WorldWideScience

Sample records for high-sensitivity ptr mass-spectrometer

  1. Eddy covariance emission and deposition flux measurements using proton transfer reaction – time of flight – mass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes

    NARCIS (Netherlands)

    Park, J.H.; Goldstein, A.H.; Timkovsky, J|info:eu-repo/dai/nl/330541676; Fares, S.; Weber, R.; Karlik, J.; Holzinger, R.|info:eu-repo/dai/nl/337989338

    2013-01-01

    During summer 2010, a proton transfer reaction – time of flight – mass spectrometer (PTR-TOF-MS) and a quadrupole proton transfer reaction mass spectrometer (PTR-MS) were deployed simultaneously for one month in an orange orchard in the Central Valley of California to collect continuous data

  2. Study of extraterrestrial material by means of a high sensitive mass spectrometer, 1

    International Nuclear Information System (INIS)

    Arai, O.; Kaneko, K.; Kobayashi, K.; Shimamura, T.

    1975-01-01

    In this report it is described about a high sensitive mass spectrometer for measurement of isotopic abundance of extraterrestrial material. Detecting isotopic anomalies in extraterrestrial matter induced by cosmic ray or solar wind irradiation, we can obtain many informations about interplanetary and/or intersteller space. For this purpose we reform the mass spectrometer of Low Energy Physics Division of INS to improve the sensitivity and the resolution. In section I--VI some improvements of the mass spectrometer (vacuum system, ion source, collector etc.) are described. In section VII--X newly developed ion counting system is discussed. (auth.)

  3. Instruction manual for ORNL tandem high abundance sensitivity mass spectrometer

    International Nuclear Information System (INIS)

    Smith, D.H.; McKown, H.S.; Chrisite, W.H.; Walker, R.L.; Carter, J.A.

    1976-06-01

    This manual describes the physical characteristics of the tandem mass spectrometer built by Oak Ridge National Laboratory for the International Atomic Energy Agency. Specific requirements met include ability to run small samples, high abundance sensitivity, good precision and accuracy, and adequate sample throughput. The instrument is capable of running uranium samples as small as 10 -12 g and has an abundance sensitivity in excess of 10 6 . Precision and accuracy are enhanced by a special sweep control circuit. Sample throughput is 6 to 12 samples per day. Operating instructions are also given

  4. Comparison of high sensitivity analytical methods (PTR-MS, MIMS, GC-O, SA) and application to food chemistry

    International Nuclear Information System (INIS)

    Boscaini, E.

    2002-10-01

    Application of PTR-MS to flavor analysis and the development of the membrane introduction proton-transfer-reaction-mass-spectrometry are the main topics of this thesis. The results of classical sensory analysis and of PTR-MS analysis are compared in defining flavor profiles of 7 different brands of mozzarella cheese. The PTR-MS mass spectra of the headspace of mozzarella held at 36 o C are compared to the judge panel flavor profile. Multivariate statistical data analysis shows that the two methods perform comparable sample discrimination. This shows that PTR-MS is a very promising method for the instrumental evaluation of the flavour sensory profile of food, opening new opportunities both in the control of quality and technological processes, as well as in the fundamental comprehension of the physiological processes of aroma perception. In the same chapter is also described a method for the identification of the masses of a mass spectra obtained with PTR-MS. Although the identification is always tentative, it might suggest which substances play an important role in the classification of different products. I.e. mass 45 and 47 associated to acetaldehyde and ethanol respectively reveal a higher fermentation activity in product B than G, as expected due to their manufacture processes. Gas Chromatography-Olfactometry (GC-O) and Proton Transfer Reaction-Mass Spectrometry (PTR-MS) techniques were used to define odor active and volatile profile of three grana cheeses: Grana Padano (GP), Parmigiano Reggiano (PR) and Grana Trentino (GT). Samples for GC-O analysis were prepared by dynamic headspace extraction while a direct analysis of the headspace formed over cheese was performed by PTR-MS. Major contribution to the odor profile was given by ethyl butanoate, 2-heptanone and ethyl hexanoate with fruity notes. High concentration of mass 45 tentatively identified with acetaldehyde was found by PTR-MS analysis. Low odor threshold compounds e.g. methional and 1-octen-3-one

  5. Analysis of high mass resolution PTR-TOF mass spectra from 1,3,5-trimethylbenzene (TMB) environmental chamber experiments

    Science.gov (United States)

    Müller, M.; Graus, M.; Wisthaler, A.; Hansel, A.; Metzger, A.; Dommen, J.; Baltensperger, U.

    2012-01-01

    A series of 1,3,5-trimethylbenzene (TMB) photo-oxidation experiments was performed in the 27-m3 Paul Scherrer Institute environmental chamber under various NOx conditions. A University of Innsbruck prototype high resolution Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOF) was used for measurements of gas and particulate phase organics. The gas phase mass spectrum displayed ~200 ion signals during the TMB photo-oxidation experiments. Molecular formulas CmHnNoOp were determined and ion signals were separated and grouped according to their C, O and N numbers. This allowed to determine the time evolution of the O:C ratio and of the average carbon oxidation state solid #000; color: #000;">OSC of the reaction mixture. Both quantities were compared with master chemical mechanism (MCMv3.1) simulations. The O:C ratio in the particle phase was about twice the O:C ratio in the gas phase. Average carbon oxidation states of secondary organic aerosol (SOA) samples solid #000; color: #000;">OSCSOA were in the range of -0.34 to -0.31, in agreement with expected average carbon oxidation states of fresh SOA (solid #000; color: #000;">OSC = -0.5-0).

  6. Formaldehyde measurements by Proton transfer reaction – Mass Spectrometry (PTR-MS: correction for humidity effects

    Directory of Open Access Journals (Sweden)

    A. Vlasenko

    2010-08-01

    Full Text Available Formaldehyde measurements can provide useful information about photochemical activity in ambient air, given that HCHO is formed via numerous oxidation processes. Proton transfer reaction mass spectrometry (PTR-MS is an online technique that allows measurement of VOCs at the sub-ppbv level with good time resolution. PTR-MS quantification of HCHO is hampered by the humidity dependence of the instrument sensitivity, with higher humidity leading to loss of PTR-MS signal. In this study we present an analytical, first principles approach to correct the PTR-MS HCHO signal according to the concentration of water vapor in sampled air. The results of the correction are validated by comparison of the PTR-MS results to those from a Hantzsch fluorescence monitor which does not have the same humidity dependence. Results are presented for an intercomparison made during a field campaign in rural Ontario at Environment Canada's Centre for Atmospheric Research Experiments.

  7. Easy method enhancing the sensitivity of a helium mass-spectrometer leak detector

    International Nuclear Information System (INIS)

    Firpo, G.; Pozzo, A.

    2004-01-01

    Commercial He mass spectrometer leak detectors usually do not provide sufficient sensitivity to perform accurate measurements of the permeation rate of He through glass. Ultrasensitive dedicated systems have adeguate sensitivity but involve high costs and complex procedures. However, both cryogenics and photomultiplier technology routinely demand this goal. Here, we propose a novel method to increase the sensitivity of commercial devices to easily measure accurate permeation rate. We modified a commercial leak detector by reducing the pumping speed at the inlet of the rotary pump, thus increasing its sensitivity by one order of magnitude. The modified detector was used to measure the leak rate of the permeation of He through the glass walls of a photomultiplier. Further improvements made to decrease the minimum detectable signal were limited by the high ultimate pressure in the spectrometer tube

  8. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  9. Explosives and chemical warfare agents - detection and analysis with PTR-MS

    Energy Technology Data Exchange (ETDEWEB)

    Sulzer, Philipp; Juerschik, Simone; Jaksch, Stefan; Jordan, Alfons; Hanel, Gernot; Hartungen, Eugen; Seehauser, Hans; Maerk, Lukas; Haidacher, Stefan; Schottkowsky, Ralf [IONICON Analytik GmbH, Innsbruck (Austria); Petersson, Fredrik [Institut fuer Ionenphysik und Angewandte Physik, Leopold-Franzens Universitaet Innsbruck (Austria); Maerk, Tilmann [IONICON Analytik GmbH, Innsbruck (Austria); Institut fuer Ionenphysik und Angewandte Physik, Leopold-Franzens Universitaet Innsbruck (Austria)

    2010-07-01

    We utilized a recently developed high sensitivity PTR-MS instrument equipped with a high resolution time-of-flight mass analyzer for detailed investigations on explosives and chemical warfare agents (CWAs). We show that with this so called PTR-TOF 8000 it is possible to identify solid explosives (RDX, TNT, HMX, PETN and Semtex A) by analyzing the headspace above small quantities of samples at room temperature and from trace quantities not visible to the naked eye placed on surfaces. As the mentioned solid explosives possess very low vapor pressures, the main challenge for detecting them in the gas phase is to provide an instrument with a sufficient sensitivity. CWAs on the other side have very high vapor pressures but are difficult to identify unambiguously as their nominal molecular masses are usually comparably small and therefore hard to distinguish from harmless everyday-compounds (e.g. mustard gas: 159 g/mol). In the present work we demonstrate that we can detect a broad range of dangerous substances, ranging from the CWA mustard gas to the explosive HMX.

  10. Development and deployment of a compact PTR-ToF-MS for Suborbital Research on the Earth's Atmospheric Composition

    Science.gov (United States)

    Müller, Markus; Mikoviny, Tomas; Haidacher, Stefan; Hanel, Gernot; Hartungen, Eugen; Jordan, Alfons; Märk, Lukas; Mutschlechner, Paul; Schottkowsky, Ralf; Sulzer, Philipp; Crawford, James H.; Wisthaler, Armin

    2014-05-01

    We report the development of a compact Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) in support of NASA's suborbital research program on the Earth's atmospheric composition. A lightweight, low mass resolution orthogonal acceleration ToF-MS was developed and combined with a conventional PTR ion source to measure volatile organic compounds (VOCs) in real time. The instrument was specially designed to resist aircraft vibrations and rough conditions during boundary layer flights, take-off and landing. The compact PTR-ToF-MS generates full mass spectral information at 1-second time resolution and below. With sensitivities of up to 150 cps/ppbv, typical 2σ detection limits in the range from 0.06 to 0.48 ppbv for a 1-second signal integration are achieved. A mass resolving power m/Δm of up to 1700 combined with an absolute mass accuracy and reproducibility of less than 3 mDa make it possible to distinguish isobaric ions at high time resolution, e.g. humidity- dependent isobaric background ions. The prototype instrument was successfully deployed for in-situ measurements of VOCs onboard the NASA P-3B Airborne Science Laboratory during two DISCOVER-AQ campaigns in the San Joaquin Valley, CA, and in Houston, TX, 2013. A 1-second time resolution results in a horizontal spatial resolution of typically 110 m and a vertical spatial resolution of typically 8 m which allowed for the quantitative detection of the entire suite of VOCs in strongly localized emission plumes from industrial, agricultural and biomass-burning sources. This work was funded by BMVIT / FFG-ALR in the frame of the Austrian Space Application Programme (ASAP 8, project 833451). Additional resources were provided through NASA's Earth Venture program (EV-1) and the NASA Postdoctoral Program (NPP).

  11. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Andersen, Thomas; Jensen, Robert; Christensen, M. K.

    2012-01-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal...

  12. A high precision mass spectrometer for hydrogen isotopic analysis of water samples

    International Nuclear Information System (INIS)

    Murthy, M.S.; Prahallada Rao, B.S.; Handu, V.K.; Satam, J.V.

    1979-01-01

    A high precision mass spectrometer with two ion collector assemblies and direct on line reduction facility (with uranium at 700 0 C) for water samples for hydrogen isotopic analysis has been designed and developed. The ion source particularly gives high sensitivity and at the same tike limits the H 3 + ions to a minimum. A digital ratiometer with a H 2 + compensator has also been developed. The overall precision obtained on the spectrometer is 0.07% 2sub(sigmasub(10)) value. Typical results on the performance of the spectrometer, which is working since a year and a half are given. Possible methods of extending the ranges of concentration the spectrometer can handle, both on lower and higher sides are discussed. Problems of memory between samples are briefly listed. A multiple inlet system to overcome these problems is suggested. This will also enable faster analysis when samples of highly varying concentrations are to be analyzed. A few probable areas in which the spectrometer will be shortly put to use are given. (auth.)

  13. Airborne Deployment of a High Resolution PTR-ToF-MS to Characterize Non-methane Organic Gases in Wildfire Smoke: A Pilot Study During WE-CAN Test Flights

    Science.gov (United States)

    Permar, W.; Hu, L.; Fischer, E. V.

    2017-12-01

    Despite being the second largest primary source of tropospheric volatile organic compounds (VOCs), biomass burning is poorly understood relative to other sources due in part to its large variability and the difficulty inherent to sampling smoke. In light of this, several field campaigns are planned to better characterize wildfire plume emissions and chemistry through airborne sampling of smoke plumes. As part of this effort, we will deploy a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) on the NSF/NCAR C-130 research aircraft during the collaborative Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) mission. PTR-ToF-MS is well suited for airborne measurements of VOC in wildfire smoke plumes due to its ability to collect real time, high-resolution data for the full mass range of ionizable organic species, many of which remain uncharacterized or unidentified. In this work, we will report on our initial measurements from the WE-CAN test flights in September 2017. We will also discuss challenges associated with deploying the instrument for airborne missions targeting wildfire smoke and goals for further study in WE-CAN 2018.

  14. Engineering Sensitivity Improvement of Helium Mass Spectrometer Leak Detection System by Means Global Hard Vacuum Test

    International Nuclear Information System (INIS)

    Sigit Asmara Santa

    2006-01-01

    The engineering sensitivity improvement of Helium mass spectrometer leak detection using global hard vacuum test configuration has been done. The purpose of this work is to enhance the sensitivity of the current leak detection of pressurized method (sniffer method) with the sensitivity of 10 -3 ∼ 10 -5 std cm 3 /s, to the global hard vacuum test configuration method which can be achieved of up to 10 -8 std cm 3 /s. The goal of this research and development is to obtain a Helium leak test configuration which is suitable and can be used as routine bases in the quality control tests of FPM capsule and AgInCd safety control rod products. The result is an additional instrumented vacuum tube connected with conventional Helium mass spectrometer. The pressure and temperature of the test object during the leak measurement are simulated by means of a 4.1 kW capacity heater and Helium injection to test object, respectively. The addition of auxiliary mechanical vacuum pump of 2.4 l/s pumping speed which is directly connected to the vacuum tube, will reduce 86 % of evacuation time. The reduction of the measured sensitivity due to the auxiliary mechanical vacuum pump can be overcome by shutting off the pump soon after Helium mass spectrometer reaches its operating pressure condition. (author)

  15. Advanced mass spectrometers for hydrogen-isotope analyses

    International Nuclear Information System (INIS)

    Chastagner, P.; Daves, H.L.; Hess, W.B.

    1982-01-01

    Two advanced mass spectrometers for the accurate analysis of mixtures of the hydrogen isotopes were evaluated by Du Pont personnel at the Savannah River Laboratory. One is a large double-focusing instrument with a resolution of 2000 at mass 4 and an abundance sensitivity of >100,000 for the HT-D 2 doublet. The second is a smaller, simpler, stigmatic focusing instrument with exceptionally high ion intensities (>1 x 10 - 9 A at 600 resolution and about 1 x 10 - 10 A at 1300 resolution) for high signal-to-noise ratios. Both instruments are computer controlled. Once a scan is started, peak switching, scanning, mass discrimination control, data collection, and data reduction are done without operator intervention. Utility routines control hysteresis effects and instrument calibration. A containment facility, with dual inlet systems and a standard distribution system, permits testing with tritium mixtures. Helium flow standards and tritium activity meters provide independent verification of the mass spectrometer calibrations. A recovery system prevents the release of tritium to the environment. The performance of the mass spectrometers was essentially equal under simulated process control conditions. Precision and accuracy for the D/T ratio was <0.5% (rel 2sigma limits). Performance factors were: sample equilibration <300 ppM; linearity within +-0.3%; and gas interference <0.1%. Mass discrimination was controlled reliably by the computers

  16. Comparison of aromatic hydrocarbon measurements made by PTR-MS, DOAS and GC-FID during the MCMA 2003 Field Experiment

    Directory of Open Access Journals (Sweden)

    B. T. Jobson

    2010-02-01

    Full Text Available A comparison of aromatic hydrocarbon measurements is reported for the CENICA supersite in the district of Iztapalapa during the Mexico City Metropolitan Area field experiment in April 2003 (MCMA 2003. Data from three different measurement methods were compared: a Proton Transfer Reaction Mass Spectrometer (PTR-MS, long path measurements using a UV Differential Optical Absorption Spectrometer (DOAS, and Gas Chromatography-Flame Ionization analysis (GC-FID of canister samples. The principle focus was on the comparison between PTR-MS and DOAS data. Lab tests established that the PTR-MS and DOAS calibrations were consistent for a suite of aromatic compounds including benzene, toluene, p-xylene, ethylbenzene, 1,2,4-trimethylbenzene, phenol and styrene. The point sampling measurements by the PTR-MS and GC-FID showed good correlations (r=0.6, and were in reasonable agreement for toluene, C2-alkylbenzenes and C3-alkylbenzenes. The PTR-MS benzene data were consistently high, indicating interference from ethylbenzene fragmentation for the 145 Td drift field intensity used in the experiment. Correlations between the open-path data measured at 16-m height over a 860-m path length (retroreflector in 430 m distance, and the point measurements collected at 37-m sampling height were best for benzene (r=0.61, and reasonably good for toluene, C2-alkylbenzenes, naphthalene, styrene, cresols and phenol (r>0.5. There was good agreement between DOAS and PTR-MS measurements of benzene after correction for the PTR-MS ethylbenzene interference. Mixing ratios measured by DOAS were on average a factor of 1.7 times greater than the PTR-MS data for toluene, C2-alkylbenzenes, naphthalene and styrene. The level of agreement for the toluene data displayed a modest dependence on wind direction, establishing that spatial gradients – horizontal, vertical, or both – in toluene mixing ratios were significant, and

  17. Comparison of Aromatic Hydrocarbon Measurements made by PTR-MS, DOAS and GC-FID during the MCMA 2003 Field Experiment

    International Nuclear Information System (INIS)

    Jobson, Bertram T.; Volkamer, Rainer M.; Velasco, E.; Allwine, Gene; Westberg, Halvor H.; Lamb, Brian K.; Alexander, M.L.; Berkowitz, Carl M.; Molina, Luisa T.

    2010-01-01

    A comparison of aromatic hydrocarbon measurements is reported for the CENICA upersite in the district of Iztapalapa during the Mexico City Metropolitan Area field experiment in April 2003 (MCMA 2003). Data from three different measurement methods were compared: a Proton Transfer Reaction Mass Spectrometer (PTR-MS), long path measurements using a UV Differential Optical Absorption Spectrometer (DOAS), and Gas Chromatography-Flame Ionization analysis (GC-FID) of canister samples. The principle focus was on the comparison between PTR-MS and DOAS data. Lab tests established that the PTR-MS and DOAS calibrations were consistent for a suite of aromatic compounds including benzene, toluene, p-xylene, ethylbenzene, 1,2,4-trimethylbenzene, phenol and styrene. The point sampling measurements by the PTR-MS and GC-FID showed good correlations (r=0.6), and were in reasonable agreement for toluene, C 2 -alkylbenzenes and C3-alkylbenzenes. The PTR-MS benzene data were consistently high, indicating interference from ethylbenzene fragmentation for the 145 Td drift field intensity used in the experiment. Correlations between the open-path data measured at 16-m height over a 860-m path length (retroreflector in 430m distance), and the point measurements collected at 37-m sampling height were best for benzene (r=0.61), and reasonably good for toluene, C2-alkylbenzenes, naphthalene, styrene, cresols and phenol (r>0.5). There was good agreement between DOAS and PTR-MS measurements of benzene after correction for the PTR-MS ethylbenzene interference. Mixing ratios easured by DOAS were on average a factor of 1.7 times greater than the PTR-MS data for toluene, C2-alkylbenzenes, naphthalene and styrene. The level of agreement for the toluene data displayed a modest dependence on wind direction, establishing that spatial gradients - horizontal, vertical, or both - in toluene mixing ratios were significant, and up to a factor of 2 despite the fact that all measurements were conducted above

  18. An Automated High Performance Capillary Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for High-Throughput Proteomics

    International Nuclear Information System (INIS)

    Belov, Mikhail E.; Anderson, Gordon A.; Wingerd, Mark A.; Udseth, Harold R.; Tang, Keqi; Prior, David C.; Swanson, Kenneth R.; Buschbach, Michael A.; Strittmatter, Eric F.; Moore, Ronald J.; Smith, Richard D.

    2004-01-01

    We report on a fully automated 9.4 tesla Fourier transform ion resonance cyclotron (FTICR) mass spectrometer coupled to reverse-phase chromatography for high-throughput proteomic studies. Modifications made to the front-end of a commercial FTICR instrument--a dual-ESI-emitter ion source; dual-channel electrodynamic ion funnel; and collisional-cooling, selection and accumulation quadrupoles--significantly improved the sensitivity, dynamic range and mass measurement accuracy of the mass spectrometer. A high-pressure capillary liquid chromatography (LC) system was incorporated with an autosampler that enabled 24 h/day operation. A novel method for accumulating ions in the ICR cell was also developed. Unattended operation of the instrument revealed the exceptional reproducibility (1-5% deviation in elution times for peptides from a bacterial proteome), repeatability (10-20% deviation in detected abundances for peptides from the same aliquot analyzed a few weeks apart) and robustness (high-throughput operation for 5 months without downtime) of the LC/FTICR system. When combined with modulated-ion-energy gated trapping, the internal calibration of FTICR mass spectra decreased dispersion of mass measurement errors for peptide identifications in conjunction with high resolution capillary LC separations to < 5 ppm over a dynamic range for each spectrum of 10 3

  19. Long-term changes in the sensitivity of quadrupole mass spectrometers

    International Nuclear Information System (INIS)

    Blanchard, W.R.; McCarthy, P.J.; Dylla, H.F.; LaMarche, P.H.; Simpkins, J.E.

    1986-02-01

    We routinely use quadrupole mass spectrometers (QMS) to monitor vacuum conditions, gas purity, and plasma-wall interactions in the Tokamak Fusion Test Reactor (TFTR) at Princeton. Two QMS systems have been operating on TFTR continuously for a two-year period. Both QMS systems are absolutely calibrated at weekly intervals using a six-part standard gas mixture. The calibration procedure is based on the use of transfer standards (ion gauge and capacitance manometer) that are calibrated against a primary standard (spinning rotor gauge) on an external vacuum system. We have identified variations in the efficiency of the QMS ionizer and drifts in the sensitivity of the electron multiplier ion detector to be the major reasons for the observed changes in overall OMS sensitivity. Weekly variations in sensitivity greater than 100% have been observed following system bakeout at 150 0 C and with the use of rhenium filaments which were initially in the QMS ionizer. Operation of the QMS systems with tungsten filaments and at constant temperature has yielded more stable operation with weekly sensitivity changes generally being less than 10%. 7 refs., 7 figs

  20. A compact PTR-ToF-MS instrument for airborne measurements of volatile organic compounds at high spatiotemporal resolution

    Directory of Open Access Journals (Sweden)

    M. Müller

    2014-11-01

    Full Text Available Herein, we report on the development of a compact proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS for airborne measurements of volatile organic compounds (VOCs. The new instrument resolves isobaric ions with a mass resolving power (m/Δm of ~1000, provides accurate m/z measurements (Δm < 3 mDa, records full mass spectra at 1 Hz and thus overcomes some of the major analytical deficiencies of quadrupole-MS-based airborne instruments. 1 Hz detection limits for biogenic VOCs (isoprene, α total monoterpenes, aromatic VOCs (benzene, toluene, xylenes and ketones (acetone, methyl ethyl ketone range from 0.05 to 0.12 ppbV, making the instrument well-suited for fast measurements of abundant VOCs in the continental boundary layer. The instrument detects and quantifies VOCs in locally confined plumes (< 1 km, which improves our capability of characterizing emission sources and atmospheric processing within plumes. A deployment during the NASA 2013 DISCOVER-AQ mission generated high vertical- and horizontal-resolution in situ data of VOCs and ammonia for the validation of satellite retrievals and chemistry transport models.

  1. New mass spectrometers for hydrogen isotope analyses

    International Nuclear Information System (INIS)

    Chastagner, P.; Daves, H.L.; Hess, W.B.

    1981-01-01

    Two advanced mass spectrometers for the accurate analysis of mixtures of the hydrogen isotopes are being evaluated by Du Pont personnel at the Savannah River Laboratory. One is a large double-focusing instrument with a resolution of 2000 at mass 4, an abundance sensitivity of > 100,000 for the HT-D 2 doublet, and a sophisticated electronic control and data collection system. The second is a smaller, simpler, stigmatic-focusing instrument in which exceptionally high ion intensities (> 1 x 10 -9 A) result in high signal to noise ratios. A containment facility with sample inlet systems and a standard distribution system was built to permit testing with tritium mixtures. The characteristics of the mass spectrometers under a variety of operating conditions will be presented. Factors to be discussed include: sample equilibration and its elimination; linearity; trimer formation; gas interference; stability; signal to noise ratio; mass discrimination; and anticipated precision and accu sublimed molybdenum collector of Converter No. 262; and (3) demonstration of tungsten CVD onto molybdenum flange using a reuseable graphite mandrel

  2. Gas Chromatic Mass Spectrometer

    Science.gov (United States)

    Wey, Chowen

    1995-01-01

    Gas chromatograph/mass spectrometer (GC/MS) used to measure and identify combustion species present in trace concentration. Advanced extractive diagnostic method measures to parts per billion (PPB), as well as differentiates between different types of hydrocarbons. Applicable for petrochemical, waste incinerator, diesel transporation, and electric utility companies in accurately monitoring types of hydrocarbon emissions generated by fuel combustion, in order to meet stricter environmental requirements. Other potential applications include manufacturing processes requiring precise detection of toxic gaseous chemicals, biomedical applications requiring precise identification of accumulative gaseous species, and gas utility operations requiring high-sensitivity leak detection.

  3. Geographical origin classification of olive oils by PTR-MS

    NARCIS (Netherlands)

    Araghipour, N.; Colineau, J.; Koot, A.H.; Akkermans, W.; Rojas, J.M.M.; Beauchamp, J.; Wisthaler, A.; Märk, T.D.; Downey, G.; Guillou, C.; Mannina, L.; Ruth, van S.M.

    2008-01-01

    The volatile compositions of 192 olive oil samples from five different European countries were investigated by PTR-MS sample headspace analysis. The mass spectra of all samples showed many masses with high abundances, indicating the complex VOC composition of olive oil. Three different PLS-DA models

  4. PTR-MS Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin

    Directory of Open Access Journals (Sweden)

    Vittorio Capozzi

    2016-04-01

    Full Text Available In light of the increasing attention towards “green” solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS, a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs. Two ethanol-related peaks (m/z 65.059 and 75.080 described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.

  5. Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF

    Directory of Open Access Journals (Sweden)

    T. M. Ruuskanen

    2011-01-01

    Full Text Available Eddy covariance (EC is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5–20 Hz. For volatile organic compounds (VOC soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+ – water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes.

    The smallest reliable fluxes we determined were less than 0.1 nmol m−2 s−1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmolC m−2 s−1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.

  6. Position sensitive detection coupled to high-resolution time-of-flight mass spectrometry: Imaging for molecular beam deflection experiments

    International Nuclear Information System (INIS)

    Abd El Rahim, M.; Antoine, R.; Arnaud, L.; Barbaire, M.; Broyer, M.; Clavier, Ch.; Compagnon, I.; Dugourd, Ph.; Maurelli, J.; Rayane, D.

    2004-01-01

    We have developed and tested a high-resolution time-of-flight mass spectrometer coupled to a position sensitive detector for molecular beam deflection experiments. The major achievement of this new spectrometer is to provide a three-dimensional imaging (X and Y positions and time-of-flight) of the ion packet on the detector, with a high acquisition rate and a high resolution on both the mass and the position. The calibration of the experimental setup and its application to molecular beam deflection experiments are discussed

  7. Inficon Transpector MPH Mass Spectrometer Random Vibration Test Report

    Science.gov (United States)

    Santiago-Bond, Jo; Captain, Janine

    2015-01-01

    The purpose of this test report is to summarize results from the vibration testing of the INFICON Transpector MPH100M model Mass Spectrometer. It also identifies requirements satisfied, and procedures used in the test. As a payload of Resource Prospector, it is necessary to determine the survivability of the mass spectrometer to proto-qualification level random vibration. Changes in sensitivity of the mass spectrometer can be interpreted as a change in alignment of the instrument. The results of this test will be used to determine any necessary design changes as the team moves forward with flight design.

  8. Analytical detection of explosives and illicit, prescribed and designer drugs using proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Bishu; Petersson, Fredrik; Juerschik, Simone [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Sulzer, Philipp; Jordan, Alfons [IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Maerk, Tilmann D. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Watts, Peter; Mayhew, Chris A. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 4TT (United Kingdom)

    2011-07-01

    This work demonstrates the extremely favorable features of Proton Transfer Reaction Time-of-flight Mass Spectrometry (PTR-TOF-MS) for the detection and identification of solid explosives, chemical warfare agent simulants and illicit, prescribed and designer drugs in real time. Here, we report the use of PTR-TOF, for the detection of explosives (e.g., trinitrotoluene, trinitrobenzene) and illicit, prescribed and designer drugs (e.g., ecstasy, morphine, heroin, ethcathinone, 2C-D). For all substances, the protonated parent ion (as we used H{sub 3}O{sup +} as a reagent ion) could be detected, providing a high level of confidence in their identification since the high mass resolution allows compounds having the same nominal mass to be separated. We varied the E/N from 90 to 220 T{sub d} (1 T{sub d}=10{sup -17} Vcm{sup -1}). This allowed us to study fragmentation pathways as a function of E/N (reduced electric field). For a few compounds rather unusual E/N dependencies were also discovered.

  9. Cyclotrons as mass spectrometers

    International Nuclear Information System (INIS)

    Clark, D.J.

    1984-04-01

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures

  10. Ion mobility analyzer - quadrupole mass spectrometer system design

    International Nuclear Information System (INIS)

    Cuna, C; Leuca, M; Lupsa, N; Mirel, V; Cuna, Stela; Cosma, V; Tusa, Florina; Bocos-Bintintan, V

    2009-01-01

    Because of their extremely high sensitivity for chemicals with elevated electronegativity or high proton affinity the ion mobility analysers are ideal for the ultra-trace detection of toxic or explosive chemicals, most of these situated often at concentration levels of sub-ppb (parts-per-billion). Ion mobility spectrometers (IMS) can be used to identify illicit drugs or environmental pollutants. Since resolution of an IMS is relatively low, to achieve an accurate identification of target analyte it is recommended to couple the IMS with a quadrupole mass spectrometer (QMS) or a time of flight mass spectrometer, acquiring in this way confirmatory information. This coupling is made through a specific interface. In this paper, an experimental model of such a tandem instrument, IMS-QMS is described. Accomplishment of this general purpose will be done, overcoming a series of specific issues. This implies the solving, using innovative solutions, of a series of complex issues: ensuring the stability of the ions beam generated by ion source; transfer with a good efficiency of the ionic current from IMS analyser to QMS; and realization of a special electronic circuitry which will be able to detect both positive and negative ions.

  11. Ion mobility analyzer - quadrupole mass spectrometer system design

    Energy Technology Data Exchange (ETDEWEB)

    Cuna, C; Leuca, M; Lupsa, N; Mirel, V; Cuna, Stela; Cosma, V; Tusa, Florina [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Bocos-Bintintan, V, E-mail: cornel.cuna@itim-cj.r [Babes-Bolyai University, Faculty of Environmental Sciences, 3 Fantanele, 400294 Cluj Napoca (Romania)

    2009-08-01

    Because of their extremely high sensitivity for chemicals with elevated electronegativity or high proton affinity the ion mobility analysers are ideal for the ultra-trace detection of toxic or explosive chemicals, most of these situated often at concentration levels of sub-ppb (parts-per-billion). Ion mobility spectrometers (IMS) can be used to identify illicit drugs or environmental pollutants. Since resolution of an IMS is relatively low, to achieve an accurate identification of target analyte it is recommended to couple the IMS with a quadrupole mass spectrometer (QMS) or a time of flight mass spectrometer, acquiring in this way confirmatory information. This coupling is made through a specific interface. In this paper, an experimental model of such a tandem instrument, IMS-QMS is described. Accomplishment of this general purpose will be done, overcoming a series of specific issues. This implies the solving, using innovative solutions, of a series of complex issues: ensuring the stability of the ions beam generated by ion source; transfer with a good efficiency of the ionic current from IMS analyser to QMS; and realization of a special electronic circuitry which will be able to detect both positive and negative ions.

  12. A homemade high-resolution orthogonal-injection time-of-flight mass spectrometer with a heated capillary inlet

    International Nuclear Information System (INIS)

    Guo Changjuan; Huang Zhengxu; Gao Wei; Nian Huiqing; Chen Huayong; Dong Junguo; Shen Guoying; Fu Jiamo; Zhou Zhen

    2008-01-01

    We describe a homemade high-resolution orthogonal-injection time-of-flight (O-TOF) mass spectrometer combing a heated capillary inlet. The O-TOF uses a heated capillary tube combined with a radio-frequency only quadrupole (rf-only quadrupole) as an interface to help the ion transmission from the atmospheric pressure to the low-pressure regions. The principle, configuration of the O-TOF, and the performance of the instrument are introduced in this paper. With electrospray ion source, the performances of the mass resolution, the sensitivity, the mass range, and the mass accuracy are described. We also include our results obtained by coupling atmospheric pressure matrix-assisted laser deporption ionization with this instrument

  13. SIEMENS ADVANCED QUANTRA FTICR MASS SPECTROMETER FOR ULTRA HIGH RESOLUTION AT LOW MASS

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W; Laura Tovo, L

    2008-07-08

    The Siemens Advanced Quantra Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer was evaluated as an alternative instrument to large double focusing mass spectrometers for gas analysis. High resolution mass spectrometers capable of resolving the common mass isomers of the hydrogen isotopes are used to provide data for accurate loading of reservoirs and to monitor separation of tritium, deuterium, and helium. Conventional double focusing magnetic sector instruments have a resolution that is limited to about 5000. The Siemens FTICR instrument achieves resolution beyond 400,000 and could possibly resolve the tritium ion from the helium-3 ion, which differ by the weight of an electron, 0.00549 amu. Working with Y-12 and LANL, SRNL requested Siemens to modify their commercial Quantra system for low mass analysis. To achieve the required performance, Siemens had to increase the available waveform operating frequency from 5 MHz to 40 MHz and completely redesign the control electronics and software. However, they were able to use the previous ion trap, magnet, passive pump, and piezo-electric pulsed inlet valve design. NNSA invested $1M in this project and acquired four systems, two for Y-12 and one each for SRNL and LANL. Siemens claimed a $10M investment in the Quantra systems. The new Siemens Advanced Quantra demonstrated phenomenal resolution in the low mass range. Resolution greater than 400,000 was achieved for mass 2. The new spectrometer had a useful working mass range to 500 Daltons. However, experiments found that a continuous single scan from low mass to high was not possible. Two useful working ranges were established covering masses 1 to 6 and masses 12 to 500 for our studies. A compromise performance condition enabled masses 1 to 45 to be surveyed. The instrument was found to have a dynamic range of about three orders of magnitude and quantitative analysis is expected to be limited to around 5 percent without using complex fitting algorithms

  14. Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA

    Science.gov (United States)

    Gkatzelis, Georgios I.; Tillmann, Ralf; Hohaus, Thorsten; Müller, Markus; Eichler, Philipp; Xu, Kang-Ming; Schlag, Patrick; Schmitt, Sebastian H.; Wegener, Robert; Kaminski, Martin; Holzinger, Rupert; Wisthaler, Armin; Kiendler-Scharr, Astrid

    2018-03-01

    An intercomparison of different aerosol chemical characterization techniques has been performed as part of a chamber study of biogenic secondary organic aerosol (BSOA) formation and aging at the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). Three different aerosol sampling techniques - the aerosol collection module (ACM), the chemical analysis of aerosol online (CHARON) and the collection thermal-desorption unit (TD) were connected to proton transfer reaction time-of-flight mass spectrometers (PTR-ToF-MSs) to provide chemical characterization of the SOA. The techniques were compared among each other and to results from an aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS). The experiments investigated SOA formation from the ozonolysis of β-pinene, limonene, a β-pinene-limonene mix and real plant emissions from Pinus sylvestris L. (Scots pine). The SOA was subsequently aged by photo-oxidation, except for limonene SOA, which was aged by NO3 oxidation. Despite significant differences in the aerosol collection and desorption methods of the PTR-based techniques, the determined chemical composition, i.e. the same major contributing signals, was found by all instruments for the different chemical systems studied. These signals could be attributed to known products expected from the oxidation of the examined monoterpenes. The sampling and desorption method of ACM and TD provided additional information on the volatility of individual compounds and showed relatively good agreement. Averaged over all experiments, the total aerosol mass recovery compared to an SMPS varied within 80 ± 10, 51 ± 5 and 27 ± 3 % for CHARON, ACM and TD, respectively. Comparison to the oxygen-to-carbon ratios (O : C) obtained by AMS showed that all PTR-based techniques observed lower O : C ratios, indicating a loss of molecular oxygen either during aerosol sampling or detection. The differences in total

  15. Gas-phase ion-molecule reactions and high-pressure mass spectrometer, 1

    International Nuclear Information System (INIS)

    Hiraoka, Kenzo

    1977-01-01

    The reasons for the fact that the research in gas-phase ion-molecule reactions, to which wide interest is shown, have greatly contributed to the physical and chemical fields are that, first it is essential in understanding general phenomena concerning ions, second, it can furnish many unique informations in the dynamics of chemical reactions, and third, usefulness of '' chemical ionization'' methods has been established as its application to chemical analysis. In this review, the history and trend of studies and equipments in gas-phase ion-molecule reactions are surveyed. The survey includes the chemical ionization mass spectrometer for simultaneously measuring the positive and negative ions utilizing a quadrupole mass spectrometer presented by Hunt and others, flowing afterglow method derived from the flowing method which traces neutral chemical species mainly optically, ion cyclotron resonance mass spectrometer, trapped ion mass spectrometer and others. Number of reports referred to ion-molecule reactions issued during the last one year well exceeds the total number of reports concerning mass spectrometers presented before 1955. This truly shows how active the research and development are in this field. (Wakatsuki, Y.)

  16. Airborne measurements of reactive organic trace gases in the atmosphere - with a focus on PTR-MS measurements onboard NASA's flying laboratories

    Science.gov (United States)

    Wisthaler, Armin; Mikoviny, Tomas; Müller, Markus; Schiller, Sven Arne; Feil, Stefan; Hanel, Gernot; Jordan, Alfons; Mutschlechner, Paul; Crawford, James H.; Singh, Hanwant B.; Millet, Dylan

    2017-04-01

    Reactive organic gases (ROGs) play an important role in atmospheric chemistry as they affect the rates of ozone production, particle formation and growth, and oxidant consumption. Measurements of ROGs are analytically challenging because of their large variety and low concentrations in the Earth's atmosphere, and because they are easily affected by measurement artefacts. On aircraft, ROGs are typically measured by canister sampling followed by off-line analysis in the laboratory, fast online gas chromatography or online chemical ionization mass spectrometry. In this work, we will briefly sum up the state-of-the-art in this field before focusing on proton-transfer-reaction mass spectrometry (PTR-MS) and its deployment onboard NASA's airborne science laboratories. We will show how airborne PTR-MS was successfully used in NASA missions for characterizing emissions of ROGs from point sources, for following the photochemical evolution of ROGs in a biomass burning plume, for determining biosphere-atmosphere fluxes of selected ROGs and for validating satellite data. We will also present the airborne PTR-MS instrument in its most recent evolution which includes a radiofrequency ion funnel and ion guide combined with a compact time-of-flight mass spectrometer and discuss its superior performance characteristics. The development of the airborne PTR-MS instrument was supported by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG) (grants #833451, #847967). This work was also partly supported by NASA under grant #NNX14AP89G.

  17. Performance results of a mobile high-resolution MR-TOF mass spectrometer for in-situ analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, Wayne; Lang, Johannes [Justus-Liebig-Universitaet Giessen (Germany); Ayet San Andres, Samuel [GSI, Darmstadt (Germany); Dickel, Timo; Geissel, Hans; Plass, Wolfgang; Scheidenberger, Christoph [Justus-Liebig-Universitaet Giessen (Germany); GSI, Darmstadt (Germany); Yavor, Mikhail [RAS St. Petersburg (Russian Federation)

    2014-07-01

    A mobile multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) has been developed which provides a mass resolving power exceeding 250,000 and sub-ppm mass accuracy in a transportable format. Thus it allows resolving isobars and enables accurate determination of the composition and structure of biomolecules. Furthermore the device offers high mass resolving MS/MS capability via selective ion re-trapping and collisional-induced dissociation (CID). An atmospheric pressure interface (API) provides for routine measurements with various atmospheric ion sources. All supply electronics, DAQ and control system are mounted with the spectrometer into a single frame with a total volume of only 0.8 m{sup 3}. With the current system many applications like waste water monitoring at hot spots, mass-based classification of biomolecules and breath analysis are possible. In addition the mass spectrometer is readily scalable and can be adopted and simplified for even more specific use like in space science for instance. A characterization and first performance results are shown, and the implementation of MS/MS in combination with CID is discussed.

  18. Measuring OVOCs and VOCs by PTR-MS in an urban roadside microenvironment of Hong Kong: relative humidity and temperature dependence, and field intercomparisons

    Science.gov (United States)

    Cui, Long; Zhang, Zhou; Huang, Yu; Lee, Shun Cheng; Blake, Donald Ray; Ho, Kin Fai; Wang, Bei; Gao, Yuan; Wang, Xin Ming; Kwok Keung Louie, Peter

    2016-12-01

    Volatile organic compound (VOC) control is an important issue of air quality management in Hong Kong because ozone formation is generally VOC limited. Several oxygenated volatile organic compound (OVOC) and VOC measurement techniques - namely, (1) offline 2,4-dinitrophenylhydrazine (DNPH) cartridge sampling followed by high-performance liquid chromatography (HPLC) analysis; (2) online gas chromatography (GC) with flame ionization detection (FID); and (3) offline canister sampling followed by GC with mass spectrometer detection (MSD), FID, and electron capture detection (ECD) - were applied during this study. For the first time, the proton transfer reaction-mass spectrometry (PTR-MS) technique was also introduced to measured OVOCs and VOCs in an urban roadside area of Hong Kong. The integrated effect of ambient relative humidity (RH) and temperature (T) on formaldehyde measurements by PTR-MS was explored in this study. A Poly 2-D regression was found to be the best nonlinear surface simulation (r = 0.97) of the experimental reaction rate coefficient ratio, ambient RH, and T for formaldehyde measurement. This correction method was found to be better than correcting formaldehyde concentrations directly via the absolute humidity of inlet sample, based on a 2-year field sampling campaign at Mong Kok (MK) in Hong Kong. For OVOC species, formaldehyde, acetaldehyde, acetone, and MEK showed good agreements between PTR-MS and DNPH-HPLC with slopes of 1.00, 1.10, 0.76, and 0.88, respectively, and correlation coefficients of 0.79, 0.75, 0.60, and 0.93, respectively. Overall, fair agreements were found between PTR-MS and online GC-FID for benzene (slope = 1.23, r = 0.95), toluene (slope = 1.01, r = 0.96) and C2-benzenes (slope = 1.02, r = 0.96) after correcting benzene and C2-benzenes levels which could be affected by fragments formed from ethylbenzene. For the intercomparisons between PTR-MS and offline canister measurements by GC-MSD/FID/ECD, benzene showed good agreement

  19. Proton-transfer reaction mass spectrometry (PTR-MS) for the authentication of regionally unique South African lamb

    NARCIS (Netherlands)

    Erasmus, Sara W.; Muller, Magdalena; Alewijn, Martin; Koot, Alex H.; Ruth, van Saskia M.; Hoffman, Louwrens C.

    2017-01-01

    The volatile fingerprints of South African lamb meat and fat were measured by proton-transfer mass spectrometry (PTR-MS) to evaluate it as an authentication tool. Meat and fat of the Longissimus lumborum (LL) of lambs from six different regions were assessed. Analysis showed that the volatile

  20. Acquisition of HPLC-Mass Spectrometer

    Science.gov (United States)

    2015-08-18

    31-Jan-2015 Approved for Public Release; Distribution Unlimited Final Report: Acquisition of HPLC -Mass Spectrometer The views, opinions and/or findings...published in peer-reviewed journals: Final Report: Acquisition of HPLC -Mass Spectrometer Report Title The acquisition of the mass spectrometer has been a

  1. Sensitive helium leak detection in a deuterium atmosphere using a high-resolution quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Hiroki, S.; Abe, T.; Murakami, Y.

    1996-01-01

    In fusion machines, realizing a high-purity plasma is a key to improving the plasma parameters. Thus, leak detection is a necessary part of reducing the leak rate to a tolerable level. However, a conventional helium ( 4 He) leak detector is useless in fusion machines with a deuterium (D 2 ) plasma, because retained D particles on the first walls release D 2 for a long period and the released D 2 interferes with the signals from the leaked 4 He due to the near identical masses of 4.0026 u ( 4 He) and 4.0282 u (D 2 ). A high-resolution quadrupole mass spectrometer (HR-QMS) that we have recently developed, can detect a 4 He + population as small as 10 -4 peak in a D 2 atmosphere. Thus, the HR-QMS has been applied to detect 4 He leaks. To improve the minimum detectable limit of 4 He leak, a differentially pumped HR-QMS analyzer was attached to a chamber of the 4 He leak detector. In conclusion, the improved 4 He leak detector could detect 4 He leaks of the order of 10 -10 Pa · m 3 /s in a D 2 atmosphere. (Author)

  2. Characterisation of an ion source on the Helix MC Plus noble gas mass spectrometer - pressure dependent mass discrimination

    Science.gov (United States)

    Zhang, X.

    2017-12-01

    Characterisation of an ion source on the Helix MC Plusnoble gas mass spectrometer - pressure dependent mass discrimination Xiaodong Zhang* dong.zhang@anu.edu.au Masahiko Honda Masahiko.honda@anu.edu.au Research School of Earth Sciences, The Australian National University, Canberra, Australia To obtain reliable measurements of noble gas elemental and isotopic abundances in a geological sample it is essential that the mass discrimination (instrument-induced isotope fractionation) of the mass spectrometer remain constant over the working range of noble gas partial pressures. It is known, however, that there are pressure-dependent variations in sensitivity and mass discrimination in conventional noble gas mass spectrometers [1, 2, 3]. In this study, we discuss a practical approach to ensuring that the pressure effect in the Helix MC Plus high resolution, multi-collector noble gas mass spectrometer is minimised. The isotopic composition of atmospheric Ar was measured under a range of operating conditions to test the effects of different parameters on Ar mass discrimination. It was found that the optimised ion source conditions for pressure independent mass discrimination for Ar were different from those for maximised Ar sensitivity. The optimisation can be achieved by mainly adjusting the repeller voltage. It is likely that different ion source settings will be required to minimise pressure-dependent mass discrimination for different noble gases. A recommended procedure for tuning an ion source to reduce pressure dependent mass discrimination will be presented. References: Honda M., et al., Geochim. Cosmochim. Acta, 57, 859 -874, 1993. Burnard P. G., and Farley K. A., Geochemistry Geophysics Geosystems, Volume 1, 2000GC00038, 2000. Mabry J., et al., Journal of Analytical Atomic Spectrometry, 27, 1012 - 1017, 2012.

  3. High-Precision Mass Measurements of Exotic Nuclei with the Triple-Trap Mass Spectrometer Isoltrap

    CERN Multimedia

    Blaum, K; Zuber, K T; Stanja, J

    2002-01-01

    The masses of close to 200 short-lived nuclides have already been measured with the mass spectrometer ISOLTRAP with a relative precision between 1$\\times$10$^{-7}$ and 1$\\times$10^{-8}$. The installatin of a radio-frequency quadrupole trap increased the overall efficiency by two orders of magnitude which is at present about 1%. In a recent upgrade, we installed a carbon cluster laser ion source, which will allow us to use carbon clusters as mass references for absolute mass measurements. Due to these improvements and the high reliability of ISOLTRAP we are now able to perform accurate high-precision mass measurements all over the nuclear chart. We propose therefore mass measurements on light, medium and heavy nuclides on both sides of the valley of stability in the coming four years. ISOLTRAP is presently the only instrument capable of the high precision required for many of the proposed studies.

  4. High-accuracy mass spectrometry for fundamental studies.

    Science.gov (United States)

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  5. Procedure and apparatus for controlling the ion energy in a mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Fies, W J; Reeher, J R; Story, M S; Smith, R D

    1977-03-03

    The invention relates to a process and apparatus for adjusting the energy of ions of different masses in a mass spectrometer. Specifically, it concerns a mass spectrometer having a gas inlet and ionisation space. A multipole mass filter includes several electrodes. A focusing system connects the ionisation space and the mass filter. Provision is made for applying to the electrodes a mass adjusting voltage combining a high frequency voltage and a d.c. voltage of increasing amplitude, so that the ions of a pre-determined mass can be selected. This system also includes a device connected to the electrodes, sensitive to the mass adjusting voltage and enabling the energy of the ions to be adjusted to that of the selected ions, depending on the mass of the ions, by modifying the difference in potential between the ionisation volume and the mean potential of the electrodes .

  6. Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA

    Directory of Open Access Journals (Sweden)

    G. I. Gkatzelis

    2018-03-01

    Full Text Available An intercomparison of different aerosol chemical characterization techniques has been performed as part of a chamber study of biogenic secondary organic aerosol (BSOA formation and aging at the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber. Three different aerosol sampling techniques – the aerosol collection module (ACM, the chemical analysis of aerosol online (CHARON and the collection thermal-desorption unit (TD were connected to proton transfer reaction time-of-flight mass spectrometers (PTR-ToF-MSs to provide chemical characterization of the SOA. The techniques were compared among each other and to results from an aerosol mass spectrometer (AMS and a scanning mobility particle sizer (SMPS. The experiments investigated SOA formation from the ozonolysis of β-pinene, limonene, a β-pinene–limonene mix and real plant emissions from Pinus sylvestris L. (Scots pine. The SOA was subsequently aged by photo-oxidation, except for limonene SOA, which was aged by NO3 oxidation. Despite significant differences in the aerosol collection and desorption methods of the PTR-based techniques, the determined chemical composition, i.e. the same major contributing signals, was found by all instruments for the different chemical systems studied. These signals could be attributed to known products expected from the oxidation of the examined monoterpenes. The sampling and desorption method of ACM and TD provided additional information on the volatility of individual compounds and showed relatively good agreement. Averaged over all experiments, the total aerosol mass recovery compared to an SMPS varied within 80 ± 10, 51 ± 5 and 27 ± 3 % for CHARON, ACM and TD, respectively. Comparison to the oxygen-to-carbon ratios (O : C obtained by AMS showed that all PTR-based techniques observed lower O : C ratios, indicating a loss of molecular oxygen either during aerosol sampling or

  7. Analog and digital dividers for mass spectrometers

    International Nuclear Information System (INIS)

    Osipov, A.K.

    1980-01-01

    Errors of four different types of stress dividers used in statical mass-spectrometers for determination of mass number by accelerating stress are analyzed. The simplest flowsheet of the analog divider comprises operation amplifier, in the chain of the negative feedback of which a multiplication device on differential cascade is switched- in. This analog divider has high sensitivity to temperature and high error approximately 5%. Application of the multiplier on differential cascade with normalization permits to increase temperature stability and decrease the error up to 1%. Another type of the analog divider is a logarithmic divider the error of which is constant within the whole operation range and it constitutes 1-5%. The digital divider with a digital-analog transformer (DAT) has the error of +-0.015% which is determined by the error of detectors and resistance of keys in the locked state. Considered is the design of a divider based on transformation of the inlet stress into the time period. The error of the divider is determined in this case mainly by stress of the zero shift of the operation amplifier (it should be compensated) and relative threshold stability of the comparator triggering which equals (2-3)x10 -4 . It is noted that the divider with DAT application and the divider with the use of stress transformation within the time period are most perspective ones for statical mass-spectrometers [ru

  8. A high-resolution mass spectrometer to measure atmospheric ion composition

    Directory of Open Access Journals (Sweden)

    H. Junninen

    2010-08-01

    Full Text Available In this paper we present recent achievements on developing and testing a tool to detect the composition of ambient ions in the mass/charge range up to 2000 Th. The instrument is an Atmospheric Pressure Interface Time-of-Flight Mass Spectrometer (APi-TOF, Tofwerk AG. Its mass accuracy is better than 0.002%, and the mass resolving power is 3000 Th/Th. In the data analysis, a new efficient Matlab based set of programs (tofTools were developed, tested and used. The APi-TOF was tested both in laboratory conditions and applied to outdoor air sampling in Helsinki at the SMEAR III station. Transmission efficiency calibrations showed a throughput of 0.1–0.5% in the range 100–1300 Th for positive ions, and linearity over 3 orders of magnitude in concentration was determined. In the laboratory tests the APi-TOF detected sulphuric acid-ammonia clusters in high concentration from a nebulised sample illustrating the potential of the instrument in revealing the role of sulphuric acid clusters in atmospheric new particle formation. The APi-TOF features a high enough accuracy, resolution and sensitivity for the determination of the composition of atmospheric small ions although the total concentration of those ions is typically only 400–2000 cm−3. The atmospheric ions were identified based on their exact masses, utilizing Kendrick analysis and correlograms as well as narrowing down the potential candidates based on their proton affinities as well isotopic patterns. In Helsinki during day-time the main negative ambient small ions were inorganic acids and their clusters. The positive ions were more complex, the main compounds were (polyalkyl pyridines and – amines. The APi-TOF provides a near universal interface for atmospheric pressure sampling, and this key feature will be utilized in future laboratory and field studies.

  9. A Shuttle Upper Atmosphere Mass Spectrometer /SUMS/ experiment

    Science.gov (United States)

    Blanchard, R. C.; Duckett, R. J.; Hinson, E. W.

    1982-01-01

    A magnetic mass spectrometer is currently being adapted to the Space Shuttle Orbiter to provide repeated high altitude atmosphere data to support in situ rarefied flow aerodynamics research, i.e., in the high velocity, low density flight regime. The experiment, called Shuttle Upper Atmosphere Mass Spectrometer (SUMS), is the first attempt to design mass spectrometer equipment for flight vehicle aerodynamic data extraction. The SUMS experiment will provide total freestream atmospheric quantitites, principally total mass density, above altitudes at which conventional pressure measurements are valid. Experiment concepts, the expected flight profile, tradeoffs in the design of the total system and flight data reduction plans are discussed. Development plans are based upon a SUMS first flight after the Orbiter initial development flights.

  10. VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS

    Science.gov (United States)

    C. Warneke; J. M. Roberts; P. Veres; J. Gilman; W. C. Kuster; I. Burling; R. Yokelson; J. A. de Gouw

    2011-01-01

    Volatile organic compounds (VOCs) emitted from fires of biomass commonly found in the southeast and southwest U.S. were investigated with PTR-MS and PIT-MS, which are capable of fast measurements of a large number of VOCs. Both instruments were calibrated with gas standards and mass dependent calibration curves are determined. The sensitivity of the PIT-MS linearly...

  11. Indigenous instrumentation for mass spectrometry: Part II - development of plasma source mass spectrometers. PD-5-3

    International Nuclear Information System (INIS)

    Nataraju, V.

    2007-01-01

    The growing demands from analytical community, for a precise isotope ratio and ultra trace concentration measurements, has lead to significant improvement in mass spectrometer instrumentation development with respect to sensitivity, detection limits, precision and accuracy. Among the many analytical techniques available, plasma source mass spectrometers like Inductively Coupled Plasma Mass Spectrometry (ICPMS), multi collector (MC) ICPMS and Glow Discharge Mass Spectrometry (GDMS), have matured into reliable tools for the above applications. Where as ICPMS is by far the most successful method for aqueous solutions, GDMS is being applied for bulk and impurity analysis of conducting as well non-conducting solids. VPID, BARC has been developing mass spectrometers for different inorganic applications of DAE users. Over the years expertise has been developed in all the aspects of mass spectrometry instrumentation. Part 1 of this indigenous instrumentation on mass spectrometry gives details of magnetic sector instruments with either EI or TI source for isotopic ratio analysis. The present paper is a continuation of that on plasma source and quadrupole mass spectrometers. This paper covers i) ICP-QMS, ii) MC-ICPMS, iii) GDMS and iv) QMS

  12. Mass spectrometers in medicine

    International Nuclear Information System (INIS)

    Bushman, J.A.

    1975-01-01

    This paper describes how the mass spectrometer enables true lung function, namely the exchange of gases between the environment and the organism, to be measured. This has greatly improved the understanding of respiratory disease and the latest generation of respiratory mass spectrometers will do much to increase the application of the technique. (author)

  13. Angle-resolved ion TOF spectrometer with a position sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Norio [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Heiser, F; Wieliczec, K; Becker, U

    1996-07-01

    A angle-resolved ion time-of-flight mass spectrometer with a position sensitive anode has been investigated. Performance of this spectrometer has been demonstrated by measuring an angular distribution of a fragment ion pair, C{sup +} + O{sup +}, from CO at the photon energy of 287.4 eV. The obtained angular distribution is very close to the theoretically expected one. (author)

  14. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko; Paakkanen, Heikki; Ketola, Raimo A.; Kostiainen, Risto; Sysoev, Alexey; Kotiaho, Tapio

    2007-01-01

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate

  15. A compact E × B filter: A multi-collector cycloidal focusing mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Blase, Ryan C., E-mail: rblase@swri.edu; Miller, Greg; Brockwell, Tim; Waite, J. Hunter [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States); Westlake, Joseph [The Johns Hopkins University Applied Physics Laboratory LLC, 11100 Johns Hopkins Road, Laurel, Maryland 20723 (United States); Ostrom, Nathaniel; Ostrom, Peggy H. [Department of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, Michigan 48824 (United States)

    2015-10-15

    A compact E × B mass spectrometer is presented. The mass spectrometer presented is termed a “perfect focus” mass spectrometer as the resolution of the device is independent of both the initial direction and energy of the ions (spatial and energy independent). The mass spectrometer is small in size (∼10.7 in.{sup 3}) and weight (∼2 kg), making it an attractive candidate for portability when using small, permanent magnets. A multi-collector Faraday cup design allows for the detection of multiple ion beams in discrete collectors simultaneously; providing the opportunity for isotope ratio monitoring. The mass resolution of the device is around 400 through narrow collector slits and the sensitivity of the device follows expected theoretical calculations of the ion current produced in the electron impact ion source. Example mass spectra obtained from the cycloidal focusing mass spectrometer are presented as well as information on mass discrimination based on instrumental parameters and isotope ratio monitoring of certain ion signals in separate Faraday cups.

  16. A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

    Directory of Open Access Journals (Sweden)

    J. L. Ambrose

    2010-07-01

    Full Text Available Toluene was measured using both a gas chromatographic system (GC, with a flame ionization detector (FID, and a proton transfer reaction-mass spectrometer (PTR-MS at the AIRMAP atmospheric monitoring station Thompson Farm (THF in rural Durham, NH during the summer of 2004. Simultaneous measurements of monoterpenes, including α- and β-pinene, camphene, Δ 3-carene, and d-limonene, by GC-FID demonstrated large enhancements in monoterpene mixing ratios relative to toluene, with median and maximum enhancement ratios of ~2 and ~30, respectively. A detailed comparison between the GC-FID and PTR-MS toluene measurements was conducted to test the specificity of PTR-MS for atmospheric toluene measurements under conditions often dominated by biogenic emissions. We derived quantitative estimates of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products via reactions with H3O+, O2+ and NO+ in the PTR-MS drift tube. The PTR-MS and GC-FID toluene measurements were in good quantitative agreement and the two systems tracked one another well from the instrumental limits of detection to maximum mixing ratios of ~0.5 ppbv. A correlation plot of the PTR-MS versus GC-FID toluene measurements was described by the least squares regression equation y=(1.13± 0.02x−(0.008±0.003 ppbv, suggesting a small ~13% positive bias in the PTR-MS measurements. The bias corresponded with a ~0.055 ppbv difference at the highest measured toluene level. The two systems agreed quantitatively within the combined 1σ measurement precisions for 60% of the measurements. Discrepancies in the measured mixing ratios were not well correlated with enhancements in the monoterpenes. Better quantitative agreement between the two systems was obtained by

  17. Atom-probe field-ion-microscope mass spectrometer

    International Nuclear Information System (INIS)

    Nishikawa, Osamu

    1983-01-01

    The titled analyzer, called simply atom-probe, has been developed by combining a field ion microscope (FIM) and a mass spectrometer, and is divided into the time-of-flight type, magnetic sector type, and quadrupole type depending on the types of mass spectrometers. In this paper, the author first describes on the principle and construction of a high resolution, time-of-flight atom-probe developed and fabricated in his laboratory. The feature of the atom-probe lies in the analysis of atoms and molecules in hyper-fine structure region one by one utilizing the high resolution of FIM. It also has the advantages of directly determining the composition by a ratio of the numbers of respective ions because of a constant detection sensitivity regardless of mass numbers, of the resolution as high as single atom layer in depth direction, and of detecting the positional relationship among detected ions by the order of detection in a sample. To determine the composition in a hyperfine structure region, the limited small number of atoms and molecules in the region must be identified distinctly one by one. In the analyzed result of Ni-silicide formed by heating Si evaporated on a Ni tip at 1000 K for 5 minutes, each isotope was not only clearly separated, but also their abundance ratio was very close to the natural abundance ratio. The second half of the paper reports on the analysis of TiC promising for a cold cathode material, adsorption of CO and alcohol, and the composition and structure of silicides, as a few application examples. (Wakatsuki, Y.)

  18. Biogenic volatile organic compound analyses by PTR-TOF-MS: Calibration, humidity effect and reduced electric field dependency.

    Science.gov (United States)

    Pang, Xiaobing

    2015-06-01

    Green leaf volatiles (GLVs) emitted by plants after stress or damage induction are a major part of biogenic volatile organic compounds (BVOCs). Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is a high-resolution and sensitive technique for in situ GLV analyses, while its performance is dramatically influenced by humidity, electric field, etc. In this study the influence of gas humidity and the effect of reduced field (E/N) were examined in addition to measuring calibration curves for the GLVs. Calibration curves measured for seven of the GLVs in dry air were linear, with sensitivities ranging from 5 to 10 ncps/ppbv (normalized counts per second/parts per billion by volume). The sensitivities for most GLV analyses were found to increase by between 20% and 35% when the humidity of the sample gas was raised from 0% to 70% relative humidity (RH) at 21°C, with the exception of (E)-2-hexenol. Product ion branching ratios were also affected by humidity, with the relative abundance of the protonated molecular ions and higher mass fragment ions increasing with humidity. The effect of reduced field (E/N) on the fragmentation of GLVs was examined in the drift tube of the PTR-TOF-MS. The structurally similar GLVs are acutely susceptible to fragmentation following ionization and the fragmentation patterns are highly dependent on E/N. Overall the measured fragmentation patterns contain sufficient information to permit at least partial separation and identification of the isomeric GLVs by looking at differences in their fragmentation patterns at high and low E/N. Copyright © 2015. Published by Elsevier B.V.

  19. Automation of a thermal ionisation mass spectrometer

    International Nuclear Information System (INIS)

    Pamula, A.; Leuca, M.; Albert, S.; Benta, Adriana

    2001-01-01

    A thermal ionization mass spectrometer was upgraded in order to be monitored by a PC. A PC-LMP-16 National Instruments data acquisition board was used for the ion current channel and the Hall signal channel. A dedicated interface was built to allow commands from the computer to the current supply of the analyzing magnet and to the high voltage unit of the mass spectrometer. A software application was worked out to perform the adjustment of the spectrometer, magnetic scanning and mass spectra acquisition, data processing and isotope ratio determination. The apparatus is used for isotope ratio 235 U/ 238 U determination near the natural abundance. A peak jumping technique is applied to choose between the 235 U and 238 U signal, by switching the high voltage applied to the ion source between two preset values. This avoids the delay between the acquisition of the peaks of interest, a delay that would appear in the case of a 'pure' magnetic scanning. Corrections are applied for the mass discrimination effects and a statistical treatment of the data is achieved. (authors)

  20. Investigation of the aroma of commercial peach (Prunus persica L. Batsch) types by Proton Transfer Reaction-Mass Spectrometry (PTR-MS) and sensory analysis.

