localised stresses can promote the aggressive action of a liquid metal. To investigate the mechanical response of irradiated materials in contact with a liquid metal, an instrumented hot cell has been developed. The testing machine installed inside allows mechanical testing of active materials in liquid lead lithium under well controlled chemistry conditions. Typical mechanical tests that can be carried out are slow strain rate tests (SSRT), constant load and rising load tests at temperatures from 150 deg. C to 500 deg. C. In this paper the first results of the SSRT tests with EUROFER97 in argon and lead-lithium at different temperatures with different strain rates will be presented. The SSRT test method has been chosen due to the accelerated nature of the test, i.e., during straining the oxide layer will be ruptured and wetting of the sample surface by the lead-lithium melt is promoted. The results collected up till now showed no sign of LME. Tests with longer pre-exposure times and tests with irradiated samples will be carried out in the next phase. A longer pre-exposure time can enhance wetting and so the susceptibility to LME. An increase of the yield stress due to irradiation can also enhance the susceptibility to LME.

  5. Formation and evolution mechanisms of large-clusters during rapid solidification process of liquid metal Al

    Institute of Scientific and Technical Information of China (English)

    LIU Rangsu; DONG Kejun; LIU Fengxiang; ZHENG Caixing; LIU Hairong; LI Jiyong

    2005-01-01

    A molecular dynamics simulation study has been performed for the formation and evolution characteristics of nano-clusters in a large-scale system consisting of 400000 atoms of liquid metal Al. The center-atom method combined with pair-bond analysis technique and cluster-type index method (CTIM) has been applied here to describe the structural configurations of various basic clusters. It is demonstrated that both the 1551 bond-type and the icosahedral cluster (12 0 12 0) constructed by 1551 bond-types are dominant among all the bond-types and cluster-types, respectively, in the system and play a critical role in the microstructure transitions of liquid metal Al. The nano-clusters (containing up to 150 atoms) are formed by the combination of some middle and small clusters with distinctly different sizes, through mutual competition by unceasing annex and evolution in a seesaw manner (in turn of obtaining and losing),which do not occur as the multi-shell structures accumulated with an atom as the center and the surrounding atoms are arranged according to a certain rule. This is the essential distinction of nano-cluster in liquid metal from those obtained by gaseous deposition, ionic spray methods, and so on. Though the nano-clusters differ from each other in shape and size, all of them possess protruding corners that could become the starting points of various dendrite structures in the solidification processes of liquid metals.

  6. Investigation of Liquid Metal Heat Exchanger Designs for Fission Surface Power

    Science.gov (United States)

    Dyson, Rodger W.; Penswick, Barry; Robbie, Malcolm; Geng, Steven M.

    2009-01-01

    Fission surface power is an option for future Moon and Mars surface missions. High power nuclear reactor heated Stirling convertors are an option to provide reliable power for long duration outpost operations. This report investigates various design approaches for the liquid metal to acceptor heat exchange and clarifies the details used in the analysis.

  7. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-2: Liquid Metal Fast Breeder Reactors.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical liquid metal fast breeder reactor (LMFBR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating the use with a simplified model. The heart of the module is…

  8. Instability of the Liquid Metal-Pattern Interface in the Lost Foam Casting of Aluminum Alloys

    Science.gov (United States)

    Griffiths, W. D.; Ainsworth, M. J.

    2016-06-01

    The nature of the liquid metal-pattern interface during mold filling in the Lost Foam casting of aluminum alloys was investigated using real-time X-ray radiography for both normal expanded polystyrene, and brominated polystyrene foam patterns. Filling the pattern under the action of gravity from above or below had little effect on properties, both cases resulting in a large scatter of tensile strength values, (quantified by their Weibull Modulus). Countergravity filling at different velocities demonstrated that the least scatter of tensile strength values (highest Weibull Modulus) was associated with the slowest filling, when a planar liquid metal-pattern interface occurred. Real-time X-ray radiography showed that the advancing liquid metal front became unstable above a certain critical velocity, leading to the entrainment of the degrading pattern material and associated defects. It has been suggested that the transition of the advancing liquid metal-pattern interface into an unstable regime may be a result of Saffman-Taylor Instability.

  9. Comparison of lithium and the eutectic lead lithium alloy, two candidate liquid metal breeder materials for self-cooled blankets

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S. [Kernforschungszentrum Karlsruhe GmbH (Germany); Mattas, R. [Argonne National Lab., IL (United States)

    1994-06-01

    Liquid metals are attractive candidates for both near-term and long-term fusion applications. The subjects of this comparison are the differences between the two candidate liquid metal breeder materials Li and LiPb for use in breeding blankets in the areas of neutronics, magnetohydrodynamics, tritium control, compatibility with structural materials, heat extraction system, safety, and required R&D program. Both candidates appear to be promising for use in self-cooled breeding blankets which have inherent simplicity with the liquid metal serving as both breeders and coolant. The remaining feasibility question for both breeder materials is the electrical insulation between liquid metal and duct walls. Different ceramic coatings are required for the two breeders, and their crucial issues, namely self-healing of insulator cracks and radiation induced electrical degradation are not yet demonstrated. Each liquid metal breeder has advantages and concerns associated with it, and further development is needed to resolve these concerns.

  10. High temperature superconducting fault current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  11. Ceramic fibres for high temperature insulation

    Energy Technology Data Exchange (ETDEWEB)

    Padgett, G.C.

    1986-03-01

    Traditionally, refractory linings for high temperature plant and furnaces have comprised either brick or some form of concrete. In recent years, energy conservation has encouraged the greater use of high temperature insulation which is also available in either brick or a lightweight concrete. As an alternative, insulation can also be achieved using fibrous products or fibres combining low heat transfer with low heat capacity.

  12. Neutronic assessment of liquid-metal cooled fast reactors using thorium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pilarski, Stevan [Electricite de France R et D, 1 Avenue du General de Gaulle, 92141 Clamart (France); Institut de Physique Nucleaire d' Orsay, 15 rue Georges Clemenceau 91406 Orsay (France)

    2009-06-15

    The long-term sustainability of atomic fission energy will require the development of new types of reactors, able to exceed the limits of the existing ones in terms of optimal use of natural resources, which clearly necessitates breeding of fissile material. In this context, fast reactors using uranium-plutonium fuel are the most mature solution from an industrial viewpoint. In addition to the obvious interest in terms of fuel resources, there is a major incentive to consider the use of the {sup 232}Th- {sup 233}U fuel cycle as an alternative to the traditional {sup 238}U-{sup 239}Pu cycle for fast reactors: it is an effective way of addressing the safety issue of the highly positive void reactivity effect, which is a well-known problem for liquid-metal cooled fast reactors of commercial size [1]. This work investigates the performance of liquid-metal cooled fast reactors in {sup 232}Th-{sup 233}U fuel cycle and draws a comparison with the traditional {sup 238}U-{sup 239}Pu cycle. Four coolants have been considered: Na, Pb, Mg(17%at.)-Pb and Li(17%at.)-Pb; a simulation of their use in cores ranging from 700 MWth to 3600 MWth has been performed in two-dimensional diffusion theory using the European system of codes ERANOS [2,3] developed at CEA. The performance parameters such as the breeding ratio have been computed for each concept, alongside safety-related parameters: the delayed neutron fraction, the cycle reactivity swing, the Doppler constant and other thermal feedbacks. More specifically, the issue of void reactivity is studied in detail using perturbation theory. These calculations are performed at equilibrium fuel composition and are complemented by the study of the initial fuel loading at start-up which is a mixture of {sup 232}Th-{sup 239}Pu. The isotopic composition of the fissile corresponds to the plutonium available from French reactors in 2035. The conclusions of this work are that near-zero to large negative void reactivity effects can be achieved in