    Science.gov (United States)

    Bianchi, Tiago; Weesepoel, Yannick; Koot, Alex; Iglesias, Ignasi; Eduardo, Iban; Gratacós-Cubarsí, Marta; Guerrero, Luis; Hortós, Maria; van Ruth, Saskia

    2017-09-01

    The aim of this study was to investigate the aroma and sensory profiles of various types of peaches (Prunus persica L. Batsch.). Forty-three commercial cultivars comprising peaches, flat peaches, nectarines, and canning peaches (pavías) were grown over two consecutive harvest years. Fruits were assessed for chemical aroma and sensory profiles. Chemical aroma profile was obtained by proton transfer reaction-mass spectrometry (PTR-MS) and spectral masses were tentatively identified with PTR-Time of Flight-MS (PTR-Tof-MS). Sensory analysis was performed at commercial maturity considering seven aroma/flavor attributes. The four types of peaches showed both distinct chemical aroma and sensory profiles. Flat peaches and canning peaches showed most distinct patterns according to discriminant analysis. The sensory data were related to the volatile compounds by partial least square regression. γ-Hexalactone, γ-octalactone, hotrienol, acetic acid and ethyl acetate correlated positively, and benzeneacetaldehyde, trimethylbenzene and acetaldehyde negatively to the intensities of aroma and ripe fruit sensory scores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Software for mass spectrometer control

    International Nuclear Information System (INIS)

    Curuia, Marian; Culcer, Mihai; Anghel, Mihai; Iliescu, Mariana; Trancota, Dan; Kaucsar, Martin; Oprea, Cristiana

    2004-01-01

    The paper describes a software application for the MAT 250 mass spectrometer control, which was refurbished. The spectrometer was bring-up-to-date using a hardware structure on its support where the software application for mass spectrometer control was developed . The software application is composed of dedicated modules that perform given operations. The instructions that these modules have to perform are generated by a principal module. This module makes possible the change of information between the modules that compose the software application. The use of a modal structure is useful for adding new functions in the future. The developed application in our institute made possible the transformation of the mass spectrometer MAT 250 into a device endowed with other new generation tools. (authors)

  2. Recent ion optics and mass spectrometers

    International Nuclear Information System (INIS)

    Matsuda, Hisashi

    1976-01-01

    The establishment of the third order approximation method for computing the orbit of the ion optical system for mass spectrometers and the completion of its computer program are reported. A feature of this orbit computation is in that the effect of the fringing field can be considered with the accuracy of third order approximation. Several new ion optical systems for mass spectrometers have been proposed by using such orbit computing programs. Brief explanation and the description on the future prospect and problems are made on the following items: the vertual image double focusing mass spectrometer, the second order double focusing mass spectrometer, the E x B superposed field mass spectrometer, and the apparatus with a cylindrical electric field and Q-lens. In the E x B superposed field with Matsuda plates, if the magnetic field is generated by an electromagnet instead of a permanent magnet, the dispersion of mass and energy can be changed at will. The Matsuda plates are known as the auxiliary electrodes positioned at the top and bottom of a cylindrical capacitor. Utilizing those characteristics, a zoom spectrometer can be made, with which only a necessary part of mass spectra can be investigated in detail, but the whole spectra are investigated roughly. In addition, the distribution of energy can be investigated simultaneously after the separation of ionic mass similarly to the parabola apparatus. (Iwakiri, K.)

  3. Ion optics of a high resolution multipassage mass spectrometer with electrostatic ion mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, T [Osaka Univ. (Japan). Dept. of Physics; Baril, M [Departement de Physique, Faculte des Sciences et de Genie, Universite Laval, Ste-Foy, Quebec G1K 7P4 (Canada)

    1995-09-01

    Ion trajectories in an electrostatic ion mirror are calculated. The interferences of the extended fringing fields of the mirror with finite aperture are studied. The results of the calculations are represented by three transfer matrices, which describe ion trajectories under the effects of a fringing field at the entrances, of an idealized mirror region, and of a fringing field at the exit. The focusing effects and ion-optical properties of mass spectrometers with electrostatic ion mirrors can be evaluated by using these transfer matrices. A high performance multipassage mass spectrometer is designed. The system has one magnet and four electrostatic sector analyzers and two ion mirrors. The double focusing condition and stigmatic focusing condition are achieved in any passage of the system. The mass resolution increases linearly with the number of passages in a magnet. (orig.).

  4. Real-time profiling of organic trace gases in the planetary boundary layer by PTR-MS using a tethered balloon

    Directory of Open Access Journals (Sweden)

    R. Schnitzhofer

    2009-12-01

    Full Text Available A method for real-time profiling of volatile organic compounds (VOCs was developed combining the advantages of a tethered balloon as a research platform and of proton transfer reaction mass spectrometry (PTR-MS as an analytical technique for fast and highly sensitive VOC measurements. A 200 m Teflon tube was used to draw sampling air from a tethered aerodynamic balloon to the PTR-MS instrument. Positive and negative artefacts (i.e. formation and loss of VOCs in the tube were characterised in the laboratory and in the field by a set of 11 atmospherically relevant VOCs including both pure and oxygenated hydrocarbons. The only two compounds that increased or decreased when sampled through the tube were acetone (+7% and xylene (-6%. The method was successfully deployed during a winter field campaign to determine the small scale spatial and temporal patterns of air pollutants under winter inversion conditions.

  5. Special features of the isotope ratio determination using mass-spectrometer with induction-bound plasma

    International Nuclear Information System (INIS)

    Stepanov, A.I.; Ramendik, G.I.; Fatyushina, E.V.

    2000-01-01

    The origin of the errors arising upon measuring relative abundance of Nd, Yb, and Gd isotopes on a HP-4500 mass-spectrometer (USA) is studied. It is shown that the main origin of the error is the different sensitivity of the mass-spectrometer to ions of different masses. Optimal content of the elements in the solutions is established upon determination of their isotopic abundance [ru

  6. Compounds enhanced in a mass spectrometric profile of smokers' exhaled breath versus non-smokers as determined in a pilot study using PTR-MS.

    Science.gov (United States)

    Kushch, Ievgeniia; Schwarz, Konrad; Schwentner, Lukas; Baumann, Bettina; Dzien, Alexander; Schmid, Alex; Unterkofler, Karl; Gastl, Günter; Spaněl, Patrik; Smith, David; Amann, Anton

    2008-06-01

    A pilot study has been carried out to define typical characteristics of the trace gas compounds in exhaled breath of non-smokers and smokers to assist interpretation of breath analysis data from patients who smoke with respiratory diseases and lung cancer. Exhaled breath was analyzed using proton transfer reaction-mass spectrometry (PTR-MS) for 370 volunteers (81 smokers, 210 non-smokers, 79 ex-smokers). Volatile organic compounds corresponding to product ions at seven mass-to-charge ratios (m/z 28, 42, 69, 79, 93, 97, 123) in the PTR-MS spectra differentiated between smokers and non-smokers. The Youden index (= maximum of sensitivity + specificity - 1, YI) as a measure for differentiation between smokers and non-smokers was YI = 0.43 for ions at the m/z values 28 (tentatively identified as HCN), YI = 0.75 for m/z = 42 (tentatively identified as acetonitrile) and YI = 0.53 for m/z = 79 (tentatively identified as benzene). No statistically significant difference between smokers and non-smokers was observed for the product ions at m/z = 31 and 33 (compounds tentatively identified as formaldehyde and methanol). When interpreting the exhaled breath of lung cancer or COPD patients, who often smoke, compounds appearing at the above-mentioned seven mass-to-charge ratios should be considered with appropriate care to avoid misdiagnosis. Validation studies in larger numbers of patients with more precise delineation of their smoking behavior and using additional analytical techniques such as GC/MS and SIFT-MS should be carried out.

  7. Contamination measurements with quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Bohatka, S.; Berecz, I.; Langer, G.

    1981-01-01

    A sensitive quadrupole mass spectrometer of our own construction was used for different purity measurements. The analysis of gases in operating rooms showed a 1 ppm-10 5 ppm concentration of narcotics and helped to develop an effective and cheap method for regenerating narcotic filters. We regularly control the gases used in radioactive pollution measurements by internal GM counters and in radiocarbon dating technique. Combustion products and the gases of a fermenter are investigated for industrial application. (orig.) [de

  8. Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source

    International Nuclear Information System (INIS)

    Cool, Terrill A.; McIlroy, Andrew; Qi, Fei; Westmoreland, Phillip R.; Poisson, Lionel; Peterka, Darcy S.; Ahmed, Musahid

    2005-01-01

    A flame-sampling molecular-beam photoionization mass spectrometer, recently designed and constructed for use with a synchrotron-radiation light source, provides significant improvements over previous molecular-beam mass spectrometers that have employed either electron-impact ionization or vacuum ultraviolet laser photoionization. These include superior signal-to-noise ratio, soft ionization, and photon energies easily and precisely tunable [E/ΔE(FWHM)≅250-400] over the 7.8-17-eV range required for quantitative measurements of the concentrations and isomeric compositions of flame species. Mass resolution of the time-of-flight mass spectrometer is m/Δm=400 and sensitivity reaches ppm levels. The design of the instrument and its advantages for studies of flame chemistry are discussed

  9. Mass-spectrometer of knock-on nuclei for reactor 'Pik'

    International Nuclear Information System (INIS)

    Begzhanov, P.B.; Nazarov, A.G.; Petrov, G.A.; Pikul', V.P.

    1999-01-01

    For reactor 'Pik' (that is being built in St. Petersburg Institute of Nuclear Physics) there was designed a universal two shoulder mass-spectrometer for non-decelerated fission products (FP) of nuclei. The spectrometer helps to obtain different values of linear magnification, dispersion, aberration coefficients and transmission without making structural changes in the device. To separate FP for one shoulder of spectrometer we chose ion-optical scheme (IOS) consisting of three electrostatic analyzers and three-sectional magnet 'JOSEF' that had high dispersion by masses at small deflection radius. IOS calculations of mass-spectrometer were performed with the help of program TRANSVOL (transfer of phase volume) designed basing on TRIO program. The program allows calculating of complete IOS transmission with taking into account elements aperture and beam officering

  10. Field performance and identification capability of the Innsbruck PTR-TOF

    Science.gov (United States)

    Graus, M.; Müller, M.; Hansel, A.

    2009-04-01

    Over the last one and a half decades Proton Transfer Reaction Mass Spectrometry (PTR-MS) [1, 2] has gained recognition as fast on-line sensor for monitoring volatile organic compounds (VOC) in the atmosphere. Sample collection is very straight forward and the fact that no pre-concentration is needed is of particular advantage for compounds that are notoriously difficult to pre-concentrate and/or analyze by gas chromatographic (GC) methods. Its ionization method is very versatile, i.e. all compounds that perform exothermic proton transfer with hydronium ions - and most VOCs do so - are readily ionized, producing quasi-molecular ions VOC.H+. In the quasi-molecular ion the elemental composition of the analyte compound is conserved and allows, in combination with some background knowledge of the sample, conclusions about the identity of that compound. De Gouw and Warneke (2007) [3] summarized the applicability of PTR-MS in atmospheric chemistry but they also pointed out shortcomings in the identification capabilities. Goldstein and Galbally (2007) [4] addressed the multitude of VOCs potentially present in the atmosphere and they emphasized the gasphase-to-aerosol partitioning of organic compounds (volatile and semi-volatile) in dependence of carbon-chain length and oxygen containing functional groups. In collaboration with Ionicon and assisted by TOFWERK we developed a PTR time-of-flight (PTR-TOF) instrument that allows for the identification of the atomic composition of oxygenated hydrocarbons by exact-mass determination. A detection limit in the low pptv range was achieved at a time resolution of one minute, one-second detection limit is in the sub-ppbv range. In 2008 the Innsbruck PTR-TOF was field deployed in the icebreaker- and helicopter based Arctic Summer Cloud Ocean Study (ASCOS) to characterize the organic trace gas composition of the High Arctic atmosphere. During the six-week field campaign the PTR-TOF was run without problems even under harsh conditions in

  11. Mini ion trap mass spectrometer

    Science.gov (United States)

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  12. Gas-dust-impact mass spectrometer

    CERN Document Server

    Semkin, N D; Myasnikov, S V; Pomelnikov, R A

    2002-01-01

    Paper describes design of a mass spectrometer to study element composition of micro meteorite and man-made particles in space. Paper describes a way to improve resolution of mass spectrometer based on variation of parameters of accelerating electric field in time. The advantage of the given design of mass spectrometer in comparison with similar ones is its large operating area and higher resolution at the comparable weight and dimensions. Application of a combined design both for particles and for gas enables to remove space vehicle degassing products from the spectrum and, thus, to improve reliability of the acquired information, as well as, to acquire information on a gas component of the external atmosphere of a space vehicle

  13. A field portable mass spectrometer for monitoring organic vapors.

    Science.gov (United States)

    Meier, R W

    1978-03-01

    A portable mass spectrometer has been designed and built under the sponsorship of the US Army for the purpose of monitoring low concentrations of specified organics in the ambient atmosphere. The goals of the development were discrimination, sensitivity, portability, simplicity of operation, economy and convenience. These objectives were met in a system consisting of a computer operated mass spectrometer with a Llewellyn membrane separator inlet system housed in two 26 x 18 x 9 inch aluminum cases with a total weight less than 150 pounds. This system has shown the capability for field detection of hundreds of specific organic vapors at the parts per billion level in the ambient and workplace environments.

  14. Search for high mass resonances in the dimuon channel using the muon spectrometer of the atlas experiment at CERN

    International Nuclear Information System (INIS)

    Helsens, C.

    2009-06-01

    This thesis covers the search of new neutral gauge bosons decaying into a pair of muons in the ATLAS detector. The Large Hadron Collider (LHC) at CERN will produce parton collisions with very high center of mass energy and may produce Z' predicted by many theories beyond the standard model. Such a resonance should be detected by the ATLAS experiment. For the direct search of Z' decaying into two muons, a small number of events is enough for its discovery, which is possible with the first data. We shall study in particular the effects of the muon spectrometer alignment on high p T tracks and on the Z' discovery potential in the ATLAS experiment. The discovery potentials computed with this method have been officially approved by the ATLAS collaboration and published. At the start of the LHC operation, the muon spectrometer alignment will not have reached the nominal performances. This analysis aims at optimizing the discovery potential of ATLAS for a Z' boson in this degraded initial conditions. The impact on track reconstruction of a degraded alignment is estimated with simulated high p T tracks. Results are given in terms of reconstruction efficiency, momentum and invariant mass resolutions, charge identification and sensitivity to discovery or exclusion. With the first data, an analysis using only the muon spectrometer in stand alone mode will be very useful. Finally, a study on how to determine the initial geometry of the spectrometer (needed for its absolute alignment) is performed. This study uses straight tracks without a magnetic field and also calculates the beam time necessary for reaching a given accuracy of the alignment system. (author)

  15. PTR-MS as a technique for investigating stress induced emission of biogenic VOCS

    International Nuclear Information System (INIS)

    Beauchamp, J.; Hansel, A.; Wisthaler, A.; Kleist, E.; Miebach, M.; Weller, U.; Wildt, J.

    2004-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) was used in conjunction with two GC-MS systems to investigate stress induced emissions of volatile organic compounds (VOCs) from plants. Experiments were performed in the laboratory under well defined conditions and VOC emissions were induced by ozone exposure at variable concentrations and for different durations. Tobacco (Nicotiana tabaccum cv. Bel W3) plants were used as the investigated species. This investigation demonstrated the ability of PTR-MS to provide excellent high time-resolution on-line measurements of the relevant species. The combination of the PTR-MS instrument with the two GC-MS systems (which enabled accurate compound identification) allowed for detailed investigation of the dynamics of the plants' responses to ozone stress. VOCs measured included methanol, C6- alcohols and aldehydes, methyl salicylate and sesquiterpenes. Results indicate that the temporal stress response of plants depend on the amount of stress encountered by the plant. Measurement technique and experimental results will be presented. (author)

  16. Extending The Useful Life Of Older Mass Spectrometers

    International Nuclear Information System (INIS)

    Johnson, S.; Cordaro, J.; Holland, M.; Jones, V.

    2010-01-01

    Thermal ionization and gas mass spectrometers are widely used across the Department of Energy (DOE) Complex and contractor laboratories. These instruments support critical missions, where high reliability and low measurement uncertainty are essential. A growing number of these mass spectrometers are significantly older than their original design life. The reality is that manufacturers have declared many of the instrument models obsolete, with direct replacement parts and service no longer available. Some of these obsolete models do not have a next generation, commercially available replacement. Today's budget conscious economy demands for the use of creative funds management. Therefore, the ability to refurbish (or upgrade) these valuable analytical tools and extending their useful life is a cost effective option. The Savannah River Site (SRS) has the proven expertise to breathe new life into older mass spectrometers, at a significant cost savings compared to the purchase and installation of new instruments. A twenty-seven year old Finnigan MAT-261(trademark) Thermal Ionization Mass Spectrometer (TIMS), located at the SRS F/H Area Production Support Laboratory, has been successfully refurbished. Engineers from the Savannah River National Laboratory (SRNL) fabricated and installed the new electronics. These engineers also provide continued instrument maintenance services. With electronic component drawings being DOE Property, other DOE Complex laboratories have the option to extend the life of their aged Mass Spectrometers.

  17. Charged particle scintillation mass spectrometer

    International Nuclear Information System (INIS)

    Baranov, P.S.; Zhuravlev, E.E.; Nafikov, A.A.; Osadchi , A.I.; Raevskij, V.G.; Smirnov, P.A.; Cherepnya, S.N.; Yanulis, Yu.P.

    1982-01-01

    A scintillation mass-spectrometer for charged particle identification by the measured values of time-of-flight and energy operating on line with the D-116 computer is described. Original time detectors with 100x100x2 mm 3 and 200x2 mm 2 scintillators located on the 1- or 2 m path length are used in the spectrometer. The 200x200x200 mm 3 scintillation unit is used as a E-counter. Time-of-flight spectra of the detected particles on the 2 m path length obtained in spectrometer test in the beam of charged particles escaping from the carbon target at the angle of 130 deg under 1.2 GeV bremsstrahlung beam of the ''Pakhra'' PIAS synchrotron are presented. Proton and deuteron energy spectra as well as mass spectrum of all the particles detected by the spectrometer are given. Mass resolution obtained on the 2 m path length for π-mesons is +-25%, for protons is +-5%, for deuterons is +-3%

  18. Investigation of Volatiles Emitted from Freshly Cut Onions (Allium cepa L. by Real Time Proton-Transfer Reaction-Mass Spectrometry (PTR-MS

    Directory of Open Access Journals (Sweden)

    Mette Marie Løkke

    2012-11-01

    Full Text Available Volatile organic compounds (VOCs in cut onions (Allium cepa L. were continuously measured by PTR-MS during the first 120 min after cutting. The headspace composition changed rapidly due to the very reactive volatile sulfurous compounds emitted from onion tissue after cell disruption. Mass spectral signals corresponding to propanethial S-oxide (the lachrymatory factor and breakdown products of this compound dominated 0–10 min after cutting. Subsequently, propanethiol and dipropyl disulfide predominantly appeared, together with traces of thiosulfinates. The concentrations of these compounds reached a maximum at 60 min after cutting. Propanethiol was present in highest concentrations and had an odor activity value 20 times higher than dipropyl disulfide. Thus, propanethiol is suggested to be the main source of the characteristic onion odor. Monitoring the rapid changes of VOCs in the headspace of cut onion necessitates a high time resolution, and PTR-MS is demonstrated to be a very suitable method for monitoring the headspace of freshly cut onions directly after cutting without extraction or pre-concentration.

  19. Injection system of the minicyclotron accelerator mass spectrometer

    International Nuclear Information System (INIS)

    Liu Yonghao; Li Deming; Chen Maobai; Lu Xiangshun

    1999-01-01

    The existing injection system of the SMCAMS (super-sensitive mini-cyclotron accelerator mass spectrometer) is described together with the discussion of its disadvantages exposed after having been operating for five years, which provides a basis for consideration of improvements to the injection system. An optimized injection system with an analytical magnet added prior to the minicyclotron has been proposed and calculated

  20. The role of vacuum in the quality of TOF mass spectrometer

    International Nuclear Information System (INIS)

    Bhowmick, A.; Gadkari, S.C.; Yakhmi, J.V.; Sahni, V.C.

    2005-01-01

    The art in the designing of time-of-flight mass spectrometers has come across a long course of development. The present day state-of-the-art machines are essentially the outcome of knowledge from the advances in different other areas of technology. This article discusses exclusively the role of UHV to enhance the quality of the TOF mass spectrometers and its application to the recently developed high resolution TOF mass spectrometer at TP and PED-BARC. (author)

  1. The chemical composition and mineralogy of meteorites measured with very high spatial resolution by a laser mass spectrometer for in situ planetary research

    Science.gov (United States)

    Brigitte Neuland, Maike; Mezger, Klaus; Tulej, Marek; Frey, Samira; Riedo, Andreas; Wurz, Peter; Wiesendanger, Reto

    2017-04-01

    The knowledge of the chemical composition of moons, comets, asteroids or other planetary bodies is of particular importance for the investigation of the origin and evolution of the Solar System. High resolution in situ studies on planetary surfaces can yield important information on surface heterogeneity, basic grain mineralogy and chemical composition of surface and subsurface. In turn, these data are the basis for our understanding of the physical and chemical processes which led to the formation and alteration of planetary material [1]. We investigated samples of Allende and Sayh al Uhaymir with a highly miniaturised laser mass spectrometer (LMS), which has been designed and built for in situ space research [2,3]. Both meteorite samples were investigated with a spatial resolution of about 10μm in lateral direction. The high sensitivity and high dynamic range of the LMS allow for quantitative measurements of the abundances of the rock-forming and minor and trace elements with high accuracy [4]. From the data, the modal mineralogy of micrometre-sized chondrules can be inferred [5], conclusions about the condensation sequence of the material are possible and the sensitivity for radiogenic elements allows for dating analyses of the investigated material. We measured the composition of various chondrules in Allende, offering valuable clues about the condensation sequence of the different components of the meteorite. We explicitly investigated the chemical composition and heterogeneity of the Allende matrix with an accuracy that cannot be reached by the mechanical analysis methods that were and are widely used in meteoritic research. We demonstrate the capabilities for dating analyses with the LMS. By applying the U-Th-dating method, the age of the SaU169 sample could be determined. Our analyses show that the LMS would be a suitable instrument for high-quality quantitative chemical composition measurements on the surface of a celestial body like a planet, moon or

  2. Sensitivity and response time improvements in millimeter-wave spectrometers

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Leskovar, B.

    1980-09-01

    A new version of a microwave spectrometer for the detection of gaseous pollutants and other atmospheric constituents is described. The spectrometer, which operates in the vicinity of 70 GHz, employs a Fabry-Perot resonator as a sample cell and uses superhetrodyne detection for high sensitivity. The spectrometer has been modified to incorporate a frequency doubler modulated at 30 MHz to permit operation with a single Gunn oscillator source. As a result, faster response time and somewhat greater sensitivity are obtained. The spectrometer is capable of detecting a minimum concentration of 1 ppM of SO 2 diluted in air with a 1 second time constant. For OCS diluted in air, the minimum detectable concentration is 800 ppB and with a 10 second time constant 300 ppB

  3. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    Energy Technology Data Exchange (ETDEWEB)

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  4. Dustbuster: a New Generation Impact-ionization Time-of-flight Mass Spectrometer for in situ Analysis of Cosmic Dust

    Science.gov (United States)

    Austin, D. E.; Ahrens, T. J.; Beauchamp, J. L.

    2000-10-01

    We have developed and tested a small impact-ionization time-of-flight mass spectrometer for analysis of cosmic dust, suitable for use on deep space missions. This mass spectrometer, named Dustbuster, incorporates a large target area and a reflectron, simultaneously optimizing mass resolution, sensitivity, and collection efficiency. Dust particles hitting the 65-cm2 target plate are partially ionized. The resulting ions are accelerated through a modified reflectron that focuses the ions in space and time to produce high-resolution spectra. The instrument, shown below, measures 10 x 10 x 20 cm, has a mass of 500 g, and consumes little power. Laser desorption ionization of metal and mineral samples (embedded in the impact plate) simulates particle impacts for instrument performance tests. Mass resolution in these experiments is near 200, permitting resolution of isotopes. The mass spectrometer can be combined with other instrument components to determine dust particle trajectories and sizes. This project was funded by NASA's Planetary Instrument Definition and Development Program.

  5. Analysis of trace gases at ppb levels by proton transfer reaction mass spectrometry (PTR-MS)

    International Nuclear Information System (INIS)

    Lindinger, W.; Hansel, A.

    1996-01-01

    A proton transfer reaction mass spectrometry (PTR-MS) system has been developed which allows for on-line measurements of trace gas components with concentrations as low as 1 ppb. The method is based on reactions of H 3 O + ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of medical information obtained by means of breath analysis, of environmental trace analysis, and examples in the field of food chemistry demonstrate the wide applicability of the method. (Authors)

  6. Mass measurement of halo nuclides and beam cooling with the mass spectrometer Mistral

    International Nuclear Information System (INIS)

    Bachelet, C.

    2004-12-01

    Halo nuclides are a spectacular drip-line phenomenon and their description pushes nuclear theories to their limits. The most critical input parameter is the nuclear binding energy; a quantity that requires excellent measurement precision, since the two-neutron separation energy is small at the drip-line by definition. Moreover halo nuclides are typically very short-lived. Thus, a high accuracy instrument using a quick method of measurement is necessary. MISTRAL is such an instrument; it is a radiofrequency transmission mass spectrometer located at ISOLDE/CERN. In July 2003 we measured the mass of the Li 11 , a two-neutron halo nuclide. Our measurement improves the precision by a factor 6, with an error of 5 keV. Moreover the measurement gives a two-neutron separation energy 20% higher than the previous value. This measurement has an impact on the radius of the nucleus, and on the state of the two valence neutrons. At the same time, a measurement of the Be 11 was performed with an uncertainty of 4 keV, in excellent agreement with previous measurements. In order to measure the mass of the two-neutron halo nuclide Be 14 , an ion beam cooling system is presently under development which will increase the sensitivity of the spectrometer. The second part of this work presents the development of this beam cooler using a gas-filled Paul trap. (author)

  7. A permanent magnet system for a cyclotron used as a mass spectrometer

    International Nuclear Information System (INIS)

    Li, C.Y.; Cooper, M.; Halbach, K.; Kunkel, W.B.; Leung, K.N.; Wells, R.P.; Young, A.T.

    1992-07-01

    The design of a compact, low energy cyclotron used as a mass spectrometer is presented. The instrument is designed for high resolution, high sensitivity detection of trace. It features the use of permanent magnets to excite the soft iron pole pieces which provide the magnetic field of the cyclotron. Tuning magnets are used to enable the field to be varied. This significantly improves the operational requirements of the instrument when compared to one which uses electromagnets. The cyclotron will use a spiral reflector for axial injection

  8. Detection of formaldehyde emissions from an industrial zone in the Yangtze River Delta region of China using a proton transfer reaction ion-drift chemical ionization mass spectrometer

    Science.gov (United States)

    Ma, Yan; Diao, Yiwei; Zhang, Bingjie; Wang, Weiwei; Ren, Xinrong; Yang, Dongsen; Wang, Ming; Shi, Xiaowen; Zheng, Jun

    2016-12-01

    A proton transfer reaction ion-drift chemical ionization mass spectrometer (PTR-ID-CIMS) equipped with a hydronium (H3+O) ion source was developed and deployed near an industrial zone in the Yangtze River Delta (YRD) region of China in spring 2015 to investigate industry-related emissions of volatile organic compounds (VOCs). Air pollutants including formaldehyde (HCHO), aromatics, and other trace gases (O3 and CO) were simultaneously measured. Humidity effects on the sensitivity of the PTR-ID-CIMS for HCHO detection were investigated and quantified. The performances of the PTR-ID-CIMS were also validated by intercomparing with offline HCHO measurement technique using 2,4-dinitrophenylhydrazone (DNPH) cartridges and the results showed fairly good agreement (slope = 0.81, R2 = 0.80). The PTR-ID-CIMS detection limit of HCHO (10 s, three-duty-cycle averages) was determined to be 0.9-2.4 (RH = 1-81.5 %) parts per billion by volume (ppbv) based on 3 times the standard deviations of the background signals. During the field study, observed HCHO concentrations ranged between 1.8 and 12.8 ppbv with a campaign average of 4.1 ± 1.6 ppbv, which was comparable with previous HCHO observations in other similar locations of China. However, HCHO diurnal profiles showed few features of secondary formation. In addition, time series of both HCHO and aromatic VOCs indicated strong influence from local emissions. Using a multiple linear regression fit model, on average the observed HCHO can be attributed to secondary formation (13.8 %), background level (27.0 %), and industry-related emissions, i.e., combustion sources (43.2 %) and chemical productions (16.0 %). Moreover, within the plumes the industry-related emissions can account for up to 69.2 % of the observed HCHO. This work has provided direct evidence of strong primary emissions of HCHO from industry-related activities. These primary HCHO sources can potentially have a strong impact on local and regional air pollution formation

  9. A cell wall-bound anionic peroxidase, PtrPO21, is involved in lignin polymerization in Populus trichocarpa

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien-Yuan; Li, Quanzi; Tunlaya-Anukit, Sermsawat; Shi, Rui; Sun, Ying-Hsuan; Wang, Jack P.; Liu, Jie; Loziuk, Philip; Edmunds, Charles W.; Miller, Zachary D.; Peszlen, Ilona; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2016-03-11

    Class III peroxidases are members of a large plant-specific sequence-heterogeneous protein family. Several sequence-conserved homologs have been associated with lignin polymerization in Arabidopsis thaliana, Oryza sativa, Nicotiana tabacum, Zinnia elegans, Picea abies, and Pinus sylvestris. In Populus trichocarpa, a model species for studies of wood formation, the peroxidases involved in lignin biosynthesis have not yet been identified. To do this, we retrieved sequences of all PtrPOs from Peroxibase and conducted RNA-seq to identify candidates. Transcripts from 42 PtrPOs were detected in stem differentiating xylem (SDX) and four of them are the most xylem-abundant (PtrPO12, PtrPO21, PtrPO42, and PtrPO64). PtrPO21 shows xylem-specific expression similar to that of genes encoding the monolignol biosynthetic enzymes. Using protein cleavage-isotope dilution mass spectrometry, PtrPO21 is detected only in the cell wall fraction and not in the soluble fraction. Downregulated transgenics of PtrPO21 have a lignin reduction of ~20% with subunit composition (S/G ratio) similar to wild type. The transgenics show a growth reduction and reddish color of stem wood. The modulus of elasticity (MOE) of the stems of the downregulated PtrPO21-line 8 can be reduced to ~60% of wild type. Differentially expressed gene (DEG) analysis of PtrPO21 downregulated transgenics identified a significant overexpression of PtPrx35, suggesting a compensatory effect within the peroxidase family. No significant changes in the expression of the 49 P. trichocarpa laccases (PtrLACs) were observed.

  10. A compact time-of-flight mass spectrometer for ion source characterization

    International Nuclear Information System (INIS)

    Chen, L.; Wan, X.; Jin, D. Z.; Tan, X. H.; Huang, Z. X.; Tan, G. B.

    2015-01-01

    A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study the mass to charge composition of plasma with wide range of parameters

  11. Determination of material emission signatures by PTR-MS and their correlations with odor assessments by human subjects

    DEFF Research Database (Denmark)

    K H, Han; J S, Zhang; Wargocki, Pawel

    2010-01-01

    by human subjects. VOC emissions from each material were measured in a 50-l small-scale chamber. Chamber air was sampled by PTR-MS to determine emission signatures. Sorbent tube sampling and TD-GC/MS analysis were also performed to identify the major VOCs emitted and to compare the resulting data...... VOC odor indices was used to represent the emission level measured by PTR-MS.......The objectives of this study were to determine volatile organic compound (VOC) emission signatures of nine typical building materials by using proton transfer reaction-mass spectrometry (PTR-MS) and to explore the correlation between the PTR-MS measurements and the measurements of acceptability...

  12. PTR-MS in environmental research: biogenic VOCs

    International Nuclear Information System (INIS)

    Beauchamp, J.; Grabmer, W.; Graus, M.; Wisthaler, A.; Hansel, A.

    2004-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a chemical ionization mass spectrometry technique that allows for on-line measurements of volatile organic compounds (VOCs) at pptV levels. This well established analytical tool has been used in a broad variety of research, including the investigation of VOCs in various foods (e.g. for quality control or food degradation studies), as well as being used as a tool for non-invasive medical diagnostics (e.g. human breath analysis). In addition to these fields of study, PTR-MS has been widely used in environmental research, from trace gas analysis in the troposphere to VOC emissions from plants. Participation in two field campaigns (BEWA and ECHO - both part of the German AFO 2000 program) by the Institute of Ion Physics involved a variety of investigations for monitoring biogenic emissions. These included the technique of disjunct eddy covariance for flux measurements above a forest canopy, C-13 carbon labelling experiments to follow carbon use in a plant, and stress-induced VOC emission investigations to gain understanding of how plants react to stress (e.g. ozone exposure). A selection of results from these investigations will be discussed in this presentation. (author)

  13. Measurements of VOC fluxes by Eddy-covariance with a PTR-Qi-TOF-MS over a mature wheat crop near Paris: Evaluation of data quality and uncertainties.

    Science.gov (United States)

    Buysse, Pauline; Loubet, Benjamin; Ciuraru, Raluca; Lafouge, Florence; Zurfluh, Olivier; Gonzaga-Gomez, Lais; Fanucci, Olivier; Gueudet, Jean-Christophe; Decuq, Céline; Gros, Valérie; Sarda, Roland; Zannoni, Nora

    2017-04-01

    The quantification of volatile organic compounds (VOC) fluxes exchanged by terrestrial ecosystems is of large interest because of their influence on the chemistry and composition of the atmosphere including aerosols and oxidants. Latest developments in the techniques for detecting, identifying and measuring VOC fluxes have considerably improved the abilities to get reliable estimates. Among these, the eddy-covariance (EC) methodology constitutes the most direct approach, and relies on both well-established principles (Aubinet et al. 2000) and a sound continuously worldwide improving experience. The combination of the EC methodology with the latest proton-transfer-reaction mass spectrometer (PTR-MS) device, the PTR-Qi-TOF-MS, which allows the identification and quantification of more than 500 VOC at high frequency, now provides a very powerful and precise tool for an accurate quantification of VOC fluxes on various types of terrestrial ecosystems. The complexity of the whole methodology however demands that several data quality requirements are fulfilled. VOC fluxes were measured by EC with a PTR-Qi-TOF-MS (national instrument within the ANAEE-France framework) for one month and a half over a mature wheat crop near Paris (FR-GRI ICOS site). Most important emissions (by descending order) were observed from detected compounds with mass-over-charge (m/z) ratios of 33.033 (methanol), 45.033 (acetaldehyde), 93.033 (not identified yet), 59.049 (acetone), and 63.026 (dimethyl sulfide or DMS). Emissions from higher-mass compounds, which might be due to pesticide applications at the beginning of our observation period, were also detected. Some compounds were also seen to deposit (e.g. m/z 47.013, 71.085, 75.044, 83.05) while others exhibited bidirectional fluxes (e.g. m/z 57.07, 69.07). Before analyzing VOC flux responses to meteorological and crop development drivers, a data quality check was performed which included (i) uncertainty analysis of mass and concentration

  14. Influence of the coupling between an atmospheric pressure ion mobility spectrometer and the low pressure ion inlet of a mass spectrometer on the mobility measurement

    Directory of Open Access Journals (Sweden)

    Gunzer Frank

    2016-01-01

    Full Text Available Ion mobility spectrometers (IMS are versatile gas analyzers. Due to their small size and robustness, combined with a very high sensitivity, they are often used in gas sensing applications such as environmental monitoring. In order to improve the selectivity, they are typically combined with a mass spectrometer (MS. Since IMS works at atmospheric pressure, and MS works at vacuum, a special interface reducing the pressure over normally two stages has to be used. In this paper the influence of this coupling of different pressure areas on the IMS signal will be analyzed with help of finite elements method simulations.

  15. Efficient mass calibration of magnetic sector mass spectrometers

    International Nuclear Information System (INIS)

    Roddick, J.C.

    1996-01-01

    Magnetic sector mass spectrometers used for automatic acquisition of precise isotopic data are usually controlled with Hall probes and software that uses polynomial equations to define and calibrate the mass-field relations required for mass focusing. This procedure requires a number of reference masses and careful tuning to define and maintain an accurate mass calibration. A simplified equation is presented and applied to several different magnetically controlled mass spectrometers. The equation accounts for nonlinearity in typical Hall probe controlled mass-field relations, reduces calibration to a linear fitting procedure, and is sufficiently accurate to permit calibration over a mass range of 2 to 200 amu with only two defining masses. Procedures developed can quickly correct for normal drift in calibrations and compensate for drift during isotopic analysis over a limited mass range such as a single element. The equation is: Field A·Mass 1/2 + B·(Mass) p where A, B, and p are constants. The power value p has a characteristic value for a Hall probe/controller and is insensitive to changing conditions, thus reducing calibration to a linear regression to determine optimum A and B. (author). 1 ref., 1 tab., 6 figs

  16. Indigenously built resonance ionization mass spectrometer

    International Nuclear Information System (INIS)

    Razvi, M.A.N.; Jayasekharan, T.; Thankarajan, K.; Guhagarkar, M.B.; Dixit, M.N.; Bhale, G.L.

    2000-04-01

    Design, fabrication and performance testing of an indigenously built Resonance Ionization Mass Spectrometer (RIMS) is presented in this report. The instrument is totally indigenous, but for the laser components consisting of the excimer laser and tunable dye lasers. Constructional details of atomic beam source and linear time-of-flight mass spectrometer are included. Finally, commissioning and performance testing of the instrument is described. Mass resolving power of 400 and a detection limit of 100 atoms has been achieved using this RIMS set-up. (author)

  17. Measurement of high-mass dilepton production with the CMS-TOTEM Precision Proton Spectrometer

    CERN Document Server

    Shchelina, Ksenia

    2017-01-01

    The measurements of dilepton production in photon-photon fusion with the CMS-TOTEM Precision Proton Spectrometer (CT-PPS) are presented. For the first time, exclusive dilepton production at high masses have been observed in the CMS detector while one or two outgoing protons are measured in CT-PPS using around 10~${\\rm fb}^{-1}$ of data accumulated in 2016 during high-luminosity LHC operation. These first results show a good understanding, calibration and alignment of the new CT-PPS detectors installed in 2016.

  18. High-throughput analysis of amino acids in plant materials by single quadrupole mass spectrometry

    DEFF Research Database (Denmark)

    Dahl-Lassen, Rasmus; van Hecke, Jan Julien Josef; Jørgensen, Henning

    2018-01-01

    that it is very time consuming with typical chromatographic run times of 70 min or more. Results: We have here developed a high-throughput method for analysis of amino acid profiles in plant materials. The method combines classical protein hydrolysis and derivatization with fast separation by UHPLC and detection...... reducing the overall analytical costs compared to methods based on more advanced mass spectrometers....... by a single quadrupole (QDa) mass spectrometer. The chromatographic run time is reduced to 10 min and the precision, accuracy and sensitivity of the method are in line with other recent methods utilizing advanced and more expensive mass spectrometers. The sensitivity of the method is at least a factor 10...

  19. Intracavity Laser Photoacoustic Spectrometer with High Sensitivity

    International Nuclear Information System (INIS)

    Mitrayana; Muslim; Wasono, M.A.J.

    2002-01-01

    A photo acoustic spectrometer set-up has been upgraded from an extra cavity into an intracavity configuration using a sealed-off CO 2 laser as the spectrometer's radiation source. The detection level of the upgrade Intracavity Photoacoustic Spectrometer (IPS) reached (200 ± 50) ppt for C 2 H 4 and (20 ± 5) ppt for SF 6 with response time (6.6 ± 0.2) s. (author)

  20. Mass spectrometer data system at LLL

    International Nuclear Information System (INIS)

    Friesen, R.D.

    1975-01-01

    The data systems on the three mass spectrometers at LLL are computer-controlled, pulse-counting systems synchronized to a repeatedly-swept magnetic field. The data are accumulated in the memory of the computer or in a Nuclear Data ND 180 in a multi-scaler mode of operation. This mode of sweeping allows a continuous check of the background stability and makes tune-up easier. But the main benefit is a reduction in the required ion emission rate stability. By the use of standards to set the system dead time, we have been able to utilize the sensitivity of a pulse counting system without the expense of exotic equipment

  1. Development and analytical characterization of a Grimm-type glow discharge ion source operated with high gas flow rates and coupled to a mass spectrometer with high mass resolution

    International Nuclear Information System (INIS)

    Beyer, Claus; Feldmann, Ingo; Gilmour, Dave; Hoffmann, Volker; Jakubowski, Norbert

    2002-01-01

    A Grimm-type glow discharge ion source has been developed and was coupled to a commercial inductively coupled plasma mass spectrometer (ICP-MS) with high mass resolution (Axiom, ThermoElemental, Winsford, UK) by exchanging the front plate of the ICP-MS interface system only. In addition to high discharge powers of up to 70 W, which are typical for a Grimm-type design, this source could be operated with relative high gas flow rates of up to 240 ml min -1 . In combination with a high discharge voltage the signal intensities are reaching a constant level within the first 20 s after the discharge has started. An analytical characterization of this source is given utilizing a calibration using the steel standard reference material NIST 1261A-1265A. The sensitivity for the investigated elements measured with a resolution of 4000 is in the range of 500-6000 cps μg -1 g -1 , and a relative standard deviation (R.S.D.) of the measured isotope relative to Fe of less than 8% for the major and minor components of the sample has been achieved. Limits of detection at ng g -1 levels could be obtained

  2. Efficient mass calibration of magnetic sector mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Roddick, J C

    1997-12-31

    Magnetic sector mass spectrometers used for automatic acquisition of precise isotopic data are usually controlled with Hall probes and software that uses polynomial equations to define and calibrate the mass-field relations required for mass focusing. This procedure requires a number of reference masses and careful tuning to define and maintain an accurate mass calibration. A simplified equation is presented and applied to several different magnetically controlled mass spectrometers. The equation accounts for nonlinearity in typical Hall probe controlled mass-field relations, reduces calibration to a linear fitting procedure, and is sufficiently accurate to permit calibration over a mass range of 2 to 200 amu with only two defining masses. Procedures developed can quickly correct for normal drift in calibrations and compensate for drift during isotopic analysis over a limited mass range such as a single element. The equation is: Field A{center_dot}Mass{sup 1/2} + B{center_dot}(Mass){sup p} where A, B, and p are constants. The power value p has a characteristic value for a Hall probe/controller and is insensitive to changing conditions, thus reducing calibration to a linear regression to determine optimum A and B. (author). 1 ref., 1 tab., 6 figs.

  3. Development and optimization of a high temperature coupling system thermoanalyzer/mass spectrometer

    International Nuclear Information System (INIS)

    Jagdfeld, H.J.

    1983-11-01

    The development of a high temperature coupling system was accomplished to carry out thermodynamic investigations during glass melting to solidify highly radioactive fission products into glass at a temperature up to 1200 0 C. The actual problem consisted of the fact that the gas species evaporating from the melter have to pass without condensation or without change of their composition a multistage pressure reducing system to enter the analysator unit of the mass spectrometer in the high vacuum. With the systems, offered at present, this is only possible up to approximately 450 0 C. The development of a new high temperature coupling included investigations of the gas dynamics, raw materials and thermic behaviour. (orig./EF) [de

  4. Effects of airflow on odorants' emissions in a model pig house — A laboratory study using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)

    International Nuclear Information System (INIS)

    Saha, Chayan Kumer; Feilberg, Anders; Zhang, Guoqiang; Adamsen, Anders Peter S.

    2011-01-01

    Identification of different factors that affect emissions of gasses, including volatile organic compounds (VOCs) is necessary to develop emission abatement technology. The objectives of this research were to quantify and study temporal variation of gas emissions from a model pig house under varying ventilation rates. The used model was a 1:12.5 scale of a section of a commercial finishing pig house. The VOC concentrations at inlet, outlet, and slurry pit of the model space were measured using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). PTR-MS can measure the temporal variations of odor compounds' emission from the slurry pit in real time. The emissions of H 2 S and 14 VOCs were lower compared to real pig buildings except for ammonia, which indicated possible other sources of those compounds than the slurry in the slurry pit. The ventilation rate affected significantly on ammonia and trimethylamine emission (p 2 S) emission was independent of the ventilation rate. VFAs' emission dependency on ventilation rate increased with the increase of carbon chain. Phenols, indoles and ketones showed the positive correlation with ventilation rate to some extent. Generally, compounds with high solubility (low Henry's constant) showed stronger correlation with ventilation rates than the compounds with high Henry's constant.

  5. Mass Spectrometry-based Assay for High Throughput and High Sensitivity Biomarker Verification

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xuejiang; Tang, Keqi

    2017-06-14

    Searching for disease specific biomarkers has become a major undertaking in the biomedical research field as the effective diagnosis, prognosis and treatment of many complex human diseases are largely determined by the availability and the quality of the biomarkers. A successful biomarker as an indicator to a specific biological or pathological process is usually selected from a large group of candidates by a strict verification and validation process. To be clinically useful, the validated biomarkers must be detectable and quantifiable by the selected testing techniques in their related tissues or body fluids. Due to its easy accessibility, protein biomarkers would ideally be identified in blood plasma or serum. However, most disease related protein biomarkers in blood exist at very low concentrations (<1ng/mL) and are “masked” by many none significant species at orders of magnitude higher concentrations. The extreme requirements of measurement sensitivity, dynamic range and specificity make the method development extremely challenging. The current clinical protein biomarker measurement primarily relies on antibody based immunoassays, such as ELISA. Although the technique is sensitive and highly specific, the development of high quality protein antibody is both expensive and time consuming. The limited capability of assay multiplexing also makes the measurement an extremely low throughput one rendering it impractical when hundreds to thousands potential biomarkers need to be quantitatively measured across multiple samples. Mass spectrometry (MS)-based assays have recently shown to be a viable alternative for high throughput and quantitative candidate protein biomarker verification. Among them, the triple quadrupole MS based assay is the most promising one. When it is coupled with liquid chromatography (LC) separation and electrospray ionization (ESI) source, a triple quadrupole mass spectrometer operating in a special selected reaction monitoring (SRM) mode

  6. Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC.

    Science.gov (United States)

    Materić, Dušan; Lanza, Matteo; Sulzer, Philipp; Herbig, Jens; Bruhn, Dan; Turner, Claire; Mason, Nigel; Gauci, Vincent

    2015-10-01

    Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research-PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and β-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research.

  7. Ion optics of a time-of-flight mass spectrometer with electrostatic sector analyzers

    International Nuclear Information System (INIS)

    Sakurai, T.; Ito, H.; Matsuo, T.

    1995-01-01

    The ion optics for a high resolution time-of-flight mass spectrometer with electrostatic sector analyzers have been investigated. The multiple focusing (triple isochronous focusing and triple spacial focusing) conditions can be achieved by using a symmetrical arrangement of the sectors in a mass spectrometer. Both high mass resolution and high ion transmission can be accomplished simultaneously. The principles of MS/MS and MS/MS/MS analyses using a TOF mass spectrometer with electrostatic sector analyzers have been proposed. Product ion spectra can be obtained by measuring the total flight times and the kinetic energy of the products without any additional separation processes, any coincidence techniques or any special timing circuits. In an experiment, MS/MS and MS/MS/MS mass spectra have been obtained. The first generation product ions have been produced by a metastable decay, and the second generation products have been produced by a sequential decay. (orig.)

  8. Calibration of a Noble Gas Mass Spectrometer with an Atmospheric Argon Standard (Invited)

    Science.gov (United States)

    Prasad, V.; Grove, M.

    2009-12-01

    Like other mass spectrometers, gas source instruments are very good at precisely measuring isotopic ratios but need to be calibrated with a standard to be accurate. The need for calibration arises due to the complicated ionization process which inefficiently and differentially creates ions from the various isotopes that make up the elemental gas. Calibration of the ionization process requires materials with well understood isotopic compositions as standards. Our project goal was to calibrate a noble gas (Noblesse) mass spectrometer with a purified air sample. Our sample obtained from Ocean Beach in San Francisco was under known temperature, pressure, volume, humidity. We corrected the pressure for humidity and used the ideal gas law to calculate the number of moles of argon gas. We then removed all active gasses using specialized equipment designed for this purpose at the United States Geological Survey. At the same time, we measured the volume ratios of various parts of the gas extraction line system associated with the Noblesse mass spectrometer. Using this data, we calculated how much Ar was transferred to the reservoir from the vacuum-sealed vial that contained the purified gas standard. Using similar measurements, we also calculated how much Ar was introduced into the extraction line from a pipette system and how much of this Ar was ultimately expanded into the Noblesse mass spectrometer. Based upon this information, it was possible to calibrate the argon sensitivity of the mass spectrometer. From a knowledge of the isotopic composition of air, it was also possible to characterize how ionized argon isotopes were fractionated during analysis. By repeatedly analyzing our standard we measured a 40Ar Sensitivity of 2.05 amps/bar and a 40Ar/36Ar ratio of 309.2 on the Faraday detector. In contrast, measurements carried out by ion counting using electron multipliers yield a value (296.8) which is much closer to the actual atmospheric 40Ar/36Ar value of 295.5.

  9. Characterisation of the semi-volatile component of Dissolved Organic Matter by Thermal Desorption - Proton Transfer Reaction - Mass Spectrometry

    NARCIS (Netherlands)

    Materić, Dušan; Peacock, Mike; Kent, Matthew; Cook, Sarah; Gauci, Vincent; Röckmann, Thomas; Holzinger, Rupert

    2017-01-01

    Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a sensitive, soft ionisation method suitable for qualitative and quantitative analysis of volatile and semi-volatile organic vapours. PTR-MS is used for various environmental applications including monitoring of volatile organic compounds

  10. Application of the mass-spectrometer MASHA for mass-spectrometry and laser-spectroscopy

    Science.gov (United States)

    Rodin, A. M.; Belozerov, A. V.; Dmitriev, S. N.; Oganessian, Yu. Ts.; Sagaidak, R. N.; Salamatin, V. S.; Stepantsov, S. V.; Vanin, D. V.

    2010-02-01

    We report the present status of the mass-spectrometer MASHA (Mass-Analyzer of Supper Heavy Atoms) designed for determination of the masses of superheavy elements. The mass-spectrometer is connected to the U-400M cyclotron of the Flerov Laboratory for Nuclear Reactions (FLNR) JINR, Dubna. The first experiments on mass-measurements for 112 and 114 elements will be performed in the upcoming 2010. For this purpose a hot catcher, based on a graphite stopper, is constructed. The α-decay of the superheavy nuclides or spontaneous fission products will be detected with a silicon 192 strips detector. The experimental program of future investigations using the technique of a gas catcher is discussed. It should be regarded as an alternative of the classical ISOL technique. The possibilities are considered for using this mass-spectrometer for laser spectroscopy of nuclei far off-stability.

  11. Application of the mass-spectrometer MASHA for mass-spectrometry and laser-spectroscopy

    International Nuclear Information System (INIS)

    Rodin, A. M.; Belozerov, A. V.; Dmitriev, S. N.; Oganessian, Yu. Ts.; Sagaidak, R. N.; Salamatin, V. S.; Stepantsov, S. V.; Vanin, D. V.

    2010-01-01

    We report the present status of the mass-spectrometer MASHA (Mass-Analyzer of Supper Heavy Atoms) designed for determination of the masses of superheavy elements. The mass-spectrometer is connected to the U-400M cyclotron of the Flerov Laboratory for Nuclear Reactions (FLNR) JINR, Dubna. The first experiments on mass-measurements for 112 and 114 elements will be performed in the upcoming 2010. For this purpose a hot catcher, based on a graphite stopper, is constructed. The α-decay of the superheavy nuclides or spontaneous fission products will be detected with a silicon 192 strips detector. The experimental program of future investigations using the technique of a gas catcher is discussed. It should be regarded as an alternative of the classical ISOL technique. The possibilities are considered for using this mass-spectrometer for laser spectroscopy of nuclei far off-stability.

  12. Application of the mass-spectrometer MASHA for mass-spectrometry and laser-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodin, A. M., E-mail: rodin@nrmail.jinr.ru; Belozerov, A. V.; Dmitriev, S. N.; Oganessian, Yu. Ts.; Sagaidak, R. N.; Salamatin, V. S.; Stepantsov, S. V.; Vanin, D. V. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation)

    2010-02-15

    We report the present status of the mass-spectrometer MASHA (Mass-Analyzer of Supper Heavy Atoms) designed for determination of the masses of superheavy elements. The mass-spectrometer is connected to the U-400M cyclotron of the Flerov Laboratory for Nuclear Reactions (FLNR) JINR, Dubna. The first experiments on mass-measurements for 112 and 114 elements will be performed in the upcoming 2010. For this purpose a hot catcher, based on a graphite stopper, is constructed. The {alpha}-decay of the superheavy nuclides or spontaneous fission products will be detected with a silicon 192 strips detector. The experimental program of future investigations using the technique of a gas catcher is discussed. It should be regarded as an alternative of the classical ISOL technique. The possibilities are considered for using this mass-spectrometer for laser spectroscopy of nuclei far off-stability.

  13. Studies on reducing the scale of a double focusing mass spectrometer

    International Nuclear Information System (INIS)

    Chambers, D.M.; Gregg, H.R.; Andresen, B.D.

    1993-05-01

    Several groups have developed miniaturized sector mass spectrometers with the goal of remote sensing in confined spaces or portability. However, these achievements have been overshadowed by more successful development of man-portable quadrupole and ion trap mass spectrometers. Despite these accomplishments the development of a reduced-scale sector mass spectrometer remains attractive as a potentially low-cost, robust instrument requiring very simple electronics and low power. Previous studies on miniaturizing sector instruments include the use of a Mattauch-Herzog design for a portable mass spectrograph weighing less than 10 kg. Other work has included the use of a Nier-Johnson design in spacecraft-mountable gas chromatography mass spectrometers for the Viking spacecraft as well as miniature sector-based MS/MS instrument. Although theory for designing an optimized system with high resolution and mass accuracy is well understood, such specifications have not yet been achieved in a miniaturized instrument. To proceed further toward the development of a miniaturized sector mass spectrometer, experiments were conducted to understand and optimize a practical, yet nonideal instrument configuration. The sector mass spectrometer studied in this work is similar to the ones developed for the Viking project, but was further modified to be low cost, simple and robust. Characteristics of this instrument that highlight its simplicity include the use of a modified Varian leak detector ion source, source ion optics that use one extraction voltage, and an unshunted fixed nonhomogeneous magnetic sector. The effects of these design simplifications on ion trajectory were studied by manipulating the ion beam along with the magnetic sector position. This latter feature served as an aid to study ion focusing amidst fringing fields as well as nonhomogeneous forces and permitted empirical realignment of the instrument

  14. Exploring ECD on a Benchtop Q Exactive Orbitrap Mass Spectrometer

    DEFF Research Database (Denmark)

    Fort, Kyle L; Cramer, Christian N; Voinov, Valery G

    2018-01-01

    As the application of mass spectrometry intensifies in scope and diversity, the need for advanced instrumentation addressing a wide variety of analytical needs also increases. To this end, many modern, top-end mass spectrometers are designed or modified to include a wider range of fragmentation...... applications including middle-down proteomics, top-down proteomics, glycoproteomics, and disulfide bond mapping. We describe the modification of the popular Q Exactive Orbitrap mass spectrometer to extend its fragmentation capabilities to include ECD. We show that this modification allows ≥85% matched ion...... intensity to originate from ECD fragment ion types as well as provides high sequence coverage (≥60%) of intact proteins and high fragment identification rates with ∼70% of ion signals matched. Finally, the ECD implementation promotes selective disulfide bond dissociation, facilitating the identification...

  15. Applications of PTR-MS in food flavour research: recent progress and prospects

    International Nuclear Information System (INIS)

    Yeretzian, C.; Pollien, P.; Jordan, A.; Graus, M.; Lindinger, W.

    2002-01-01

    Food products all along the food chain from raw material to final products continuously emit volatile organic compounds (VOs), which are related to important properties of the product itself such as flavor, age, or safety among others. Several analytical techniques for sampling and analysing the head space (HS) of food has been developed, however the proton-transfer-reaction mass spectrometry (PTR-MS) has the particularity to be able to work on real time-basis. By applying PTR-MS two qualitatively distinct types of information were obtained: HS profiles can be averaged over a given time window to yield concentration vs. mass spectra (static data). Such spectra can be used to asses authenticity, monitor deviation in production from a reference or classify product. Alternatively, temporal changes can be analysed via time-intensity plots (dynamic data). As example soluble coffee data is given. (nevyjel)

  16. Calcium Atom Trap for Atom Trap Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Artificially produced fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of them has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10-10. The ultra-trace radio isotopes have been analyzed by the radio-chemical method, accelerator mass spectrometer, and laser based method. The radiochemical method has been used in the nuclear industry. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The accelerator mass spectrometer has high isotope selectivity, but the system is huge and it has the isobar effects. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) is a basically isobar-effect free method. Recently, ATTA (Atom Trap Trace Analysis), one of the laser based method, has been successfully demonstrated sufficient isotope selectivity with small system size. It has been applied for the detection of Kr-81 and Kr-85. However, it is not suitable for real sample detection, because it requires steady atomic beam generation during detection and is not allowed simultaneous detection of other isotopes. Therefore, we proposed the coupled method of Atom Trap and Mass Spectrometer. It consists of three parts, neutral atom trap, ionization and mass spectrometer. In this paper, we present the demonstration of the magneto-optical trap of neutral calcium. We discuss the isotope selective characteristics of the MOT (Magneto Optical Trap) of calcium by the fluorescence measurement. In addition, the frequency stabilization of the trap beam will be presented

  17. Respiratory mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mostert, J.W. (Pretoria Univ. (South Africa). Dept. of Anesthesiology)

    1983-06-01

    The high degree of technical perfection of the respiratory mass spectrometer has rendered the instrument feasible for routine monitoring of anesthetized patients. It is proposed that the difference between inspired and expired oxygen tension in mm Hg be equated with whole body oxygen consumption in ml/min/M/sup 2/ body-surface area at STPD, by the expedient of multiplying tension-differences by a factor of 2. Years of experience have confirmed the value of promptly recognizing sudden drops in this l/E tension difference below 50 mm Hg indicative of metabolic injury from hypovolemia or respiratory depression. Rises in l/E tension-differences were associated with shivering as well as voluntary muscle activity. Tension differences of less than 25 mm Hg (equated with a whole-body O/sub 2/ consumption of less than 50 ml O/sub 2//min/M/sup 2/) occurred in a patient in the sitting position for posterior fossa exploration without acidosis, hypoxia or hypotension for several hours prior to irreversible cardiac arrest. The value of clinical monitoring by mass spectrometry is especially impressive in open-heart surgery.

  18. Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment

    Science.gov (United States)

    Koss, Abigail R.; Sekimoto, Kanako; Gilman, Jessica B.; Selimovic, Vanessa; Coggon, Matthew M.; Zarzana, Kyle J.; Yuan, Bin; Lerner, Brian M.; Brown, Steven S.; Jimenez, Jose L.; Krechmer, Jordan; Roberts, James M.; Warneke, Carsten; Yokelson, Robert J.; de Gouw, Joost

    2018-03-01

    Volatile and intermediate-volatility non-methane organic gases (NMOGs) released from biomass burning were measured during laboratory-simulated wildfires by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF). We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC) pre-separation with electron ionization, H3O+ chemical ionization, and NO+ chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90 % of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR), broadband cavity-enhanced spectroscopy (ACES), and iodide ion chemical ionization mass spectrometry (I- CIMS) where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R2, of > 0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN), nitrous acid (HONO), and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fire-integrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire.

  19. Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment

    Directory of Open Access Journals (Sweden)

    A. R. Koss

    2018-03-01

    Full Text Available Volatile and intermediate-volatility non-methane organic gases (NMOGs released from biomass burning were measured during laboratory-simulated wildfires by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF. We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC pre-separation with electron ionization, H3O+ chemical ionization, and NO+ chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90 % of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR, broadband cavity-enhanced spectroscopy (ACES, and iodide ion chemical ionization mass spectrometry (I− CIMS where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R2, of  >  0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN, nitrous acid (HONO, and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fire-integrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire.

  20. LADEE Neutral Mass Spectrometer Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This bundle contains the data collected by the Neutral Mass Spectrometer (NMS) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE)...

  1. A high-resolution x-ray spectrometer for a kaon mass measurement

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, Kevin, E-mail: kevin.phelan@oeaw.ac.at [Stefan Meyer Institute for Subatomic Physics of The Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna (Austria); Suzuki, Ken; Zmeskal, Johann [Stefan Meyer Institute for Subatomic Physics of The Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna (Austria); Tortorella, Daniele [Payr Engineering GmbH, Wiederschwing 25, A-9564 Patergassen (Austria); Bühler, Matthias; Hertrich, Theo [Low Temperature Solutions UG, Bahnhofstraße 21, D-85737 Ismaning (Germany)

    2017-02-11

    The ASPECT consortium (Adaptable Spectrometer Enabled by Cryogenic Technology) is currently constructing a generalised cryogenic platform for cryogenic detector work which will be able to accommodate a wide range of sensors. The cryogenics system is based on a small mechanical cooler with a further adiabatic demagnetisation stage and will work with cryogenic detectors at sub-Kelvin temperatures. The commercial aim of the consortium is to produce a compact, user-friendly device with an emphasis on reliability and portability which can easily be transported for specialised on-site work, such as beam-lines or telescope facilities. The cryogenic detector platform will accommodate a specially developed cryogenic sensor, either a metallic magnetic calorimeter or a magnetic penetration-depth thermometer. The detectors will be designed to work in various temperatures regions with an emphasis on optimising the various detector resolutions for specific temperatures. One resolution target is of about 10 eV at the energies range typically created in kaonic atoms experiments (soft x-ray energies). A following step will see the introduction of continuous, high-power, sub-Kelvin cooling which will bring the cryogenic basis for a high resolution spectrometer system to the market. The scientific goal of the project will produce an experimental set-up optimised for kaon-mass measurements performing high-resolution x-ray spectroscopy on a beam-line provided foreseeably by the J-PARC (Tokai, Japan) or DAΦNE (Frascati, Italy) facilities.

  2. Investigation on the spoiling of meat using PTR-MS

    International Nuclear Information System (INIS)

    Mayr, D.; Maerk, T.D.; Margesin, R.; Schinner, F.

    2002-01-01

    The spoiling of meat was investigated. Beef (pork) were wrapped into different kinds of packages (air and vacuum) and stored at 4 o C for 10 (13) days. The emitted volatile organic compounds (VOCs) in the course of time were measured and a large increase in these emissions after a few days of storage was found. Also a large difference in the spoiling behavior between vacuum- and air- packed meat was observed. The measurements were performed using a proton-transfer-reaction-mass spectrometer(PTR-MS) system, it allows on-line monitoring of volatile organic compounds (VOCs) concentrations. Ethylacetate, methylpropionate, and propylformate were detected as typical spoiling compounds in pork samples. After 3.5 days the concentrations started to exponentially increase, but after 6 days remained more or less unchanged. This VOCs behaviour corresponds to a typical bacterial growth curve. Therefore, it was concluded that bacteria produce these components. In a second measurements set, the VOCs emitted by beef under aerobic (normal packed) and anaerobic (vacuum packed) conditions were compared. In the case of normal air-packed beef, the above mentioned spoiling compounds strongly increased with the time, while with the vacuum-packed beef a strong increase of ethanol was detected. This method as a replacement of the bacteriological examinations of meat spoilage is proposed. (nevyjel)

  3. Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping

    Science.gov (United States)

    Dickel, Timo; Plaß, Wolfgang R.; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I.; Geissel, Hans; Scheidenberger, Christoph

    2017-06-01

    A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. [Figure not available: see fulltext.

  4. Computerized mass spectrometer data system at LLL

    International Nuclear Information System (INIS)

    Friesen, R.D.; Dupzyk, R.J.

    1976-01-01

    The data systems on the three mass spectrometers at LLL are computer-controlled, pulse-counting systems synchronized to a repeatedly swept magnetic field. The data are accumulated in the memory of the computer or in a Nuclear Data ND 180 in a multi-scaler mode of operation. This mode of data acquisition allows a continuous check of the background stability and makes tune-up easier. But the main benefit is a reduction in the required ion emission rate stability. By the use of standards to set the system dead time, we have been able to utilize the sensitivity of a pulse counting system without the expense of exotic equipment

  5. High-performance multiple-reflection time-of-flight mass spectrometers for research with exotic nuclei and for analytical mass spectrometry

    Science.gov (United States)

    Plaß, Wolfgang R.; Dickel, Timo; Ayet San Andres, Samuel; Ebert, Jens; Greiner, Florian; Hornung, Christine; Jesch, Christian; Lang, Johannes; Lippert, Wayne; Majoros, Tamas; Short, Devin; Geissel, Hans; Haettner, Emma; Reiter, Moritz P.; Rink, Ann-Kathrin; Scheidenberger, Christoph; Yavor, Mikhail I.

    2015-11-01

    A class of multiple-reflection time-of-flight mass spectrometers (MR-TOF-MSs) has been developed for research with exotic nuclei at present and future accelerator facilities such as GSI and FAIR (Darmstadt), and TRIUMF (Vancouver). They can perform highly accurate mass measurements of exotic nuclei, serve as high-resolution, high-capacity mass separators and be employed as diagnostics devices to monitor the production, separation and manipulation of beams of exotic nuclei. In addition, a mobile high-resolution MR-TOF-MS has been developed for in situ applications in analytical mass spectrometry ranging from environmental research to medicine. Recently, the MR-TOF-MS for GSI and FAIR has been further developed. A novel RF quadrupole-based ion beam switchyard has been developed that allows merging and splitting of ion beams as well as transport of ions into different directions. It efficiently connects a test and reference ion source and an auxiliary detector to the system. Due to an increase in the kinetic energy of the ions in the time-of-flight analyzer of the MR-TOF-MS, a given mass resolving power is now achieved in less than half the time-of-flight. Conversely, depending on the time-of-flight, the mass resolving power has been increased by a factor of more than two.

  6. Theoretical resolving power of a radiofrequency mass spectrometer

    International Nuclear Information System (INIS)

    Coc, A.; Le Gac, R.; Saint Simon, M. de; Thibault, C.; Touchard, F.

    1988-01-01

    Radiofrequency mass spectrometers of L.G. Smith's type can reach a resolving power of 10 6 -10 7 and a precision of 10 -9 -10 -10 . The resolving power, shape of peaks and limitations are described. As an example, the spectrometer to be used in an experiment aimed at measuring the anti p/p mass ratio is considered. (orig.)

  7. Rapid tryptic mapping using enzymatically active mass spectrometer probe tips

    Energy Technology Data Exchange (ETDEWEB)

    Dogruel, D.; Williams, P.; Nelson, R.W. [Arizona State Univ., Tempe, AZ (United States)

    1995-12-01

    A method has been developed for rapid, sensitive, and accurate tryptic mapping of polypeptides using matrix-assisted laser desorption/ionization time-of-flight mass analysis. The technique utilizes mass spectrometer probe tips which have been activated through the covalent immobilization of trypsin. The enzymatically active probe tips were used for the tryptic mapping of chicken egg lysozyme and the results compared with those obtained using either free trypsin or agarose-immobilized trypsin. A significant increase in the overall sensitivity of the process was observed using the active probe tips, as well as the production of more characteristic proteolytic fragments and the elimination of background signals due to the autolysis of the trypsin. Further, probe tip digestions were found to be rapid and convenient. 19 refs., 6 figs., 2 tabs.

  8. Development and testing of a double-focusing, static, axisymmetric mass spectrometer

    International Nuclear Information System (INIS)

    Ritter, G.

    1979-04-01

    The developed mass spectrometer affords very high acceptance (cm 2 sr) compared with conventional mass spectrometers owing to its large solid angle of 0.178 sr. The ion optical properties of the instrument were tested by bombarding various targets (Al, Ni, Ti, Cu, Si) with potassium or caesium ions from a thermionic ion source with energies of 1, 2 and 3 keV and recording mass spectra of positive and negative sputtered ions. The ion optical beam path was calculated analytically (magnet system) in part and numerically in part (energy analyzer, einzel lenses and detector system) and represented in graph form. The results obtained from the mass spectra showed that the magnet system with its twelve permanent magnets is too irregular to produce mass linses with good resolution. Furthermore, it was found that the maximum primary energy of the alkali ions that was possible in this mass spectrometer owing to the breakdown strength was not sufficient to record surface-specific mass spectra since the target surface was covered within a very short time with an at least monatomic layer of alkali ions from the thermionic ion source. (orig./HP) [de

  9. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana.

    Science.gov (United States)

    Duan, Yanjiao; Jiang, Yuanzhong; Ye, Shenglong; Karim, Abdul; Ling, Zhengyi; He, Yunqiu; Yang, Siqi; Luo, Keming

    2015-05-01

    A salicylic acid-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa , was isolated and characterized. Overexpression of PtrWRKY73 in Arabidopsis thaliana increased resistance to biotrophic pathogens but reduced resistance against necrotrophic pathogens. WRKY transcription factors are commonly involved in plant defense responses. However, limited information is available about the roles of the WRKY genes in poplar defense. In this study, we isolated a salicylic acid (SA)-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa, belonging to group I family and containing two WRKY domains, a D domain and an SP cluster. PtrWRKY73 was expressed predominantly in roots, old leaves, sprouts and stems, especially in phloem and its expression was induced in response to treatment with exogenous SA. PtrWRKY73 was localized to the nucleus of plant cells and exhibited transcriptional activation. Overexpression of PtrWRKY73 in Arabidopsis thaliana resulted in increased resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae (PstDC3000), but more sensitivity to the necrotrophic fungal pathogen Botrytis cinerea. The SA-mediated defense-associated genes, such as PR1, PR2 and PAD4, were markedly up-regulated in transgenic plants overexpressing PtrWRKY73. Arabidopsis non-expressor of PR1 (NPR1) was not affected, whereas a defense-related gene PAL4 had reduced in PtrWRKY73 overexpressor plants. Together, these results indicated that PtrWRKY73 plays a positive role in plant resistance to biotrophic pathogens but a negative effect on resistance against necrotrophic pathogens.

  10. Aluminum nanocantilevers for high sensitivity mass sensors

    DEFF Research Database (Denmark)

    Davis, Zachary James; Boisen, Anja

    2005-01-01

    We have fabricated Al nanocantilevers using a simple, one mask contact UV lithography technique with lateral and vertical dimensions under 500 and 100 nm, respectively. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties. Furthermore, it is shown ...

  11. The MEG positron spectrometer

    International Nuclear Information System (INIS)

    Nishiguchi, Hajime

    2007-01-01

    We have been developing an innovative spectrometer for the MEG experiment at the Paul Scherrer Institute (PSI) in Switzerland. This experiment searches for a lepton flavour violating decay μ + →e + γ with a sensitivity of 10 -13 in order to explore the region predicted by supersymmetric extensions of the standard model. The MEG positron spectrometer consists of a specially designed superconducting solenoidal magnet with a highly graded field, an ultimate low-mass drift chamber system, and a precise time measuring counter system. This innovative positron spectrometer is described here focusing on the drift chamber system

  12. Cherenkov detectors and a new effective-mass spectrometer method

    Czech Academy of Sciences Publication Activity Database

    Hladký, Jan

    2006-01-01

    Roč. 75, - (2006), s. 854-855 ISSN 0969-806X Institutional research plan: CEZ:AV0Z10100502 Keywords : Cherenkov radiation * spectrometer * effective mass method Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.868, year: 2006

  13. Expert systems technology applied to instrument operation and data acquisition of a triple quadrupole mass spectrometer (TQMS)

    International Nuclear Information System (INIS)

    Wong, C.M.

    1984-01-01

    This presentation covers the work done at Lawrence Livermore National Laboratory by some computer programmers and analytical chemists specializing in mass spectrometry to develop an expert system for real-time tuning and optimization of operations of a triple quadrupole mass spectrometer (TQMS). This capability is important to increase the sensitivity possible for selected compounds throughout the entire mass range of the instrument, rather than settling for the traditional normalized calibration which lowers sensitivity at both ends of the mass scale

  14. Mass-spectrometer MASHA - testing results on heavy ion beam

    International Nuclear Information System (INIS)

    Rodin, A.M.; Belozerov, A.V.; Vanin, D.V.; Dmitriev, S.N.; Itkis, M.G.; Kliman, J.; Krupa, L.; Lebedev, A.N.; Oganesyan, Yu.Ts.; Salamatin, V.S.; Sivachek, I.; Chernysheva, E.V.; Yukhimchuk, S.A.

    2011-01-01

    Description of mass-spectrometer MASHA, developed for the mass identification of superheavy elements, is given. The efficiency and operation speed in the off-line mode were measured with four calibrated leakages of noble gases. The total efficiency and operation speed of mass-spectrometer with hot catcher and ECR ion source were determined using the 40 Ar beam. The test experiment was carried out by measuring the alpha decay of Hg and Rn isotopes, produced in fusion reactions 40 Ar+ nat Sm→ nat-xn Hg+xn and 40 Ar+ 166 Er→ 206-xn Rn+xn, in the focal plane of mass-spectrometer. The operation speed of the given technique and relative yields of isotopes in the test reactions were determined

  15. Volatile compound changes during shelf life of dried Boletus edulis: comparison between SPME-GC-MS and PTR-ToF-MS analysis.

    Science.gov (United States)

    Aprea, Eugenio; Romano, Andrea; Betta, Emanuela; Biasioli, Franco; Cappellin, Luca; Fanti, Marco; Gasperi, Flavia

    2015-01-01

    Drying process is commonly used to allow long time storage of valuable porcini mushrooms (Boletus edulis). Although considered a stable product dried porcini flavour changes during storage. Monitoring of volatile compounds during shelf life may help to understand the nature of the observed changes. In the present work two mass spectrometric techniques were used to monitor the evolution of volatile compounds during commercial shelf life of dried porcini. Solid phase microextraction (SPME) coupled to gas chromatography - mass spectrometry (GC-MS) allowed the identification of 66 volatile compounds, 36 of which reported for the first time, monitored during the commercial shelf life of dried porcini. Proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS) , a direct injection mass spectrometric technique, was shown to be a fast and sensitive instrument for the general monitoring of volatile compound evolution during storage of dried porcini. Furthermore, PTR-ToF-MS grants access to compounds whose determination would otherwise require lengthy pre-concentration and/or derivatization steps such as ammonia and small volatile amines. The two techniques, both used for the first time to study dried porcini, provided detailed description of time evolution of volatile compounds during shelf life. Alcohols, aldehydes, ketones and monoterpenes diminish during the storage while carboxylic acids, pyrazines, lactones and amines increase. The storage temperature modifies the rate of the observed changes influencing the final quality of the dried porcini. We showed the advantages of both techniques, suggesting a strategy to be adopted to follow time evolution of volatile compounds in food products during shelf life, based on the identification of compounds by GC-MS and the rapid time monitoring by PTR-ToF-MS measurements in order to maximize the advantages of both techniques. Copyright © 2015 John Wiley & Sons, Ltd.

  16. A high efficiency thermal ionization source adapted to mass spectrometers

    International Nuclear Information System (INIS)

    Chamberlin, E.P.; Olivares, J.A.

    1996-01-01

    A tungsten crucible thermal ionization source mounted on a quadrupole mass spectrometer is described. The crucible is a disposable rod with a fine hole bored in one end; it is heated by electron bombardment. The schematic design of the assembly, including water cooling, is described and depicted. Historically, the design is derived from that of ion sources used on ion separators at Los Alamos and Dubna, but the crucible is made smaller and simplified. 10 refs., 4 figs

  17. A miniaturized laser-ablation mass spectrometer for in-situ measurements of isotope composition on solar body surfaces

    Science.gov (United States)

    Riedo, A.; Meyer, S.; Tulej, M.; Neuland, M.; Bieler, A.; Iakovleva, M.; Wurz, P.

    2012-04-01

    The in-situ analysis of extraterrestrial material onboard planetary rovers and landers is of considerable interest for future planetary space missions. Due to the low detection sensitivity of spectroscopic instruments, e.g. α-particle X-ray, γ-ray or neutron spectrometers, it is frequently possible to measure only major/minor elements in extraterrestrial materials. Nevertheless, the knowledge of minor/trace elements is of considerable interest to cosmochemistry. Chemistry puts constraints on the origin of solar system and its evolution enabling also a deeper inside to planetary transformation processes (e.g. volcanic surface alteration, space weathering). The isotopes play special role in analysis of the origin and transformation of planetary matter. They are robust tracers of the early events because their abundances are less disturbed as the elemental once. Nevertheless, if the isotope abundance ratios are fractionated, the underlying chemical and physical processes can be then encoded from the variations of abundance ratios. A detailed analysis of isotopic patterns of radiogenic elements can allow age dating of minerals and temporal evolution of planetary matter. High accuracy and sensitive measurements of isotopic pattern of bio-relevant elements, i.e., sulfur, found on planetary surfaces can be helpful for the identification of possible past and present extraterrestrial life in terms of biomarker identification. Our group has designed a self-optimizing miniaturized laser ablation time-of-flight mass spectrometer (LMS) for in situ planetary measurements (Wurz et al., 2012; Rohner et al., 2003). Initial studies utilizing IR laser radiation for ablation, atomization and ionization of solid materials indicated a high instrumental performance in terms of sensitivity and mass resolution (Tulej et al., 2011). Current studies are conducted with a UV radiation and a high spatial resolution is achieved by focussing the laser beam to 20µm spots onto the sample. The

  18. Precise mass measurements of exotic nuclei--the SHIPTRAP Penning trap mass spectrometer

    International Nuclear Information System (INIS)

    Herfurth, F.; Ackermann, D.; Block, M.; Dworschak, M.; Eliseev, S.; Hessberger, F.; Hofmann, S.; Kluge, H.-J.; Maero, G.; Martin, A.; Mazzocco, M.; Rauth, C.; Vorobjev, G.; Blaum, K.; Ferrer, R.; Neidherr, D.; Chaudhuri, A.; Marx, G.; Schweikhard, L.; Neumayr, J.

    2007-01-01

    The SHIPTRAP Penning trap mass spectrometer has been designed and constructed to measure the mass of short-lived, radioactive nuclei. The radioactive nuclei are produced in fusion-evaporation reactions and separated in flight with the velocity filter SHIP at GSI in Darmstadt. They are captured in a gas cell and transfered to a double Penning trap mass spectrometer. There, the cyclotron frequencies of the radioactive ions are determined and yield mass values with uncertainties ≥4.5·10 -8 . More than 50 nuclei have been investigated so far with the present overall efficiency of about 0.5 to 2%

  19. PTR-MS analysis of reference and plant-emitted volatile organic compounds

    Science.gov (United States)

    Maleknia, Simin D.; Bell, Tina L.; Adams, Mark A.

    2007-05-01

    Proton transfer reaction-mass spectrometry (PTR-MS) was applied to the analysis of a series of volatile organic compounds (VOCs) that emit from various plants. These include a group of alcohols (methanol, ethanol and butanol), carbonyl-containing compounds (acetic acid, acetone and benzaldehyde), isoprene, acetonitrile, tetrahydrofuran (THF), pyrazine, toluene and xylene and a series of terpenes (p-cymene, camphene, 2-carene, limonene, [beta]-myrcene, [alpha]-pinene, [beta]-pinene, [gamma]-tepinene and terpinolene) and oxygen-containing terpenes (1,8-cineole and linalool). These mass spectral data were compared to an electron ionization (EI) database identifying that not all PTR-MS fragments were common to EI. PTR-MS studies of these reference compounds were utilized to identify VOCs emitted from Eucalyptus grandis leaf at a temperature range of 30-100 °C. In addition to protonated molecules (M + H)+, abundant proton-bound dimers or trimers were detected for alcohols, acetone, acetonitrile and THF. Abundant fragment ions attributed to the loss of water from these proton-bound clusters were also observed. The stability of butyl (C4H9+ m/z 57) and acetyl (CH3CO+ m/z 43) fragment ions directed the proton-transfer reactions of butanol and acetic acid. Abundant (M + H)+ ions were detected for pyrazine, THF, toluene and xylene, as well as for all terpenes except those containing oxygen. For linalool and 1,8-cineole, the loss of water generated an abundant fragment ion at m/z 137. PTR-MS fragmentation patterns for terpenes were proposed for m/z 81 (C6H9+), 93 (C7H9+), 95 (C7H11+), 107 (C8H11+), 109 (C8H13+), 119 (C9H11+), 121 (C9H13+) and 137 (loss of water for oxygen-containing terpenes; C10H17+). The relative abundances of (M + H)+ and fragments for all terpenes (except linalool) were dependent on the drift tube voltage and the optimum voltage for detection of molecular ions was different for various terpenes.

  20. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar.

    Science.gov (United States)

    Cho, Jin-Seong; Nguyen, Van Phap; Jeon, Hyung-Woo; Kim, Min-Ha; Eom, Seok Hyun; Lim, You Jin; Kim, Won-Chan; Park, Eung-Jun; Choi, Young-Im; Ko, Jae-Heung

    2016-09-01

    Anthocyanins are a group of colorful and bioactive natural pigments with important physiological and ecological functions in plants. We found an MYB transcription factor (PtrMYB119) from Populus trichocarpa that positively regulates anthocyanin production when expressed under the control of the CaMV 35S promoter in transgenic Arabidopsis Amino acid sequence analysis revealed that PtrMYB119 is highly homologous to Arabidopsis PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), a well-known transcriptional activator of anthocyanin biosynthesis. Independently produced transgenic poplars overexpressing PtrMYB119 or PtrMYB120 (a paralogous gene to PtrMYB119) (i.e., 35S::PtrMYB119 and 35S::PtrMYB120, respectively) showed elevated accumulation of anthocyanins in the whole plants, including leaf, stem and even root tissues. Using a reverse-phase high-performance liquid chromatography, we confirmed that the majority of the accumulated anthocyanin in our transgenic poplar is cyanidin-3-O-glucoside. Gene expression analyses revealed that most of the genes involved in the anthocyanin biosynthetic pathway were highly upregulated in 35S::PtrMYB119 poplars compared with the nontransformed control poplar. Among these genes, expression of PtrCHS1 (Chalcone Synthase1) and PtrANS2 (Anthocyanin Synthase2), which catalyze the initial and last steps of anthocyanin biosynthesis, respectively, was upregulated by up to 350-fold. Subsequent transient activation assays confirmed that PtrMYB119 activated the transcription of both PtrCHS1 and PtrANS2 Interestingly, expression of MYB182, a repressor of both anthocyanin and proanthocyanidin (PA) biosynthesis, was largely suppressed in 35S::PtrMYB119 poplars, while expression of MYB134, an activator of PA biosynthesis, was not changed significantly. More interestingly, high-level accumulation of anthocyanins in 35S::PtrMYB119 poplars did not have an adverse effect on plant growth. Taken together, our results demonstrate that PtrMYB119 and PtrMYB120

  1. Effective mass trigger at the Brookhaven Multi-Particle Spectrometer (MPS)

    International Nuclear Information System (INIS)

    Willen, E.H.

    1980-01-01

    An effective mass trigger for use at the Brookhaven Multiparticle Spectrometer (MPS) is described. It is a microprocessor based device using extensive fast memory attached to proportional wire chambers in the MPS magnetic field. It will select kinematic quantities unique to the reaction being studied, thereby permitting higher sensitivities and a reduction in data-processing cost for MPS experiments. The principles of operation for this trigger, and the results of simulations to assess its performance, are presented

  2. Investigation of background processes in the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Axel [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik (IKP) (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The KArlsruhe TRItium Neutrino experiment aims to probe the mass of the electron antineutrino in a model-independent way with an unsurpassed sensitivity of m{sub ν}=200 meV/c{sup 2} (90% C.L.). In order to determine the neutrino mass, the energy spectrum of electrons from the tritium β-decay is analyzed by a high-resolution electrostatic spectrometer which is based on the MAC-E filter principle. To keep the influence of the spectrometer background on the neutrino mass sensitivity small, KATRIN aims for a background level of 0.01 cps. For the investigation of different background components such as cosmic muons, external gamma radiation and the radioactive decay of isotopes in the volume of the spectrometer or on its surface, a series of dedicated measurements were performed with a combined system of main spectrometer and detector. This talk presents the results of measurements focusing on the secondary electron production at the inner surface of the spectrometer and compare them with electro-magnetic electron tracking simulations performed with the KATRIN developed simulation software KASSIOPEIA.

  3. High-temperature quadrupole mass spectrometer for studying vaporization from materials heated by a CO2 laser

    International Nuclear Information System (INIS)

    Fredin, L.; Hansen, G.P.; Sampson, M.P.; Margrave, J.L.; Behrens, R.G.

    1986-09-01

    To evaluate the effectiveness of mass spectrometry techniques in studying vaporization from selected materials, we designed a mass spectrometer than can be used either with a continuous wave or pulsed laser heating system or with a conventional furnace heating system. Our experimental apparatus, the components of which are described in detail, consisted of a quadrupole mass spectrometer positioned in a crossed-beam configuration, controlling electronics, a data acquisition system, a vacuum system, a cryogenic collimation system, and a laser heating system. Results of mass spectral scans taken during laser pyrolysis of polymeric materials and laser vaporization of graphite were compatible with data reported in other studies. Results of mass spectral studies of laser-induced combustion in the Ti + C system are also presented

  4. Characterization of chemical constituents in Rhodiola Crenulate by high-performance liquid chromatography coupled with Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS).

    Science.gov (United States)

    Han, Fei; Li, Yanting; Mao, Xinjuan; Xu, Rui; Yin, Ran

    2016-05-01

    In this work, an approach using high-performance liquid chromatography coupled with diode-array detection and Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS) for the identification and profiling of chemical constituents in Rhodiola crenulata was developed for the first time. The chromatographic separation was achieved on an Inertsil ODS-3 column (150 mm × 4.6 mm,3 µm) using a gradient elution program, and the detection was performed on a Bruker Solarix 7.0 T mass spectrometer equipped with electrospray ionization source in both positive and negative modes. Under the optimized conditions, a total of 48 chemical compounds, including 26 alcohols and their glycosides, 12 flavonoids and their glycosides, 5 flavanols and gallic acid derivatives, 4 organic acids and 1 cyanogenic glycoside were identified or tentatively characterized. The results indicated that the developed HPLC-FT-ICR MS method with ultra-high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents in R. crenulata. And it provides a helpful chemical basis for further research on R. crenulata. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Mass measurements on neutron-deficient nuclides at SHIPTRAP and commissioning of a cryogenic narrow-band FT-ICR mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer Garcia, R.

    2007-07-01

    The dissertation presented here deals with high-precision Penning trap mass spectrometry on short-lived radionuclides. Owed to the ability of revealing all nucleonic interactions, mass measurements far off the line of {beta}-stability are expected to bring new insight to the current knowledge of nuclear properties and serve to test the predictive power of mass models and formulas. In nuclear astrophysics, atomic masses are fundamental parameters for the understanding of the synthesis of nuclei in the stellar environments. This thesis presents ten mass values of radionuclides around A=90 interspersed in the predicted rp-process pathway. Six of them have been experimentally determined for the first time. The measurements have been carried out at the Penning-trap mass spectrometer SHIPTRAP using the destructive time-of-flight ion-cyclotron-resonance (TOF-ICR) detection technique. Given the limited performance of the TOF-ICR detection when trying to investigate heavy/superheavy species with small production cross sections ({sigma} <1 {mu}b), a new detection system is found to be necessary. Thus, the second part of this thesis deals with the commissioning of a cryogenic double-Penning trap system for the application of a highly-sensitive, narrow-band Fourier-transform ion-cyclotron-resonance (FT-ICR) detection technique. With the non-destructive FT-ICR detection method a single singly-charged trapped ion will provide the required information to determine its mass. First off-line tests of a new detector system based on a channeltron with an attached conversion dynode, of a cryogenic pumping barrier, to guarantee ultra-high vacuum conditions during mass determination, and of the detection electronics for the required single-ion sensitivity are reported. (orig.)

  6. Highly Sensitive Tunable Diode Laser Spectrometers for In Situ Planetary Exploration

    Science.gov (United States)

    Vasudev, Ram; Mansour, Kamjou; Webster, Christopher R.

    2013-01-01

    This paper describes highly sensitive tunable diode laser spectrometers suitable for in situ planetary exploration. The technology developed at JPL is based on wavelength modulated cavity enhanced absorption spectroscopy. It is capable of sensitively detecting chemical signatures of life through the abundance of biogenic molecules and their isotopic composition, and chemicals such as water necessary for habitats of life. The technology would be suitable for searching for biomarkers, extinct life, potential habitats of extant life, and signatures of ancient climates on Mars; and for detecting biomarkers, prebiotic chemicals and habitats of life in the outer Solar System. It would be useful for prospecting for water on the Moon and asteroids, and characterizing its isotopic composition. Deployment on the Moon could provide ground truth to the recent remote measurements and help to uncover precious records of the early bombardment history of the inner Solar System buried at the shadowed poles, and elucidate the mechanism for the generation of near-surface water in the illuminated regions. The technology would also be useful for detecting other volatile molecules in planetary atmospheres and subsurface reservoirs, isotopic characterization of planetary materials, and searching for signatures of extinct life preserved in solid matrices.

  7. Low power ion spectrometer for high counting rates

    International Nuclear Information System (INIS)

    Klein, J.W.; Dullenkopf, P.; Glasmachers, A.; Melbert, J.; Winkelnkemper, W.

    1980-01-01

    This report describes in detail the electronic concept for a time-of-flight (TOF) ion spectrometer for high counting rates and high dynamic range which can be used as a satellite instrument. The detection principle of the spectrometer is based on a time-of-flight and energy measurement for each incident ion. The ionmass is related to these two quantities by a simple equation. The described approach for the mass identification systems is using an analog fast-slow concept: The fast TOF-signal preselects the gainstep in the much slower energy channel. The conversion time of the mass identifier is approximately 10 -6 s and the dynamic range of the energy channel is better than 10 3 (20 keV to 25 MeV). The purpose of this study was to demonstrate the feasibility of a TOF-spectrometer capable to measure the ion composition in planetary magnetospheres. (orig.) [de

  8. A reflecting time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X

    1991-01-01

    The design, construction and operation of a reflecting time-of-flight mass spectrometer and the details of the ion mirror are discussed. The principle of velocity focusing with a single-stage ion mirror and the effect of the acceleration region are discussed. The performance of the reflecting instrument is described. Its detection limit is illustrated by observation of [M + H][sup +] ions from [approximately]5-35 femtomoles of various peptides. The factors that affect the resolution are discussed. The principle and operation of the reflecting instrument as a tandem mass spectrometer is described; this involves correlated detection of neutral and ionized fragments. The efficiency, resolution, sensitivity, and mass determination of daughter ions by this method are discussed. Methods of sample preparation are described. By using a nitrocellulose substrate, organic molecular ions as large as bovine insulin (MW 5733) were detected for the first time with low energy (keV) ion bombardment of a solid surface. Many daughter ion spectra resulting from metastable decay of parent ions have been studied. Secondary ions [(CsI)[sub n]Cs][sup +] with n up to [approximately]50 were detected; all clusters were found to be metastable, with most lifetimes <100 [mu]s, and for n>10 the daughter ions are dominant in the mass spectrum. Peptides of mass up to [approximately]2000 u have been studied with the correlated method; the daughter ion spectra were found to be strongly influenced by the identity of the bound cation (H[sup +], Na[sup +], K[sup +], or Ag[sup +]). Many daughter ions formed by known reactions yield structure and sequence information about the peptides. In addition, the [M + Na][sup +] and [M + Ag][sup +] ions decompose by a previously unreported pathway, namely, rearrangement of a C-terminal carboxyl oxygen onto the daughter ion containing the N-terminus. Both the reflected spectra and daughter ion spectra were found useful in peptide sequencing.

  9. Development of a Robust, High Current, Low Power Field Emission Electron Gun for a Spaceflight Reflectron Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Southard, Adrian E.; Getty, Stephanie A.; Feng, Steven; Glavin, Daniel P.; Auciello, Orlando; Sumant, Anirudha

    2012-01-01

    Carbon materials, including carbon nanotubes (CNTs) and nitrogen-incorporated ultrananocrystalline diamond (N-UNCD), have been of considerable interest for field emission applications for over a decade. In particular, robust field emission materials are compelling for space applications due to the low power consumption and potential for miniaturization. A reflectron time-of-flight mass spectrometer (TOF-MS) under development for in situ measurements on the Moon and other Solar System bodies uses a field emitter to generate ions from gaseous samples, using electron ionization. For these unusual environments, robustness, reliability, and long life are of paramount importance, and to this end, we have explored the field emission properties and lifetime of carbon nanotubes and nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) thin films, the latter developed and patented by Argonne National Laboratory. We will present recent investigations of N-UNCD as a robust field emitter, revealing that this material offers stable performance in high vacuum for up to 1000 hours with threshold voltage for emission of about 3-4 V/lJm and current densities in the range of tens of microA. Optimizing the mass resolution and sensitivity of such a mass spectrometer has also been enabled by a parallel effort to scale up a CNT emitter to an array measuring 2 mm x 40 mm. Through simulation and experiment of the new extended format emitter, we have determined that focusing the electron beam is limited due to the angular spread of the emitted electrons. This dispersion effect can be reduced through modification of the electron gun geometry, but this reduces the current reaching the ionization region. By increasing the transmission efficiency of the electron beam to the anode, we have increased the anode current by two orders of magnitude to realize a corresponding enhancement in instrument sensitivity, at a moderate cost to mass resolution. We will report recent experimental and

  10. The respiratory mass spectrometer

    International Nuclear Information System (INIS)

    Mostert, J.W.

    1983-01-01

    The high degree of technical perfection of the respiratory mass spectrometer has rendered the instrument feasible for routine monitoring of anesthetized patients. It is proposed that the difference between inspired and expired oxygen tension in mm Hg be equated with whole body oxygen consumption in ml/min/M 2 body-surface area at STPD, by the expedient of multiplying tension-differences by a factor of 2. Years of experience have confirmed the value of promptly recognizing sudden drops in this l/E tension difference below 50 mm Hg indicative of metabolic injury from hypovolemia or respiratory depression. Rises in l/E tension-differences were associated with shivering as well as voluntary muscle activity. Tension differences of less than 25 mm Hg (equated with a whole-body O 2 consumption of less than 50 ml O 2 /min/M 2 ) occurred in a patient in the sitting position for posterior fossa exploration without acidosis, hypoxia or hypotension for several hours prior to irreversible cardiac arrest. The value of clinical monitoring by mass spectrometry is especially impressive in open-heart surgery

  11. Portable mass spectrometer for express analysis of dissolved in water substances

    International Nuclear Information System (INIS)

    Kogan, V.T.; Pavlov, A.K.; Savchenko, M.I.; Dobychin, O.E.

    1999-01-01

    The mass spectrometer for analysis under field conditions of chemical composition of dissolved in water substances is described. Special attention is paid to developing portable mass analyzer and device for a probe inlet. The device is intended for the systems of direct autonomous control of water basins contamination. Depending on the level of required work degree of autonomy and loading rate of the device, its dimensions and consumption way vary. The tests of the pilot device having 370x420x570 mm size, 23 kg mass and ≤ 40 W consumption capacity were carried out. The resolution capacity of the device is 100 (at the level of ≤ 3%) and relative sensitivity - ≤ 10 -6 [ru

  12. Laser-based secondary neutral mass spectroscopy: Useful yield and sensitivity

    International Nuclear Information System (INIS)

    Young, C.E.; Pellin, M.J.; Calaway, W.F.; Joergensen, B.; Schweitzer, E.L.; Gruen, D.M.

    1986-01-01

    A variety of problems exist in order to optimally apply resonance ionization spectroscopy (RIS) to the detection of sputtered neutral atoms, however. Several of these problems and their solutions are examined in this paper. First, the possible useful yields obtainable and the dependence of useful yield on various laser parameters for this type of sputtered neutral mass spectrometer (SNMS) are considered. Second, the choice of a mass spectrometer and its effect on the instrumental useful yield is explored in light of the unique ionization region for laser based SNMS. Finally a brief description of noise sources and their effect on the instrumental sensitivity is discussed. 33 refs., 12 figs

  13. Quality control of meat using proton-transfer-reaction-mass-spectrometry (PTR-MS)

    International Nuclear Information System (INIS)

    Mayr, D.; Hartungen, E.; Maerk, T.D.; Margesin, R.; Schinner, F.

    2002-01-01

    Full text: Numerous food scandals which happened during the last few years make food safety controls more and more important. The method currently used for determining the status of meat, with respect to spoilage, is analysis of the counts of total viable bacteria and/or specific spoilage bacteria. An obvious drawback of this bacteriological method is the long incubation period of 1-3 days that is required for colony formation. Therefore we develop a novel method for meat quality control using PTR-MS which does not have this drawback. We measured the emitted volatile organic compounds (VOCs) of meat (beef and pork) using PTR-MS as a function of storage time. At the same time a bacteriological examination of these meat samples was carried out. We found strong correlations (about 99 %) between some VOCs and bacteriological contamination. This is a first step to replace the time-consuming bacteriological method by fast headspace air measurements to facilitate the investigation of a huge number of pieces of meat in very short time and to determine the maximum storage time and storage temperature from the emissions. We will also use this method to investigate the growth of various bacteria, the changes in the microbial composition and the influence of various environmental conditions such as temperature, pH, chemical and microbial preservation techniques. (author)

  14. Coevaporation of Y, BaF2, and Cu utilizing a quadrupole mass spectrometer as a rate measuring probe

    International Nuclear Information System (INIS)

    Hudner, J.; Oestling, M.; Ohlsen, H.; Stolt, L.

    1991-01-01

    An ultrahigh vacuum coevaporator equipped with three sources for preparation of Y--BaF 2 --Cu--O thin films is described. Evaporation rates of Y, BaF 2 , and Cu were controlled using a quadrupole mass spectrometer operating in a multiplexed mode. To evaluate the method depositions have been performed using different source configurations and evaporation rates. Utilizing Rutherford backscattering spectrometry absolute values of the actual evaporation rates were determined. It was observed that the mass-spectrometer sensitivity is highest for Y, followed by BaF 2 (BaF + is the measured ion) and Cu. A partial pressure of oxygen during evaporation of Y, BaF 2 , and Cu affected mainly the rate of Y. It is shown that the mass spectrometer can be utilized to precisely control the film composition

  15. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale.

    Science.gov (United States)

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  16. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale

    Science.gov (United States)

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  17. RADIO-FREQUENCY MASS SPECTROMETERS AND THEIR APPLICATIONS IN SPACE

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Jr., A. S.

    1963-08-15

    The operation of three common radio-frequency mass spectrometers is described, and their performances are compared. Their limitations are pointed out. It is concluded that the quadrupole spectrometer has fewer limitations and is more generally useful in space probes than the other devices. Some present and proposed uses of spectrometers in space are discussed, and the problem of contamination of the atmosphere being sampled by the spectrometer is reviewed. (auth)

  18. Quantitative determination of carbonaceous particle mixing state in Paris using single particle mass spectrometer and aerosol mass spectrometer measurements

    Science.gov (United States)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-04-01

    Single particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been estimated using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulphate and potassium were compared with concurrent measurements from an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal/optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and ten discrete mixing states for carbonaceous particles were identified and quantified. Potassium content was used to identify particles associated with biomass combustion. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorization, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulphate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA/EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidized OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the heterogeneity of primary and

  19. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2013-09-01

    Full Text Available Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC, organic aerosol (OA, ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, a thermal–optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC. ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67–0.78, and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the

  20. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    Science.gov (United States)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-09-01

    Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal-optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal

  1. Novel control modes to improve the performance of rectilinear ion trap mass spectrometer with dual pressure chambers

    Science.gov (United States)

    Huo, Xinming; Tang, Fei; Zhang, Xiaohua; Chen, Jin; Zhang, Yan; Guo, Cheng'an; Wang, Xiaohao

    2016-10-01

    The rectilinear ion trap (RIT) has gradually become one of the preferred mass analyzers for portable mass spectrometers because of its simple configuration. In order to enhance the performance, including sensitivity, quantitation capability, throughput, and resolution, a novel RIT mass spectrometer with dual pressure chambers was designed and characterized. The studied system constituted a quadrupole linear ion trap (QLIT) in the first chamber and a RIT in the second chamber. Two control modes are hereby proposed: Storage Quadrupole Linear Ion Trap-Rectilinear Ion Trap (SQLIT-RIT) mode, in which the QLIT was used at high pressure for ion storage and isolation, and the RIT was used for analysis; and Analysis Quadrupole Linear Ion Trap-Rectilinear Ion Trap (AQLIT-RIT) mode, in which the QLIT was used for ion storage and cooling. Subsequently, synchronous scanning and analysis were carried out by QLIT and RIT. In SQLIT-RIT mode, signal intensity was improved by a factor of 30; the limit of quantitation was reduced more than tenfold to 50 ng mL-1, and an optimal duty cycle of 96.4% was achieved. In AQLIT-RIT mode, the number of ions coexisting in the RIT was reduced, which weakened the space-charge effect and reduced the mass shift. Furthermore, the mass resolution was enhanced by a factor of 3. The results indicate that the novel control modes achieve satisfactory performance without adding any system complexity, which provides a viable pathway to guarantee good analytical performance in miniaturization of the mass spectrometer.

  2. Portable, remotely operated, computer-controlled, quadrupole mass spectrometer for field use

    International Nuclear Information System (INIS)

    Friesen, R.D.; Newton, J.C.; Smith, C.F.

    1982-04-01

    A portable, remote-controlled mass spectrometer was required at the Nevada Test Site to analyze prompt post-event gas from the nuclear cavity in support of the underground testing program. A Balzers QMG-511 quadrupole was chosen for its ability to be interfaced to a DEC LSI-11 computer and to withstand the ground movement caused by this field environment. The inlet system valves, the pumps, the pressure and temperature transducers, and the quadrupole mass spectrometer are controlled by a read-only-memory-based DEC LSI-11/2 with a high-speed microwave link to the control point which is typically 30 miles away. The computer at the control point is a DEC LSI-11/23 running the RSX-11 operating system. The instrument was automated as much as possible because the system is run by inexperienced operators at times. The mass spectrometer has been used on an initial field event with excellent performance. The gas analysis system is described, including automation by a novel computer control method which reduces operator errors and allows dynamic access to the system parameters

  3. Investigations of chemical warfare agents and toxic industrial compounds with proton-transfer-reaction mass spectrometry for a real-time threat monitoring scenario.

    Science.gov (United States)

    Kassebacher, Thomas; Sulzer, Philipp; Jürschik, Simone; Hartungen, Eugen; Jordan, Alfons; Edtbauer, Achim; Feil, Stefan; Hanel, Gernot; Jaksch, Stefan; Märk, Lukas; Mayhew, Chris A; Märk, Tilmann D

    2013-01-30

    Security and protection against terrorist attacks are major issues in modern society. One especially challenging task is the monitoring and protection of air conditioning and heating systems of buildings against terrorist attacks with toxic chemicals. As existing technologies have low selectivity, long response times or insufficient sensitivity, there is a need for a novel approach such as we present here. We have analyzed various chemical warfare agents (CWAs) and/or toxic industrial compounds (TICs) and related compounds, namely phosgene, diphosgene, chloroacetone, chloroacetophenone, diisopropylaminoethanol, and triethyl phosphate, utilizing a high-resolution proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) instrument with the objective of finding key product ions and their intensities, which will allow a low-resolution quadrupole mass spectrometry based PTR-MS system to be used with high confidence in the assignment of threat agents in the atmosphere. We obtained high accuracy PTR-TOFMS mass spectra of the six compounds under study at two different values for the reduced electric field in the drift tube (E/N). From these data we have compiled a table containing product ions, and isotopic and E/N ratios for highly selective threat compound detection with a compact and cost-effective quadrupole-based PTR-MS instrument. Furthermore, using chloroacetophenone (tear gas), we demonstrated that this instrument's response is highly linear in the concentration range of typical Acute Exposure Guideline Levels (AEGLs). On the basis of the presented results it is possible to develop a compact and cost-effective PTR-QMS instrument that monitors air supply systems and triggers an alarm as soon as the presence of a threat agent is detected. We hope that this real-time surveillance device will help to seriously improve safety and security in environments vulnerable to terrorist attacks with toxic chemicals. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Direct mass measurements of neutron-deficient xenon isotopes using the ISOLTRAP mass spectrometer

    CERN Document Server

    Dilling, J; Beck, D; Bollen, G; Herfurth, F; Kellerbauer, A G; Kluge, H J; Moore, R B; Scheidenberger, C; Schwarz, S; Sikler, G

    2004-01-01

    The masses of the noble-gas Xe isotopes with 114 $\\leq$ A $\\leq$ 123 have been directly measured for the first time. The experiments were carried out with the ISOLTRAP triple trap spectrometer at the online mass separator ISOLDE/CERN. A mass resolving power of the Penning trap spectrometer of $m/\\Delta m$ of close to a million was chosen resulting in an accuracy of $\\delta m \\leq 13$ keV for all investigated isotopes. Conflicts with existing, indirectly obtained, mass data by several standard deviations were found and are discussed. An atomic mass evaluation has been performed and the results are compared to information from laser spectroscopy experiments and to recent calculations employing an interacting boson model.

  5. Selective-Reagent-Ionization Mass Spectrometry: New Prospects for Atmospheric Research

    Science.gov (United States)

    Sulzer, Philipp; Jordan, Alfons; Hartungen, Eugen; Hanel, Gernot; Jürschik, Simone; Herbig, Jens; Märk, Lukas; Märk, Tilmann D.

    2014-05-01

    Proton-Transfer-Reaction Mass Spectrometry (PTR-MS), which was introduced to the scientific community in the 1990's, has quickly evolved into a well-established technology for atmospheric research and environmental chemistry [1]. Advantages of PTR-MS are i) high sensitivities of several hundred cps/ppbv, ii) detection limits at or below the pptv level, iii) direct injection sampling (i.e. no sample preparation), iv) response times in the 100 ms regime and v) online quantification. However, one drawback is a somehow limited selectivity, as in case of quadrupole mass filter based instruments only information about nominal m/z are available. In Time-Of-Flight (TOF) mass analyzer based instruments selectivity is drastically increased by a high mass resolution of up to 8000 m/Δm, but e.g. isomers still cannot be separated. In 2009 we introduced an advanced version of PTR-MS, which permits switching the reagent ions from H3O+ to NO+ and O2+, respectively [2]. This novel type of instrumentation was called Selective-Reagent-Ionization Mass Spectrometry (SRI-MS) and has been successfully used to separate isomers, e.g. the biogenic compounds isoprene and 2-methyl-3-buten-2-ol as shown by Karl et al. [3]. Switching the reagent ions dramatically increases selectivity and thus applicability of SRI-MS in atmospheric research. Here we report on the latest results utilizing an even more advanced embodiment of SRI-MS enabling the use of the additional reagent ions Kr+ and Xe+ [4]. With this technology important atmospheric compounds, such as CO2, CO, CH4, O2, etc. can be quantified and selectivity is increased even further. We present comparison data between diesel and gasoline car exhaust gases and quantitative data on indoor air for these compounds, which are not detectable with classical PTR-MS. Additionally, we show very recent examples of isomers which cannot be separated with PTR-MS but can clearly be distinguished with SRI-MS. Finally, we give an overview of ongoing SRI

  6. Accurate and precise 40Ar/39Ar dating by high-resolution, multi-collection, mass spectrometry

    DEFF Research Database (Denmark)

    Storey, Michael; Rivera, Tiffany; Flude, Stephanie

    New generation, high resolution, multi-collector noble gas mass spectrometers equipped with ion-counting electron multipliers provide opportunities for improved accuracy and precision in 40Ar/39Ar dating. Here we report analytical protocols and age cross-calibration studies using a NU-Instruments......New generation, high resolution, multi-collector noble gas mass spectrometers equipped with ion-counting electron multipliers provide opportunities for improved accuracy and precision in 40Ar/39Ar dating. Here we report analytical protocols and age cross-calibration studies using a NU......-Instruments multi-collector Noblesse noble gas mass spectrometer configured with a faraday detector and three ion-counting electron multipliers. The instrument has the capability to measure several noble gas isotopes simultaneously and to change measurement configurations instantaneously by the use of QUAD lenses...... (zoom optics). The Noblesse offer several advantages over previous generation noble gas mass spectrometers and is particularly suited for single crystal 40Ar/39Ar dating because of: (i) improved source sensitivity (ii) ion-counting electron multipliers, which have much lower signal to noise ratios than...

  7. Aluminum nano-cantilevers for high sensitivity mass sensors

    DEFF Research Database (Denmark)

    Davis, Zachary James; Boisen, Anja

    2005-01-01

    We have fabricated Al nano-cantilevers using a very simple one mask contact UV lithography technique with lateral dimensions under 500 nm and vertical dimensions of approximately 100 nm. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties. Further...

  8. High acetone concentrations throughout the 0-12 km altitude range over the tropical rainforest in Surinam

    NARCIS (Netherlands)

    Poschl, U; Williams, J; Hoor, P; Fischer, H; Crutzen, PJ; Warneke, C; Holzinger, R; Hansel, A; Jordan, A; Lindinger, W; Scheeren, HA; Peters, W; Lelieveld, J

    Airborne measurements of acetone were performed over the tropical rainforest in Surinam (2 degrees -7 degrees N, 54 degrees -58 degrees W, 0-12 km altitude) during the LBA-CLAIRE campaign in March 1998, using a novel proton transfer reaction mass spectrometer (PTR-MS) that enables the on-line

  9. Fabrication and testing of the recoil mass spectrometer at Bombay ...

    Indian Academy of Sciences (India)

    A recoil mass spectrometer (RMS) has been designed, fabricated and installed ... first order and only mass dispersion is obtained at the focal plane of the ... more details, like, the specifications and a typical beam profile through the ... Further experiments are now in progress to characterize the spectrometer, i.e., to measure.

  10. Proton Transfer Time-of-Flight Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Proton Transfer Reaction Mass Spectrometer (PTRMS) measures gas-phase compounds in ambient air and headspace samples before using chemical ionization to produce positively charged molecules, which are detected with a time-of-flight (TOF) mass spectrometer. This ionization method uses a gentle proton transfer reaction method between the molecule of interest and protonated water, or hydronium ion (H3O+), to produce limited fragmentation of the parent molecule. The ions produced are primarily positively charged with the mass of the parent ion, plus an additional proton. Ion concentration is determined by adding the number of ions counted at the molecular ion’s mass-to-charge ratio to the number of air molecules in the reaction chamber, which can be identified according to the pressure levels in the reaction chamber. The PTRMS allows many volatile organic compounds in ambient air to be detected at levels from 10–100 parts per trillion by volume (pptv). The response time is 1 to 10 seconds.

  11. Helium Mass Spectrometer Leak Detection: A Method to Quantify Total Measurement Uncertainty

    Science.gov (United States)

    Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    In applications where leak rates of components or systems are evaluated against a leak rate requirement, the uncertainty of the measured leak rate must be included in the reported result. However, in the helium mass spectrometer leak detection method, the sensitivity, or resolution, of the instrument is often the only component of the total measurement uncertainty noted when reporting results. To address this shortfall, a measurement uncertainty analysis method was developed that includes the leak detector unit's resolution, repeatability, hysteresis, and drift, along with the uncertainty associated with the calibration standard. In a step-wise process, the method identifies the bias and precision components of the calibration standard, the measurement correction factor (K-factor), and the leak detector unit. Together these individual contributions to error are combined and the total measurement uncertainty is determined using the root-sum-square method. It was found that the precision component contributes more to the total uncertainty than the bias component, but the bias component is not insignificant. For helium mass spectrometer leak rate tests where unit sensitivity alone is not enough, a thorough evaluation of the measurement uncertainty such as the one presented herein should be performed and reported along with the leak rate value.

  12. Design of a new focused multipassage mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, P [National Research Council of Canada, Ottawa, ON (Canada). Photonic and Sensors Section; Baril, M [Laval Univ., Quebec City (Canada). Dept. de Physique

    1990-12-01

    This paper descirbes a new type of multipassage mass spectrometer using tricylindrical mirrors as reflexive elements and a symmetric quadrupolar lens triplet as focusing element. We study the first order optics and then emphasize on beam transport problems as well as on conditions for maximum mass resolution. The effect of first and second order aberrations on the ultimate resolution of the spectrometer and the procedure for minimizing them by selecting proper operating conditions are discussed. The contributions of the third order aberration terms and of space charge are not considered. (orig.).

  13. Detection of methyl-, dimethyl- and diethylamine using a nitrate-based chemical ionization mass spectrometer

    Science.gov (United States)

    Jokinen, T.; Smith, J. N.

    2016-12-01

    New particle formation is one of the main sources of cloud condensation nuclei (CCN) contributing approximately half of the global CCN budget. The initial steps of nucleation have been studied for decades and it is widely accepted that in most places nucleation requires presence of sulphuric acid (SA) and cluster-stabilizing vapours. Recent results from the CLOUD chamber show that only a few pptv levels of dimethylamine (DMA) with SA forms stable clusters at boundary layer conditions. Ambient sulphuric acid is typically measured using nitrate-based chemical ionization mass spectrometers. Unfortunately, because of higher volatilities and stickiness of amines to surfaces, amine measurement techniques suffer from memory effects and high detection limits. Recently it was discovered that DMA can be detected by utilizing nitrate ionization, simultaneously with sulphuric acid measurements. Here we present results of detecting methylamine, dimethylamine and diethylamine using nitrate-based chemical ionization. We conducted a series of measurements with a home-built transverse chemical ionization inlet and a high resolution time-of-flight mass spectrometer (CI-HToF). Amine vapour was produced using permeation tubes. Three stages of dilution were applied at roughly one order-of-magnitude dilution per stage. The diluted flow of selected amine was then introduced to a sample flow rate of 7 slpm, thus achieving a final amine concentration of 10 pptv. All selected amines were detected as clusters with HNO3NO3- and showed linear response with increasing concentrations (0.5-minute integration time). Zero measurements were performed using clean nitrogen gas right after injection of a selected amine. Memory effects were only observed when using high amine concentrations (ppbv levels). Our results indicate that a variety of amines can be detected using nitrate-based chemical ionization mass spectrometers. However, more experiments are required to see if this presented method will be

  14. Investigation of material systems in industry and research by organic analytical mass spectrometer

    International Nuclear Information System (INIS)

    Decsy, Z.

    1980-01-01

    The modern, many-sided and efficient organic analytical mass spectrometer possesses all the structure-and composition-examination possibilities of complex organic analytical laboratories. The article presents the advantages and possibilities of the application of mass spectrometer in different operation modes in connection with the examination of a petrochemical synthesis product: ortho-phenylene-diamine, an experimental gas odorizing material, a petroleum production auxiliary material: petroleum sulfonate, a gasoline sample and a sulfur-containing standard substance. The useful operation modes include spectrum records of low and high resolution, the application of space ionization and space desorption ion sources as well as the ''mass fragmentographic'' measuring method. (author)

  15. Discrimination of Polish unifloral honeys using overall PTR-MS and HPLC fingerprints combined with chemometrics

    NARCIS (Netherlands)

    Kus, P.M.; Ruth, van S.M.

    2015-01-01

    A total of 62 honey samples of six floral origins (rapeseed, lime, heather, cornflower, buckwheat and black locust) were analysed by means of proton transfer reaction mass spectrometry (PTR-MS) and HPLC-DAD. The data were evaluated by principal component analysis and k-nearest neighbours

  16. Double-arm time-of-flight mass-spectrometer of nuclear fragments

    International Nuclear Information System (INIS)

    Ajvazian, G.M.; Astabatyan, R.A.

    1995-01-01

    A double-arm time-of-flight spectrometer of nuclear fragments for the investigation of heavy nuclei photofission in the intermediate energy range is described. The calibration results and working characteristics of the spectrometer, obtained using 252 Cf as a source of spontaneous fission, are presented. A mass resolution of σ m ∼2-3 a.m.u. was obtained within the registered fragments mass range of 80-160 a.m.u. The spectrometer was tested in the experiment on the investigation of 238 U nuclei fission by Bremsstahlung photons with Eγ max=1.75 GeV

  17. Large acceptance spectrometers for invariant mass spectroscopy of exotic nuclei and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Kondo, Y.

    2016-06-01

    Large acceptance spectrometers at in-flight RI separators have played significant roles in investigating the structure of exotic nuclei. Such spectrometers are in particular useful for probing unbound states of exotic nuclei, using invariant mass spectroscopy with reactions at intermediate and high energies. We discuss here the key characteristic features of such spectrometers, by introducing the recently commissioned SAMURAI facility at the RIBF, RIKEN. We also investigate the issue of cross talk in the detection of multiple neutrons, which has become crucial for exploring further unbound states and nuclei beyond the neutron drip line. Finally we discuss future perspectives for large acceptance spectrometers at the new-generation RI-beam facilities.

  18. Proton-transfer reaction mass spectrometry (PTR-MS) for the authentication of regionally unique South African lamb.

    Science.gov (United States)

    Erasmus, Sara W; Muller, Magdalena; Alewijn, Martin; Koot, Alex H; van Ruth, Saskia M; Hoffman, Louwrens C

    2017-10-15

    The volatile fingerprints of South African lamb meat and fat were measured by proton-transfer mass spectrometry (PTR-MS) to evaluate it as an authentication tool. Meat and fat of the Longissimus lumborum (LL) of lambs from six different regions were assessed. Analysis showed that the volatile fingerprints were affected by the origin of the meat. The classification of the origin of the lamb was achieved by examining the calculated and recorded fingerprints in combination with chemometrics. Four different partial least squares discriminant analysis (PLS-DA) models were fitted to the data to classify lamb meat and fat samples into "region of origin" (six different regions) and "origin" (Karoo vs. Non-Karoo). The estimation models classified samples 100% correctly. Validation of the first two models gave 42% (fat) and 58% (meat) correct classification of region, while the second two models performed better with 92% (fat) and 83% (meat) correct classification of origin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Ozone-induced dissociation on a traveling wave high-resolution mass spectrometer for determination of double-bond position in lipids.

    Science.gov (United States)

    Vu, Ngoc; Brown, Jeffery; Giles, Kevin; Zhang, Qibin

    2017-09-15

    The position of C=C within fatty acyl chains affects the biological function of lipids. Ozone-induced dissociation mass spectrometry (OzID-MS) has great potential in determination of lipid double-bond position, but has generally been implemented on low-resolution ion trap mass spectrometers. In addition, most of the OzID-MS experiments carried out so far were focused on the sodiated adducts of lipids; fragmentation of the most commonly observed protonated ions generated in LC/MS-based lipidomics workflow has been less explored. Ozone generated in line from an ozone generator was connected to the trap and transfer gas supply line of a Synapt G2 high-resolution mass spectrometer. Protonated ions of different phosphatidylcholines (PC) were generated by electrospray ionization through direct infusion. Different parameters, including traveling wave height and velocity, trap entrance and DC potential, were adjusted to maximize the OzID efficiency. sn-positional isomers and cis/trans isomers of lipids were compared for their reactivity with ozone. Traveling wave height and velocity were tuned to prolong the encounter time between lipid ions and ozone, and resulted in improved OzID efficiency, as did increasing trapping region DC and entrance potential. Under optimized settings, at least 1000 times enhancement in OzID efficiency was achieved compared to that under default settings for monounsaturated PC standards. Monounsaturated C=C in the sn-2 PC isomer reacted faster with ozone than the sn-1 isomer. Similarly, the C=C in trans PC reacted faster than in cis PC. This is the first implementation of OzID in the trap and transfer region of a traveling wave enabled high-resolution mass spectrometer. The OzID reaction efficiency is significantly improved by slowing down ions in the trap region for their prolonged interaction with ozone. This will facilitate application of high-resolution OzID-MS in lipidomics. Copyright © 2017 John Wiley & Sons, Ltd.

  20. New approach to 3-D, high sensitivity, high mass resolution space plasma composition measurements

    International Nuclear Information System (INIS)

    McComas, D.J.; Nordholt, J.E.

    1990-01-01

    This paper describes a new type of 3-D space plasma composition analyzer. The design combines high sensitivity, high mass resolution measurements with somewhat lower mass resolution but even higher sensitivity measurements in a single compact and robust design. While the lower resolution plasma measurements are achieved using conventional straight-through time-of-flight mass spectrometry, the high mass resolution measurements are made by timing ions reflected in a linear electric field (LEF), where the restoring force that an ion experiences is proportional to the depth it travels into the LEF region. Consequently, the ion's equation of motion in that dimension is that of a simple harmonic oscillator and its travel time is simply proportional to the square root of the ion's mass/charge (m/q). While in an ideal LEF, the m/q resolution can be arbitrarily high, in a real device the resolution is limited by the field linearity which can be achieved. In this paper we describe how a nearly linear field can be produced and discuss how the design can be optimized for various different plasma regimes and spacecraft configurations

  1. Analysis of air-, moisture- and solvent-sensitive chemical compounds by mass spectrometry using an inert atmospheric pressure solids analysis probe.

    Science.gov (United States)

    Mosely, Jackie A; Stokes, Peter; Parker, David; Dyer, Philip W; Messinis, Antonis M

    2018-02-01

    A novel method has been developed that enables chemical compounds to be transferred from an inert atmosphere glove box and into the atmospheric pressure ion source of a mass spectrometer whilst retaining a controlled chemical environment. This innovative method is simple and cheap to implement on some commercially available mass spectrometers. We have termed this approach inert atmospheric pressure solids analysis probe ( iASAP) and demonstrate the benefit of this methodology for two air-/moisture-sensitive chemical compounds whose characterisation by mass spectrometry is now possible and easily achieved. The simplicity of the design means that moving between iASAP and standard ASAP is straightforward and quick, providing a highly flexible platform with rapid sample turnaround.

  2. Precision measurements with the multi-reflection time-of-flight mass spectrometer of ISOLTRAP at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Dinko; Ascher, Pauline; Borgmann, Christopher; Boehm, Christine; Eliseev, Sergey; Eronen, Tommi; George, Sebastian; Kisler, Dmitry; Naimi, Sarah [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Beck, Dietrich; Herfurth, Frank; Litvinov, Yuri; Minaya Ramirez, Enrique; Neidherr, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Breitenfeldt, Martin [Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200d - bus 2418, 3001 Heverlee (Belgium); Cakirli, Burcu [University of Istanbul, Department of Physics, 34134 Istanbul (Turkey); Cocolios, Thomas Elias [University of Manchester, Manchester (United Kingdom); Herlert, Alexander Josef [FAIR GmbH, Planckstr. 1, D-64291 Darmstadt (Germany); Kowalska, Magdalena [CERN, Geneva 23, 1211 Geneva (Switzerland); Kreim, Susanne [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); CERN, Geneva 23, 1211 Geneva (Switzerland); Lunney, David; Manea, Vladimir [CSNSM-IN2P3-CNRS, 91405 Orsay Campus, Bat. 104, 108 (France); Rosenbusch, Marco; Schweikhard, Lutz; Wienholtz, Frank; Wolf, Robert [Ernst-Moritz-Arndt-Universitaet, Institut fuer Physik, Felix-Hausdorff-Str. 6, 17487 Greifswald (Germany); Stanja, Juliane; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, 01069 Dresden (Germany)

    2014-07-01

    The masses of exotic nuclides are among the most important input parameters for modern nuclear theory and astrophysical models. At the high-precision Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN, a multi-reflection time-of-flight mass spectrometer (MR-ToF-MS) in combination with a Bradbury-Nielsen gate (BNG) can be used to achieve high-resolution isobar purification with mass-resolving powers of 105 in a few tens of milliseconds. Furthermore, the MR-ToF device can be used as a spectrometer to determine the masses of nuclides with very low yields and short half-lives, where a Penning-trap mass measurement becomes impractical due to the lower transport efficiency and decay losses during the purification and measurement cycles. Recent cross-check experiments show that the MR-ToF MS allows mass measurements with uncertainties in the sub-ppm range. In a first application the mass measurements of the nuclides 53,54Ca was performed, delivered with production rates as low as 10/s and half-lives of only 90(6) ms. The nuclides serve as important benchmarks for testing modern chiral effective theory with realistic 3-body forces. The contribution presents the on-line mass spectrometer ISOLTRAP focusing on the new applications, which became possible after the implementation of the MR-ToF MS into the current setup. In particular, the mass measurements of the neutron-rich calcium isotopes up to A=54 are discussed. In addition, measurements of the isotonic potassium isotopes are reported.

  3. Inhomogeneous oscillatory electric field time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Carrico, J.P.

    1977-01-01

    The mass-to-charge ratio of an ion can be determined from the measurement of its flight time in an inhomogeneous, oscillatory electric field produced by the potential distribution V(x, y, t) = Vsub(DC) + Vsub(AC) cos ωt) (αsub(x)X 2 + αsub(y)Y 2 + αsub(z)Z 2 ). The governing equation of motion is the Mathieu equation. The principle of operation of this novel mass spectrometer is described and results of computer calculations of the flight time and resolution are reported. An experimental apparatus and results and results demonstrating the feasibility of this mass spectrometer principle are described. (author)

  4. Frequency-scanning MALDI linear ion trap mass spectrometer for large biomolecular ion detection.

    Science.gov (United States)

    Lu, I-Chung; Lin, Jung Lee; Lai, Szu-Hsueh; Chen, Chung-Hsuan

    2011-11-01

    This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.

  5. Development of an advanced spacecraft tandem mass spectrometer

    Science.gov (United States)

    Drew, Russell C.

    1992-03-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  6. Characterization of the ptr5+ gene involved in nuclear mRNA export in fission yeast

    International Nuclear Information System (INIS)

    Watanabe, Nobuyoshi; Ikeda, Terumasa; Mizuki, Fumitaka; Tani, Tokio

    2012-01-01

    Highlights: ► We cloned the ptr5 + gene involved in nuclear mRNA export in fission yeast. ► The ptr5 + gene was found to encode nucleoporin 85 (Nup85). ► Seh1p and Mlo3p are multi-copy suppressors for the ptr5 mutation. ► Ptr5p/Nup85p functions in nuclear mRNA export through the mRNA export factor Rae1p. ► Ptr5p/Nup85p interacts genetically with pre-mRNA splicing factors. -- Abstract: To analyze the mechanisms of mRNA export from the nucleus to the cytoplasm, we have isolated eleven mutants, ptr [poly(A) + RNA transport] 1 to 11, which accumulate poly(A) + RNA in the nucleus at a nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr5–1 mutant shows dots- or a ring-like accumulation of poly(A) + RNA at the nuclear periphery after shifting to the nonpermissive temperature. We cloned the ptr5 + gene and found that it encodes a component of the nuclear pore complex (NPC), nucleoporin 85 (Nup85). The ptr5–1 mutant shows no defects in protein transport, suggesting the specific involvement of Ptr5p/Nup85p in nuclear mRNA export in S. pombe. We identified Seh1p, a nucleoporin interacting with Nup85p, an mRNA-binding protein Mlo3p, and Sac3p, a component of the TREX-2 complex involved in coupling of nuclear mRNA export with transcription, as multi-copy suppressors for the ptr5–1 mutation. In addition, we found that the ptr5–1 mutation is synthetically lethal with a mutation of the mRNA export factor Rae1p, and that the double mutant exaggerates defective nuclear mRNA export, suggesting that Ptr5p/Nup85p is involved in nuclear mRNA export through Rae1p. Interestingly, the ptr5–1 mutation also showed synthetic effects with several prp pre-mRNA splicing mutations, suggesting a functional linkage between the NPCs and the splicing apparatus in the yeast nucleus.

  7. Silicon Microleaks for Inlets of Mass Spectrometers

    Science.gov (United States)

    Harpold, Dan; Hasso, Niemann; Jamieson, Brian G.; Lynch, Bernard A.

    2009-01-01

    Microleaks for inlets of mass spectrometers used to analyze atmospheric gases can be fabricated in silicon wafers by means of photolithography, etching, and other techniques that are commonly used in the manufacture of integrated circuits and microelectromechanical systems. The microleaks serve to limit the flows of the gases into the mass-spectrometer vacuums to specified very small flow rates consistent with the capacities of the spectrometer vacuum pumps. There is a need to be able to precisely tailor the dimensions of each microleak so as to tailor its conductance to a precise low value. (As used here, "conductance" signifies the ratio between the rate of flow in the leak and the pressure drop from the upstream to the downstream end of the leak.) To date, microleaks have been made, variously, of crimped metal tubes, pulled glass tubes, or frits. Crimped-metal and pulled-glass-tube microleaks cannot readily be fabricated repeatably to precise dimensions and are susceptible to clogging with droplets or particles. Frits tend to be differentially chemically reactive with various gas constituents and, hence, to distort the gas mixtures to be analyzed. The present approach involving microfabrication in silicon largely overcomes the disadvantages of the prior approaches.

  8. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry

    Science.gov (United States)

    Schaefer, R. T.; MacAskill, J. A.; Mojarradi, M.; Chutjian, A.; Darrach, M. R.; Madzunkov, S. M.; Shortt, B. J.

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  9. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry.

    Science.gov (United States)

    Schaefer, R T; MacAskill, J A; Mojarradi, M; Chutjian, A; Darrach, M R; Madzunkov, S M; Shortt, B J

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  10. Direct mass measurements of neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer

    International Nuclear Information System (INIS)

    Dilling, J.; Audi, G.; Beck, D.; Bollen, G.; Henry, S.; Herfurth, F.; Kellerbauer, A.; Kluge, H.-J.; Lunney, D.; Moore, R.B.; Scheidenberger, C.; Schwarz, S.; Sikler, G.; Szerypo, J.

    2002-01-01

    The masses of Xe isotopes with 124≥A≥114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500 000 was chosen resulting in an accuracy of δm∼12 keV for all isotopes investigated. Conflicts with existing mass data of several standard deviations were found

  11. An intercomparison of airborne VOC measurements

    International Nuclear Information System (INIS)

    Wisthaler, A.; Hansel, A.; Fall, R.

    2002-01-01

    Full text: During the Texas Air Quality Study (TexAQS) 2000 ambient air samples were analyzed on-board the NSF/NCAR ELECTRA research aircraft by two VOC measurement techniques: 1) an in-situ gas chromatograph named TACOH (Tropospheric Airborne Chromatograph for Oxy-hydrocarbons and Hydrocarbons), operated by NOAA' Aeronomy Laboratory, and 2) a chemical ionization mass spectrometer named PTR-MS (Proton-Transfer-Reaction Mass Spectrometer) and operated by the University of Innsbruck. The sample protocols were quite different for the two methods: the TACOH system collected air samples for 15-60 sec (depending upon altitude) every 15 min, the PTR-MS system monitored selected VOCs on a time-shared basis for 2 sec respectively, once every 4-20 sec, depending upon the number of monitored species. Simultaneous measurements of acetaldehyde, isoprene, the sum* of acetone and propanal, the sum* of methyl vinyl ketone and methacrolein (* PTR-MS does not distinguish between isobaric species) and toluene show good agreement despite being performed in the complex and highly polluted Houston air matrix. (author)

  12. Direct coupling of a dense (supercritical) gas chromatograph to a mass spectrometer using a supersonic molecular beam interface

    International Nuclear Information System (INIS)

    Randall, L.G.; Wahrhaftig, A.L.

    1981-01-01

    A detecting mass spectrometer has been successfully coupled to a dense gas (supercritical fluid) chromatograph to produce an instrument (DGC/MS) that may be an alternative to high performance liquid chromatograph/mass spectrometer instruments (HPLC/MS) and gas chromatograph/mass spectrometer instruments (GC/MS) for analysis of involatile and/or thermally labile compounds. The mobile phase in DGC is a gas held at temperatures above the critical temperature and at pressures sufficient to obtain nearly liquid-like densities. DGC combines advantages of GC and HPLC: rapid separations, moderate operating temperatures, and analysis of involatile compounds. An advantage unique to DGC is the solvent power dependence upon pressure. While several groups have studied DGC, its development has been limited by the lack of a sensitive and selective detector. Hence, work has been directed towards the design and construction of a DGC/MS resulting in a trial instrument capable of chromatographic pressures of at least 300 atm and temperatures from 10 0 to 60 0 C. The DGC/MS coupling has been accomplished by the use of a supersonic molecular beam interface. This application of molecular beam formation appears to be unique in its requirements of a large pressure ratio (approx.10 8 ), low flow rates, and low final pressures. The authors outline characteristics of supersonic jets and molecular beams pertinent to the design of such an instrument. The interface which uses pumping speeds of 2400 and 1200 l/s in the beam forming chambers is described in detail, while the other components: the detecting mass spectrometer, the dense gas supply, and the DGC: are briefly described. Preliminary work with this instrument has established the feasibility of DGC/MS as an analytical technique and further development is recommended

  13. GoAmazon 2014/15 Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, JN [Univ. of California, Irvine, CA (United States)

    2016-04-01

    The Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) deployment to the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility T3 site in Manacapuru, Brazil, was motivated by two main scientific objectives of the Green Ocean Amazon (GoAmazon) 2014/15 field campaign. 1) Study the interactions between anthropogenic and biogenic emissions by determining important molecular species in ambient nanoparticles. To address this, TDCIMS data will be combined with coincident measurements such as gas-phase sulfuric acid to determine the contribution of sulfuric acid condensation to nucleation and growth. We can then compare that result to TDCIMS-derived nanoparticle composition to determine the fraction of growth that can be attributed to the uptake of organic compounds. The molecular composition of sampled particles will also be used to attribute specific chemical species and mechanisms to growth, such as the condensation of low-volatility species or the oligomerization of α-dicarbonyl compounds. 2) Determine the source of new ambient nanoparticles in the Amazon. The hypothesis prior to measurements was that potassium salts formed from the evaporation of primary particles emitted by fungal spores can provide a unique and important pathway for new particle production in the Amazon basin. To explore this hypothesis, the TDCIMS recorded the mass spectra of sampled ambient particles using a protonated water cluster Chemical Ionization Mass Spectrometer (CIMS). Laboratory tests performed using potassium salts show that the TDCIMS can detect potassium with high sensitivity with this technique.