  13. Thermophysical properties of simple liquid metals: A brief review of theory

    Science.gov (United States)

    Stroud, David

    1993-01-01

    In this paper, we review the current theory of the thermophysical properties of simple liquid metals. The emphasis is on thermodynamic properties, but we also briefly discuss the nonequilibrium properties of liquid metals. We begin by defining a 'simple liquid metal' as one in which the valence electrons interact only weakly with the ionic cores, so that the interaction can be treated by perturbation theory. We then write down the equilibrium Hamiltonian of a liquid metal as a sum of five terms: the bare ion-ion interaction, the electron-electron interaction, the bare electron-ion interaction, and the kinetic energies of electrons and ions. Since the electron-ion interaction can be treated by perturbation, the electronic part contributes in two ways to the Helmholtz free energy: it gives a density-dependent term which is independent of the arrangement of ions, and it acts to screen the ion-ion interaction, giving rise to effective ion-ion pair potentials which are density-dependent, in general. After sketching the form of a typical pair potential, we briefly enumerate some methods for calculating the ionic distribution function and hence the Helmholtz free energy of the liquid: monte Carlo simulations, molecular dynamics simulations, and thermodynamic perturbation theory. The final result is a general expression for the Helmholtz free energy of the liquid metal. It can be used to calculate a wide range of thermodynamic properties of simple metal liquids, which we enumerate. They include not only a range of thermodynamic coefficients of both metals and alloys, but also many aspects of the phase diagram, including freezing curves of pure elements and phase diagrams of liquid alloys (including liquidus and solidus curves). We briefly mention some key discoveries resulting from previous applications of this method, and point out that the same methods work for other materials not normally considered to be liquid metals (such as colloidal suspensions, in which the

  14. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology.

    Science.gov (United States)

    Zheng, Yun; Wang, Jianchen; Yu, Bo; Zhang, Wenqiang; Chen, Jing; Qiao, Jinli; Zhang, Jiujun

    2017-02-06

    High-temperature solid oxide electrolysis cells (SOECs) are advanced electrochemical energy storage and conversion devices with high conversion/energy efficiencies. They offer attractive high-temperature co-electrolysis routes that reduce extra CO2 emissions, enable large-scale energy storage/conversion and facilitate the integration of renewable energies into the electric grid. Exciting new research has focused on CO2 electrochemical activation/conversion through a co-electrolysis process based on the assumption that difficult C[double bond, length as m-dash]O double bonds can be activated effectively through this electrochemical method. Based on existing investigations, this paper puts forth a comprehensive overview of recent and past developments in co-electrolysis with SOECs for CO2 conversion and utilization. Here, we discuss in detail the approaches of CO2 conversion, the developmental history, the basic principles, the economic feasibility of CO2/H2O co-electrolysis, and the diverse range of fuel electrodes as well as oxygen electrode materials. SOEC performance measurements, characterization and simulations are classified and presented in this paper. SOEC cell and stack designs, fabrications and scale-ups are also summarized and described. In particular, insights into CO2 electrochemical conversions, solid oxide cell material behaviors and degradation mechanisms are highlighted to obtain a better understanding of the high temperature electrolysis process in SOECs. Proposed research directions are also outlined to provide guidelines for future research.

  15. Advanced sulfur control concepts in hot-gas desulfurization technology: Phase 2. Exploratory studies on the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A.; Huang, W.; White, J. [and others

    1997-07-01

    The topical report describes the results of Phase 2 research to determine the feasibility of the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents. Many of the contaminants present in coal emerge from the gasification process in the product gas. Much effort has gone into the development of high temperature metal oxide sorbents for removal of H{sub 2}S from coal gas. The oxides of zinc, iron, manganese, and others have been studied. In order for high temperature desulfurization to be economical it is necessary that the sorbents be regenerated to permit multicycle operation. Current methods of sorbent regeneration involve oxidation of the metal sulfide to reform the metal oxide and free the sulfur as SO{sub 2}. An alternate regeneration process in which the sulfur is liberated in elemental form is desired. Elemental sulfur, which is the typical feed to sulfuric acid plants, may be easily separated, stored, and transported. Although research to convert SO{sub 2} produced during sorbent regeneration to elemental sulfur is on-going, additional processing steps are required and the overall process will be more complex. Clearly, the direct production of elemental sulfur is preferred. Desulfurization utilizing a cerium oxide based sorbent is discussed.

  16. Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Howard A. [Princeton Univ., NJ (United States); Koel, Bruce E. [Princeton Univ., NJ (United States); Bernasek, Steven L. [Princeton Univ., NJ (United States); Carter, Emily A. [Princeton Univ., NJ (United States); Debenedetti, Pablo G. [Princeton Univ., NJ (United States); Panagiotopoulos, Athanassios Z. [Princeton Univ., NJ (United States)

    2017-06-23

    The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timely problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies

  17. High-Temperature Passive Power Electronics

    Science.gov (United States)

    1997-01-01

    In many future NASA missions - such as deep-space exploration, the National AeroSpace Plane, minisatellites, integrated engine electronics, and ion or arcjet thrusters - high-power electrical components and systems must operate reliably and efficiently in high-temperature environments. The high-temperature power electronics program at the NASA Lewis Research Center focuses on dielectric and insulating material research, the development and characterization of high-temperature components, and the integration of the developed components into a demonstrable 200 C power system - such as an inverter. NASA Lewis has developed high-temperature power components through collaborative efforts with the Air Force Wright Laboratory, Northrop Grumman, and the University of Wisconsin. Ceramic and film capacitors, molypermalloy powder inductors, and a coaxially wound transformer were designed, developed, and evaluated for high-temperature operation.

  18. Metallic Pb nanospheres in ultra-high temperature metamorphosed zircon from southern India

    Science.gov (United States)

    Whitehouse, M. J.; Kusiak, M. A.; Wirth, R.; Ravindra Kumar, G. R.

    2017-09-01

    A transmission electron microscope (TEM) study of Paleoproterozoic zircon that has experienced ultra-high temperature (UHT) metamorphism at ca. 570 Ma in the Kerala Khondalite Belt (KKB), southern India, documents the occurrence of metallic Pb nanospheres. These results permit comparison with a previous report from UHT zircon in Enderby Land, Antarctica, and allow further constraints to be placed on possible mechanisms for nanosphere formation. As in Enderby Land, the nanospheres in the KKB occur in non-metamict zircon, emphasising that radiogenic Pb redistribution can occur with only partial interconnectivity of radiation damaged zircon. In contrast, the nanospheres reported here are not closely associated with Si-rich glass inclusions, which is inconsistent with a silicate liquid-metal immiscibility model proposed in the earlier study. Formation of these Pb nanospheres effectively halts Pb-loss from zircon, even under extreme conditions, and can adversely affect geochronological interpretations due to decoupling of Pb from U.