  14. Aroma analysis and quality control of food using highly sensitive analytical methods

    International Nuclear Information System (INIS)

    Mayr, D.

    2003-02-01

    This thesis deals with the development of quality control methods for food based on headspace measurements by Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS) and with aroma analysis of food using PTR-MS and Gas Chromatography-Olfactometry (GC-O). An objective method was developed for the determination of a herb extract's quality; this quality was checked by a sensory analysis until now. The concentrations of the volatile organic compounds (VOCs) in the headspace of 81 different batches were measured by PTR-MS. Based on the sensory judgment of the customer, characteristic differences in the emissions of 'good' and 'bad' quality samples were identified and a method for the quality control of this herb extract was developed. This novel method enables the producing company to check and ensure that they are only selling high-quality products and therefore avoid complaints of the customer. Furthermore this method can be used for controlling, optimizing and automating the production process. VOCs emitted by meat were investigated using PTR-MS to develop a rapid, non-destructive and quantitative technique for determination of the microbial contamination of meat. Meat samples (beef, pork and poultry) that were wrapped into different kinds of packages (air and vacuum) were stored in at 4 o C for up to 13 days. The emitted VOCs were measured as a function of storage time and identified partly. The concentration of many of the measured VOCs, e.g. sulfur compounds like methanethiol, dimethylsulfide and dimethyldisulfide, largely increased over the storage time. There were big differences in the emissions of normal air- and vacuum-packed meat. VOCs typically emitted by air-packaged meat were methanethiol, dimethylsulfide and dimethyldisulfide, while ethanol and methanol were found in vacuum-packaged meat. A comparison of the PTR-MS results with those obtained by a bacteriological examination performed at the same time showed strong correlations (up to 99 %) between the

  15. Direct sampling of sub-µm atmospheric particulate organic matter in sub-ng m-3 mass concentrations by proton-transfer-reaction mass spectrometry

    Science.gov (United States)

    Armin, W.; Mueller, M.; Klinger, A.; Striednig, M.

    2017-12-01

    A quantitative characterization of the organic fraction of atmospheric particulate matter is still challenging. Herein we present the novel modular "Chemical Analysis of Aerosol Online" (CHARON) particle inlet system coupled to a new-generation proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF 6000 X2, Ionicon Analytik, Austria) that quantitatively detects organic analytes in real-time and sub-pptV levels by chemical ionization with hydronium reagent ions. CHARON consists of a gas-phase denuder for stripping off gas-phase analytes (efficiency > 99.999%), an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. With typical particle enrichment factors of around 30 for particle diameters (DP) between 120 nm and 1000 nm (somewhat reduced enrichment for 60 nm 6000) and excellent mass accuracies (< 10 ppm) chemical compositions can be assigned and included in further analyses. In addition to a detailed characterization of the CHARON PTR-TOF 6000 X2 we will present first results on the chemical composition of sub-µm particulate organic matter in the urban atmosphere in Innsbruck (Austria).

  16. Dual Source Time-of-flight Mass Spectrometer and Sample Handling System

    Science.gov (United States)

    Brinckerhoff, W.; Mahaffy, P.; Cornish, T.; Cheng, A.; Gorevan, S.; Niemann, H.; Harpold, D.; Rafeek, S.; Yucht, D.

    We present details of an instrument under development for potential NASA missions to planets and small bodies. The instrument comprises a dual ionization source (laser and electron impact) time-of-flight mass spectrometer (TOF-MS) and a carousel sam- ple handling system for in situ analysis of solid materials acquired by, e.g., a coring drill. This DSTOF instrument could be deployed on a fixed lander or a rover, and has an open design that would accommodate measurements by additional instruments. The sample handling system (SHS) is based on a multi-well carousel, originally de- signed for Champollion/DS4. Solid samples, in the form of drill cores or as loose chips or fines, are inserted through an access port, sealed in vacuum, and transported around the carousel to a pyrolysis cell and/or directly to the TOF-MS inlet. Samples at the TOF-MS inlet are xy-addressable for laser or optical microprobe. Cups may be ejected from their holders for analyzing multiple samples or caching them for return. Samples are analyzed with laser desorption and evolved-gas/electron-impact sources. The dual ion source permits studies of elemental, isotopic, and molecular composition of unprepared samples with a single mass spectrometer. Pulsed laser desorption per- mits the measurement of abundance and isotope ratios of refractory elements, as well as the detection of high-mass organic molecules in solid samples. Evolved gas analysis permits similar measurements of the more volatile species in solids and aerosols. The TOF-MS is based on previous miniature prototypes at JHU/APL that feature high sensitivity and a wide mass range. The laser mode, in which the sample cup is directly below the TOF-MS inlet, permits both ablation and desorption measurements, to cover elemental and molecular species, respectively. In the evolved gas mode, sample cups are raised into a small pyrolysis cell and heated, producing a neutral gas that is elec- tron ionized and pulsed into the TOF-MS. (Any imaging

  17. Continuous flow isotope ratio mass spectrometer (CF-IRMS) and its applications in hydrocarbon research and exploration

    International Nuclear Information System (INIS)

    Kalpana, G.; Patil, D.J.; Kumar, B.

    2004-01-01

    Stable isotope ratio mass spectrometers have been widely used to determine the isotopic ratios of light elements such as hydrogen, carbon, nitrogen, oxygen and sulphur. Continuous Flow Isotope Ratio Mass Spectrometry (CFIRMS) provides reliable data on nanomole amount of sample gas without the need for cryogenic trapping using cold fingers as in dual inlet isotope ratio mass spectrometer. High sample throughput is achieved as the system is configured with automated sample preparation devices and auto samplers. This paper presents a brief description of CFIRMS exploration

  18. Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kutscher, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-05-01

    Two Schott 2008 model year PTR70 HCEs were tested on NREL's heat loss test stand from 100 - 500 deg C in 50 deg C increments. Absorber emittance was determined from the laboratory testing so that the performance of the HCEs could be modeled in a parabolic trough collector. Collector/HCE simulation results for many different field operation conditions were used to create heat loss correlationcoefficients for Excelergy and SAM. SAM estimates that the decreased emittance of the 2008 PTR70 will decrease the LCOE for parabolic trough power plants by 0.5 cents/kWh and increase the electricity generated by 5% relative to previous PTR70s. These conclusions assume that the 2008 PTR70 is supplied at the same cost and with the same optical performance as earlier PTR70 models.

  19. Identification of phlebotomine sand flies using one MALDI-TOF MS reference database and two mass spectrometer systems.

    Science.gov (United States)

    Mathis, Alexander; Depaquit, Jérôme; Dvořák, Vit; Tuten, Holly; Bañuls, Anne-Laure; Halada, Petr; Zapata, Sonia; Lehrter, Véronique; Hlavačková, Kristýna; Prudhomme, Jorian; Volf, Petr; Sereno, Denis; Kaufmann, Christian; Pflüger, Valentin; Schaffner, Francis

    2015-05-10

    Rapid, accurate and high-throughput identification of vector arthropods is of paramount importance in surveillance programmes that are becoming more common due to the changing geographic occurrence and extent of many arthropod-borne diseases. Protein profiling by MALDI-TOF mass spectrometry fulfils these requirements for identification, and reference databases have recently been established for several vector taxa, mostly with specimens from laboratory colonies. We established and validated a reference database containing 20 phlebotomine sand fly (Diptera: Psychodidae, Phlebotominae) species by using specimens from colonies or field-collections that had been stored for various periods of time. Identical biomarker mass patterns ('superspectra') were obtained with colony- or field-derived specimens of the same species. In the validation study, high quality spectra (i.e. more than 30 evaluable masses) were obtained with all fresh insects from colonies, and with 55/59 insects deep-frozen (liquid nitrogen/-80 °C) for up to 25 years. In contrast, only 36/52 specimens stored in ethanol could be identified. This resulted in an overall sensitivity of 87 % (140/161); specificity was 100 %. Duration of storage impaired data counts in the high mass range, and thus cluster analyses of closely related specimens might reflect their storage conditions rather than phenotypic distinctness. A major drawback of MALDI-TOF MS is the restricted availability of in-house databases and the fact that mass spectrometers from 2 companies (Bruker, Shimadzu) are widely being used. We have analysed fingerprints of phlebotomine sand flies obtained by automatic routine procedure on a Bruker instrument by using our database and the software established on a Shimadzu system. The sensitivity with 312 specimens from 8 sand fly species from laboratory colonies when evaluating only high quality spectra was 98.3 %; the specificity was 100 %. The corresponding diagnostic values with 55 field

  20. Mass spectrometer with two ion sources

    International Nuclear Information System (INIS)

    Glickman, L.G.; Mit', A.G.

    2002-01-01

    Static mass spectrometer with mid-plane near which ions are moving is considered in this article. Two ion sources are used, their exit slits are perpendicular to the mid-plane. The simple method of the replacement of source is offered. Two concave two-electrode transaxial mirrors with two-plate electrodes are used for this aim. The mid-plane of these mirrors coincides with the mid-plane of the device. The exit slit of each source is located in the principal plane of the object space. The principal planes of the image space of the both mirrors coincide. The images of the exit slits of the sources are in these planes and coincide too. We used the mirrors making stigmatic images with the magnification one to one, in which the dispersion on energy and spherical aberrations of the second order are equal to zero. These images are the objects on which the ion-optical system of the mass spectrometer is tuned. When you choose one from two ion sources it is enough to switch the corresponding mirror

  1. A Microchannel Inlet to Reduce High-Velocity Impact Fragmentation of Molecules in Orbital and Fly-by Mass Spectrometers

    Science.gov (United States)

    Turner, Brandon; Anupriya, Anupriya; Sevy, Eric; Austin, Daniel E.

    2017-10-01

    Closed source neutral mass spectrometers are often used on flyby missions to characterize the molecular components of planetary exospheres. In a typical closed source, neutrals are thermalized as they deflect off the walls within a spherical antechamber prior to ionization and mass analysis. However, the high kinetic energy of each molecule as it impacts the chamber can lead to fragmentation before the ionization region is reached. Due to this fragmentation, the original composition of the molecule can be altered, leading to ambiguous identification.Even knowing the fragmentation pathways that occur may not allow deconvolution of data to give the correct composition. Only stable, volatile fragments will be observed in the subsequent mass spectrometer and different organic compounds likely give similar fragmentation products. Simply detecting these products will not lead to unambiguous identication of the precursor molecules. Here, we present a hardware solution to this problem—an inlet that reduces the fragmentation of molecules that impact at high velocities.We present a microchannel inlet that reduces the impact fragmentation by allowing the molecules to dissipate kinetic energy faster than their respective dissociation lifetimes. Preliminary calculations indicate that impact-induced fragmentation will be reduced up to three orders of magnitude compared with conventional closed sources by using this inlet. The benefits of such an inlet apply to any orbital or flyby velocity. The microchannel inlet enables detection of semi-volatile molecules that were previously undetectable due to impact fragmentation.

  2. SUMS preliminary design and data analysis development. [shuttle upper atmosphere mass spectrometer experiment

    Science.gov (United States)

    Hinson, E. W.

    1981-01-01

    The preliminary analysis and data analysis system development for the shuttle upper atmosphere mass spectrometer (SUMS) experiment are discussed. The SUMS experiment is designed to provide free stream atmospheric density, pressure, temperature, and mean molecular weight for the high altitude, high Mach number region.

  3. Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley

    Science.gov (United States)

    Sarkar, Chinmoy; Sinha, Vinayak; Kumar, Vinod; Rupakheti, Maheswar; Panday, Arnico; Mahata, Khadak S.; Rupakheti, Dipesh; Kathayat, Bhogendra; Lawrence, Mark G.

    2016-03-01

    The Kathmandu Valley in Nepal suffers from severe wintertime air pollution. Volatile organic compounds (VOCs) are key constituents of air pollution, though their specific role in the valley is poorly understood due to insufficient data. During the SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley-Atmospheric Brown Clouds) field campaign conducted in Nepal in the winter of 2012-2013, a comprehensive study was carried out to characterise the chemical composition of ambient Kathmandu air, including the determination of speciated VOCs, by deploying a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) - the first such deployment in South Asia. In the study, 71 ion peaks (for which measured ambient concentrations exceeded the 2σ detection limit) were detected in the PTR-TOF-MS mass scan data, highlighting the chemical complexity of ambient air in the valley. Of the 71 species, 37 were found to have campaign average concentrations greater than 200 ppt and were identified based on their spectral characteristics, ambient diel profiles and correlation with specific emission tracers as a result of the high mass resolution (m / Δm > 4200) and temporal resolution (1 min) of the PTR-TOF-MS. The concentration ranking in the average VOC mixing ratios during our wintertime deployment was acetaldehyde (8.8 ppb) > methanol (7.4 ppb) > acetone + propanal (4.2 ppb) > benzene (2.7 ppb) > toluene (1.5 ppb) > isoprene (1.1 ppb) > acetonitrile (1.1 ppb) > C8-aromatics ( ˜ 1 ppb) > furan ( ˜ 0.5 ppb) > C9-aromatics (0.4 ppb). Distinct diel profiles were observed for the nominal isobaric compounds isoprene (m / z = 69.070) and furan (m / z = 69.033). Comparison with wintertime measurements from several locations elsewhere in the world showed mixing ratios of acetaldehyde ( ˜ 9 ppb), acetonitrile ( ˜ 1 ppb) and isoprene ( ˜ 1 ppb) to be among the highest reported to date. Two "new" ambient compounds, namely formamide (m / z = 46.029) and acetamide (m / z

  4. Characterization of the ptr5{sup +} gene involved in nuclear mRNA export in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Nobuyoshi; Ikeda, Terumasa; Mizuki, Fumitaka [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555 (Japan); Tani, Tokio, E-mail: ttani@sci.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555 (Japan)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We cloned the ptr5{sup +} gene involved in nuclear mRNA export in fission yeast. Black-Right-Pointing-Pointer The ptr5{sup +} gene was found to encode nucleoporin 85 (Nup85). Black-Right-Pointing-Pointer Seh1p and Mlo3p are multi-copy suppressors for the ptr5 mutation. Black-Right-Pointing-Pointer Ptr5p/Nup85p functions in nuclear mRNA export through the mRNA export factor Rae1p. Black-Right-Pointing-Pointer Ptr5p/Nup85p interacts genetically with pre-mRNA splicing factors. -- Abstract: To analyze the mechanisms of mRNA export from the nucleus to the cytoplasm, we have isolated eleven mutants, ptr [poly(A){sup +} RNA transport] 1 to 11, which accumulate poly(A){sup +} RNA in the nucleus at a nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr5-1 mutant shows dots- or a ring-like accumulation of poly(A){sup +} RNA at the nuclear periphery after shifting to the nonpermissive temperature. We cloned the ptr5{sup +} gene and found that it encodes a component of the nuclear pore complex (NPC), nucleoporin 85 (Nup85). The ptr5-1 mutant shows no defects in protein transport, suggesting the specific involvement of Ptr5p/Nup85p in nuclear mRNA export in S. pombe. We identified Seh1p, a nucleoporin interacting with Nup85p, an mRNA-binding protein Mlo3p, and Sac3p, a component of the TREX-2 complex involved in coupling of nuclear mRNA export with transcription, as multi-copy suppressors for the ptr5-1 mutation. In addition, we found that the ptr5-1 mutation is synthetically lethal with a mutation of the mRNA export factor Rae1p, and that the double mutant exaggerates defective nuclear mRNA export, suggesting that Ptr5p/Nup85p is involved in nuclear mRNA export through Rae1p. Interestingly, the ptr5-1 mutation also showed synthetic effects with several prp pre-mRNA splicing mutations, suggesting a functional linkage between the NPCs and the splicing apparatus in the yeast nucleus.

  5. On-line detection of illicit substances in liquid phase with proton-transfer-reaction mass spectrometry (PTR-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Juerschik, Simone; Agarwal, Bishu; Petersson, Fredrik [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Sulzer, Philipp; Haidacher, Stefan; Jordan, Alfons; Schottkowsky, Ralf; Hartungen, Eugen; Hanel, Gernot; Seehauser, Hans; Maerk, Lukas [IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Maerk, Tilmann D. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria)

    2011-07-01

    The direct aqueous injection (DAI) technique was recently utilized for the detection of illicit substances in liquid phase. DAI turns out to be an ideal solution for direct analysis of liquid samples, since we can make good use of the outstanding advantages, such as real-time analysis, no sample preparation, low detection limits and short response time. Differences in TNT concentration in the water could be seen dependent on time and original size of the pieces and we could demonstrate a linear correlation between the concentration in liquid and the PTR-MS signal. Furthermore, we were also able to demonstrate that this method is capable of detecting minute traces of ''rape drugs'', i.e. {gamma}-butyrolactone and 1,4-butanediol, in liquids. This new method achieving sensitivities in the around 100 pptw range appears therefore well suited for the fight against drug crime and terrorism and for the evaluation of contamination of ammunition dumping sites.

  6. Highly effective portable beta spectrometer for precise depth selective electron Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Aldiyarov, N.U.; Kadyrzhanov, K.K.; Seytimbetov, A.M.; Zhdanov, V.S.

    2007-01-01

    Full text: More broad application of the nuclear-physical method of precise Depth Selective Electron Moessbauer Spectroscopy (DS EMS) is limited by insufficient accessibility of highly-effective beta spectrometers with acceptable resolution. It should be mentioned that the method DS EMS is realized at a combined installation that consists of a highly-effective beta spectrometer and a conventional portable nuclear gamma-resonance spectrometer. Yet few available beta spectrometers have sophisticated design and controlling; in most cases they are cumbersome. All the attempts to simplify beta spectrometers resulted in noticeable worsening of depth resolution for the DS EMS method making the measurements non precise. There is currently an obvious need in a highly-effective portable easily controlled beta spectrometer. While developing such portable beta spectrometer, it is more promising to use as basis a simpler spectrometer, which has ratio of sample size to spectrometer size of about five times. The paper presents an equal-arm version of a highly-effective portable beta spectrometer with transverse heterogeneous sector magnetic field that assures double focusing. The spectrometer is equipped with a large-area non-equipotential source (a sample under investigation) and a position-sensitive detector. This portable spectrometer meets all requirements for achievement of the DS EMS depth resolution close to the physical limit and demonstrates the following main characteristics: equilibrium orbit radius ρ 0 = 80 mm, instrumental energy resolution 0.6 % at solid angle 1 % of 4π steradian, area of non-equipotential source ∼ 80 mm 2 , registration by position-sensitive detector of ∼ 10 % of the energy interval. Highly-effective portable beta spectrometer assures obtaining Moessbauer data with depth resolution close to physical limit of the DS EMS method. So in measurements at conversion and Auger electrons with energies of about units of keV and above, the achieved

  7. Mass-spectrometer for on-line operation with an accelerator

    International Nuclear Information System (INIS)

    Belyaev, B.N.; Gall', L.N.; Domkin, V.D.

    1974-01-01

    The paper describes the most essential elements and parameters of a mass-spectrometer designed for the on-line operation with the Leningrad Institute for Nuclear Physics synchrocyclotron with an extracted 1 GeV proton beam. The mass-spectrometer consists of two sections: analytical and measuring. A thermal ionization ion source is used for measuring isotope composition of nuclear reaction alkaline products produced in a target under the effect of 19 ev protons. While the selection and development of an ion-optical system for the source a provision had to be made for a high efficiency of the device as well as a stobility of parameters of the ion-optical system. To meet these requirements a massive electrode principle formed the basis of the system. Electrodes were a slit-type system consisted of three cylindrical lenses. Anion-optical system scheme is given in the paper. The employment of the ion-optical system with a small angle divergence in the horizontal plane provided for a high resolution of the spectrometer, approximately 400 at the relative aperture of 14-16%. The target consisted of a stack of MPG-6 graphite plates (20-30 pcs), 0.1 mm thick, 9x18 mm; the plates were fixed (1x10 0.1 mm apart by means of narrow in terlayers (1x10 mm) of the same material. For ensuring optimal diffusion and ionization depending upon the chemical element under study the target was heated up to 1.500-1.900 deg C. Results were obtained on the production cross-sections of lithium (6, 7, 8, 9 Li) isotope in the carbon target. While measuring sup(7, 8, 9)Li isotope yields the target irradiation period was 15 min and for 6 Li 3 min. The background was measured for each line of a mass-spectrum with proton beam off. The results obtained for the lithium isotope production cross section are of interests for discussions on problems of the light element production in cosmic rays

  8. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana

    2016-10-12

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged substance P with minimal spectral averaging, and 8,158 molecular formulas assigned to Suwannee River Fulvic Acid standard with RMS error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apotransferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g. 6 s time-domains with absorption mode processing yielded resolution of approximately 1M at m/z =2,700).

  9. MacMS: A Mass Spectrometer Simulator: Abstract of Issue 9906M

    Science.gov (United States)

    Bigger, Stephen W.; Craig, Robert A.

    1999-10-01

    MacMS is a program for Mac-OS compatible computers that simulates a magnetic sector mass spectrometer (1-4) designed to operate in the mass-to-charge (m/z) ratio range of 1-200 amu. MacMS has two operational modules. The first module (see Figure 1) is called the "Path" module and enables the user to quantitatively examine the trajectory of an ion of given m/z ratio in the electric and magnetic fields of the simulated "instrument". By systematically measuring a series of trajectories of different ions under different electric and magnetic field conditions, the user can determine how the resolution of the "instrument" is affected by these experimentally variable parameters. The user can thus choose suitable instrumental conditions for scanning a given m/z ratio range with good separation between the peaks. The second module (see Figure 2) is called as the "Spectrometer" module and enables the user to record, under any chosen instrumental conditions, the mass spectrum of (i) the instrumental background, (ii) neon, (iii) methane, or (iv) the parent ion of carbon tetrachloride. Both voltage scanning and magnetic scanning are possible (5). A hard copy of any mass spectrum that has been recorded can also be obtained. MacMS can read ASCII data files containing mass spectral information of compounds other than those that are "built-in" to the simulator. The appropriate format for creating such data files is described in the program documentation. There are a number of instructional exercises that can be conducted using the mass spectral information contained within the simulator. These are included in the program documentation. For example, the intensities of the 20Ne+, 21Ne+, and 22Ne+ species can be determined from hard copies of mass spectra of neon that are obtained under different instrumental sensitivities. The relative abundances of the three isotopes of neon can thus be calculated and compared with the literature values (6). The simulator also includes adjustable

  10. Comparison of different real time VOC measurement techniques in a ponderosa pine forest

    Directory of Open Access Journals (Sweden)

    L. Kaser

    2013-03-01

    Full Text Available Volatile organic compound (VOC mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS, a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS, a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA, a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS and a Fiber Laser-Induced Fluorescence Instrument (FILIF. The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK + MAC using PTR-(TOF-MS at this site. A study-average relative contribution of 85% for MVK + MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20–25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the study

  11. Ultimate detection sensitivity of Ge-Li γ-ray spectrometers

    International Nuclear Information System (INIS)

    1978-06-01

    This paper presents the principal results of a study concerning low-level counting capabilities of GeLi gamma-ray spectrometers. The expression adopted for the theoretical sensitivity limit of gamma spectrometers has been experimentally verified with very low activity samples, using 17 installations of various characteristics. This expression sets off the influence of the efficiency, the environmental conditions on the sensitivity limits. It can be used also to eliminate the fraudulents peaks in automatical analysis of gamma-ray spectras. At last, it provides a list of criteria to determine the most suitable characteristics of a detector according to a special problem. Informations which have to be obtained from the manufacturers are specified [fr

  12. Rapid determination of 18 glucocorticoids in serum using reusable on-line SPE polymeric monolithic column coupled with LC-quadrupole/orbitrap high-resolution mass spectrometer.

    Science.gov (United States)

    Li, Hui; Ai, Lianfeng; Fan, Sufang; Wang, Yan; Sun, Dianxing

    2017-10-15

    A simple, rapid and sensitive method for the simultaneous determination of 18 glucocorticoids in serum was developed by coupling on-line solid-phase extraction (SPE) polymeric monolithic column to a liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometer. A simple poly(ethylene glycol dimethacrylate) monolith column (10mm×2.1mm i.d.) was fabricated, and the morphology, surface area and extraction performance of the monolithic column were characterized. Serum samples were extracted by acetonitrile (ACN). Then, online SPE was achieved on the synthesized monolithic column using a 10mmol/L ammonium acetate solution as the loading solvent. After the transfer from the monolith into analytical column (Capcell Pak ADME column) using ACN, the adsorbed analytes were separated on the analytical column and detected with a high-resolution hybrid quadrupole/orbitrap mass spectrometer with full scan/ddMS 2 scan mode Under optimized conditions, the method was linear with target linear correlation coefficient (R 2 ) higher than 0.995. Detection limits were in range of 0.1-0.6ng/mL, and the quantification limits were 0.3-1.5ng/mL. The recovery was between 71.9% and 89.2% in three spike levels with precision (n=5) of 5.40-12.1%. The serum sample was directly analyzed after a simple extraction procedure, and the on-line SPE and determination were achieved within only 16min. The method was used to analyze the dynamic contents variation of cortisone and hydrocortisone in serum before and after the surgery. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. High precision mass measurements of thermalized relativistic uranium projectile and fission fragments with a multiple-reflection time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ayet San Andres, Samuel [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Justus Liebig Universitaet, Giessen (Germany); Collaboration: FRS Ion Catcher-Collaboration

    2016-07-01

    At the FRS Ion Catcher at GSI, a relativistic beam of {sup 238}U at 1GeV/u was used to produce fission and projectile fragments on a beryllium target. The ions were separated in-flight at the FRS, thermalized in a cryogenic stopping cell and transferred to a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) where high precision mass measurements were performed. The masses of several fission and projectile fragments were measured (including short-lived nuclei with half-lives down to 18 ms) and the possibility of tailoring an isomerically clean beam for other experiments was demonstrated. With the demonstrated performance of the MR-TOF-MS and the expected production rates of exotic nuclei far from stability at the next-generation facilities such as FAIR, novel mass measurements of nuclei close to the neutron drip line will be possible and key information for understanding the r-process will be available. The results from the last experiment and an outlook of possible future mass measurements close to the neutron drip line at FAIR with the MR-TOF-MS are presented.

  14. In cleanroom, sub-ppb real-time monitoring of volatile organic compounds using proton-transfer reaction/time of flight/mass spectrometry

    Science.gov (United States)

    Hayeck, Nathalie; Maillot, Philippe; Vitrani, Thomas; Pic, Nicolas; Wortham, Henri; Gligorovski, Sasho; Temime-Roussel, Brice; Mizzi, Aurélie; Poulet, Irène

    2014-04-01

    Refractory compounds such as Trimethylsilanol (TMS) and other organic compounds such as propylene glycol methyl ether acetate (PGMEA) used in the photolithography area of microelectronic cleanrooms have irreversible dramatic impact on optical lenses used on photolithography tools. There is a need for real-time, continuous measurements of organic contaminants in representative cleanroom environment especially in lithography zone. Such information is essential to properly evaluate the impact of organic contamination on optical lenses. In this study, a Proton-Transfer Reaction-Time-of-Flight Mass spectrometer (PTR-TOF-MS) was applied for real-time and continuous monitoring of fugitive organic contamination induced by the fabrication process. Three types of measurements were carried out using the PTR-TOF-MS in order to detect the volatile organic compounds (VOCs) next to the tools in the photolithography area and at the upstream and downstream of chemical filters used to purge the air in the cleanroom environment. A validation and verification of the results obtained with PTR-TOF-MS was performed by comparing these results with those obtained with an off-line technique that is Automated Thermal Desorber - Gas Chromatography - Mass Spectrometry (ATD-GC-MS) used as a reference analytical method. The emerged results from the PTR-TOF-MS analysis exhibited the temporal variation of the VOCs levels in the cleanroom environment during the fabrication process. While comparing the results emerging from the two techniques, a good agreement was found between the results obtained with PTR-TOF-MS and those obtained with ATD-GC-MS for the PGMEA, toluene and xylene. Regarding TMS, a significant difference was observed ascribed to the technical performance of both instruments.

  15. Membrane introduction proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Alexander, M.; Boscaini, E.; Maerk, T.; Lindinger, W.

    2002-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a rapidly expanding field with multiple applications in ion physics, atmospheric chemistry, food chemistry, volatile organic compounds monitoring and biology. Initial studies that combine PTR-MS and membrane introduction mass spectrometry (MIMS) were researched and outlined. First using PTR-MS, certain fundamental physical properties of a poly-dimethylsiloxane (PDMS) membrane including solubilities and diffusion coefficients were measured. Second, it was shown how the chemical selectivity of the (PDMS) can be used to extend the capabilities of the PTR-MS instrument by eliminating certain isobaric interferences and excluding water from volatile organic compounds (VOCs). Experiments with mixtures of several VOCs (toluene, benzene, acetone, propanal, methanol) are presented. (nevyjel)

  16. Mass measurement of halo nuclides and beam cooling with the mass spectrometer Mistral; Mesure de masse de noyaux a halo et refroidissement de faisceaux avec l'experience MISTRAL

    Energy Technology Data Exchange (ETDEWEB)

    Bachelet, C

    2004-12-01

    Halo nuclides are a spectacular drip-line phenomenon and their description pushes nuclear theories to their limits. The most critical input parameter is the nuclear binding energy; a quantity that requires excellent measurement precision, since the two-neutron separation energy is small at the drip-line by definition. Moreover halo nuclides are typically very short-lived. Thus, a high accuracy instrument using a quick method of measurement is necessary. MISTRAL is such an instrument; it is a radiofrequency transmission mass spectrometer located at ISOLDE/CERN. In July 2003 we measured the mass of the Li{sup 11}, a two-neutron halo nuclide. Our measurement improves the precision by a factor 6, with an error of 5 keV. Moreover the measurement gives a two-neutron separation energy 20% higher than the previous value. This measurement has an impact on the radius of the nucleus, and on the state of the two valence neutrons. At the same time, a measurement of the Be{sup 11} was performed with an uncertainty of 4 keV, in excellent agreement with previous measurements. In order to measure the mass of the two-neutron halo nuclide Be{sup 14}, an ion beam cooling system is presently under development which will increase the sensitivity of the spectrometer. The second part of this work presents the development of this beam cooler using a gas-filled Paul trap. (author)

  17. Mass spectrometer provided with an optical system for separating neutron particles against charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Reeher, J R; Story, M S; Smith, R D

    1977-03-03

    This invention concerns a mass spectrometer with an ion focusing optical system that efficiently separates the charged and neutral particles. It concerns an apparatus that can be used in ionisation areas operating at relatively high pressure (> 10/sup -2/ Torr). The invention relates more particularly to a mass spectrometer with an inlet device for the samples to be identified, a sample ionisation system for forming charged and neutral particles, a mass analyser and an optical system for focusing the ions formed in the mass analyser. The optics include several conducting components of which at least one has sides formed of grids, in the direction of the axis, towards the analyser the optics forming a potential well along the axis. The selected charged particles are focused in the analyser and the remaining particles can escape by the openings in the conducting grids.

  18. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    Science.gov (United States)

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Use of a free-jet expansion, molecular beam mass spectrometer to understand processes involving volatile corrosion products

    International Nuclear Information System (INIS)

    Jacobson, N.S.

    1997-01-01

    Many high-temperature corrosion processes generate volatile products in addition to condensed phase products. Examples of these volatile products are chlorides, oxychlorides, and certain oxides and hydroxyl species. One of the best techniques to identify high temperature vapor molecules is mass spectrometry. Most mass spectrometers operate in high vacuum and are generally used to examine processes ocurring at greatly reduced pressures. However, a free-jet expansion, molecular beam mass spectrometer system allows direct sampling of volatile corrosion products. This instrument is described. Several examples from our studies on chlorination/oxidation of metals and ceramics are discussed. In addition, reactions of Cr 2 O 3 , SiO 2 , and Al 2 O 3 with water vapor, which produce volatile hydroxyl species are discussed. (orig.)

  20. An improved data acquisition system for isotopic ratio mass spectrometers

    International Nuclear Information System (INIS)

    Saha, T.K.; Reddy, B.; Nazare, C.K.; Handu, V.K.

    1999-01-01

    Isotopic ratio mass spectrometers designed and fabricated to measure the isotopic ratios with a precision of better than 0.05%. In order to achieve this precision, the measurement system consisting of ion signal to voltage converters, analog to digital converters, and data acquisition electronics should be at least one order better than the overall precision of measurement. Using state of the art components and techniques, a data acquisition system, which is an improved version of the earlier system, has been designed and developed for use with multi-collector isotopic ratio mass spectrometers

  1. Development and Evaluation of a Reverse-Entry Ion Source Orbitrap Mass Spectrometer

    Science.gov (United States)

    Poltash, Michael L.; McCabe, Jacob W.; Patrick, John W.; Laganowsky, Arthur; Russell, David H.

    2018-05-01

    As a step towards development of a high-resolution ion mobility mass spectrometer using the orbitrap mass analyzer platform, we describe herein a novel reverse-entry ion source (REIS) coupled to the higher-energy C-trap dissociation (HCD) cell of an orbitrap mass spectrometer with extended mass range. Development of the REIS is a first step in the development of a drift tube ion mobility-orbitrap MS. The REIS approach retains the functionality of the commercial instrument ion source which permits the uninterrupted use of the instrument during development as well as performance comparisons between the two ion sources. Ubiquitin (8.5 kDa) and lipid binding to the ammonia transport channel (AmtB, 126 kDa) protein complex were used as model soluble and membrane proteins, respectively, to evaluate the performance of the REIS instrument. Mass resolution obtained with the REIS is comparable to that obtained using the commercial ion source. The charge state distributions for ubiquitin and AmtB obtained on the REIS are in agreement with previous studies which suggests that the REIS-orbitrap EMR retains native structure in the gas phase.

  2. Tropospheric VOC measurements by PTR-MS

    International Nuclear Information System (INIS)

    Hansel, A.; Wisthaler, A.; Graus, M.; Grabmer, W.

    2002-01-01

    Full text: O 3 is formed photochemically from the photolysis of NO 2 , and because O 3 reacts rapidly with NO these reactions result in a photoequilibrium between NO, NO 2 with no net formation or loss of O 3 , However, in the presence of volatile organic compounds (VOCs), the degradation reactions of VOCs lead to the formation of intermediate peroxy radicals which react with NO, converting NO to NO 2 , which then photolyze to form O 3 . Thus, in order to understand quantitatively tropospheric ozone chemistry, it is necessary to know the VOC distribution within the troposphere as well as VOC fluxes from individual sources. Examples will be presented how the use of Proton Transfer Reaction Mass Spectrometry (PTR-MS) has enhanced our understanding of anthropogenic VOC emissions, biosphere-atmosphere exchange processes, and photochemical processing of both anthropogenic and biogenic VOCs in the troposphere. (author)

  3. High-performance hybrid Orbitrap mass spectrometers for quantitative proteome analysis

    DEFF Research Database (Denmark)

    Williamson, James C; Edwards, Alistair V G; Verano-Braga, Thiago

    2016-01-01

    We present basic workups and quantitative comparisons for two current generation Orbitrap mass spectrometers, the Q Exactive Plus and Orbitrap Fusion Tribrid, which are widely considered two of the highest performing instruments on the market. We assessed the performance of two quantitative methods...... on both instruments, namely label-free quantitation and stable isotope labeling using isobaric tags, for studying the heat shock response in Escherichia coli. We investigated the recently reported MS3 method on the Fusion instrument and the potential of MS3-based reporter ion isolation Synchronous...... Precursor Selection (SPS) and its impact on quantitative accuracy. We confirm that the label-free approach offers a more linear response with a wider dynamic range than MS/MS-based isobaric tag quantitation and that the MS3/SPS approach alleviates but does not eliminate dynamic range compression. We...

  4. Long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometer

    Science.gov (United States)

    Xu, J.; Zhang, X.; Liu, Y.; Shichang, K.; Ma, Y.

    2017-12-01

    An intensive measurement was conducted at a remote, background, and high-altitude site (Qomolangma station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from April 12 to May 12, 2016 to chemically characterize high time-resolved submicron particulate matter (PM1) and obtain the influence of biomass burning emissions to the Himalayas, frequently transported from south Asia during pre-monsoon season. Two high aerosol loading periods were observed during the study. Overall, the average (± 1σ) PM1 mass concentration was 4.44 (± 4.54) µg m-3 for the entire study, comparable with those observed at other remote sites worldwide. Organic aerosols (OA) was the dominant PM1 species (accounting for 54.3% of total PM1 mass on average) and its contribution increased with the increase of total PM1 mass loading. The average size distributions of PM1 species all peaked at an overlapping accumulation mode ( 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transportations. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a biomass burning related OA (BBOA, 43.7%) and two oxygenated OA (Local-OOA and LRT-OOA; 13.9% and 42.4%) represented sources from local emissions and long-range transportations, respectively. Two polluted air mass origins (generally from the west and southwest of QOMS) and two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions were observed, respectively, suggesting the important sources of wildfires from south Asia. One of polluted aerosol plumes was investigated in detail to illustrate the evolution of aerosol characteristics at QOMS driving by different impacts of wildfires, air mass origins, meteorological conditions and

  5. Data acquisition and processing system for a mass-spectrometer's site

    International Nuclear Information System (INIS)

    Kiselev, A.V.; Loginov, N.D.; Marusev, V.I.; Sviridova, Yu.F.; Temnoeva, T.A.; Fedorov, Yu.D.

    1986-01-01

    A two-level measuring-calculating system (MCS) has been developed; BESM-6 computer is used as a central computer at the upper level, at the lower - a terminal computer of the RPT type (Videoton, Hungary). MCS is designed for: the experimental data acquisition in the RPT immediate memory from several (up to five) mass spectrometers; communication of data accumulated in BESM-6 through a communication link; mathematical processing by BESM-6 and obtaining results at the mass spectrometer region. Simultaneous and independent recording of data from a mass spectrometer group as well as communication of data accumulated in BESM-6 without disturbance of RPT operating mode are provided with specially developed programs executed in RPT under OC RPS control. BESM-6 software is based on basic possibilities of OC RPS with respect to work with terminals. Received data is entered the archive in the form of variable length files by means of direct access programs; such archive organization permits to use the data for subsequent analysis and processing with the help of programs using any level languages

  6. Onsets of nuclear deformation from measurements with the Isoltrap mass spectrometer

    International Nuclear Information System (INIS)

    Naimi, S.

    2010-10-01

    Mass measurements provide important information concerning nuclear structure. This work presents results from the pioneering Penning trap spectrometer Isoltrap at CERN-Isolde. High-precision mass measurements of neutron-rich manganese ( 58 - 66 Mn) and krypton isotopes ( 96, 97 Kr) are presented, of which the 66 Mn and 96, 97 Kr masses are measured for the first time. In particular, the mass of 97 Kr was measured using the preparation trap and required the definition of a new fit function. In the case of the manganese isotopes, the N=40 shell closure is addressed. The two-neutron-separation energies calculated from the new masses show no shell closure at N=40 but give an estimation of the proton-neutron interaction (around 0.5 MeV) responsible for the increase of collectivity and nuclear deformation in this mass region. The new krypton masses show behavior in sharp contrast with heavier neighbors where sudden and intense deformation is present, interpreted as the establishment of a nuclear quantum shape/phase transition critical-point boundary. The new masses confirm findings from nuclear mean-square charge-radius measurements up to N=60 but are at variance with conclusions from recent gamma-ray spectroscopy. Another part of this work was the design of new decay spectroscopy system behind the Isoltrap mass spectrometer. The beam purity achievable with Isoltrap will allow decay studies with γ and β detection coupled to a tape-station. This system has been mounted and commissioned with the radioactive beam 80 Rb. (author)

  7. Development of a high resolution, high sensitivity cylindrical crystal spectrometer for line shape diagnostics of x-rays emitted from hot plasmas. Progress report, August 1, 1977--July 31, 1978

    International Nuclear Information System (INIS)

    Taylor, P.O.; Schnopper, H.

    1978-05-01

    This report oulines progress towards development of a high resolution, high throughput, curved crystal spectrometer suitable for line shape diagnostics of x-rays emitted from hot plasmas. The instrument is designed to interface with the MIT Tokamak (Alcator) with the initial aim of studying the prominent MoL lines which occur in the x-ray spectrum. However, it will have the versatility to function over an energy range of at least 1.5 keV to 7 keV allowing determination of temperature, charge state and density distributions for important impurity ions. The spectrometer employs a large, cylindrically bent crystal which focuses the dispersed x-rays along the cylinder axis where they are recorded by a position sensitive proportional counter. Thus, a wide energy range of the spectrum can be recorded simultaneously and sensitively from a short duration plasma. Computer control of data acquisition and analysis will allow real-time diagnostics

  8. Elemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    P. S. Chhabra

    2010-05-01

    Full Text Available The elemental composition of laboratory chamber secondary organic aerosol (SOA from glyoxal uptake, α-pinene ozonolysis, isoprene photooxidation, single-ring aromatic photooxidation, and naphthalene photooxidation is evaluated using Aerodyne high-resolution time-of-flight mass spectrometer data. SOA O/C ratios range from 1.13 for glyoxal uptake experiments to 0.30–0.43 for α-pinene ozonolysis. The elemental composition of α-pinene and naphthalene SOA is also confirmed by offline mass spectrometry. The fraction of organic signal at m/z 44 is generally a good measure of SOA oxygenation for α-pinene/O3, isoprene/high-NOx, and naphthalene SOA systems. The agreement between measured and estimated O/C ratios tends to get closer as the fraction of organic signal at m/z 44 increases. This is in contrast to the glyoxal uptake system, in which m/z 44 substantially underpredicts O/C. Although chamber SOA has generally been considered less oxygenated than ambient SOA, single-ring aromatic- and naphthalene-derived SOA can reach O/C ratios upward of 0.7, well within the range of ambient PMF component OOA, though still not as high as some ambient measurements. The spectra of aromatic and isoprene-high-NOx SOA resemble that of OOA, but the spectrum of glyoxal uptake does not resemble that of any ambient organic aerosol PMF component.

  9. AI mass spectrometers for space shuttle health monitoring

    Science.gov (United States)

    Adams, F. W.

    1991-01-01

    The facility Hazardous Gas Detection System (HGDS) at Kennedy Space Center (KSC) is a mass spectrometer based gas analyzer. Two instruments make up the HGDS, which is installed in a prime/backup arrangement, with the option of using both analyzers on the same sample line, or on two different lines simultaneously. It is used for monitoring the Shuttle during fuel loading, countdown, and drainback, if necessary. The use of complex instruments, operated over many shifts, has caused problems in tracking the status of the ground support equipment (GSE) and the vehicle. A requirement for overall system reliability has been a major force in the development of Shuttle GSE, and is the ultimate driver in the choice to pursue artificial intelligence (AI) techniques for Shuttle and Advanced Launch System (ALS) mass spectrometer systems. Shuttle applications of AI are detailed.

  10. A new approach for accurate mass assignment on a multi-turn time-of-flight mass spectrometer.

    Science.gov (United States)

    Hondo, Toshinobu; Jensen, Kirk R; Aoki, Jun; Toyoda, Michisato

    2017-12-01

    A simple, effective accurate mass assignment procedure for a time-of-flight mass spectrometer is desirable. External mass calibration using a mass calibration standard together with an internal mass reference (lock mass) is a common technique for mass assignment, however, using polynomial fitting can result in mass-dependent errors. By using the multi-turn time-of-flight mass spectrometer infiTOF-UHV, we were able to obtain multiple time-of-flight data from an ion monitored under several different numbers of laps that was then used to calculate a mass calibration equation. We have developed a data acquisition system that simultaneously monitors spectra at several different lap conditions with on-the-fly centroid determination and scan law estimation, which is a function of acceleration voltage, flight path, and instrumental time delay. Less than 0.9 mDa mass errors were observed for assigned mass to charge ratios ( m/z) ranging between 4 and 134 using only 40 Ar + as a reference. It was also observed that estimating the scan law on-the-fly provides excellent mass drift compensation.

  11. A hard x-ray spectrometer for high angular resolution observations of cosmic sources

    International Nuclear Information System (INIS)

    Hailey, C.J.; Ziock, K.P.; Harrison, F.; Kahn, S.M.; Liedahl, D.; Lubin, P.M.; Seiffert, M.

    1988-01-01

    LAXRIS (large area x-ray imaging spectrometer) is an experimental, balloon-borne, hard x-ray telescope that consists of a coaligned array of x-ray imaging spectrometer modules capable of obtaining high angular resolution (1--3 arcminutes) with moderate energy resolution in the 20- to 300-keV region. Each spectrometer module consists of a CsI(Na) crystal coupled to a position-sensitive phototube with a crossed-wire, resistive readout. Imaging is provided by a coded aperture mask with a 4-m focal length. The high angular resolution is coupled with rather large area (/approximately/800 cm 2 ) to provide good sensitivity. Results are presented on performance and overall design. Sensitivity estimates are derived from a Monte-Carlo code developed to model the LAXRIS response to background encountered at balloon altitudes. We discuss a variety of observations made feasible by high angular resolution. For instance, spatially resolving the nonthermal x-ray emission from clusters of galaxies is suggested as an ideal program for LAXRIS. 15 refs., 5 figs

  12. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers.

    Science.gov (United States)

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.

  13. Astrobee Periodic Technical Review (PTR) Delta 3

    Science.gov (United States)

    Provencher, Christopher; Smith, Marion F.; Smith, Ernest Everett; Bualat, Maria Gabriele; Barlow, Jonathan Spencer

    2017-01-01

    Astrobee is a free flying robot for the inside of the International Space Station (ISS). The Periodic Technical Review (PTR) delta 3 is the final design review of the system presented to stakeholders.

  14. Time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Kozlov, B.N.; Mamyrin, B.A.; Shmikk, D.V.; Shebelin, V.G.

    1981-01-01

    A time-of-flight mass spectrometer containing a pulsed ion source with an electron gun and two electrodes limiting ionization range, drift space and ion acceptor, is described. To expand functional possibilities, a slot collimator of the gas stream, two quantum generators and two diaphragms for the inlet of quantum generator radiation located on both sides of the ion source, are introduced in the ion source. The above invention enables to study details of the complex interaction process of laser radiation with molecules of the gas stream, which is actual for laser isotope separation

  15. FY16 Safeguards Technology Cart-Portable Mass Spectrometer Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Cyril V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitten, William B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    The Oak Ridge National Laboratory project for the Next Generation Safeguards Initiative Safeguards Technology Development Subprogram has been involved in the development of a cart portable mass spectrometer based on a Thermo ITQ ion trap mass spectrometer (referred to simply as the ITQ) for the field analysis of 235U/238U ratios in UF6. A recent discovery of the project was that combining CO2 with UF6 and introducing the mixture to the mass spectrometer (MS) appeared to increase the ionization efficiency and, thus, reduce the amount of UF6 needed for an analysis while also reducing the corrosive effects of the sample. However, initial experimentation indicated that mixing parameters should be closely controlled to ensure reproducible results. To this end, a sample manifold (SM) that would ensure the precise mixing of UF6 and CO2 was designed and constructed. A number of experiments were outlined and conducted to determine optimum MS and SM conditions which would provide the most stable isotope ratio analysis. The principal objective of the project was to provide a retrofit ITQ mass spectrometer operating with a SM capable of achieving a variation in precision of less than 1% over 1 hour of sampling. This goal was achieved by project end with a variation in precision of 0.5 to 0.8% over 1 hour of sampling.

  16. Capillary zone electrophoresis-mass spectromet of intact proteins

    NARCIS (Netherlands)

    Domínguez-Vega, Elena; Haselberg, Rob; Somsen, Govert W.

    2016-01-01

    Capillary electrophoresis (CE) coupled with mass spectrometry (MS) has proven to be a powerful analytical tool for the characterization of intact proteins. It combines the high separation efficiency, short analysis time, and versatility of CE with the mass selectivity and sensitivity offered by MS

  17. Setting up of Nuclide GRAF-3S spark source mass spectrometer for the analysis of high purity materials

    International Nuclear Information System (INIS)

    Mahalingam, T.R.; Murugaiyan, P.; Soni, K.S.; Venkateswarlu, Ch.

    1975-01-01

    A spark source mass spectrometer model GRAF-35 manufactured by the Nuclide Corporation, U.S.A., was set up for analysis of nuclear-grade and high purity materials. The main difficulty with its successful operation was to achieve and maintain the required level of vacuum i.e. less than 2X10 -8 torr in the magnetic analyser region. With 100 1/s ion pump, the required vacuum could be achieved, but the spectrometer required periodical baking which minimises the life of the instrument. The pumping system was replaced by Ultek Boostivac pump - a combination of ion pump (150 1/s) and a titanium sublimation pump (1000 1/sec speed for condensable vapours) which eliminated baking as the necessary level of vacuum could be easily achieved whenever required. Results of the analysis of zone-refined indium and uranium for trace impurities are given. (M.G.B.)

  18. Study of the intrinsic background noise of a quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Sysoev, A.A.; Islamov, I.M.; Khafizov, R.S.

    1977-01-01

    A proper background noise of a quadrupole mass-spectrometer is studied. The main sources of the noise have been analysed as well as their contributions to the overall noise of the device. It is shown that the main contribution is made by the photocurrent of the first dynode of the secondary-electron multiplier from ultraviolet radiation. The construction of the detecting system of the mass-spectrometer is given allowing one to increase the signal-to-noise ratio by a factor of > 500

  19. Characterisation of chemical components for identifying historical Chinese textile dyes by ultra high performance liquid chromatography – photodiode array – electrospray ionisation mass spectrometer

    NARCIS (Netherlands)

    Han, J.; Wanrooij, J.; van Bommel, M.; Quye, A.

    2017-01-01

    This research makes the first attempt to apply Ultra High Performance Liquid Chromatography (UHPLC) coupled to both Photodiode Array detection (PDA) and Electrospray Ionisation Mass Spectrometer (ESI–MS) to the chemical characterisation of common textile dyes in ancient China. Three different

  20. Precise determination of cosmogenic Ne in CREU-1 quartz standard, using the Helix-MC Plus mass spectrometer

    Science.gov (United States)

    Hamilton, D.; Honda, M.; Zhang, X.; Phillips, D.; Matchan, E.

    2017-12-01

    The Helix-MC Plus multi-collector noble gas mass spectrometer at the Australian National University is uniquely equipped with three high mass resolution collectors on H2, Axial and L2 positions. Their mass resolution and mass resolving power are as high as 1,800 and 8,000, respectively. The Helix-MC Plus can totally separate 20Ne+ from 40Ar++ isobaric interference and also partially separate 21Ne+ from 20NeH+ and 22Ne+ from 12C16O2++. By adjusting collector positions, we are able to measure interference-free Ne isotope intensities and have re-determined the 21Ne abundance in air [1]. Analyses by Honda et al. [1] demonstrated that 20Ne1H contributes approximately 2% to previously determined atmospheric 21Ne values [2], and a new atmospheric 21Ne/20Ne ratio of 0.002906 was calculated. Using the Helix-MC Plus mass spectrometer, we measured Ne abundances in the CREU-1 quartz standard [3] and determined cosmogenic concentrations by subtraction of atmospheric Ne with the new atmospheric 21Ne/20Ne value. The average concentration of cosmogenic 21Ne determined from four repeated analyses is 338 ± 12 × 106 atom/g (2σ). This compares with the average concentration of 348 ± 10 × 106 atom/g (2σ) from 45 analyses determined by several laboratories [3], where Ne isotope analyses were undertaken by conventional low resolution mass spectrometers and atmospheric Ne was subtracted using the conventional atmospheric 21Ne/20Ne [2]. On this basis, for a sample with abundant cosmogenic Ne, like CREU-1 quartz, previously measured by low mass resolution mass spectrometers are likely valid and their geological implications are unaffected. However, for low 21Ne concentration samples, combining new generation of mass spectrometers as well as the new atmospheric ratio may have significance for cosmogenic 21Ne surface exposure dating. References: [1] Honda M., et. al., International Journal of Mass Spectrometry, 387, 1 (2015). [2] Eberhardt P., et. al., Zeitschrift fur Naturforschung, 20

  1. Simultaneous ion detection in a mass spectrometer with variable mass dispersion

    International Nuclear Information System (INIS)

    Tuithof, H.H.

    1977-01-01

    This thesis mainly describes the ion-optics of a magnetic mass spectrometer system, especially applied to the projection of a significant part of the mass spectrum onto a flat ion-detector. The complete detector consists of a channeltron electron multiplier array with phosphor screen and a Vidicon-multichannel analyzer combination for simultaneous read-out. In order to optimise the spectral range projected onto the channelplate, by varying the mass dispersion and to rotate the oblique angle of the mass focal plane with respect to the detector surface, the sector magnet has been combined with electrostatic and magnetic quadrupole lenses. This detector will find wide application in the analysis of minute sample quantities, in the recording of extremely short ion events (large molecules) and at collision activation mass-spectrometry studies

  2. High resolution study of high mass pairs and high transverse momentum particles

    International Nuclear Information System (INIS)

    Smith, S.R.

    1983-01-01

    Preliminary experiments involving the high resolution spectrometer (experiment 605) at Fermilab are described. The spectrometer is designed for the study of pairs of particles at large invariant masses and single particles at large transverse momenta. A number of applications of the apparatus in the study of Drell-Yan processes, e.g. transverse momentum measurement, are discussed

  3. The History of Planetary Exploration Using Mass Spectrometers

    Science.gov (United States)

    Mahaffy, Paul R.

    2012-01-01

    At the Planetary Probe Workshop Dr. Paul Mahaffy will give a tutorial on the history of planetary exploration using mass spectrometers. He will give an introduction to the problems and solutions that arise in making in situ measurements at planetary targets using this instrument class.

  4. High-sensitivity Raman spectrometer to study pristine and irradiated interstellar ice analogs.

    Science.gov (United States)

    Bennett, Chris J; Brotton, Stephen J; Jones, Brant M; Misra, Anupam K; Sharma, Shiv K; Kaiser, Ralf I

    2013-06-18

    We discuss the novel design of a sensitive, normal-Raman spectrometer interfaced to an ultra-high vacuum chamber (5 × 10(-11) Torr) utilized to investigate the interaction of ionizing radiation with low temperature ices relevant to the solar system and interstellar medium. The design is based on a pulsed Nd:YAG laser which takes advantage of gating techniques to isolate the scattered Raman signal from the competing fluorescence signal. The setup incorporates innovations to achieve maximum sensitivity without detectable heating of the sample. Thin films of carbon dioxide (CO2) ices of 10 to 396 nm thickness were prepared and characterized using both Fourier transform infrared (FT-IR) spectroscopy and HeNe interference techniques. The ν+ and ν- Fermi resonance bands of CO2 ices were observed by Raman spectroscopy at 1385 and 1278 cm(-1), respectively, and the band areas showed a linear dependence on ice thickness. Preliminary irradiation experiments are conducted on a 450 nm thick sample of CO2 ice using energetic electrons. Both carbon monoxide (CO) and the infrared inactive molecular oxygen (O2) products are readily detected from their characteristic Raman bands at 2145 and 1545 cm(-1), respectively. Detection limits of 4 ± 3 and 6 ± 4 monolayers of CO and O2 were derived, demonstrating the unique power to detect newly formed molecules in irradiated ices in situ. The setup is universally applicable to the detection of low-abundance species, since no Raman signal enhancement is required, demonstrating Raman spectroscopy as a reliable alternative, or complement, to FT-IR spectroscopy in space science applications.

  5. Electrostatic mass spectrometer for concurrent mass-, energy- and angle-resolved measurements

    International Nuclear Information System (INIS)

    Golikov, Yu.K.; Krasnova, N.K.

    1999-01-01

    A new electron-optical scheme is considered. An energy- and mass-analyser with angular resolution are combined in one device, in which a time-of-flight principle of mass separation is used. The tool is created on the basis of electrostatic field of quasi-conical systems possessing the high-energy dispersion and high-angular resolution. A regime of simultaneous angular and energy resolution is found. If there is an ion-pulsed source then the ion groups of equal mass will be registered at the same time at a position-sensitive detector located at the edge of the field. Real parameters of the suggested scheme are calculated

  6. Miniature Mass Spectrometer for Earth Science Research, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — By drastically reducing the physical footprint of a mass spectrometer to the size of a beverage can, Ceramitron could set a new performance/price standard in the...

  7. A new thermal ionisation mass spectrometer

    International Nuclear Information System (INIS)

    Haines, C.; Merren, T.O.; Unsworth, W.D.

    1979-01-01

    The Isomass 54E, a new thermal ionisation mass spectrometer for precise measurements of isotopic composition is described in detail. It combines the fruits of three development pro ects, viz. automation, energy filters and extended geometry with existing micromass expertise and experience. The hardware and software which are used for the automation as well as the energy filter used, are explained. The 'extended geometry' ion optical system adopted for better performance is discussed in detail. (K.B.)

  8. Reduction of determinate errors in mass bias-corrected isotope ratios measured using a multi-collector plasma mass spectrometer

    International Nuclear Information System (INIS)

    Doherty, W.

    2015-01-01

    A nebulizer-centric instrument response function model of the plasma mass spectrometer was combined with a signal drift model, and the result was used to identify the causes of the non-spectroscopic determinate errors remaining in mass bias-corrected Pb isotope ratios (Tl as internal standard) measured using a multi-collector plasma mass spectrometer. Model calculations, confirmed by measurement, show that the detectable time-dependent errors are a result of the combined effect of signal drift and differences in the coordinates of the Pb and Tl response function maxima (horizontal offset effect). If there are no horizontal offsets, then the mass bias-corrected isotope ratios are approximately constant in time. In the absence of signal drift, the response surface curvature and horizontal offset effects are responsible for proportional errors in the mass bias-corrected isotope ratios. The proportional errors will be different for different analyte isotope ratios and different at every instrument operating point. Consequently, mass bias coefficients calculated using different isotope ratios are not necessarily equal. The error analysis based on the combined model provides strong justification for recommending a three step correction procedure (mass bias correction, drift correction and a proportional error correction, in that order) for isotope ratio measurements using a multi-collector plasma mass spectrometer

  9. Ion beam alignment in the MSX-4 mass spectrometer

    International Nuclear Information System (INIS)

    Busygin, A.I.; Nevzorov, A.A.; Ul'masbaev, B.Sh.

    1977-01-01

    A method for electrically adjusting an ion beam in an MSKh-4 mass-spectrometer has been developed. The adjusting system consists of two deflecting plates fastened to the frame of the ion source. By adjusting the potential difference at the plates in the range 0-150 v, one can increase the intensity of the mass-spectrum by a factor of 3 to 5

  10. Design and Analysis of a Getter-Based Vacuum Pumping System for a Rocket-Borne Mass Spectrometer

    Science.gov (United States)

    Everett, E. A.; Syrstad, E. A.; Dyer, J. S.

    2010-12-01

    The mesosphere / lower thermosphere (MLT) is a transition region where the turbulent mixing of earth’s lower atmosphere gives way to the molecular diffusion of space. This region hosts a rich array of chemical processes and atmospheric phenomena, and serves to collect and distribute particles of all sizes in thin layers. Spatially resolved in situ characterization of these layers is very difficult, due to the elevated pressure of the MLT, limited access via high-speed sounding rockets, and the enormous variety of charged and neutral species that range in size from atoms to smoke and dust particles. In terrestrial applications, time-of-flight mass spectrometry (TOF-MS) is the technique of choice for performing fast, sensitive composition measurements with extremely large mass range. However, because of its reliance on high voltages and microchannel plate (MCP) detectors prone to discharge at elevated pressures, TOF-MS has rarely been employed for measurements of the MLT, where ambient pressures approach 10 mTorr. We present a novel, compact mass spectrometer design appropriate for deployment aboard sounding rockets. This Hadamard transform time-of-flight mass spectrometer (HT-TOF-MS) applies a multiplexing technique through pseudorandom beam modulation and spectral deconvolution to achieve very high measurement duty cycles (50%), with a theoretically unlimited mass range. The HT-TOF-MS employs a simple, getter-based vacuum pumping system and pressure-tolerant MCP to allow operation in the MLT. The HT-TOF-MS must provide sufficient vacuum pumping to 1) maintain a minimum mean free path inside the instrument, to avoid spectral resolution loss, and 2) to avoid MCP failure through electrostatic discharge. The design incorporates inexpensive, room temperature tube getters loaded with nano-structured barium to meet these pumping speed requirements, without the use of cryogenics or mechanical pumping systems. We present experimental results for gettering rates and

  11. Mass spectrometer calibration of Cosmic Dust Analyzer

    Science.gov (United States)

    Ahrens, Thomas J.; Gupta, Satish C.; Jyoti, G.; Beauchamp, J. L.

    2003-02-01

    The time-of-flight (TOF) mass spectrometer (MS) of the Cosmic Dust Analyzer (CDA) instrument aboard the Cassini spacecraft is expected to be placed in orbit about Saturn to sample submicrometer-diameter ring particles and impact ejecta from Saturn's satellites. The CDA measures a mass spectrum of each particle that impacts the chemical analyzer sector of the instrument. Particles impact a Rh target plate at velocities of 1-100 km/s and produce some 10-8 to 10-5 times the particle mass of positive valence, single-charged ions. These are analyzed via a TOF MS. Initial tests employed a pulsed N2 laser acting on samples of kamacite, pyrrhotite, serpentine, olivine, and Murchison meteorite induced bursts of ions which were detected with a microchannel plate and a charge sensitive amplifier (CSA). Pulses from the N2 laser (1011 W/cm2) are assumed to simulate particle impact. Using aluminum alloy as a test sample, each pulse produces a charge of ~4.6 pC (mostly Al+1), whereas irradiation of a stainless steel target produces a ~2.8 pC (Fe+1) charge. Thus the present system yields ~10-5% of the laser energy in resulting ions. A CSA signal indicates that at the position of the microchannel plate, the ion detector geometry is such that some 5% of the laser-induced ions are collected in the CDA geometry. Employing a multichannel plate detector in this MS yields for Al-Mg-Cu alloy and kamacite targets well-defined peaks at 24 (Mg+1), 27(Al+1), and 64 (Cu+1) and 56 (Fe+1), 58 (Ni+1), and 60 (Ni+1) dalton, respectively.

  12. Ambient measurements of aromatic and oxidized VOCs by PTR-MS and GC-MS: intercomparison between four instruments in a boreal forest in Finland

    Science.gov (United States)

    Kajos, M. K.; Rantala, P.; Hill, M.; Hellén, H.; Aalto, J.; Patokoski, J.; Taipale, R.; Hoerger, C. C.; Reimann, S.; Ruuskanen, T. M.; Rinne, J.; Petäjä, T.

    2015-10-01

    Proton transfer reaction mass spectrometry (PTR-MS) and gas chromatography mass spectrometry GC-MS) are commonly used methods for automated in situ measurements of various volatile organic compounds (VOCs) in the atmosphere. In order to investigate the reliability of such measurements, we operated four automated analyzers using their normal field measurement protocol side by side at a boreal forest site. We measured methanol, acetaldehyde, acetone, benzene and toluene by two PTR-MS and two GC-MS instruments. The measurements were conducted in southern Finland between 13 April and 14 May 2012. This paper presents correlations and biases between the concentrations measured using the four instruments. A very good correlation was found for benzene and acetone measurements between all instruments (the mean R value was 0.88 for both compounds), while for acetaldehyde and toluene the correlation was weaker (with a mean R value of 0.50 and 0.62, respectively). For some compounds, notably for methanol, there were considerable systematic differences in the mixing ratios measured by the different instruments, despite the very good correlation between the instruments (mean R = 0.90). The systematic difference manifests as a difference in the linear regression slope between measurements conducted between instruments, rather than as an offset. This mismatch indicates that the systematic uncertainty in the sensitivity of a given instrument can lead to an uncertainty of 50-100 % in the methanol emissions measured by commonly used methods.

  13. An achromatic multipassage magnetic mass spectrometer

    International Nuclear Information System (INIS)

    Boulanger, P.; Baril, M.

    1999-01-01

    A design providing achromatic correction to a multipassage magnetic mass spectrometer previously described by the author is presented. The energy spatial dispersion caused by repeated passages in the magnetic prism is corrected by three supplementary mirrors placed in a reinjection loop. From this study one can see that we simultaneously eliminate the energy dispersion term C ΔE/E and the opening angle aberration term C α 2 and we may also eliminate the coupled aberration term C αΔE/E

  14. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, James P., E-mail: james.tonks@awe.co.uk [Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Galloway, Ewan C., E-mail: ewan.galloway@awe.co.uk; King, Martin O. [AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Kerherve, Gwilherm [VACGEN Ltd, St. Leonards-On-Sea, East Sussex TN38 9NN (United Kingdom); Watts, John F. [Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2016-08-15

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systems designed for only one of these techniques.

  15. Absolute analysis of uranium isotopic concentrations with a gas ion source mass spectrometer; Analyses absolues des concentrations isotopiques de l'uranium par spectrometre de masse equipe d'une source a gaz

    Energy Technology Data Exchange (ETDEWEB)

    Chaussy, L.; Boyer, R. [Commissariat a l' Energie Atomique, Pierrelatte (France)

    1969-07-01

    Mass spectrometer with electronic bombardment ions source for routine uranium isotopic analysis are used like relative measurements apparatus. We show that such mass spectrometers can be used for absolute measurements with a very high sensitivity and precision which are ten times better than theses of thermo-ionic ions source mass spectrometer. We examine the causes of systematic errors and we give experimental data. In particular natural uranium sample used as reference give: U{sub 5} = 0.7202 {+-} 0.0005 atoms per cent; U{sub 4} = 0.00552 {+-} 0.0003 atoms per cent. The use of this method is justified for standards control. (authors) [French] Les spectrometres de masse a source par bombardement electronique pour l'analyse de l'uranium sous forme d'hexafluorure, sont utilises en routine comme des appareils de mesure relative. On montre que l'on peut utiliser de tels appareils pour effectuer des mesures absolues avec une excellente sensibilite et reproductibilite, dix fois superieure a celle des spectrometres a source thermoionique. On examine en detail les causes d'erreurs systematiques et on donne des resultats experimentaux. En particulier, l'analyse d'un echantillon d'uranium naturel donne: U{sub 5} = 0.7202 {+-} 0.0005 atomes pour cent; U{sub 4} = 0.00552 {+-} 0.0003 atomes pour cent. La technique de mesure est utile pour le controle d'etalons isotopiques. (auteurs)

  16. Methane measurement by the Pioneer Venus large probe neutral mass spectrometer

    Science.gov (United States)

    Donahue, T. M.; Hodges, R. R., Jr.

    1992-12-01

    The Pioneer Venus Large Probe Mass Spectrometer detected a large quantity of methane as it descended below 20 km in the atmosphere of Venus. Terrestrial methane and Xe-136, both originating in the same container and flowing through the same plumbing, were deliberately released inside the mass spectrometer for instrumental reasons. However, the Xe-136 did not exhibit behavior similar to methane during Venus entry, nor did CH4 in laboratory simulations. The CH4 was deuterium poor compared to Venus water and hydrogen. While the inlet to the mass spectrometer was clogged with sulfuric acid droplets, significant deuteration of CH4 and its H2 progeny was observed. Since the only source of deuterium identifiable was water from sulfuric acid, we have concluded that we should correct the HDO/H2O ratio in Venus water from 3.2 x 10-2 to (5 plus or minus 0.7) x 10-2. When the probe was in the lower atmosphere, transfer of deuterium from Venus HDO and HD to CH4 can account quantitatively for the deficiencies recorded in HDO and HD below 10 km, and consequently, the mysterious gradients in water vapor and hydrogen mixing ratios we have reported. The revision in the D/H ratio reduces the mixing ratio of water vapor (and H2) reported previously by a factor of 3.2/5. We are not yet able to say whether the methane detected was atmospheric or an instrumental artifact. If it was atmospheric, its release must have been episodic and highly localized. Otherwise, the large D/H ratio in Venus water and hydrogen could not be maintained.

  17. Evidence for proton-tagged, central semi-exclusive production of high-mass muon pairs at 13 TeV with the CMS-TOTEM Precision Proton Spectrometer

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The process $pp \\rightarrow p \\mu^+\\mu^- p^{(*)}$ has been observed at the LHC for dimuon masses larger than $110~\\mathrm{GeV}$ in $pp$ collisions at $\\sqrt{s}=13~\\mathrm{TeV}$. Here $p^{(*)}$ indicates that the second proton is undetected, and either remains intact or dissociates into a low-mass state $p^{*}$. The scattered proton has been measured in the CMS-TOTEM Precision Proton Spectrometer (CT-PPS), which operated for the first time in 2016. The measurement is based on an integrated luminosity of approximately $10~\\mathrm{fb}^{-1}$ collected in regular, high-luminosity fills. A total of 12 candidates with $m(\\mu\\mu) > 110~\\mathrm{GeV}$, and matching forward proton kinematics, is observed. This corresponds to an excess of more than four standard deviations over the background. The spectrometer and its operation are described, along with the data and background estimation. The present results constitute the first evidence of this process at such masses. They also demonstrate that CT-PPS performs as expect...

  18. Reset charge sensitive amplifier for NaI(Tl) gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Zeng, Guoqiang; Tan, Chengjun; Li, Qiang; Ge, Liangquan; Liu, Xiyao; Luo, Qun

    2015-01-01

    The time constant of the output signal of the front-end readout circuit of a traditional gamma-ray spectrometer with a NaI(Tl)+PMT structure is affected by temperature, measurement environment and the signal transmission cable, so it is difficult to get a good resolution spectrum, especially at higher counting rates. In this paper, a reset charge sensitive amplifier (RCSA) is designed for the gamma-ray spectrometer with a NaI(Tl)+PMT structure. The designed RCSA outputs a step signal, thus enabling the acquisition of double-exponential signals with a stable time constant by using the next stage of a CR differentiating circuit. The designed RCSA is mainly composed of a basic amplifying circuit, a reset circuit and a dark current compensation circuit. It provides the output step signal through the integration of the PMT output charge signal. When the amplitude of the step signal exceeds a preset voltage threshold, it triggers the reset circuit to generate a reset pulse (about 5 µs pulse width) to reset the output signal. Experimental results demonstrated that the designed RCSA achieves a charge sensitivity of 4.26×10 10 V/C, with a zero capacitance noise of 51.09 fC and a noise slope of 1.98 fC/pF. Supported by the digital shaping algorithm of the digital multi-channel analyzer (DMCA), it can maintain good energy resolution with high counting rates up to 150 kcps and with a temperature range from −19 °C to 50 °C. - Highlights: • A new reset type charge sensitive amplifier for gamma-ray spectrometer based on a photomultiplier tube is proposed. • Reset circuit formed by constant current source output a fixed width pulse to reset charge sensitive amplifier. • Photomultiplier tube dark current compensation circuit could increase the pulse through rate by decreasing reset frequency. • This amplifier outputs a step function signal that could match next stage circuit easily

  19. MISTRAL: a new program for precise atomic mass determinations of nuclides far from stability

    International Nuclear Information System (INIS)

    Lunney, M.D.; Audi, G.; Borcea, C.; Dedieu, M.; Doubre, H.; Duma, M.; Jacotin, M.; Kepinski, J.F.; Le Scornet, G.; De Saint Simon, M.; Thibault, C.

    1996-01-01

    The MISTRAL project (Mass measurements at ISolde using a Transmission RAdiofrequency spectrometer on-Line) is scheduled to begin experiments towards the end of 1996. With high resolution (10 5 ), potentially high accuracy (5.10 -7 ) and excellent sensitivity (10 s -1 ), the MISTRAL spectrometer promises to provide needed mass measurements in regions of very-short lived nuclei. The spectrometer operation principles are described and a discussion concerning the interest in using highly charged ions is presented. (orig.)

  20. Onsets of nuclear deformation from measurements with the Isoltrap mass spectrometer

    CERN Document Server

    Naimi, Sarah

    Mass measurements provide important information concerning nuclear structure. This work presents results from the pioneering Penning trap spectrometer ISOLTRAP at CERN-ISOLDE. High-precision mass measurements of neutron-rich manganese ($^{58−66}$Mn) and krypton isotopes ($^{96,97}$Kr) are presented, of which the $^{66}$Mn and $^{96,97}$Kr masses are measured for the first time. In particular, the mass of $^{97}$Kr was measured using the preparation trap and required the definition of a new fit function. In the case of the manganese isotopes, the N = 40 shell closure is addressed. The two-neutron-separation energies calculated from the new masses show no shell closure at N = 40 but give an estimation of the proton-neutron interaction (around 0.5 MeV) responsible for the increase of collectivity and nuclear deformation in this mass region. The new krypton masses show behavior in sharp contrast with heavier neighbors where sudden and intense deformation is present, interpreted as the establishment of a nuclea...

  1. Studies of the mass spectrometer of the PALOMA instrument dedicated to Mars atmosphere analysis from a landed platform

    Science.gov (United States)

    Goulpeau, G.; Berthelier, J.-J.; Covinhes, J.; Chassefière, E.; Jambon, A.; Agrinier, P.; Sarda, Ph.

    2003-04-01

    An instrument to analyze the molecular, elemental and isotopic composition of Mars atmosphere from a landed platform is being developed under CNES funding. This instrument, called PALOMA (PAyload for Local Observation of Mars Atmosphere), will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. Noble gases (He, Ne, Ar, Xr, Xe), stable isotopes (C, H, O, N) and trace constituents of astrobiological interest, like CH4, H2CO, N2O, H2S, will be analyzed by using a system of gas purification and separation, coupled with a mass spectrometer. Isotopic ratios have to be measured with an accuracy of about 1‰, or better, in order to provide a clear diagnostic of possible life signatures, to allow a detailed comparison of Earth and Mars atmospheric fractionation patterns, finally to accurately disentangle escape, climatic, geochemical and hypothesized biological effects. In order to reach these high sensitivity levels, two spectrometers of complitely different conceptions have been developed. The first one is constituted of conscutive electrostatic and magnetic sectors. It’s an application of E. G. Johnson and A. O. Nier’s previous work in that domain. Theirs parameters have been calculated in a way both angular and energetic optical aberrations from the two fields compensate each other to the second order. Simulated flights of ions in the resulting electromagnetic optic forshadow the effectiveness of the instrument. The second spectrometer is of the time of flight type. Its developpement, as a possible alternative to the magnetic system, shows the TOF spectrometer as an instrument allying great sensitivity and reduiced weight and dimensions.

  2. THOR Ion Mass Spectrometer instrument - IMS

    Science.gov (United States)

    Retinò, Alessandro; Kucharek, Harald; Saito, Yoshifumi; Fraenz, Markus; Verdeil, Christophe; Leblanc, Frederic; Techer, Jean-Denis; Jeandet, Alexis; Macri, John; Gaidos, John; Granoff, Mark; Yokota, Shoichiro; Fontaine, Dominique; Berthomier, Matthieu; Delcourt, Dominique; Kistler, Lynn; Galvin, Antoniette; Kasahara, Satoshi; Kronberg, Elena

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. Specifically, THOR will study how turbulent fluctuations at kinetic scales heat and accelerate particles in different turbulent environments within the near-Earth space. To achieve this goal, THOR payload is being designed to measure electromagnetic fields and particle distribution functions with unprecedented resolution and accuracy. Here we present the Ion Mass Spectrometer (IMS) instrument that will measure the full three-dimensional distribution functions of near-Earth main ion species (H+, He+, He++ and O+) at high time resolution (~ 150 ms for H+ , ~ 300 ms for He++) with energy resolution down to ~ 10% in the range 10 eV/q to 30 keV/q and angular resolution ~ 10°. Such high time resolution is achieved by mounting multiple sensors around the spacecraft body, in similar fashion to the MMS/FPI instrument. Each sensor combines a top-hat electrostatic analyzer with deflectors at the entrance together with a time-of-flight section to perform mass selection. IMS electronics includes a fast sweeping high voltage board that is required to make measurements at high cadence. Ion detection includes Micro Channel Plates (MCP) combined with Application-Specific Integrated Circuits (ASICs) for charge amplification, discrimination and time-to-digital conversion (TDC). IMS is being designed to address many of THOR science requirements, in particular ion heating and acceleration by turbulent fluctuations in foreshock, shock and magnetosheath regions. The IMS instrument is being designed and will be built by an international consortium of scientific institutes with main hardware contributions from France, USA, Japan and Germany.

  3. Electronics for processing of data from a double collector isotopic ratio mass spectrometer

    International Nuclear Information System (INIS)

    Handu, V.K.

    1979-01-01

    The output data available from the mass spectrometer type MS-660 developed in the mass spectrometry section of Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, for the determination of H/D ratios in liquid/gas sample consist of uncompensated mass 3 and mass 2 signals. After the mass 3 signal has been compensated for H 3 + formation, the on-line ratio of compensated mass 3 to mass 2 is calculated, displayed, and then printed on a printer for record. The electronic compensation circuit, the discrete voltage-to-frequency (V/F) converter circuit, the ratio calculating system using V/F converters, and a digital interface system for Hindustan Teleprinter to print out the ratios are explained. Results obtained on mass spectrometer MS-660 are presented. (auth.)

  4. SIMS device with quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Szigethy, D.; Riedel, M.

    1980-01-01

    A versatile secondary ion mass spectrometer (SIMS) has been designed and constructed. The device is applicable for dinamic and static SIMS investigations. The sputtering and ionisation can be studied simultaneously. Oil diffusion pumps and an auxiliary ion-getter pump are used. A commercial ion gun is used in the working chamber. The secondary ion optics assures the preliminary filtering of fast ions, and the collection of sputtered ions for a separate microprobe analysis. The performance of the apparatus is illustrated with examples. (R.J.)

  5. High-sensitivity multidimensional gamma-ray spectrometer, PRIPYAT` for low-level measurements

    Energy Technology Data Exchange (ETDEWEB)

    Andrukhovich, S K [and others

    1996-12-31

    The design of the gamma spectrometer PRIPYAT` intended for gamma spectra measurement in the energy range 0.2-3 MeV is discussed. The spectrometer may be used for the food and water control as well as for massive control of environmental contamination. Its background at Cs{sup 134} + Cs{sup 137} measurement regime is less then 9 c/s. 1 fig.

  6. The distributed control system of Shanghai mini-cyclotron accelerator mass spectrometer (SMCAMS)

    International Nuclear Information System (INIS)

    Shao Yuhe

    2001-01-01

    It is mainly introduced the composition, structure, hardware and software designing, function, and the method of communication between the host computer and the ADAM modules of the distributed control system on Shanghai Mini-cyclotron Accelerator Mass Spectrometer (SMCAMS). Some detail problems such as controlling the devices staying on high voltage by ADAM-4541 (RS-485 to Fiber Optic Convertor) and optical fiber are also introduced

  7. The AMS [Accelerator Mass Spectrometer] program at LLNL

    International Nuclear Information System (INIS)

    Proctor, I.D.

    1988-09-01

    Livermore will have an operational Accelerator Mass Spectrometer (AMS) by mid-1989 as part of its new Multi-user Tandem Laboratory. The spectrometer was designed primarily for applications in archaeology and the geosciences and was co-funded by the University of California Regents. Radiological control for personnel protection, ion sources and injection systems, the tandem and all beam handling hardware are operated with a distributed processor computer control system. The Tandem is the former University of Washington injector FN which has been upgraded with Dowlish tubes, pelletron charging and SF 6 gas. Design goals for the AMS system, computer aided operation, automated measurement capability, initial results and some of our intended applications will be presented. 5 refs., 2 figs

  8. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Tetsushi, E-mail: tiida@nig.ac.jp [Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 (Japan); Iida, Naoko [Division of Mutagenesis, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Tsutsui, Yasuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda-cho, Midori-ku, Yokohama 226-8501 (Japan); Yamao, Fumiaki [Division of Mutagenesis, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Kobayashi, Takehiko [Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer RNAi is linked to the cell cycle checkpoint in fission yeast. Black-Right-Pointing-Pointer Ptr1 co-purifies with Ago1. Black-Right-Pointing-Pointer The ptr1-1 mutation impairs the checkpoint but does not affect gene silencing. Black-Right-Pointing-Pointer ago1{sup +} and ptr1{sup +} regulate the cell cycle checkpoint via the same pathway. Black-Right-Pointing-Pointer Mutations in ago1{sup +} and ptr1{sup +} lead to the nuclear accumulation of poly(A){sup +} RNAs. -- Abstract: Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1{sup +}, the overexpression of ago1{sup +} alleviated the cell cycle defect in dcr1{Delta}. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1{sup +} is dependent on ptr1{sup +}. Nuclear accumulation of poly(A){sup +} RNAs was detected in mutants of ago1{sup +} and ptr1{sup +}, suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control.

  9. Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy

    Science.gov (United States)

    Acton, W. Joe F.; Schallhart, Simon; Langford, Ben; Valach, Amy; Rantala, Pekka; Fares, Silvano; Carriero, Giulia; Tillmann, Ralf; Tomlinson, Sam J.; Dragosits, Ulrike; Gianelle, Damiano; Hewitt, C. Nicholas; Nemitz, Eiko

    2016-06-01

    This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs) 4 m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketone + methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton-transfer-reaction mass spectrometer (PTR-MS) and a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) together with the methods of virtual disjunct eddy covariance (using PTR-MS) and eddy covariance (using PTR-ToF-MS). Isoprene was the dominant emitted compound with a mean daytime flux of 1.9 mg m-2 h-1. Mixing ratios, recorded 4 m above the canopy, were dominated by methanol with a mean value of 6.2 ppbv over the 28-day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7 mg m-2 h-1 was calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) isoprene emission algorithms (Guenther et al., 2006). A detailed tree-species distribution map for the site enabled the leaf-level emission of isoprene and monoterpenes recorded using gas-chromatography mass spectrometry (GC-MS) to be scaled up to produce a bottom-up canopy-scale flux. This was compared with the top-down canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant-species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.

  10. Towards 100Sn with GASP + Si-ball + Recoil Mass Spectrometer: High-spin states of 105Sn and 103In

    International Nuclear Information System (INIS)

    De Angelis, G.; Farnea, E.; Gadea, A.; Sferrazza, M.; Ackermann, D.; Bazzacco, D.; Bednarczyk, P.; Bizzeti, P.G.; Bizzeti Sona, A.M.; Brandolini, F.; Burch, R.; Buscemi, A.; De Acuna, D.; De Poli, M.; Fahlander, C.; Li, Y.; Lipoglavsek, M.; Lunardi, S.; Makishima, A.; Menegazzo, R.; Mueller, L.; Napoli, D.; Ogawa, M.; Pavan, P.; Rossi-Alvarez, C.; Scarlassara, F.; Segato, G.F.; Seweryniak, D.; Soramel, F.; Spolaore, P.; Zanon, R.

    1995-01-01

    Very proton rich nuclei in the A∼100 region have been investigated using the GASP array coupled with the Recoil Mass Spectrometer (RMS) and the GASP Si-ball. High-spin states of 105 Sn and 103 In nuclei formed with the reaction 58 Ni+ 50 Cr at 210MeV have been investigated up to similar 10 and 7MeV of excitation energy respectively. We have confirmed the known excited states for both nuclei and extended to higher spin the level scheme. The experimental level schemes are compared with shell model calculations. ((orig.))

  11. Aerosol quantification with the Aerodyne Aerosol Mass Spectrometer: detection limits and ionizer background effects

    Directory of Open Access Journals (Sweden)

    S. Borrmann

    2009-02-01

    Full Text Available Systematic laboratory experiments were performed to investigate quantification of various species with two versions of the Aerodyne Aerosol Mass Spectrometer, a Quadrupole Aerosol Mass Spectrometer (Q-AMS and a compact Time-of-Flight Aerosol Mass Spectrometer (c-ToF-AMS. Here we present a new method to continuously determine the detection limits of the AMS analyzers during regular measurements, yielding detection limit (DL information under various measurement conditions. Minimum detection limits range from 0.03 μg m−3 (nitrate, sulfate, and chloride up to 0.5 μg m−3 (organics for the Q-AMS. Those of the c-ToF-AMS are found between 0.003 μg m−3 (nitrate, sulfate and 0.03 μg m−3 (ammonium, organics. The DL values found for the c-ToF-AMS were ~10 times lower than those of the Q-AMS, mainly due to differences in ion duty cycle. Effects causing an increase of the detection limits include long-term instrument contamination, measurement of high aerosol mass concentrations and short-term instrument history. The self-cleaning processes which reduce the instrument background after measurement of large aerosol concentrations as well as the influences of increased instrument background on mass concentration measurements are discussed. Finally, improvement of detection limits by extension of averaging time intervals, selected or reduced ion monitoring, and variation of particle-to-background measurement ratio are investigated.

  12. MERLIN, a new high count rate spectrometer at ISIS

    International Nuclear Information System (INIS)

    Bewley, R.I.; Eccleston, R.S.; McEwen, K.A.; Hayden, S.M.; Dove, M.T.; Bennington, S.M.; Treadgold, J.R.; Coleman, R.L.S.

    2006-01-01

    MERLIN is designed to be a high intensity, medium energy resolution spectrometer. As such, it will complement the high-resolution MAPS spectrometer at ISIS. MERLIN will utilise all the latest advances in technology with a supermirror guide to enhance flux as well as 3 m long position-sensitive detectors in a vacuum making it ideal for single-crystal users. The detector bank will cover a massive π steradians of solid angle with an angular range from -45 o to +135 o degrees in the horizontal plane and ±30 o degrees in the vertical plane. This will allow large swathes of Q,ω space to be accessed in a single run. The instrument will be ready for commissioning in February 2006. This paper presents details of design and performance of this new instrument

  13. Data acquisition and control system for quadrupole mass spectrometer using an add-on card to an IBM PC

    International Nuclear Information System (INIS)

    Paal, A.; Szadai, J.; Szekely, G.

    1991-01-01

    An RF/DC unit, a dedicated interface card and the PCQMS software was designed to upgrade the existing quadrupole mass spectrometer of ATOMKI series Q300C to Q300PC. The new units and the software features are described. Display modes, all in high resolution graphics are provided to include ion monitoring table, ion monitoring analog, intensity vs time or temperature, scan bargraph and scan analog. The quadrupole mass spectrometer performance has been improved by the new modifications for data acquisition and control to be accomplished automatically. (R.P.) 3 refs.; 4 figs

  14. Application of gas chromatography-surface ionization organic mass spectrometry to forensic toxicology.

    Science.gov (United States)

    Ishii, Akira; Watanabe-Suzuki, Kanako; Seno, Hiroshi; Suzuki, Osamu; Katsumata, Yoshinao

    2002-08-25

    Surface ionization (SI), which consists in the formation of positive and negative ions along the course of thermal desorption of particles from a solid surface, was first applied as a detector for gas chromatography (GC), GC-surface ionization detection (SID); we developed many new sensitive methods for the determination of abused and other drugs by GC-SID. Recently, Fujii has devised a combination of SI and a quadrupole mass spectrometer and named this system a surface ionization organic mass spectrometer (SIOMS), which is highly selective and sensitive for organic compounds containing tertiary amino groups. We have tried to apply this mass spectrometer to forensic toxicological study; so far we have succeeded in determining important drugs-of-abuse and toxic compounds, such as phencyclidine (PCP), pethidine, pentazocine, MPTP and its derivatives from human body fluids with high sensitivity and selectivity. In this review, we describe our recent studies on the application of GC-SIOMS to forensic toxicology. Copyright 2002 Elsevier Science B.V.

  15. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    Science.gov (United States)

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.

  16. High-effective position time spectrometer in actual measurements of low intensity region of electron spectra

    International Nuclear Information System (INIS)

    Babenkov, M.I.; Zhdanov, V.S.

    2002-01-01

    Magnetic position-time spectrometer was proposed in previous work, where not only electron coordinates in focal plane are measured by position sensitive detector (PSD) but places of their birth in beta source plane of a large area are fixed using another PSD, situated behind it, by quick effects, accompanying radioactive decay. PSD on the basis of macro-channel plates are used. It is succeeded in position-time spectrometer to combine beta sources of a large area with multichannel registration for a wide energy interval, that efficiency of measurements was two orders of magnitude increase d in comparison magnetic apparatus having PSD only in focal plane. Owing to two detectors' switching on coincidence the relation effect/background in increased minimum on two orders of magnitude in comparison with the same apparatus. At some complication of mathematical analysis it was obtained, that high characteristics of position-time spectrometer are kept during the use the magnetic field, providing double focusing. Owning to this focusing the gain the efficiency of measurements will make one more order of magnitude. Presented high-effective position-time spectrometer is supposed to use in the measurements of low-intensity region of electron spectra, which are important for development of fundamental physics. This is the first of all estimation of electron anti-neutrino mass by the form of beta spectrum of tritium in the region of boundary energy. Recently here there was problem of non physical negative values. This problem can be solved by using in measurement of different in principle high-effective spectrometers, which possess improved background properties. A position-time spectrometers belongs to these apparatus, which provides the best background conditions at very large effectiveness of the measurements of tritium beta spectrum in the region of boundary energy with acceptable high resolution. An important advantage of position-time spectrometer is the possibility of

  17. The Varian MAT-250 mass spectrometer. Steady isotopes laboratory

    International Nuclear Information System (INIS)

    Hernandez M, V.; Tavera D, M.L.

    1997-01-01

    This work treats over the performance and applications of the Varian Mat-250 mass spectrometer which is in the environmental isotope laboratory. It can be applied over topics such as: ions formation, acceleration and collimation, ions separation, ions detection, data transformation, sampling, δ notation. (Author)

  18. A design of a high speed dual spectrometer by single line scan camera

    Science.gov (United States)

    Palawong, Kunakorn; Meemon, Panomsak

    2018-03-01

    A spectrometer that can capture two orthogonal polarization components of s light beam is demanded for polarization sensitive imaging system. Here, we describe the design and implementation of a high speed spectrometer for simultaneous capturing of two orthogonal polarization components, i.e. vertical and horizontal components, of light beam. The design consists of a polarization beam splitter, two polarization-maintain optical fibers, two collimators, a single line-scan camera, a focusing lens, and a reflection blaze grating. The alignment of two beam paths was designed to be symmetrically incident on the blaze side and reverse blaze side of reflection grating, respectively. The two diffracted beams were passed through the same focusing lens and focused on the single line-scan sensors of a CMOS camera. The two spectra of orthogonal polarization were imaged on 1000 pixels per spectrum. With the proposed setup, the amplitude and shape of the two detected spectra can be controlled by rotating the collimators. The technique for optical alignment of spectrometer will be presented and discussed. The two orthogonal polarization spectra can be simultaneously captured at a speed of 70,000 spectra per second. The high speed dual spectrometer can simultaneously detected two orthogonal polarizations, which is an important component for the development of polarization-sensitive optical coherence tomography. The performance of the spectrometer have been measured and analyzed.

  19. Applicability of hybrid linear ion trap-high resolution mass spectrometry and quadrupole-linear ion trap-mass spectrometry for mycotoxin analysis in baby food.

    Science.gov (United States)

    Rubert, Josep; James, Kevin J; Mañes, Jordi; Soler, Carla

    2012-02-03

    Recent developments in mass spectrometers have created a paradoxical situation; different mass spectrometers are available, each of them with their specific strengths and drawbacks. Hybrid instruments try to unify several advantages in one instrument. In this study two of wide-used hybrid instruments were compared: hybrid quadrupole-linear ion trap-mass spectrometry (QTRAP®) and the hybrid linear ion trap-high resolution mass spectrometry (LTQ-Orbitrap®). Both instruments were applied to detect the presence of 18 selected mycotoxins in baby food. Analytical parameters were validated according to 2002/657/CE. Limits of quantification (LOQs) obtained by QTRAP® instrument ranged from 0.45 to 45 μg kg⁻¹ while lower limits of quantification (LLOQs) values were obtained by LTQ-Orbitrap®: 7-70 μg kg⁻¹. The correlation coefficients (r) in both cases were upper than 0.989. These values highlighted that both instruments were complementary for the analysis of mycotoxin in baby food; while QTRAP® reached best sensitivity and selectivity, LTQ-Orbitrap® allowed the identification of non-target and unknowns compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. FieldSpec: A field portable mass spectrometer prototype for high frequency measurements of δ (2) H and δ (18) O ratios in water

    Science.gov (United States)

    López Días, Veneranda; Quang Hoang, Hung; Martínez-Carreras, Núria; Barnich, François; Wirtz, Tom; Pfister, Laurent; McDonnell, Jeffrey

    2016-04-01

    Hydrological studies relying on stable water isotopes to better understand water sources, flowpaths and transit times are currently limited by the coarse temporal resolution of sampling and analysis protocols. At present, two kinds of lab-based instruments are used : (i) the standard isotope ratio mass spectrometers (IRMS) [1] and (ii) the laser-based instruments [2, 3]. In both cases, samples need to be collected in the field and then transferred to the laboratory for the water isotopic ratio measurements (even further complex sample preparation is required for the IRMS). Hence, past and ongoing research targets the development of field deployable instruments for measuring stable water isotopes at high temporal frequencies. While recent studies have demonstrated that laser-based instruments may be taken to the field [4, 5], their size and power consumption still restrict their use to sites equipped with mains power or generators. Here, we present progress on the development of a field portable mass spectrometer (FieldSpec) for direct high frequency measurements of δ2H and δ18O ratios in water. The FieldSpec instrument is based upon the use of a double focusing magnetic sector mass spectrometer in combination with an electron impact ion source and a membrane dual inlet system. The instrument directly collects liquid water samples in the field, which are then converted into water vapour before being injected into the mass spectrometer for the stable isotope analysis. δ2H and δ18O are derived from the measured mass spectra. All the components are arranged in a vacuum case having a suit case type dimension with portable electronics and battery. Proof-of-concept experiments have been carried out to characterize the instrument. The results show that the FieldSpec instrument has good linearity (R2 = 0.99). The reproducibility of the instrument ranges between 1 and 4 ‰ for δ2H and between 0.1 and 0.4 ‰ for δ18O isotopic ratio measurements. A measurement

  1. The development of a completely automated oxygen isotope mass spectrometer

    International Nuclear Information System (INIS)

    Ahern, T.K.

    1980-01-01

    A completely automated mass spectrometer system has been developed to measure the oxygen isotope ratio of carbon dioxide samples. The system has an accuracy of 0.03 percent, and is capable of analyzing more than 100 samples a day. The system uses an Interdata minicomputer as the primary controller. The intelligence of the system is contained within hardware circuits, software within the minicomputer, and firmware written for a Motorola 6802 microprocessor. A microprocessor-based inlet system controller maximizes the throughput of carbon dioxide samples within the inlet system. The inlet system normally contains four different aliquots of carbon dioxide and introduces these samples to the mass spectrometer through a single admittance leak. The system has been used in the analysis of 111 samples of ice taken from the Steele glacier

  2. GoAmazon 2014/15. SRI-PTR-ToFMS Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, A. [Univ. of California, Irvine, CA (United States)

    2016-03-01

    Our science team, including Dr. Alex Guenther (previously at Pacific Northwest National Laboratory (PNNL) and now at the University of California, Irvine) Dr. Saewung Kim and Dr. Roger Seco, and Dr. Jim Smith (previously at NCAR and now at UC Irvine), deployed a selected reagent ion – proton transfer reaction – time-of-flight mass spectrometer (SRI-PTR-TOFMS) to the T3 site during the GoAmazon study. One of the major uncertainties in climate model simulations is the effects of aerosols on radiative forcing, and a better understanding of the factors controlling aerosol distributions and life cycle is urgently needed. Aerosols contribute directly to the Earth’s radiation balance by scattering or absorbing light as a function of their physical properties and indirectly through particle-cloud interactions that lead to cloud formation and the modification of cloud properties. On a global scale, the dominant source of organic aerosol is biogenic volatile organic compounds (BVOC) emitted from terrestrial ecosystems. These organic aerosols are a major part of the total mass of all airborne particles and are currently not sufficiently represented in climate models. To incorporate quantitatively the effects of BVOCs and their oxidation products on biogenic organic aerosol (BOA) requires parameterization of their production in terrestrial ecosystems and their atmospheric transformations. This project was designed to reduce the gaps in our understanding of how these processes control BVOCs and BOAs, and their impact on climate. This was accomplished by wet and dry season measurements at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility T3 site along with a comprehensive suite of complementary measurements. The specific goals were to 1) measure and mechanistically understand the factors affecting aerosol distributions over a tropical rain forest, especially the effects of anthropogenic pollution as a perturbation to

  3. The calibration of spectrometers for Auger electron and X-ray photoelectron spectrometers part II - the determination of the electron spectrometer transmission function and the detector sensitivity energy dependencies

    International Nuclear Information System (INIS)

    Smith, G.C.; Seah, M.P.

    1991-01-01

    For the use of published general or theoretical sensitivity factors in quantitative AES and XPS the energy dependence of both the spectrometer transmission function and the detector sensitivity must be known. Here we develop simple procedures which allow these dependencies to be determined experimentally. Detailed measurements for a modified VG Scientific ESCALAB II, the metrology spectrometer, operated in both the constant ΔE/E and constant ΔE modes, are presented and compared with theoretical estimates. It is shown that an exceptionally detailed electron-optical calculation, involving proprietary information, would be required to match the accuracy of the experimental procedures developed. Removal of the spectrometer transmission function and the detector sensitivity terms allows the measured spectrum to be converted to the true electron emission spectrum irrespective of the mode of operation. This provides the first step to the provision of reference samples to calibrate the transmission functions and detector sensitivities of all instruments so that they, in turn, may produce true electron emission spectra. This is vital if (i) all instruments are to give consistent results, (ii) theoretical terms are to be used in quantifying either AES or XPS and (iii) reference data banks are to be established for AES or XPS

  4. Attachment to a mass spectrometer for studying the processes of semiconductor compound deposition from a gaseous phase

    International Nuclear Information System (INIS)

    Belousov, V.I.; Zhuravlev, G.I.; Popenko, N.I.; Novozhilov, A.F.; Matveev, I.V.; Murav'ev, V.V.

    1984-01-01

    An attachment to the mass spectrometer for studying the processes of semiconductor compounds deposition from a gaseous phase at the pressure of 1x10 5 Pa and the temperature of 400-1300 K is described. The attachment consists of the Neer ion source with ionization section cooled upto the temperature of liquid nitrogen, a two-zone vacuum furnace, and a quartz epitaxy reactor of the horzontal type.The attachment is equipped with the systems of process gas distribution in 5 flows and temperature stabilization. The rate of mass spectrum recording constitutes 2 mass/s at the resolution being equal to 1000 at the 10% level. The sensitivity at the steam-gas mixture components partial pressure determination constitutes 1x10 -4 Pa

  5. Design and realization of a space-borne reflectron time of flight mass spectrometer: electronics and measuring head

    International Nuclear Information System (INIS)

    Devoto, P.

    2006-03-01

    The purpose of this thesis is the design of the electronics of a time of flight mass spectrometer, the making and the vacuum tests of a prototype which can be put onboard a satellite. A particular effort was necessary to decrease to the maximum the mass and electric consumption of the spectrometer, which led to the development of new circuits. The work completed during this thesis initially concerns the electronics of the measuring equipment which was conceived in a concern for modularity. A complete 'reflectron' type mass spectrometer was then designed, simulated and developed. The built prototype, which uses the developed electronics, was exposed to ion flows of different masses and energies in the CESR vacuum chambers. Its measured performances validate the implemented principles and show that an identical mass spectrometer can be put onboard a satellite with profit, for planetary or solar missions. (author)

  6. Characterization of a time-of-flight mass spectrometer and its applications in the study of solid surfaces; Charakterisierung eines Flugzeitmassenspektrometers und seine Anwendungen in der Festkoerperoberflaechenuntersuchung

    Energy Technology Data Exchange (ETDEWEB)

    Mazarov, P.

    2006-12-21

    The object and the purpose of the present work was to develop, to assemble and to start running a new TOF (time of flight) mass spectrometer for imaging SNMS analytic which is optimized for the analysis of highly molecular secondary ions. The most important purpose was the characterization of the TOF mass spectrometer. The obtained mass spectra of indium, tantalum and silver clusters reflect the excellent properties of the TOF mass spectrometer for the detection of large clusters with good detection efficiency up to masses of 16000 amu. The possibility of the deflection of selected saturated atom and cluster peaks serves for further improvement of the detection efficiency for large molecules. The accessible mass resolution was determined to be of the order of m/{delta}m=1000 in the high mass region. Numerous measurements were carried out to characterize the useful yield of this spectrometer. For a best possible adaptation of the TOF mass spectrometer for the detection of highly molecular particles, a device for post-acceleration of the detected particles by up to 10 keV were inserted directly before the MCP detector. The detection efficiency of positive secondary ions was determined for different post-acceleration voltages for the example of sputtered indium cluster ions. In addition, a new method was developed for the quantitative determination of the spectral ionization probability {alpha}{sup +}({nu}) of sputtered particles as a function of the emission velocity. The next application of the TOF mass spectrometer is the analysis of complicated organic molecules in solid state surfaces. During measurements of the photo-ionization behaviour of neutral tryptophan molecules, it was found out that a stable molecular ion signal is generated in the SNMS spectrum with h{nu}=7.9 eV can only be observed by the use of a continuous ion beam or very long (ms range) ion pulses. (orig.)

  7. Commissioning of the AEI MS702 mass spectrometer

    International Nuclear Information System (INIS)

    Pearton, D.C.G.; Sobiecki, A.

    1978-01-01

    The setting-up and commissioning of the AEI MS702 mass spectrometer is described. Its individual components and their use are discussed, as well as the sample preparation, analysis, and reduction of data. A comprehensive list is given of instrumental breakdowns, and the application of the technique to several matrices is outlined. Improvements and modifications to the technique, including the use of a minicomputer, are suggested

  8. Recent Advances in Water Analysis with Gas Chromatograph Mass Spectrometers

    Science.gov (United States)

    MacAskill, John A.; Tsikata, Edem

    2014-01-01

    We report on progress made in developing a water sampling system for detection and analysis of volatile organic compounds in water with a gas chromatograph mass spectrometer (GCMS). Two approaches are described herein. The first approach uses a custom water pre-concentrator for performing trap and purge of VOCs from water. The second approach uses a custom micro-volume, split-splitless injector that is compatible with air and water. These water sampling systems will enable a single GC-based instrument to analyze air and water samples for VOC content. As reduced mass, volume, and power is crucial for long-duration, manned space-exploration, these water sampling systems will demonstrate the ability of a GCMS to monitor both air and water quality of the astronaut environment, thereby reducing the amount of required instrumentation for long duration habitation. Laboratory prototypes of these water sampling systems have been constructed and tested with a quadrupole ion trap mass spectrometer as well as a thermal conductivity detector. Presented herein are details of these water sampling system with preliminary test results.

  9. High-throughput spectrometer designs in a compact form-factor: principles and applications

    Science.gov (United States)

    Norton, S. M.

    2013-05-01

    Many compact, portable Raman spectrometers have entered the market in the past few years with applications in narcotics and hazardous material identification, as well as verification applications in pharmaceuticals and security screening. Often, the required compact form-factor has forced designers to sacrifice throughput and sensitivity for portability and low-cost. We will show that a volume phase holographic (VPH)-based spectrometer design can achieve superior throughput and thus sensitivity over conventional Czerny-Turner reflective designs. We will look in depth at the factors influencing throughput and sensitivity and illustrate specific VPH-based spectrometer examples that highlight these design principles.

  10. Microsystem with integrated capillary leak to mass spectrometer for high sensitivity temperature programmed desorption

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Jensen, Søren; Hansen, Ole

    2004-01-01

    leak minimizes dead volumes in the system, resulting in increased sensitivity and reduced response time. These properties make the system ideal for TPD experiments in a carrier gas. With CO desorbing from platinum as model system, it is shown that CO desorbing in 105 Pa of argon from as little as 0.......5 cm2 of platinum foil gives a clear desorption peak. By using the microfabricated flow system, TPD experiments can be performed in a carrier gas with a sensitivity approaching that of TPD experiments in vacuum. ©2004 American Institute of Physics...

  11. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling.

    Directory of Open Access Journals (Sweden)

    Yuanzhong Jiang

    Full Text Available The plant hormones jasmonic acid (JA and salicylic acid (SA play key roles in plant defenses against pathogens and several WRKY transcription factors have been shown to have a role in SA/JA crosstalk. In a previous study, overexpression of the poplar WRKY gene PtrWRKY89 enhanced resistance to pathogens in transgenic poplars. In this study, the promoter of PtrWRKY89 (ProPtrWRKY89 was isolated and used to drive GUS reporter gene. High GUS activity was observed in old leaves of transgenic Arabidopsis containing ProPtrWRKY89-GUS construct and GUS expression was extremely induced by SA solution and SA+MeJA mixture but not by MeJA treatment. Subcellular localization and transactivation assays showed that PtrWRKY89 acted as a transcription activator in the nucleus. Constitutive expression of PtrWRKY89 in Arabidopsis resulted in more susceptible to Pseudomonas syringae and Botrytis cinerea compared to wild-type plants. Quantitative real-time PCR (qRT-PCR analysis confirmed that marker genes of SA and JA pathways were down-regulated in transgenic Arabidopsis after pathogen inoculations. Overall, our results indicated that PtrWRKY89 modulates a cross talk in resistance to P. syringe and B. cinerea by negatively regulating both SA and JA pathways in Arabidopsis.

  12. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling.

    Science.gov (United States)

    Jiang, Yuanzhong; Guo, Li; Liu, Rui; Jiao, Bo; Zhao, Xin; Ling, Zhengyi; Luo, Keming

    2016-01-01

    The plant hormones jasmonic acid (JA) and salicylic acid (SA) play key roles in plant defenses against pathogens and several WRKY transcription factors have been shown to have a role in SA/JA crosstalk. In a previous study, overexpression of the poplar WRKY gene PtrWRKY89 enhanced resistance to pathogens in transgenic poplars. In this study, the promoter of PtrWRKY89 (ProPtrWRKY89) was isolated and used to drive GUS reporter gene. High GUS activity was observed in old leaves of transgenic Arabidopsis containing ProPtrWRKY89-GUS construct and GUS expression was extremely induced by SA solution and SA+MeJA mixture but not by MeJA treatment. Subcellular localization and transactivation assays showed that PtrWRKY89 acted as a transcription activator in the nucleus. Constitutive expression of PtrWRKY89 in Arabidopsis resulted in more susceptible to Pseudomonas syringae and Botrytis cinerea compared to wild-type plants. Quantitative real-time PCR (qRT-PCR) analysis confirmed that marker genes of SA and JA pathways were down-regulated in transgenic Arabidopsis after pathogen inoculations. Overall, our results indicated that PtrWRKY89 modulates a cross talk in resistance to P. syringe and B. cinerea by negatively regulating both SA and JA pathways in Arabidopsis.

  13. Design and construction of a magnetic sector mass spectrometer

    International Nuclear Information System (INIS)

    Dallaqua, R.S.; Ludwig, G.O.; Montes, A.

    1991-08-01

    In this work we describe the design and construction of a sector magnetic mass spectrometer. The main parts of the instrument are: ion source, grids (extraction, energy analysis and ion acceleration), electrostatic lens, magnetic sector and detector. All these components are kept inside a vacuum chamber evacuated by a turbomolecular pump. (author)

  14. High-accuracy mass determination of unstable nuclei with a Penning trap mass spectrometer

    CERN Multimedia

    2002-01-01

    The mass of a nucleus is its most fundamental property. A systematic study of nuclear masses as a function of neutron and proton number allows the observation of collective and single-particle effects in nuclear structure. Accurate mass data are the most basic test of nuclear models and are essential for their improvement. This is especially important for the astrophysical study of nuclear synthesis. In order to achieve the required high accuracy, the mass of ions captured in a Penning trap is determined via their cyclotron frequency $ \

  15. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    International Nuclear Information System (INIS)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F.C.; Geske, M.; Taha, A.; Pelzer, K.; Schloegl, R.

    2006-01-01

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N 2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N 2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH 3 · radicals is successfully demonstrated

  16. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    Science.gov (United States)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F. C.; Geske, M.; Taha, A.; Pelzer, K.; Schlögl, R.

    2006-05-01

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000°C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10ms. A detection time resolution of up to 20ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250°C on a Pt catalyst are presented. The detection of CH3• radicals is successfully demonstrated.

  17. Penning trap mass spectrometry Q-value determinations for highly forbidden β-decays

    Science.gov (United States)

    Sandler, Rachel; Bollen, Georg; Eibach, Martin; Gamage, Nadeesha; Gulyuz, Kerim; Hamaker, Alec; Izzo, Chris; Kandegedara, Rathnayake; Redshaw, Matt; Ringle, Ryan; Valverde, Adrian; Yandow, Isaac; Low Energy Beam Ion Trap Team

    2017-09-01

    Over the last several decades, extremely sensitive, ultra-low background beta and gamma detection techniques have been developed. These techniques have enabled the observation of very rare processes, such as highly forbidden beta decays e.g. of 113Cd, 50V and 138La. Half-life measurements of highly forbidden beta decays provide a testing ground for theoretical nuclear models, and the comparison of calculated and measured energy spectra could enable a determination of the values of the weak coupling constants. Precision Q-value measurements also allow for systematic tests of the beta-particle detection techniques. We will present the results and current status of Q value determinations for highly forbidden beta decays. The Q values, the mass difference between parent and daughter nuclides, are measured using the high precision Penning trap mass spectrometer LEBIT at the National Superconducting Cyclotron Laboratory.

  18. 'aspect' - a new spectrometer for the measurement of the angular correlation coefficient a in neutron beta decay

    CERN Document Server

    Zimmer, O; Grinten, M G D; Heil, W; Glück, F

    2000-01-01

    The combination of the coefficient a of the antineutrino/electron angular correlation with the beta asymmetry of the neutron provides a sensitive test for scalar and tensor contributions to the electroweak Lagrangian, as well as for right-handed currents. A method is given for measuring a with high sensitivity from the proton recoil spectrum. The method is based on a magnetic spectrometer with electrostatic retardation potentials such as used for searches of the neutrino mass in tritium beta decay. The spectrometer can also be used for similar studies using radioactive nuclei.

  19. Use of a PTR-MS for Multicomponent Flux Measurements over a Forest

    Energy Technology Data Exchange (ETDEWEB)

    Dommen, J; Spirig, C [FAL Reckenholz (Switzerland); Neftel, A [FAL Reckenholz (Switzerland); Thielmann, A [MPI Mainz (Georgia)

    2004-03-01

    A proton-transfer-reaction mass spectrometer was used to determine fluxes of biogenically emitted organic compounds over a forest canopy with the eddy covariance method. It was shown that several compounds can be simultaneously measured at a frequency high enough to calculate their fluxes. (author)

  20. Indigenous instrumentation for mass spectrometry. PD-5-1

    International Nuclear Information System (INIS)

    Handu, V.K.

    2007-01-01

    Mass Spectrometry is a powerful analytical technique due to its high sensitivity, specificity, selectivity, and wide field of applications in elemental analysis, especially in the determination of trace and ultra trace elements, precise and accurate isotopic ratio measurements. Due to these excellent features, it is a crucial analytical tool for number of Department of Atomic Energy's (DAE) programs. BARC, over the years, has developed several mass spectrometers suitable for needs of a number of programs in DAE and, in this process, technologies have been developed in HV/UHV systems, precision mechanical engineering and fabrication, design and fabrication of electromagnets, ion optics, ultra stable analog and digital electronics, data systems etc. A large number of these mass spectrometers are being used regularly in various units of DAE. Since users are demanding TIMS mass spectrometer with better specifications, efforts are being made in house to develop TIMS with improved specifications. Efforts are also under way to develop a multi collector, plasma source mass spectrometer (MC-ICP-MS) with magnetic sector mass analyzer, since such instrument is increasingly being used to measure isotopic ratios with high precision

  1. A Dual Source Ion Trap Mass Spectrometer for the Mars Organic Molecule Analyzer of ExoMars 2018

    Science.gov (United States)

    Brickerhoff, William B.; vanAmerom, F. H. W.; Danell, R. M.; Arevalo, R.; Atanassova, M.; Hovmand, L.; Mahaffy, P. R.; Cotter, R. J.

    2011-01-01

    We present details on the objectives, requirements, design and operational approach of the core mass spectrometer of the Mars Organic Molecule Analyzer (MOMA) investigation on the 2018 ExoMars mission. The MOMA mass spectrometer enables the investigation to fulfill its objective of analyzing the chemical composition of organic compounds in solid samples obtained from the near surface of Mars. Two methods of ionization are realized, associated with different modes of MOMA operation, in a single compact ion trap mass spectrometer. The stringent mass and power constraints of the mission have led to features such as low voltage and low frequency RF operation [1] and pulse counting detection.

  2. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    Y. L. Sun

    2012-09-01

    Full Text Available Positive matrix factorization (PMF was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA and cooking OA (COA factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO4-OA and ammonium nitrate (NO3-OA, respectively, are overall neutralized. Among all OA factors the organic fraction of SO4-OA shows the highest degree of oxidation (O/C = 0.69. Two semi-volatile oxygenated OA (OOA factors, i.e., a less oxidized (LO-OOA and a more oxidized (MO-OOA, were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO and Ox(= O3 + NO2. The NO+/NO2+ ion ratio in MO-OOA is much higher than that in NO3-OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both

  3. HELIOS: A high intensity chopper spectrometer at LANSCE

    International Nuclear Information System (INIS)

    Mason, T.E.; Broholm, C.; Fultz, B.

    1998-01-01

    A proposal to construct a high intensity chopper spectrometer at LANSCE as part of the SPSS upgrade project is discussed. HELIOS will be optimized for science requiring high sensitivity neutron spectroscopy. This includes studies of phonon density of states in small polycrystalline samples, magnetic excitations in quantum magnets and highly correlated electron systems, as well as parametric studies (as a function of pressure, temperature, or magnetic field) of S(Q,ω). By employing a compact design together with the use of supermirror guide in the incident flight path the neutron flux at HELIOS will be significantly higher than any other comparable instrument now operating

  4. HELIOS: A high intensity chopper spectrometer at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Mason, T.E. [Oak Ridge National Lab., TN (United States); Broholm, C. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Physics and Astronomy; Fultz, B. [California Inst. of Tech., Pasadena, CA (United States). Dept. of Materials Science] [and others

    1998-12-31

    A proposal to construct a high intensity chopper spectrometer at LANSCE as part of the SPSS upgrade project is discussed. HELIOS will be optimized for science requiring high sensitivity neutron spectroscopy. This includes studies of phonon density of states in small polycrystalline samples, magnetic excitations in quantum magnets and highly correlated electron systems, as well as parametric studies (as a function of pressure, temperature, or magnetic field) of S(Q,{omega}). By employing a compact design together with the use of supermirror guide in the incident flight path the neutron flux at HELIOS will be significantly higher than any other comparable instrument now operating.

  5. Mass Spectrometry in the Home and Garden

    Science.gov (United States)

    Pulliam, Christopher J.; Bain, Ryan M.; Wiley, Joshua S.; Ouyang, Zheng; Cooks, R. Graham

    2015-02-01

    Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application.

  6. Microscope mode secondary ion mass spectrometry imaging with a Timepix detector.

    NARCIS (Netherlands)

    Kiss, A.; Jungmann, JH; Smith, D.F.; Heeren, R.M.A.

    2013-01-01

    In-vacuum active pixel detectors enable high sensitivity, highly parallel time- and space-resolved detection of ions from complex surfaces. For the first time, a Timepix detector assembly was combined with a secondary ion mass spectrometer for microscope mode secondary ion mass spectrometry (SIMS)

  7. Micro-Spec: An Ultracompact, High-sensitivity Spectrometer for Far-Infrared and Submillimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.

    2014-01-01

    High-performance, integrated spectrometers operating in the far-infrared and submillimeter ranges promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a 4 inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (micron-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of (is) approximately 90% has been developed for initial demonstration and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.

  8. First signal from a broadband cryogenic preamplifier cooled by circulating liquid nitrogen in a 7 T Fourier transform ion cyclotron resonance mass spectrometer.

    Science.gov (United States)

    Choi, Myoung Choul; Lee, Jeong Min; Lee, Se Gyu; Choi, Sang Hwan; Choi, Yeon Suk; Lee, Kyung Jae; Kim, SeungYong; Kim, Hyun Sik; Stahl, Stefan

    2012-12-18

    Despite the outstanding performance of Fourier transform ion cyclotron/mass spectrometry (FTICR/MS), the complexity of the cellular proteome or natural compounds presents considerable challenges. Sensitivity is a key performance parameter of a FTICR mass spectrometer. By improving this parameter, the dynamic range of the instrument can be increased to improve the detection signal of low-abundance compounds or fragment ion peaks. In order to improve sensitivity, a cryogenic detection system was developed by the KBSI (Korean Basic Science Institute) in collaboration with Stahl-Electronics (Mettenheim, Germany). A simple, efficient liquid circulation cooling system was designed and a cryogenic preamplifier implemented inside a FTICR mass spectrometer. This cooling system circulates a cryoliquid from a Dewar to the "liquid circulation unit" through a CF flange to cool a copper block and a cryopreamplifier; the cooling medium is subsequently exhausted into the air. The cryopreamplifier can be operated over a very wide temperature range, from room temperature to low temperature environments (4.2 K). First, ion signals detected by the cryopreamplifier using a circulating liquid nitrogen cooling system were observed and showed a signal-to-noise ratio (S/N) about 130% better than that obtained at room temperature.

  9. Measurement of mass and isotopic fission yields for heavy fission products with the LOHENGRIN mass spectrometer

    International Nuclear Information System (INIS)

    Bail, A.

    2009-05-01

    In spite of the huge amount of fission yield data available in different libraries, more accurate values are still needed for nuclear energy applications and to improve our understanding of the fission process. Thus measurements of fission yields were performed at the mass spectrometer Lohengrin at the Institut Laue-Langevin in Grenoble, France. The mass separator Lohengrin is situated at the research reactor of the institute and permits the placement of an actinide layer in a high thermal neutron flux. It separates fragments according to their atomic mass, kinetic energy and ionic charge state by the action of magnetic and electric fields. Coupled to a high resolution ionization chamber the experiment was used to investigate the mass and isotopic yields of the light mass region. Almost all fission yields of isotopes from Th to Cf have been measured at Lohengrin with this method. To complete and improve the nuclear data libraries, these measurements have been extended in this work to the heavy mass region for the reactions 235 U(n th ,f), 239 Pu(n th ,f) and 241 Pu(n th ,f). For these higher masses an isotopic separation is no longer possible. So, a new method was undertaken with the reaction 239 Pu(n th ,f) to determine the isotopic yields by spectrometry. These experiments have allowed to reduce considerably the uncertainties. Moreover the ionic charge state and kinetic energy distributions were specifically studied and have shown, among others, nanosecond isomers for some masses. (author)

  10. The analysis of uranium in environmental sample by mass spectrometer combined with isotopic dilution

    International Nuclear Information System (INIS)

    Fu Zhonghua; Jia Baoting; Han Jun

    2003-01-01

    Uranium in the environmental sample was analyzed by mass spectrometer combined with isotopic dilution. Before mass spectrometer analysis, samples were dissolved in a concentrated acidic solution containing HNO 3 , HF and HClO 4 and chemically processed to suit the analysis requirement. Analysis results indicated that the uranium content was 0.08 μg/g in river water, 0.1 μg/g in evergreen foliage, and 5-11 μg/g in surface soil respectively. (authors)

  11. Direct Analysis of Organic Compounds in Liquid Using a Miniature Photoionization Ion Trap Mass Spectrometer with Pulsed Carrier-Gas Capillary Inlet.

    Science.gov (United States)

    Lu, Xinqiong; Yu, Quan; Zhang, Qian; Ni, Kai; Qian, Xiang; Tang, Fei; Wang, Xiaohao

    2017-08-01

    A miniature ion trap mass spectrometer with capillary direct sampling and vacuum ultraviolet photoionization source was developed to conduct trace analysis of organic compounds in liquids. Self-aspiration sampling is available where the samples are drawn into the vacuum chamber through a capillary with an extremely low flow rate (less than 1 μL/min), which minimizes sample consumption in each analysis to tens of micrograms. A pulsed gas-assisted inlet was designed and optimized to promote sample transmission in the tube and facilitate the cooling of ions, thereby improving instrument sensitivity. A limit of detection of 2 ppb could be achieved for 2,4-dimethylaniline in a methanol solution. The sampling system described in the present study is specifically suitable for a miniature photoionization ion trap mass spectrometer that can perform rapid and online analysis for liquid samples. Graphical Abstract ᅟ.

  12. Chemical composition measurements of the atmosphere of Jupiter with the Galileo Probe mass spectrometer

    Science.gov (United States)

    Niemann, H. B.; Atreya, S. K.; Carignan, G. R.; Donahue, T. M.; Haberman, J. A.; Harpold, D. N.; Hartle, R. E.; Hunten, D. M.; Kasprzak, W. T.; Mahaffy, P. R.; hide

    1998-01-01

    The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for 3He/4He, D/H, 13C/12C, 20Ne/22Ne, 38Ar/36Ar and for isotopes of both Kr and Xe.

  13. A Virtual Research Environment for a Secondary Ion Mass Spectrometer (SIMS)

    Science.gov (United States)

    Wiedenbeck, M.; Schäfer, L.; Klump, J.; Galkin, A.

    2013-12-01

    Overview: This poster describes the development of a Virtual Research Environment for the Secondary Ion Mass Spectrometer (SIMS) at GFZ Potsdam. Background: Secondary Ion Mass Spectrometers (SIMS) are extremely sensitive instruments for analyzing the surfaces of solid and thin film samples. These instruments are rare, expensive and experienced operators are very highly sought after. As such, measurement time is a precious commodity, until now only accessible to small numbers of researchers. The challenge: The Virtual SIMS Project aims to set up a Virtual Research Environment for the operation of the CAMECA IMS 1280-HR instrument at the GFZ Potsdam. The objective of the VRE is to provide SIMS access not only to researchers locally present in Potsdam but also to scientists working with SIMS cooperation partners in e.g., South Africa, Brazil or India. The requirements: The system should address the complete spectrum of laboratory procedures - from online application for measurement time, to remote access for data acquisition to data archiving for the subsequent publication and for future reuse. The approach: The targeted Virtual SIMS Environment will consist of a: 1. Web Server running the Virtual SIMS website providing general information about the project, lab access proposal forms and calendar for the timing of project related tasks. 2. LIMS Server, responsible for scheduling procedures, data management and, if applicable, accounting and billing. 3. Remote SIMS Tool, devoted to the operation of the experiment within a remote control environment. 4. Publishing System, which supports the publication of results in cooperation with the GFZ Library services. 5. Training Simulator, which offers the opportunity to rehearse experiments and to prepare for possible events such as a power outages or interruptions to broadband services. First results: The SIMS Virtual Research Environment will be mainly based on open source software, the only exception being the CAMECA IMS

  14. A new time of flight mass spectrometer for absolute dissociative electron attachment cross-section measurements in gas phase

    Science.gov (United States)

    Chakraborty, Dipayan; Nag, Pamir; Nandi, Dhananjay

    2018-02-01

    A new time of flight mass spectrometer (TOFMS) has been developed to study the absolute dissociative electron attachment (DEA) cross section using a relative flow technique of a wide variety of molecules in gas phase, ranging from simple diatomic to complex biomolecules. Unlike the Wiley-McLaren type TOFMS, here the total ion collection condition has been achieved without compromising the mass resolution by introducing a field free drift region after the lensing arrangement. The field free interaction region is provided for low energy electron molecule collision studies. The spectrometer can be used to study a wide range of masses (H- ion to few hundreds atomic mass unit). The mass resolution capability of the spectrometer has been checked experimentally by measuring the mass spectra of fragment anions arising from DEA to methanol. Overall performance of the spectrometer has been tested by measuring the absolute DEA cross section of the ground state SO2 molecule, and the results are satisfactory.

  15. Correlation between mass-spectrometer measurements and thin film characteristics using dcMS and HiPIMS discharges

    International Nuclear Information System (INIS)

    Ferrec, A.; Keraudy, J.; Jacq, S.; Jouan, P.Y.; Djouadi, M.A.; Schuster, F.

    2014-01-01

    In this work, chromium thin films were deposited using dcMS and HiPIMS technologies. To compare these technologies, we analyzed the ion flux and the Cr coating microstructure in the same plasma conditions. Ion flux was measured with a mass spectrometer in time-averaged for both discharge and time-resolved for HiPIMS discharge. Time-averaged measurements provided important information. First, the low energetic part of the ion energy distribution function (IEDF) was similar in dcMS and HiPIMS and second the high energetic component was more prominent in the HiPIMS discharge. Time-resolved measurements showed that the high energetic part of the ion flux reached the mass spectrometer faster than the lowest part. It is only after the pulse end that most of the thermalized ions arrived and then cooled the flux. The correlation of these results with microstructure analysis shows that energetic particles induced a higher film density and a smoother surface in HiPIMS compared to dcMS discharge. (authors)

  16. Position and mass determination of multiple particles using cantilever based mass sensors

    International Nuclear Information System (INIS)

    Dohn, Soeren; Schmid, Silvan; Boisen, Anja; Amiot, Fabien

    2010-01-01

    Resonant microcantilevers are highly sensitive to added masses and have the potential to be used as mass-spectrometers. However, making the detection of individual added masses quantitative requires the position determination for each added mass. We derive expressions relating the position and mass of several added particles to the resonant frequencies of a cantilever, and an identification procedure valid for particles with different masses is proposed. The identification procedure is tested by calculating positions and mass of multiple microparticles with similar mass positioned on individual microcantilevers. Excellent agreement is observed between calculated and measured positions and calculated and theoretical masses.

  17. Structural changes of marine communities over the Permian-Triassic transition: Ecologically assessing the end-Permian mass extinction and its aftermath

    Science.gov (United States)

    Chen, Zhong-Qiang; Tong, Jinnan; Liao, Zhuo-Ting; Chen, Jing

    2010-08-01

    The Permian/Triassic (P/Tr) transition is ecologically assessed based on examining 23 shelly communities from five shallow platform, ramp and shelf basin facies Permian-Triassic boundary (PTB) sections in South China. The shelly communities have undergone two major collapses coinciding with the two episodes of the end-Permian mass extinction. The first P/Tr extinction event devastated shelly communities in all types of settings to some extent. The basin communities have been more severely impacted than both platform and ramp communities. The survival faunas have rebounded more rapidly in shallow niches than in relatively deep habitats. The second P/Tr crisis destroyed the survival communities in shallow setting and had little impact on the basin communities in terms of community structures. The early Griesbachian communities are overall low-diversity and high-dominance. The governorship switch from brachiopods to bivalves in marine communities has been facilitated by two pulses of the end-Permian mass extinction and the whole takeover process took about 200 ka across the P/Tr boundary. Bivalve ecologic takeover initially occurred immediately after the first P/Tr extinction in shallow water habitats and was eventually completed in all niches after the second P/Tr event. Some post-extinction communities have the irregular rarefaction curves due to the unusual community structures rather than sampling intensities.

  18. Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS

    Directory of Open Access Journals (Sweden)

    A. Koss

    2017-08-01

    Full Text Available VOCs related to oil and gas extraction operations in the United States were measured by H3O+ chemical ionization time-of-flight mass spectrometry (H3O+ ToF-CIMS/PTR-ToF-MS from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX campaign in March–April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O+ ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O+ ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N and pyrroline (C4H7N, H2S, and a diamondoid (adamantane or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O+ ion chemistry previously reported in the literature, including several new or alternate interpretations.

  19. Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS)

    Science.gov (United States)

    Koss, Abigail; Yuan, Bin; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Veres, Patrick R.; Peischl, Jeff; Eilerman, Scott; Wild, Rob; Brown, Steven S.; Thompson, Chelsea R.; Ryerson, Thomas; Hanisco, Thomas; Wolfe, Glenn M.; St. Clair, Jason M.; Thayer, Mitchell; Keutsch, Frank N.; Murphy, Shane; de Gouw, Joost

    2017-08-01

    VOCs related to oil and gas extraction operations in the United States were measured by H3O+ chemical ionization time-of-flight mass spectrometry (H3O+ ToF-CIMS/PTR-ToF-MS) from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign in March-April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O+ ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O+ ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N) and pyrroline (C4H7N), H2S, and a diamondoid (adamantane) or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O+ ion chemistry previously reported in the literature, including several new or alternate interpretations.

  20. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  1. Development of a dedicated isotope mass spectrometer for the noninvasive diagnostics of humans infected with Helicobacter Pylori

    Science.gov (United States)

    Blashenkov, N. M.; Sheshenya, E. S.; Solov'ev, S. M.; Gall', L. N.; Sachenko, V. M.; Zarutskii, I. V.; Gall', N. R.

    2013-06-01

    A dedicated isotope mass spectrometer for the noninvasive diagnostics of humans infected with Helicobacter Pylori using the isotope respiratory test is developed. A low-aberration mass analyzer is calculated, an input system that makes it possible to eliminate the memory effects is developed, and a small-size ion detector is constructed. The mass spectrometer is created, and the tests are performed. The measurement accuracy of the 13C/12C and 16O/18O isotope ratios are 1.7 and 2.2‰, respectively. Preliminary medical tests show that the spectrometer can be employed for the desired diagnostics.

  2. PTR, PCR and Energy Resolution Study of GAGG:Ce Scintillator

    Science.gov (United States)

    Limkitjaroenporn, Pruittipol; Hongtong, Wiraporn; Kim, Hong Joo; Kaewkhao, Jakrapong

    2018-03-01

    In this paper, the peak to total ratio (PTR), the peak to Compton ratio (PCR) and the energy resolution of cerium doped gadolinium aluminium gallium garnet (GAGG:Ce) scintillator are measured in the range of energy from 511 keV to 1332 keV using the radioactive source Na-22, Cs-137 and Co-60. The crystal is coupled with the PMT number R1306 and analyzed by the nuclear instrument module (NIM). The results found that the PTR and PCR of GAGG:Ce scintillator decrease with the increasing of energy. The results of energy resolution show the trend is decrease with the increasing of energy which corresponding to the higher energy resolution at higher energy. Moreover the energy resolution found to be linearly with.

  3. A gas monitoring facility with a quadrupole mass spectrometer for the ZEUS transition-radiation chambers

    International Nuclear Information System (INIS)

    Kapp, U.

    1988-07-01

    A gas analysis facility for the ZEUS transition-radiation chambers based on a quadrupole mass spectrometer is described. After a description of the spectrometer, the vacuum system, and the software, some test results are presented. (HSI)

  4. An ultra-sensitive instrument for collision activated dissociation mass spectrometry with high mass resolution

    International Nuclear Information System (INIS)

    Louter, G.J.