  19. High-temperature superconducting current leads

    Science.gov (United States)

    Hull, J. R.

    1992-07-01

    The use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature is near commercial realization. The use of HTSs in this application has the potential to reduce refrigeration requirements and helium boiloff to values significantly lower than the theoretical best achievable with conventional leads. Considerable advantage is achieved by operating these leads with an intermediate temperature heat sink. The HTS part of the lead can be made from pressed and sintered powder. Powder-in-tube fabrication is also possible, however, the normal metal part of the lead acts as a thermal short and cannot provide much stabilization without increasing the refrigeration required. Lead stability favors designs with low current density. Such leads can be manufactured with today's technology, and lower refrigeration results from the same allowable burnout time. Higher current densities result in lower boiloff for the same lead length, but bumout times can be very short. In comparing experiment to theory, the density of helium vapor needs to be accounted for in calculating the expected boiloff. For very low-loss leads, two-dimensional heat transfer and the state of the dewar near the leads may play a dominant role in lead performance.

  20. High-temperature Gas Reactor (HTGR)

    Science.gov (United States)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  1. High temperature solar furnace: current applications and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Bjorndalen, N. [Dalhousie Univ., Faculty of Engineering, Halifax, NS (Canada)

    2003-02-15

    The high temperature solar furnace can offer great opportunities for the production of many types of products worldwide, but recent advances in this technology have been limited to metal reduction. The production of semiconductors, which are utilized to a great extent in the electronic industry, is a viable option for this technology that has been overlooked. Especially where sand and sunlight are plentiful (countries that surround the equator), silicon chips produced with a solar furnace can have great economical value. This paper describes current and potential solar furnace technologies. The components of the solar furnace are described, as well as metal reduction processes including zinc and aluminum production. The viability of silicon chip production is also examined. The possibilities for other product development using an extremely (up to 10,000 deg C) high temperature solar furnace are also discussed. Economically, the benefits of solar furnaces are great, with only high initial start-up costs and little operation costs. Metal reduction processes can also be enhanced with high temperature solar furnaces in that plugging problems are eliminated. By replacing conventional furnaces, such as blast and electric arc furnaces, with a high temperature solar furnace, CO{sub 2} emissions and energy consumption can be greatly reduced, which will bring in added dividends to the society. (Author)

  2. International workshop on measuring techniques for liquid metal flows (MTLM). Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, G.; Eckert, S. [eds.

    1999-11-01

    The international workshop on 'Measuring techniques in liquid metal flows' (MTLM workshop) was organised in frame of the Dresden 'Innovationskolleg Magnetofluiddynamik'. The subject of the MTLM workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of n0n-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available tomonitor and to control flow processes in real industrial facilities. The objectives of the MTLM workshop were to: Review of existing information on a available techniques and experiences about the use in liquid metal flows, initiate a discussion between developers and potential users with respect to the actual need of information about the flow structure as well as the capabilities of existing and developing measuring techniques. Explore opportunities for co-operative R and D projects to expedite new developments and results, to share expertise and resources. (orig.)

  3. Municipal Waste Disposal by High Temperature Smelting Technique

    Institute of Scientific and Technical Information of China (English)

    SHEN Zong-bin; ZHANG Chun-xia; ZHANG You-ping; LIU Kun

    2004-01-01

    Municipal waste disposal system by high temperature smelting has the following characteristics: ① The smelting temperature is as high as 1 700-1 800 ℃; ② The dioxin is hardly produced; ③ The secondary pollution can be avoided because of the absence of heavy metals in the flux; ④ The metals and flux after disposal can be reused for construction materials. If outdated, the idle or discarded medium and small blast furnaces can be reconstructed into a waste resource system with high temperature smelting technique, and it is possible to make full use of their existing functions to reduce the investment and exploit their social function of environmental protection. In addition, a new waste disposal system with high temperature smelting was designed based on the recycling municipal waste technology abroad.

  4. Boron Rich Solids Sensors, Ultra High Temperature Ceramics, Thermoelectrics, Armor

    CERN Document Server

    Orlovskaya, Nina

    2011-01-01

    The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: •boron-rich solids: science and technology; •synthesis and sintering strategies of boron rich solids; •microcantileve...

  5. Fluidic patch antenna based on liquid metal alloy/single-wall carbon-nanotubes operating at the S-band frequency

    Science.gov (United States)

    Aïssa, B.; Nedil, M.; Habib, M. A.; Haddad, E.; Jamroz, W.; Therriault, D.; Coulibaly, Y.; Rosei, F.

    2013-08-01

    This letter describes the fabrication and characterization of a fluidic patch antenna operating at the S-band frequency (4 GHz). The antenna prototype is composed of a nanocomposite material made by a liquid metal alloy (eutectic gallium indium) blended with single-wall carbon-nanotube (SWNTs). The nanocomposite is then enclosed in a polymeric substrate by employing the UV-assisted direct-writing technology. The fluidic antennas specimens feature excellent performances, in perfect agreement with simulations, showing an increase in the electrical conductivity and reflection coefficient with respect to the SWNTs concentration. The effect of the SWNTs on the long-term stability of antenna's mechanical properties is also demonstrated.

  6. High Temperature Structure Leak Before Break Assessment Guideline(V1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang-Gyu; Kim, Jong-Bum; Lee, Hyeong-Yeon; Joo, Young-Sang; Lee, Jae-Han

    2007-03-15

    This study describes the Leak Before Break(LBB) procedure applicable to the reactor structure of Liquid Metal Reactor(LMR) which is operated at a high temperature. The purpose of LBB in LMR is to assure the defence in depth safety. The technically advanced countries of LMR development, such as Japan, UK and France, have their own LBB evaluation code. Their procedures are investigated thoroughly and the draft edition of LBB assessment guideline for the high temperature LMR structures is proposed. The key issues are the defect initiation, the defect propagation and the fast rupture of structures under the fatigue loading or the creep-fatigue loading condition. Additionlly, the detectable defect length and crack opening evaluation for the leakage detection method are analyzed and included in this guideline. Additionally, the detectable defect length and the creep-fatigue defect growth with a circumferential through wall defect for a KALIMER-600 IHTS hot leg piping based on this high temperature LBB assessment guideline were evaluated.

  7. High Temperature Structure Leak Before Break Assessment Guideline(V1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang-Gyu; Kim, Jong-Bum; Lee, Hyeong-Yeon; Joo, Young-Sang; Lee, Jae-Han

    2007-03-15

    This study describes the Leak Before Break(LBB) procedure applicable to the reactor structure of Liquid Metal Reactor(LMR) which is operated at a high temperature. The purpose of LBB in LMR is to assure the defence in depth safety. The technically advanced countries of LMR development, such as Japan, UK and France, have their own LBB evaluation code. Their procedures are investigated thoroughly and the draft edition of LBB assessment guideline for the high temperature LMR structures is proposed. The key issues are the defect initiation, the defect propagation and the fast rupture of structures under the fatigue loading or the creep-fatigue loading condition. Additionlly, the detectable defect length and crack opening evaluation for the leakage detection method are analyzed and included in this guideline. Additionally, the detectable defect length and the creep-fatigue defect growth with a circumferential through wall defect for a KALIMER-600 IHTS hot leg piping based on this high temperature LBB assessment guideline were evaluated.