    1982-01-01

    During the last decade Collision Activated Dissociation Mass Spectrometry (CAD-MS) has developed into an important and sometimes unique technique for the structure elucidation of ions. An extensive description of the double stage MS is given, which has been especially devloped for CAD-MS. A high mass resolution and a very high sensitivity are obtained by application of special techniques like post-acceleration of fragment ions, quadrupole (Q-pole) lenses and an electro-optical, simultaneous ion detection system. The operation of the rather complex ion-optics is demonstrated by application of a computer simulation of the tandem MS. Special attention is given to the action of the four Q-pole lenses and the second sector magnet upon curvature and position of the mass focal plane. Two mass calibration methods are described for the fragment spectra. The so-called polynomial-method applies a fifth-order polynomial approximation of the functional relation between position on the detector and corresponding relative momentum of fragment ions. The second method uses the matrix model of the instrument. The detector consists of two channelplates (CEMA), a fibre optics slab, coated with a phosphor layer, a camera objective and a 1024-channels photodiode-array. A bio-chemical and an organic-chemical application of the instrument are given. As bio-chemical application the peak m/z 59 in the pyrolysis mass spectrum of complete mycobacteria is identified. As an example of organic-chemical application the fragmentation process of 2,3-butadienoic acid has been investigated. (Auth.)

  5. Mu-Spec - A High Performance Ultra-Compact Photon Counting spectrometer for Space Submillimeter Astronomy

    Science.gov (United States)

    Moseley, H.; Hsieh, W.-T.; Stevenson, T.; Wollack, E.; Brown, A.; Benford, D.; Sadleir; U-Yen, I.; Ehsan, N.; Zmuidzinas, J.; hide

    2011-01-01

    We have designed and are testing elements of a fully integrated submillimeter spectrometer based on superconducting microstrip technology. The instrument can offer resolving power R approximately 1500, and its high frequency cutoff is set by the gap of available high performance superconductors. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using planar filter, and detected using photon counting MKID detector. This spectrometer promises to revolutionize submillimeter spectroscopy from space. It replaces instruments with the scale of 1m with a spectrometer on a 10 cm Si wafer. The reduction in mass and volume promises a much higher performance system within available resource in a space mission. We will describe the system and the performance of the components that have been fabricated and tested.

  6. First direct mass measurements on nobelium and lawrencium with the Penning trap mass spectrometer SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Dworschak, Michael Gerhard

    2009-12-08

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt was set up for high-precision mass measurements of heavy radionuclides produced in fusion evaporation reactions and separated from the primary beam by the velocity filter SHIP. It consists of a gas stopping cell for the deceleration of the high energetic reaction products, an RFQ cooler and buncher for cooling and accumulation of the ions, and a double Penning trap system to perform mass measurements. The mass is determined by measuring the cyclotron frequency of the ion of interest in a strong homogeneous magnetic field and comparing it to the frequency of a well-known reference ion. With this method relative uncertainties in the order of 10{sup -8} can be achieved. Recently, mass measurements of the three nobelium isotopes {sup 252-254}No (Z=102) and the lawrencium isotope {sup 255}Lr (Z=103) were performed successfully. These were the first direct mass measurements of transuranium elements ever per- formed. The production rate of the atoms of interest was about one per second or less. The results of the measurements on nobelium confirm the previous mass values which were deduced from Q{sub {alpha}} values. In the case of {sup 255}Lr the mass excess value, which was previously only estimated from systematic trends, was for the first time directly measured. These results mark the first step in the exploration of the region of transuranium elements which is planned at SHIPTRAP. The main objective is to fix the endpoints of {alpha} decay chains which are originating from superheavy elements close to the predicted island of stability. (orig.)

  7. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    Science.gov (United States)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated

  8. Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy

    Directory of Open Access Journals (Sweden)

    W. J. F. Acton

    2016-06-01

    Full Text Available This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs 4 m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketone + methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton-transfer-reaction mass spectrometer (PTR-MS and a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS together with the methods of virtual disjunct eddy covariance (using PTR-MS and eddy covariance (using PTR-ToF-MS. Isoprene was the dominant emitted compound with a mean daytime flux of 1.9 mg m−2 h−1. Mixing ratios, recorded 4 m above the canopy, were dominated by methanol with a mean value of 6.2 ppbv over the 28-day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7 mg m−2 h−1 was calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN isoprene emission algorithms (Guenther et al., 2006. A detailed tree-species distribution map for the site enabled the leaf-level emission of isoprene and monoterpenes recorded using gas-chromatography mass spectrometry (GC–MS to be scaled up to produce a bottom-up canopy-scale flux. This was compared with the top-down canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant-species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.

  9. Assessment of an on-line CI-mass spectrometer as a continuous emission monitor for sewage sludge incinerators

    International Nuclear Information System (INIS)

    Campbell, K.R.; Hallett, D.J.; Resch, R.J.; Villinger, J.; Federer, V.

    1991-01-01

    ELI Eco Technologies Inc. tested two sewage sludge incinerators using regulator methods and a V and F CIMS-500 chemical ionization mass spectrometer. Correlations between dioxins and dibenzofurans from the regulatory MM5 trains and the continuous readings form the CIMS-500 for chlorobenzenes and chlorophenols were noted. As well, correlations between chlorinated organics and other volatile organics were obvious under poor combustion conditions. ELI Eco Technologies Inc. recently completed an extensive survey of organic chemical emissions including VOCs, chlorobenzenes, chlorophenols, chlorinated dioxins and dibenzofurans from two sewage sludge incinerators. The program was funded by the Municipality of Metro Toronto, Environment Ontario, and Environment Canada. Contaminants were measured by regulatory methods (ASME Modified Method 5) and simultaneously with the continuous mass spectrometer. The purpose of the study was to provide regulatory testing and at the same time evaluate the usefulness of the CIMS-500 mass spectrometer in assessing emissions. This paper describes the evaluation of the usefulness of this mass spectrometer

  10. Building biomarker libraries with novel chemical sensors: correlating differential mobility spectrometer signal outputs with mass spectrometry data

    International Nuclear Information System (INIS)

    Schivo, Michael; Kenyon, Nicholas J; Aksenov, Alexander A; Bardaweel, Hamzeh; Zhao Weixiang; Davis, Cristina E

    2011-01-01

    Gas chromatography/mass spectrometry (GC/MS) is a widely used analytic tool for qualitative and quantitative analysis of volatile and semi-volatile compounds. However, GC/MS use is limited by its large size, lack of portability, high cost and inherent complexity. Smaller instruments capable of high-throughput analysis of volatile compounds have the potential of combining MS-like sensitivity with portability. The micromachined differential mobility spectrometer (DMS) is a miniature sensor capable of registering volatile compounds in sub-parts-per-million (ppm) concentrations. It is small, portable, and can be coupled with multiple other compound separation methods. Here we describe paired volatile sample analyses using both GC/MS and GC/DMS which show that the DMS is capable of registering known compounds as verified by MS. Furthermore, we show that MS can be used to help build a library for our unique DMS sensor outputs and detect compounds in chemically complex backgrounds.

  11. Building biomarker libraries with novel chemical sensors: correlating differential mobility spectrometer signal outputs with mass spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Schivo, Michael; Kenyon, Nicholas J [Division of Pulmonary and Critical Care Medicine, Genome and Biomedical Sciences Facility, University of California, Davis, CA 95616 (United States); Aksenov, Alexander A; Bardaweel, Hamzeh; Zhao Weixiang; Davis, Cristina E, E-mail: cedavis@ucdavis.edu [Department of Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, CA 95616 (United States)

    2011-10-29

    Gas chromatography/mass spectrometry (GC/MS) is a widely used analytic tool for qualitative and quantitative analysis of volatile and semi-volatile compounds. However, GC/MS use is limited by its large size, lack of portability, high cost and inherent complexity. Smaller instruments capable of high-throughput analysis of volatile compounds have the potential of combining MS-like sensitivity with portability. The micromachined differential mobility spectrometer (DMS) is a miniature sensor capable of registering volatile compounds in sub-parts-per-million (ppm) concentrations. It is small, portable, and can be coupled with multiple other compound separation methods. Here we describe paired volatile sample analyses using both GC/MS and GC/DMS which show that the DMS is capable of registering known compounds as verified by MS. Furthermore, we show that MS can be used to help build a library for our unique DMS sensor outputs and detect compounds in chemically complex backgrounds.

  12. Performance optimisation of a new-generation orthogonal-acceleration quadrupole-time-of-flight mass spectrometer.

    Science.gov (United States)

    Bristow, Tony; Constantine, Jill; Harrison, Mark; Cavoit, Fabien

    2008-04-01

    Orthogonal-acceleration quadrupole time-of-flight (oa-QTOF) mass spectrometers, employed for accurate mass measurement, have been commercially available for well over a decade. A limitation of the early instruments of this type was the narrow ion abundance range over which accurate mass measurements could be made with a high degree of certainty. Recently, a new generation of oa-QTOF mass spectrometers has been developed and these allow accurate mass measurements to be recorded over a much greater range of ion abundances. This development has resulted from new ion detection technology and improved electronic stability or by accurate control of the number of ions reaching the detector. In this report we describe the results from experiments performed to evaluate the mass measurement performance of the Bruker micrOTOF-Q, a member of the new-generation oa-QTOFs. The relationship between mass accuracy and ion abundance has been extensively evaluated and mass measurement accuracy remained stable (+/-1.5 m m/z units) over approximately 3-4 orders of magnitude of ion abundance. The second feature of the Bruker micrOTOF-Q that was evaluated was the SigmaFit function of the software. This isotope pattern-matching algorithm provides an exact numerical comparison of the theoretical and measured isotope patterns as an additional identification tool to accurate mass measurement. The smaller the value, the closer the match between theoretical and measured isotope patterns. This information is then employed to reduce the number of potential elemental formulae produced from the mass measurements. A relationship between the SigmaFit value and ion abundance has been established. The results from the study for both mass accuracy and SigmaFit were employed to define the performance criteria for the micrOTOF-Q. This provided increased confidence in the selection of elemental formulae resulting from accurate mass measurements.

  13. Upgrade of the compact neutron spectrometer for high flux environments

    Science.gov (United States)

    Osipenko, M.; Bellucci, A.; Ceriale, V.; Corsini, D.; Gariano, G.; Gatti, F.; Girolami, M.; Minutoli, S.; Panza, F.; Pillon, M.; Ripani, M.; Trucchi, D. M.

    2018-03-01

    In this paper new version of the 6Li-based neutron spectrometer for high flux environments is described. The new spectrometer was built with commercial single crystal Chemical Vapour Deposition diamonds of electronic grade. These crystals feature better charge collection as well as higher radiation hardness. New metal contacts approaching ohmic conditions were deposited on the diamonds suppressing build-up of space charge observed in the previous prototypes. New passive preamplification of the signal at detector side was implemented to improve its resolution. This preamplification is based on the RF transformer not sensitive to high neutron flux. The compact mechanical design allowed to reduce detector size to a tube of 1 cm diameter and 13 cm long. The spectrometer was tested in the thermal column of TRIGA reactor and at the DD neutron generator. The test results indicate an energy resolution of 300 keV (FWHM), reduced to 72 keV (RMS) excluding energy loss, and coincidence timing resolution of 160 ps (FWHM). The measured data are in agreement with Geant4 simulations except for larger energy loss tail presumably related to imperfections of metal contacts and glue expansion.

  14. Laser ionization time of flight mass spectrometer for isotope mass detection and elemental analysis of materials

    Science.gov (United States)

    Ahmed, Nasar; Ahmed, Rizwan; Umar, Z. A.; Aslam Baig, M.

    2017-08-01

    In this paper we present the construction and modification of a linear time-of-flight mass spectrometer to improve its mass resolution. This system consists of a laser ablation/ionization section based on a Q-switched Nd:YAG laser (532 nm, 500 mJ, 5 ns pulse duration) integrated with a one meter linear time-of-flight mass spectrometer coupled with an electric sector and a magnetic lens and outfitted with a channeltron electron multiplier for ion detection. The resolution of the system has been improved by optimizing the accelerating potential and inserting a magnetic lens after the extraction region. The isotopes of lithium, lead and cadmium samples have been resolved and detected in accordance with their natural abundance. The capability of the system has been further exploited to determine the elemental composition of a brass alloy, having a certified composition of zinc and copper. Our results are in excellent agreement with its certified composition. This setup is found to be extremely efficient and convenient for fast analyses of any solid sample.

  15. Guided-wave high-performance spectrometers for the MEOS miniature earth observation satellite

    Science.gov (United States)

    Kruzelecky, Roman V.; Wong, Brian; Zou, Jing; Jamroz, Wes; Sloan, James; Cloutis, Edward

    2017-11-01

    The MEOS Miniature Earth Observing Satellite is a low-cost mission being developed for the Canadian Space Agency with international collaborations that will innovatively combine remote correlated atmospheric/land-cover measurements with the corresponding atmospheric and ecosystem modelling in near real-time to obtain simultaneous variations in lower tropospheric GHG mixing ratios and the resulting responses of the surface ecosystems. MEOS will provide lower tropospheric CO2, CH4, CO, N2O, H2O and aerosol mixing ratios over natural sources and sinks using two kinds of synergistic observations; a forward limb measurement and a follow-on nadir measurement over the same geographical tangent point. The measurements will be accomplished using separate limb and nadir suites of innovative miniature line-imaging spectrometers and will be spatially coordinated such that the same air mass is observed in both views within a few minutes. The limb data will consist of 16-pixel vertical spectral line imaging to provide 1-km vertical resolution, while the corresponding nadir measurements will view sixteen 5 by 10 km2 ground pixels with a 160-km East-West swath width. To facilitate the mission accommodation on a low-cost microsat with a net payload mass under 22 kg, groundbreaking miniature guided-wave spectrometers with advanced optical filtering and coding technologies will be employed based on MPBC's patented IOSPEC technologies. The data synergy requirements for each view will be innovatively met using two complementary miniature line-imaging spectrometers to provide broad-band measurements from 1200 to 2450 nm at about 1.2 nm/pixel bandwidth using a multislit binary-coded MEMS-IOSPEC and simultaneous high-resolution multiple microchannels at 0.03 nm FWHM using the revolutionary FP-IOSPEC Fabry-Perot guided-wave spectrometer concept. The guided-wave spectrometer integration provides an order of magnitude reduction in the mass and volume relative to traditional bulk

  16. Evaluation of lead isotope compositions of NIST NBS 981 measured by thermal ionization mass spectrometer and multiple-collector inductively coupled plasma mass spectrometer

    Directory of Open Access Journals (Sweden)

    Honglin Yuan

    2016-09-01

    Full Text Available Because Pb isotopes can be used for tracing, they are widely used in many disciplines. The detection and analysis of Pb isotopes of bulk samples are usually conducted using thermal ionization mass spectrometer (TIMS and multiple-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, both of which need external reference materials with known isotopic compositions to correct for the mass discrimination effect produced during analysis. NIST NBS 981 is the most widely used reference material for Pb isotope analysis; however, the isotopic compositions reported by various analytical laboratories, especially those using TIMS, vary from each other. In this study, we statistically evaluated 229 reported TIMS analysis values collected by GeoReM in the last 30 years, 176 reported MC-ICP-MS analysis values, and 938 MC-ICP-MS analysis results from our laboratory in the last five years. After careful investigation, only 40 TIMS results were found to have double or triple spikes. The ratios of the overall weighted averages, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb, obtained from 40 spiked TIMS reports and 1114 MC-ICP-MS results of NIST NBS 981 isotopes were 16.9406 ± 0.0003 (2s, 15.4957 ± 0.0002 (2s, and 36.7184 ± 0.0007 (2s, respectively.

  17. MOMA and other next-generation ion trap mass spectrometers for planetary exploration

    Science.gov (United States)

    Arevalo, R. D., Jr.; Brinckerhoff, W. B.; Getty, S.; Mahaffy, P. R.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Southard, A. E.; Hovmand, L.; Cottin, H.; Makarov, A.

    2016-12-01

    Since the 1970's, quadrupole mass spectrometer (QMS) systems have served as low-risk, cost-efficient means to explore the inner and outer reaches of the solar system. These legacy instruments have interrogated the compositions of the lunar exosphere (LADEE), surface materials on Mars (MSL), and the atmospheres of Venus (Pioneer Venus), Mars (MAVEN) and outer planets (Galileo and Cassini-Huygens). However, the in situ detection of organic compounds on Mars and Titan, coupled with ground-based measurements of amino acids in meteorites and a variety of organics in comets, has underlined the importance of molecular disambiguation in the characterization of high-priority planetary environments. The Mars Organic Molecule Analyzer (MOMA) flight instrument, centered on a linear ion trap, enables the in situ detection of volatile and non-volatile organics, but also the characterization of molecular structures through SWIFT ion isolation/excitation and tandem mass spectrometry (MSn). Like the SAM instrument on MSL, the MOMA investigation also includes a gas chromatograph (GC), thereby enabling the chemical separation of potential isobaric interferences based on retention times. The Linear Ion Trap Mass Spectrometer (LITMS; PI: William Brinckerhoff), developed to TRL 6 via the ROSES MatISSE Program, augments the core MOMA design and adds: expanded mass range (from 20 - 2000 Da); high-temperature evolved gas analysis (up to 1300°C); and, dual polarity detector assemblies (supporting the measurement of negative ions). The LITMS instrument will be tested in the field in 2017 through the Atacama Rover Astrobiology Drilling Studies (ARADS; PI: Brian Glass) ROSES PSTAR award. Following on these advancements, the Advanced Resolution Organic Molecule Analyzer (AROMA; PI: Ricardo Arevalo Jr.), supported through the ROSES PICASSO Program, combines a highly capable MOMA/LITMS-like linear ion trap and the ultrahigh resolution CosmOrbitrap mass analyzer developed by a consortium of five

  18. GIOVE, a shallow laboratory Ge-spectrometer with 100 μBq/kg sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Heusser, G.; Weber, M.; Denz, T.; Hakenmueller, J.; Hofacker, R.; Lackner, R.; Lindner, M.; Maneschg, W.; Reisfelder, M.; Simgen, H.; Schreiner, J.; Stolzenburg, D.; Strecker, H.; Westermann, J. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2013-08-08

    A new germanium gamma spectrometer called GIOVE (Germanium spectrometer with Inner and Outer Veto) has been set up at the underground/shallow laboratory (15 m w.e.) of MPI-K. Its double plastic scintillator veto system and neutron moderation interlayer lower the background by more than one order of magnitude compared to the other existing spectrometer at this facility. The integral (40-2700 keV) background rate of about 290 counts (day kg){sup −1} is just a factor 4 to 8 above that of the GeMPI spectrometers operated at LNGS (3800 m w.e.) and thus proves that even under shallow overburden sub mBq/kg sensitivities are achievable. Extended material screening and neutron attenuation studies preceded the final design of the spectrometer. The technical realization of the spectrometer is described in detail with special emphasis on the inner veto system. For its optimisation a simulation model was developed for light collection on small low activity PMT’s under various geometrical conditions. Radon suppression is accomplished by employing a gas tight sample container and a nitrogen flushed glove-box system with an airlock. The active volume of the crystal was modelled by absorption scanning measurements and Monte Carlo simulations. The complete shield is implemented in a Geant4 based simulation framework.

  19. Pollutants identification of ambient aerosols by two types of aerosol mass spectrometers over southeast coastal area, China.

    Science.gov (United States)

    Yan, Jinpei; Chen, Liqi; Lin, Qi; Zhao, Shuhui; Li, Lei

    2018-02-01

    Two different aerosol mass spectrometers, Aerodyne Aerosol Mass Spectrometer (AMS) and Single Particle Aerosol Mass Spectrometer (SPAMS) were deployed to identify the aerosol pollutants over Xiamen, representing the coastal urban area. Five obvious processes were classified during the whole observation period. Organics and sulfate were the dominant components in ambient aerosols over Xiamen. Most of the particles were in the size range of 0.2-1.0μm, accounting for over 97% of the total particles measured by both instruments. Organics, as well as sulfate, measured by AMS were in good correlation with measured by SPAMS. However, high concentration of NH 4 + was obtained by AMS, while extremely low value of NH 4 + was detected by SPAMS. Contrarily, high particle number counts of NO 3 - and Cl - were given by SPAMS while low concentrations of NO 3 - and Cl - were measured by AMS. The variations of POA and SOA obtained from SPAMS during event 1 and event 2 were in accordance with the analysis of HOA and OOA given by AMS, suggesting that both of AMS and SPAMS can well identify the organic clusters of aerosol particles. Overestimate or underestimate of the aerosol sources and acidity would be present in some circumstances when the measurement results were used to analyze the aerosol properties, because of the detection loss of some species for both instruments. Copyright © 2017. Published by Elsevier B.V.

  20. High resolution solar soft X-ray spectrometer

    International Nuclear Information System (INIS)

    Zhang Fei; Wang Huanyu; Peng Wenxi; Liang Xiaohua; Zhang Chunlei; Cao Xuelei; Jiang Weichun; Zhang Jiayu; Cui Xingzhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed. A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer. The spectrometer consists of the detectors and their readout electronics, a data acquisition unit and a payload data handling unit. A ground test system is also developed to test SOX. The test results show that the design goals of the spectrometer system have been achieved. (authors)

  1. A five-collector system for the simultaneous measurement of argon isotope ratios in a static mass spectrometer

    Science.gov (United States)

    Stacey, J.S.; Sherrill, N.D.; Dalrymple, G.B.; Lanphere, M.A.; Carpenter, N.V.

    1981-01-01

    A system is described that utilizes five separate Faraday-cup collector assemblies, aligned along the focal plane of a mass spectrometer, to collect simultaneous argon ion beams at masses 36-40. Each collector has its own electrometer amplifier and analog-to-digital measuring channel, the outputs of which are processed by a minicomputer that also controls the mass spectrometer. The mass spectrometer utilizes a 90?? sector magnetic analyzer with a radius of 23 cm, in which some degree of z-direction focussing is provided for all the ion beams by the fringe field of the magnet. Simultaneous measurement of the ion beams helps to eliminate mass-spectrometer memory as a significant source of measurement error during an analysis. Isotope ratios stabilize between 7 and 9 s after sample admission into the spectrometer, and thereafter changes in the measured ratios are linear, typically to within ??0.02%. Thus the multi-collector arrangement permits very short extrapolation times for computation of initial ratios, and also provides the advantages of simultaneous measurement of the ion currents in that errors due to variations in ion beam intensity are minimized. A complete analysis takes less than 10 min, so that sample throughput can be greatly enhanced. In this instrument, the factor limiting analytical precision now lies in short-term apparent variations in the interchannel calibration factors. ?? 1981.

  2. Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley

    Directory of Open Access Journals (Sweden)

    C. Sarkar

    2016-03-01

    Full Text Available The Kathmandu Valley in Nepal suffers from severe wintertime air pollution. Volatile organic compounds (VOCs are key constituents of air pollution, though their specific role in the valley is poorly understood due to insufficient data. During the SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley–Atmospheric Brown Clouds field campaign conducted in Nepal in the winter of 2012–2013, a comprehensive study was carried out to characterise the chemical composition of ambient Kathmandu air, including the determination of speciated VOCs, by deploying a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS – the first such deployment in South Asia. In the study, 71 ion peaks (for which measured ambient concentrations exceeded the 2σ detection limit were detected in the PTR-TOF-MS mass scan data, highlighting the chemical complexity of ambient air in the valley. Of the 71 species, 37 were found to have campaign average concentrations greater than 200 ppt and were identified based on their spectral characteristics, ambient diel profiles and correlation with specific emission tracers as a result of the high mass resolution (m ∕ Δm  >  4200 and temporal resolution (1 min of the PTR-TOF-MS. The concentration ranking in the average VOC mixing ratios during our wintertime deployment was acetaldehyde (8.8 ppb  >  methanol (7.4 ppb  >  acetone + propanal (4.2 ppb  >  benzene (2.7 ppb  >  toluene (1.5 ppb  >  isoprene (1.1 ppb  >  acetonitrile (1.1 ppb  >  C8-aromatics ( ∼ 1 ppb  >  furan ( ∼ 0.5 ppb  >  C9-aromatics (0.4 ppb. Distinct diel profiles were observed for the nominal isobaric compounds isoprene (m ∕ z  =  69.070 and furan (m ∕ z  =  69.033. Comparison with wintertime measurements from several locations elsewhere in the world showed mixing ratios of acetaldehyde ( ∼  9 ppb, acetonitrile ( ∼  1 ppb and isoprene

  3. High speed capillary zone electrophoresis-mass spectrometry via an electrokinetically pumped sheath flow interface for rapid analysis of amino acids and a protein digest.

    Science.gov (United States)

    Schiavone, Nicole M; Sarver, Scott A; Sun, Liangliang; Wojcik, Roza; Dovichi, Norman J

    2015-06-01

    While capillary zone electrophoresis (CZE) has been used to produce very rapid and efficient separations, coupling these high-speed separations with mass spectrometry (MS) has been challenging. Now, with much faster and sensitive mass spectrometers, it is possible to take full advantage of the CZE speed and reconstruct the fast migrating peaks. Here are three high-speed CZE-MS analyses via an electrokinetically pumped sheath-flow interface. The first separation demonstrates CZE-ESI-MS of an amino acid mixture with a 2-min separation, >50,000 theoretical plates, low micromolar concentration detection limits, and subfemtomole mass detection limits (LTQ XL mass spectrometer). The second separation with our recently improved third-generation CE-MS interface illustrates a 20 amino acid separation in ∼7min with an average over 200,000 plate counts, and results in almost-baseline resolution of structural isomers, leucine and isoleucine. The third separation is of a BSA digest with a reproducible CZE separation and mass spectrometry detection in 2min. CZE-MS/MS analysis of the BSA digest identified 31 peptides, produced 52% sequence coverage, and generated a peak capacity of ∼40 across the 1-min separation window (Q-Exactive mass spectrometer). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Digital Spectrometers for Interplanetary Science Missions

    Science.gov (United States)

    Jarnot, Robert F.; Padmanabhan, Sharmila; Raffanti, Richard; Richards, Brian; Stek, Paul; Werthimer, Dan; Nikolic, Borivoje

    2010-01-01

    A fully digital polyphase spectrometer recently developed by the University of California Berkeley Wireless Research Center in conjunction with the Jet Propulsion Laboratory provides a low mass, power, and cost implementation of a spectrum channelizer for submillimeter spectrometers for future missions to the Inner and Outer Solar System. The digital polyphase filter bank spectrometer (PFB) offers broad bandwidth with high spectral resolution, minimal channel-to-channel overlap, and high out-of-band rejection.

  5. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  6. A quadrupole mass spectrometer system for nuclear safeguards applications

    International Nuclear Information System (INIS)

    Evans, P.J.

    1987-12-01

    An on-line enrichment monitor for nuclear safeguards-related surveillance of a pilot-scale gas centrifuge plant is described. This monitor utilises a quadrupole mass spectrometer to measure the isotopic composition of UF 6 in the feed and product gas streams. Details of the design and construction are given, and several difficulties are identified and discussed. Finally, the performance of this system is illustrated with typical results

  7. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    International Nuclear Information System (INIS)

    Kosev, Krasimir Milchev

    2007-01-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ( 226 Ra, 222 Rn, 210 Po, 218 Po, 214 Po) α-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a 238 U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  8. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosev, Krasimir Milchev

    2007-07-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ({sup 226}Ra,{sup 222}Rn,{sup 210}Po,{sup 218}Po,{sup 214}Po) {alpha}-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a {sup 238}U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  9. Mass measurements on radioactive isotopes using the ISOLTRAP spectrometer

    CERN Document Server

    Dilling, J; Kluge, H J; Kohl, A; Lamour, E; Marx, G; Schwarz, S C; Bollen, G; Kellerbauer, A G; Moore, R B; Henry, S

    2000-01-01

    ISOLTRAP is a Penning trap mass spectrometer installed at the on line isotope separator ISOLDE at CERN. Direct measurements of the masses of short lived radio isotopes are performed using the existing triple trap system. This consists of three electromagnetic traps in tandem: a Paul trap to accumulate and bunch the 60 keV dc beam, a Penning trap for cooling and isobar separation, and a precision Penning trap for the determination of the masses by cyclotron resonance. Measurements of masses of unknown mercury isotopes and in the vicinity of doubly magic /sup 208/Pb are presented, all with an accuracy of delta m/m approximately=1*10/sup -7/. Developments to replace the Paul trap by a radiofrequency quadrupole ion guide system to increase the collection efficiency are presently under way and the status is presented. (10 refs).

  10. Analytical applications of ion/molecule reactions in a triple quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Kinter, M.T.

    1986-01-01

    The development of triple quadrupole mass spectrometers as a means of performing tandem mass spectrometry has provided a versatile instrument on which the ion/molecule reactions of a mass selected ion can be studied. This dissertation details the application of ion/molecule reactions in a triple quadrupole to two analytical problems. Part I. Ion/Molecule Reactions of Ammonia with Translationally Excited C 2 H 5 O + /Ions. The ability to impart low center-of-mass translational energies, which upon collision are converted into internal energy, allows the observation of reactions that require energy input. In addition, the systematic variation of the ion kinetic energy, often referred to as energy-resolved mass spectrometer, adds another dimension to the mass spectrum and can allow the observation of thresholds for reactions requiring energy input. This investigation develops methods for determining these thresholds. Part 2. The Use of Ion/Molecule Reactions in selected Reaction Monitoring GC/MSD/MS Analyses. An approach to improving the selectivity of an analysis is to improve the selectivity of the detection method. In GC/MS, one method has been to monitor a selected fragmentation reaction, either metastable or collisionally activated, in a selected reaction monitoring (SRM) analysis. This develops the use of ion/molecule reactions for selected reaction monitoring analyses

  11. Mechanism of ion output for the MI-1305 mass-spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kornyushkin, YW D; Stavrovich, N V [Leningradskij Inst. Tochnoj Mekhaniki i Optiki (USSR)

    1976-01-01

    An attachment to MJ-1305 mass-spectrometer for ion ejection enabling to study interaction of ions and substance is designed. The attachment is accomodated with a block of diaphragms forming a beam of primary ions. A magneto-discharge pump has been used to improve vacuum in a sample chamber up to 5x10/sup -8/ torr. An universal exit slit permits producing ion beam currents ranging from 10/sup -9/ to 10/sup -10/ A with 4 keV energy under operating conditions of the spectrometer as an ion source. To ensure a higher noise stability of the measuring circuit the ion current is measured through a variable signal with synchronous detection employed.

  12. Set-up with electrostatic analyzer for mass spectrometers

    International Nuclear Information System (INIS)

    Ivanov, V.P.; Sysoev, A.A.; Samsonov, G.A.

    1977-01-01

    An attachment with an electrostatic analyzer that enables to implement a double focusing of ion beams when used in conjunction with a magnetic analyzer, is suggested. Used as the electrostatic analyzer is a cylindrical capacitor placed in a vacuum chamber. Apart from this, the attachment includes a vacuum pump, a nitrogen trap, a battery supply unit, one-beam ion receivers and a bellows inlet for capacitor adjustment. All assemblies and parts of the attachment are made of stainless steel. The test of a combined operation of the mass-spactrometer and the attachment indicate that the use of the attachment enables the utilization of sources which form ion beams with an energy dispersion of up to 1.5%, the mass-spectrometer resolving power being unchanged

  13. Preliminary description of a dedicated commercial ultra-sensitive mass spectrometer for direct atom counting of 14C

    International Nuclear Information System (INIS)

    Purser, K.H.; Schneider, R.J.; Post, R.; Dobbs, J.McG.

    1981-01-01

    A description is presented of a commercial, tandem-accelerator centered secondary ion double mass spectrometer dedicated to 14 C/ 13 C/ 12 C ratio measurements. Some design philosophy of the instrument is presented and the performance is described. A scanning cesium ion source with primary beam diameters between 100 to 200 micrometers is used to produce C - beam intensities of 10 to 20μA with the intensities remaining constant to better than 0.1% per minute after the source stabilizes. For recent carbon, these currents correspond to 14 C count rates from the ion source of 60 to 120 particles per second. Resolution of the first mass defining system, M/ΔM, is greater than 120 with the capability of rapid mass switching between isotopes. The measured isotopic ratios at the ion source for carbon are constant to better than 0.25%. The virtues of the 3MV parallel-fed Cockroft-Walton accelerator supply are presented. At the operating voltage of 2.5MV, the stability is better than 1:4000 with a terminal ripple 13 C 3+ and 12 C 3+ ions which originate from mass-14 molecular ions are measured to be 3.6mm away from the beam axis and so can be completely eliminated by the slits. Isotopic ratios have been measured beyond these slits, and it is shown that these ratios are constant to better than half a percent using recent samples. The final strong focusing magnet has a rejection ratio for unwanted carbon ions greater than 10 7

  14. Real-Time Food Authentication Using a Miniature Mass Spectrometer.

    Science.gov (United States)

    Gerbig, Stefanie; Neese, Stephan; Penner, Alexander; Spengler, Bernhard; Schulz, Sabine

    2017-10-17

    Food adulteration is a threat to public health and the economy. In order to determine food adulteration efficiently, rapid and easy-to-use on-site analytical methods are needed. In this study, a miniaturized mass spectrometer in combination with three ambient ionization methods was used for food authentication. The chemical fingerprints of three milk types, five fish species, and two coffee types were measured using electrospray ionization, desorption electrospray ionization, and low temperature plasma ionization. Minimum sample preparation was needed for the analysis of liquid and solid food samples. Mass spectrometric data was processed using the laboratory-built software MS food classifier, which allows for the definition of specific food profiles from reference data sets using multivariate statistical methods and the subsequent classification of unknown data. Applicability of the obtained mass spectrometric fingerprints for food authentication was evaluated using different data processing methods, leave-10%-out cross-validation, and real-time classification of new data. Classification accuracy of 100% was achieved for the differentiation of milk types and fish species, and a classification accuracy of 96.4% was achieved for coffee types in cross-validation experiments. Measurement of two milk mixtures yielded correct classification of >94%. For real-time classification, the accuracies were comparable. Functionality of the software program and its performance is described. Processing time for a reference data set and a newly acquired spectrum was found to be 12 s and 2 s, respectively. These proof-of-principle experiments show that the combination of a miniaturized mass spectrometer, ambient ionization, and statistical analysis is suitable for on-site real-time food authentication.

  15. Experimental determination of the partitioning coefficient and volatility of important BVOC oxidation products using the Aerosol Collection Module (ACM) coupled to a PTR-ToF-MS

    Science.gov (United States)

    Gkatzelis, G.; Hohaus, T.; Tillmann, R.; Schmitt, S. H.; Yu, Z.; Schlag, P.; Wegener, R.; Kaminski, M.; Kiendler-Scharr, A.

    2015-12-01

    Atmospheric aerosol can alter the Earth's radiative budget and global climate but can also affect human health. A dominant contributor to the submicrometer particulate matter (PM) is organic aerosol (OA). OA can be either directly emitted through e.g. combustion processes (primary OA) or formed through the oxidation of organic gases (secondary organic aerosol, SOA). A detailed understanding of SOA formation is of importance as it constitutes a major contribution to the total OA. The partitioning between the gas and particle phase as well as the volatility of individual components of SOA is yet poorly understood adding uncertainties and thus complicating climate modelling. In this work, a new experimental methodology was used for compound-specific analysis of organic aerosol. The Aerosol Collection Module (ACM) is a newly developed instrument that deploys an aerodynamic lens to separate the gas and particle phase of an aerosol. The particle phase is directed to a cooled sampling surface. After collection particles are thermally desorbed and transferred to a detector for further analysis. In the present work, the ACM was coupled to a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) to detect and quantify organic compounds partitioning between the gas and particle phase. This experimental approach was used in a set of experiments at the atmosphere simulation chamber SAPHIR to investigate SOA formation. Ozone oxidation with subsequent photochemical aging of β-pinene, limonene and real plant emissions from Pinus sylvestris (Scots pine) were studied. Simultaneous measurement of the gas and particle phase using the ACM-PTR-ToF-MS allows to report partitioning coefficients of important BVOC oxidation products. Additionally, volatility trends and changes of the SOA with photochemical aging are investigated and compared for all systems studied.

  16. Precise mass measurements of astrophysical interest made with the Canadian Penning trap mass spectrometer

    International Nuclear Information System (INIS)

    Clark, J.A.; Barber, R.C.; Blank, B.; Boudreau, C.; Buchinger, F.; Crawford, J.E.; Gulick, S.; Hardy, J.C.; Heinz, A.; Lee, J.K.P.; Levand, A.F.; Moore, R.B.; Savard, G.; Seweryniak, D.; Sharma, K.S.; Sprouse, G.D.; Trimble, W.; Vaz, J.; Wang, J.C.; Zhou, Z.

    2004-01-01

    The processes responsible for the creation of elements more massive than iron are not well understood. Possible production mechanisms involve the rapid capture of protons (rp-process) or the rapid capture of neutrons (r-process), which are thought to occur in explosive astrophysical events such as novae, x-ray bursts, and supernovae. Mass measurements of the nuclides involved with uncertainties on the order of 100 keV or better are critical to determine the process 'paths', the energy output of the events, and the resulting nuclide abundances. Particularly important are the masses of 'waiting-point' nuclides along the rp-process path where the process stalls until the subsequent β decay of the nuclides. This paper will discuss the precise mass measurements made of isotopes along the rp-process and r-process paths using the Canadian Penning Trap mass spectrometer, including the mass of the critical waiting-point nuclide 68 Se

  17. Multiple-ion-beam time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Rohrbacher, Andreas; Continetti, Robert E.

    2001-01-01

    An innovative approach to increase the throughput of mass spectrometric analyses using a multiple-ion-beam mass spectrometer is described. Two sample spots were applied onto a laser desorption/ionization target and each spot was simultaneously irradiated by a beam of quadrupled Nd:YLF laser radiation (261.75 nm) to produce ions by laser-desorption ionization. Acceleration of the ions in an electric field created parallel ion beams that were focused by two parallel einzel lens systems. After a flight path of 2.34 m, the ions were detected with a microchannel plate-phosphor screen assembly coupled with a charge coupled device camera that showed two resolved ion beams. Time-of-flight mass spectra were also obtained with this detector. Experiments were performed using both metal atom cations (Ti + and Cr + ) produced by laser desorption/ionization and the molecular ions of two different proteins (myoglobin and lysozyme), created by matrix assisted laser desorption/ionization using an excess of nicotinic acid as matrix

  18. New results from the Mainz neutrino mass experiment and perspective of a new large tritium-β-spectrometer

    International Nuclear Information System (INIS)

    Bonn, J.; Bornschein, B.; Bornschein, L.; Fickinger, L.; Kraus, Ch.; Otten, E.W.; Ulrich, H.; Weinheimer, Ch.; Kazachenko, O.; Kovalik, A.

    2001-01-01

    The Mainz neutrino mass experiment investigates the endpoint region of the tritium β decay spectrum to determine the mass of the electron antineutrino. By the recent upgrade the former problem of de-wetting T 2 films has been solved and the signal-to-background-ratio was improved by a factor of 10. The latest measurement leads to m ν 2 = -1.1 ± 2.6 stat ± 1.8 sys eV 2 /c 4 (preliminary), which corresponds to an upper limit of m ν 2 (95 % C.L.) (preliminary). Some indication for the anomaly, reported by the Troitsk group, was found, but its postulated half year period is contradicted by our data. The perspectives of a new Large Tritium-β-Spectrometer to reach sub eV sensitivity will be presented. (authors)

  19. Long-term study of VOCs measured with PTR-MS at a rural site in New Hampshire with urban influences

    Directory of Open Access Journals (Sweden)

    R. Talbot

    2009-07-01

    Full Text Available A long-term, high time-resolution volatile organic compound (VOC data set from a ground site that experiences urban, rural, and marine influences in the Northeastern United States is presented. A proton-transfer-reaction mass spectrometer (PTR-MS was used to quantify 15 VOCs: a marine tracer dimethyl sulfide (DMS, a biomass burning tracer acetonitrile, biogenic compounds (monoterpenes, isoprene, oxygenated VOCs (OVOCs: methyl vinyl ketone (MVK plus methacrolein (MACR, methanol, acetone, methyl ethyl ketone (MEK, acetaldehyde, and acetic acid, and aromatic compounds (benzene, toluene, C8 and C9 aromatics. Time series, overall and seasonal medians, with 10th and 90th percentiles, seasonal mean diurnal profiles, and inter-annual comparisons of mean summer and winter diurnal profiles are shown. Methanol and acetone exhibit the highest overall median mixing ratios 1.44 and 1.02 ppbv, respectively. Comparing the mean diurnal profiles of less well understood compounds (e.g., MEK with better known compounds (e.g., isoprene, monoterpenes, and MVK + MACR that undergo various controls on their atmospheric mixing ratios provides insight into possible sources of the lesser known compounds. The constant diurnal value of ~0.7 for the toluene:benzene ratio in winter, may possibly indicate the influence of wood-based heating systems in this region. Methanol exhibits an initial early morning release in summer unlike any other OVOC (or isoprene and a dramatic late afternoon mixing ratio increase in spring. Although several of the OVOCs appear to have biogenic sources, differences in features observed between isoprene, methanol, acetone, acetaldehyde, and MEK suggest they are produced or emitted in unique ways.

  20. Sensitive Mid-IR Laser Sensor Development and Mass Spectrometric Measurements in Shock Tube and Flames

    KAUST Repository

    Alquaity, Awad

    2016-11-01

    With global emission regulations becoming stringent, development of new combustion technologies that meet future emission regulations is essential. In this vein, this dissertation presents the application of sensitive diagnostic tools to validate and improve chemical kinetic mechanisms that play a fundamental role in the design of new combustion technologies. First, a novel high sensitivity laser-based sensor with a wide frequency tuning range (900 – 1000 cm-1) was developed utilizing pulsed cavity ringdown spectroscopy (CRDS) technique. The novel laser-based sensor was illustrated by measuring trace amounts of multiple combustion intermediates, namely ethylene, propene, allene, and 1-butene in a static cell at ambient conditions. Subsequently, pulsed CRDS technique was utilized to develop an ultra-fast, high sensitivity diagnostic to monitor trace concentrations of ethylene in shock tube pyrolysis experiments. This diagnostic represented the first ever successful application of CRDS technique to transient species measurements in a shock tube. The high sensitivity and fast time response (10μs) diagnostic may be utilized for measuring other key neutrals and radicals which are crucial in the oxidation chemistry of practical fuels. Secondly, a quadrupole mass spectrometer (QMS) was employed to measure relative cation mole fractions in atmospheric and low-pressure (30 Torr) flames of methane/oxygen diluted in argon. Lean, stoichiometric and rich flames were 4 examined to evaluate the dependence of ion chemistry on flame stoichiometry. Spatial distribution of cations was compared with predictions of an existing ion chemistry model. Based on the extensive measurements carried out in this work, modifications were suggested to improve the ion chemistry model to enhance the fidelity of such mechanisms. In-depth understanding of flame ion chemistry is vital to model the interaction of flames with electric fields and thereby pave the way to enable active combustion control

  1. High-precision spectrometer for studies of ion-induced and spontaneous fission dynamics

    International Nuclear Information System (INIS)

    Batenkov, O.; Elmgren, K.; Majorov, M.; Blomgren, J.; Conde, H.; Hultqvist, S.; Olsson, N.; Rahm, J.; Ramstroem, E.; Smirnov, S.; Veshikov, A.

    1997-01-01

    A spectrometer has been designed and built to investigate the dynamics of spontaneous and ion-induced fission processes. It consists of 8 neutron detectors surrounding a low mass scattering chamber containing the fissionable targets and two fission fragment telescopes. The spectrometer measures neutron spectra, and energy and angular correlations of neutrons, as well as kinetic energy, mass, and relative angle of fission fragments. A 252 Cf fission reference source is used for calibration. (orig.)

  2. Development of a Linear Ion Trap Mass Spectrometer (LITMS) Investigation for Future Planetary Surface Missions

    Science.gov (United States)

    Brinckerhoff, W.; Danell, R.; Van Ameron, F.; Pinnick, V.; Li, X.; Arevalo, R.; Glavin, D.; Getty, S.; Mahaffy, P.; Chu, P.; hide

    2014-01-01

    Future surface missions to Mars and other planetary bodies will benefit from continued advances in miniature sensor and sample handling technologies that enable high-performance chemical analyses of natural samples. Fine-scale (approx.1 mm and below) analyses of rock surfaces and interiors, such as exposed on a drill core, will permit (1) the detection of habitability markers including complex organics in association with their original depositional environment, and (2) the characterization of successive layers and gradients that can reveal the time-evolution of those environments. In particular, if broad-based and highly-sensitive mass spectrometry techniques could be brought to such scales, the resulting planetary science capability would be truly powerful. The Linear Ion Trap Mass Spectrometer (LITMS) investigation is designed to conduct fine-scale organic and inorganic analyses of short (approx.5-10 cm) rock cores such as could be acquired by a planetary lander or rover arm-based drill. LITMS combines both pyrolysis/gas chromatograph mass spectrometry (GCMS) of sub-sampled core fines, and laser desorption mass spectrometry (LDMS) of the intact core surface, using a common mass analyzer, enhanced from the design used in the Mars Organic Molecule Analyzer (MOMA) instrument on the 2018 ExoMars rover. LITMS additionally features developments based on the Sample Analysis at Mars (SAM) investigation on MSL and recent NASA-funded prototype efforts in laser mass spectrometry, pyrolysis, and precision subsampling. LITMS brings these combined capabilities to achieve its four measurement objectives: (1) Organics: Broad Survey Detect organic molecules over a wide range of molecular weight, volatility, electronegativity, concentration, and host mineralogy. (2) Organic: Molecular Structure Characterize internal molecular structure to identify individual compounds, and reveal functionalization and processing. (3) Inorganic Host Environment Assess the local chemical

  3. Use of high-throughput mass spectrometry to elucidate host-pathogen interactions in Salmonella

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.; Adkins, Joshua N.; Ansong, Charles; Chowdhury, Saiful M.; Manes, Nathan P.; Shi, Liang; Yoon, Hyunjin; Smith, Richard D.; Heffron, Fred

    2008-12-01

    New improvements to mass spectrometry include increased sensitivity, improvements in analyzing the collected data, and most important, from the standpoint of this review, a much higher throughput allowing analysis of many samples in a single day. This short review describes how host-pathogen interactions can be dissected by mass spectrometry using Salmonella as a model system. The approach allowed direct identification of the majority of annotate Salmonella proteins, how expression changed under various in vitro growth conditions, and how this relates to virulence and expression within host cell cells. One of the most significant findings is that a very high percentage of the all annotated genes (>20%) are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions suggesting additional functions of the regulator in coordinating virulence expression. Overall high throughput mass spectrometer provides a new view of pathogen-host interaction emphasizing the protein products and defining how protein interactions determine the outcome of infection.

  4. Methanol and other VOC fluxes from a Danish beech forest during late springtime

    DEFF Research Database (Denmark)

    Schade, Gunnar W.; Solomon, Sheena J.; Dellwik, Ebba

    2011-01-01

    In-canopy mixing ratio gradients and above-canopy fluxes of several volatile organic compounds (VOCs) were measured using a commercial proton transfer reaction mass spectrometer (PTR-MS) in a European beech (Fagus sylvatica) forest in Denmark. Fluxes of methanol were bidirectional: Emission...

  5. Scanning mass spectrometer setup for spatially resolved reactivity studies on model catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Matthias; Schirling, Christian; Kielbassa, Stefan; Bansmann, Joachim; Behm, Juergen [Institut fuer Oberflaechenchemie und Katalyse, Universitaet Ulm, D-89069 Ulm (Germany)

    2007-07-01

    A scanning mass spectrometer with micrometer-scale resolution was developed for investigations on the catalytic activity of microstructured planar model catalysts. Products of local surface reactions can be detected via a fine capillary orifice in a differentially pumped quadrupole mass spectrometer. The position of the sample with respect to the capillary is controlled by three piezo-driven translators. The surface reactivity of a resistive heated sample can be depicted in a spatially resolved topogram, taking into account the influence of the distance between sample and capillary on the magnitude of the QMS signal and the lateral resolution. Photolithographic structured reactive patterns on top of an inactive substrate enable investigations of mesoscopic transport effects such as coupling between catalytically active areas and of (reverse) spillover phenomena on one sample by varying the size and the distances of the active areas.

  6. Micro-Spec: An Ultra-Compact, High-Sensitivity Spectrometer for Far-Infrared and Sub-Millimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.

    2013-01-01

    High-performance, integrated spectrometers operating in the far-infrared and sub-millimeter promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a four-inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (mu-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of approx. 90% has been developed for initial demonstration, and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.

  7. Identification of isomers and control of ionization and dissociation processes using dual-mass-spectrometer scheme and genetic algorithm optimization

    International Nuclear Information System (INIS)

    Chen Zhou; Qiu-Nan Tong; Zhang Cong-Cong; Hu Zhan

    2015-01-01

    Identification of acetone and its two isomers, and the control of their ionization and dissociation processes are performed using a dual-mass-spectrometer scheme. The scheme employs two sets of time of flight mass spectrometers to simultaneously acquire the mass spectra of two different molecules under the irradiation of identically shaped femtosecond laser pulses. The optimal laser pulses are found using closed-loop learning method based on a genetic algorithm. Compared with the mass spectra of the two isomers that are obtained with the transform limited pulse, those obtained under the irradiation of the optimal laser pulse show large differences and the various reaction pathways of the two molecules are selectively controlled. The experimental results demonstrate that the scheme is quite effective and useful in studies of two molecules having common mass peaks, which makes a traditional single mass spectrometer unfeasible. (paper)

  8. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, A.; Laloo, R.; Abeilhou, P.; Guiraud, L.; Gauthier, S.; Martrou, D. [Nanosciences Group, CEMES, CNRS UPR 8011 and University Toulouse III - Paul Sabatier, 29 rue Jeanne Marvig, BP94347, F-31055 Toulouse Cedex 4 (France)

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The results obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.

  9. Eddy covariance flux measurements of ammonia by high temperature chemical ionisation mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Sintermann

    2011-03-01

    Full Text Available A system for fast ammonia (NH3 measurements with chemical ionisation mass spectrometry (CIMS based on a commercial Proton Transfer Reaction-Mass Spectrometer (PTR-MS is presented. It uses electron transfer reaction as ionisation pathway and features a drift tube of polyetheretherketone (PEEK and silica-coated steel. Heating the instrumental inlet and the drift tube to 180 °C enabled an effective time resolution of ~1 s and made it possible to apply the instrument for eddy covariance (EC measurements. EC fluxes of NH3 were measured over two agricultural fields in Oensingen, Switzerland, following fertilisations with cattle slurry. Air was aspirated close to a sonic anemometer at a flow of 100 STP L min−1 and was directed through a 23 m long 1/2" PFA tube heated to 150 °C to an air-conditioned trailer where the gas was sub-sampled from the large bypass stream. This setup minimised damping of fast NH3 concentration changes between the sampling point and the actual measurement. High-frequency attenuation loss of the NH3 fluxes of 20 to 40% was quantified and corrected for using an empirical ogive method. The instrumental NH3 background signal showed a minor interference with H2O which was characterised in the laboratory. The resulting correction of the NH3 flux after slurry spreading was less than 1‰. The flux detection limit of the EC system was about 5 ng m−2 s−1 while the accuracy of individual flux measurements was estimated 16% for the high-flux regime during these experiments. The NH3 emissions after broad spreading of the slurry showed an initial maximum of 150 μg m−2 s−1 with a fast decline in the following hours.

  10. A Review of the Emerging Field of Underwater Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Emily Chua

    2016-11-01

    Full Text Available Mass spectrometers are versatile sensor systems, owing to their high sensitivity and ability to simultaneously measure multiple chemical species. Over the last two decades, traditional laboratory-based membrane inlet mass spectrometers have been adapted for underwater use. Underwater mass spectrometry has drastically improved our capability to monitor a broad suite of gaseous compounds (e.g., dissolved atmospheric gases, light hydrocarbons, and volatile organic compounds in the aquatic environment. Here we provide an overview of the progress made in the field of underwater mass spectrometry since its inception in the 1990s to the present. In particular, we discuss the approaches undertaken by various research groups in developing in situ mass spectrometers. We also provide examples to illustrate how underwater mass spectrometers have been used in the field. Finally, we present future trends in the field of in situ mass spectrometry. Most of these efforts are aimed at improving the quality and spatial and temporal scales of chemical measurements in the ocean. By providing up-to-date information on underwater mass spectrometry, this review offers guidance for researchers interested in adapting this technology as well as goals for future progress in the field.

  11. High precision measurements of carbon isotopic ratio of atmospheric methane using a continuous flow mass spectrometer

    Directory of Open Access Journals (Sweden)

    Shinji Morimoto

    2009-03-01

    Full Text Available A high-precision measurement system for the carbon isotope ratio of atmospheric CH4 (δ^(13CH_4 was developed using a pre-concentration device for CH4 and a gas chromatograph-combustion-isotope ratio mass spectrometer (GC-C-IRMS. The measurement system required 100 mlSTP of an atmospheric air sample, corresponding to approximately 0.18μlSTP of CH_4, to determine the δ^(13CH_4 value with a reproducibility of 0.07‰. Replicated analyses of a CH_4-in-air standard gas during the period from 2002 to 2008 indicated that the value of δ^(13CH_4 measured by this system was consistent within the measurement reproducibility. To evaluate the δ^(13CH_4 measurement system, thus developed, diurnal variations of the atmospheric CH_4 concentration and δ^(13CH_4 were observed in the northern part of the Tokyo metropolitan area. From the relationship between the CH_4 concentration and δ^(13CH_4, dominant sources of the observed CH4 fluctuations were identified.

  12. Analysis of polycyclic aromatic hydrocarbons using desorption atmospheric pressure chemical ionization coupled to a portable mass spectrometer.

    Science.gov (United States)

    Jjunju, Fred P M; Maher, Simon; Li, Anyin; Badu-Tawiah, Abraham K; Taylor, Stephen; Cooks, R Graham

    2015-02-01

    Desorption atmospheric pressure chemical ionization (DAPCI) is implemented on a portable mass spectrometer and applied to the direct detection of polycyclic aromatic hydrocarbons (PAHs) and alkyl substituted benzenes. The presence of these compounds in the environment poses a significant threat to the health of both humans and wildlife because of their carcinogenic, toxic, and mutagenic properties. As such, instant detection outside of the laboratory is of particular importance to allow in-situ measurement at the source. Using a rapid, high throughput, miniature, handheld mass spectrometer, several alkyl substituted benzenes and PAHs (i.e., 1,2,3,5-tetramethylbenzene, pentamethylbenzene, hexamethylbenzene, fluoranthene, anthracene, benzo[k]fluoranthene, dibenz[a,h]anthracene, acenaphthene, indeno[1,2,3-c,d]pyrene, 9-ethylfluorene, and 1-benzyl-3-methyl-naphthalene) were identified and characterized using tandem mass spectrometry (MS/MS) from ambient surfaces, in the open air. This method can provide almost instantaneous information while minimizing sample preparation, which is advantageous in terms of both cost and simplicity of analysis. This MS-based technique is applicable to a wide range of environmental organic molecules.

  13. System for studying a sample of material using a heavy ion induced mass spectrometer source

    Science.gov (United States)

    Fries, D.P.; Browning, J.F.

    1998-07-21

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  14. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    Science.gov (United States)

    Fries, D.P.; Browning, J.F.

    1999-02-16

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  15. Miniature Time of Flight Mass Spectrometer for Space and Extraterrestrial Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The PI has developed a miniature time-of-flight mass spectrometer (TOF-MS), which can be op-timized for space and extraterrestrial applications, by using a...

  16. Performance of the Recoil Mass Spectrometer and its detector systems at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Gross, C.J.; Ginter, T.N.; Shapira, D.; Milner, W.T.; McConnell, J.W.; James, A.N.; Johnson, J.W.; Mas, J.; Mantica, P.F.; Auble, R.L.; Das, J.J.; Blankenship, J.L.; Hamilton, J.H.; Robinson, R.L.; Akovali, Y.A.; Baktash, C.; Batchelder, J.C.; Bingham, C.R.; Brinkman, M.J.; Carter, H.K.; Cunningham, R.A.; Davinson, T.; Fox, J.D.; Galindo-Uribarri, A.; Grzywacz, R.; Liang, J.F.; MacDonald, B.D.; MacKenzie, J.; Paul, S.D.; Piechaczek, A.; Radford, D.C.; Ramayya, A.V.; Reviol, W.; Rudolph, D.; Rykaczewski, K.; Toth, K.S.; Weintraub, W.; Williams, C.; Woods, P.J.; Yu, C.-H.; Zganjar, E.F.

    2000-01-01

    The recently commissioned Recoil Mass Spectrometer (RMS) at the Holifield Radioactive Ion Beam Facility (HRIBF) is described. Consisting of a momentum separator followed by an E-D-E Rochester-type mass spectrometer, the RMS is the centerpiece of the nuclear structure endstation at the HRIBF. Designed to transport ions with rigidities near K=100, the RMS has acceptances of ±10% in energy and ±4.9% in mass-to-charge ratio. Recent experimental results are used to illustrate the detection capabilities of the RMS, which is compatible with many detectors and devices

  17. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  18. Electron spectroscopy measurements with a shifted analyzing plane setting in the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Dyba, Stephan [Institut fuer Kernphysik, Uni Muenster (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    With the KATRIN (KArlsruhe TRItium Neutrino) experiment the endpoint region of the tritium beta decay will be measured to determine the electron-neutrino mass with a sensitivity of 200 meV/c{sup 2} (90% C.L.). For the high precision which is needed to achieve the sub-eV range a MAC-E filter type spectrometer is used to analyze the electron energy. To understand the various background contributions inside the spectrometer vessel different electric and magnetic field settings were investigated during the last commissioning phase. This talk will focus on the so called shifted analyzing plane measurement in which the field settings were tuned in a way to provide non standard potential barriers within the spectrometer. The different settings allowed to perform a spectroscopic measurement, determining the energy spectrum of background electrons born within the spectrometer.

  19. Design of a pulsed angular selective electron gun for the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Winzen, Daniel; Hannen, Volker; Ortjohann, Hans-Werner; Zacher, Michael; Weinheimer, Christian [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet, Muenster (Germany); Collaboration: KATRIN-Collaboration

    2012-07-01

    The KATRIN (KArlsruhe TRItium Neutrino mass) experiment will study the tritium {beta}-spectrum near the endpoint of 18.6 keV, aiming to measure the mass of the electron antineutrino. Using an electrostatic retarding spectrometer (MAC-E-Filter), the projected sensitivity for m{sub ve} is 200 meV/c{sup 2} at 90% C.L. In order to map out the electric and magnetic fields in the main spectrometer, an angular selective electron gun is currently being developed. The e-gun uses an UV-Laser to produce electrons via the photo-electric effect from a copper substrate which are then accelerated electrostatically. It features a small energy spread of approx. 0.1 eV, a sharp emission angle and will be able to cover the whole magnetic flux tube of KATRIN. Using a pulsed laser it is also possible to investigate the time of flight (TOF) of electrons through the spectrometer, offering enhanced sensitivity to spectrometer properties far away from the analysing plane. By comparing information from transmission function measurements and TOF data with Monte Carlo simulations of the setup, one will be able to achieve a detailed understanding of the spectrometer properties.

  20. Validation of the Mass-Extraction-Window for Quantitative Methods Using Liquid Chromatography High Resolution Mass Spectrometry.

    Science.gov (United States)

    Glauser, Gaétan; Grund, Baptiste; Gassner, Anne-Laure; Menin, Laure; Henry, Hugues; Bromirski, Maciej; Schütz, Frédéric; McMullen, Justin; Rochat, Bertrand

    2016-03-15

    A paradigm shift is underway in the field of quantitative liquid chromatography-mass spectrometry (LC-MS) analysis thanks to the arrival of recent high-resolution mass spectrometers (HRMS). The capability of HRMS to perform sensitive and reliable quantifications of a large variety of analytes in HR-full scan mode is showing that it is now realistic to perform quantitative and qualitative analysis with the same instrument. Moreover, HR-full scan acquisition offers a global view of sample extracts and allows retrospective investigations as virtually all ionized compounds are detected with a high sensitivity. In time, the versatility of HRMS together with the increasing need for relative quantification of hundreds of endogenous metabolites should promote a shift from triple-quadrupole MS to HRMS. However, a current "pitfall" in quantitative LC-HRMS analysis is the lack of HRMS-specific guidance for validated quantitative analyses. Indeed, false positive and false negative HRMS detections are rare, albeit possible, if inadequate parameters are used. Here, we investigated two key parameters for the validation of LC-HRMS quantitative analyses: the mass accuracy (MA) and the mass-extraction-window (MEW) that is used to construct the extracted-ion-chromatograms. We propose MA-parameters, graphs, and equations to calculate rational MEW width for the validation of quantitative LC-HRMS methods. MA measurements were performed on four different LC-HRMS platforms. Experimentally determined MEW values ranged between 5.6 and 16.5 ppm and depended on the HRMS platform, its working environment, the calibration procedure, and the analyte considered. The proposed procedure provides a fit-for-purpose MEW determination and prevents false detections.

  1. Extermination Of Uranium Isotopes Composition Using A Micro Computer With An IEEE-488 Interface For Mass Spectrometer Analysis

    International Nuclear Information System (INIS)

    Prajitno; Taftazani, Agus; Yusuf

    1996-01-01

    A mass spectrometry method can be used to make qualitative or quantitative analysis. For qualitative analysis, identification of unknown materials by a Mass Spectrometer requires definite assignment of mass number to peak on chart. In quantitative analysis, a mass spectrometer is used to determine isotope composition material in the sample. Analysis system of a Mass Spectrometer possession of PPNY-BATAN based on comparison ion current intensity which enter the collector, and have been used to analyse isotope composition. Calculation of isotope composition have been manually done. To increase the performance and to avoid manual data processing, a micro computer and IEEE-488 interface have been installed, also software packaged has been made. So that the determination of the isotope composition of material in the sample will be faster and more efficient. Tile accuracy of analysis using this program on sample standard U 3 O 8 NBS 010 is between 93,87% - 99,98%

  2. Development of a totally computer-controlled triple quadrupole mass spectrometer system

    International Nuclear Information System (INIS)

    Wong, C.M.; Crawford, R.W.; Barton, V.C.; Brand, H.R.; Neufeld, K.W.; Bowman, J.E.

    1983-01-01

    A totally computer-controlled triple quadrupole mass spectrometer (TQMS) is described. It has a number of unique features not available on current commercial instruments, including: complete computer control of source and all ion axial potentials; use of dual computers for data acquisition and data processing; and capability for self-adaptive control of experiments. Furthermore, it has been possible to produce this instrument at a cost significantly below that of commercial instruments. This triple quadrupole mass spectrometer has been constructed using components commercially available from several different manufacturers. The source is a standard Hewlett-Packard 5985B GC/MS source. The two quadrupole analyzers and the quadrupole CAD region contain Balzers QMA 150 rods with Balzers QMG 511 rf controllers for the analyzers and a Balzers QHS-511 controller for the CAD region. The pulsed-positive-ion-negative-ion-chemical ionization (PPINICI) detector is made by Finnigan Corporation. The mechanical and electronics design were developed at LLNL for linking these diverse elements into a functional TQMS as described. The computer design for total control of the system is unique in that two separate LSI-11/23 minicomputers and assorted I/O peripherals and interfaces from several manufacturers are used. The evolution of this design concept from totally computer-controlled instrumentation into future self-adaptive or ''expert'' systems for instrumental analysis is described. Operational characteristics of the instrument and initial results from experiments involving the analysis of the high explosive HMX (1,3,5,7-Tetranitro-1,3,5,7-Tetrazacyclooctane) are presented

  3. Direct mass measurements of light neutron-rich nuclei using fast recoil spectrometers

    International Nuclear Information System (INIS)

    Vieira, D.J.; Wouters, J.M.

    1987-01-01

    Extensive new mass measurement capabilities have evolved with the development of recoil spectrometers. In the Z = 3 to 9 neutron-rich region alone, 12 neutron-rich nuclei have been determined for the first time by the fast-recoil direct mass measurement method. A recent experiment using the TOFI spectrometer illustrates this technique. A systematic investigation of nuclei that lie along or near the neutron-drip line has provided a valuable first glimpse into the nuclear structure of such nuclei. No evidence for a large single-particle energy gap at N = 14 is observed; however, a change in the two-neutron separation model calculations, and is interpreted in terms of the smaller 1s/sub 1/2/ - 1s/sub 1/2/ interaction compared to that of the 0d/sub 5/2/ - 0d/sub 5/2/ neutron-neutron interaction. 18 refs., 7 figs., 1 tab

  4. Feasibility of a Fieldable Mass Spectrometer FY 2015 Year-end Report

    Energy Technology Data Exchange (ETDEWEB)

    Barinaga, Charles J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hager, George J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hoegg, Edward D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carman, April J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Garret L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    Currently, the International Atomic Energy Agency (IAEA) monitors the production of enriched uranium hexafluoride (UF6) at declared facilities by collecting a few grams of product in sample tubes that are then sent to central laboratories for processing and isotope ratio analysis by thermal ionization mass spectrometry. Analysis of results may not be available for some time after collection. In addition, new shipping regulations will make it more difficult to transport this amount of UF6 to a laboratory. The IAEA is interested in an isotope ratio technique for uranium in UF6 that can be moved to and operated at the enrichment facility itself. This report covers the tasks and activities of the Feasibility of a Fieldable Mass Spectrometer Project for FY 2015, which investigates the feasibility of an in-field isotope ratio technique— the forward deployment of a technique to the non-laboratory situation of a protected room with power and heat at the facility of interest. A variety of nontraditional elemental ionization techniques were considered. It was determined that only two of these should be moved forward for testing with the candidate in-field mass spectrometer and with the adsorbed UF6 sample types.

  5. A fully automated mass spectrometer for the analysis of organic solids

    International Nuclear Information System (INIS)

    Hillig, H.; Kueper, H.; Riepe, W.

    1979-01-01

    Automation of a mass spectrometer-computer system makes it possible to process up to 30 samples without attention after sample loading. An automatic sample changer introduces the samples successively into the ion source by means of a direct inlet probe. A process control unit determines the operation sequence. Computer programs are available for the hardware support, system supervision and evaluation of the spectrometer signals. The most essential precondition for automation - automatic evaporation of the sample material by electronic control of the total ion current - is confirmed to be satisfactory. The system operates routinely overnight in an industrial laboratory, so that day work can be devoted to difficult analytical problems. The cost of routine analyses is halved. (Auth.)

  6. Linear mass reflectron

    International Nuclear Information System (INIS)

    Mamyrin, B.A.; Shmikk, D.V.

    1979-01-01

    A description and operating principle of a linear mass reflectron with V-form trajectory of ion motion -a new non-magnetic time-of-flight mass spectrometer with high resolution are presented. The ion-optical system of the device consists of an ion source with ionization by electron shock, of accelerating gaps, reflector gaps, a drift space and ion detector. Ions move in the linear mass refraction along the trajectories parallel to the axis of the analyzer chamber. The results of investigations into the experimental device are given. With an ion drift length of 0.6 m the device resolution is 1200 with respect to the peak width at half-height. Small-sized mass spectrometric transducers with high resolution and sensitivity may be designed on the base of the linear mass reflectron principle

  7. Using a fully automatic mass spectrometer for fissile material control

    International Nuclear Information System (INIS)

    Wilhelmi, M.

    1978-08-01

    The demand for higher accuracy and a shorter delay in the analysis together with better objectifiability and data security needed in safeguards, lead to the automation of a mass spectrometer. Starting with a continuous feeding of samples via a high vacuum lock and including the subsequent heating, focussing and scanning of the samples as well as the final evaluation of the source data (taking alpha spectrometry and the weights required for the isotope dilution technique into account), the mass spectrometric procedure was completely automated. For this purpose, a serial CH-5 instrument of varian mat was modified to be operated by a varian 620/I computer. A newly developed three chamber high vacuum lock was attached to this system and the final evaluation is made with an IBM 370. The system has been used in operation for the isotope analysis of U, Pu and Nd for one year. Major breakdowns of the hardware did not occur, however, the computer programmes had to be steadily improved according to the changing characteristics of the samples. Compared to manual operation, the automat is superior in its throughput and speed of analysing series of similar samples. The automatic procedure objectifies the analysis and the complete evaluation ensures a better data security. (Orig./HP). (author)

  8. Comparison of linear intrascan and interscan dynamic ranges of Orbitrap and ion-mobility time-of-flight mass spectrometers.

    Science.gov (United States)

    Kaufmann, Anton; Walker, Stephan

    2017-11-30

    The linear intrascan and interscan dynamic ranges of mass spectrometers are important in metabolome and residue analysis. A large linear dynamic range is mandatory if both low- and high-abundance ions have to be detected and quantitated in heavy matrix samples. These performance criteria, as provided by modern high-resolution mass spectrometry (HRMS), were systematically investigated. The comparison included two generations of Orbitraps, and an ion mobility quadrupole time-of-flight (QTOF) system In addition, different scan modes, as provided by the utilized instruments, were investigated. Calibration curves of different compounds covering a concentration range of five orders of magnitude were measured to evaluate the linear interscan dynamic range. The linear intrascan dynamic range and the resulting mass accuracy were evaluated by repeating these measurements in the presence of a very intense background. Modern HRMS instruments can show linear dynamic ranges of five orders of magnitude. Often, however, the linear dynamic range is limited by the detection capability (sensitivity and selectivity) and by the electrospray ionization. Orbitraps, as opposed to TOF instruments, show a reduced intrascan dynamic range. This is due to the limited C-trap and Orbitrap capacity. The tested TOF instrument shows poorer mass accuracies than the Orbitraps. In contrast, hyphenation with an ion-mobility device seems not to affect the linear dynamic range. The linear dynamic range of modern HRMS instrumentation has been significantly improved. This also refers to the virtual absence of systematic mass shifts at high ion abundances. The intrascan dynamic range of the current Orbitrap technology may still be a limitation when analyzing complex matrix extracts. On the other hand, the linear dynamic range is not only limited by the detector technology, but can also be shortened by peripheral devices, where the ionization and transfer of ions take place. Copyright © 2017 John Wiley

  9. A specialized isotope mass spectrometer for noninvasive diagnostics of Helicobacter pylori infection in human beings

    Science.gov (United States)

    Blashenkov, N. M.; Sheshenya, E. S.; Solov'ev, S. M.; Sachenko, V. D.; Gall, L. N.; Zarutskii, I. V.; Gall, N. R.

    2013-05-01

    A specialized isotope mass spectrometer for noninvasive diagnostics of Helicobacter pylori infection in human beings based on the carbon-13 isotope breath test has been designed and constructed. Important stages of the work included (i) calculating a low-aberration mass analyzer, (ii) manufacturing and testing special gas inlet system, and (iii) creating a small-size collector of ions. The proposed instrument ensures 13C/12C isotopic ratio measurement to within 1.7‰ (pro mille) accuracy, which corresponds to requirements for a diagnostic tool. Preliminary medical testing showed that the mass spectrometer is applicable to practical diagnostics. The instrument is also capable of measuring isotopic ratios of other light elements, including N, O, B (for BF2+ ions), Ar, Cl, and S.

  10. In situ analysis of corrosion inhibitors using a portable mass spectrometer with paper spray ionization.

    Science.gov (United States)

    Jjunju, Fred P M; Li, Anyin; Badu-Tawiah, Abraham; Wei, Pu; Li, Linfan; Ouyang, Zheng; Roqan, Iman S; Cooks, R Graham

    2013-07-07

    Paper spray (PS) ambient ionization is implemented using a portable mass spectrometer and applied to the detection of alkyl quaternary ammonium salts in a complex oil matrix. These salts are commonly used as active components in the formulation of corrosion inhibitors. They were identified in oil and confirmed by their fragmentation patterns recorded using tandem mass spectrometry (MS/MS). The cations of alkyl and benzyl-substituted quaternary ammonium salts showed characteristic neutral losses of CnH2n (n carbon number of the longest chain) and C7H8, respectively. Individual quaternary ammonium compounds were detected at low concentrations (oil samples without prior sample preparation or pre-concentration was also demonstrated using a home-built miniature mass spectrometer at levels below 1 ng μL(-1).

  11. TOF spectrometer with improved sensitivity for ERDA of light isotopes

    International Nuclear Information System (INIS)

    Siketic, Z.; Bogdanovic Radovic, I.; Jaksic, M.

    2009-01-01

    Time-of-Flight Elastic Recoil Detection Analysis (TOF ERDA) is a well established and powerful ion beam analytical technique. It is used for simultaneous and quantitative analysis of elemental depth distributions of light and medium mass elements in both light and heavy matrices. Contrary to silicon particle detectors, the efficiency of the carbon-foil MCP time detectors in TOF system depends on energy and electronic stopping power of analyzing recoil atoms in the C foil and it is often less than 100% for light elements (H, He, Li). This is particularly critical for hydrogen isotopes where detection efficiency can be drastically reduced (∼ 10%). Therefore, TOF ERDA spectrometers were so far not the best choice for depth profiling and quantification of light elements. To improve the detection efficiency of TOF ERDA, the electron emission of C foils (∼ 0.3 μg/cm 2 ) has been enhanced by evaporating a thin LiF layer on the foil. That procedure improved significantly detection efficiency of hydrogen and other light elements, making TOF ERDA spectrometer more suitable for multielemental analysis applications. The capabilities of upgraded spectrometer were demonstrated on samples with well known as well as unknown concentration and depth distribution of H and D.(author)

  12. Hyphenation of two simultaneously employed soft photo ionization mass spectrometers with thermal analysis of biomass and biochar

    International Nuclear Information System (INIS)

    Fendt, Alois; Geissler, Robert; Streibel, Thorsten

    2013-01-01

    Highlights: ► First simultaneous hyphenation of two time-of-flight mass spectrometers with different soft photo ionization techniques (SPI and REMPI) to Thermal Analysis using a newly developed prototype for EGA is presented. ► Resonance enhanced multi-photon ionization (REMPI) enables sensitive and selective analysis of aromatic species. ► Single photon ionization (SPI) using VUV light supplied by an innovative electron-beam pumped excimer light source (EBEL) comprehensively ionizes (nearly) all organic molecules. ► The resulting mass spectra show distinct patterns for the evolved gases of the miscellaneous biomasses and chars thereof. ► The potential for detailed kinetic studies is apparent on account of the complex pyrolysis gas compositions. - Abstract: Evolved gas analysis (EGA) is a powerful and complementary tool for Thermal Analysis. In this context, two time-of-flight mass spectrometers with different soft photo-ionization techniques are simultaneously hyphenated to a thermo balance and applied in form of a newly developed prototype for EGA of pyrolysis gases from biomass and biochar. Resonance enhanced multi-photon ionization (REMPI) is applied for selective analysis of aromatic species. Furthermore, single photon ionization (SPI) using VUV light supplied by an electron-beam pumped excimer light source (EBEL) was used to comprehensively ionize (nearly) all organic molecules. The soft ionization capability of photo-ionization techniques allows direct and on-line analysis of the evolved pyrolysis gases. Characteristic mass spectra with specific patterns could be obtained for the miscellaneous biomass feeds used. Temperature profiles of the biochars reveal a desorption step, followed by pyrolysis as observed for the biomasses. Furthermore, the potential for kinetic studies is apparent for this instrumental setup.

  13. First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer

    Science.gov (United States)

    Dickel, T.; Plaß, W. R.; Ayet San Andres, S.; Ebert, J.; Geissel, H.; Haettner, E.; Hornung, C.; Miskun, I.; Pietri, S.; Purushothaman, S.; Reiter, M. P.; Rink, A.-K.; Scheidenberger, C.; Weick, H.; Dendooven, P.; Diwisch, M.; Greiner, F.; Heiße, F.; Knöbel, R.; Lippert, W.; Moore, I. D.; Pohjalainen, I.; Prochazka, A.; Ranjan, M.; Takechi, M.; Winfield, J. S.; Xu, X.

    2015-05-01

    211Po ions in the ground and isomeric states were produced via 238U projectile fragmentation at 1000 MeV/u. The 211Po ions were spatially separated in flight from the primary beam and other reaction products by the fragment separator FRS. The ions were energy-bunched, slowed-down and thermalized in a gas-filled cryogenic stopping cell (CSC). They were then extracted from the CSC and injected into a high-resolution multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). The excitation energy of the isomer and, for the first time, the isomeric-to-ground state ratio were determined from the measured mass spectrum. In the subsequent experimental step, the isomers were spatially separated from the ions in the ground state by an ion deflector and finally collected with a silicon detector for decay spectroscopy. This pioneering experimental result opens up unique perspectives for isomer-resolved studies. With this versatile experimental method new isomers with half-lives longer than a few milliseconds can be discovered and their decay properties can be measured with highest sensitivity and selectivity. These experiments can be extended to studies with isomeric beams in nuclear reactions.

  14. Ion-neutral transport through quadrupole interfaces of mass-spectrometer systems

    International Nuclear Information System (INIS)

    Jugroot, M.; Groth, C.P.T.; Thomson, B.A.; Baranov, V.; Collings, B.A.; French, J.B.

    2004-01-01

    The transport of free ions through highly under-expanded jet flows of neutral gases and in the presence of applied electric fields is investigated by continuum-based numerical simulations. In particular, numerical results are described which are relevant to ion flows occurring in quadrupole interfaces of mass spectrometer systems. A five-moment mathematical model and parallel multi-block numerical solution procedure is developed for predicting the ion transport. The model incorporates the effects of ion-neutral collision processes and is used in conjunction with a Navier-Stokes model and flow solver for the neutral gas to examine the key influences controlling the ion motion. The effects of the neutral gas flow, electric fields (both dc and rf), and flow field geometry on ion mobility are carefully assessed. The capability of controlling the charged particle motions through a combination of directed neutral flow and applied electric field is demonstrated for these high-speed, hypersonic, jet flows. (author)

  15. Liquid Chromatography with Tandem Mass Spectrometry: A Sensitive Method for the Determination of Dehydrodiisoeugenol in Rat Cerebral Nuclei

    Directory of Open Access Journals (Sweden)

    You-Bo Zhang

    2016-03-01

    Full Text Available A new liquid chromatography–tandem mass spectrometry (LC-MS/MS method is developed for the quantification of dehydrodiisoeugenol (DDIE in rat cerebral nuclei after single intravenous administration. DDIE and daidzein (internal standard were separated on a Diamonsil™ ODS C18 column with methanol–water containing 0.1% formic acid (81:19, v/v as a mobile phase. Detection of DDIE was performed on a positive electrospray ionization source using a triple quadrupole mass spectrometer. DDIE and daidzein were monitored at m/z 327.2→188.0 and m/z 255.0→199.2, respectively, in multiple reaction monitoring mode. This method enabled quantification of DDIE in various brain areas, including, cortex, hippocampus, striatum, hypothalamus, cerebellum and brainstem, with high specificity, precision, accuracy, and recovery. The data herein demonstrate that our new LC-MS/MS method is highly sensitive and suitable for monitoring cerebral nuclei distribution of DDIE.

  16. High-sensitivity mass spectrometry with a tandem accelerator

    International Nuclear Information System (INIS)

    Henning, W.

    1984-01-01

    The characteristic features of accelerator mass spectrometry are discussed. A short overview is given of the current status of mass spectrometry with high-energy (MeV/nucleon) heavy-ion accelerators. Emphasis is placed on studies with tandem accelerators and on future mass spectrometry of heavier isotopes with the new generation of higher-voltage tandems

  17. A Method for Estimating Mass-Transfer Coefficients in a Biofilter from Membrane Inlet Mass Spectrometer Data

    DEFF Research Database (Denmark)

    Nielsen, Anders Michael; Nielsen, Lars Peter; Feilberg, Anders

    2009-01-01

    A membrane inlet mass spectrometer (MIMS) was used in combination with a developed computer model to study and improve management of a biofilter (BF) treating malodorous ventilation air from a meat rendering facility. The MIMS was used to determine percentage removal efficiencies (REs) of selected...... sulfur gases and to provide toluene retention profiles for the model to determine the air velocity and overall mass-transfer coefficient of toluene. The mass-transfer coefficient of toluene was used as a reference for determining the mass transfer of sulfur gases. By presenting the model to scenarios...... of a filter bed with a consortium of effective sulfur oxidizers, the most likely mechanism for incomplete removal of sulfur compounds from the exhaust air was elucidated. This was found to be insufficient mass transfer and not inadequate bacterial activity as anticipated by the manager of the BF. Thus...

  18. High-resolution spectrometer at PEP

    International Nuclear Information System (INIS)

    Weiss, J.M.; HRS Collaboration.

    1982-01-01

    A description is presented of the High Resolution Spectrometer experiment (PEP-12) now running at PEP. The advanced capabilities of the detector are demonstrated with first physics results expected in the coming months

  19. Expanding Single Particle Mass Spectrometer Analyses for the Identification of Microbe Signatures in Sea Spray Aerosol.

    Science.gov (United States)

    Sultana, Camille M; Al-Mashat, Hashim; Prather, Kimberly A

    2017-10-03

    Ocean-derived microbes in sea spray aersosol (SSA) have the potential to influence climate and weather by acting as ice nucleating particles in clouds. Single particle mass spectrometers (SPMSs), which generate in situ single particle composition data, are excellent tools for characterizing aerosols under changing environmental conditions as they can provide high temporal resolution and require no sample preparation. While SPMSs have proven capable of detecting microbes, these instruments have never been utilized to definitively identify aerosolized microbes in ambient sea spray aersosol. In this study, an aerosol time-of-flight mass spectrometer was used to analyze laboratory generated SSA produced from natural seawater in a marine aerosol reference tank. We present the first description of a population of biological SSA mass spectra (BioSS), which closely match the ion signatures observed in previous terrestrial microbe studies. The fraction of BioSS dramatically increased in the largest supermicron particles, consistent with field and laboratory measurements of microbes ejected by bubble bursting, further supporting the assignment of BioSS mass spectra as microbes. Finally, as supported by analysis of inorganic ion signals, we propose that dry BioSS particles have heterogeneous structures, with microbes adhered to sodium chloride nodules surrounded by magnesium-enriched coatings. Consistent with this structure, chlorine-containing ion markers were ubiquitous in BioSS spectra and identified as possible tracers for distinguishing recently aerosolized marine from terrestrial microbes.

  20. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    X.-F. Huang

    2010-09-01

    Full Text Available As part of Campaigns of Air Quality Research in Beijing and Surrounding Region-2008 (CAREBeijing-2008, an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS was deployed in urban Beijing to characterize submicron aerosol particles during the time of 2008 Beijing Olympic Games and Paralympic Games (24 July to 20 September 2008. The campaign mean PM1 mass concentration was 63.1 ± 39.8 μg m−3; the mean composition consisted of organics (37.9%, sulfate (26.7%, ammonium (15.9%, nitrate (15.8%, black carbon (3.1%, and chloride (0.87%. The average size distributions of the species (except BC were all dominated by an accumulation mode peaking at about 600 nm in vacuum aerodynamic diameter, and organics was characterized by an additional smaller mode extending below 100 nm. Positive Matrix Factorization (PMF analysis of the high resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., hydrocarbon-like (HOA, cooking-related (COA, and two oxygenated organic aerosols (OOA-1 and OOA-2, which on average accounted for 18.1, 24.4, 33.7 and 23.7% of the total organic mass, respectively. The HOA was identified to be closely associated with primary combustion sources, while the COA mass spectrum and diurnal pattern showed similar characteristics to that measured for cooking emissions. The OOA components correspond to aged secondary organic aerosol. Although the two OOA components have similar elemental (O/C, H/C compositions, they display differences in mass spectra and time series which appear to correlate with the different source regions sampled during the campaign. Back trajectory clustering analysis indicated that the southerly air flows were associated with the highest PM1 pollution during the campaign. Aerosol particles in southern airmasses were especially rich in inorganic and oxidized organic species. Aerosol particles in northern airmasses

  1. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer

    Science.gov (United States)

    Huang, X.-F.; He, L.-Y.; Hu, M.; Canagaratna, M. R.; Sun, Y.; Zhang, Q.; Zhu, T.; Xue, L.; Zeng, L.-W.; Liu, X.-G.; Zhang, Y.-H.; Jayne, J. T.; Ng, N. L.; Worsnop, D. R.

    2010-09-01

    As part of Campaigns of Air Quality Research in Beijing and Surrounding Region-2008 (CAREBeijing-2008), an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in urban Beijing to characterize submicron aerosol particles during the time of 2008 Beijing Olympic Games and Paralympic Games (24 July to 20 September 2008). The campaign mean PM1 mass concentration was 63.1 ± 39.8 μg m-3; the mean composition consisted of organics (37.9%), sulfate (26.7%), ammonium (15.9%), nitrate (15.8%), black carbon (3.1%), and chloride (0.87%). The average size distributions of the species (except BC) were all dominated by an accumulation mode peaking at about 600 nm in vacuum aerodynamic diameter, and organics was characterized by an additional smaller mode extending below 100 nm. Positive Matrix Factorization (PMF) analysis of the high resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., hydrocarbon-like (HOA), cooking-related (COA), and two oxygenated organic aerosols (OOA-1 and OOA-2), which on average accounted for 18.1, 24.4, 33.7 and 23.7% of the total organic mass, respectively. The HOA was identified to be closely associated with primary combustion sources, while the COA mass spectrum and diurnal pattern showed similar characteristics to that measured for cooking emissions. The OOA components correspond to aged secondary organic aerosol. Although the two OOA components have similar elemental (O/C, H/C) compositions, they display differences in mass spectra and time series which appear to correlate with the different source regions sampled during the campaign. Back trajectory clustering analysis indicated that the southerly air flows were associated with the highest PM1 pollution during the campaign. Aerosol particles in southern airmasses were especially rich in inorganic and oxidized organic species. Aerosol particles in northern airmasses contained a large fraction of primary HOA

  2. High intensity line source for x-ray spectrometer calibration

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 μ x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10 4 ) time-resolved cyrstal spectrometer, will be discussed in detail

  3. Proof of Concept Coded Aperture Miniature Mass Spectrometer Using a Cycloidal Sector Mass Analyzer, a Carbon Nanotube (CNT) Field Emission Electron Ionization Source, and an Array Detector

    Science.gov (United States)

    Amsden, Jason J.; Herr, Philip J.; Landry, David M. W.; Kim, William; Vyas, Raul; Parker, Charles B.; Kirley, Matthew P.; Keil, Adam D.; Gilchrist, Kristin H.; Radauscher, Erich J.; Hall, Stephen D.; Carlson, James B.; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T.; Russell, Zachary E.; Grego, Sonia; Edwards, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Stoner, Brian R.; Gehm, Michael E.; Glass, Jeffrey T.

    2018-02-01

    Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified.

  4. Expanding the linear dynamic range for quantitative liquid chromatography-high resolution mass spectrometry utilizing natural isotopologue signals

    International Nuclear Information System (INIS)

    Liu, Hanghui; Lam, Lily; Yan, Lin; Chi, Bert; Dasgupta, Purnendu K.

    2014-01-01

    Highlights: • Less abundant isotopologue ions were utilized to decrease detector saturation. • A 25–50 fold increase in the upper limit of dynamic range was demonstrated. • Linear dynamic range was expanded without compromising mass resolution. - Abstract: The linear dynamic range (LDR) for quantitative liquid chromatography–mass spectrometry can be extended until ionization saturation is reached by using a number of target isotopologue ions in addition to the normally used target ion that provides the highest sensitivity. Less abundant isotopologue ions extend the LDR: the lower ion abundance decreases the probability of ion detector saturation. Effectively the sensitivity decreases and the upper limit of the LDR increases. We show in this paper that the technique is particularly powerful with a high resolution time of flight mass spectrometer because the data for all ions are automatically acquired, and we demonstrated this for four small organic molecules; the upper limits of LDRs increased by 25–50 times

  5. Electron multiplier for the measurement of an ion current on a mass spectrometer; Multiplicateur d'electrons pour la mesure de courant d'ions sur un spectrometre de masse

    Energy Technology Data Exchange (ETDEWEB)

    Lohez, P; Nief, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The apparatus described is designed to measure weak ion currents received at the collector of a mass spectrometer. The report describes successively the study of electron paths in the multiplier by the method of analogy, using rubber membranes, and the practical details of construction of the apparatus. The variation with surface treatment of the secondary emission coefficient of the alloy CuBe containing 2 per cent Be, which makes up the dynodes, and the influence of the voltage on the gain per stage, are discussed. Results of tests regarding: the influence of the ion mass on the gain, the background of the instrument and the energy distribution of the impulses coming out on a high gain multiplier (q.q. 10{sup 7}) are given. Finally the performances of the multiplier are reported. 1- For a low gain (10{sup 4}), precision and reproducibility comparable to the electrometer valve, sensitivity 100 times greater, currents capable of detection 10{sup -17} Ampere. 2- For a high gain (10{sup 7}) and measurement by impulse counting, currents capable of detection 10{sup -19} Ampere. Mounting difficult to use on a mass spectrometer. (author) [French] L'appareil decrit est destine a la mesure des faibles courants d'ions re s au collecteur d'un spectrometre de masse. Le rapport decrit successivement l'etude des trajectoires des electrons dans le multiplicateur, par la methode analogique de la menbrane en caoutchouc, et la realisation pratique de l'appareil. La variation du coefficient d'emission secondaire de l'alliage CuBe a 2 pour cent de Be, constituant les dynodes suivant le traitement des surfaces, et l'influence de la tension sur le gain par etage sont discutees. Des resultats d'essais concernant: l'influence de la masse des ions sur le gain, le bruit de fond de l'appareil et la repartition en energie des impulsions de sortie sur un multiplicateur a gain eleve (q.q. 10{sup 7}) sont donnes. Enfin, sont rapportees les performances du multiplicateur. 1- pour un gain faible

  6. A mass spectrometer based explosives trace detector

    Science.gov (United States)

    Vilkov, Andrey; Jorabchi, Kaveh; Hanold, Karl; Syage, Jack A.

    2011-05-01

    In this paper we describe the application of mass spectrometry (MS) to the detection of trace explosives. We begin by reviewing the issue of explosives trace detection (ETD) and describe the method of mass spectrometry (MS) as an alternative to existing technologies. Effective security screening devices must be accurate (high detection and low false positive rate), fast and cost effective (upfront and operating costs). Ion mobility spectrometry (IMS) is the most commonly deployed method for ETD devices. Its advantages are compact size and relatively low price. For applications requiring a handheld detector, IMS is an excellent choice. For applications that are more stationary (e.g., checkpoint and alternatives to IMS are available. MS is recognized for its superior performance with regard to sensitivity and specificity, which translate to lower false negative and false positive rates. In almost all applications outside of security where accurate chemical analysis is needed, MS is usually the method of choice and is often referred to as the gold standard for chemical analysis. There are many review articles and proceedings that describe detection technologies for explosives. 1,2,3,4 Here we compare MS and IMS and identify the strengths and weaknesses of each method. - Mass spectrometry (MS): MS offers high levels of sensitivity and specificity compared to other technologies for chemical detection. Its traditional disadvantages have been high cost and complexity. Over the last few years, however, the economics have greatly improved and MS is now capable of routine and automated operation. Here we compare MS and IMS and identify the strengths and weaknesses of each method. - Ion mobility spectrometry (IMS): 5 MS-ETD Screening System IMS is similar in concept to MS except that the ions are dispersed by gas-phase viscosity and not by molecular weight. The main advantage of IMS is that it does not use a vacuum system, which greatly reduces the size, cost, and complexity

  7. Direct analysis of volatile organic compounds in foods by headspace extraction atmospheric pressure chemical ionisation mass spectrometry.

    Science.gov (United States)

    Perez-Hurtado, P; Palmer, E; Owen, T; Aldcroft, C; Allen, M H; Jones, J; Creaser, C S; Lindley, M R; Turner, M A; Reynolds, J C

    2017-11-30

    The rapid screening of volatile organic compounds (VOCs) by direct analysis has potential applications in the areas of food and flavour science. Currently, the technique of choice for VOC analysis is gas chromatography/mass spectrometry (GC/MS). However, the long chromatographic run times and elaborate sample preparation associated with this technique have led a movement towards direct analysis techniques, such as selected ion flow tube mass spectrometry (SIFT-MS), proton transfer reaction mass spectrometry (PTR-MS) and electronic noses. The work presented here describes the design and construction of a Venturi jet-pump-based modification for a compact mass spectrometer which enables the direct introduction of volatiles for qualitative and quantitative analysis. Volatile organic compounds were extracted from the headspace of heated vials into the atmospheric pressure chemical ionization source of a quadrupole mass spectrometer using a Venturi pump. Samples were analysed directly with no prior sample preparation. Principal component analysis (PCA) was used to differentiate between different classes of samples. The interface is shown to be able to routinely detect problem analytes such as fatty acids and biogenic amines without the requirement of a derivatisation step, and is shown to be able to discriminate between four different varieties of cheese with good intra and inter-day reproducibility using an unsupervised PCA model. Quantitative analysis is demonstrated using indole standards with limits of detection and quantification of 0.395 μg/mL and 1.316 μg/mL, respectively. The described methodology can routinely detect highly reactive analytes such as volatile fatty acids and diamines without the need for a derivatisation step or lengthy chromatographic separations. The capability of the system was demonstrated by discriminating between different varieties of cheese and monitoring the spoilage of meats. © 2017 The Authors. Rapid Communications in Mass

  8. Unraveling the chemical complexity of biomass burning VOC emissions via H3O+ ToF-CIMS (PTR-ToF): emissions characterization

    Science.gov (United States)

    Koss, A.; Sekimoto, K.; Gilman, J.; Selimovic, V.; Coggon, M.; Zarzana, K. J.; Yuan, B.; Lerner, B. M.; Brown, S. S.; Jimenez, J. L.; Krechmer, J. E.; Warneke, C.; Yokelson, R. J.; De Gouw, J. A.

    2017-12-01

    Gas-phase biomass burning emissions can include hundreds, if not thousands, of unique volatile and intermediate-volatility organic compounds. It is crucial to know the composition of these emissions to understand secondary organic aerosol formation, ozone formation, and human health effects resulting from fires. However, the composition can vary greatly with fuel type and fire combustion process. During the FIREX 2016 laboratory intensive at the US Forest Service Fire Sciences Laboratory in Missoula, Montana, high-resolution H3O+-CIMS (PTR-ToF) was deployed to characterize VOC emissions. More than 500 ion masses were consistently enhanced in each of 58 fires, which included a wide variety of fuel types representative of the western United States. Using a combination of extensive literature review, H3O+ and NO+ CIMS with GC preseparation, comparison to other instruments, and mass spectral context, we were able to identify the VOC contributors to 90% of the instrument signal. This provides unprecedented chemical detail in high time resolution. We present chemical characteristics of emissions, including OH reactivity and volatility, and highlight areas where better identification is needed.

  9. High-precision mass measurements in the realm of the deformed shell closure N=152

    Energy Technology Data Exchange (ETDEWEB)

    Eibach, Martin Andreas

    2013-12-04

    The nuclear masses reflect the sum of all interactions inside a nucleus. Their precise knowledge can be used to benchmark nuclear mass models and to gain nuclear structure information. Penning-trap mass spectrometers have proven their potential to obtain lowest uncertainties. Uniquely located at a nuclear reactor, the double Penning-trap mass spectrometer TRIGA-TRAP is dedicated to measurements in the neutron-rich region. For a gain in sensitivity a non-destructive detection system for single ion mass measurements was adopted. This includes the implementation of a narrow band-pass filter tuned to the heavy ion cyclotron frequency as well as a cryogenic low-noise amplifier. For on-line mass measurements, the laser ablation ion source was equipped with a newly developed miniature radiofrequency quadrupole trap in order to improve the extraction efficiency. A more economic use of the radioactive material enabled mass measurements using only 10{sup 15} atoms of target material. New mass measurements were performed within this work in the realm of the deformed shell closure N=152. Their implementation into the atomic-mass evaluation improved the uncertainty of more than 80 nuclides in the heavy mass region and simultaneously shifted the absolute mass of two α decay chains.

  10. Compact Two-step Laser Time-of-Flight Mass Spectrometer for in Situ Analyses of Aromatic Organics on Planetary Missions

    Science.gov (United States)

    Getty, Stephanie; Brickerhoff, William; Cornish, Timothy; Ecelberger, Scott; Floyd, Melissa

    2012-01-01

    RATIONALE A miniature time-of-flight mass spectrometer has been adapted to demonstrate two-step laser desorption-ionization (LOI) in a compact instrument package for enhanced organics detection. Two-step LDI decouples the desorption and ionization processes, relative to traditional laser ionization-desorption, in order to produce low-fragmentation conditions for complex organic analytes. Tuning UV ionization laser energy allowed control ofthe degree of fragmentation, which may enable better identification of constituent species. METHODS A reflectron time-of-flight mass spectrometer prototype measuring 20 cm in length was adapted to a two-laser configuration, with IR (1064 nm) desorption followed by UV (266 nm) postionization. A relatively low ion extraction voltage of 5 kV was applied at the sample inlet. Instrument capabilities and performance were demonstrated with analysis of a model polycyclic aromatic hydrocarbon, representing a class of compounds important to the fields of Earth and planetary science. RESULTS L2MS analysis of a model PAH standard, pyrene, has been demonstrated, including parent mass identification and the onset o(tunable fragmentation as a function of ionizing laser energy. Mass resolution m/llm = 380 at full width at half-maximum was achieved which is notable for gas-phase ionization of desorbed neutrals in a highly-compact mass analyzer. CONCLUSIONS Achieving two-step laser mass spectrometry (L2MS) in a highly-miniature instrument enables a powerful approach to the detection and characterization of aromatic organics in remote terrestrial and planetary applications. Tunable detection of parent and fragment ions with high mass resolution, diagnostic of molecular structure, is possible on such a compact L2MS instrument. Selectivity of L2MS against low-mass inorganic salt interferences is a key advantage when working with unprocessed, natural samples, and a mechanism for the observed selectivity is presented.

  11. Linear electric field time-of-flight ion mass spectrometer

    Science.gov (United States)

    Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  12. Mass spectrometry in nuclear technology - a review of application of thermal ionization mass spectrometry in fuel reprocessing plants. PD-7-1

    International Nuclear Information System (INIS)

    Dakshinamoorthy, A.

    2007-01-01

    Mass spectrometry finds the widespread application in nuclear science and technology due to the fact that it can be employed for isotope composition measurements of different elements of interest and also concentration measurements of these elements using isotope dilution techniques. Thermal ionization mass spectrometer (TIMS), Inductively coupled plasma mass spectrometer (ICP-MS) and gas chromatography mass spectrometer (GC-MS) are the different types of mass spectrometers used in nuclear industry for the analyses of isotope composition of special nuclear material, trace impurities in nuclear fuels and components and characterization of various solvents respectively. Among them, TIMS plays a vital role in the nuclear fuel cycle in determining precisely the isotope composition of uranium, plutonium, D/H ratio in heavy water etc. TIMS is an indispensable analytical tool for nuclear material accounting at the input stage of a reprocessing plant by carrying out precise and accurate concentration measurement of plutonium and uranium by isotope dilution mass spectrometry (IDMS). It is the only accepted measurement technique for the purpose because of its high precision, better sensitivity and no quantitative separation is needed. The isotope abundance measurements of uranium and plutonium at this point are also useful for burn-up studies and isotope correlations. Mass spectrometric analysis of uranium and plutonium is also required for nuclear data measurements and calibrating other chemical methods

  13. The high-resolution time-of-flight spectrometer TOFTOF

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Tobias [Technische Universitaet Muenchen, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II and Physik Department E13, Lichtenbergstr. 1, 85747 Garching (Germany)], E-mail: Tobias.Unruh@frm2.tum.de; Neuhaus, Juergen; Petry, Winfried [Technische Universitaet Muenchen, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II and Physik Department E13, Lichtenbergstr. 1, 85747 Garching (Germany)

    2007-10-11

    The TOFTOF spectrometer is a multi-disc chopper time-of-flight spectrometer for cold neutrons at the research neutron source Heinz Maier-Leibnitz (FRM II). After five reactor cycles of routine operation the characteristics of the instrument are reported in this article. The spectrometer features an excellent signal to background ratio due to its remote position in the neutron guide hall, an elaborated shielding concept and an s-shaped curved primary neutron guide which acts i.a. as a neutron velocity filter. The spectrometer is fed with neutrons from the undermoderated cold neutron source of the FRM II leading to a total neutron flux of {approx}10{sup 10}n/cm{sup 2}/s in the continuous white beam at the sample position distributed over a continuous and particularly broad wavelength spectrum. A high energy resolution is achieved by the use of high speed chopper discs made of carbon-fiber-reinforced plastic. In the combination of intensity, resolution and signal to background ratio the spectrometer offers new scientific prospects in the fields of inelastic and quasielastic neutron scattering.

  14. The high-resolution time-of-flight spectrometer TOFTOF

    Science.gov (United States)

    Unruh, Tobias; Neuhaus, Jürgen; Petry, Winfried

    2007-10-01

    The TOFTOF spectrometer is a multi-disc chopper time-of-flight spectrometer for cold neutrons at the research neutron source Heinz Maier-Leibnitz (FRM II). After five reactor cycles of routine operation the characteristics of the instrument are reported in this article. The spectrometer features an excellent signal to background ratio due to its remote position in the neutron guide hall, an elaborated shielding concept and an s-shaped curved primary neutron guide which acts i.a. as a neutron velocity filter. The spectrometer is fed with neutrons from the undermoderated cold neutron source of the FRM II leading to a total neutron flux of ˜1010n/cm2/s in the continuous white beam at the sample position distributed over a continuous and particularly broad wavelength spectrum. A high energy resolution is achieved by the use of high speed chopper discs made of carbon-fiber-reinforced plastic. In the combination of intensity, resolution and signal to background ratio the spectrometer offers new scientific prospects in the fields of inelastic and quasielastic neutron scattering.

  15. Physical design of time-of-flight mass spectrometer in energetic cluster impact deposition apparatus

    International Nuclear Information System (INIS)

    Yu Guoqing; Shi Ying; Chen Jingsheng; Zhu Dezhang; Pan Haochang; Xu Hongjie

    1999-01-01

    The principle and physical design of the time-of-flight mass spectrometer equipped in the energetic cluster impact deposition apparatus are introduced. Some problems existed in experiments and their solutions are also discussed

  16. Hyphenation of two simultaneously employed soft photo ionization mass spectrometers with thermal analysis of biomass and biochar

    Energy Technology Data Exchange (ETDEWEB)

    Fendt, Alois [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group for Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), IngolstaedterLandstr. 1, 85764 Neuherberg (Germany); Analytical Chemistry, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Geissler, Robert [Joint Mass Spectrometry Centre, Cooperation Group for Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), IngolstaedterLandstr. 1, 85764 Neuherberg (Germany); Analytical Chemistry, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Streibel, Thorsten, E-mail: thorsten.streibel@uni-rostock.de [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group for Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), IngolstaedterLandstr. 1, 85764 Neuherberg (Germany); and others

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer First simultaneous hyphenation of two time-of-flight mass spectrometers with different soft photo ionization techniques (SPI and REMPI) to Thermal Analysis using a newly developed prototype for EGA is presented. Black-Right-Pointing-Pointer Resonance enhanced multi-photon ionization (REMPI) enables sensitive and selective analysis of aromatic species. Black-Right-Pointing-Pointer Single photon ionization (SPI) using VUV light supplied by an innovative electron-beam pumped excimer light source (EBEL) comprehensively ionizes (nearly) all organic molecules. Black-Right-Pointing-Pointer The resulting mass spectra show distinct patterns for the evolved gases of the miscellaneous biomasses and chars thereof. Black-Right-Pointing-Pointer The potential for detailed kinetic studies is apparent on account of the complex pyrolysis gas compositions. - Abstract: Evolved gas analysis (EGA) is a powerful and complementary tool for Thermal Analysis. In this context, two time-of-flight mass spectrometers with different soft photo-ionization techniques are simultaneously hyphenated to a thermo balance and applied in form of a newly developed prototype for EGA of pyrolysis gases from biomass and biochar. Resonance enhanced multi-photon ionization (REMPI) is applied for selective analysis of aromatic species. Furthermore, single photon ionization (SPI) using VUV light supplied by an electron-beam pumped excimer light source (EBEL) was used to comprehensively ionize (nearly) all organic molecules. The soft ionization capability of photo-ionization techniques allows direct and on-line analysis of the evolved pyrolysis gases. Characteristic mass spectra with specific patterns could be obtained for the miscellaneous biomass feeds used. Temperature profiles of the biochars reveal a desorption step, followed by pyrolysis as observed for the biomasses. Furthermore, the potential for kinetic studies is apparent for this instrumental setup.

  17. High intensity TOF spectrometer for cold neutrons

    International Nuclear Information System (INIS)

    Maayouf, R.M.; Abd El-Kawy, A.; Habib, N.; Adib, M.; Hamouda, I.

    1984-01-01

    This work presents a neutron time-of-flight (TOF) spectrometer developed specially for total neutron cross-section measurements at neutron energies below 5 MeV and sample's temperature varying from the liquid nitrogen one and up to 500 0 K. The spectrometer is equipped by remote control unit, designed especially, in order to move the sample in and out of the beam during the experimental measurements. The spectrometer has proved to be useful for transmission measurements at neutron energies below 5 MeV. It has a reasonable energy resolution (4.4%) and high effect to background ratio (11.1) at 5 MeV

  18. HOLMES. The electron capture decay of 163Ho to measure the electron neutrino mass with sub-eV sensitivity

    International Nuclear Information System (INIS)

    Alpert, B.; Balata, M.; Bennett, D.; Biasotti, M.; Boragno, C.; Brofferio, C.; Ceriale, V.; Corsini, D.; Day, P.K.; De Gerone, M.; Dressler, R.; Faverzani, M.; Ferri, E.; Fowler, J.; Gatti, F.; Giachero, A.; Hays-Wehle, J.; Heinitz, S.; Hilton, G.; Koester, U.; Lusignoli, M.; Maino, M.; Mates, J.; Nisi, S.; Nizzolo, R.; Nucciotti, A.; Pessina, G.; Pizzigoni, G.; Puiu, A.; Ragazzi, S.; Reintsema, C.; Gomes, M.R.; Schmidt, D.; Schumann, D.; Sisti, M.; Swetz, D.; Terranova, F.; Ullom, J.

    2015-01-01

    The European Research Council has recently funded HOLMES, a new experiment to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the decay of 163 Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress allowed to design a sensitive experiment. HOLMES will deploy a large array of low temperature microcalorimeters with implanted 163 Ho nuclei. The resulting mass sensitivity will be as low as 0.4 eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1 eV. We outline here the project with its technical challenges and perspectives. (orig.)

  19. Characterization of forsythoside A metabolites in rats by a combination of UHPLC-LTQ-Orbitrap mass spectrometer with multiple data processing techniques.

    Science.gov (United States)

    Wang, Fei; Cao, Guang-Shang; Li, Yun; Xu, Lu-Lu; Wang, Zhi-Bin; Liu, Ying; Lu, Jian-Qiu; Zhang, Jia-Yu

    2018-05-01

    Forsythoside A (FTA), the main active constituent isolated from Fructus Forsythiae, has various biological functions including anti-oxidant, anti-viral and anti-microbial activities. However, while research on FTA has been mainly focused on the treatment of diseases on a material basis, FTA metabolites in vivo have not been comprehensively evaluated. Here, a rapid and sensitive method using a UHPLC-LTQ-Orbitrap mass spectrometer with multiple data processing techniques including high-resolution extracted ion chromatograms, multiple mass defect filters and diagnostic product ions was developed for the screening and identification of FTA metabolites in rats. As the result, a total of 43 metabolites were identified in biological samples including 42 metabolites in urine, 22 metabolites in plasma and 15 metabolites in feces. These results demonstrated that FTA underwent a series of in vivo metabolic reactions including methylation, dimethylation, sulfation, glucuronidation, diglucuronidation, cysteine conjugation and their composite reactions. The research enhanced our understanding of FTA metabolism and built a foundation for further toxicity and safety studies. Copyright © 2017 John Wiley & Sons, Ltd.

  20. DOTS: A High Resolution Orbitrap Mass Spectrometer for In Situ Analysis of the surface samples of Airless Planetary Bodies

    Science.gov (United States)

    Briois, Christelle; Thissen, Roland; Engrand, Cécile; Altwegg, Kathrin; Bouabdellah, Abdel; Boukrara, Amirouche; Carrasco, Nathalie; Chapuis, Claude; Cottin, Hervé; Grün, Eberhard; Grand, Noel; Henkel, Hartmut; Kempf, Sascha; Lebreton, Jean-Pierre; Makarov, Alexander A.; Postber, Frank; Srama, Ralf; Schmidt, Jürgen; Szopa, Cyril; Thirkell, Laurent; Tobie, Gabriel; Wurz, Peter; Zolotov, Mikhail Yu

    2013-04-01

    The dust detectors on board the Ulysses and Galileo spacecraft have shown that the Galilean satellites are surrounded by clouds of sub-micrometer size grains generated by impacts of interplanetary (micro-) meteoroids [1, 2]. In situ chemical analysis from orbit of these ballistic grains ejected from the surface of airless bodies provides a unique opportunity to remotely access the chemical composition of the Jovian moons' surface and subsurface. For Saturn, in situ identification by the Cassini Dust Analyzer (CDA) of sodium in icy grains in the E-Ring and in Enceladus plumes have proven a subsurface liquid water reservoir inside Enceladus [3, 4]. Noticeably, this was not accessible to other in situ or traditional remote sensing techniques. In situ measurements, either during a flyby or from orbit, of grains ejected from the surface, or emerging from the subsurface, of an airless body is a powerful tool to remotely study its surface composition and the nature of its geological activity. Crucial constraints on habitability can thus be determined. Our consortium of laboratories, in collaboration with Thermo Fischer Scientific [5, 6], is currently developing a high mass resolution Fourier Transform (FT) Orbitrap-based mass spectrometer optimized for in situ analysis of dust and icy grains in the environment of Solar System airless bodies. This new generation of dust mass spectrometer was studied in the framework of the Europa Jupiter System Mission (EJSM) instrument study in 2010-2012 and proposed in response to ESA's AO for the JUpiter ICy moons Explorer (JUICE) mission [7]. This mass analyser can provide very high mass resolution analysis (M/ΔM reaching 50 000 at m/z 50 Da). DOTS would allow identification of elemental and molecular species with excellent accuracy, in the 20-1000 Da mass range. In the context of the JUICE mission, DOTS would provide decisive information on the surface composition and on the putative liquid oceans in the subsurface of Ganymede

  1. Design of the multi-reflection time-of-flight mass spectrometer for the RAON facility

    International Nuclear Information System (INIS)

    Yoon, J.W.; Park, Y.H.; Park, S.J.; Kim, G.D.; Kim, Y.K.

    2014-01-01

    A multi-reflection time-of-flight mass spectrometer (MR-TOF-MS) has been proposed for high precision mass measurements on the future Korean heavy ion accelerator called RAON. MR-TOF-MS will allow us to reach very high mass resolving power (> 10 5 ) with extremely short measurement times (several ms) in a compact device. The MR-TOF-MS is composed of two electrostatic ion mirrors in combination with einzel lenses. The principle is that the injected ions travel for hundreds of revolutions inside MR-TOF-MS and ions with different masses are temporally separated. When temporal separation becomes larger than the ion bunch width, ions are extracted from the MR-TOF-MS by switching off the mirror voltages, and then arrive at a detector plane located at time focus, where an MCP detector for the mass measurement or an ion gate for the isobar separation is deployed. In this paper, simulation results for the MR-TOF-MS design using SIMION code are presented. Temporal broadenings, caused by the kinetic energy spread and the transverse emittance, were minimized by optimization of the electrode potentials, and it was demonstrated that the mass resolving power of 10 5 is achievable for the condition of an energy spread of ±30 eV and an emittance of 0.75 π*mm*mrad

  2. Characterisation of the volatile profiles of infant formulas by proton transfer reaction-mass spectrometry and gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Ruth, van S.M.; Floris, V.; Fayoux, S.

    2006-01-01

    The volatile profiles of 13 infant formulas were evaluated by proton transfer reaction-mass spectrometry (PTR-MS) and gas chromatography¿mass spectrometry (GC¿MS). The infant formulas varied in brand (Aptamil, Cow & Gate, SMA), type (for different infant target groups) and physical form

  3. Structural Characterisation of Acetogenins from Annona muricata by Supercritical Fluid Chromatography Coupled to High-Resolution Tandem Mass Spectrometry.

    Science.gov (United States)

    Laboureur, Laurent; Bonneau, Natacha; Champy, Pierre; Brunelle, Alain; Touboul, David

    2017-11-01

    Acetogenins are plant polyketides known to be cytotoxic and proposed as antitumor candidates. They are also suspected to be alimentary neurotoxins. Their occurrence as complex mixtures renders their dereplication and structural identification difficult using liquid chromatography coupled to tandem mass spectrometry and efforts are required to improve the methodology. To develop a supercritical fluid chromatography (SFC) high-resolution tandem mass spectrometry method, involving lithium post-column cationisation, for the structural characterisation of Annonaceous acetogenins in crude extracts. The seeds of Annona muricata L. were extracted with methanol. Supercritical fluid chromatography of the extract, using a 2-ethylpyridine stationary phase column, was monitored using a high-resolution quadrupole time-of-flight mass spectrometer. Lithium iodide was added post-column in the make-up solvent. For comparison, the same extract was analysed using high-pressure liquid chromatography coupled to the same mass spectrometer, with a column based on solid core particles. Sensitivity was similar for both HPLC and SFC approaches. Retention behaviour and fragmentation pathways of three different isomer groups are described. A previously unknown group of acetogenins was also evidenced for the first time. The use of SFC-MS/MS allows the reduction of the time of analysis, of environmental impact and an increase in the chromatographic resolution, compared to liquid chromatography. This new methodology enlightened a new group of acetogenins, isomers of montanacin-D. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Ultra High-Mass Resolution Paper Spray by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Kevin D. Quinn

    2012-01-01

    Full Text Available Paper Spray Ionization is an atmospheric pressure ionization technique that utilizes an offline electro-osmotic flow to generate ions off a paper medium. This technique can be performed on a Bruker SolariX Fourier transform ion cyclotron resonance mass spectrometer by modifying the existing nanospray source. High-resolution paper spray spectra were obtained for both organic and biological samples to demonstrate the benefit of linking the technique with a high-resolution mass analyzer. Error values in the range 0.23 to 2.14 ppm were obtained for calf lung surfactant extract with broadband mass resolving power (m/Δm50% above 60,000 utilizing an external calibration standard.

  5. High sensitivity detection of desorbed biomolecules by photoionization with tunable VUV

    International Nuclear Information System (INIS)

    Moore, J.F.; Calaway, W.F.; Veryovkin, I.V.; Pellin, M.J.; Lewellen, J.W.; Li, Y.; Milton, S.V.; King, B.V.

    2004-01-01

    Full text: The spectral region from 7 to 11eV has two attributes that make it attractive for biomolecule photoionization: 1. high photoionization cross sections, leading to high detection efficiency, and 2. overlap with nearly all first ionization energies of biomolecules, allowing possible control over fragmentation by accessing different final states via tuning. The lack of available tunable lasers in this energy range has generally hindered exploitation of these features thus far. A free-electron laser in operation at Argonne National Laboratory provides high pulse energy, widely tunable VUV pulses of 300 fs duration. Coupled with a novel time-of-flight mass spectrometer, this laser is able to photoionize and detect biomolecules, including peptides and nucleosides. Either laser desorption or primary ion beams are used to desorb sample material, followed by photoionization with a VUV laser. The instrument uses novel ion optics to extract photoions from a large volume while maintaining high mass resolution. This approach is capable of yielding dramatically improved detection limits over more conventional methods such as MALDI and SIMS. In the case of the common peptide substance P, for example, a substantial improvement over the MALDI signal was observed using VUV photoionization with very little observed fragmentation of the molecule. Nucleosides and cisplatin were also measured with typically order of magnitude improvements in signal. These and other examples show clearly the benefits that can be obtained in high sensitivity mass spectrometry of biomolecules with the increasing availability of VUV laser sources

  6. Compact high-resolution echelle-AOTF NIR spectrometer for atmospheric measurements

    Science.gov (United States)

    Korablev, Oleg I.; Bertaux, Jean-Loup; Vinogradov, Imant I.; Kalinnikov, Yurii K.; Nevejans, D.; Neefs, E.; Le Barbu, T.; Durry, G.

    2017-11-01

    A new concept of a high-resolution near-IR spectrometer consisting of an echelle grating combined with an acousto-optic tunable filter (AOTF) for separation of diffraction orders, is developed for space-borne studies of planetary atmospheres. A compact design with no moving parts within the mass budget of 3-5 kg allows to reach the resolving power λ/Δλ of 20000-30000. Only a small piece of spectrum in high diffraction orders can be measured at a time, but thanks to flexibility of the AOTF electrical tuning, such pieces of spectrum can be measured randomly and rapidly within the spectral range. This development can be used for accurate measurements of important atmospheric gases, such as CO2 in terrestrial atmosphere, isotopic ratios and minor gases. A spectrometer, based on this principle, SOIR (Solar Occultation InfraRed) is being built for Venus Express (2005) ESA mission. Instruments based on this principle have high potential for the studies of the Earth, in particular for measurements of isotopes of water in the lower atmosphere, either in solar occultation profiling (tangent altitude <10 km), or observing solar glint for integral quantities of the components. Small size of hardware makes them ideal for micro-satellites, which are now agile enough to provide necessary pointing for solar occultation or glint observations. Also, the atmosphere of Mars has never been observed at local scales with such a high spectral resolution. A laboratory prototype consisting of 275-mm echelle spectrometer with Hamamatsu InGaAs 512-pixel linear array and the AOTF has demonstrated λ/Δλ≍30000 in the spectral range of 1-1.7 μm. The next set up, covering the spectral ranges of 1-1.7 μm and 2.3-4.3 μm, and the Venus Express SOIR are briefly discussed.

  7. Effect of the size of experimental channels of the lead slowing-down spectrometer SVZ-100 (Institute for Nuclear Research, Moscow) on the moderation constant

    Energy Technology Data Exchange (ETDEWEB)

    Latysheva, L. N.; Bergman, A. A.; Sobolevsky, N. M., E-mail: sobolevs@inr.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Ilic, R. D. [Vinca Institute of Nuclear Sciences (Serbia)

    2013-04-15

    Lead slowing-down (LSD) spectrometers have a low energy resolution (about 30%), but their luminosity is 10{sup 3} to 10{sup 4} times higher than that of time-of-flight (TOF) spectrometers. A high luminosity of LSD spectrometers makes it possible to use them to measure neutron cross section for samples of mass about several micrograms. These features specify a niche for the application of LSD spectrometers in measuring neutron cross sections for elements hardly available in macroscopic amounts-in particular, for actinides. A mathematical simulation of the parameters of SVZ-100 LSD spectrometer of the Institute for Nuclear Research (INR, Moscow) is performed in the present study on the basis of the MCNPX code. It is found that the moderation constant, which is the main parameter of LSD spectrometers, is highly sensitive to the size and shape of detecting volumes in calculations and, hence, to the real size of experimental channels of the LSD spectrometer.

  8. Effect of the size of experimental channels of the lead slowing-down spectrometer SVZ-100 (Institute for Nuclear Research, Moscow) on the moderation constant

    International Nuclear Information System (INIS)

    Latysheva, L. N.; Bergman, A. A.; Sobolevsky, N. M.; Ilić, R. D.

    2013-01-01

    Lead slowing-down (LSD) spectrometers have a low energy resolution (about 30%), but their luminosity is 10 3 to 10 4 times higher than that of time-of-flight (TOF) spectrometers. A high luminosity of LSD spectrometers makes it possible to use them to measure neutron cross section for samples of mass about several micrograms. These features specify a niche for the application of LSD spectrometers in measuring neutron cross sections for elements hardly available in macroscopic amounts—in particular, for actinides. A mathematical simulation of the parameters of SVZ-100 LSD spectrometer of the Institute for Nuclear Research (INR, Moscow) is performed in the present study on the basis of the MCNPX code. It is found that the moderation constant, which is the main parameter of LSD spectrometers, is highly sensitive to the size and shape of detecting volumes in calculations and, hence, to the real size of experimental channels of the LSD spectrometer.

  9. Performance and application of a fourfold monopole mass spectrometer

    International Nuclear Information System (INIS)

    Richards, J.A.; Huey, R.M.

    1978-01-01

    Some preliminary tests with an experimental fourfold monopole mass spectrometer described, illustrating that the device performs acceptably (at the low resolutions used) despite the fact that the field-forming surfaces of the driven electrodes are only one quadrant of a cylinder. Coupling between adjacent channels is shown not to be a problem so that applications requiring simultaneous measurements using two or more of the monopole channels can be entertained. Owing to its parellel structure the instrument is suggested as being suited particularly to isotope ratio measurements with precisions which could be significantly better than would be possible with a quadrupole device. (Auth.)

  10. Design of a compact permanent magnet Cyclotron Mass Spectrometer for the detection and measurement of trace isotopes

    International Nuclear Information System (INIS)

    Young, A.T.; Bertsche, K.J.; Clark, D.J.; Halbach, K.; Kunkel, W.B.; Leung, K.N.; Li, C.Y.

    1992-07-01

    A technique for the detection of trace amounts of rare isotopes, Cyclotron mass Spectrometry (CMS), is described. This technique uses the relationships between particle mass, charge, magnetic field strength and cyclotron orbital frequency to provide high mass resolution. The instrument also has high sensitivity and is capable of measuring isotopes with abundances of - 12 . Improvements now being implemented will lead to further increases in the sensitivity and enhance operating parameters such as cost, portability, and sample throughput

  11. Noise considerations in millimeter-wave spectrometers

    International Nuclear Information System (INIS)

    Zoellner, W.D.; Kolbe, W.F.; Leskovar, B.

    1978-12-01

    An improved version of a microwave spectrometer operating in the vicinity of 70 GHz is described. The spectrometer, which incorporates a Fabry-Perot resonator and superheterodyne detection for high sensitivity is designed for the detection of gaseous pollutants and other atmospheric constituents. The instrument is capable of detecting polar molecules with absorption coefficients as small as 2 x 10 -9 cm -1 . For sulphur dioxide diluted in air, this sensitivity corresponds to a detection limit of 1.2 ppm without preconcentration and with a time constant of 1 second. Measurements and analysis of the noise contributions limiting the sentivity are presented

  12. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    Science.gov (United States)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  13. HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays

    International Nuclear Information System (INIS)

    Burnstein, R.A.; Chakravorty, A.; Chan, A.; Chen, Y.C.; Choong, W.-S.; Clark, K.; Dukes, E.C.; Durandet, C.; Felix, J.; Fuzesy, R.; Gidal, G.; Gu, P.; Gustafson, H.R.; Ho, C.; Holmstrom, T.; Huang, M.; James, C.; Jenkins, C.M.; Jones, T.D.; Kaplan, D.M.; Lederman, L.M.; Leros, N.; Longo, M.J.; Lopez, F.; Lu, L.C.; Luebke, W.; Luk, K.-B.; Nelson, K.S.; Park, H.K.; Perroud, J.-P.; Rajaram, D.; Rubin, H.A.; Teng, P.K.; Turko, B.; Volk, J.; White, C.G.; White, S.L.; Zyla, P.

    2005-01-01

    The HyperCP experiment (Fermilab E871) was designed to search for rare phenomena in the decays of charged strange particles, in particular CP violation in Ξ and Λ hyperon decays with a sensitivity of 10 -4 . Intense charged secondary beams were produced by 800GeV/c protons and momentum selected by a magnetic channel. Decay products were detected in a large-acceptance, high-rate magnetic spectrometer using multiwire proportional chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection system. Nearly identical acceptances and efficiencies for hyperons and antihyperons decaying within an evacuated volume were achieved by reversing the polarities of the channel and spectrometer magnets. A high-rate data-acquisition system enabled 231 billion events to be recorded in 12 months of data-taking

  14. Diagnostics aid for mass spectrometer trouble-shooting

    International Nuclear Information System (INIS)

    Filby, E.E.; Rankin, R.A.; Webb, G.W.

    1987-01-01

    The ''MS Expert'' system provides problem diagnostics for instruments used in the Mass Spectrometry Laboratory (MSL). The most critical results generated on these mass spectrometers are the uranium concentration and isotopic content data used for process control and materials accountability at the Idaho Chemical Processing Plant. The two purposes of the system are: (1) to minimize instrument downtime and thereby provide the best possible support to the Plant, and (2) to improve long-term data quality. This system combines the knowledge of several experts on mass spectrometry to provide a diagnostic tool, and can make these skills avilable on a more timely basis. It integrates code written in the Pascal language with a knowledge base entered into a commercial expert system ''shell.'' The user performs some preliminary status checks, and then selects from among several broad diagnostic categories. These initial steps provide input to the rule base. The overall analysis provides the user with a set of possible solutions to the observed problems, graded as to their probabilities. Besides the trouble-shooting benefits expected from this system, it will also provide structures diagnostic training for lab personnel. In addition, development of the system knowledge base has already produced a better understanding of instrument behavior. Two key findings are that a good user interface is necessary for full acceptance of the tool, and a development system should include standard programming capabilities as well as the expert system shell. 22 refs., 5 figs

  15. Diagnostics aid for mass spectrometer trouble-shooting

    International Nuclear Information System (INIS)

    Filby, E.E.; Rankin, R.A.; Webb, G.W.

    1987-01-01

    The MS Expert system provides problem diagnostics for instruments used in the Mass Spectrometry Laboratory (MSL). The most critical results generated on these mass spectrometers are the uranium concentration and isotopic content data used for process control and materials accountability at the Idaho General Processing Plant. The two purposes of the system are: (1) to minimize instrument downtime and thereby provide the best possible support to the Plant, and (2) to improve long-term data quality. This system combines the knowledge of several experts on mass spectrometry to provide a diagnostic tool, and can make these skills available on a more timely basis. It integrates code written in the Pascal language with a knowledge base entered into a commercial expert system shell. The user performs some preliminary status checks, and then selects from among several broad diagnostic categories. These initial steps provide input to the rule base. The overall analysis provides the user with a set of possible solutions to the observed problems, graded as to their probabilities. Besides the trouble-shooting benefits expected from this system, it also provides structured diagnostic training for lab personnel. In addition, development of the system knowledge base has already produced a better understanding of instrument behavior. Two key findings are that a good user interface is necessary for full acceptance of the tool, and, a development system should include standard programming capabilities as well as the expert system shell

  16. HOLMES. The electron capture decay of {sup 163}Ho to measure the electron neutrino mass with sub-eV sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Alpert, B. [National Institute of Standards and Technology (NIST), Boulder, CO (United States); Balata, M. [INFN, Laboratori Nazionali del Gran Sasso (LNGS), Assergi, AQ (Italy); Bennett, D. [National Institute of Standards and Technology (NIST), Boulder, CO (United States); Biasotti, M. [Universita di Genova, Dipartimento di Fisica, Genoa (Italy); Sezione di Genova, Istituto Nazionale di Fisica Nucleare (INFN), Genoa (Italy); Boragno, C. [Universita di Genova, Dipartimento di Fisica, Genoa (Italy); Sezione di Genova, Istituto Nazionale di Fisica Nucleare (INFN), Genoa (Italy); Brofferio, C. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); Sezione di Milano-Bicocca, Istituto Nazionale di Fisica Nucleare (INFN), Milan (Italy); Ceriale, V. [Universita di Genova, Dipartimento di Fisica, Genoa (Italy); Sezione di Genova, Istituto Nazionale di Fisica Nucleare (INFN), Genoa (Italy); Corsini, D. [Universita di Genova, Dipartimento di Fisica, Genoa (Italy); Sezione di Genova, Istituto Nazionale di Fisica Nucleare (INFN), Genoa (Italy); Day, P.K. [California Institute of Technology (CALTECH), Jet Propulsion Laboratory, Pasadena, CA (United States); De Gerone, M. [Universita di Genova, Dipartimento di Fisica, Genoa (Italy); Sezione di Genova, Istituto Nazionale di Fisica Nucleare (INFN), Genoa (Italy); Dressler, R. [Paul Scherrer Institut (PSI), Villigen (Switzerland); Faverzani, M. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); Sezione di Milano-Bicocca, Istituto Nazionale di Fisica Nucleare (INFN), Milan (Italy); Ferri, E. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); Sezione di Milano-Bicocca, Istituto Nazionale di Fisica Nucleare (INFN), Milan (Italy); Fowler, J. [National Institute of Standards and Technology (NIST), Boulder, CO (United States); Gatti, F. [Universita di Genova, Dipartimento di Fisica, Genoa (Italy); Sezione di Genova, Istituto Nazionale di Fisica Nucleare (INFN), Genoa (Italy); Giachero, A. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); Sezione di Milano-Bicocca, Istituto Nazionale di Fisica Nucleare (INFN), Milan (Italy); Hays-Wehle, J. [National Institute of Standards and Technology (NIST), Boulder, CO (United States); Heinitz, S. [Paul Scherrer Institut (PSI), Villigen (CH); Hilton, G. [National Institute of Standards and Technology (NIST), Boulder, CO (US); Koester, U. [Institut Laue-Langevin (ILL), Grenoble (FR); Lusignoli, M. [Sezione di Roma 1, Istituto Nazionale di Fisica Nucleare (INFN), Rome (IT); Maino, M. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (IT); Sezione di Milano-Bicocca, Istituto Nazionale di Fisica Nucleare (INFN), Milan (IT); Mates, J. [National Institute of Standards and Technology (NIST), Boulder, CO (US); Nisi, S. [INFN, Laboratori Nazionali del Gran Sasso (LNGS), Assergi, AQ (IT); Nizzolo, R. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (IT); Sezione di Milano-Bicocca, Istituto Nazionale di Fisica Nucleare (INFN), Milan (IT); Nucciotti, A. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (IT); Sezione di Milano-Bicocca, Istituto Nazionale di Fisica Nucleare (INFN), Milan (IT); Pessina, G. [Sezione di Milano-Bicocca, Istituto Nazionale di Fisica Nucleare (INFN), Milan (IT); Pizzigoni, G. [Universita di Genova, Dipartimento di Fisica, Genoa (IT); Sezione di Genova, Istituto Nazionale di Fisica Nucleare (INFN), Genoa (IT); Puiu, A. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (IT); Sezione di Milano-Bicocca, Istituto Nazionale di Fisica Nucleare (INFN), Milan (IT); Ragazzi, S. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (IT); Sezione di Milano-Bicocca, Istituto Nazionale di Fisica Nucleare (INFN), Milan (IT); Reintsema, C. [National Institute of Standards and Technology (NIST), Boulder, CO (US); Gomes, M.R. [University of Lisbon, Multidisciplinary Centre for Astrophysics (CENTRA-IST), Lisbon (PT); Schmidt, D. [National Institute of Standards and Technology (NIST), Boulder, CO (US); Schumann, D. [Paul Scherrer Institut (PSI), Villigen (CH); Sisti, M. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (IT); Sezione di Milano-Bicocca, Istituto Nazionale di Fisica Nucleare (INFN), Milan (IT); Swetz, D. [National Institute of Standards and Technology (NIST), Boulder, CO (US); Terranova, F. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (IT); Sezione di Milano-Bicocca, Istituto Nazionale di Fisica Nucleare (INFN), Milan (IT); Ullom, J. [National Institute of Standards and Technology (NIST), Boulder, CO (US)

    2015-03-01

    The European Research Council has recently funded HOLMES, a new experiment to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the decay of {sup 163}Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress allowed to design a sensitive experiment. HOLMES will deploy a large array of low temperature microcalorimeters with implanted {sup 163}Ho nuclei. The resulting mass sensitivity will be as low as 0.4 eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1 eV. We outline here the project with its technical challenges and perspectives. (orig.)