  8. Dimensionality of high temperature superconductivity in oxides

    Science.gov (United States)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  9. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  10. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 K) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  11. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  12. An Evaluation Report on the High Temperature Design of the KALIMER-600 Reactor Structures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Gyu; Lee, Jae Han

    2007-03-15

    This report is on the validity evaluation of high temperature structural design for the reactor structures and piping of the pool-type Liquid Metal Reactor, KALIMER-600 subjected to the high temperature thermal load condition. The structural concept of the Upper Internal Structure located above the core is analyzed and the adequate UIS conceptual design for KALIMER-600 is proposed. Also, the high temperature structural integrity of the thermal liner which is to protect the UIS bottom plate from the high frequency thermal fatigue damage was evaluated by the thermal stripping analysis. The high temperature structural design of the reactor internal structure by considering the reactor startup-shutdown cycle was carried out and the structural integrity of it for a normal operating condition as well as the transient condition of the primary pump trip accident was confirmed. Additionally the structure design of the reactor internal structural was changed to prevent the non-uniform deformation of the primary pump which is induced by the thermal expansion difference between the reactor head and the baffle plate. The arrangement of the IHTS piping system which is a part of the reactor system is carried out and the structural integrity and the accumulated deformation by considering the reactor startup-shutdown cycle of a normal operating condition were evaluated. The structural integrity and the accumulated deformation of the PDRC hot leg piping by considering the PDRC operating condition were evaluated. The validity of KALIMER-600 high temperature structural design is confirmed through this study, and it is clearly found that the methodology research to evaluate the structural integrity considering the reactor life time of 60 years ensured is necessary.

  13. An Evaluation Report on the High Temperature Design of the KALIMER-600 Reactor Structures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Gyu; Lee, Jae Han

    2007-03-15

    This report is on the validity evaluation of high temperature structural design for the reactor structures and piping of the pool-type Liquid Metal Reactor, KALIMER-600 subjected to the high temperature thermal load condition. The structural concept of the Upper Internal Structure located above the core is analyzed and the adequate UIS conceptual design for KALIMER-600 is proposed. Also, the high temperature structural integrity of the thermal liner which is to protect the UIS bottom plate from the high frequency thermal fatigue damage was evaluated by the thermal stripping analysis. The high temperature structural design of the reactor internal structure by considering the reactor startup-shutdown cycle was carried out and the structural integrity of it for a normal operating condition as well as the transient condition of the primary pump trip accident was confirmed. Additionally the structure design of the reactor internal structural was changed to prevent the non-uniform deformation of the primary pump which is induced by the thermal expansion difference between the reactor head and the baffle plate. The arrangement of the IHTS piping system which is a part of the reactor system is carried out and the structural integrity and the accumulated deformation by considering the reactor startup-shutdown cycle of a normal operating condition were evaluated. The structural integrity and the accumulated deformation of the PDRC hot leg piping by considering the PDRC operating condition were evaluated. The validity of KALIMER-600 high temperature structural design is confirmed through this study, and it is clearly found that the methodology research to evaluate the structural integrity considering the reactor life time of 60 years ensured is necessary.

  14. Integral Circulation Experiment: Thermal-hydraulic simulator of a heavy liquid metal reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tarantino, M., E-mail: mariano.tarantino@enea.it [ENEA UTIS, C.R. Brasimone, 40032 Camugnano, BO (Italy); Agostini, P.; Benamati, G.; Coccoluto, G.; Gaggini, P.; Labanti, V.; Venturi, G. [ENEA UTIS, C.R. Brasimone, 40032 Camugnano, BO (Italy); Class, A.; Liftin, K. [KIT, Forschungszentrum Karlsruhe, IKET, P.O. Box 3640, D-76021 Karlsruhe (Germany); Forgione, N. [Universita di Pisa, DIMNP, Via Diotisalvi 2, 56126 Pisa (Italy); Moreau, V. [CRS4, Loc. Piscina Manna, Edificio 1, 09010 Pula (Italy)

    2011-08-31

    In the frame of the IP-EUROTRANS (6th Framework Program EU), domain DEMETRA, ENEA was involved in the Work Package 4.5 'Large Scale Integral Test', devoted to characterize a relevant portion of a sub-critical ADS reactor block (core, internals, heat exchanger, cladding for fuel elements) in steady state, transient and accidental conditions. More in details ENEA assumed the commitment to perform an integral experiment aiming to reproduce the primary flow path of the 'European Transmutation Demonstrator (ETD)' pool-type nuclear reactor, cooled by Lead Bismuth Eutectics (LBE). This experimental activity, called 'Integral Circulation Experiment (ICE)', has been implemented merging the efforts of several research institutes, among which, besides ENEA, FZK, CRS4 and University of Pisa, allowing to design an appropriate test section to be installed in the CIRCE facility. The goal of the experiments is therefore to demonstrate the technological feasibility of a heavy liquid metal (HLM) nuclear system pool-type in a relevant scale (1 MW), investigating the related thermal-hydraulic behaviour (heat source and heat exchanger coupling, primary system and downcomer coupling, gas trapping into the main stream, thermal stratification in the pool, forced and mixed convection in rod bundle) under both steady state and transient conditions. Moreover the preliminary as well as the planned experiments aims to address performance and reliability tests of some prototypical components, such as heat source, heat exchanger, chemistry control system. The paper reports a detailed description of the experiment, the design performed for the test section and its main components as well as the preliminary experimental results carried out in the first experimental campaign run on the CIRCE pool, which consists of a full power steady state test. The preliminary experimental results carried out have demonstrate the proper design of the test section trough the

  15. Integral Circulation Experiment: Thermal-hydraulic simulator of a heavy liquid metal reactor

    Science.gov (United States)

    Tarantino, M.; Agostini, P.; Benamati, G.; Coccoluto, G.; Gaggini, P.; Labanti, V.; Venturi, G.; Class, A.; Liftin, K.; Forgione, N.; Moreau, V.

    2011-08-01

    In the frame of the IP-EUROTRANS (6th Framework Program EU), domain DEMETRA, ENEA was involved in the Work Package 4.5 " Large Scale Integral Test", devoted to characterize a relevant portion of a sub-critical ADS reactor block (core, internals, heat exchanger, cladding for fuel elements) in steady state, transient and accidental conditions. More in details ENEA assumed the commitment to perform an integral experiment aiming to reproduce the primary flow path of the " European Transmutation Demonstrator (ETD)" pool-type nuclear reactor, cooled by Lead Bismuth Eutectics (LBE). This experimental activity, called " Integral Circulation Experiment (ICE)", has been implemented merging the efforts of several research institutes, among which, besides ENEA, FZK, CRS4 and University of Pisa, allowing to design an appropriate test section to be installed in the CIRCE facility. The goal of the experiments is therefore to demonstrate the technological feasibility of a heavy liquid metal (HLM) nuclear system pool-type in a relevant scale (1 MW), investigating the related thermal-hydraulic behaviour (heat source and heat exchanger coupling, primary system and downcomer coupling, gas trapping into the main stream, thermal stratification in the pool, forced and mixed convection in rod bundle) under both steady state and transient conditions. Moreover the preliminary as well as the planned experiments aims to address performance and reliability tests of some prototypical components, such as heat source, heat exchanger, chemistry control system. The paper reports a detailed description of the experiment, the design performed for the test section and its main components as well as the preliminary experimental results carried out in the first experimental campaign run on the CIRCE pool, which consists of a full power steady state test. The preliminary experimental results carried out have demonstrate the proper design of the test section trough the experiment goals as well as the HLM

  16. Advances in High Temperature Materials for Additive Manufacturing

    Science.gov (United States)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  17. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  18. Research and Development Roadmaps for Liquid Metal Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-04-20

    The United States Department of Energy (DOE) commissioned the development of technology roadmaps for advanced (non-light water reactor) reactor concepts to help focus research and development funding over the next five years. The roadmaps show the research and development needed to support demonstration of an advanced (non-LWR) concept by the early 2030s, consistent with DOE’s Vision and Strategy for the Development and Deployment of Advanced Reactors. The intent is only to convey the technical steps that would be required to achieve such a goal; the means by which DOE will determine whether to invest in specific tasks will be treated separately. The starting point for the roadmaps is the Technical Readiness Assessment performed as part of an Advanced Test and Demonstration Reactor study released in 2016. The roadmaps were developed based upon a review of technical reports and vendor literature summarizing the technical maturity of each concept and the outstanding research and development needs. Critical path tasks for specific systems were highlighted on the basis of time and resources needed to complete the tasks and the importance of the system to the performance of the reactor concept. The roadmaps are generic, i.e. not specific to a particular vendor’s design but vendor design information may have been used as representative of the concept family. In the event that both near-term and more advanced versions of a concept are being developed, either a single roadmap with multiple branches or separate roadmaps for each version were developed. In each case, roadmaps point to a demonstration reactor (engineering or commercial) and show the activities that must be completed in parallel to support that demonstration in the 2030-2035 window. This report provides the roadmaps for two fast reactor concepts, the Sodium-cooled Fast Reactor (SFR) and the Lead-cooled Fast Reactor (LFR). The SFR technology is mature enough for commercial demonstration by the early 2030s

  19. High Temperature Rechargeable Battery Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop and proof the concept of a highly efficient, high temperature rechargeable battery for supporting...

  20. High Temperature Fiberoptic Thermal Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  1. High Temperature Self-Healing Metallic Composite

    Science.gov (United States)

    Kutelia, E. R.; Bakhtiyarov, S. I.; Tsurtsumia, O. O.; Bakhtiyarov, A. S.; Eristavi, B.

    2012-01-01

    This work presents the possibility to realize the self healing mechanisms for heterogeneous architectural metal/ceramic high temperature sandwich thermal barrier coating systems on the surfaces refractory metals by analogy of wound healing in the skin.

  2. High Temperature Capacitors for Venus Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High temperature power electronics have become a vital aspect of future designs for power converters in spacecraft, battle zone electric power, satellite power...

  3. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  4. Application Fields of High-Temperature Superconductors

    OpenAIRE

    Hott, Roland

    2003-01-01

    Potential application fields for cuprate high-temperature superconductors (HTS) and the status of respective projects are reviewed. The availability of a reliable and inexpensive cooling technique will be essential for a future broad acceptance of HTS applications.

  5. Measuring Moduli Of Elasticity At High Temperatures

    Science.gov (United States)

    Wolfenden, Alan

    1993-01-01

    Shorter, squatter specimens and higher frequencies used in ultrasonic measurement technique. Improved version of piezo-electric ultrasonic composite oscillator technique used to measure moduli of elasticity of solid materials at high temperatures.

  6. Alloys developed for high temperature applications

    Science.gov (United States)

    Basuki, Eddy Agus; Prajitno, Djoko Hadi; Muhammad, Fadhli

    2017-01-01

    Alloys used for high temperatures applications require combinations of mechanical strength, microstructural stability and corrosion/oxidation resistance. Nickel base superalloys have been traditionally the prime materials utilized for hot section components of aircraft turbine engines. Nevertheless, due to their limited melting temperatures, alloys based on intermetallic compounds, such as TiAl base alloys, have emerged as high temperature materials and intensively developed with the main aim to replace nickel based superalloys. For applications in steam power plants operated at lower temperatures, ferritic high temperature alloys still attract high attention, and therefore, development of these alloys is in progress. This paper highlights the important metallurgical parameters of high temperature alloys and describes few efforts in the development of Fe-Ni-Al based alloys containing B2-(Fe,Ni)Al precipitates, oxide dispersion strengthening (ODS) ferritic steels and titanium aluminide based alloys include important protection system of aluminide coatings.

  7. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    and oxygen with a new type of alkaline electrolysis cell at high temperatures and pressures. To perform measurements under high pressure and at elevated temperatures it was necessary to build a measurement system around an autoclave which could stand high temperatures up to 250 °C and pressures up to 200 bar...... as well as extremely caustic environments. Based on a literature study to identify resistant materials for these conditions, Inconel 600 was selected among the metals which are available for autoclave construction. An initial single atmosphere high temperature and pressure measurement setup was build...... comprising this autoclave. A second high temperature and pressure measurement setup was build based on experiences from the first setup in order to perform automatized measurements. The conductivity of aqueous KOH at elevated temperatures and high concentrations was investigated using the van der Pauw method...

  8. Lightweight, High-Temperature Radiator Panels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  9. High Temperature Solid State Lithium Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable energy systems with high energy density capable of operating at high temperatures, pressures and radiation levels are needed for certain NASA missions....

  10. Lightweight, High-Temperature Radiator Panels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  11. A Road Towards High Temperature Superconductors

    Science.gov (United States)

    2013-08-01

    AFRL-AFOSR-UK-TR-2013-0040 A Road Towards High Temperature Superconductors Guy Deutscher Tel Aviv University Research... Superconductors 5a. CONTRACT NUMBER FA8655-10-1-3011 5b. GRANT NUMBER Grant 10-3011 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...issue in trying to make useful high temperature superconductors is obviously to discover superconductivity at higher temperatures. But there is also

  12. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  13. PLA recycling by hydrolysis at high temperature

    Science.gov (United States)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari; Fausto, Gironi

    2016-05-01

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  14. Recent developments in high temperature organic polymers

    Science.gov (United States)

    Hergenrother, P. M.

    1991-01-01

    Developments in high temperature organic polymers during the last 5 years with major emphasis on polyimides and poly(arylene ether)s are discussed. Specific polymers or series of polymers have been selected to demonstrate unique properties or the effect chemical structure has upon certain properties. This article is not intended to be a comprehensive review of high temperature polymer advancements during the last 5 years.

  15. Development of high temperature capable piezoelectric sensors

    Science.gov (United States)

    Suprock, Andrew D.; Tittmann, Bernhard R.

    2017-02-01

    The objective of the project was to investigate the influence of the temperature effect on ultrasonic transducers based on a comparison of the effects of high temperature conditions versus those of high temperature and irradiation on the transducer system. There was also a preliminary move towards the establishment of the means for optimizing the bulk single crystal transducer fabrication process in order to achieve peak efficiency and maximum effectiveness in both irradiated and non-irradiated high temperature applications. Optimization of the material components within the transducer will greatly increase non-destructive testing abilities for industry, structural health monitoring. Here is presented a progress report on the testing of several different piezoelectric materials under high temperature conditions. The viability of aluminum nitride (AlN) as a transducer material in high temperature conditions has been previously explored [1] and has been further tested to ensure reliability. Bistmuth Titanate (BiT) has also been tested and has displayed excellent effectiveness for high temperature application.

  16. High Temperature Transducers for Online Monitoring of Microstructure Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Tittmann, Bernhard [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-03-30

    A critical technology gap exists relative to online condition monitoring (CM) of advanced nuclear plant components for damage accumulation; there are not capable sensors and infrastructure available for the high temperature environment. The sensory system, monitoring methodology, data acquisition, and damage characterization algorithm that comprise a CM system are investigated here. Thus this work supports the DOE mission to develop a fundamental understanding of advanced sensors to improve physical measurement accuracy and reduce uncertainty. The research involves a concept viability assessment, a detailed technology gap analysis, and a technology development roadmap.

  17. Steels in interaction with liquid metals: a review; L'influence des metaux liquides sur les aciers inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Auger, T. [ECP/MSSMAT, UMR CNRS 8579, Grande voie des vignes, 92290 Chatenay-Malabry, (France)

    2011-07-01

    Liquid metals are envisaged for various nuclear applications ranging from spallation neutron sources to future fission and fusion reactors. A fair amount of current research is dedicated to the investigation of the interaction of steels, the only structural materials compatible at long term with liquid metals such as the eutectic lead-bismuth or sodium. The aging problems for these materials are corrosion, wettability and liquid metal induced embrittlement. This review recalls some of the key factors in the understanding of these problems. (authors)

  18. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    Science.gov (United States)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for

  19. Design of high temperature irradiation materials inspection cells. (Spent fuel inspection cells) in the High Temperature Engineering Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ino, Hiroichi; Ueta, Shouhei; Suzuki, Hiroshi; Sawa, Kazuhiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tobita, Tsutomu [Nuclear Engineering Company, Ltd., Tokai, Ibaraki (Japan)

    2002-01-01

    This report summarizes design requirements and design results for shields, ventilation system and fuel handling devices for the high temperature irradiation materials inspection cells (spent fuel inspection cells). These cells are small cells to carry out few post-irradiation examinations of spent fuels, specimen, etc., which are irradiated in the High Temperature Engineering Test Reactor, since the cells should be built in limited space in the HTTR reactor building, the cells are designed considering relationship between the cells and the reactor building to utilize the limited space effectively. The cells consist of three partitioned hot cells with wall for neutron and gamma-ray shields, ventilation system including filtering units and fuel handling devices. The post-irradiation examinations of the fuels and materials are planed by using the cells and the Hot Laboratory of the Japan Materials Testing Reactor to establish the technology basis on high temperature gas-cooled reactors (HTGRs). In future, irradiation tests and post-irradiation examinations will be carried out with the cells to upgrade present HTGR technologies and to make the innovative basic research on high-temperature engineering. (author)

  20. Reference site selection report for the advanced liquid metal reactor at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sivill, R.L.

    1990-03-01

    This Reference Site Selection Report was prepared by EG G, Idaho Inc., for General Electric (GE) to provide information for use by the Department of Energy (DOE) in selecting a Safety Test Site for an Advanced Liquid Metal Reactor. Similar Evaluation studies are planned to be conducted at other potential DOE sites. The Power Reactor Innovative Small Module (PRISM) Concept was developed for ALMR by GE. A ALMR Safety Test is planned to be performed on a DOE site to demonstrate features and meet Nuclear Regulatory Commission Requirements. This study considered possible locations at the Idaho National Engineering Laboratory that met the ALMR Prototype Site Selection Methodology and Criteria. Four sites were identified, after further evaluation one site was eliminated. Each of the remaining three sites satisfied the criteria and was graded. The results were relatively close. Thus concluding that the Idaho National Engineering Laboratory is a suitable location for an Advanced Liquid Metal Reactor Safety Test. 23 refs., 13 figs., 9 tabs.

  1. Liquid metal MHD and heat transfer in a tokamak blanket slotted coolant channel

    Energy Technology Data Exchange (ETDEWEB)

    Reed, C.B.; Hua, T.Q.; Black, D.B. [Argonne National Lab., Chicago, IL (United States); Kirillov, I.R.; Sidorenkov, S.I.; Shapiro, A.M.; Evtushenko, I.A. [D. V. Efremov Scientific Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation). MHD-Machines Lab.

    1993-12-31

    A liquid metal MHD (Magnetohydrodynamic)/heat transfer test was conducted at the ALEX (Argonne Liquid Metal Experiment) facility of ANL (Argonne National Laboratory), jointly between ANL and NIIEFA (Efremov Institute). The test section was a rectangular slotted channel geometry (meaning the channel has a high aspect ratio, in this case 10:1, and the long side is parallel to the applied magnetic field). Isothermal and heat transfer data were collected. A heat flux of {approximately}9 W/cm{sup 2} was applied to the top horizontal surface (the long side) of the test section. Hartmann Numbers to 1050 (2 Tesla), interaction parameters to 9 {times} 10{sup 3}, Peclet numbers of 10--200, based on the half-width of the small dimension (7mm), and velocities of 1--75 cm/sec. were achieved. The working fluid was NaK (sodium potassium eutectic). All four interior walls were bare, 300-series stainless steel, conducting walls.

  2. MHD and heat transfer benchmark problems for liquid metal flow in rectangular ducts. Final paper

    Energy Technology Data Exchange (ETDEWEB)

    Sidorenkov, S.I. [D.V. Efremov Scientific Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Hua, T.Q. [Argonne National Lab., IL (United States); Araseki, Hideo [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1994-07-01

    Liquid metal cooling systems of a self-cooled blanket in a tokamak reactor will likely include channels of rectangular cross section where liquid metal is circulated in the presence of strong magnetic fields. MHD pressure drop, velocity distribution and heat transfer characteristics are important issues in the engineering design considerations. Computer codes for the reliable solution of three-dimensional MHD flow problems are needed for fusion relevant conditions. This paper describes four benchmark problems to validate magnetohydrodynamic (MHD) and heat transfer computer codes. The problems include rectangular duct geometry with uniform and nonuniform magnetic fields, with and without surface heat flux, and various rectangular cross sections. Two of the problems are based on experiments. Participants in this benchmarking activity come from three countries: The Russian Federation, The United States, and Japan. The solution methods to the problems are described. Results from the different computer codes are presented and compared.

  3. MHD and heat transfer benchmark problems for liquid metal flow in rectangular ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sidorenkov, S.I. [D.V. Efremov Scientific Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Hua, T.Q. [Argonne National Lab., IL (United States); Araseki, H. [Central Research Inst. of Electric Power Industry, Tokoyo (Japan)

    1994-12-31

    Liquid metal cooling systems of a self-cooled blanket in a tokamak reactor will likely include channels of rectangular cross section where liquid metal is circulated in the presence of strong magnetic fields. MHD pressure drop, velocity distribution and heat transfer characteristics are important issues in the engineering design considerations. Computer codes for the reliable solution of three-dimensional MHD flow problems are needed for fusion relevant conditions. Argonne National Laboratory and The Efremov Institute have jointly defined several benchmark problems for code validation. The problems, described in this paper, are based on two series of rectangular duct experiments conducted at ANL; one of the series is a joint ANL/Efremov experiment. The geometries consist of variation of aspect ratio and wall thickness (thus wall conductance ratio). The transverse magnetic fields are uniform and nonuniform in the axial direction.

  4. Liquid metal MHD and heat transfer in a tokamak blanket slotted coolant channel

    Science.gov (United States)

    Reed, C. B.; Hua, T. Q.; Black, D. B.; Kirillov, I. R.; Sidorenkov, S. I.; Shapiro, A. M.; Evtushenko, I. A.

    A liquid metal MHD (Magnetohydrodynamic)/heat transfer test was conducted at the ALEX (Argonne Liquid Metal Experiment) facility of ANL (Argonne National Laboratory), jointly between ANL and NIIEFA (Efremov Institute). The test section was a rectangular slotted channel geometry (meaning the channel has a high aspect ratio, in this case 10:1, and the long side is parallel to the applied magnetic field). Isothermal and heat transfer data were collected. A heat flux of approximately 9 W/sq cm was applied to the top horizontal surface (the long side) of the test section. Hartmann Numbers to 1050 (2 Tesla), interaction parameters to 9 x 10(exp 3), Peclet numbers of 10-200, based on the half-width of the small dimension (7 mm), and velocities of 1-75 cm/sec. were achieved. The working fluid was NaK (sodium potassium eutectic). All four interior walls were bare, 300-series stainless steel, conducting walls.

  5. Universal Scaling Law for Atomic Diffusion and Viscosity in Liquid Metals

    Institute of Scientific and Technical Information of China (English)

    LI Guang-Xu; LIU Chang-Song; ZHU Zhen-Gang

    2004-01-01

    @@ The recently proposed scaling law relating the diffusion coefficient and the excess entropy of liquid[Samanta A et al. 2004 Phys. Rev. Lett. 92 145901; Dzugutov M 1996 Nature 381 137], and a quasi-universal relationship between the transport coefficients and excess entropy of dense fluids [Rosenfeld Y 1977 Phys. Rev. A 15 2545],are tested for diverse liquid metals using molecular dynamics simulations. Interatomic potentials derived from the glue potential and second-moment approximation of tight-binding scheme are used to study liquid metals.Our simulation results give sound support to the above-mentioned universal scaling laws. Following Dzugutov,we have also reached a new universal scaling relationship between the viscosity coefficient and excess entropy. The simulation results suggest that the reduced transport coefficients can be expressed approximately in terms of the corresponding packing density.

  6. Mercury purification in the megawatt liquid metal spallation target of EURISOL-DS

    CERN Document Server

    Neuhausen, Joerg; Eller, Martin; Schumann, Dorothea; Eichler, Bernd; Horn, Susanne

    High power spallation targets are going to be used extensively in future research and technical facilities such as spallation neutron sources, neutrino factories, radioactive beam facilities or accelerator driven systems for the transmutation of long-lived nuclear waste. Within EURISOL-DS, a 4 MW liquid metal spallation target is designed to provide neutrons for a fission target, where neutron rich radionuclides will be produced. For the spallation target, mercury is planned to be used as target material. A large amount of radionuclides ranging from atomic number Z=1 to 81 will be produced in the liquid metal during long term irradiation. It is planned to remove those radionuclides by chemical or physicochemical methods to reduce its radioactivity. For the development of a purification procedure, knowledge about the chemical state of the different elements present in the mixture is required. We present a general concept of applicable separation techniques in a target system and show some results of experiment...

  7. Facilities, testing program and modeling needs for studying liquid metal magnetohydrodynamic flows in fusion blankets

    Energy Technology Data Exchange (ETDEWEB)

    Bühler, L., E-mail: leo.buehler@kit.edu [Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe (Germany); Mistrangelo, C.; Konys, J. [Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe (Germany); Bhattacharyay, R. [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Huang, Q. [Institute of Nuclear Energy Safety Technology (INEST), Chinese Academy of Sciences (CAS) (China); Obukhov, D. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA) (Russian Federation); Smolentsev, S. [University of California Los Angeles (UCLA) (United States); Utili, M. [ENEA C.R. Brasimone, Camugnano 40032 (Italy)

    2015-11-15

    Since many years, liquid metal flows for applications in fusion blankets have been investigated worldwide. A review is given about modeling requirements and existing experimental facilities for investigations of liquid metal related issues in blankets with the focus on magnetohydrodynamics (MHD). Most of the performed theoretical and experimental works were dedicated to fundamental aspects of MHD flows under very strong magnetic fields as they may occur in generic elements of fusion blankets like pipes, ducts, bends, expansions and contractions. Those experiments are required to progressively validate numerical tools with the purpose of obtaining codes capable to predict MHD flows at fusion relevant parameters in complex blanket geometries, taking into account electrical and thermal coupling between fluid and structural materials. Scaled mock-up experiments support the theoretical activities and help deriving engineering correlations for cases which cannot be calculated with required accuracy up to now.

  8. Vertical flow in the Thermoelectric Liquid Metal Plasma Facing Structures (TELS) facility at Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Fiflis, P., E-mail: fiflis1@illinois.edu [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Szott, M.; Kalathiparambil, K.; Jung, S.; Christenson, M.; Haehnlein, I.; Kapat, A. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Andruczyk, D. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); PPPL (United States); Curreli, D.; Ruzic, D.N. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States)

    2015-08-15

    Flowing liquid metal PFCs may offer a solution to the issues faced by solid divertor materials in tokamak plasmas. The Liquid–Metal Infused Trenches (LiMIT) concept of Illinois Ruzic et al. (2011) is a liquid metal plasma facing structure which employs thermoelectric magnetohydrodynamic (TEMHD) effects to self-propel lithium through a series of trenches. The combination of an incident heat flux and a magnetic field provide the driving mechanism. Tests have yielded experimental lithium velocities under different magnetic fields, which agree well with theoretical predictions Xu et al. (2013). The thermoelectric force is expected to overcome gravity and be able to drive lithium flow along an arbitrary direction and the strong surface tension of liquid lithium is believed to maintain the surface when Li flows in open trenches. This paper discusses the behavior of the LiMIT structure when inclined to an arbitrary angle with respect to the horizontal.

  9. Application of Proton Conductors to Hydrogen Monitoring for Liquid Metal and Molten Salt Systems

    Science.gov (United States)

    Kondo, Masatoshi; Muroga, Takeo; Katahira, Koji; Oshima, Tomoko

    The chemical control of impurity such as hydrogen and oxygen in coolants is one of the critical issues for the development of liquid metal cooled fast reactors and self-cooled liquid breeder blankets for fusion reactors. Especially, hydrogen (isotopes) level is the key parameter for corrosion and mechanical properties of the in-reactor components. For fission reactors, the monitor of hydrogen level in the melt is important for safety operation. The control of tritium is essential for the tritium breeding performance of the fusion reactors. Therefore, on-line hydrogen sensing is a key technology for these systems. In the present study, conceptual design for the on-line hydrogen sensor to be used in liquid sodium (Na), lead (Pb), lead-bismuth (Pb-Bi), lithium (Li), lead-lithium (Pb-17Li) and molten salt LiF-BeF2 (Flibe) was performed. The cell of hydrogen sensor is made of a solid electrolyte. The solid electrolyte proposed in this study is the CaZrO3-based ceramics, which is well-known as proton conducting ceramics. In this concept, the cell is immersed into the melt which is containing the hydrogen at the activity of PH1 of ambient atmosphere. Then, the cell is filled with Ar-H2 mixture gas at regulated hydrogen activity of PH2. The electromotive force (EMF) is obtained by the proton conduction in the electro chemical system expressed as Pt, Melt(PH1) | Proton conductor | PH2, Pt. The Nernst equation is used for the evaluation of the hydrogen activity from the obtained EMF. The evaluations of expected performance of the sensor in liquid Na, Pb, Pb-Bi, Pb-17Li, Li and Flibe were carried out by means of the measurement test in gas atmosphere at hydrogen activities equivalent to those for the melts in the reactor conditions. In the test, the hydrogen activity in the gas varied from 2.2x10-14 to 1. The sensor exhibited good response, stability and reproducibility.

  10. Lithium-antimony-lead liquid metal battery for grid-level energy storage.

    Science.gov (United States)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J; Boysen, Dane A; Bradwell, David J; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R

    2014-10-16

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this

  11. Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nornberg, M. D.; Ji, H.; Schartman, E.; Roach, A.; Goodman, J.

    2009-09-14

    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is marginally damped but will become destabilized by the magnetorotational instability with a modest increase in rotation rate.

  12. Transient Magnetohydrodynamic Liquid-Metal Flows in a Rectangular Channel with a Moving Conducting Wall

    Science.gov (United States)

    1988-05-01

    use of liquid metals for current collectors in homopolar motors and generators has led to the design of machines of superior performance. The steady...In some applications of homopolar generators it becomes necessary not only to start and stop the machines but also to operate them under oscillating...conditions. This could be the case in an application where a homopolar generator behaves as an extremely high energy capacitor. Therefore, one is

  13. MHD Effect of Liquid Metal Film Flows as Plasma-Facing Components

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiujie; XU Zengyu; PAN Chuanjie

    2008-01-01

    Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphasis on the film thickness variation and its surface stability. Three different MHD phenomena of film flow were observed in the experiment, namely, retardant, rivulet and flat film flow. From our experiment and numerical simulation it can be concluded that flat film flow is a good choice for plasma-facing components (PFCs)

  14. Analytic models of heterogenous magnetic fields for liquid metal flow simulations

    OpenAIRE

    Votyakov, E. V.; Kassinos, S. C.; Albets-Chico, X.

    2009-01-01

    A physically consistent approach is considered for defining an external magnetic field as needed in computational fluid dynamics problems involving magnetohydrodynamics (MHD). The approach results in simple analytical formulae that can be used in numerical studies where an inhomogeneous magnetic field influences a liquid metal flow. The resulting magnetic field is divergence and curl-free, and contains two components and parameters to vary. As an illustration, the following examples are consi...

  15. Fast Fabrication of Flexible Functional Circuits Based on Liquid Metal Dual-Trans Printing.

    Science.gov (United States)

    Wang, Qian; Yu, Yang; Yang, Jun; Liu, Jing

    2015-11-25

    A dual-trans method to print the first functional liquid-metal circuit layout on poly(vinyl chloride) film, and then transfer it into a poly(dimethylsiloxane) substrate through freeze phase transition processing for the fabrication of a flexible electronic device. A programmable soft electronic band and a temperature-sensing module wirelessly communicate with a mobile phone, demonstrating the efficiency and capability of the method.

  16. Laser flash method for measurement of liquid metals heat transfer coefficients

    Science.gov (United States)

    Stankus, S. V.; Savchenko, I. V.

    2009-12-01

    New laser flash technique for the measurement of heat transfer coefficients of liquid metals is presented. The thermal diffusivity of the liquid mercury has been studied experimentally over the room temperature range. The thermal conductivity coefficient has been calculated with the use of the reference data on density and heat capacity. Analysis of systematic errors of the measurements has shown that the data error is about 3%. Comparison of the obtained results with data available in publications has proved their reliability.

  17. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  18. Engine Oil Condition Monitoring Using High Temperature Integrated Ultrasonic Transducers

    OpenAIRE

    Jeff Bird; Cheng-Kuei Jen; Zhigang Sun; Pierre Sammut; Brian Galeote; Makiko Kobayashi; Kuo-Ting Wu; Nezih Mrad

    2011-01-01

    The present work contains two parts. In the first part, high temperature integrated ultrasonic transducers (IUTs) made of thick piezoelectric composite films, were coated directly onto lubricant oil supply and sump lines of a modified CF700 turbojet engine. These piezoelectric films were fabricated using a sol-gel spray technology. By operating these IUTs in transmission mode, the amplitude and velocity of transmitted ultrasonic waves across the flow channel of the lubricant oil in supply and...

  19. Gallium-rich Pd-Ga phases as supported liquid metal catalysts

    Science.gov (United States)

    Taccardi, N.; Grabau, M.; Debuschewitz, J.; Distaso, M.; Brandl, M.; Hock, R.; Maier, F.; Papp, C.; Erhard, J.; Neiss, C.; Peukert, W.; Görling, A.; Steinrück, H.-P.; Wasserscheid, P.

    2017-09-01

    A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.

  20. Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer.

    Science.gov (United States)

    Lu, Yue; Lin, Yiliang; Chen, Zhaowei; Hu, Quanyin; Liu, Yang; Yu, Shuangjiang; Gao, Wei; Dickey, Michael D; Gu, Zhen

    2017-04-12

    Effective endosomal escape remains as the "holy grail" for endocytosis-based intracellular drug delivery. To date, most of the endosomal escape strategies rely on small molecules, cationic polymers, or pore-forming proteins, which are often limited by the systemic toxicity and lack of specificity. We describe here a light-fueled liquid-metal transformer for effective endosomal escape-facilitated cargo delivery via a chemical-mechanical process. The nanoscale transformer can be prepared by a simple approach of sonicating a low-toxicity liquid-metal. When coated with graphene quantum dots (GQDs), the resulting nanospheres demonstrate the ability to absorb and convert photoenergy to drive the simultaneous phase separation and morphological transformation of the inner liquid-metal core. The morphological transformation from nanospheres to hollow nanorods with a remarkable change of aspect ratio can physically disrupt the endosomal membrane to promote endosomal escape of payloads. This metal-based nanotransformer equipped with GQDs provides a new strategy for facilitating effective endosomal escape to achieve spatiotemporally controlled drug delivery with enhanced efficacy.