  17. STRAPS v1.0: evaluating a methodology for predicting electron impact ionisation mass spectra for the aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2017-06-01

    Full Text Available Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA formation is thought to be hampered by the complexity of the system. While there are fundamental models now available that can simulate the tens of thousands of reactions thought to take place, validation against experiments is highly challenging. Techniques capable of identifying individual molecules such as chromatography are generally only capable of quantifying a subset of the material present, making it unsuitable for a carbon budget analysis. Integrative analytical methods such as the Aerosol Mass Spectrometer (AMS are capable of quantifying all mass, but because of their inability to isolate individual molecules, comparisons have been limited to simple data products such as total organic mass and the O : C ratio. More detailed comparisons could be made if more of the mass spectral information could be used, but because a discrete inversion of AMS data is not possible, this activity requires a system of predicting mass spectra based on molecular composition. In this proof-of-concept study, the ability to train supervised methods to predict electron impact ionisation (EI mass spectra for the AMS is evaluated. Supervised Training Regression for the Arbitrary Prediction of Spectra (STRAPS is not built from first principles. A methodology is constructed whereby the presence of specific mass-to-charge ratio (m∕z channels is fitted as a function of molecular structure before the relative peak height for each channel is similarly fitted using a range of regression methods. The widely used AMS mass spectral database is used as a basis for this, using unit mass resolution spectra of laboratory standards. Key to the fitting process is choice of structural information, or molecular fingerprint. Our approach relies on using supervised methods to automatically optimise the relationship between spectral characteristics and these molecular

  18. STRAPS v1.0: evaluating a methodology for predicting electron impact ionisation mass spectra for the aerosol mass spectrometer

    Science.gov (United States)

    Topping, David O.; Allan, James; Rami Alfarra, M.; Aumont, Bernard

    2017-06-01

    Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA) formation is thought to be hampered by the complexity of the system. While there are fundamental models now available that can simulate the tens of thousands of reactions thought to take place, validation against experiments is highly challenging. Techniques capable of identifying individual molecules such as chromatography are generally only capable of quantifying a subset of the material present, making it unsuitable for a carbon budget analysis. Integrative analytical methods such as the Aerosol Mass Spectrometer (AMS) are capable of quantifying all mass, but because of their inability to isolate individual molecules, comparisons have been limited to simple data products such as total organic mass and the O : C ratio. More detailed comparisons could be made if more of the mass spectral information could be used, but because a discrete inversion of AMS data is not possible, this activity requires a system of predicting mass spectra based on molecular composition. In this proof-of-concept study, the ability to train supervised methods to predict electron impact ionisation (EI) mass spectra for the AMS is evaluated. Supervised Training Regression for the Arbitrary Prediction of Spectra (STRAPS) is not built from first principles. A methodology is constructed whereby the presence of specific mass-to-charge ratio (m/z) channels is fitted as a function of molecular structure before the relative peak height for each channel is similarly fitted using a range of regression methods. The widely used AMS mass spectral database is used as a basis for this, using unit mass resolution spectra of laboratory standards. Key to the fitting process is choice of structural information, or molecular fingerprint. Our approach relies on using supervised methods to automatically optimise the relationship between spectral characteristics and these molecular fingerprints. Therefore

  19. Comparison of VOC measurements in Nashville, TN, during the southern oxidants study (SOS) 1999

    International Nuclear Information System (INIS)

    Grabmer, W.; Wisthaler, A.; Hansel, A.; Stroud, C.; Roberts, J.M.; Fehsenfeld, F.C.

    2002-01-01

    Full text: During the Southern Oxidants Study (SOS) 1999 Nashville campaign ambient air samples were analyzed at Cornelia Fort Airport (CFA) for organic compounds by two independent methods: 1) a gas chromatographic systems operated by NOAAs Aeronomy Laboratory, which performed immediate analysis of collected samples and 2) an in situ proton transfer reaction mass spectrometer (PTR-MS) system operated by the Univ. of Innsbruck. The sample protocols were quite different for the different methods. The GC system sequentially collected and analyzed air samples each 60 minutes for VOCs. The in-situ PTR-MS system measured more than 20 VOCs on a time shared basis for 5 to 15 seconds respectively, once each 5 minutes. The PTR-MS system is not able to distinguish between isobaric species, therefore acetone and propanal (MVK and MACR) values measured by NOAAs GC were added up prior to comparison with the respective PTR-MS values. For all species mentioned above the different measurement methods show good agreement. (author)

  20. Comparison of VOC measurements in Nashville, TE, during the southern oxidants study (SOS) 1999

    International Nuclear Information System (INIS)

    Grabmer, W.; Wisthaler, A.; Hansel, A.; Stroud, C.; Roberts, J.M.; Fehsenfeld, F.C.

    2002-01-01

    During the Southern Oxidants Study (SOS) 1999 Nashville campaign ambient air samples were analyzed at Cornelia Fort Airport (CFA) for organic compounds by two independent methods: 1) a gas chromatographic systems operated by NOAAs Aeronomy Laboratory, which performed immediate analysis of collected samples and 2) an in situ proton transfer reaction mass spectrometer (PTR M S) system operated by the University of Innsbruck. The sample protocols were quite different for the different methods. The GC system sequentially collected and analyzed air samples each 60 minutes for VOCs. The in-situ PTR-MS system measured more than 20 VOCs on a time shared basis for 5 to 15 seconds respectively, once each five minutes. The PTR-MS system is not able to distinguish between isobaric species, therefor acetone and propanal (MVK and MACR) values measured by NOAAs GC were added up prior to comparison with the respective PTR-MS values. For all species mentioned above the different measurement methods show good agreement. (author)

  1. Rocket-borne time-of-flight mass spectrometry

    Science.gov (United States)

    Reiter, R. F.

    1976-01-01

    Theoretical and numerical analyses are made of planar, cylindrical and spherical-electrode two-field time-of-flight mass spectrometers in order to optimize their operating conditions. A method is introduced which can improve the resolving power of these instruments by a factor of 7.5. Potential barrier gating in time-of-flight mass spectrometers is also analyzed. Experimental studies of a miniature cylindrical-electrode and a hemispherical-electrode time-of-flight mass spectrometer are presented. Their sensitivity and ability to operate at D-region pressures with an open source make them ideal instruments for D-region ion composition measurements. A sounding rocket experiment package carrying a cylindrical electrode time-of-flight mass spectrometer was launched. The data indicate that essentially 100% of the positive electric charge on positive ions is carried by ions with mass-to-charge ratios greater than 500 below an altitude of 92 km. These heavy charge carriers were present at altitudes up to about 100 km.

  2. Rocket-borne time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Reiter, R.F.

    1976-08-01

    Theoretical and numerical analyses are made of planar-, cylindrical- and spherical-electrode two-field time-of-flight mass spectrometers in order to optimize their operating conditions. A method is introduced which can improve the resolving power of these instruments by a factor of 7.5. Potential barrier gating in time-of-flight mass spectrometers is also analyzed. Experimental studies of a miniature cylindrical-electrode and a hemispherical-electrode time-of-flight mass spectrometer are presented. Their sensitivity and ability to operate at D-region pressures with an open source make them ideal instruments for D-region ion composition measurements. A sounding rocket experiment package carrying a cylindrical electrode time-of-flight mass spectrometer was launched. The data indicate that essentially 100% of the positive electric charge on positive ions is carried by ions with mass-to-charge ratios greater than 500 below an altitude of 92 km. These heavy charge carriers were present at altitudes up to about 100 km

  3. A mass spectrometer for the rapid analysis of gaseous mixtures

    International Nuclear Information System (INIS)

    Cassignol, C.; Ortel, Y.; Taieb, J.

    1950-01-01

    A mass spectrometer for leak detection and rapid gas analysis were constructed, having the characteristics and several structural features of a simple instrument described by Siry in Rev. Sri. Instruments. 540 (1947). Although exhibiting a good resolving power, the apparatus, which has no ion lenses and whose electrodes can be regulated during the performance, has not been sufficiently tested. Since several design defects have been discovered, it will probably be rebuilt with various improvements (ion source outside the magnetic field, modified circuits, etc.). (author)

  4. Modification of an achromatic mass spectrometer to include transverse focusing

    Energy Technology Data Exchange (ETDEWEB)

    Baril, M; Noel, M

    1987-08-15

    Modification has been made to a magnetic mass spectrometer, comprising a magnetic prism and a parallel plane mirror, to increase its transmission and to obtain a stigmatic image. This has been done by adding two quadrupole lenses, one between the magnetic prism and the mirror to add some focusing in the transverse direction, the other after the mirror to correct the astigmatism created by the first quadrupole lens. In this paper, we derive all the parameters of the quadrupole lenses needed to ensure this objective.

  5. Observation of new particle formation and measurement of sulfuric acid, ammonia, amines and highly oxidized organic molecules at a rural site in central Germany

    Directory of Open Access Journals (Sweden)

    A. Kürten

    2016-10-01

    Full Text Available The exact mechanisms for new particle formation (NPF under different boundary layer conditions are not known yet. One important question is whether amines and sulfuric acid lead to efficient NPF in the atmosphere. Furthermore, it is not clear to what extent highly oxidized organic molecules (HOMs are involved in NPF. We conducted field measurements at a rural site in central Germany in the proximity of three larger dairy farms to investigate whether there is a connection between NPF and the presence of amines and/or ammonia due to the local emissions from the farms. Comprehensive measurements using a nitrate chemical ionization–atmospheric pressure interface time-of-flight (CI-APi-TOF mass spectrometer, a proton-transfer-reaction mass spectrometer (PTR-MS, particle counters and differential mobility analyzers (DMAs, as well as measurements of trace gases and meteorological parameters, were performed. We demonstrate here that the nitrate CI-APi-TOF is suitable for sensitive measurements of sulfuric acid, amines, a nitrosamine, ammonia, iodic acid and HOMs. NPF was found to correlate with sulfuric acid, while an anti-correlation with RH, amines and ammonia is observed. The anti-correlation between NPF and amines could be due to the efficient uptake of these compounds by nucleating clusters and small particles. Much higher HOM dimer (C19/C20 compounds concentrations during the night than during the day indicate that these HOMs do not efficiently self-nucleate as no nighttime NPF is observed. Observed iodic acid probably originates from an iodine-containing reservoir substance, but the iodine signals are very likely too low to have a significant effect on NPF.

  6. A Novel Detector for High Neutron Flux Measurements

    International Nuclear Information System (INIS)

    Singo, T. D.; Wyngaardt, S. M.; Papka, P.; Dobson, R. T.

    2010-01-01

    Measuring alpha particles from a neutron induced break-up reaction with a mass spectrometer can be an excellent tool for detecting neutrons in a high neutron flux environment. Break-up reactions of 6 Li and 12 C can be used in the detection of slow and fast neutrons, respectively. A high neutron flux detection system that integrates the neutron energy sensitive material and helium mass spectrometer has been developed. The description of the detector configuration is given and it is soon to be tested at iThemba LABS, South Africa.

  7. In situ analysis of corrosion inhibitors using a portable mass spectrometer with paper spray ionization

    KAUST Repository

    Jjunju, Fred Paul Mark; Li, Anyin; Badu-Tawiah, Abraham K.; Wei, Pu; Li, Linfan; Ouyang, Zheng; Roqan, Iman S.; Cooks, Robert Graham

    2013-01-01

    Paper spray (PS) ambient ionization is implemented using a portable mass spectrometer and applied to the detection of alkyl quaternary ammonium salts in a complex oil matrix. These salts are commonly used as active components in the formulation of corrosion inhibitors. They were identified in oil and confirmed by their fragmentation patterns recorded using tandem mass spectrometry (MS/MS). The cations of alkyl and benzyl-substituted quaternary ammonium salts showed characteristic neutral losses of CnH2n (n carbon number of the longest chain) and C7H8, respectively. Individual quaternary ammonium compounds were detected at low concentrations (<1 ng μL-1) and over a dynamic range of ∼5 pg μL-1 to 500 pg μL-1 (ppb). Direct detection of these compounds in complex oil samples without prior sample preparation or pre-concentration was also demonstrated using a home-built miniature mass spectrometer at levels below 1 ng μL-1.© 2013 The Royal Society of Chemistry.

  8. Dual cascade time-of-flight mass spectrometer basing on electrostatic mirrors with two dimensional fields

    International Nuclear Information System (INIS)

    Glikman, L. G.; Goloskokov, Yu. V.; Karetskaya, S.P.; Mit', A.G.

    1999-01-01

    In the report [1] we have suggested the scheme of time-of-flight spectrometer containing two electrostatic mirrors with two dimensional field that doesn't depend on one of the Cartesian coordinates). In the articles [2,3] there have been found conditions for obtaining high quality of time-of-flight and spatial focusing. One of basic advantages of this scheme - is availability of intermediate stigmatic image. In the plane where this image is it's possible to place controlled diaphragm that limits ion scatter along the energy if the scatter is too large. With the help of this diaphragm at the spectrometer you can register mass spectrum with the selected energy. Good focusing quality allows reducing of initial ion energy by this increasing the time of their flight and thus analyzers resolving ability. Ion source and receiver are spaced at rather a long distances. This can be useful to solve some practical tasks

  9. Development of a sensitive method for the determination of acrylamide in coffee using high-performance liquid chromatography coupled to a hybrid quadrupole Orbitrap mass spectrometer.

    Science.gov (United States)

    Pugajeva, Iveta; Jaunbergs, Janis; Bartkevics, Vadims

    2015-01-01

    The emerging trend towards high-resolution mass spectrometry (MS) alternatives was evaluated by the application of Orbitrap MS for the determination of acrylamide in coffee samples. The high resolving power of the Orbitrap MS provided the high selectivity and sensitivity that enabled quantitative analysis of acrylamide in complex matrices, such as coffee. Several sample preparation methods and scanning modes of the MS (full MS, t-SIM, t-MS2) were assessed in order to optimise parameters of the analytical method. The final procedure involved the extraction of acrylamide with acetonitrile, solid-phase extraction with dispersive primary secondary amine (PSA) and amino columns, and the detection by ultra-performance liquid chromatography coupled to a hybrid quadrupole-Orbitrap MS (HPLC-Q-Orbitrap) operated in targeted MS2 scanning mode. The repeatability of the method at the lowest calibration level (10 μg kg(-1)), expressed as relative standard deviation, was 7.8% and the average recovery of acrylamide was 111%. The proposed method was applied to the determination of acrylamide in 22 samples of roasted coffee obtained from the Latvian retail market. Acrylamide concentration in coffee samples was in the range of 166-503 μg kg(-1).

  10. Non-proximate mass spectrometry using a heated 1-m long PTFE tube and an air-tight APCI ion source

    International Nuclear Information System (INIS)

    Usmanov, Dilshadbek T.; Hiraoka, Kenzo; Wada, Hiroshi; Matsumura, Masaya; Sanada-Morimura, Sachiyo; Nonami, Hiroshi; Yamabe, Shinichi

    2017-01-01

    Direct and rapid trace-level gas analysis is highly needed in various fields such as safety and security, quality control, food analysis, and forensic medicine. In many cases, the real samples are bulky and are not accessible to the space-limited ion source of the mass spectrometer. In order to circumvent this problem, we developed an airtight atmospheric-pressure chemical ionization (APCI) ion source equipped with a flexible 1-m-long, 2-mm-i.d. PTFE sniffing tube. The ambient air bearing sample gas was sucked into the heated PTFE tube (130 °C) and was transported to the air-tight ion source without using any extra pumping system or a Venturi device. Analytes were ionized by an ac corona discharge located at 1.5 mm from the inlet of the mass spectrometer. By using the airtight ion source, all the ionized gas in the ion source was introduced into the vacuum of the mass spectrometer via only the evacuation of the mass spectrometer (1.6 l min"−"1). Sub-pg limits of detection were obtained for carbaryl and trinitrotoluene. Owing to its flexibility and high sensitivity, the sniffing tube coupled with a mass spectrometer can be used as the stethoscope for the high-sensitive gas analysis. The experimental results obtained for drugs, hydrogen peroxide and small alkanes were discussed by DFT calculations. - Highlights: • Non-proximate mass spectrometry for the trace-level gas analysis was developed. • Using a 1-m long flexible PTFE tube, it can be applicable to complicated-shape real-world samples. • By atmospheric pressure chemical ionization in the airtight ion source, sub-pg limits of detection were attained. • Adsorption of less-volatility compounds was negligible with the tube temperature at 130° C. • Novel experimental results obtained were fully examined by density functional theory calculations.

  11. Non-proximate mass spectrometry using a heated 1-m long PTFE tube and an air-tight APCI ion source

    Energy Technology Data Exchange (ETDEWEB)

    Usmanov, Dilshadbek T. [Clean Energy Research Center, University of Yamanashi, Takeda-4, Kofu, Yamanashi, 400-8511 (Japan); Institute of Ion-Plasma and Laser Technologies, Durmon Yoli Street 33, 100125, Tashkent (Uzbekistan); Hiraoka, Kenzo, E-mail: hiraoka@yamanashi.ac.jp [Clean Energy Research Center, University of Yamanashi, Takeda-4, Kofu, Yamanashi, 400-8511 (Japan); Wada, Hiroshi [Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, 496 Izumi, Chikugo, Fukuoka 833-0041 (Japan); Matsumura, Masaya; Sanada-Morimura, Sachiyo [Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Suya 2421, shiKo, Kumamoto 861-1192 (Japan); Nonami, Hiroshi [Plant Biophysics/Biochemistry Research Laboratory, Faculty of Agriculture, Ehime University, 3-5-7 T Tarumi, 790-0905, Matsuyama (Japan); Yamabe, Shinichi, E-mail: yamabesh@gmail.com [Department of Material Science, Nara Institute of Science and Technology, Takayama-cho, 8916-5, Ikoma, Nara, 630−0101 (Japan)

    2017-06-22

    Direct and rapid trace-level gas analysis is highly needed in various fields such as safety and security, quality control, food analysis, and forensic medicine. In many cases, the real samples are bulky and are not accessible to the space-limited ion source of the mass spectrometer. In order to circumvent this problem, we developed an airtight atmospheric-pressure chemical ionization (APCI) ion source equipped with a flexible 1-m-long, 2-mm-i.d. PTFE sniffing tube. The ambient air bearing sample gas was sucked into the heated PTFE tube (130 °C) and was transported to the air-tight ion source without using any extra pumping system or a Venturi device. Analytes were ionized by an ac corona discharge located at 1.5 mm from the inlet of the mass spectrometer. By using the airtight ion source, all the ionized gas in the ion source was introduced into the vacuum of the mass spectrometer via only the evacuation of the mass spectrometer (1.6 l min{sup −1}). Sub-pg limits of detection were obtained for carbaryl and trinitrotoluene. Owing to its flexibility and high sensitivity, the sniffing tube coupled with a mass spectrometer can be used as the stethoscope for the high-sensitive gas analysis. The experimental results obtained for drugs, hydrogen peroxide and small alkanes were discussed by DFT calculations. - Highlights: • Non-proximate mass spectrometry for the trace-level gas analysis was developed. • Using a 1-m long flexible PTFE tube, it can be applicable to complicated-shape real-world samples. • By atmospheric pressure chemical ionization in the airtight ion source, sub-pg limits of detection were attained. • Adsorption of less-volatility compounds was negligible with the tube temperature at 130° C. • Novel experimental results obtained were fully examined by density functional theory calculations.

  12. Characterisation of Dissolved Organic Carbon by Thermal Desorption - Proton Transfer Reaction - Mass Spectrometry

    Science.gov (United States)

    Materić, Dušan; Peacock, Mike; Kent, Matthew; Cook, Sarah; Gauci, Vincent; Röckmann, Thomas; Holzinger, Rupert

    2017-04-01

    Dissolved organic carbon (DOC) is an integral component of the global carbon cycle. DOC represents an important terrestrial carbon loss as it is broken down both biologically and photochemically, resulting in the release of carbon dioxide (CO2) to the atmosphere. The magnitude of this carbon loss can be affected by land management (e.g. drainage). Furthermore, DOC affects autotrophic and heterotrophic processes in aquatic ecosystems, and, when chlorinated during water treatment, can lead to the release of harmful trihalomethanes. Numerous methods have been used to characterise DOC. The most accessible of these use absorbance and fluorescence properties to make inferences about chemical composition, whilst high-performance size exclusion chromatography can be used to determine apparent molecular weight. XAD fractionation has been extensively used to separate out hydrophilic and hydrophobic components. Thermochemolysis or pyrolysis Gas Chromatography - Mass Spectrometry (GC-MS) give information on molecular properties of DOC, and 13C NMR spectroscopy can provide an insight into the degree of aromaticity. Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a sensitive, soft ionisation method suitable for qualitative and quantitative analysis of volatile and semi-volatile organic vapours. So far, PTR-MS has been used in various environmental applications such as real-time monitoring of volatile organic compounds (VOCs) emitted from natural and anthropogenic sources, chemical composition measurements of aerosols etc. However, as the method is not compatible with water, it has not been used for analysis of organic traces present in natural water samples. The aim of this work was to develop a method based on thermal desorption PTR-MS to analyse water samples in order to characterise chemical composition of dissolved organic carbon. We developed a clean low-pressure evaporation/sublimation system to remove water from samples and thermal desorption system to introduce

  13. Determination of strontium and lead isotope ratios of grains using high resolution inductively coupled plasma mass spectrometer with single collector

    International Nuclear Information System (INIS)

    Shinozaki, Miyuki; Ariyama, Kaoru; Kawasaki, Akira; Hirata, Takafumi

    2010-01-01

    A method for determining strontium and lead isotope ratios of grains was developed. The samples investigated in this study were rice, barley and wheat. The samples were digested with nitric acid and hydrogen peroxide, and heated in a heating block. Strontium and lead were separated from the matrix by adding an acid digested solution into a column packed with Sr resin, which has selectivity for the absorption of strontium and lead. Strontium and lead isotope ratios were determined using a high-resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) with a single collector. The intraday relative standard deviations of 87 Sr/ 86 Sr and lead isotope ratios ( 204 Pb/ 206 Pb, 207 Pb/ 206 Pb, 208 Pb/ 206 Pb) by HR-ICP-MS measurements were < 0.06% and around 0.1%, respectively. This method enabled us to determine strontium and lead isotope ratios in two days. (author)

  14. Improvement of sensitivity in high-resolution Rutherford backscattering spectroscopy

    International Nuclear Information System (INIS)

    Hashimoto, H.; Nakajima, K.; Suzuki, M.; Kimura, K.; Sasakawa, K.

    2011-01-01

    The sensitivity (limit of detection) of high-resolution Rutherford backscattering spectroscopy (HRBS) is mainly determined by the background noise of the spectrometer. There are two major origins of the background noise in HRBS, one is the stray ions scattered from the inner wall of the vacuum chamber of the spectrometer and the other is the dark noise of the microchannel plate (MCP) detector which is commonly used as a focal plane detector of the spectrometer in HRBS. In order to reject the stray ions, several barriers are installed inside the spectrometer and a thin Mylar foil is mounted in front of the detector. The dark noise of the MCP detector is rejected by the coincidence measurement with the secondary electrons emitted from the Mylar foil upon the ion passage. After these improvements, the background noise is reduced by a factor of 200 at a maximum. The detection limit can be improved down to 10 ppm for As in Si at a measurement time of 1 h under ideal conditions.

  15. Interfacing a gas proportional counter with a mass spectrometer: Simultaneous display of GC/MS and radiocarbon data

    International Nuclear Information System (INIS)

    Peterson, G.S.; Laemmerhirt, D.F.; Weaver, A.

    1985-01-01

    To facilitate the location of pesticides and monitor their metabolism in environmental and biological systems, carbon-14 labelling of the parent compound is used. Detection of the radiolabel is achieved using a gas proportional counter, while identification of the labelled components is most easily accomplished with mass spectrometry. However, when these two operations are performed separately, correlation of the information is awkward, at best. Since each is a destructive detector, simultaneous monitoring of the outposts requires an effluent splitter. The complete system consists of a variable splitter, which allows control of the ratio of the GC effluent to the two instruments, and signal processing circuitry for simultaneous recording and storage of radiocarbon and mass spectral data. Modifications to a Finnigan GC/MS and Gas Proportional Counter included a high temperature GC effluent splitter with glass-lined connecting tubing, and a data interface, including analog to digital and serial to parallel conversions with optical isolation between the gas proportional counter and the computer. The splitter restricted the flow to the mass spectrometer, preventing flow completely in the closed position. The split was adjusted to maximize flow to the mass spectrometer using the vacuum as a rough guide (1.0 x 10 -5 torr in EI, 7.5 x 10 -5 torr in CI). A heated transfer line between the transfer oven and gas proportional counter prevented condensation of eluting components prior to radiocarbon detection

  16. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies

    International Nuclear Information System (INIS)

    Schowalter, Steven J.; Chen Kuang; Rellergert, Wade G.; Sullivan, Scott T.; Hudson, Eric R.

    2012-01-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates.

  17. Measuring the mass and width of the Z0: The status of the energy spectrometers

    International Nuclear Information System (INIS)

    Rouse, F.; Levi, M.; Kent, J.; King, M.; Von Zanthier, C.; Watson, S.; Bambade, P.; Erickson, R.; Jung, C.K.; Nash, J.; Wormser, G.

    1989-05-01

    The Stanford Linear Collider (SLC) located at the Stanford Linear Accelerator Center (SLAC) collides electrons and positrons produced in the linear accelerator pulse by pulse. The object is to produce collisions energetic enough to produce the heavy intermediate vector boson, the Z 0 . An essential component of the SLC physics program is the precise knowledge of the center-of-mass energy of each interaction. We measure the energy of each collision by using two energy spectrometers. The spectrometers are located in extraction lines of each beam. We will measure the energy of each beam to 20 MeV or 5 parts in 10 4 . We report here on the status of the energy spectrometer system. 13 refs., 7 figs., 3 tabs

  18. Performance of the rebuilt SUERC single-stage accelerator mass spectrometer

    Science.gov (United States)

    Shanks, Richard P.; Ascough, Philippa L.; Dougans, Andrew; Gallacher, Paul; Gulliver, Pauline; Rood, Dylan H.; Xu, Sheng; Freeman, Stewart P. H. T.

    2015-10-01

    The SUERC bipolar single-stage accelerator mass spectrometer (SSAMS) has been dismantled and rebuilt to accommodate an additional rotatable pre-accelerator electrostatic spherical analyser (ESA) and a second ion source injector. This is for the attachment of an experimental positive-ion electron cyclotron resonance (ECR) ion source in addition to a Cs-sputter source. The ESA significantly suppresses oxygen interference to radiocarbon detection, and remaining measurement interference is now thought to be from 13C injected as 13CH molecule scattering off the plates of a second original pre-detector ESA.

  19. Knudsen cell--mass spectrometer studies of cesium--urania interactions

    International Nuclear Information System (INIS)

    Collins, J.L.; Osborne, M.F.; Malinauskas, A.P.; Lorenz, R.A.; Manning, S.R.

    1976-06-01

    Limited Knudsen cell--mass spectrometer studies were made of the partial pressures of cesium-containing species [assumed to be primarily Cs(g)] over Cs 2 CO 3 and over phase equilibria involving UO 2 and probable Cs-U-O compounds formed from mixtures that initially contained either Cs 2 CO 3 -UO 2 or CsOH-UO 2 . Although additional work is required to further define the equilibria involved, the data demonstrate unambiguously a significant reduction in cesium partial pressures due to probable Cs-U-O compound formation and indicate essentially identical behavior with either CsOH or Cs 2 CO 3 as the starting material with UO 2

  20. PENTATRAP. A novel Penning-trap system for high-precision mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, Andreas

    2015-01-21

    The novel Penning-trap mass spectrometer PENTATRAP aims at mass-ratio determinations of medium-heavy to heavy ions with relative uncertainties below 10{sup -11}. From the mass ratios of certain ion species, the corresponding mass differences will be determined with sub-eV/c{sup 2} uncertainties. These mass differences are relevant for neutrino-mass experiments, a test of special relativity and tests of bound-state QED. Means to obtain the required precision are very stable trapping fields, the use of highly-charged ions produced by EBITs, a non-destructive cyclotron-frequency determination scheme employing detectors with single-ion sensitivity and a five-trap tower, that allows for measurement schemes being insensitive to magnetic field drifts. Within this thesis, part of the detection electronics was set up and tested under experimental conditions. A single-trap setup was realized. A Faraday cup in the trap tower enabled the proper adjustment of the settings of the beamline connecting the EBIT and the Penning-trap system, resulting in the first trapping of ions at PENTATRAP. A stabilization of switched voltages in the beamline and detailed studies of ion bunch characteristics allowed for reproducible loading of only a few ions. Detection of the axial oscillation of the trapped ions gave hints that in some cases, even single ions had been trapped. Furthermore, valuable conclusions about necessary modifications of the setup could be drawn.

  1. HOLMES: The electron capture decay of [Formula: see text]Ho to measure the electron neutrino mass with sub-eV sensitivity.

    Science.gov (United States)

    Alpert, B; Balata, M; Bennett, D; Biasotti, M; Boragno, C; Brofferio, C; Ceriale, V; Corsini, D; Day, P K; De Gerone, M; Dressler, R; Faverzani, M; Ferri, E; Fowler, J; Gatti, F; Giachero, A; Hays-Wehle, J; Heinitz, S; Hilton, G; Köster, U; Lusignoli, M; Maino, M; Mates, J; Nisi, S; Nizzolo, R; Nucciotti, A; Pessina, G; Pizzigoni, G; Puiu, A; Ragazzi, S; Reintsema, C; Gomes, M Ribeiro; Schmidt, D; Schumann, D; Sisti, M; Swetz, D; Terranova, F; Ullom, J

    The European Research Council has recently funded HOLMES, a new experiment to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the decay of [Formula: see text]Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress allowed to design a sensitive experiment. HOLMES will deploy a large array of low temperature microcalorimeters with implanted [Formula: see text]Ho nuclei. The resulting mass sensitivity will be as low as 0.4 eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1 eV. We outline here the project with its technical challenges and perspectives.

  2. Kapitza thermal resistance studied by high-frequency photothermal radiometry

    International Nuclear Information System (INIS)

    Horny, Nicolas; Chirtoc, Mihai; Hamaoui, Georges; Fleming, Austin; Ban, Heng

    2016-01-01

    Kapitza thermal resistance is determined using high-frequency photothermal radiometry (PTR) extended for modulation up to 10 MHz. Interfaces between 50 nm thick titanium coatings and silicon or stainless steel substrates are studied. In the used configuration, the PTR signal is not sensitive to the thermal conductivity of the film nor to its optical absorption coefficient, thus the Kapitza resistance is directly determined from single thermal parameter fits. Results of thermal resistances show the significant influence of the nature of the substrate, as well as of the presence of free electrons at the interface.

  3. An electrostatic beam line for accelerator mass spectroscopy of exotic particles

    International Nuclear Information System (INIS)

    Elmore, D.; Kubik, P.W.; Hemmick, T.; Teng, R.; Kagan, H.; Haas, P.; Boyd, R.N.; Turner, R.; Nitz, D.; Ciampa, D.; Olsen, S.L.; Gentile, T.; Haelen, T.

    1985-01-01

    An all-electrostatic charged particle spectrometer has been constructed to perform high sensitivity searches for exotic states of matter. This spectrometer consists of an electrosatic beam line capable of mass independent charged particle transport and selection together with time-of-flight, energy loss and total energy detectors. This system has been used in conjunction with the tandem electrostatic accelerator at the Nuclear Structure Research Laboratory of the University of Rochester to search for fractionally charged or anomalously heavy particles. (orig.)

  4. Use of the Isomass 54E thermal ionisation mass spectrometer at AEE Winfrith

    International Nuclear Information System (INIS)

    Knight, A.P.

    1982-03-01

    A Vacuum Generators Isomass 54E mass spectrometer is used to carry out isotopic analyses. The capabilities of the instrument and its method of operation are outlined, and the technique used for isotopic analysis of uranium is described in detail, with results of tests on NBS standard specimens and Zebra fuel element pellets. (U.K.)

  5. Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers

    Directory of Open Access Journals (Sweden)

    A. T. Ahern

    2016-12-01

    Full Text Available Biomass burning is a large source of light-absorbing refractory black carbon (rBC particles with a wide range of morphologies and sizes. The net radiative forcing from these particles is strongly dependent on the amount and composition of non-light-absorbing material internally mixed with the rBC and on the morphology of the mixed particles. Understanding how the mixing state and morphology of biomass-burning aerosol evolves in the atmosphere is critical for constraining the influence of these particles on radiative forcing and climate. We investigated the response of two commercial laser-based particle mass spectrometers, the vacuum ultraviolet (VUV ablation LAAPTOF and the IR vaporization SP-AMS, to monodisperse biomass-burning particles as we sequentially coated the particles with secondary organic aerosol (SOA from α-pinene ozonolysis. We studied three mobility-selected soot core sizes, each with a number of successively thicker coatings of SOA applied. Using IR laser vaporization, the SP-AMS had different changes in sensitivity to rBC compared to potassium as a function of applied SOA coatings. We show that this is due to different effective beam widths for the IR laser vaporization region of potassium versus black carbon. The SP-AMS's sensitivity to black carbon (BC mass was not observed to plateau following successive SOA coatings, despite achieving high OA : BC mass ratios greater than 9. We also measured the ion fragmentation pattern of biomass-burning rBC and found it changed only slightly with increasing SOA mass. The average organic matter ion signal measured by the LAAPTOF demonstrated a positive correlation with the condensed SOA mass on individual particles, despite the inhomogeneity of the particle core compositions. This demonstrates that the LAAPTOF can obtain quantitative mass measurements of aged soot-particle composition from realistic biomass-burning particles with complex morphologies and composition.

  6. Sensitivity of LDEF foil analyses using ultra-low background germanium vs. large NaI(Tl) multidimensional spectrometers

    International Nuclear Information System (INIS)

    Reeves, J.H.; Arthur, R.J.; Brodzinski, R.L.

    1992-06-01

    Cobalt foils and stainless steel samples were analyzed for induced 6O Co activity with both an ultra-low background germanium gamma-ray spectrometer and with a large NaI(Tl) multidimensional spectrometer, both of which use electronic anticoincidence shielding to reduce background counts resulting from cosmic rays. Aluminum samples were analyzed for 22 Na. The results, in addition to the relative sensitivities and precisions afforded by the two methods, are presented

  7. Mass spectrometric analysis of protein interactions

    DEFF Research Database (Denmark)

    Borch, Jonas; Jørgensen, Thomas J. D.; Roepstorff, Peter

    2005-01-01

    Mass spectrometry is a powerful tool for identification of interaction partners and structural characterization of protein interactions because of its high sensitivity, mass accuracy and tolerance towards sample heterogeneity. Several tools that allow studies of protein interaction are now...... available and recent developments that increase the confidence of studies of protein interaction by mass spectrometry include quantification of affinity-purified proteins by stable isotope labeling and reagents for surface topology studies that can be identified by mass-contributing reporters (e.g. isotope...... labels, cleavable cross-linkers or fragment ions. The use of mass spectrometers to study protein interactions using deuterium exchange and for analysis of intact protein complexes recently has progressed considerably....

  8. Profiling and identification of (-)-epicatechin metabolites in rats using ultra-high performance liquid chromatography coupled with linear trap-Orbitrap mass spectrometer.

    Science.gov (United States)

    Shang, Zhanpeng; Wang, Fei; Dai, Shengyun; Lu, Jianqiu; Wu, Xiaodan; Zhang, Jiayu

    2017-08-01

    (-)-Epicatechin (EC), an optical antipode of (+)-catechin (C), possesses many potential significant health benefits. However, the in vivo metabolic pathway of EC has not been clarified yet. In this study, an efficient strategy based on ultra-high performance liquid chromatography coupled with a linear ion trap-Orbitrap mass spectrometer was developed to profile and characterize EC metabolites in rat urine, faeces, plasma, and various tissues. Meanwhile, post-acquisition data-mining methods including high-resolution extracted ion chromatogram (HREIC), multiple mass defect filters (MMDFs), and diagnostic product ions (DPIs) were utilized to screen and identify EC metabolites from HR-ESI-MS 1 to ESI-MS n stage. Finally, a total of 67 metabolites (including parent drug) were tentatively identified based on standard substances, chromatographic retention times, accurate mass measurement, and relevant drug biotransformation knowledge. The results demonstrated that EC underwent multiple in vivo metabolic reactions including methylation, dehydration, hydrogenation, glucosylation, sulfonation, glucuronidation, ring-cleavage, and their composite reactions. Among them, methylation, dehydration, glucosylation, and their composite reactions were observed only occurring on EC when compared with C. Meanwhile, the distribution of these detected metabolites in various tissues including heart, liver, spleen, lung, kidney, and brain were respectively studied. The results demonstrated that liver and kidney were the most important organs for EC and its metabolites elimination. In conclusion, the newly discovered EC metabolites significantly expanded the understanding on its pharmacological effects and built the foundation for further toxicity and safety studies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. An Ultra-Sensitive, Size Resolved Particle Mass Measurement Device, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — By providing size resolved compositional information, the Aerosol Mass Spectrometer (AMS) has greatly advanced understanding of aircraft particulate matter (PM)...

  10. Controllable isotope fractionation with thermal ionisation mass-spectrometers

    International Nuclear Information System (INIS)

    Hebeda, E.H.

    1980-01-01

    Isotopic ratios measured with thermal ionisation mass-spectrometers are biased by fractionation effects. A sample must therefore be analyzed according to the same procedures as applied for the analysis of the standard reference material. A comparison of the behaviour of the sample with that of the standard can then be used as a criterion whether the analytical results are acceptable or not. In this way it is possible to obtain reproducibilities similar to those for elements acceptable or not. In this way it is possible to obtain reproducibilities similar to those for elements where the fractionation can be determined by an internal standard. This procedure of controlled fractionation is demonstrated by means of the 88 Sr/ 86 Sr ratios measured on geological samples and the SRM 987 standard. (orig.)

  11. Highly Sensitive and High-Throughput Analysis of Plant Hormones Using MS-Probe Modification and Liquid Chromatography–Tandem Mass Spectrometry: An Application for Hormone Profiling in Oryza sativa

    Science.gov (United States)

    Kojima, Mikiko; Kamada-Nobusada, Tomoe; Komatsu, Hirokazu; Takei, Kentaro; Kuroha, Takeshi; Mizutani, Masaharu; Ashikari, Motoyuki; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Suzuki, Koji; Sakakibara, Hitoshi

    2009-01-01

    We have developed a highly sensitive and high-throughput method for the simultaneous analysis of 43 molecular species of cytokinins, auxins, ABA and gibberellins. This method consists of an automatic liquid handling system for solid phase extraction and ultra-performance liquid chromatography (UPLC) coupled with a tandem quadrupole mass spectrometer (qMS/MS) equipped with an electrospray interface (ESI; UPLC-ESI-qMS/MS). In order to improve the detection limit of negatively charged compounds, such as gibberellins, we chemically derivatized fractions containing auxin, ABA and gibberellins with bromocholine that has a quaternary ammonium functional group. This modification, that we call ‘MS-probe’, makes these hormone derivatives have a positive ion charge and permits all compounds to be measured in the positive ion mode with UPLC-ESI-qMS/MS in a single run. Consequently, quantification limits of gibberellins increased up to 50-fold. Our current method needs 180 plant samples simultaneously. Application of this method to plant hormone profiling enabled us to draw organ distribution maps of hormone species in rice and also to identify interactions among the four major hormones in the rice gibberellin signaling mutants, gid1-3, gid2-1 and slr1. Combining the results of hormone profiling data with transcriptome data in the gibberellin signaling mutants allows us to analyze relationships between changes in gene expression and hormone metabolism. PMID:19369275

  12. An Ultra-Sensitive, Size Resolved Particle Mass Measurement Device, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The characterization of aircraft particulate matter (PM) emissions has benefited greatly by the Aerosol Mass Spectrometer (AMS) by providing size resolved...

  13. The Dynamic Range of Ultra-High Resolution Cryogenic Gamma-ray Spectrometers

    International Nuclear Information System (INIS)

    Ali, S; Terracol, S F; Drury, O B; Friedrich, S

    2005-01-01

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to multilayer Mo/Cu transition-edge sensors (TES). The energy resolution achieved with a 1 x 1 x 0.25 mm 3 Sn absorber is 50 -90eV for γ-rays up to 100 keV and it decreases for large absorber sizes. We discuss the trade-offs between energy resolution and dynamic range, as well as development of TES arrays for higher count rates and better sensitivity

  14. CHIRON – A new high resolution spectrometer for CTIO

    Directory of Open Access Journals (Sweden)

    Marcy G.W.

    2011-07-01

    Full Text Available Small telescopes can play an important role in the search for exoplanets because they offer an opportunity for high cadence observations that are not possible with large aperture telescopes. However, there is a shortage of high resolution spectrometers for precision Doppler planet searches. We report on an innovative design for CHIRON, an inexpensive spectrometer that we are building for the 1.5-m telescope at CTIO in Chile. The resolution will be R >80.000, the spectral format spanning 410 to 880 nm. The total throughput of the telescope and spectrometer will be better than 12%, comparable with the efficiency of state-of-the-art spectrometers. The design is driven by the requirements for precision Doppler searches for exoplanets using an iodine cell. The optical layout is a classical echelle with 140 mm beam size. The bench-mounted spectrometer will be fibre-fed followed by an image slicer. An apochromatic refractor is used as the camera. Image quality and throughput of the design are excellent over the full spectral range. Extensive use of commercially available components and avoidance of complicated custom optics are key for quick and resource-efficient implementation.

  15. 4D space access neutron spectrometer 4SEASONS (SIKI)

    International Nuclear Information System (INIS)

    Kajimoto, Ryoichi; Nakamura, Mitsutaka

    2010-01-01

    The 4D Space Access Neutron Spectrometer (4SEASONS) is a high-intensity Fermi-chopper spectrometer. It is intended to provide high counting rate for thermal neutrons with medium resolution (ΔE/E i -6% at E=0) to efficiently collect weak inelastic signals from novel spin and lattice dynamics especially in high-T c superconductors and related materials. To achieve this goal, the spectrometer equips advanced instrumental design such as an elliptic-shaped converging neutron guide coated with high-Q c (m=3-4) supermirror, and long-length (2.5 m) 3 He position sensitive detectors (PSDs) arranged cylindrically inside the vacuum scattering chamber. Furthermore, the spectrometer is ready for multi-incident-energy measurements by the repetition rate multiplication method, which greatly improves the measurement efficiency. (author)

  16. Detection of atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions

    Directory of Open Access Journals (Sweden)

    L. Yao

    2016-11-01

    Full Text Available Amines and amides are important atmospheric organic-nitrogen compounds but high time resolution, highly sensitive, and simultaneous ambient measurements of these species are rather sparse. Here, we present the development of a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS method, utilizing protonated ethanol as reagent ions to simultaneously detect atmospheric gaseous amines (C1 to C6 and amides (C1 to C6. This method possesses sensitivities of 5.6–19.4 Hz pptv−1 for amines and 3.8–38.0 Hz pptv−1 for amides under total reagent ion signals of  ∼  0.32 MHz. Meanwhile, the detection limits were 0.10–0.50 pptv for amines and 0.29–1.95 pptv for amides at 3σ of the background signal for a 1 min integration time. Controlled characterization in the laboratory indicates that relative humidity has significant influences on the detection of amines and amides, whereas the presence of organics has no obvious effects. Ambient measurements of amines and amides utilizing this method were conducted from 25 July to 25 August 2015 in urban Shanghai, China. While the concentrations of amines ranged from a few parts per trillion by volume to hundreds of parts per trillion by volume, concentrations of amides varied from tens of parts per trillion by volume to a few parts per billion by volume. Among the C1- to C6-amines, the C2-amines were the dominant species with concentrations up to 130 pptv. For amides, the C3-amides (up to 8.7 ppb were the most abundant species. The diurnal and backward trajectory analysis profiles of amides suggest that in addition to the secondary formation of amides in the atmosphere, industrial emissions could be important sources of amides in urban Shanghai. During the campaign, photo-oxidation of amines and amides might be a main loss pathway for them in daytime, and wet deposition was also an important sink.

  17. In-core LOCA (PTR) analysis with poisoned moderator

    International Nuclear Information System (INIS)

    Kim, S. R.; Kim, B. G.; Kim, T. M.; Choi, J. H.; Kim, Yun Ho; Choi, Hoon

    2005-01-01

    CANDU reactors have been analyzed and evaluated for the postulated in-core LOCA while the reactor is operating normally with low moderator poison concentration. However, when the reactor is operating with relatively large amounts of boron and/or gadolinium poisons in the moderator, the assessment for fuel integrity was required for pressure tube rupture (PTR) accident. The methodology of in-core LOCA analysis with poisoned moderator is developed to determine the effective trip parameters, evaluate the fuel integrity, and establish the standard reactor start-up model for CANDU reactor recently. The developed methodology and results are presented

  18. Environmental Technology Verification Report. Field Portable Gas Chromatograph/Mass Spectrometer. Viking Instruments Corporation SpectraTrak (Trademark) 672

    National Research Council Canada - National Science Library

    Enfield, Wayne

    1997-01-01

    .... This self-contained, field transportable system, whose design has been adapted from laboratory technology, uses a contained, chromatographic column and accompanying mass spectrometer to provide...

  19. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies.

    Science.gov (United States)

    Schowalter, Steven J; Chen, Kuang; Rellergert, Wade G; Sullivan, Scott T; Hudson, Eric R

    2012-04-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm ∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates. © 2012 American Institute of Physics

  20. Tandem Mass Spectrometry on a Miniaturized Laser Desorption Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Li, Xiang; Cornish, Timothy; Getty, Stephanie A.; Brinckerhoff, William B.

    2016-01-01

    Tandem mass spectrometry (MSMS) is a powerful and widely-used technique for identifying the molecular structure of organic constituents of a complex sample. Application of MSMS to the study of unknown planetary samples on a remote space mission would contribute to our understanding of the origin, evolution, and distribution of extraterrestrial organics in our solar system. Here we report on the realization of MSMS on a miniaturized laser desorption time-of-flight mass spectrometer (LD-TOF-MS), which is one of the most promising instrument types for future planetary missions. This achievement relies on two critical components: a curved-field reflectron and a pulsed-pin ion gate. These enable use of the complementary post-source decay (PSD) and laser-assisted collision induced dissociation (L-CID) MSMS methods on diverse measurement targets with only modest investment in instrument resources such as volume and weight. MSMS spectra of selected molecular targets in various organic standards exhibit excellent agreement when compared with results from a commercial, laboratory-scale TOF instrument, demonstrating the potential of this powerful technique in space and planetary environments.

  1. Investigation of the proton-neutron interaction by high-precision nuclear mass measurements

    CERN Multimedia

    Savreux, R P; Akkus, B

    2007-01-01

    We propose to measure the atomic masses of a series of short-lived nuclides, including $^{70}$Ni, $^{122-130}$Cd, $^{134}$Sn, $^{138,140}$Xe, $^{207-210}$Hg, and $^{223-225}$Rn, that contribute to the investigation of the proton-neutron interaction and its role in nuclear structure. The high-precision mass measurements are planned for the Penning trap mass spectrometer ISOLTRAP that reaches the required precision of 10 keV in the nuclear mass determination.

  2. Method for selective detection of explosives in mass spectrometer or ion mobility spectrometer at parts-per-quadrillion level

    Science.gov (United States)

    Ewing, Robert G.; Atkinson, David A.; Clowers, Brian H.

    2015-09-01

    A method for selective detection of volatile and non-volatile explosives in a mass spectrometer or ion mobility spectrometer at a parts-per-quadrillion level without preconcentration is disclosed. The method comprises the steps of ionizing a carrier gas with an ionization source to form reactant ions or reactant adduct ions comprising nitrate ions (NO.sub.3.sup.-); selectively reacting the reactant ions or reactant adduct ions with at least one volatile or non-volatile explosive analyte at a carrier gas pressure of at least about 100 Ton in a reaction region disposed between the ionization source and an ion detector, the reaction region having a length which provides a residence time (tr) for reactant ions therein of at least about 0.10 seconds, wherein the selective reaction yields product ions comprising reactant ions or reactant adduct ions that are selectively bound to the at least one explosive analyte when present therein; and detecting product ions with the ion detector to determine presence or absence of the at least one explosive analyte.

  3. Peter J Derrick and the Grand Scale 'Magnificent Mass Machine' mass spectrometer at Warwick.

    Science.gov (United States)

    Colburn, A W; Derrick, Peter J; Bowen, Richard D

    2017-12-01

    The value of the Grand Scale 'Magnificent Mass Machine' mass spectrometer in investigating the reactivity of ions in the gas phase is illustrated by a brief analysis of previously unpublished work on metastable ionised n-pentyl methyl ether, which loses predominantly methanol and an ethyl radical, with very minor contributions for elimination of ethane and water. Expulsion of an ethyl radical is interpreted in terms of isomerisation to ionised 3-pentyl methyl ether, via distonic ions and, possibly, an ion-neutral complex comprising ionised ethylcyclopropane and methanol. This explanation is consistent with the closely similar behaviour of the labelled analogues, C 3 H 7 CH 2 CD 2 OCH 3 +. and C 3 H 7 CD 2 CH 2 OCH 3 +. , and is supported by the greater kinetic energy release associated with loss of ethane from ionised n-propyl methyl ether compared to that starting from directly generated ionised 3-pentyl methyl ether.

  4. Process for detecting leak faults using a helium mass spectrometer

    International Nuclear Information System (INIS)

    Divet, Claude; Morin, Claude.

    1977-01-01

    The description is given of a process for detecting very small leak faults putting into communication the outer and inner sides of the wall of a containment, one of these wall sides being in contact with gaseous helium under a pressure of around one torr, the other side being one of the limits of a space pumped down to a residual gas pressure under 10 -3 torr. This space is in communication with the measuring cell of a helium mass spectrometer. This process may be applied to the detection of faults in metal claddings of the fuel rods used in nuclear reactors [fr

  5. Combined raman spectrometer/laser-induced breakdown spectrometer design concept

    Science.gov (United States)

    Bazalgette Courrèges-Lacoste, Gregory; Ahlers, Berit; Boslooper, Erik; Rull-Perez, Fernando; Maurice, Sylvestre

    2017-11-01

    Amongst the different instruments that have been preselected to be on-board the Pasteur payload on ExoMars is the Raman/ Laser Induced Breakdown Spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman Spectrometer/ LIBS Elegant Bread-Board (EBB). The instrument is based on a specifically designed extremely compact spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and resources are the main drivers of the instrument's design concept. The proposed design concept, realization and testing programme for the combined Raman/ LIBS EBB is presented as well as background information on Raman and LIBS.

  6. Spectrometer sensitivity calibration in the extreme uv by means of branching ratios of magnetic dipole lines

    International Nuclear Information System (INIS)

    Denne, B.; Hinnov, E.

    1984-04-01

    Relative intensity measurements of various line pairs resulting from magnetic dipole transitions within the configurations s 2 p 2 and s 2 p 4 , in conjunction with calculated transition probabilities, have been used to determine the wavelength dependence of the sensitivity of a grazing incidence spectrometer, in the range 400 to 1000 A. Emissions from Cr XIX, Fe XXI, Ni XXI and XXIII, Cu XXIV, and Zr XXVII ions in PLT tokamak discharges were used for this purpose. Absolute sensitivity of the spectrometer at selected wavelengths had been determined by the traditional hydrogen, helium, carbon, and oxygen electric-dipole line pairs from the same discharges. Similar attempts to use transitions in the s 2 p 3 configurations in Cr XVIII, Zr XXVI, and Mo XXVIII ions resulted in significant discrepancies that are ascribed to uncertainties in the corresponding calculated transition probabilities

  7. New design for a time-of-flight mass spectrometer with a liquid beam laser desorption ion source for the analysis of biomolecules

    International Nuclear Information System (INIS)

    Charvat, A.; Lugovoj, E.; Faubel, M.; Abel, B.

    2004-01-01

    We describe a novel liquid beam mass spectrometer, based on a recently discovered nanosecond laser desorption phenomenon, [W. Kleinekofort, J. Avdiev, and B. Brutschy, Int. J. Mass Ion. Processes 152, 135 (1996)] which allows the liquid-to-vacuum transfer, and subsequent mass analysis of pre-existing ions and ionic associates from liquid microjets of aqueous solutions. The goal of our novel technical approach is to establish a system with good mass resolution that implements improvements on critical components that make the system more reliable and easier to operate. For laser desorption pulsed dye-laser difference frequency mixing is used that provides tunable infrared light near the absorption maximum of liquid water around 3 μm. Different types of liquid beam glass nozzles (convergent capillary and aperture plate nozzles) are investigated and characterized. Starting from theoretical considerations of hydrodynamic drag forces on micrometer size droplets in supersonic rarefied gas flows we succeeded in capturing efficiently the liquid beam in a liquid beam recycling trap operating at the vapor pressure of liquid water. For improving the pollution resistance, the liquid jet high vacuum ion source region is spatially separated from the reflectron time-of-flight mass spectrometer (TOF-MS) working behind a gate valve in an ultrahigh vacuum environment. A simple (simulation optimized) ion optics is employed for the ion transfer from the source to the high vacuum region. This new feature is also mostly responsible for the improved mass resolution. With the present tandem-TOF-MS setup a resolution of m/Δm≅1800 for the low and m/Δm≅700 in the high mass region has been obtained for several biomolecules of different mass and complexity (amino acids, insulin, and cytochrome c)

  8. Proton transfer reaction time-of-flight mass spectrometry advancement in detection of hazardous substances

    International Nuclear Information System (INIS)

    Agarwal, B.

    2012-01-01

    Proton Transfer Reaction Mass Spectrometry (PTR-MS) is a mass spectrometric technique based on chemical ionization, which provides very rapid measurements (within seconds) of volatile organic compounds in air, usually without special sample preparation, and with a very low detection limit. The detection and study of product ion patterns of threat agents such as explosives and drugs and some major environmental pollutants (isocyanates and polychlorinated biphenyls (PCBs)) is explored in detail here using PTR-MS, specifically Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). The proton transfer reaction (PTR) principle works on the detection of the compound in the vapor phase. For some compounds, which have extremely low vapor pressures, both sample and inlet line heating were needed. Generally, the protonated parent molecule (MH+) is found to be the dominant product ion, which therefore provides us with a higher level of confidence in the assignment of a trace compound. However, for several compounds, dissociative proton transfer can occur at various degrees resulting in other product ions. Analysis of other compounds, such as the presence of taggants and impurities were carried out, and in certain compounds unusual E/N anomalies were discovered (E/N is an instrumental set of parameters, where E is the electric field strength and N is the number density). Head space measurements above four different drinks (plain water, tea, red wine and white wine) spiked with four different 'date rape' drugs were also conducted. (author)

  9. Direct trace analysis of metals and alloys in a quadrupole ion-trap mass spectrometer

    CERN Document Server

    Song, K S; Yang, M; Cha, H K; Lee, J M; Lee, G H

    1999-01-01

    An ion-trap mass spectrometer adopting a quadrupole ion-trap and laser ablation/ionization method was constructed. The developed system was tested for composition analysis of some metals (Cu, stainless), and alloys (hastalloy C, mumetal) by mass spectrometry. Samples were analyzed by using laser ablation from a sample probe tip followed by a mass analysis with the quadrupole ion-trap. The quadrupole ion-trap was modified to enable laser ablation by a XeCl excimer laser pulse that passed radially through the ring electrode. A mass scan of the produced ions was performed in the mass selective instability mode wherein trapped ions were successively detected by increasing the rf voltage through the ring electrode. Factors affecting the mass resolution, such as pressure of buffer gas and ablation laser power, are discussed.

  10. Development and Characterization of a High Sensitivity Segmented Fast Neutron Spectrometer (FaNS-2).

    Science.gov (United States)

    Langford, T J; Beise, E J; Breuer, H; Heimbach, C R; Ji, G; Nico, J S

    2016-01-01

    We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3 He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3 He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252 Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2.

  11. The CAMEO project: high sensitivity quest for Majorana neutrino mass with the BOREXINO counting test facility

    International Nuclear Information System (INIS)

    Bellini, G.; Caccianiga, B.; Giammarchi, M.G.

    2001-01-01

    The unique features of the CTF and BOREXINO set-ups are used for a high sensitivity study of 100 Mo and 116 Cd neutrinoless 2β decay. Pilot measurements with 116 Cd and Monte Carlo simulation show that the sensitivity of the CAMEO experiment (in terms of the T 1/2 limit for 0ν2β decay) is (3-5) · 10 24 y with a 1 kg source of 100 Mo ( 116 Cd, 82 Se, 150 Nd) and ∼ 10 26 y with 65 kg of 116 CdWO 4 crystals placed in the CTF. The last value corresponds to a limit on the neutrino mass of m ν ≤ 0.06 eV. Moreover, with 1000 kg of 116 CdWO 4 crystals located in the BOREXINO apparatus, the neutrino mass limit can be pushed down to m ν ≤ 0.02 eV

  12. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Hunka, Deborah E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Austin, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).

  13. Highly multiparametric analysis by mass cytometry.

    Science.gov (United States)

    Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Nitz, Mark; Winnik, Mitchell A; Tanner, Scott

    2010-09-30

    This review paper describes a new technology, mass cytometry, that addresses applications typically run by flow cytometer analyzers, but extends the capability to highly multiparametric analysis. The detection technology is based on atomic mass spectrometry. It offers quantitation, specificity and dynamic range of mass spectrometry in a format that is familiar to flow cytometry practitioners. The mass cytometer does not require compensation, allowing the application of statistical techniques; this has been impossible given the constraints of fluorescence noise with traditional cytometry instruments. Instead of "colors" the mass cytometer "reads" the stable isotope tags attached to antibodies using metal-chelating labeling reagents. Because there are many available stable isotopes, and the mass spectrometer provides exquisite resolution between detection channels, many parameters can be measured as easily as one. For example, in a single tube the technique allows for the ready detection and characterization of the major cell subsets in blood or bone marrow. Here we describe mass cytometric immunophenotyping of human leukemia cell lines and leukemia patient samples, differential cell analysis of normal peripheral and umbilical cord blood; intracellular protein identification and metal-encoded bead arrays. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Optimization of time-correlated single photon counting spectrometer

    International Nuclear Information System (INIS)

    Zhang Xiufeng; Du Haiying; Sun Jinsheng

    2011-01-01

    The paper proposes a performance improving scheme for the conventional time-correlated single photon counting spectrometer and develops a high speed data acquisition card based on PCI bus and FPGA technologies. The card is used to replace the multi-channel analyzer to improve the capability and decrease the volume of the spectrometer. The process of operation is introduced along with the integration of the spectrometer system. Many standard samples are measured. The experimental results show that the sensitivity of the spectrometer is single photon counting, and the time resolution of fluorescence lifetime measurement can be picosecond level. The instrument could measure the time-resolved spectroscopy. (authors)

  15. A small sized time-of-flight mass spectrometer for simultaneous measurement of neutral and ionic species effusing from plasma, 1

    International Nuclear Information System (INIS)

    Horiuchi, Yukihiko

    1986-01-01

    A principle for simultaneous and real time measurement of neutral and ionic species effusing from plasma by using a time-of-flight mass spectrometer is proposed. A simple, small sized time-of-flight mass spectrometer combined with a dc glow discharge tube and an ion sampling electrode system for the simultaneous measurement on the basis of the proposed plinciple, has been constructed and tested. Details of the experimental setup including the geometry and the electronic hardware are described. It is shown that mass spectra of neutrals and ions from the positive column of the argon dc glow discharge are successfully observed on a single oscilloscope display. (author)

  16. PDS4 vs PDS3 - A Comparison of PDS Data for Two Mars Rovers - Existing Mars Curiosity Mission Mass Spectrometer (SAM) PDS3 Data vs Future ExoMars Rover Mass Spectrometer (MOMA) PDS4 Data

    Science.gov (United States)

    Lyness, E.; Franz, H. B.; Prats, B.

    2017-12-01

    The Sample Analysis at Mars (SAM) instrument is a suite of instruments on Mars aboard the Mars Science Laboratory rover. Centered on a mass spectrometer, SAM delivers its data to the PDS Atmosphere's node in PDS3 format. Over five years on Mars the process of operating SAM has evolved and extended significantly from the plan in place at the time the PDS3 delivery specification was written. For instance, SAM commonly receives double or even triple sample aliquots from the rover's drill. SAM also stores samples in spare cups for long periods of time for future analysis. These unanticipated operational changes mean that the PDS data deliveries are absent some valuable metadata without which the data can be confusing. The Mars Organic Molecule Analyzer (MOMA) instrument is another suite of instruments centered on a mass spectrometer bound for Mars. MOMA is part of the European ExoMars rover mission schedule to arrive on Mars in 2021. While SAM and MOMA differ in some important scientific ways - MOMA uses an linear ion trap compared to the SAM quadropole mass spectrometer and MOMA has a laser desorption experiment that SAM lacks - the data content from the PDS point of view is comparable. Both instruments produce data containing mass spectra acquired from solid samples collected on the surface of Mars. The MOMA PDS delivery will make use of PDS4 improvements to provide a metadata context to the data. The MOMA PDS4 specification makes few assumptions of the operational processes. Instead it provides a means for the MOMA operators to provide the important contextual metadata that was unanticipated during specification development. Further, the software tools being developed for instrument operators will provide a means for the operators to add this crucial metadata at the time it is best know - during operations.

  17. Feasibility of coupling a thermal/optical carbon analyzer to a quadrupole mass spectrometer for enhanced PM2.5 speciation.

    Science.gov (United States)

    Riggio, Gustavo M; Chow, Judith C; Cropper, Paul M; Wang, Xiaoliang; Yatavelli, Reddy L N; Yang, Xufei; Watson, John G

    2018-05-01

    A thermal/optical carbon analyzer (TOA), normally used for quantification of organic carbon (OC) and elemental carbon (EC) in PM 2.5 (fine particulate matter) speciation networks, was adapted to direct thermally evolved gases to an electron impact quadrupole mass spectrometer (QMS), creating a TOA-QMS. This approach produces spectra similar to those obtained by the Aerodyne aerosol mass spectrometer (AMS), but the ratios of the mass to charge (m/z) signals differ and must be remeasured using laboratory-generated standards. Linear relationships are found between TOA-QMS signals and ammonium (NH 4 + ), nitrate (NO 3 - ), and sulfate (SO 4 2- ) standards. For ambient samples, however, positive deviations are found for SO 4 2- , compensated by negative deviations for NO 3 - , at higher concentrations. This indicates the utility of mixed-compound standards for calibration or separate calibration curves for low and high ion concentrations. The sum of the QMS signals across all m/z after removal of the NH 4 + , NO 3 - , and SO 4 2- signals was highly correlated with the carbon content of oxalic acid (C₂H₂O₄) standards. For ambient samples, the OC derived from the TOA-QMS method was the same as the OC derived from the standard IMPROVE_A TOA method. This method has the potential to reduce complexity and costs for speciation networks, especially for highly polluted urban areas such as those in Asia and Africa. Ammonium, nitrate, and sulfate can be quantified by the same thermal evolution analysis applied to organic and elemental carbon. This holds the potential to replace multiple parallel filter samples and separate laboratory analyses with a single filter and a single analysis to account for a large portion of the PM 2.5 mass concentration.

  18. Single-stage accelerator mass spectrometer radiocarbon-interference identification and positive-ionisation characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Wilcken, K.M., E-mail: klaus.wilcken@ansto.gov.au [Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom); Freeman, S.P.H.T.; Xu, S.; Dougans, A. [Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom)

    2013-01-15

    A single-stage accelerator mass spectrometer (SSAMS) is a good alternative to conventional spectrometers based on tandem electrostatic acceleration for radiocarbon measurement and permits experimentation with both negative and positive carbon ions. However, such {sup 14}C AMS of either polarity ions is limited by an interference. In the case of anion acceleration we have newly determined this to be summed {sup 13}C and {sup 16}O by improvising an additional Wien filter on our SSAMS deck. Also, {sup 14}C AMS might be improved by removing its dependency on negative-ionisation in a sputter ion source. This requires negative-ionisation of sample atoms elsewhere to suppress the {sup 14}N interference, which we accomplish by transmitting initially positive ions through a thin membrane. The ionisation dependence on ion-energy is found to be consistent with previous experimentation with vapours and thicker foils.

  19. Application of quadrupole mass spectrometer to the 40Ar-39Ar geochronological study

    International Nuclear Information System (INIS)

    Takigami, Yutaka; Nishijima, Tadashi; Koike, Toshio; Okuma, Kouichi.

    1984-01-01

    A Quadrupole Mass Spectrometer (QMS) has commonly been used for qualitative analyses of gases in organic chemistry or for monitoring the vacuum conditions in industrial machines. No attempt has been made, however, to apply it to geochronological studies because of its disadvantages such as the difficulty in obtaining precise isotope ratios due to triangular peak shapes and poor reproducibility. On the other hand, there are advantages that a QMS is relatively inexpensive and gives a shorter scanning time for analysis compared with a sector type mass spectrometer. The latter characteristics is useful for 40 Ar/ 39 Ar geochronological studies, since it gives a lower background in the QMS and the possibility to obtain many more data from one sample in a limited time. In this study, we have tried to improve a commercial QMS at many parts, such as rf-generator, quadrupole, ionization chamber, source magnet, and so on, in order to meet the requirements to use it for geochronological studies. With the use of the improved QMS equipped with an on-line microcomputer, we could obtain Ar isotope data which are sufficiently precise for the 40 Ar/ 39 Ar geochronological studies. (author)

  20. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa

    OpenAIRE

    Li Yang; Xin Zhao; Fan Yang; Di Fan; Yuanzhong Jiang; Keming Luo

    2016-01-01

    WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY...