WorldWideScience

Sample records for high-sensitivity fluorescence hybridization

  1. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    Science.gov (United States)

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis.

  2. Highly Sensitive Fluorescent-labeled Probes and Glass Slide Hybridization for the Detection of Plant RNA Viruses and a Viroid

    Institute of Scientific and Technical Information of China (English)

    Zhiyou DU; Bo JIN; Wenhong LIU; Liang CHEN; Jishuang CHEN

    2007-01-01

    In this study, a modified method of the conventional RNA dot-blot hybridization was established, by replacing 32P labels with CY5 labels and replacing nylon membranes with positive-charged glass slides, for detecting plant RNA viruses and a viroid. The modified RNA dot-blot hybridization method was named glass slide hybridization. The optimum efficiency of RNA binding onto the surfaces of activated glass slide was achieved using aminosilane-coated glass slide as a solid matrix and 5×saline sodium citrate (SSC) as a spotting solution. Using a CY5-labeled DNA probe prepared through PCR amplification, the optimized glass slide hybridization could detect as little as 1.71 pg of tobacco mosaic virus (TMV) RNA.The sensitivity of the modified method was four times that of dot-blot hybridization on nylon membrane with a 32P-labeled probe. The absence of false positive within the genus Potyvirus [potato virus A, potato virus Y (PVY) and zucchini yellow mosaic virus] showed that this method was highly specific. Furthermore,potato spindle tuber viroid (PSTVd) was also detected specifically. A test of 40 field potato samples showed that this method was equivalent to the conventional dot-blot hybridization for detecting PVY and PSTVd. To our knowledge, this is the first report of using dot-blot hybridization on glass slides with fluorescent-labeled probes for detecting plant RNA viruses and a viroid.

  3. A novel detection platform for parallel monitoring of DNA hybridization with high sensitivity and specificity

    DEFF Research Database (Denmark)

    Yi, Sun; Perch-Nielsen, Ivan R.; Wang, Zhenyu;

    We developed a high-sensitive platform to monior multiple hybridization events in real time. By creating a microoptical array in a polymeric chip, the system combine the excellent discriminative power of supercritical angle fluorescence (SAF) microscopy with high-throughput capabilities...

  4. Highly sensitive turn-on fluorescence detection of thrombomodulin based on fluorescence resonance energy transfer

    Science.gov (United States)

    Kong, Liyan; Zhu, Jiaming; Wang, Wen; Jin, Lehe; Fu, Yanjiao; Duan, Bohui; Tan, Liang

    2017-02-01

    As an integral glycoprotein on the surface of endothelial cells, thrombomodulin (TM) has very high affinity for thrombin. TM has been regarded to be a marker of endothelial damage since it can be released during endothelial cell injury. In this work, a highly sensitive fluorescence method for the quantitative detection of TM was developed. TM antibody (Ab) and bovine serum albumin (BSA) were bound on gold nanoparticles (AuNPs) to construct BSA-AuNPs-Ab nanocomposites and they were characterized by transmission electron microscope and UV-vis spectrophotometry. The fluorescence of acridine orange (AO) was quenched by the prepared gold nanocomposites based on fluorescence resonance energy transfer (FRET). In the presence of TM, the fluorescence was turned on due to the effective separation of AO from the surface of gold nanocomposites. Under optimum conditions, the enhanced fluorescence intensity displayed a linear relationship with the logarithm of the TM concentration from 0.1 pg mL- 1 to 5 ng mL- 1 with a low detection limit of 12 fg mL- 1. The release of soluble thrombomodulin (sTM) by the injured HUVEC-C cells in the presence of H2O2 was investigated using the proposed method. The released sTM content in the growth medium was found to be increased with the enhancement of contact time of the cells with H2O2.

  5. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells

    Science.gov (United States)

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-06-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.

  6. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.

    Science.gov (United States)

    Xu, Shoufang; Lu, Hongzhi

    2016-11-15

    A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors.

  7. A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV.

    Science.gov (United States)

    Liang, Caishuang; Wang, Huan; He, Kui; Chen, Chunyan; Chen, Xiaoming; Gong, Hang; Cai, Changqun

    2016-11-01

    Major stumbling blocks in the recognition and detection of virus are the unstable biological recognition element or the complex detection means. Here a fluorescent sensor based on virus-molecular imprinted polymers (virus-MIPs) was designed for specific recognition and highly sensitive detection of Japanese encephalitis virus (JEV). The virus-MIPs were anchored on the surface of silica microspheres modified by fluorescent dye, pyrene-1-carboxaldehyde (PC). The fluorescence intensity of PC can be enhanced by the principle of fluorescence resonance energy transfer (FRET), where virus acted as energy donor and PC acted as energy acceptor. The enhanced fluorescence intensity was proportional to the concentration of virus in the range of 24-960pM, with a limit of detection (LOD, 3σ) of 9.6pM, and the relative standard deviation was 1.99%. In additional, the specificity study confirmed the resultant MIPs has high-selectivity for JEV. This sensor would become a new key for the detection of virus because of its high sensitive, simple operation, high stability and low cost.

  8. Facile synthesis of fluorescent Au/Ce nanoclusters for high-sensitive bioimaging.

    Science.gov (United States)

    Ge, Wei; Zhang, Yuanyuan; Ye, Jing; Chen, Donghua; Rehman, Fawad Ur; Li, Qiwei; Chen, Yun; Jiang, Hui; Wang, Xuemei

    2015-02-03

    Tumor-target fluorescence bioimaging is an important means of early diagnosis, metal nanoclusters have been used as an excellent fluorescent probe for marking tumor cells due to their targeted absorption. We have developed a new strategy for facile synthesis of Au/Ce nanoclusters (NCs) by doping trivalent cerium ion into seed crystal growth process of gold. Au/Ce NCs have bright fluorescence which could be used as fluorescent probe for bioimaging. In this study, we synthesized fluorescent Au/Ce NCs through two-step hydrothermal reaction. The concentration range of 25-350 μM, Au/Ce NCs have no obvious cell cytotoxicity effect on HeLa, HepG2 and L02 cells. Furthermore, normal cells (L02) have no obvious absorption of Au/Ce NCs. Characterization of synthesized Au/Ce NCs was done by using TEM, EDS and XPS. Then these prepared Au/Ce NCs were applied for in vitro/in vivo tumor-target bioimaging due to its prolonged fluorescence lifetime and bright luminescence properties. The glutathione stabilized Au/Ce NCs synthesized through hydrothermal reaction possess stable and bright fluorescence that can be readily utilized for high sensitive fluorescence probe. Our results suggest that Au/Ce NCs are useful candidate for in vitro/in vivo tumor bioimaging in potential clinical application.

  9. Highly Sensitive Fluorescence Probe Based on Functional SBA-15 for Selective Detection of Hg2+

    Directory of Open Access Journals (Sweden)

    Wang Xiaoyu

    2010-01-01

    Full Text Available Abstract An inorganic–organic hybrid fluorescence chemosensor (DA/SBA-15 was prepared by covalent immobilization of a dansylamide derivative into the channels of mesoporous silica material SBA-15 via (3-aminopropyltriethoxysilane (APTES groups. The primary hexagonally ordered mesoporous structure of SBA-15 was preserved after the grafting procedure. Fluorescence characterization shows that the obtained inorganic–organic hybrid composite is highly selective and sensitive to Hg2+ detection, suggesting the possibility for real-time qualitative or quantitative detection of Hg2+ and the convenience for potential application in toxicology and environmental science.

  10. Highly sensitive fluorescence detection of avidin/streptavidin with an optical interference mirror slide.

    Science.gov (United States)

    Yasuda, Mitsuru; Akimoto, Takuo

    2012-01-01

    This paper presents highly sensitive fluorescence detections of avidin and streptavidin using an optical interference mirror (OIM) slide consisting of a plane mirror covered with an optical interference layer. Compared with a common glass slide, the OIM slide can enhance the fluorescence from a dye by more than 100-fold. We fabricated an OIM slide by depositing an optical interference layer of Al(2)O(3) on an Ag mirror. To enhance the fluorescence maximally, the optimal thickness of the Al(2)O(3) layer was estimated from optical interference theory. For detections of protein, avidin/streptavidin labeled with fluorescein, Cy3, and Cy5 were detected with biotin immobilized on an OIM slide with the optimal Al(2)O(3) thickness. We achieved a sensitivity improvement of more than 50-fold, comparing with a glass slide. Such a high degree of improvement would be a significant contribution to further progress in biomedical research and medical diagnostics.

  11. Fluorescent hybridization probes for nucleic acid detection.

    Science.gov (United States)

    Guo, Jia; Ju, Jingyue; Turro, Nicholas J

    2012-04-01

    Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.

  12. Nanoparticle Aggregate-Based Fluorescence Enhancement for Highly Sensitive and Reproducible Detection of DNA

    NARCIS (Netherlands)

    Annink, C.; Gill, R.

    2014-01-01

    Sensitive detection of DNA at the sub picomolar range is demonstrated using a magnetic bead sandwich hybridization assay coupled with surface-enhanced fluorescence (SEF)-based amplification. Unlike enzymatic amplification, the SEF amplification step does not add any additional background to the meas

  13. Nanoplatforms for highly sensitive fluorescence detection of cancer-related proteases.

    Science.gov (United States)

    Wang, Hongwang; Udukala, Dinusha N; Samarakoon, Thilani N; Basel, Matthew T; Kalita, Mausam; Abayaweera, Gayani; Manawadu, Harshi; Malalasekera, Aruni; Robinson, Colette; Villanueva, David; Maynez, Pamela; Bossmann, Leonie; Riedy, Elizabeth; Barriga, Jenny; Wang, Ni; Li, Ping; Higgins, Daniel A; Zhu, Gaohong; Troyer, Deryl L; Bossmann, Stefan H

    2014-02-01

    Numerous proteases are known to be necessary for cancer development and progression including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins. The goal of this research is to develop an Fe/Fe3O4 nanoparticle-based system for clinical diagnostics, which has the potential to measure the activity of cancer-associated proteases in biospecimens. Nanoparticle-based "light switches" for measuring protease activity consist of fluorescent cyanine dyes and porphyrins that are attached to Fe/Fe3O4 nanoparticles via consensus sequences. These consensus sequences can be cleaved in the presence of the correct protease, thus releasing a fluorescent dye from the Fe/Fe3O4 nanoparticle, resulting in highly sensitive (down to 1 × 10(-16) mol l(-1) for 12 proteases), selective, and fast nanoplatforms (required time: 60 min).

  14. Magnetic-fluorescent-targeting multifunctional aptasensorfor highly sensitive and one-step rapid detection of ochratoxin A.

    Science.gov (United States)

    Wang, Chengquan; Qian, Jing; Wang, Kan; Wang, Kun; Liu, Qian; Dong, Xiaoya; Wang, Chengke; Huang, Xingyi

    2015-06-15

    A multifunctional aptasensor for highly sensitive and one-step rapid detection of ochratoxin A (OTA), has been developed using aptamer-conjugated magnetic beads (MBs) as the recognition and concentration element and a heavy CdTe quantum dots (QDs) as the label. Initially, the thiolated aptamer was conjugated on the Fe3O4@Au MBs through Au-S covalent binding. Subsequently, multiple CdTe QDs were loaded both in and on a versatile SiO2 nanocarrier to produce a large amplification factor of hybrid fluorescent nanoparticles (HFNPs) labeled complementary DNA (cDNA). The magnetic-fluorescent-targeting multifunctional aptasensor was thus fabricated by immobilizing the HFNPs onto MBs' surface through the hybrid reaction between the aptamer and cDNA. This aptasensor can be produced at large scale in a single run, and then can be conveniently used for rapid detection of OTA through a one-step incubation procedure. The presence of OTA would trigger aptamer-OTA binding, resulting in the partial release of the HFNPs into bulk solution. After a simple magnetic separation, the supernatant liquid of the above solution contained a great number of CdTe QDs produced an intense fluorescence emission. Under the optimal conditions, the fluorescence intensity of the released HFNPs was proportional to the concentration of OTA in a wide range of 15 pg mL(-1) -100 ng mL(-1) with a detection limit of 5.4 pg mL(-1) (S/N=3). This multifunctional aptasensor represents a promising path toward routine quality control of food safety, and also creates the opportunity to develop aptasensors for other targets using this strategy.

  15. Magnetic Separation-Assistant Fluorescence Resonance Energy Transfer Inhibition for Highly Sensitive Probing of Nucleolin.

    Science.gov (United States)

    Li, Yan-Ran; Liu, Qian; Hong, Zhangyong; Wang, He-Fang

    2015-12-15

    For the widely used "off-on" fluorescence (or phosphorescence) resonance energy transfer (FRET or PRET) system, the separation of donors and acceptors species was vital for enhancing the sensitivity. To date, separation of free donors from FRET/PRET inhibition systems was somewhat not convenient, whereas separation of the target-induced far-between acceptors has hardly been reported yet. We presented here a novel magnetic separation-assistant fluorescence resonance energy transfer (MS-FRET) inhibition strategy for highly sensitive detection of nucleolin using Cy5.5-AS1411 as the donor and Fe3O4-polypyrrole core-shell (Fe3O4@PPY) nanoparticles as the NIR quenching acceptor. Due to hydrophobic interaction and π-π stacking of AS1411 and PPY, Cy5.5-AS1411 was bound onto the surface of Fe3O4@PPY, resulting in 90% of fluorescence quenching of Cy5.5-AS1411. Owing to the much stronger specific interaction of AS1411 and nucleolin, the presence of nucleolin could take Cy5.5-AS1411 apart from Fe3O4@PPY and restore the fluorescence of Cy5.5-AS1411. The superparamagnetism of Fe3O4@PPY enabled all separations and fluorescence measurements complete in the same quartz cell, and thus allowed the convenient but accurate comparison of the sensitivity and fluorescence recovery in the cases of separation or nonseparation. Compared to nonseparation FRET inhibition, the separation of free Cy5.5-AS1411 from Cy5.5-AS1411-Fe3O4@PPY solution (the first magnetic separation, MS-1) had as high as 25-fold enhancement of the sensitivity, whereas further separation of the nucleolin-inducing far-between Fe3O4@PPY from the FRET inhibition solution (the second magnetic separation, MS-2) could further enhance the sensitivity to 35-fold. Finally, the MS-FRET inhibition assay displayed the linear range of 0.625-27.5 μg L(-1) (8.1-359 pM) and detection limit of 0.04 μg L(-1) (0.05 pM) of nucleolin. The fluorescence intensity recovery (the percentage ratio of the final restoring fluorescence intensity

  16. Highly Sensitive and Miniaturized Fluorescence Detection System with an Autonomous Capillary Fluid Manipulation Chip

    Directory of Open Access Journals (Sweden)

    Ji Fang

    2012-05-01

    Full Text Available This paper presents a novel, highly sensitive and ultra-small fluorescent detection system, including an autonomous capillary fluid manipulation chip. The optical detector integrates a LED light source, all necessary optical components, and a photodiode with preamplifier into one package of about 2 cm × 2 cm × 2 cm. Also, the low-cost and simple pumpless microfluidic device works well in sample preparation and manipulation. This chip consists of capillary stop valves and trigger valves which are fabricated by lithography and then bonded with a polydimethylsiloxane-ethylene oxide polymer polydimethylsiloxane (PEO-PDMS cover. The contact angle of the PEO-PDMS can be adjusted by changing the concentration of the PEO. Hence, the fluidic chip can achieve functionalities such as timing features and basic logical functions. The prototype has been tested by fluorescence dye 5-Carboxyfluorescein (5-FAM dissolved into the solvent DMSO (Dimethyl Sulfoxide. The results prove a remarkable sensitivity at a pico-scale molar, around 1.08 pM. The low-cost and miniaturized optical detection system, with a self-control capillary-driven microfluidic chip developed in this work, can be used as the crucial parts in portable biochemical detection applications and point of care testing.

  17. Highly sensitive immunoassay of protein molecules based on single nanoparticle fluorescence detection in a nanowell

    Science.gov (United States)

    Han, Jin-Hee; Kim, Hee-Joo; Lakshmana, Sudheendra; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2011-03-01

    A nanoarray based-single molecule detection system was developed for detecting proteins with extremely high sensitivity. The nanoarray was able to effectively trap nanoparticles conjugated with biological sample into nanowells by integrating with an electrophoretic particle entrapment system (EPES). The nanoarray/EPES is superior to other biosensor using immunoassays in terms of saving the amounts of biological solution and enhancing kinetics of antibody binding due to reduced steric hindrance from the neighboring biological molecules. The nanoarray patterned onto a layer of PMMA and LOL on conductive and transparent indium tin oxide (ITO)-glass slide by using e-beam lithography. The suspension of 500 nm-fluorescent (green emission)-carboxylated polystyrene (PS) particles coated with protein-A followed by BDE 47 polyclonal antibody was added to the chip that was connected to the positive voltage. The droplet was covered by another ITO-coated-glass slide and connected to a ground terminal. After trapping the particles into the nanowells, the solution of different concentrations of anti-rabbit- IgG labeled with Alexa 532 was added for an immunoassay. A single molecule detection system could quantify the anti-rabbit IgG down to atto-mole level by counting photons emitted from the fluorescent dye bound to a single nanoparticle in a nanowell.

  18. Fluorescent trimethyl-substituted naphthyridine as a label-free signal reporter for one-step and highly sensitive fluorescent detection of DNA in serum samples.

    Science.gov (United States)

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo; Che, Ruping; Luo, Pinchen; Meng, Changgong

    2017-01-15

    A facile label-free sensing method is developed for the one-step and highly sensitive fluorescent detection of DNA, which couples the specific C-C mismatch bonding and fluorescent quenching property of a trimethyl-substituted naphthyridine dye (ATMND) with the exonuclease III (Exo III) assisted cascade target recycling amplification strategy. In the absence of target DNA, the DNA hairpin probe with a C-C mismatch in the stem and more than 4 bases overhung at the 3' terminus could entrap and quench the fluorescence of ATMND and resist the digestion of Exo III, thus showing a low fluorescence background. In the presence of the target, however, the hybridization event between the two protruding segments and the target triggers the digestion reaction of Exo III, recycles the initial target, and simultaneously releases both the secondary target analogue and the ATMND caged in the stem. The released initial and secondary targets take part in another cycle of digestion, thus leading to the release of a huge amount of free ATMND for signal transducing. Based on the fluorescence recovery, the as-proposed label-free fluorescent sensing strategy shows very good analytical performances towards DNA detection, such as a wide linear range from 10pM to 1μM, a low limit of detection of 6pM, good selectivity, and a facile one-step operation at room temperature. Practical sample analysis in serum samples indicates the method has good precision and accuracy, which may thus have application potentials for point-of-care screening of DNA in complex clinical and environmental samples.

  19. Highly sensitive and fast-responsive fluorescent chemosensor for palladium: reversible sensing and visible recovery.

    Science.gov (United States)

    Li, Honglin; Fan, Jiangli; Hu, Mingming; Cheng, Guanghui; Zhou, Danhong; Wu, Tong; Song, Fengling; Sun, Shiguo; Duan, Chunying; Peng, Xiaojun

    2012-09-24

    The well-known rhodamine spiro-lactam framework offers an ideal model for the development of fluorescence-enhanced chemosensors through simple and convenient syntheses. Herein, we report a new tridentate PNO receptor, which was introduced into a rhodamine spiro-lactam system to develop Pd(2+)-chemosensor RPd4, that displayed significantly improved sensing properties for palladium. Compound RPd4 shows a very fast response time (about 5 s), high sensitivity (5 nM), and excellent specificity for Pd(2+) ions over other PGE ions (Pt(2+), Rh(3+), and Ru(3+)). In addition, RPd4 displays quite different responses to different valence states of the Pd ions, that is, very fast response towards Pd(2+) ions but slow response towards Pd(0), which may provide us with a convenient method for the selective discrimination of Pd species in different valence states. According to proof-of-concept experiments, RPd4 has potential applications in Pd(2+)-analysis in drug compounds, water, soil, and leaf samples. Owing to its good reversibility, RPd4 can also be used as a sensor material for the selective detection and visual recovery of trace Pd(2+) ions in environmental samples.

  20. Construction of optical glucose nanobiosensor with high sensitivity and selectivity at physiological pH on the basis of organic-inorganic hybrid microgels.

    Science.gov (United States)

    Wu, Weitai; Zhou, Ting; Aiello, Michael; Zhou, Shuiqin

    2010-08-15

    A new class of optical glucose nanobiosensors with high sensitivity and selectivity at physiological pH is described. To construct these glucose nanobiosensors, the fluorescent CdS quantum dots (QDs), serving as the optical code, were incorporated into the glucose-sensitive poly(N-isopropylacrylamide-acrylamide-2-acrylamidomethyl-5-fluorophenylboronic acid) copolymer microgels, via both in situ growth method and "breathing in" method, respectively. The polymeric gel can adapt to surrounding glucose concentrations, and regulate the fluorescence of the embedded QDs, converting biochemical signals into optical signals. The gradual swelling of the gel would lead to the quenching of the fluorescence at the elevated glucose concentrations. The hybrid microgels displayed high selectivity to glucose over the potential primary interferents of lactate and human serum albumin in the physiologically important glucose concentration range. The stability, reversibility, and sensitivity of the organic-inorganic hybrid microgel-based biosensors were also systematically studied. These general properties of our nanobiosensors are well tunable under appropriate tailor on the hybrid microgels, in particular, simply through the change in the crosslinking degree of the microgels. The optical glucose nanobiosensors based on the organic-inorganic hybrid microgels have shown the potential for a third generation fluorescent biosensor.

  1. Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen.

    Science.gov (United States)

    Jolly, Pawan; Tamboli, Vibha; Harniman, Robert L; Estrela, Pedro; Allender, Chris J; Bowen, Jenna L

    2016-01-15

    This study reports the design and evaluation of a new synthetic receptor sensor based on the amalgamation of biomolecular recognition elements and molecular imprinting to overcome some of the challenges faced by conventional protein imprinting. A thiolated DNA aptamer with established affinity for prostate specific antigen (PSA) was complexed with PSA prior to being immobilised on the surface of a gold electrode. Controlled electropolymerisation of dopamine around the complex served to both entrap the complex, holding the aptamer in, or near to, it's binding conformation, and to localise the PSA binding sites at the sensor surface. Following removal of PSA, it was proposed that the molecularly imprinted polymer (MIP) cavity would act synergistically with the embedded aptamer to form a hybrid receptor (apta-MIP), displaying recognition properties superior to that of aptamer alone. Electrochemical impedance spectroscopy (EIS) was used to evaluate subsequent rebinding of PSA to the apta-MIP surface. The apta-MIP sensor showed high sensitivity with a linear response from 100pg/ml to 100ng/ml of PSA and a limit of detection of 1pg/ml, which was three-fold higher than aptamer alone sensor for PSA. Furthermore, the sensor demonstrated low cross-reactivity with a homologous protein (human Kallikrein 2) and low response to human serum albumin (HSA), suggesting possible resilience to the non-specific binding of serum proteins.

  2. Salicyaldehyde-based fluorescent sensors with high sensitivity for amino acids

    Institute of Scientific and Technical Information of China (English)

    Xi Huai Qiang; Zhi Hui Gao; Xue Chuan Wang; Jian Zheng Li; Hui Zong; Chi Min Du

    2011-01-01

    Structurally simple salicylaldehyde-based fluorescent sensors for amino acids have been obtained by one-step or two-step synthesis. These sensors show significant fluorescence enhancement in the presence of many amino acids at concentrations as low as 10 5 mol/L. The reversible reaction of the aldehydes with amino acids to form imines in aqueous solution is proposed to account for the observed fluorescence enhancement.

  3. Key Structural Elements of Unsymmetrical Cyanine Dyes for Highly Sensitive Fluorescence Turn-On DNA Probes.

    Science.gov (United States)

    Uno, Kakishi; Sasaki, Taeko; Sugimoto, Nagisa; Ito, Hideto; Nishihara, Taishi; Hagihara, Shinya; Higashiyama, Tetsuya; Sasaki, Narie; Sato, Yoshikatsu; Itami, Kenichiro

    2017-01-17

    Unsymmetrical cyanine dyes, such as thiazole orange, are useful for the detection of nucleic acids with fluorescence because they dramatically enhance the fluorescence upon binding to nucleic acids. Herein, we synthesized a series of unsymmetrical cyanine dyes and evaluated their fluorescence properties. A systematic structure-property relationship study has revealed that the dialkylamino group at the 2-position of quinoline in a series of unsymmetrical cyanine dyes plays a critical role in the fluorescence enhancement. Four newly designed unsymmetrical cyanine dyes showed negligible intrinsic fluorescence in the free state and strong fluorescence upon binding to double-stranded DNA (dsDNA) with a quantum yield of 0.53 to 0.90, which is 2 to 3 times higher than previous unsymmetrical cyanine dyes. A detailed analysis of the fluorescence lifetime revealed that the dialkylamino group at the 2-position of quinoline suppressed nonradiative decay in favor of increased fluorescence quantum yield. Moreover, these newly developed dyes were able to stain the nucleus specifically in fixed HeLa cells examined by using a confocal laser-scanning microscope.

  4. High sensitivity fluorescent single particle and single molecule detection apparatus and method

    Energy Technology Data Exchange (ETDEWEB)

    Mathies, Richard A. (Contra Costa County, CA); Peck, Konan (Contra Costa County, CA); Stryer, Lubert (Santa Clara County, CA)

    1990-01-01

    Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

  5. High-sensitivity single-molecule fluorescence detection in theory and practice

    Energy Technology Data Exchange (ETDEWEB)

    Mathies, R.A.; Peck, K. (California Univ., Berkeley, CA (United States). Dept. of Chemistry); Stryer, L. (Stanford Univ., CA (United States). Dept. of Cell Biology)

    1989-01-01

    The number of emitted photons that can be obtained from a fluorophore increases with the incident light intensity and the duration of illumination. However, saturation of the absorption transition and photodestruction place natural limits on the ultimate signal-to-noise ratio that can be obtained. Equations have been derived to describe the fluorescence-to-background-noise ratio in the presence of saturating light intensities and photodestruction. The fluorescence lifetime and the photodestruction quantum yield are the key parameters that determine the optimum light intensity and exposure time. To test this theory we have performed single molecule detection of phycoerythrin (PE). The laser power was selected to give a mean time between absorptions approximately equal to the fluorescence decay rate. The transit time was selected to be nearly equal to the photodestruction time of {approximately}600 {mu}s. Under these conditions the photocount distribution function, the photocount autocorrelation function, and the concentration dependence clearly show that we are detecting bursts of fluorescence from individual fluorophores. A hard-wired version of this single-molecule detection system was used to measure the concentration of PE down to 10{sup {minus}15} M. This single-molecule counter is three orders-of-magnitude more sensitive than conventional fluorescence detection systems. The approach presented here should be useful in the optimization of fluorescence detected DNA sequencing gels. 17 refs., 4 figs.

  6. A highly sensitive fluorescence probe for metallothioneins based on tiron-copper complex.

    Science.gov (United States)

    Xiao, Xilin; Xue, Jinhua; Liao, Lifu; Huang, Mingyang; Zhou, Bin; He, Bo

    2015-06-15

    The fabrication of tiron-copper complex as a novel fluorescence probe for the sensitive directly detection of metallothioneins at nanomolar levels was demonstrated. In Britton-Robinson (B-R) buffer (pH 7.50), the interaction of bis(tiron)copper(II) complex cation [Cu(tiron)2](2+) and metallothioneins enhanced the fluorescence intensity of the system. The fluorescence enhancement at 347 nm was proportional to the concentration of metallothioneins. The mechanism was studied and discussed in terms of the fluorescence spectra. Under the optimal experimental conditions, at 347 nm, there was a linear relationship between the fluorescence intensity and the concentration of the metallothioneins in the range of 8.80 × 10(-9)-7.70 × 10(-7)mol L(-1), with a correlation coefficient of r=0.995 and detection limit 2.60 × 10(-9)mol L(-1). The relative standard deviation was 0.77% (n=11), and the average recovery 94.4%. The method proposed was successfully reliable, selective and sensitive in determining of trace metallothioneins in fish visceral organ samples with the results in good agreement with those obtained by HPLC.

  7. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision

    Science.gov (United States)

    Kukulski, Wanda; Schorb, Martin; Welsch, Sonja; Picco, Andrea

    2011-01-01

    Correlative electron and fluorescence microscopy has the potential to elucidate the ultrastructural details of dynamic and rare cellular events, but has been limited by low precision and sensitivity. Here we present a method for direct mapping of signals originating from ∼20 fluorescent protein molecules to 3D electron tomograms with a precision of less than 100 nm. We demonstrate that this method can be used to identify individual HIV particles bound to mammalian cell surfaces. We also apply the method to image microtubule end structures bound to mal3p in fission yeast, and demonstrate that growing microtubule plus-ends are flared in vivo. We localize Rvs167 to endocytic sites in budding yeast, and show that scission takes place halfway through a 10-s time period during which amphiphysins are bound to the vesicle neck. This new technique opens the door for direct correlation of fluorescence and electron microscopy to visualize cellular processes at the ultrastructural scale. PMID:21200030

  8. Radiochemical Analysis by High Sensitivity Micro X-Ray Fluorescence Detection

    Energy Technology Data Exchange (ETDEWEB)

    Ning Gao

    2006-05-12

    The primary objective of the project was to develop a novel dual-optic x-ray fluorescence instrument capable of doing radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford Site.

  9. HistoFlex-a microfluidic device providing uniform flow conditions enabling highly sensitive, reproducible and quantitative in situ hybridizations

    DEFF Research Database (Denmark)

    Søe, Martin Jensen; Okkels, Fridolin; Sabourin, David;

    2011-01-01

    slides of spotted DNA microarrays when applying probe concentrations generally used in in situ hybridization (ISH) assays. The HistoFlex's novel ability in online monitoring of an in situ hybridization assay was demonstrated using direct fluorescent detection of hybridization to 18S rRNA. Tissue sections...... were not visually damaged during assaying, which enabled adapting a complete ISH assay for detection of microRNAs (miRNA). The effects of flow based incubations on hybridization, antibody incubation and Tyramide Signal Amplification (TSA) steps were investigated upon adapting the ISH assay...

  10. Ag Nanoparticles-enhanced Fluorescence of Terbium-Deferasirox Complexes for the Highly Sensitive Determination of Deferasirox.

    Science.gov (United States)

    Abolhasani, Jafar; Naderali, Roza; Hassanzadeh, Javad

    2016-01-01

    We describe the effect of different sized gold and silver nanoparticles on the terbium sensitized fluorescence of deferasirox. It is indicated that silver nanostructures, especially 18 nm Ag nanoparticles (AgNPs), have a remarkable amplifying effect compared to Au nanoparticles. Based on this observation, a highly sensitive and selective method was developed for the determination of deferasirox. Effects of various parameters like AgNPs and Tb(3+) concentration and pH of media were investigated. Under the optimal conditions, a calibration curve was plotted as the fluorescence intensities versus the concentration of deferasirox in the range of 0.1 to 200 nmol L(-1), and detection limit of 0.03 nmol L(-1) was obtained. The method has good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of deferasirox in urine and pharmaceutical samples.

  11. High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system.

    Science.gov (United States)

    Tan, Yafang; Tang, Tiantian; Xu, Haisheng; Zhu, Chenqi; Cunningham, Brian T

    2015-11-15

    We demonstrate a platform that integrates photonic crystal enhanced fluorescence (PCEF) detection of a surface-based microspot fluorescent assay with a microfluidic cartridge to achieve simultaneous goals of high analytic sensitivity (single digit pg/mL), high selectivity, low sample volume, and assay automation. The PC surface, designed to provide optical resonances for the excitation wavelength and emission wavelength of Cyanines 5 (Cy5), was used to amplify the fluorescence signal intensity measured from a multiplexed biomarker microarray. The assay system is comprised of a plastic microfluidic cartridge for holding the PC and an assay automation system that provides a leak-free fluid interface during introduction of a sequence of fluids under computer control. Through the use of the assay automation system and the PC embedded within the microfluidic cartridge, we demonstrate pg/mL-level limits of detection by performing representative biomarker assays for interleukin 3 (IL3) and Tumor Necrosis Factor (TNF-α). The results are consistent with limits of detection achieved without the use of the microfluidic device with the exception that coefficients of variability from spot-to-spot are substantially lower than those obtained by performing assays with manual manipulation of assay liquids. The system's capabilities are compatible with the goal of diagnostic instruments for point-of-care settings.

  12. Highly sensitive turn-on fluorescent detection of captopril based on energy transfer between fluorescein isothiocyanate and gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hormozi-Nezhad, M. Reza, E-mail: hormozi@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, PO Box 11365-9161 (Iran, Islamic Republic of); Bagheri, H.; Bohloul, A.; Taheri, N.; Robatjazi, H. [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of)

    2013-02-15

    A novel approach for highly sensitive detection of captopril was developed based on the fluorescence resonance energy transfer (FRET) between gold nanoparticles (Au NPs) and fluorescein isothiocyanate (FITC), in which FITC acts as the donor and Au NPs as the acceptor. The fluorescence intensity of fluorescein isothiocyanate (FITC) was strictly quenched as a result of noncovalently adsorbed on Au NPs. Upon the addition of captopril, the fluorescence intensity of FITC 'turn-on' due to the competition between captopril and FITC towards the surface of Au NPs. Under the optimum conditions, the fluorescence intensity of the released FITC displays a linear relationship in the range of 20 {mu}g L{sup -1} to 500 {mu}g L{sup -1} of captopril. Lower limit of detection for captopril, at the signal-to-noise ratio of 3 (3{sigma}), was 2.6 {mu}g L{sup -1}. The developed methodology was successfully applied for the determination of captopril in human plasma. - Highlights: Black-Right-Pointing-Pointer Detection of Captopril at PPb levels using FRET method. Black-Right-Pointing-Pointer We study effect of variables on FRET process for determination of Captopril. Black-Right-Pointing-Pointer Detecting Captopril in real samples e.g. Human plasma.

  13. Highly sensitive fluorescence optode based on polymer inclusion membranes for determination of Al(III) ions.

    Science.gov (United States)

    Suah, F B M; Ahmad, M; Heng, L Y

    2014-07-01

    This paper reports the use of a polymer inclusion membranes (PIMs) for direct determination of Al(III) ions in natural water by using a fluorescence based optode. The best composition of the PIMs consisted of 60 wt.% (m/m) poly (vinyl chloride) (PVC) as the base polymer, 20 wt.% (m/m) triton X-100 as an extractant, 20 wt.% (m/m) dioctyl phthalate (DOP) as plasticizer and morin as the reagent, was used in this study. The inclusion of triton X-100 was used for enhancing the sorption of Al(III) ions from liquid phase into the membrane phase, thus increasing the optode fluorescence intensity. The optimized optode was characterized by a linear calibration curve in the range from 7.41 × 10(-7) to 1.00 × 10(-4) molL(-1) of Al(III), with a detection limit of 5.19 × 10(-7) molL(-1). The response of the optode was 4 min and reproducible results were obtained for eight different membranes demonstrated good membrane stability. The optode was applied to the determination of Al(III) in natural water samples. The result obtained is comparable to atomic absorption spectrometry method.

  14. Highly sensitive rapid fluorescence detection of protein residues on surgical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, Valeri I [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Bartona, James S [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Richardson, Patricia R [School of Chemistry, University of Edinburgh, Edinburgh, EH9 3JJ (United Kingdom); Jones, Anita C [School of Chemistry, University of Edinburgh, Edinburgh, EH9 3JJ (United Kingdom)

    2006-07-15

    There is a risk of contamination of surgical instruments by infectious protein residues, in particular, prions which are the agents for Creutzfeldt-Jakob Disease in humans. They are exceptionally resistant to conventional sterilization, therefore it is important to detect their presence as contaminants so that alternative cleaning procedures can be applied. We describe the development of an optimized detection system for fluorescently labelled protein, suitable for in-hospital use. We show that under optimum conditions the technique can detect {approx}10 attomole/cm{sup 2} with a scan speed of {approx}3-10 cm{sup 2}/s of the test instrument's surface. A theoretical analysis and experimental measurements will be discussed.

  15. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George J.; Gao, Ning

    2003-06-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. The polycapillary optic will also be used to collect the X-rays from the excitation site. This will effectively screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. This dual-capillary design is essentially a confocal (having the same foci) design, i.e. the detected X-rays are only emitted from the overlap of the two focal spots. This increases spatial resolution and reduce s background. The integration of the X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.

  16. Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George J.; Gao, Ning

    2004-06-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. The polycapillary optic will also be used to collect the X-rays from the excitation site. This will effectively screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. This dual-capillary design is essentially a confocal (having the same foci) design, i.e. the detected X-rays are only emitted from the overlap of the two focal spots. This increases spatial resolution and reduces background. The integration of the X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.

  17. Highly sensitive fluorescence sensing of zearalenone using a novel aptasensor based on upconverting nanoparticles.

    Science.gov (United States)

    Wu, Zhengzong; Xu, Enbo; Chughtai, Muhammad F J; Jin, Zhengyu; Irudayaraj, Joseph

    2017-09-01

    A facile strategy was successfully developed for the detection of zearalenone (ZEN). In this assay, highly fluorescent upconversion nanoparticles were synthesized and conjugated with the complementary oligonucleotide of ZEN aptamer for use as signal probes. Magnetic nanoparticles immobilized with the ZEN aptamer were assigned as capture probes. The results exhibited that the linear correlation between the decreased luminescence intensity of the signal and the concentration of ZEN was very strong (R(2)=0.9957) in the range of 0.05-100μg/L. In addition, the limit of detection of the proposed method (0.126μg/kg for corn and 0.007μg/L for beer) was significantly lower than the existing methods. Furthermore, the reliability of the competitive immunoassay format was validated by comparing the results determined in real food samples to those obtained from a commercially available method. Overall, the novel aptasensor have showed great potential for rapid and accurate ZEN determination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George J.; Gao, Ning

    2002-06-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and double bent crystals, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. Polycapillaries will also be used to collect the X-rays from the excitation site and screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. A doubly bent crystal used as the focusing optic produces focused monochromatic X-ray excitation, which eliminates the bremsstrahlung background from the X-ray source. The coupling of the doubly bent crystal for monochromatic excitation with a polycapillary for signal collection can effectively eliminate the noise background and radiation background from the specimen. The integration of these X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.

  19. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jingjin; Ma, Yefei [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004 (China); Kong, Rongmei [The Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165 (China); Zhang, Liangliang, E-mail: liangzhang319@163.com [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004 (China); Yang, Wen; Zhao, Shulin [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004 (China)

    2015-08-05

    Herein, we introduced a tungsten disulfide (WS{sub 2}) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3′-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS{sub 2} nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS{sub 2} nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics. - Highlights: • A fluorescence polarization strategy for DNA glycosylase activity detection was developed. • The present method was based on WS{sub 2} nanosheet and exonuclease III co-assisted signal amplification. • A high sensitivity and desirable selectivity were achieved. • This method provides a promising universal platform for DNA

  20. Highly sensitive and rapid bacteria detection using molecular beacon-Au nanoparticles hybrid nanoprobes.

    Science.gov (United States)

    Cao, Jing; Feng, Chao; Liu, Yan; Wang, Shouyu; Liu, Fei

    2014-07-15

    Since many diseases are caused by pathogenic bacterial infections, accurate and rapid detection of pathogenic bacteria is in urgent need to timely apply appropriate treatments and to reduce economic costs. To end this, we designed molecular beacon-Au nanoparticle hybrid nanoprobes to improve the bacterial detection efficiency and sensitivity. Here, we show that the designed molecular beacon modified Au nanoparticles could specifically recognize synthetic DNAs targets and can readily detect targets in clinical samples. Moreover, the hybrid nanoprobes can recognize Escherichia coli within an hour at a concentration of 10(2) cfu/ml, which is 1000-folds sensitive than using molecular beacon directly. Our results show that the molecular beacon-Au nanoparticle hybrid nanoprobes have great potential in medical and biological applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A Conjugated Aptamer-Gold Nanoparticle Fluorescent Probe for Highly Sensitive Detection of rHuEPO-α

    Directory of Open Access Journals (Sweden)

    Zhaoyang Zhang

    2011-11-01

    Full Text Available We present here a novel conjugated aptamer-gold nanoparticle (Apt-AuNPs fluorescent probe and its application for specific detection of recombinant human erythropoietin-α (rHuEPO-α. In this nanobiosensor, 12 nm AuNPs function as both a nano-scaffold and a nano-quencher (fluorescent energy acceptor, on the surface of which the complementary sequences are linked (as cODN-AuNPs and pre-hybridized with carboxymethylfluorescein (FAM-labeled anti-rHuEPO-α aptamers. Upon target protein binding, the aptamers can be released from the AuNP surface and the fluorescence signal is restored. Key variables such as the length of linker, the hybridization site and length have been designed and optimized. Full performance evaluation including sensitivity, linear range and interference substances are also described. This nanobiosensor provides a promising approach for a simple and direct quantification of rHuEPO-α concentrations as low as 0.92 nM within a few hours.

  2. Highly sensitive colorimetric and fluorescent sensor for cyanazine based on the inner filter effect of gold nanoparticles

    Science.gov (United States)

    Dong, Liang; Hou, Changjun; Yang, Mei; Fa, Huanbao; Wu, Huixiang; Shen, Caihong; Huo, Danqun

    2016-06-01

    Cyanazine residue poses a great threat to human health and its derivatives would remain in soils, natural waters, and other environmental domains for a long time. Herein, a simple, rapid, and ultra-sensitive analytical method for the determination of cyanazine (CZ) based on inner filter effect (IFE) of Au nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs) is first described in this study. With the presence of citrate-stabilized AuNPs, the fluorescence of GSH-capped CdTe QDs was remarkably quenched by AuNPs via IFE. The fluorescence of the AuNP-CdTe QD system was recovered upon addition of CZ. CZ can adsorb on to the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on CdTe QDs was weakened, and the fluorescence intensity of CdTe QDs was recovered accordingly. A good linear correlation for detection of CZ was exhibited from 0.05 to 9 μM, and the detection limit reached 0.1568 μM, which was much lower than the safety limit required by the USA, the UK, and China. In order to probe into the selectivity of AuNPs towards CZ over other pesticides, various frequently used pesticides were mixed with AuNPs. AuNP composite solution shows good selectivity towards CZ among other pesticides. This method was successfully carried out for the assessment of CZ in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost, and non-time-consuming compared with traditional methods.

  3. HistoFlex--a microfluidic device providing uniform flow conditions enabling highly sensitive, reproducible and quantitative in situ hybridizations.

    Science.gov (United States)

    Søe, Martin Jensen; Okkels, Fridolin; Sabourin, David; Alberti, Massimo; Holmstrøm, Kim; Dufva, Martin

    2011-11-21

    A microfluidic device (the HistoFlex) designed to perform and monitor molecular biological assays under dynamic flow conditions on microscope slide-substrates, with special emphasis on analyzing histological tissue sections, is presented. Microscope slides were reversibly sealed onto a cast polydimethylsiloxane (PDMS) insert, patterned with distribution channels and reaction chambers. Topology optimization was used to design reaction chambers with uniform flow conditions. The HistoFlex provided uniform hybridization conditions, across the reaction chamber, as determined by hybridization to microscope slides of spotted DNA microarrays when applying probe concentrations generally used in in situ hybridization (ISH) assays. The HistoFlex's novel ability in online monitoring of an in situ hybridization assay was demonstrated using direct fluorescent detection of hybridization to 18S rRNA. Tissue sections were not visually damaged during assaying, which enabled adapting a complete ISH assay for detection of microRNAs (miRNA). The effects of flow based incubations on hybridization, antibody incubation and Tyramide Signal Amplification (TSA) steps were investigated upon adapting the ISH assay for performing in the HistoFlex. The hybridization step was significantly enhanced using flow based incubations due to improved hybridization efficiency. The HistoFlex device enabled a fast miRNA ISH assay (3 hours) which provided higher hybridization signal intensity compared to using conventional techniques (5 h 40 min). We further demonstrate that the improved hybridization efficiency using the HistoFlex permits more complex assays e.g. those comprising sequential hybridization and detection of two miRNAs to be performed with significantly increased sensitivity. The HistoFlex provides a new histological analysis platform that will allow multiple and sequential assays to be performed under their individual optimum assay conditions. Images can subsequently be recorded either in

  4. M-DNA/Transition Metal Dichalcogenide Hybrid Structure-based Bio-FET sensor with Ultra-high Sensitivity

    Science.gov (United States)

    Park, Hyung-Youl; Dugasani, Sreekantha Reddy; Kang, Dong-Ho; Yoo, Gwangwe; Kim, Jinok; Gnapareddy, Bramaramba; Jeon, Jaeho; Kim, Minwoo; Song, Young Jae; Lee, Sungjoo; Heo, Jonggon; Jeon, Young Jin; Park, Sung Ha; Park, Jin-Hong

    2016-01-01

    Here, we report a high performance biosensor based on (i) a Cu2+-DNA/MoS2 hybrid structure and (ii) a field effect transistor, which we refer to as a bio-FET, presenting a high sensitivity of 1.7 × 103 A/A. This high sensitivity was achieved by using a DNA nanostructure with copper ions (Cu2+) that induced a positive polarity in the DNA (receptor). This strategy improved the detecting ability for doxorubicin-like molecules (target) that have a negative polarity. Very short distance between the biomolecules and the sensor surface was obtained without using a dielectric layer, contributing to the high sensitivity. We first investigated the effect of doxorubicin on DNA/MoS2 and Cu2+-DNA/MoS2 nanostructures using Raman spectroscopy and Kelvin force probe microscopy. Then, we analyzed the sensing mechanism and performance in DNA/MoS2- and Cu2+-DNA/MoS2-based bio-FETs by electrical measurements (ID-VG at various VD) for various concentrations of doxorubicin. Finally, successful operation of the Cu2+-DNA/MoS2 bio-FET was demonstrated for six cycles (each cycle consisted of four steps: 2 preparation steps, a sensing step, and an erasing step) with different doxorubicin concentrations. The bio-FET showed excellent reusability, which has not been achieved previously in 2D biosensors. PMID:27775004

  5. Highly sensitive analysis of flavonoids by zwitterionic microemulsion electrokinetic chromatography coupled with light-emitting diode-induced fluorescence detection.

    Science.gov (United States)

    Cao, Wan; Hu, Shuai-Shuai; Li, Xing-Ying; Pang, Xiao-Qing; Cao, Jun; Ye, Li-Hong; Dai, Han-Bin; Liu, Xiao-Juan; Da, Jian-Hua; Chu, Chu

    2014-09-05

    A rapid zwitterionic microemulsion electrokinetic chromatography (ZI-MEEKC) approach coupled with light-emitting-diode-induced fluorescence (LED-IF, 480nm) detection was proposed for the analysis of flavonoids. In the optimization process, we systematically investigated the separation conditions, including the surfactants, cosurfactants, pH, buffers and fluorescence parameters. It was found that the baseline separation of the seven flavonoids was obtained in less than 5min with a running buffer consisting of 92.9% (v/v) 5mM sodium borate, 0.6% (w/v) ZI surfactant, 0.5% (w/v) ethyl acetate and 6.0% (w/v) 1-butanol. High sensitivity was obtained by the application of LED-IF detection. The limits of detection for seven flavonoids were in the range of 3.30×10(-8) to 2.15×10(-6)molL(-1) without derivatization. Ultimately, the detection method was successfully applied to the analysis of flavonoids in hawthorn plant and food products with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine

    Science.gov (United States)

    Li, Hao; Yang, Manman; Liu, Juan; Zhang, Yalin; Yang, Yanmei; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-07-01

    The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules.The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03316k

  7. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity.

    Science.gov (United States)

    Zhao, Jingjin; Ma, Yefei; Kong, Rongmei; Zhang, Liangliang; Yang, Wen; Zhao, Shulin

    2015-08-05

    Herein, we introduced a tungsten disulfide (WS2) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3'-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS2 nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS2 nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics.

  8. Synergistic Effect of Hybrid Multilayer In2Se3 and Nanodiamonds for Highly Sensitive Photodetectors.

    Science.gov (United States)

    Zheng, Zhaoqiang; Yao, Jiandong; Xiao, Jun; Yang, Guowei

    2016-08-10

    Layered materials have rapidly established themselves as intriguing building blocks for next-generation photodetection platforms in view of their exotic electronic and optical attributes. However, both relatively low mobility and heavier electron effective mass limit layered materials for high-performance applications. Herein, we employed nanodiamonds (NDs) to promote the performance of multilayer In2Se3 photodetectors for the first time. This hybrid NDs-In2Se3 photodetector showed a tremendous promotion of photodetection performance in comparison to pristine In2Se3 ones. This hybrid devices exhibited remarkable detectivity (5.12 × 10(12) jones), fast response speed (less than 16.6 ms), and decent current on/off ratio (∼2285) simultaneously. These parameters are superior to most reported layered materials based photodetectors and even comparable to the state-of-the-art commercial photodetectors. Meanwhile, we attributed this excellent performance to the synergistic effect between NDs and the In2Se3. They can greatly enhance the broad spectrum absorption and promote the injection of photoexcited carrier in NDs to In2Se3. These results actually open up a new scenario for designing and fabricating innovative optoelectronic systems.

  9. Recent Advances in Fluorescence in situ Hybridization

    OpenAIRE

    吉田, 廸弘; Michihiro C., Yoshida; 北海道大学理学部附属動物染色体研究施設; Chromosome Research Unit, Faculty of Science, Hokkaido University

    1992-01-01

    Fluorescence in situ hybridization (FISH) procedures that directly couple molecular and cytological information allow precise visualization of DNA sequences on metaphase chromosomes and interphase nuclei. These techniques can be used to identify chromosomes, detect chromosomal aberrations, and analyze linear and spetial genome organization. FISH procedures are also used to clinical fields for diagnosis of disease-related chromosome changes and tumor biology.

  10. Highly sensitive and adaptable fluorescence-quenched pair discloses the substrate specificity profiles in diverse protease families

    Science.gov (United States)

    Poreba, Marcin; Szalek, Aleksandra; Rut, Wioletta; Kasperkiewicz, Paulina; Rutkowska-Wlodarczyk, Izabela; Snipas, Scott J.; Itoh, Yoshifumi; Turk, Dusan; Turk, Boris; Overall, Christopher M.; Kaczmarek, Leszek; Salvesen, Guy S.; Drag, Marcin

    2017-01-01

    Internally quenched fluorescent (IQF) peptide substrates originating from FRET (Förster Resonance Energy Transfer) are powerful tool for examining the activity and specificity of proteases, and a variety of donor/acceptor pairs are extensively used to design individual substrates and combinatorial libraries. We developed a highly sensitive and adaptable donor/acceptor pair that can be used to investigate the substrate specificity of cysteine proteases, serine proteases and metalloproteinases. This novel pair comprises 7-amino-4-carbamoylmethylcoumarin (ACC) as the fluorophore and 2,4-dinitrophenyl-lysine (Lys(DNP)) as the quencher. Using caspase-3, caspase-7, caspase-8, neutrophil elastase, legumain, and two matrix metalloproteinases (MMP2 and MMP9), we demonstrated that substrates containing ACC/Lys(DNP) exhibit 7 to 10 times higher sensitivity than conventional 7-methoxy-coumarin-4-yl acetic acid (MCA)/Lys(DNP) substrates; thus, substantially lower amounts of substrate and enzyme can be used for each assay. We therefore propose that the ACC/Lys(DNP) pair can be considered a novel and sensitive scaffold for designing substrates for any group of endopeptidases. We further demonstrate that IQF substrates containing unnatural amino acids can be used to investigate protease activities/specificities for peptides containing post-translationally modified amino acids. Finally, we used IQF substrates to re-investigate the P1-Asp characteristic of caspases, thus demonstrating that some human caspases can also hydrolyze substrates after glutamic acid. PMID:28230157

  11. Application of fluorescence in situ hybridization (FISH) to the ...

    African Journals Online (AJOL)

    Application of fluorescence in situ hybridization (FISH) to the analysis of ... In this study, fluorescent in situ hybridization (FISH) as a culture-independent molecular ... a high percentage and took place in an oily biological system under aerobic ...

  12. Nanocomposite Based Organic-Inorganic Cu3BiS3 High Sensitive Hybrid Photonic Devices.

    Science.gov (United States)

    Murali, Banavoth; Krupanidhi, S B

    2015-04-01

    We report the synthesis and application Cu3BiS3 nanorods in infrared photodectection. Cu3BiS3 nano rods were characterized structurally, optically and electrically. The detailed IR photodectection properties in terms of photo response were demonstrated with IR lamp and 1064 nm laser illuminations. The rapid photocurrent time constants followed by the slower components, resulting due to the defect states. The photo detecting properties for different concentrations of nanorods blended with the conjugate polymer devices were demonstrated. Further the photocurrent was enhanced to threefold increase from 3.47 x 10(-7) A to 2.37 x 10(-3) A at 1 V for 10 mg nanorods embedded in the polymer device. Responsivity of hybrid device was enhanced from 0.0158 A/W to 102 A/W. The detailed trap assisted space charge transport properties were studied considering the different regimes. Hence Cu3BiS3 can be a promising candidate in the nano switchable near IR photodetectors.

  13. Quasi-analytical solutions of hybrid platform and the optimization of highly sensitive thin-film sensors for terahertz radiation

    CERN Document Server

    Tapsanit, Piyawath; Ishihara, Teruya; Otani, Chiko

    2016-01-01

    We present quasi-analytical solutions (QANS) of hybrid platform (HP) comprising metallic grating (MG) and stacked-dielectric layers for terahertz (THz) radiation. The QANS are validated by finite difference time domain simulation. It is found that the Wood anomalies induce the high-order spoof surface plasmon resonances in the HP. The QANS are applied to optimize new perfect absorber for THz sensing of large-area thin film with ultrahigh figure of merit reaching fifth order of magnitude for the film thickness 0.0001p (p: MG period). The first-order Wood's anomaly of the insulator layer and the Fabry-Perot in the slit's cavity account for the resonance of the perfect absorber. The QANS and the new perfect absorber may lead to highly sensitive and practical nano-film refractive index sensor for THz radiation.

  14. Hybrid nanocomposites based on electroactive hydrogels and cellulose nanocrystals for high-sensitivity electro-mechanical underwater actuation

    Science.gov (United States)

    Santaniello, Tommaso; Migliorini, Lorenzo; Locatelli, Erica; Monaco, Ilaria; Yan, Yunsong; Lenardi, Cristina; Comes Franchini, Mauro; Milani, Paolo

    2017-08-01

    We report the synthesis, fabrication and characterization of a hybrid hydrogel/cellulose nanocomposite, which exhibits high-performance electro-mechanical underwater actuation and high sensitivity in response to electrical stimuli below the standard potential of water electrolysis. The macromolecular structure of the material is constituted by an electroactive hydrogel, obtained through a photo-polymerization reaction with the use of three vinylic co-monomers: Na-4-vinylbenzenesulfonate, 2-hydroxyethylmethacrylate, and acrylonitrile. Different amounts (from 0.1% to 1.4% w/w) of biodegradable cellulose nanocrystals (CNCs) with sulfonate surface groups, obtained through the acidic hydrolysis of sulphite pulp lapsheets, are physically incorporated into the gel matrix during the synthesis step. Freestanding thin films of the nanocomposites are molded, and their swelling, mechanical and responsive properties are fully characterized. We observed that the embedding of the CNCs enhanced both the material Young’s modulus and its sensitivity to the applied electric field in the sub-volt regime (down to 5 mV cm-1). A demonstrator integrating multiple actuators that cooperatively bend together, mimicking the motion of an electro-valve, is also prototyped and tested. The presented nanocomposite is suitable for the development of soft smart components for bio-robotic applications and cells-based and bio-hybrid fluidic devices fabrication.

  15. Molecular cytogenetics using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.W.; Kuo, Wen-Lin; Lucas, J.; Pinkel, D.; Weier, H-U.; Yu, Loh-Chung.

    1990-12-07

    Fluorescence in situ hybridization (FISH) with chromosome-specific probes enables several new areas of cytogenetic investigation by allowing visual determination of the presence and normality of specific genetic sequences in single metaphase or interphase cells. in this approach, termed molecular cytogenetics, the genetic loci to be analyzed are made microscopically visible in single cells using in situ hybridization with nucleic acid probes specific to these loci. To accomplish this, the DNA in the target cells is made single stranded by thermal denaturation and incubated with single-stranded, chemically modified probe under conditions where the probe will anneal only with DNA sequences to which it has high DNA sequence homology. The bound probe is then made visible by treatment with a fluorescent reagent such as fluorescein that binds to the chemical modification carried by the probe. The DNA to which the probe does not bind is made visible by staining with a dye such as propidium iodide that fluoresces at a wavelength different from that of the reagent used for probe visualization. We show in this report that probes are now available that make this technique useful for biological dosimetry, prenatal diagnosis and cancer biology. 31 refs., 3 figs.

  16. Highly sensitive fluorescent probe for clenbuterol hydrochloride detection based on its catalytic oxidation of eosine Y by NaIO4.

    Science.gov (United States)

    Liu, Jiaming; Liu, Zhen-bo; Huang, Qitong; Lin, Chang-Qing; Lin, Xiaofeng

    2014-09-01

    A highly sensitive fluorescent probe for clenbuterol hydrochloride (CLB) detection has been first designed based on its catalytic effect on NaIO4 oxidating eosine Y (R). And this environment-friendly, simple, rapid, selective and sensitive fluorescent probe has been utilized to detect CLB in the practical samples with the results consisting with those obtained by GC/MS. The structures of R and CLB were characterized by infrared spectra. The mechanism of the proposed assay for the detection of CLB was also discussed.

  17. Interactive fluorophore and quencher pairs for labeling fluorescent nucleic acid hybridization probes.

    Science.gov (United States)

    Marras, Salvatore A E

    2008-03-01

    The use of fluorescent nucleic acid hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. Real-time nucleic acid amplification assays markedly improves the ability to obtain qualitative and quantitative results. Furthermore, these assays can be carried out in sealed tubes, eliminating carryover contamination. Fluorescent nucleic acid hybridization probes are available in a wide range of different fluorophore and quencher pairs. Multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. In order to develop robust, highly sensitive and specific real-time nucleic acid amplification assays it is important to carefully select the fluorophore and quencher labels of hybridization probes. Selection criteria are based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This article provides an overview of different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers currently available.

  18. A label-free fluorescence biosensor for highly sensitive detection of lectin based on carboxymethyl chitosan-quantum dots and gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ziping; Liu, Hua; Wang, Lei; Su, Xingguang, E-mail: suxg@jlu.edu.cn

    2016-08-17

    In this work, we report a novel label-free fluorescence “turn off-on” biosensor for lectin detection. The highly sensitive and selective sensing system is based on the integration of carboxymethyl chitosan (CM-CHIT), CuInS{sub 2} quantum dots (QDs) and Au nanoparticles (NPs). Firstly, CuInS{sub 2} QDs featuring carboxyl groups were directly synthesized via a hydrothermal synthesis method. Then, the carboxyl groups on the CuInS{sub 2} QDs surface were interacted with the amino groups (−NH{sub 2}), carboxyl groups (−COOH) and hydroxyl groups (−OH) within CM-CHIT polymeric chains via electrostatic interactions and hydrogen bonding to form CM-CHIT-QDs assemblies. Introduction of Au NPs could quench the fluorescence of CM-CHIT-QDs through electron and energy transfer. In the presence of lectin, lectin could bind exclusively with CM-CHIT-QDs by means of specific multivalent carbohydrate-protein interaction. Thus, the electron and energy transfer process between CM-CHIT-QDs and Au NPs was inhibited, and as a result, the fluorescence of CM-CHIT-QDs was effectively “turned on”. Under the optimum conditions, there was a good linear relationship between the fluorescence intensity ratio I/I{sub 0} (I and I{sub 0} were the fluorescence intensity of CM-CHIT-QDs-Au NPs in the presence and absence of lectin, respectively) and lectin concentration in the range of 0.2–192.5 nmol L{sup −1}, And the detection limit could be down to 0.08 nmol L{sup −1}. Furthermore, the proposed biosensor was employed for the determination of lectin in fetal bovine serum samples with satisfactory results. - Graphical abstract: A label-free fluorescence biosensor for highly sensitive detection of lectin based on the integration of carboxymethyl chitosan, CuInS{sub 2} quantum dots and gold nanoparticles. - Highlights: • A label-free near-infrared fluorescence “turn off-on” biosensor for detection of lectin was established. • The highly sensitive biosensor was based on the

  19. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2.

    Science.gov (United States)

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02-0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe.

  20. Design and synthesis of ICT-based fluorescent probe for high-sensitivity protein detection and application to rapid protein staining for SDS-PAGE.

    Science.gov (United States)

    Suzuki, Yoshio; Yokoyama, Kenji

    2008-07-01

    A novel fluorescent molecular probe possessing styryl, sulfonyl, and cyanopyranyl moieties that was termed compound 1 was designed and synthesized to detect proteins through noncovalent bonding. Compound 1 did not produce fluorescence emission in the absence of proteins. However, its fluorescence spectrum showed a dramatic increase in the fluorescence intensity and strong orange emission after the addition of BSA. These changes were caused by intramolecular charge transfer (ICT). The fluorescence intensities of compound 1 were plotted as a function of the protein concentrations. A good linear relationship was observed up to a protein concentration of 325 mug/mL, and the detection limit was 70 ng/mL under the given assay conditions; this detection limit was higher than that of previously reported compounds. To demonstrate the application of compound 1, proteins in an SDS-PAGE gel were stained with compound 1 and were successfully imaged with a higher sensitivity and shorter staining operation time as compared to those of the silver staining method and SYPRO Ruby staining method. Thus, easy and high-sensitivity protein detection can be performed with the fluorescent probe, and this probe is ideally suited to proteomic applications.

  1. Rhodamine 6G hydrazone bearing thiophene unit: A highly sensitive and selective off-on fluorescent chemosensor for Al3+

    Science.gov (United States)

    Wu, Wei-Na; Mao, Pan-Dong; Wang, Yuan; Zhao, Xiao-Lei; Jia, Lei; Xu, Zhou-Qing

    2016-10-01

    A rhodamine derivative (R1) has been synthesized by a hydrazone formation of rhodamine 6G hydrazide with 3-methylthiophene-2-carbaldehyde, which exhibits high selectivity and sensitivity as an "off-on" fluorescent sensor toward Al3+ in water containing media. The binding process was confirmed by UV-vis absorption, fluorescence measurements, mass spectroscopy and DFT calculation. The probe functions by Al3+ induced hydrolytic cleavage of the imine-bond to produce an intense rhodamine-based emission. To test the practical use of the probe, the determination of Al3+ in real water samples was also evaluated.

  2. Fluorescent SSCP of overlapping fragments (FSSCP-OF): a highly sensitive method for the screening of mitochondrial DNA variation

    DEFF Research Database (Denmark)

    Salas, A; Rasmussen, Erik Michael; Lareu, M V

    2001-01-01

    of mtDNA sequencing implies a great lab effort when a high number of samples must be analyzed.The present work introduces a novel and reliable method for the screening of mtDNA variation in the first and second hypervariables (HV1 and HV2) regions which we have denominated fluorescent single strand...... conformation polymorphism (SSCP) of overlapping fragments (FSSCP-OF). FSSCP-OF is based on the basic theory of SSCP analysis and combines two complementary strategies: the use of PCR amplified overlapping fragments and fluorescent detection technology. The overlap region contains a high percentage (50......%) of the d-loop mtDNA variation and for this reason, the probability to detect a polymorphic position by SSCP analysis is clearly increased in comparison to conventional SSCP methods due to the fact that the same polymorphic position is usually placed in a different "relative" position in the two overlapped...

  3. High sensitivity analysis of water-soluble, cyanine dye labeled proteins by high-performance liquid chromatography with fluorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Xiaoqiang [CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Wang Li [State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Ma Junfeng [CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Deng Qiliang; Liang Zhen [CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Zhang Lihua, E-mail: lihuazhang@dicp.ac.cn [CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Peng Xiaojun [State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Zhang Yukui [CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)

    2009-04-27

    A water-soluble sulfo-3H-indocyanine dye, the active N-hydroxysuccinimide ester of 3H-Indolium,1-[(4-carboxyphenyl)methyl]-2-[3-[1-[(4-carboxyphenyl)methyl] -1,3-dihydro-3,3-dimethyl-5-sulfo-2H-indol-2-ylidene]-1-propenyl] -3,3-dimethyl-5-sulfo-(9CI) (sb-cy3-NHS), containing two p-carboxybenzyl groups on nitrogen atoms, previously developed by our laboratory, was for the first time used for protein derivatization, followed by HPLC separation and fluorescence detection. With bovine serum albumin (BSA) as a model protein, effects of various experimental conditions, including denaturant concentration, reaction time and temperature, the pH value of buffer, and the molar ratio of fluorescence reagent to protein, on protein derivatization efficiency were systematically investigated. Under the optimal conditions, the limit of detection (LOD) for derivatized BSA was decreased to 12.8 nM, about 100-fold lower than that by UV and fluorescence detection with commercial fluorescein isothiocyanate (FITC) as labeling reagent. For HPLC analysis, an on-column excess fluorescence reagent depletion technique was developed based on the hydrophilicity of sb-cy3-NHS, which could avoid the interference on the analysis of target compounds. In addition, sb-cy3-NHS was applied for the derivatization of a three-protein mixture and egg white proteins. Compared to the results labeled by FITC, more proteins with low concentrations could be labeled by sb-cy3-NHS, resulting in improved detection sensitivity for protein analysis. All these results demonstrated that sb-cy3-NHS might be promising in detecting low abundance proteins, especially in the quantitative analysis of proteins.

  4. A highly sensitive fluorescent chemosensor for selective detection of zinc (II) ion based on the oxadiazole derivative

    Science.gov (United States)

    Lin, Lu; Wang, Dan; Chen, Si-Hong; Wang, Dun-Jia; Yin, Guo-Dong

    2017-03-01

    A novel fluorescent chemosensor based on the oxadiazole, 2-(2-hydroxyphenyl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole, was designed and synthesized. The interaction of the oxadiazole with different metal ions had been investigated through UV-vis absorption and fluorescence spectra in 9:1 (v/v) ethanol-water (pH = 7.0) solution. The oxadiazole showed a pronounced fluorescence enhancement at 430 nm upon addition of Zn2 + in aqueous solution, whereas it had no apparent interference from other metal ions. The results indicated that the oxadiazole possessed high selectivity and sensitivity to Zn2 + ion. The stoichiometric ratio between the oxadiazole and Zn2 + ion was calculated to be 2:1 by Job plot experiment, meanwhile their binding modes was confirmed by 1H NMR and mass spectrometry. Their association constant was determined to be 1.95 × 105 M- 1 and the detection limit for Zn2 + ion was 6.14 × 10- 7 mol/L.

  5. A highly sensitive, single selective, fluorescent sensor for Al{sup 3+} detection and its application in living cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xing-Pei [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Sun, Shao-bo; Li, Ying-dong [Institute of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000 (China); Zhi, Li-hua [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Wu, Wei-na, E-mail: wuwn08@hpu.edu.cn [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Wang, Yuan, E-mail: wangyuan08@hpu.edu.cn [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China)

    2014-11-15

    A new o-aminophenol-based fluorogenic chemosensor methyl 3,5-bis((E)-(2-hydroxyphenylimino)methyl)-4-hydroxybenzoate 1 have been synthesized by Schiff base condensation of methyl 3,5-diformyl-4-hydroxybenzoate with o-aminophenol, which exhibits high selectivity and sensitivity toward Al{sup 3+}. Fluorescence titration studies of receptors 1 with different metal cations in CH{sub 3}OH medium showed highly selective and sensitive towards Al{sup 3+} ions even in the presence of other commonly coexisting metal ions. The detection limit of Al{sup 3+} ions is at the parts per billion level. Interestingly, the Al(III) complex of 1 offered a large Stokes shift (>120 nm), which can miximize the selfquenching effect. In addition, possible utilization of this receptor as bio-imaging fluorescent probe to detect Al{sup 3+} in human cervical HeLa cancer cell lines was also investigated by confocal fluorescence microscopy. - Highlights: • A new Schiff base chemosensor is reported. • The sensor for Al{sup 3+} offers large Stokes shift. • The detection limit of Al{sup 3+} in CH{sub 3}OH solution is at the parts per billion level. • The utilization of sensor for the monitoring of Al{sup 3+} levels in living cells was examined.

  6. Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles

    Science.gov (United States)

    Wang, Wei; Nallathamby, Prakash D.; Foster, Carmen M.; Morrell-Falvey, Jennifer L.; Mortensen, Ninell P.; Doktycz, Mitchel J.; Gu, Baohua; Retterer, Scott T.

    2013-10-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or ``free'' surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface-modified fluorescent particles

  7. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection.

    Science.gov (United States)

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi; Wolff, Anders; Bang, Dang Duong

    2017-04-15

    Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detection technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP-PCR directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples.

  8. Highly sensitive fluorescence and SERS detection of azide through a simple click reaction of 8-chloroquinoline and phenylacetylene.

    Science.gov (United States)

    Zeng, Qing; Ye, Lingling; Ma, Lu; Yin, Wenqing; Li, Tingsheng; Liang, Aihui; Jiang, Zhiliang

    2015-05-01

    In 0.19 mol/L acetic acid (HAc), a click reaction of 8-chloroquinoline/azide/phenylacetylene take places in aqueous solution without Cu(I) as a catalyst. 8-Chloroquinoline (CQN) exhibited a strong fluorescence peak at 430 nm that was quenched linearly as the concentration of azide increased from 20 to 1000 ng/mL. This quenching was due to consumption of CQN in the click reaction and a decrease in the number of efficiently excited photons due to the presence of triazole-quinoline ramification molecules with strong hydrophobicity. Using blue nanosilver sol as the substrate, CQN absorbed onto the surface of nanosilver particles, showing a strong surface-enhanced Raman scattering (SERS) peak at 1585 cm(-1) that decreased linearly as the azide concentration increased from 8 to 500 ng/mL; the detection limit was 4 ng/mL. Thus, two new, simple and sensitive fluorescence and SERS methods have been developed for the determination of azide via the click reaction. Copyright © 2014 John Wiley & Sons, Ltd.

  9. “Turn-off” fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Fu, Haiyan, E-mail: fuhaiyan@mail.scuec.edu.cn [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Yang, Tianming, E-mail: tmyang@mail.scuec.edu.cn [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); She, Yuanbin, E-mail: sheyb@zjut.edu.cn [State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Ni, Chuang [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China)

    2016-04-15

    As a popular detection model, the fluorescence “turn-off” sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence “turn-off” model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10{sup −8} mol L{sup −1} and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs. - Highlights: • A new model based on double QDs is established for pesticide residues detection. • The fluorescent data array sensor is coupled with chmometrics methods. • The sensor can be highly sensitive and selective detection in actual samples.

  10. Total reflection x-ray fluorescence spectroscopy (TXRF) a new high sensitivity (PPT) quantitative method for forensic and environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Kubic, T.A.; Amray, M.S. [ATOMIKA, Bedford, MA (United States); Reus, U. [ATOMKIA Instruments, Munich (Germany)] [and others

    1995-12-31

    Total Reflection X-Ray Fluorescence (TYRF) Spectroscopy instrumentation has recently become available on the U.S. commercial market. This x-ray excited method is touted for its sensitivity (parts per trillion), quantitative ability without the need for multi-element standards and lack of response change to matrix element differences. It has been promoted for use in forensic science and on environmental samples. This paper will discuss the results of a blind studies, wherein well characterized samples of forensic interest and environmental water proficiency tests were submitted for determination of elemental composition and concentration. The results indicate that this instrumentation should be considered by those laboratories analyzing materials at low (trace) concentrations or small (microscopical) size.

  11. Development of a Hybrid Nanoprobe for Triple-Modality MR/SPECT/Optical Fluorescence Imaging

    Science.gov (United States)

    Madru, Renata; Svenmarker, Pontus; Ingvar, Christian; Ståhlberg, Freddy; Engels, Stefan-Andersson; Knutsson, Linda; Strand, Sven-Erik

    2014-01-01

    Hybrid clinical imaging is an emerging technology, which improves disease diagnosis by combining already existing technologies. With the combination of high-resolution morphological imaging, i.e., MRI/CT, and high-sensitive molecular detection offered by SPECT/PET/Optical, physicians can detect disease progression at an early stage and design patient-specific treatments. To fully exploit the possibilities of hybrid imaging a hybrid probe compatible with each imaging technology is required. Here, we present a hybrid nanoprobe for triple modality MR/SPECT/Fluorescence imaging. Our imaging agent is comprised of superparamagnetic iron oxide nanoparticles (SPIONs), labeled with 99mTc and an Alexa fluorophore (AF), together forming 99mTc-AF-SPIONs. The agent was stable in human serum, and, after subcutaneous injection in the hind paw of Wistar rats, showed to be highly specific by accumulating in the sentinel lymph node. All three modalities clearly visualized the imaging agent. Our results show that a single imaging agent can be used for hybrid imaging. The use of a single hybrid contrast agent permits simultaneous hybrid imaging and, more conventionally, allow for single modality imaging at different time points. For example, a hybrid contrast agent enables pre-operative planning, intra-operative guidance, and post-operative evaluation with the same contrast agent. PMID:26852675

  12. A highly sensitive fluorescent indicator dye for calcium imaging of neural activity in vitro and in vivo.

    Science.gov (United States)

    Tada, Mayumi; Takeuchi, Atsuya; Hashizume, Miki; Kitamura, Kazuo; Kano, Masanobu

    2014-06-01

    Calcium imaging of individual neurons is widely used for monitoring their activity in vitro and in vivo. Synthetic fluorescent calcium indicator dyes are commonly used, but the resulting calcium signals sometimes suffer from a low signal-to-noise ratio (SNR). Therefore, it is difficult to detect signals caused by single action potentials (APs) particularly from neurons in vivo. Here we showed that a recently developed calcium indicator dye, Cal-520, is sufficiently sensitive to reliably detect single APs both in vitro and in vivo. In neocortical neurons, calcium signals were linearly correlated with the number of APs, and the SNR was > 6 for in vitro slice preparations and > 1.6 for in vivo anesthetised mice. In cerebellar Purkinje cells, dendritic calcium transients evoked by climbing fiber inputs were clearly observed in anesthetised mice with a high SNR and fast decay time. These characteristics of Cal-520 are a great advantage over those of Oregon Green BAPTA-1, the most commonly used calcium indicator dye, for monitoring the activity of individual neurons both in vitro and in vivo.

  13. Highly Sensitive Fluorescence Methods for the Determination of Alfuzosin, Doxazosin, Terazosin and Prazosin in Pharmaceutical Formulations, Plasma and Urine.

    Science.gov (United States)

    Guo, Xiaozhen; Wu, Hao; Guo, Shiwen; Shi, Yating; DU, Juanli; Zhu, Panpan; DU, Liming

    2016-01-01

    Polymeric ionic liquid-coated magnetic nanoparticles have been successfully prepared as adsorbents for the magnetic solid-phase extraction of four drugs, namely alfuzosin, doxazosin, terazosin and prazosin, from pharmaceutical preparations, urine samples and plasma samples. The four drugs were detected by fluorescence spectrophotometer. Several extraction parameters, including the pH of the solution; the type, ratio and volume of the desorbing reagent; the amount of adsorbent; the time of the extraction and desorption processes; and the addition of NaCl, were investigated and optimized. Linear responses were determined for the four drugs in the concentration range of 0.5 - 45 ng mL(-1). The limit of detection values for alfuzosin, doxazosin, terazosin and prazosin, which were defined as three times the standard deviation of a blank sample, were determined to be 0.035, 0.034, 0.027 and 0.028 ng mL(-1) (n = 11), respectively. Furthermore, this new method gave preconcentration factors of 114.5, 111.3, 111.1 and 108.5 for these four drugs.

  14. Aminoquinoline based highly sensitive fluorescent sensor for lead(II) and aluminum(III) and its application in live cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Thangaraj; Sivaraman, Gandhi [School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Mahesh, Ayyavu, E-mail: mahesh.a06@gmail.com [School of Biological Sciences, Madurai Kamaraj University, Madurai 625021 (India); Chellappa, Duraisamy, E-mail: dcmku123@gmail.com [School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India)

    2015-01-01

    Highlights: • Aminoquinoline derivative was synthesized and used to recognize Pb{sup 2+}/Al{sup 3+}. • ANQ was high sensitive, selective and turn-on sensor for Pb{sup 2+}/Al{sup 3+}. • The Pb{sup 2+} detection limit (2.08 × 10{sup −9} mol L{sup −1}) is reported. • This fluorescence change was further supported by DFT/TD-DFT calculations. • The probe is applied successfully for recognizing intracellular Pb{sup 2+}/Al{sup 3+} within living cells. - Abstract: We have synthesized a new probe 5-((anthracen-9-ylmethylene) amino)quinolin-10-ol (ANQ) based on anthracene platform. The probe was tested for its sensing behavior toward heavy metal ions Hg{sup 2+}, Pb{sup 2+}, light metal Al{sup 3+} ion, alkali, alkaline earth, and transition metal ions by UV–visible and fluorescent techniques in ACN/H{sub 2}O mixture buffered with HEPES (pH 7.4). It shows high selectivity toward sensing Pb{sup 2+}/Al{sup 3+} metal ions. Importantly, 10-fold and 5- fold fluorescence enhancement at 429 nm was observed for probe upon complexation with Pb{sup 2+} and Al{sup 3+} ions, respectively. This fluorescence enhancement is attributable to the prevention of photoinduced electron transfer. The photonic studies indicate that the probe can be adopted as a sensitive fluorescent chemosensor for Pb{sup 2+} and Al{sup 3+} ions.

  15. A new fluorescent probe for gasotransmitter H₂S: high sensitivity, excellent selectivity, and a significant fluorescence off-on response.

    Science.gov (United States)

    Zhang, Jingyu; Guo, Wei

    2014-04-25

    A fluorescent off-on probe for H2S was exploited by coupling the azide-based strategy with the excited-state intramolecular proton transfer (ESIPT) sensing mechanism, which exhibits a considerably high fluorescence enhancement (1150-fold), an extremely low detection limit (0.78 nM), and a relatively fast response time (3-10 min) as well as excellent selectivity.

  16. Focused upon hybridization: rapid and high sensitivity detection of DNA using isotachophoresis and peptide nucleic acid probes.

    Science.gov (United States)

    Ostromohov, Nadya; Schwartz, Ortal; Bercovici, Moran

    2015-09-15

    We present a novel assay for rapid and high sensitivity detection of nucleic acids without amplification. Utilizing the neutral backbone of peptide nucleic acids (PNA), our method is based on the design of low electrophoretic mobility PNA probes, which do not focus under isotachophoresis (ITP) unless bound to their target sequence. Thus, background noise associated with free probes is entirely eliminated, significantly improving the signal-to-noise ratio while maintaining a simple single-step assay requiring no amplification steps. We provide a detailed analytical model and experimentally demonstrate the ability to detect targets as short as 17 nucleotides (nt) and a limit of detection of 100 fM with a dynamic range of 5 decades. We also demonstrate that the assay can be successfully implemented for detection of DNA in human serum without loss of signal. The assay requires 15 min to complete, and it could potentially be used in applications where rapid and highly sensitive amplification-free detection of nucleic acids is desired.

  17. Fluorescence biosensing strategy based on mercury ion-mediated DNA conformational switch and nicking enzyme-assisted cycling amplification for highly sensitive detection of carbamate pesticide.

    Science.gov (United States)

    Wang, Xiuzhong; Hou, Ting; Dong, Shanshan; Liu, Xiaojuan; Li, Feng

    2016-03-15

    Pesticides are of great importance in agricultural and biological fields, but pesticide residues may harm the environment and human health. A highly sensitive fluorescent biosensor for the detection of carbamate pesticide has been developed based on acetylcholinesterase (AChE)-catalyzed hydrolysis product triggered Hg(2+) release coupled with subsequent nicking enzyme-induced cleavage of a duplex DNA for cycling amplification. In this protocol, two DNA probes, an unmodified single-stranded helper DNA probe 1 (HP1) and a quencher-fluorophore probe (QFP) are ingeniously designed. HP1 can be folded into hairpin configuration through T-Hg(2+)-T base pair formation. QFP, labeled with FAM and BHQ1 at its two terminals, contains the recognition sequence and the cleavage site of the nicking enzyme. In the presence of carbamate pesticide, the activity of AChE is inhibited, and the amount of the product containing the thiol group generated by the hydrolysis reaction of acetylthiocholine chloride (ACh) decreases, resulting in the release of a low concentration of Hg(2+). The number of HP1 that can be selectively unfolded would be reduced and the subsequent nicking enzyme-assisted cleavage processes would be affected, resulting in decreased fluorescence signals. The fluorescence intensity further decreases with the increase of the pesticide concentration. Therefore, the pesticide content can be easily obtained by monitoring the fluorescence signal change, which is inversely proportional to the logarithm of the pesticide concentration. The detection limit of aldicarb, the model analyte, is 3.3 μgL(-1), which is much lower than the Chinese National Standards or those previously reported. The as-proposed method has also been applied to detect carbamate pesticide residues in fresh ginger and artificial lake water samples with satisfactory results, which demonstrates that the method has great potential for practical application in biological or food safety field.

  18. Highly sensitive electrochemical impedance spectroscopic detection of DNA hybridization based on Au(nano)-CNT/PAN(nano) films.

    Science.gov (United States)

    Zhou, Na; Yang, Tao; Jiang, Chen; Du, Meng; Jiao, Kui

    2009-01-15

    A polyaniline nanofibers (PAN(nano))/carbon paste electrode (CPE) was prepared via dopping PAN(nano) in the carbon paste. The nanogold (Au(nano)) and carbon nanotubes (CNT) composite nanoparticles were bound on the surface of the PAN(nano)/CPE. The immobilization and hybridization of the DNA probe on the Au(nano)-CNT/PAN(nano) films were investigated with differential pulse voltammetry (DPV) and cyclic voltammetry (CV) using methylene blue (MB) as indicator, and electrochemical impedance spectroscopy (EIS) using [Fe(CN)(6)](3-/4-) as redox probe. The voltammetric peak currents of MB increased dramatically owing to the immobilization of the probe DNA on the Au(nano)-CNT/PAN(nano) films, and then decreased obviously owing to the hybridization of the DNA probe with the complementary single-stranded DNA (cDNA). The electron transfer resistance (R(et)) of the electrode surface increased after the immobilization of the probe DNA on the Au(nano)-CNT/PAN(nano) films and rose further after the hybridization of the probe DNA. The remarkable difference between the R(et) value at the DNA-immobilized electrode and that at the hybridized electrode could be used for the label-free EIS detection of the target DNA. The loading of the DNA probe on Au(nano)-CNT/PAN(nano) films was greatly enhanced and the sensitivity for the target DNA detection was markedly improved. The sequence-specific DNA of phosphinothricin acetyltransferase (PAT) gene and the polymerase chain reaction (PCR) amplification of nopaline synthase (NOS) gene from transgenically modified beans were determined with this label-free EIS DNA detection method. The dynamic range for detecting the PAT gene sequence was from 1.0 x 10(-12)mol/L to 1.0 x 10(-6)mol/L with a detection limit of 5.6 x 10(-13)mol/L.

  19. G-quadruplex fluorescent probe-mediated real-time rolling circle amplification strategy for highly sensitive microRNA detection.

    Science.gov (United States)

    Jiang, Hong-Xin; Liang, Zhen-Zhen; Ma, Yan-Hong; Kong, De-Ming; Hong, Zhang-Yong

    2016-11-02

    Real-time PCR has revolutionized PCR from qualitative to quantitative. As an isothermal DNA amplification technique, rolling circular amplification (RCA) has been demonstrated to be a versatile tool in many fields. Development of a simple, highly sensitive, and specific strategy for real-time monitoring of RCA will increase its usefulness in many fields. The strategy reported here utilized the specific fluorescence response of thioflavin T (ThT) to G-quadruplexes formed by RCA products. Such a real-time monitoring strategy works well in both traditional RCA with linear amplification efficiency and modified RCA proceeded in an exponential manner, and can be readily performed in commercially available real-time PCR instruments, thereby achieving high-throughput detection and making the proposed technique more suitable for biosensing applications. As examples, real-time RCA-based sensing platforms were designed and successfully used for quantitation of microRNA over broad linear ranges (8 orders of magnitude) with a detection limit of 4 aM (or 0.12 zmol). The feasibility of microRNA analysis in human lung cancer cells was also demonstrated. This work provides a new method for real-time monitoring of RCA by using unique nucleic acid secondary structures and their specific fluorescent probes. It has the potential to be extended to other isothermal single-stranded DNA amplification techniques.

  20. A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shijia; Duan, Nuo; Ma, Xiaoyuan; Xia, Yu; Wang, Hongxin; Wang, Zhouping, E-mail: wangzp@jiangnan.edu.cn

    2013-06-11

    Graphical abstract: -- Highlights: •An ultrasensitive FRET aptasensor was developed for staphylococcal enterotoxin B determination. •SEB was recognized by SEB aptamer with high affinity and specificity. •The Mn{sup 2+} doped NaYF{sub 4}:Yb/Er UCNPs used as donor to quencher dye (BHQ{sub 3}) in new FRET. •The fluorescence intensity was prominently amplified using an exonuclease-catalyzed target recycling strategy. -- Abstract: An ultrasensitive fluorescence resonance energy transfer (FRET) bioassay was developed to detect staphylococcal enterotoxin B (SEB), a low molecular exotoxin, using an aptamer-affinity method coupled with upconversion nanoparticles (UCNPs)-sensing, and the fluorescence intensity was prominently enhanced using an exonuclease-catalyzed target recycling strategy. To construct this aptasensor, both fluorescence donor probes (complementary DNA{sub 1}–UCNPs) and fluorescence quencher probes (complementary DNA{sub 2}–Black Hole Quencher{sub 3} (BHQ{sub 3})) were hybridized to an SEB aptamer, and double-strand oligonucleotides were fabricated, which quenched the fluorescence of the UCNPs via FRET. The formation of an aptamer–SEB complex in the presence of the SEB analyte resulted in not only the dissociation of aptamer from the double-strand DNA but also both the disruption of the FRET system and the restoration of the UCNPs fluorescence. In addition, the SEB was liberated from the aptamer–SEB complex using exonuclease I, an exonuclease specific to single-stranded DNA, for analyte recycling by selectively digesting a particular DNA (SEB aptamer). Based on this exonuclease-catalyzed target recycling strategy, an amplified fluorescence intensity could be produced using different SEB concentrations. Using optimized experimental conditions produced an ultrasensitive aptasensor for the detection of SEB, with a wide linear range of 0.001–1 ng mL{sup −1} and a lower detection limit (LOD) of 0.3 pg mL{sup −1} SEB (at 3σ). The fabricated

  1. Field-effect transistor with a chemically synthesized MoS2 sensing channel for label-free and highly sensitive electrical detection of DNA hybridization

    Institute of Scientific and Technical Information of China (English)

    Doo-Won Lee[1,6; Jinhwan Lee[2,6; II Yung Sohn[1; Bo-Yeong Kim[3; Young Min Son[4; Hunyoung Bark[3; JaehyuckJung[3; Minseok Choi[5; Tae Hyeong Kim[5; Changgu Lee[2,3; Nae-Eung Lee[1,3,4

    2015-01-01

    A field-effect transistor (FET) with two-dimensional (2D) few-layer MoS2 as a sensing-channel material was investigated for label-free electrical detection of the hybridization of deoxyribonucleic acid (DNA) molecules. The high-quality MoS2-channel pattern was selectively formedthrough the chemical reaction of the Mo layer with H2S gas. The MoS2 FET was very stable in an electrolyte and inert to pH changes due to the lack of oxygen-containing functionalities on the MoS2 surface. Hybridization of single-stranded target DNA molecules with single-stranded probe DNA molecules physically adsorbed on the MoS2 channel resulted in a shift of the threshold voltage (Vt,) in the negative direction and an increase in the drain current. The negative shift in Vth is attributed to electrostatic gating effects induced by the detachment of negatively charged probe DNA molecules from the channel surface after hybridization. A detection limit of 10 fM, high sensitivity of 17 mWdec, and high dynamic range of 106 were achieved. The results showed that a bio-FET with an ultrathin 2D MoS2 channel can be used to detect very small concentrations of target DNA molecules specifically hybridized with the probe DNA molecules.

  2. Highly sensitive and selective high-performance liquid chromatography method for bioequivalence study of cefpodoxime proxetil in rabbit plasma via fluorescence labeling of its active metabolite.

    Science.gov (United States)

    Ahmed, Sameh; Abdel-Wadood, Hanaa M; Mohamed, Niveen A

    2013-09-01

    Cefpodoxime proxetil (CFP), a broad-spectrum third-generation cephalosporin, has been used most widely in the treatment of respiratory and urinary tract infections. For bioequivalence study of CFP in rabbit plasma, it was necessary to develop a highly sensitive and selective high-performance liquid chromatographic (HPLC) method with fluorescence (FL) detection. The pre-column labeling of cefpodoxime acid (CFA) (active metabolite) with an efficient benzofurazan type fluorogenic reagent, 4-N,N-dimethyl aminosulfonyl-7-fluoro-2,1,3-benzoxadiazole (DBD-F) was carried out in the present study in 100mM borate buffer (pH=8.5) at 50°C for 15min. The obtained fluorescent products were separated on C18 column with an isocratic elution of the mobile phase, which consists of 10mM phosphate buffer (pH=3.5)/CH3CN (70:30, v/v). The fluorescent product (DBD-CFA) was detected fluorimetrically at 556nm with an excitation wavelength of 430nm. Cefotaxime sodium was used as internal standard. The method was validated according to the requirements of US-FDA guidelines. The correlation coefficient of 0.999 was obtained in the concentration ranges of 10-1000ngmL(-1). The limits of detection and quantification (S/N=3) were 3 and 10ngmL(-1), respectively. Plasma CFA levels were successfully determined in rabbit with satisfactory precision and accuracy. The proposed HPLC-FL method was successfully applied to study bioequivalence in rabbits for two formulations of different brands contained CFP (prodrug) in a randomized, two-way, single-dose, crossover study and all pharmacokinetic parameters for the two formulations were assessed.

  3. A novel fluorescent probe: europium complex hybridized T7 phage.

    Science.gov (United States)

    Liu, Chin-Mei; Jin, Qiaoling; Sutton, April; Chen, Liaohai

    2005-01-01

    We report on the creation of a novel fluorescent probe of europium-complex hybridized T7 phage. It was made by filling a ligand-displayed T7 ghost phage with a fluorescent europium complex particle. The structure of the hybridized phage, which contains a fluorescent inorganic core surrounded by a ligand-displayed capsid shell, was confirmed by electron microscope, energy-dispersive X-ray analysis (EDX), bioassays, and fluorescence spectrometer. More importantly, as a benefit of the phage display technology, the hybridized phage has the capability to integrate an affinity reagent against virtually any target molecules. The approach provides an original method to fluorescently "tag" a bioligand and/or to "biofunctionalize" a fluorophore particle. By using other types of materials such as radioactive or magnetic particles to fill the ghost phage, we envision that the hybridized phages represent a new class of fluorescent, magnetic, or radioprobes for imaging and bioassays and could be used both in vitro and in vivo.

  4. Highly sensitive photodetectors based on hybrid 2D-0D SnS{sub 2}-copper indium sulfide quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yun; Zhan, Xueying; Xu, Kai; Yin, Lei; Cheng, Zhongzhou; Jiang, Chao; Wang, Zhenxing, E-mail: wangzx@nanoctr.cn, E-mail: hej@nanoctr.cn; He, Jun, E-mail: wangzx@nanoctr.cn, E-mail: hej@nanoctr.cn [CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China)

    2016-01-04

    Both high speed and efficiency of photoelectric conversion are essential for photodetectors. As an emerging layered metal dichalcogenide (LMD), tin disulfide owns intrinsic faster photodetection ability than most other LMDs but poor light absorption and low photoelectric conversion efficiency. We develop an efficient method to enhance its performance by constructing a SnS{sub 2}-copper indium sulfide hybrid structure. As a result, the responsivity reaches 630 A/W, six times stronger than pristine SnS{sub 2} and much higher than most other LMDs photodetectors. Additionally, the photocurrents are enhanced by more than 1 order of magnitude. Our work may open up a pathway to improve the performance of photodetectors based on LMDs.

  5. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction.

    Science.gov (United States)

    Zhao, Hang; Bai, Jinbo

    2015-05-13

    The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites.

  6. Hybrid silver nanoparticle/conjugated polyelectrolyte nanocomposites exhibiting controllable metal-enhanced fluorescence

    Science.gov (United States)

    Wang, Xiaoyu; He, Fang; Zhu, Xi; Tang, Fu; Li, Lidong

    2014-03-01

    Metal-enhanced fluorescence of conjugated polyelectrolytes (CPs) is realized using a simple, green hybrid Ag nanocomposite film. Ag nanoparticles (Ag NPs) are pre-prepared by sodium citrate reduction and incorporated into agarose by mixing to form an Ag-containing agarose film (Ag@agarose). Through variation of the amount of Ag NPs in the Ag@agarose film as well as the thickness of the interlayer between CPs and the Ag@agarose film prepared of layer-by-layer assembly of chitosan and sodium alginate, a maximum 8.5-fold increase in the fluorescence of CPs is obtained. After introducing tyrosinase, this system also can be used to detect phenolic compounds with high sensitivity and good visualization under ultraviolet light.

  7. High sensitive and high temporal and spatial resolved image of reactive species in atmospheric pressure surface discharge reactor by laser induced fluorescence

    Science.gov (United States)

    Gao, Liang; Feng, Chun-Lei; Wang, Zhi-Wei; Ding, Hongbin

    2017-05-01

    The current paucity of spatial and temporal characterization of reactive oxygen and nitrogen species (RONS) concentration has been a major hurdle to the advancement and clinical translation of low temperature atmospheric plasmas. In this study, an advanced laser induced fluorescence (LIF) system has been developed to be an effective antibacterial surface discharge reactor for the diagnosis of RONS, where the highest spatial and temporal resolution of the LIF system has been achieved to ˜100 μm scale and ˜20 ns scale, respectively. Measurements on an oxidative OH radical have been carried out as typical RONS for the benchmark of the whole LIF system, where absolute number density calibration has been performed on the basis of the laser Rayleigh scattering method. Requirements for pixel resolved spatial distribution and outer plasma region detection become challenging tasks due to the low RONS concentration (˜ppb level) and strong interference, especially the discharge induced emission and pulsed laser induced stray light. In order to design the highly sensitive LIF system, a self-developed fluorescence telescope, the optimization of high precision synchronization among a tunable pulsed laser, a surface discharge generator, intensified Charge Coupled Device (iCCD) camera, and an oscilloscope have been performed. Moreover, an image BOXCAR approach has been developed to remarkably improve the sensitivity of the whole LIF system by optimizing spatial and temporal gating functions via both hardware and software, which has been integrated into our automatic control and data acquisition system on the LabVIEW platform. In addition, a reciprocation averaging measurement has been applied to verify the accuracy of the whole LIF detecting system, indicating the relative standard deviation of ˜3%.

  8. Supernumerary ring chromosome 20 characterized by fluorescence in situ hybridization

    NARCIS (Netherlands)

    Van Langen, Irene M.; Otter, Mariëlle A.; Aronson, Daniël C.; Overweg-Plandsoen, W.C.G.; Hennekam, Raoul C.M.; Leschot, Nico J.; Hoovers, Jan M.N.

    1996-01-01

    We report on a boy with mild dysmorphic features and developmental delay, in whom karyotyping showed an additional minute ring chromosome in 60% of metaphases. Fluorescence in situ hybridization (FISH) with a centromere specific probe demonstrated that the ring chromosome contained the centromeric r

  9. Supernumerary ring chromosome 17 identified by fluorescent in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Fagan, K. [Hunter Area Pathology Service, New South Wales (Australia); Edwards, M. [Western Suburbs Hospital, New South Wales (Australia)

    1997-04-14

    We present a patient with multiple anomalies and severe developmental delay. A small supernumerary ring chromosome was found in 40% of her lymphocyte cells at birth. The origin of the marker chromosome could not be determined by GTG banding, but fluorescent in situ hybridization (FISH) later identified the marker as deriving from chromosome 17. 20 refs., 2 figs., 1 tab.

  10. Fluorescence labeling of carbon nanotubes and visualization of a nanotube-protein hybrid under fluorescence microscope.

    Science.gov (United States)

    Yoshimura, Shige H; Khan, Shahbaz; Maruyama, Hiroyuki; Nakayama, Yoshikazu; Takeyasu, Kunio

    2011-04-11

    Biological applications of carbon nanotubes have been hampered by the inability to visualize them using conventional optical microscope, which is the most common tool for the observation and measurement of biological processes. Recently, a number of fluorescence labeling methods for biomolecules and various fluorescence probes have been developed and widely utilized in biological fields. Therefore, labeling carbon nanotubes with such fluorophores under physiological conditions will be highly useful in their biological applications. In this Article, we present a method to fluorescently label nanotubes by combining a detergent and a fluorophore commonly used in biological experiments. Fluorophores carrying an amino group (Texas Red hydrazide or BODIPY FL-hydrazide) were covalently attached to the hydroxyl groups of Tween 20 using carbonyldiimidazole. Fluorescence microscopy demonstrated that nanotubes were efficiently solubilized and labeled by this fluorescently labeled detergent. By using this technique, we also demonstrated multicolor fluorescence imaging of a nanotube-protein hybrid.

  11. Hybrid fluorescent layer emitting polarized light

    Science.gov (United States)

    Mohammadimasoudi, Mohammad; Beeckman, Jeroen; Hens, Zeger; Neyts, Kristiaan

    2017-07-01

    Semiconductor nanorods have anisotropic absorption and emission properties. In this work a hybrid luminescent layer is produced based on a mixture of CdSe/CdS nanorods dispersed in a liquid crystal that is aligned by an electric field and polymerized by UV illumination. The film emits light with polarization ratio 0.6 (polarization contrast 4:1). Clusters of nanorods in liquid crystal can be avoided by applying an AC electric field with sufficient amplitude. This method can be made compatible with large-scale processing on flexible transparent substrates. Thin polarized light emitters can be used in LCD backlights or solar concentrators to increase the efficiency.

  12. Hybrid fluorescent layer emitting polarized light

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadimasoudi

    2017-07-01

    Full Text Available Semiconductor nanorods have anisotropic absorption and emission properties. In this work a hybrid luminescent layer is produced based on a mixture of CdSe/CdS nanorods dispersed in a liquid crystal that is aligned by an electric field and polymerized by UV illumination. The film emits light with polarization ratio 0.6 (polarization contrast 4:1. Clusters of nanorods in liquid crystal can be avoided by applying an AC electric field with sufficient amplitude. This method can be made compatible with large-scale processing on flexible transparent substrates. Thin polarized light emitters can be used in LCD backlights or solar concentrators to increase the efficiency.

  13. Highly sensitive detection of cancer-related genes based on complete fluorescence restoration of a molecular beacon with a functional overhang.

    Science.gov (United States)

    Li, Feng; Zhou, Ying-Ying; Peng, Ting; Xu, Huo; Zhang, Rong-Bo; Zhao, Hui; Wang, Zheng-Yong; Lv, Jian-Xin; Wu, Zai-Sheng; Shen, Zhi-Fa

    2016-07-21

    The accurate detection of cancer-related genes is of great significance for early diagnosis and targeted therapy of cancer. In this contribution, an automatically cycling operation of a functional overhang-containing molecular beacon (OMB)-based sensing system was proposed to perform amplification detection of the p53 gene. Contrary to the common molecular beacon (MB), a target DNA is designated to hybridize with a label-free recognition probe (RP) with a hairpin structure rather than OMB. In the presence of a target DNA of interest, the locked primer in RP opens and triggers the subsequent amplification procedures. The newly-developed OMB is not only capable of accomplishing cyclical nucleic acid strand-displacement polymerization (CNDP) with the help of polymerase and nicking endonuclease, but is also cleaved by restriction endonucleases, removing the quencher away from the fluorophore. Thus, the target DNA at an extremely low concentration is expected to generate a considerable amount of double-stranded and cleaved OMBs, and the quenched fluorescence is completely restored, leading to a dramatic increase in fluorescence intensity. Utilizing this sensing platform, the target gene can be detected down to 8.2 pM in a homogeneous way, and a linear response range of 0.01 to 150 nM could be obtained. More strikingly, the mutant genes can be easily distinguished from the wild-type ones. The proof-of-concept demonstrations reported herein are expected to promote the development of DNA biosensing systems, showing great potential in basic research and clinical diagnosis.

  14. [Fluorescent in situ hybridization in clinical cytogenetics].

    Science.gov (United States)

    Michalová, K

    1995-02-01

    During the last few years molecular biology methods expanded into human cytogenetics. This is in close connection with advanced technologies of DNA probes preparation and possibilities of their non-radioactive labelling by means of enzymatic incorporation of modified nucleotides as well as their hybridization with complementary DNA of chromosomes and interphase nuclei. FISH became a useful method in the clinical research. We present the short review of FISH methodologies and their applications for studies of translocation, deletions, amplifications and other chromosomal rearrangements in genetic and oncologic patients. The sensitivity of these methods is approximately 1-10 kb and therefore precise localization of genes on chromosomes is possible. Except gene mapping FISH can be used for comparative genomic mapping (CGH) and for identification of chromosomal changes of tumor cells.

  15. Largely Enhanced Single-molecule Fluorescence in Plasmonic Nanogaps formed by Hybrid Silver Nanostructures

    Science.gov (United States)

    Zhang, Jian; Lakowicz, Joseph R.

    2013-01-01

    It has been suggested that narrow gaps between metallic nanostructures can be practical for producing large field enhancement. We design a hybrid silver nanostructure geometry in which fluorescent emitters are sandwiched between silver nanoparticles and silver island film (SIF). A desired number of polyelectrolyte layers are deposited on the SIF surface before the self-assembly of a second silver nanoparticle layer. Layer-by-layer configuration provides a well-defined dye position. It allows us to study the photophyical behaviors of fluorophores in the resulting gap at the single molecule level. The enhancement factor of a fluorophore located in the gap is much higher than those on silver surfaces alone and on glass. These effects may be used for increased detectability of single molecules bound to surfaces which contain metallic structures for either biophysical studies or high sensitivity assays. PMID:23373787

  16. Fluorescence In Situ Hybridization Probe Preparation.

    Science.gov (United States)

    Tolomeo, Doron; Stanyon, Roscoe R; Rocchi, Mariano

    2017-01-01

    The public human genome sequencing project utilized a hierarchical approach. A large number of BAC/PAC clones, with an insert size approximate from 50 kb to 300 kb, were identified and finely mapped with respect to the Sequence Tagged Site (STS) physical map and with respect to each other. A "golden path" of BACs, covering the entire human genome, was then selected and each clone was fully sequenced. The large number of remaining BACs was not fully sequenced, but the availability of the end sequence (~800-1000 bp) at each end allowed them to be very precisely mapped on the human genome.The search for copy number variations of the human genome used several strategies. One of these approaches took advantage of the fact that fosmid clones, contrary to BAC/PAC clones, have a fixed insert size (~40 kb) (Kidd et al., Nature 453: 56-64, 2008). In this context, the ends of ~7 million fosmid clones were sequenced, and therefore it was possible to precisely map these clones on the human genome.In summary, a large number of genomic clones (GC) are available for FISH experiments. They usually yield bright FISH signals and are extremely precious for molecular cytogenetics, and in particular cancer cytogenetics. The already-labeled probes available commercially are usually based on a combination of such GCs. The present chapter summarizes the protocols for extracting, labeling, and hybridization onto slides of DNA obtained from GC.

  17. Fluorescence Image Analyzer - FLIMA: software for quantitative analysis of fluorescence in situ hybridization.

    Science.gov (United States)

    Silva, H C M; Martins-Júnior, M M C; Ribeiro, L B; Matoso, D A

    2017-03-30

    The Fluorescence Image Analyzer (FLIMA) software was developed for the quantitative analysis of images generated by fluorescence in situ hybridization (FISH). Currently, the images of FISH are examined without a coefficient that enables a comparison between them. Through GD Graphics Library, the FLIMA software calculates the amount of pixels on image and recognizes each present color. The coefficient generated by the algorithm shows the percentage of marks (probes) hybridized on the chromosomes. This software can be used for any type of image generated by a fluorescence microscope and is able to quantify digoxigenin probes exhibiting a red color, biotin probes exhibiting a green color, and double-FISH probes (digoxigenin and biotin used together), where the white color is displayed.

  18. First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Nynke S. van den [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); Simon, Herve [Eurorad S.A., Eckbolsheim (France); Kleinjan, Gijs H. [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Engelen, Thijs [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Head and Neck Surgery and Oncology, Amsterdam (Netherlands); Bunschoten, Anton; Welling, Mick M. [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); Tijink, Bernard M. [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Head and Neck Surgery and Oncology, Amsterdam (Netherlands); Horenblas, Simon [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); Chambron, Jacques [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Leeuwen, Fijs W.B. van [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Head and Neck Surgery and Oncology, Amsterdam (Netherlands)

    2015-10-15

    The clinical introduction of the hybrid tracer indocyanine green (ICG)-{sup 99m}Tc-nanocolloid, composed of a radioactive and a near-infrared (NIR) fluorescence component, has created the need for surgical (imaging) modalities that allow for simultaneous detection of both signals. This study describes the first-in-human use of a prototype opto-nuclear probe during sentinel node (SN) biopsy using ICG-{sup 99m}Tc-nanocolloid. To allow for fluorescence tracing, a derivative of the conventional gamma probe technology was generated in which two optical fibers were integrated to allow for excitation (785 nm) and emission signal collection (> 810 nm). The ability of this opto-nuclear probe to detect the fluorescence signal of the hybrid tracer ICG-{sup 99m}Tc-nanocolloid was firstly determined ex vivo in (non)SNs samples obtained from 41 patients who underwent hybrid tracer-based SN biopsy in the head and neck or urogenital area. In an in vivo proof-of-concept study in nine of these 41 patients, SNs were localized using combined gamma and fluorescence tracing with the opto-nuclear probe. Fluorescence tracing was performed in a similar manner as gamma tracing and under ambient light conditions. Ex vivo, the gamma tracing option of the opto-nuclear probe correctly identified the SN in all 150 evaluated (non)SN samples. Ex vivo fluorescence tracing in the low-sensitivity mode correctly identified 71.7 % of the samples. This increased to 98.9 % when fluorescence tracing was performed in the high-sensitivity mode. In vivo fluorescence tracing (high-sensitivity mode) accurately identified the SNs in all nine patients (20 SNs evaluated; 100 %). This study demonstrates the first-in-human evaluation of a hybrid modality capable of detecting both gamma and fluorescence signals during a surgical procedure. Fluorescence tracing could be performed in ambient light. (orig.)

  19. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions

    Science.gov (United States)

    Wang, Yahui; Zhang, Cheng; Chen, Xiaochun; Yang, Bo; Yang, Liang; Jiang, Changlong; Zhang, Zhongping

    2016-03-01

    A simple and effective ratiometric fluorescence nanosensor for the selective detection of Cu2+ has been developed by covalently connecting the carboxyl-modified red fluorescent cadmium telluride (CdTe) quantum dots (QDs) to the amino-functionalized blue fluorescent carbon nanodots (CDs). The sensor exhibits the dual-emissions peaked at 437 and 654 nm, under a single excitation wavelength of 340 nm. The red fluorescence can be selectively quenched by Cu2+, while the blue fluorescence is a internal reference, resulting in a distinguishable fluorescence color change from pink to blue under a UV lamp. The detection limit of this highly sensitive ratiometric probe is as low as 0.36 nM, which is lower than the U.S. Environmental Protection Agency (EPA) defined limit (20 μM). Moreover, a paper-based sensor has been prepared by printing the hybrid carbon dots-quantum dots probe on a microporous membrane, which provides a convenient and simple approach for the visual detection of Cu2+. Therefore, the as-synthesized probe shows great potential application for the determination of Cu2+ in real samples.A simple and effective ratiometric fluorescence nanosensor for the selective detection of Cu2+ has been developed by covalently connecting the carboxyl-modified red fluorescent cadmium telluride (CdTe) quantum dots (QDs) to the amino-functionalized blue fluorescent carbon nanodots (CDs). The sensor exhibits the dual-emissions peaked at 437 and 654 nm, under a single excitation wavelength of 340 nm. The red fluorescence can be selectively quenched by Cu2+, while the blue fluorescence is a internal reference, resulting in a distinguishable fluorescence color change from pink to blue under a UV lamp. The detection limit of this highly sensitive ratiometric probe is as low as 0.36 nM, which is lower than the U.S. Environmental Protection Agency (EPA) defined limit (20 μM). Moreover, a paper-based sensor has been prepared by printing the hybrid carbon dots-quantum dots probe on a

  20. Liquid Hybridization and Solid Phase Detection: A Highly Sensitive and Accurate Strategy for MicroRNA Detection in Plants and Animals

    Directory of Open Access Journals (Sweden)

    Fosheng Li

    2016-09-01

    Full Text Available MicroRNAs (miRNAs play important roles in nearly every aspect of biology, including physiological, biochemical, developmental and pathological processes. Therefore, a highly sensitive and accurate method of detection of miRNAs has great potential in research on theory and application, such as the clinical approach to medicine, animal and plant production, as well as stress response. Here, we report a strategic method to detect miRNAs from multicellular organisms, which mainly includes liquid hybridization and solid phase detection (LHSPD; it has been verified in various species and is much more sensitive than traditional biotin-labeled Northern blots. By using this strategy and chemiluminescent detection with digoxigenin (DIG-labeled or biotin-labeled oligonucleotide probes, as low as 0.01–0.25 fmol [for DIG-CDP Star (disodium2-chloro-5-(4-methoxyspiro{1,2-dioxetane-3,2′-(5′-chlorotricyclo[3.3.1.13,7]decan}-4-ylphenyl phosphate system], 0.005–0.1 fmol (for biotin-CDP Star system, or 0.05–0.5 fmol (for biotin-luminol system of miRNA can be detected and one-base difference can be distinguished between miRNA sequences. Moreover, LHSPD performed very well in the quantitative analysis of miRNAs, and the whole process can be completed within about 9 h. The strategy of LHSPD provides an effective solution for rapid, accurate, and sensitive detection and quantitative analysis of miRNAs in plants and animals.

  1. A simple protocol for attenuating the auto-fluorescence of cyanobacteria for optimized fluorescence in situ hybridization (FISH) imaging.

    Science.gov (United States)

    Zeller, Perrine; Ploux, Olivier; Méjean, Annick

    2016-03-01

    Cyanobacteria contain pigments, which generate auto-fluorescence that interferes with fluorescence in situ hybridization (FISH) imaging of cyanobacteria. We describe simple chemical treatments using CuSO4 or H2O2 that significantly reduce the auto-fluorescence of Microcystis strains. These protocols were successfully applied in FISH experiments using 16S rRNA specific probes and filamentous cyanobacteria.

  2. RNA Imaging with Multiplexed Error Robust Fluorescence in situ Hybridization

    Science.gov (United States)

    Moffitt, Jeffrey R.; Zhuang, Xiaowei

    2016-01-01

    Quantitative measurements of both the copy number and spatial distribution of large fractions of the transcriptome in single-cells could revolutionize our understanding of a variety of cellular and tissue behaviors in both healthy and diseased states. Single-molecule Fluorescence In Situ Hybridization (smFISH)—an approach where individual RNAs are labeled with fluorescent probes and imaged in their native cellular and tissue context—provides both the copy number and spatial context of RNAs but has been limited in the number of RNA species that can be measured simultaneously. Here we describe Multiplexed Error Robust Fluorescence In Situ Hybridization (MERFISH), a massively parallelized form of smFISH that can image and identify hundreds to thousands of different RNA species simultaneously with high accuracy in individual cells in their native spatial context. We provide detailed protocols on all aspects of MERFISH, including probe design, data collection, and data analysis to allow interested laboratories to perform MERFISH measurements themselves. PMID:27241748

  3. Novel fluorescent probe for highly sensitive bioassay using sequential enzyme-linked immunosorbent assay-capillary isoelectric focusing (ELISA-cIEF).

    Science.gov (United States)

    Henares, Terence G; Uenoyama, Yuta; Nogawa, Yuto; Ikegami, Ken; Citterio, Daniel; Suzuki, Koji; Funano, Shun-ichi; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki

    2013-06-07

    This paper presents a novel rhodamine diphosphate molecule that allows highly sensitive detection of proteins by employing sequential enzyme-linked immunosorbent assay and capillary isoelectric focusing (ELISA-cIEF). Seven-fold improvement in the immunoassay sensitivity and a 1-2 order of magnitude lower detection limit has been demonstrated by taking advantage of the combination of the enzyme-based signal amplification of ELISA and the concentration of enzyme reaction products by cIEF.

  4. Fluorescent probes for "off-on" highly sensitive detection of Hg²⁺ and L-cysteine based on nitrogen-doped carbon dots.

    Science.gov (United States)

    Zhang, Yi; Cui, Peipei; Zhang, Feng; Feng, Xiaoting; Wang, Yaling; Yang, Yongzhen; Liu, Xuguang

    2016-05-15

    Fluorescent nitrogen-doped carbon dots (NCDs) were synthesized by a facile, and low-cost one-step hydrothermal strategy using citric acid as carbon source and ammonia solution as nitrogen source for the first time. The obtained NCDs show stable blue fluorescence with a high quantum yield of 35.4%, along with the fluorescence lifetime of ca. 6.75 ns. Most importantly, Hg(2+) can completely quench the fluorescence of NCDs as a result of the formation of a non-fluorescent stable NCDs-Hg(2+) complex. Static fluorescence quenching towards Hg(2+) is proved by the Stern-Volmer equation, ultraviolet-visible absorption spectra, temperature dependent quenching and fluorescence lifetime measurements. Subsequently, the fluorescence of the NCDs-Hg(2+) system is completely recovered with the addition L-cysteine (L-Cys) owing to the dissociation of NCDs-Hg(2+) complex to form a more stable Hg(2+)-L-Cys complex by Hg(2+)-S bonding. Therefore, such NCDs can be used as an effective fluorescent "turn-off" probe for rapid, rather highly selective and sensitive detection of Hg(2+), with a limit of detection (LOD) as low as 1.48 nM and a linear detection range of 0-10 μM. Interestingly, NCDs-Hg(2+) system can be conveniently employed as a fluorescent "turn-on" sensor for highly selective and sensitive detection of L-Cys with a low LOD of 0.79 nM and a wide linear detection range of 0-50 μM. Further, the sensitivity of NCDs to Hg(2+) is preserved in tap water with a LOD of 1.65 nM and a linear detection range of 0-10 μM.

  5. Fluorescent in situ hybridization as an adjunct to conventional cytogenetics.

    Science.gov (United States)

    Mark, H F

    1994-01-01

    Fluorescent in situ hybridization (FISH) is a molecular cytogenetic technique that exploits the availability of recombinant deoxyribonucleic acid (DNA) technology. In metaphase FISH, a specific nucleic acid sequence (probe) is bound to the homologous segment on a metaphase chromosome in a fixed preparation on a glass slide. The presence of a region-specific DNA sequence in a nondividing cell can be detected using interphase FISH. Interphase cytogenetics via FISH can be performed on fixed cells harvested during a routine culture, on tissue sections and on many cytologic specimens. Specific examples of clinical and research applications are discussed to illustrate the utility of FISH in the detection of constitutional and acquired chromosomal abnormalities.

  6. 10p Duplication characterized by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Wiktor, A.; Feldman, G.L.; Van Dyke, D.L.; Kratkoczki, P.; Ditmars, D.M. Jr. [Henry Ford Hospital, Detroit, MI (United States)

    1994-09-01

    We describe a patient with severe failure to thrive, mild-moderate developmental delay, cleft lip and palate, and other anomalies. Routine cytogenetic analysis documented a de novo chromosome rearrangement involving chromosome 4, but the origin of the derived material was unknown. Using chromosome specific painting probes, the karyotype was defined as 46,XY,der(4)t(4;10)(q35;p11.23). Characterization of the dup(10p) by fluorescence in situ hybridization (FISH) analysis provides another example of the usefulness of this technology in identifying small deletions, duplications, or supernumerary marker chromosomes. 19 refs., 4 figs.

  7. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions.

    Science.gov (United States)

    Wang, Yahui; Zhang, Cheng; Chen, Xiaochun; Yang, Bo; Yang, Liang; Jiang, Changlong; Zhang, Zhongping

    2016-03-21

    A simple and effective ratiometric fluorescence nanosensor for the selective detection of Cu(2+) has been developed by covalently connecting the carboxyl-modified red fluorescent cadmium telluride (CdTe) quantum dots (QDs) to the amino-functionalized blue fluorescent carbon nanodots (CDs). The sensor exhibits the dual-emissions peaked at 437 and 654 nm, under a single excitation wavelength of 340 nm. The red fluorescence can be selectively quenched by Cu(2+), while the blue fluorescence is a internal reference, resulting in a distinguishable fluorescence color change from pink to blue under a UV lamp. The detection limit of this highly sensitive ratiometric probe is as low as 0.36 nM, which is lower than the U.S. Environmental Protection Agency (EPA) defined limit (20 μM). Moreover, a paper-based sensor has been prepared by printing the hybrid carbon dots-quantum dots probe on a microporous membrane, which provides a convenient and simple approach for the visual detection of Cu(2+). Therefore, the as-synthesized probe shows great potential application for the determination of Cu(2+) in real samples.

  8. Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence

    National Research Council Canada - National Science Library

    Pereira, Fábio; Bernacka-Wojcik, Iwona; Ribeiro, Rita; Lobato, Maria; Fortunato, Elvira; Martins, Rodrigo; Igreja, Rui; Jorge, Pedro; Águas, Hugo; Oliva, Abel

    2016-01-01

    ...: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip...

  9. A novel fluorescent in situ hybridization technique for detection of Rickettsia spp. in archival samples

    DEFF Research Database (Denmark)

    Svendsen, Claus Bo; Boye, Mette; Struve, Carsten

    2009-01-01

    A novel, sensitive and specific method for detecting Rickettsia spp. in archival samples is described. The method involves the use of fluorescently marked oligonucleotide probes for in situ hybridization. Specific hybridization of Ricekttsia was found without problems of cross-reactions with bact......A novel, sensitive and specific method for detecting Rickettsia spp. in archival samples is described. The method involves the use of fluorescently marked oligonucleotide probes for in situ hybridization. Specific hybridization of Ricekttsia was found without problems of cross...

  10. Clinical application of fluorescence in situ hybridization for prenatal diagnosis

    Directory of Open Access Journals (Sweden)

    Shu-fang JIANG

    2012-07-01

    Full Text Available Objective To establish and optimize the procedures of fluorescence in situ hybridization(FISH), and evaluate its clinical value in rapid prenatal diagnosis of fetal numerical abnormality of chromosomes 21, 18, 13, X, Y. Methods Amniotic fluid or fetal blood was sampled by routine invasive procedures. After the amniotic fluid cells or fetal blood cells were separated and sequentially processed with hypotonic solution, fixation solution, smear and high temperature, they were hybridized in situ with two panels of specific fluorescence probes to detect numerical abnormality of chromosomes 21, 18, 13, X, Y. All the samples were also cultured and analyzed for their karyotype by conventional methods. Results When it was used as a diagnostic criterion of chromosomal number that the fluorescence signals were observed in ≥90% cells, GLP 13/GLP 21 probe panel showed 2 green/2 red fluorescence signals and CSP18/CSP X/CSP Y probe panel showed 2 blue/2 yellow (female or 2 blue/1 yellow/1 red fluorescence signals (male under normal condition. The test reports of all 196 cases were sent out in 72-96 hours, and 7 cases of Down syndrome, 2 cases of trisomy 18 and 1 case of sex chromosomal numerical abnormality were detected, which were accordant with karyotype analysis results reported one month later. Conclusions FISH has potential for clinical application, and is applicable to rapid prenatal diagnosis of fetal numerical abnormality of chromosomes 21, 18, 13, X, Y. The rapid FISH, together with conventional karyotyping, offer a valuable means for prenatal diagnosis of fetal aneuploidies.

  11. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection

    DEFF Research Database (Denmark)

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi

    2016-01-01

    Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detectio......-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples....

  12. "Turn-off" fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides.

    Science.gov (United States)

    Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue; Fu, Haiyan; Yang, Tianming; She, Yuanbin; Ni, Chuang

    2016-04-15

    As a popular detection model, the fluorescence "turn-off" sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence "turn-off" model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10(-8) mol L(-1) and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs.

  13. A label-free fluorescence DNA probe based on ligation reaction with quadruplex formation for highly sensitive and selective detection of nicotinamide adenine dinucleotide.

    Science.gov (United States)

    Zhao, Jingjin; Zhang, Liangliang; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin

    2012-05-11

    A simple label-free fluorescent sensing scheme for sensitive and selective detection of nicotinamide adenine dinucleotide (NAD(+)) has been developed based on DNA ligation reaction with ligand-responsive quadruplex formation. This approach can detect 0.5 nM NAD(+) with high selectivity against other NAD(+) analogs.

  14. Synthesis and properties of core–shell fluorescent hybrids with distinct morphologies based on carbon dots

    KAUST Repository

    Markova, Zdenka

    2012-01-01

    Fluorescent core-shell nanohybrids with the shells derived from carbon dots and cores differing in the chemical nature and morphology were synthesized. Hybrid nanoparticles combine fluorescence with other functionalities such as magnetic response on a single platform. These hybrids can be used in various bioapplications as demonstrated with labeling of stem cells. © The Royal Society of Chemistry 2012.

  15. Human cDNA mapping using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1993-03-04

    Genetic mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach generated 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  16. Labeling-free fluorescent detection of DNA hybridization through FRET from pyrene excimer to DNA intercalator SYBR green I.

    Science.gov (United States)

    Zhou, Ruyi; Xu, Chen; Dong, Jie; Wang, Guojie

    2015-03-15

    A novel labeling-free fluorescence complex probe has been developed for DNA hybridization detection based on fluorescence resonance energy transfer (FRET) mechanism from pyrene excimer of pyrene-functionalized poly [2-(N, N-dimethylamino) ethyl methacrylate] (PFP) to SYBR Green I (SG, a specific intercalator of double-stranded DNA) in a cost-effective, rapid and simple manner. The complex probe consists of the positively charged PFP, SG and negatively charged single-stranded DNA (ssDNA). Upon adding a complementary strand to the complex probe solution, double-stranded DNA (dsDNA) was formed, followed by the intercalation of SG into dsDNA. The pyrene excimer emission was overlapped with the absorption of SG very well and the electrostatic interactions between PFP and dsDNA kept them in close proximity, enabling efficient FRET from pyrene excimer to SG. The fluorescence of SG in the duplex DNA resulting from FRET can be successfully applied to detect DNA hybridization with high sensitivity for a very low detection limit of 10nM and excellent selectivity for detection of single base pair mismatch. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    Science.gov (United States)

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays.

  18. Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes

    Science.gov (United States)

    Harrington, Walter N.; Haji, Mwafaq R.; Galanzha, Ekaterina I.; Nedosekin, Dmitry A.; Nima, Zeid A.; Watanabe, Fumiya; Ghosh, Anindya; Biris, Alexandru S.; Zharov, Vladimir P.

    2016-11-01

    Photoswitchable fluorescent proteins with controllable light-dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive light-dark states and spectral shifts in absorption can be switched through controllable photothermal heating of doped nanoparticles. The proof-of-concept is demonstrated through the use of two different types of temperature-sensitive dyes doped with magnetic nanoparticles and reversibly photoswitched by a near-infrared laser. Photoacoustic imaging revealed the high contrast of these probes, which is sufficient for their visualization in cells and deep tissue. Our results suggest that these new photoswitchable multicolour probes can be used for multimodal cellular diagnostics and potentially for magnetic and photothermal therapy.

  19. Hybrid Integrated Silicon Microfluidic Platform for Fluorescence Based Biodetection

    Directory of Open Access Journals (Sweden)

    André Darveau

    2007-09-01

    Full Text Available The desideratum to develop a fully integrated Lab-on-a-chip device capable ofrapid specimen detection for high throughput in-situ biomedical diagnoses and Point-of-Care testing applications has called for the integration of some of the novel technologiessuch as the microfluidics, microphotonics, immunoproteomics and Micro ElectroMechanical Systems (MEMS. In the present work, a silicon based microfluidic device hasbeen developed for carrying out fluorescence based immunoassay. By hybrid attachment ofthe microfluidic device with a Spectrometer-on-chip, the feasibility of synthesizing anintegrated Lab-on-a-chip type device for fluorescence based biosensing has beendemonstrated. Biodetection using the microfluidic device has been carried out usingantigen sheep IgG and Alexafluor-647 tagged antibody particles and the experimentalresults prove that silicon is a compatible material for the present application given thevarious advantages it offers such as cost-effectiveness, ease of bulk microfabrication,superior surface affinity to biomolecules, ease of disposability of the device etc., and is thussuitable for fabricating Lab-on-a-chip type devices.

  20. High-Sensitivity Spectrophotometry.

    Science.gov (United States)

    Harris, T. D.

    1982-01-01

    Selected high-sensitivity spectrophotometric methods are examined, and comparisons are made of their relative strengths and weaknesses and the circumstances for which each can best be applied. Methods include long path cells, noise reduction, laser intracavity absorption, thermocouple calorimetry, photoacoustic methods, and thermo-optical methods.…

  1. Multicapillary electrophoresis of unlabeled DNA fragments with high-sensitive laser-induced fluorescence detection by counter-current migration of intercalation dye.

    Science.gov (United States)

    Benesova-Minarikova, Lucie; Fantova, Lucie; Minarik, Marek

    2005-11-01

    Analysis of PCR fragments for applications, such as screening of nucleotide polymorphisms, detection of somatic mutations, or quantification of reverse-transcription PCR products, becomes central in clinical research as well as preventive testing, diagnostic screening, and pharmacogenomic genotyping. A variety of CE techniques, utilizing great potential of multicapillary-array sequencers, is now commonly applied in prevention, diagnosis, and treatment of a wide range of genetic diseases (cancer, cardiovascular, and neurodegenerative diseases, etc.). Costs of fluorescently labeled primers is often a major factor in large-scale projects requiring mutation analysis in hundreds or thousands of samples. In the present paper we introduce a simple approach of detecting unlabeled DNA fragments through intercalation without a need for adding intercalator to the separation polymer matrix. The dye is only added to the anode reservoir, and mixing with the separated DNA fragments takes place upon its migration opposite to the direction of the CE separation. Using two common intercalating dyes (ethidium bromide and SYBR Green II) we present this method as a tool for routine PCR detection and quantification.

  2. Detection of Inter-chromosomal Stable Aberrations by Multiple Fluorescence In Situ Hybridization (mFISH) and Spectral Karyotyping (SKY) in Irradiated Mice.

    Science.gov (United States)

    Pathak, Rupak; Koturbash, Igor; Hauer-Jensen, Martin

    2017-01-11

    Ionizing radiation (IR) induces numerous stable and unstable chromosomal aberrations. Unstable aberrations, where chromosome morphology is substantially compromised, can easily be identified by conventional chromosome staining techniques. However, detection of stable aberrations, which involve exchange or translocation of genetic materials without considerable modification in the chromosome morphology, requires sophisticated chromosome painting techniques that rely on in situ hybridization of fluorescently labeled DNA probes, a chromosome painting technique popularly known as fluorescence in situ hybridization (FISH). FISH probes can be specific for whole chromosome/s or precise sub-region on chromosome/s. The method not only allows visualization of stable aberrations, but it can also allow detection of the chromosome/s or specific DNA sequence/s involved in a particular aberration formation. A variety of chromosome painting techniques are available in cytogenetics; here two highly sensitive methods, multiple fluorescence in situ hybridization (mFISH) and spectral karyotyping (SKY), are discussed to identify inter-chromosomal stable aberrations that form in the bone marrow cells of mice after exposure to total body irradiation. Although both techniques rely on fluorescent labeled DNA probes, the method of detection and the process of image acquisition of the fluorescent signals are different. These two techniques have been used in various research areas, such as radiation biology, cancer cytogenetics, retrospective radiation biodosimetry, clinical cytogenetics, evolutionary cytogenetics, and comparative cytogenetics.

  3. Fluorescence in situ hybridization for detection of small RNAs on frozen tissue sections

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli

    2014-01-01

    processes and diseases, the function of each single microRNA is still yet to be explored in all tissues and cells they are present. Therefore, an efficient in situ hybridization method, combining locked nucleic acid technology and tyramide signal amplification system, has been developed and presented...... for detection of microRNAs in frozen section at a cellular resolution and with high sensitivity....

  4. Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics.

    Science.gov (United States)

    Kondo, Tadashi; Hirohashi, Setsuo

    2006-01-01

    Proteome data combined with histopathological information provides important, novel clues for understanding cancer biology and reveals candidates for tumor markers and therapeutic targets. We have established an application of a highly sensitive fluorescent dye (CyDye DIGE Fluor saturation dye), developed for two-dimensional difference gel electrophoresis (2D-DIGE), to the labeling of proteins extracted from laser microdissected tissues. The use of the dye dramatically decreases the protein amount and, in turn, the number of cells required for 2D-DIGE; the cells obtained from a 1 mm2 area of an 8-12 microm thick tissue section generate up to 5,000 protein spots in a large-format 2D gel. This protocol allows the execution of large-scale proteomics in a more efficient, accurate and reproducible way. The protocol can be used to examine a single sample in 5 d or to examine hundreds of samples in large-scale proteomics.

  5. Pallister-Killian syndrome detected by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M.G.; Dev, V.G. [Genetics Associates, Nashville, TN (United States)

    1995-07-03

    The Pallister-Killian syndrome is a rare cytogenetic condition first described in 1977 by Pallister et al. in 3 adults; the first affected child was reported in 1981. This syndrome (also known as Pallister mosaic aneuploidy syndrome or isochromosome 12p mosaicism) is characterized by postnatal growth retardation, seizures, hypotonia, deafness, profound mental retardation, minimal speech development, and a distinctive facial appearance (high prominent forehead, ocular hypertelorism, sparse anterior scalp hair, prominent lower lip, large ears with thick protruding lobules, cupid-bow shaped upper lip, and a long philtrum). A chromosome 12 abnormality (tetrasomy 12p) has been reported in skin biopsies from these patients but this chromosome anomaly is usually not found (or in only a small proportion, e.g., <0.5%, of blood cells) in peripheral blood. We report on an additional patient with Pallister-Killian syndrome confirmed with fluorescence in situ hybridization (FISH) using an alpha satellite DNA probe for chromosome 12. This report further illustrates the application of FISH in identifying the source of chromosomal markers of unknown origin in infants with multiple congenital anomalies specifically before the natural history of a condition allows for definitive diagnosis based on clinical findings. 9 refs., 2 figs.

  6. Fluorescence in situ hybridization applied to domestic animal cytogenetics.

    Science.gov (United States)

    Rubes, J; Pinton, A; Bonnet-Garnier, A; Fillon, V; Musilova, P; Michalova, K; Kubickova, S; Ducos, A; Yerle, M

    2009-01-01

    The aim of this article is not to present an exhaustive review of molecular cytogenetics applications in domestic animal species, but more to illustrate the considerable contribution of these approaches in diagnostics and research in economically important species. A short presentation of the main applications of molecular cytogenetics in humans points out the domains in which it has become an essential tool and underlines the specificities attached to this species in comparison to farm animals. This article is devoted to outlining the current resources available in domestic species and to some examples of fluorescence in situ hybridization applications in the cattle, pig, horse and avian species. From a clinical point of view, these examples illustrate the advantages of FISH for the study of chromosomal abnormalities (identification, characterization and estimation of their effects). Other applications of molecular cytogenetics are also illustrated, particularly ZOO-FISH, an approach which allows the determination of chromosome homologies between species. Finally, a specific emphasis was placed on the usefulness of molecular cytogenetics for the analysis of species such as poultry, which harbour a complex karyotype.

  7. Fluorescence in situ hybridization as adjunct to cytology improves the diagnosis and directs estimation of prognosis of malignant pleural effusions

    Directory of Open Access Journals (Sweden)

    Han Jingquan

    2012-11-01

    Full Text Available Abstract Background The identification of malignant cells in effusions by conventional cytology is hampered by its limited sensitivity and specificity. The aim of this study was to investigate the value of fluorescence in situ hybridization (FISH as adjuncts to conventional cytologic examination in patients with malignant pleural effusions. Methods We conducted a retrospective cohort study of 93 inpatients with pleural effusions (72 malignant pleural effusions metastatic from 11 different organs and 21 benign over 23 months. All the patients came from Chinese northeast areas. Aspirated pleural fluid underwent cytologic examination and fluorescence in situ hybridization (FISH for aneuploidy. We used FISH in single-colour or if appropriate in dual-colour evaluation to detect chromosomal aberrations (chromosomes 7, 11, and 17 in effusion cells as markers of malignancy, to raise the diagnostic yield and identified the efficiency by diagnostic biopsy. Predominant cytogenetic anomalies and patterns of intratumor cytogenetic heterogeneity were brought in relation to overall survival rate. Results Cytology alone confirmed malignant pleural effusions in 45 of 72 patients (sensitivity 63%, whereas FISH alone positively identified 48 of 72 patients (sensitivity 67%. Both tests had high specificity in predicting benign effusions. If cytology and FISH were considered together, they exhibited 88% sensitivity and 94.5% specificity in discriminating benign and malignant effusions. Combined, the two assays were more sensitive than either test alone. Although the positive predictive value of each test was 94.5%, the negative predictive value of cytology and FISH combined was 78%, better than 47% and 44% for FISH and cytology alone, respectively. There was a significantly prolonged survival rate for patients with aneuploidy for chromosome 17. Conclusions FISH in combination with conventional cytology is a highly sensitive and specific diagnostic tool for detecting

  8. A highly sensitive fluorescence quenching method for perphenazine detection based on its catalysis of K{sub 2}S{sub 2}O{sub 8} oxidizing rhodamine 6G

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lihong; Huang, Qitong; Lin, Changqing [Department of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou, 363000 (China); Lin, Xiaofeng [College of Chemistry and Environment, Minnan Normal University, Zhangzhou, 363000 (China); Huang, Yiqun [Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000 (China); Liu, Jiaming, E-mail: mnsdljm@163.com [College of Chemistry and Environment, Minnan Normal University, Zhangzhou, 363000 (China); Ma, Xudong, E-mail: maxudong005@hotmail.com [Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000 (China)

    2014-12-15

    In this paper, the fluorescence spectra of Rhod 6G (rhodamine 6G)–K{sub 2}S{sub 2}O{sub 8}–PPH (perphenazine) were studied. We found that Rhod 6G existed in the form of Rhod 6G{sup +} under the conditions of 60 °C, 10 min and pH 5.42, and Rhod 6G{sup +} can emit strong and stable fluorescence. Further study showed that when PPH and Rhod 6G{sup +} coexisted, the ester exchange reaction carried out between -OH of PPH and -COOC{sub 2}H{sub 5} of Rhod 6G{sup +} to produced Rhod 6G{sup +}–PPH compound. More interestingly, K{sub 2}S{sub 2}O{sub 8} could oxidize Rhod 6G{sup +} and quench its RTP signal, while PPH was oxidized to red compound PPH′ by K{sub 2}S{sub 2}O{sub 8}, and Rhod 6G{sup +}–PPH′ and PPH were produced in the ester exchange reaction between the -OH of PPH′ and the -COOC{sub 2}H{sub 5} of Rhod 6G{sup +}–PPH. In the above process, PPH catalyzed K{sub 2}S{sub 2}O{sub 8} oxidizing Rhod 6G, which caused the fluorescence signal of the system to quench sharply. Hence, a catalytic fluorescence quenching method for the determination of residual PPH has been developed based on the its catalyzing K{sub 2}S{sub 2}O{sub 8} oxidize rhodamine 6G. This sensitive, accurate, simple and selective fluorescence quenching method was used to determine residual PPH in biological samples with the results consisting with those obtained by high performance liquid chromatography (HPLC), showing good accuracy. The structures of Rhod 6G{sup +}, PPH and Rhod 6G{sup +}–PPH were characterized by infrared spectra. The reaction mechanism of the determination of PPH was also discussed. - Highlights: • Fluorescence for the determination of perphenazine (PPH) had been established. • This method had high sensitivity (limit of detection was 3.3×10{sup −14} g mL{sup −1}). • This method had been applied to determination of PPH in biological samples. • Structures of Rhod 6G{sup +}, PPH and Rhod 6G{sup +}–PPH were characterized by infrared spectra. • Mechanism

  9. Highly Sensitive Optical Receivers

    CERN Document Server

    Schneider, Kerstin

    2006-01-01

    Highly Sensitive Optical Receivers primarily treats the circuit design of optical receivers with external photodiodes. Continuous-mode and burst-mode receivers are compared. The monograph first summarizes the basics of III/V photodetectors, transistor and noise models, bit-error rate, sensitivity and analog circuit design, thus enabling readers to understand the circuits described in the main part of the book. In order to cover the topic comprehensively, detailed descriptions of receivers for optical data communication in general and, in particular, optical burst-mode receivers in deep-sub-µm CMOS are presented. Numerous detailed and elaborate illustrations facilitate better understanding.

  10. Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles.

    Science.gov (United States)

    Zhao, Yuan; Yang, Dong; Li, Xiyu; Liu, Yu; Hu, Xiang; Zhou, Dianfa; Lu, Yalin

    2017-01-19

    We report a novel graphene-metal hybrid system by introducing monolayer graphene between gold nanoparticles (Au NPs) and silver nanohole (Ag NH) arrays. The design incorporates three key advantages to promote the surface-enhanced Raman scattering (SERS) sensing capacity: (i) making full use of the single-atomic feature of graphene for generating uniform sub-nanometer spaces; (ii) maintaining the bottom layer of Ag nanoarrays with an ordered manner for facilitating the transfer of graphene films and assembly of the top layer of Au NPs; (iii) integrating the advantages of the strong plasmonic effect of Ag, the chemical stability of Au, as well as the mechanical flexibility and biological compatibility of graphene. In this configuration, the plasmonic properties can be fine-tuned by separately optimizing the horizontal or vertical gaps between the metal NPs. Exactly, sub-20 nm spaces between the horizontally patterned Ag tips constructed by adjacent Ag NHs, and sub-nanometer scale graphene gaps between the vertically distributed Au NP-Ag NH have been achieved. Finite element numerical simulations demonstrate that the multi-dimensional plasmonic couplings (including the Au NP-Au NP, Au NP-Ag NH and Ag NH-Ag NH couplings) promote for the hybrid platform an electric field enhancement up to 137 times. Impressively, the as-prepared 3D Au NP-graphene-Ag NH array hybrid structure manifests ultrahigh SERS sensitivity with a detection limit of 10(-13) M for R6G molecules, as well as good reproducibility and stability. This work represents a step towards high-performance SERS substrate fabrication, and opens up a new route for graphene-plasmonic hybrids in SERS applications.

  11. Hybrid surface structures for efficiency enhancement of fluorescent SiC for white LED application

    DEFF Research Database (Denmark)

    Ou, Yiyu; Xiong, Meng; Lu, Weifang

    Hybrid structures contain structures in both micro- and nano-meter scale have been fabricated on fluorescent SiC by applying a fast fabrication method. Luminescence efficiency of f-SiC was enhanced significantly compared with normal nanostructures....

  12. Presence and localization of bacteria in the bovine endometrium postpartum using fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Karstrup, C. C.; Agerholm, J. S.; Jensen, Tim Kåre

    2017-01-01

    The aim of this study was to investigate bacterial invasiveness of the bovine endometrium during the postpartum period. Fluorescence in situ hybridization was applied to endometrial biopsies using probes for Fusobacterium necrophorum, Porphyromonas levii, Trueperella pyogenes, Escherichia coli...

  13. Fluorescence in situ hybridization for the tissue detection of bacterial pathogens associated with porcine infections

    DEFF Research Database (Denmark)

    Jensen, Henrik Elvang; Jensen, Louise Kruse; Barington, Kristiane

    2015-01-01

    sequences within intact cells. FISH allows direct histological localization of the bacteria in the tissue and thereby a correlation between the infection and the histopathological changes present. This chapter presents protocols for FISH identification of bacterial pathogens in fixed deparaffinized tissue......Fluorescence in situ hybridization (FISH) is an efficient technique for the identification of specific bacteria in tissue of both experimental and spontaneous infections. The method detects specific sequences of nucleic acids by hybridization of fluorescently labeled probes to complementary target...

  14. Fluorescence In Situ Hybridization for the Tissue Detection of Bacterial Pathogens Associated with Porcine Infections

    DEFF Research Database (Denmark)

    Elvang Jensen, Henrik; Jensen, Louise Kruse; Barington, Kristiane

    2015-01-01

    sequences within intact cells. FISH allows direct histological localization of the bacteria in the tissue and thereby a correlation between the infection and the histopathological changes present. This chapter presents protocols for FISH identification of bacterial pathogens in fixed deparaffinized tissue......Fluorescence in situ hybridization (FISH) is an efficient technique for the identification of specific bacteria in tissue of both experimental and spontaneous infections. The method detects specific sequences of nucleic acids by hybridization of fluorescently labeled probes to complementary target...

  15. ELISA-PLA: A novel hybrid platform for the rapid, highly sensitive and specific quantification of proteins and post-translational modifications.

    Science.gov (United States)

    Tong, Qing-He; Tao, Tao; Xie, Li-Qi; Lu, Hao-Jie

    2016-06-15

    Detection of low-abundance proteins and their post-translational modifications (PTMs) remains a great challenge. A conventional enzyme-linked immunosorbent assay (ELISA) is not sensitive enough to detect low-abundance PTMs and suffers from nonspecific detection. Herein, a rapid, highly sensitive and specific platform integrating ELISA with a proximity ligation assay (PLA), termed ELISA-PLA, was developed. Using ELISA-PLA, the specificity was improved by the simultaneous and proximate recognition of targets through multiple probes, and the sensitivity was significantly improved by rolling circle amplification (RCA). For GFP, the limit of detection (LOD) was decreased by two orders of magnitude compared to that of ELISA. Using site-specific phospho-antibody and pan-specific phospho-antibody, ELISA-PLA was successfully applied to quantify the phosphorylation dynamics of ERK1/2 and the overall tyrosine phosphorylation level of ERK1/2, respectively. ELISA-PLA was also used to quantify the O-GlcNAcylation of AKT, c-Fos, CREB and STAT3, which is faster and more sensitive than the conventional immunoprecipitation and western blotting (IP-WB) method. As a result, the sample consumption of ELISA-PLA was reduced 40-fold compared to IP-WB. Therefore, ELISA-PLA could be a promising platform for the rapid, sensitive and specific detection of proteins and PTMs.

  16. The application of fluorescence in situ hybridization in different ploidy levels cross-breeding of lily.

    Directory of Open Access Journals (Sweden)

    Qing Wang

    Full Text Available 21 crossing were conducted between Asiatic Lily with different ploidy levels, the results showed that the interploidy hybridization between diploid and tetraploid lilies was not as successful as intraploidy hybridization. Regardless of male sterility, triploid lilies could be used as female parents in the hybridization which the progenies were aneuploidy. 3x×4x crosses could be cultured more successfully than 3x×2x crosses. 45S rDNA was mapped on the chromosomes of seven Lilium species and their progenies using fluorescence in situ hybridization (FISH. FISH revealed six to sixteen 45S rDNA gene loci, and normally the sites were not in pairs. The asymmetry indexes of LA (Longiflorum hybrids × Asiatic hybrids hybrids was higher than Asiatic hybrids, the evolution degree was LA hybrids > Asiatic hybrids. 45S rDNA distributed variably on chromosome 1-10 and 12 among Asiatic hybrids. Chromosome 1 had invariable sites of 45S rDNA in all Asiatic hybrids, which could be considered as the characteristic of Asiatic hybrids. LA hybrid 'Freya' had two sites of 45S rDNA on one homologous chromosome 5, and also it could be found in the progenies. The karyotype and fluorescence in situ hybridization with 45S rDNA as probe were applied to identify the different genotypes of 9 hybrids. Typical chromosomes with parental signal sites could be observed in all the genotypes of hybrids, it was confirmed that all the hybrids were true.

  17. Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain

    Directory of Open Access Journals (Sweden)

    Hauptmann Giselbert

    2011-04-01

    Full Text Available Abstract Background In recent years, mapping of overlapping and abutting regulatory gene expression domains by chromogenic two-color in situ hybridization has helped define molecular subdivisions of the developing vertebrate brain and shed light on its basic organization. Despite the benefits of this technique, visualization of overlapping transcript distributions by differently colored precipitates remains difficult because of masking of lighter signals by darker color precipitates and lack of three-dimensional visualization properties. Fluorescent detection of transcript distributions may be able to solve these issues. However, despite the use of signal amplification systems for increasing sensitivity, fluorescent detection in whole-mounts suffers from rapid quenching of peroxidase (POD activity compared to alkaline phosphatase chromogenic reactions. Thus, less strongly expressed genes cannot be efficiently detected. Results We developed an optimized procedure for fluorescent detection of transcript distribution in whole-mount zebrafish embryos using tyramide signal amplification (TSA. Conditions for hybridization and POD-TSA reaction were optimized by the application of the viscosity-increasing polymer dextran sulfate and the use of the substituted phenol compounds 4-iodophenol and vanillin as enhancers of POD activity. In combination with highly effective bench-made tyramide substrates, these improvements resulted in dramatically increased signal-to-noise ratios. The strongly enhanced signal intensities permitted fluorescent visualization of less abundant transcripts of tissue-specific regulatory genes. When performing multicolor fluorescent in situ hybridization (FISH experiments, the highly sensitive POD reaction conditions required effective POD inactivation after each detection cycle by glycine-hydrochloric acid treatment. This optimized FISH procedure permitted the simultaneous fluorescent visualization of up to three unique transcripts

  18. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  19. Role of fluorescence in situ hybridization (FISH) in sequencing the tomato genome

    Science.gov (United States)

    Chromosomes at various stages of the cell cycle can be used for localization of DNA probes via Fluorescence in situ hybridization (FISH). While mitotic metaphase chromosomes are demonstrably too short and compact for this purpose, long pachytene chromosomes are ideal. BACs that hybridize to euchrom...

  20. [Value of fluorescence in situ hybridization of urine exfoliative cells in diagnosis of urinary bladder neoplasms].

    Science.gov (United States)

    Chen, Ni; Gong, Jing; Zeng, Hao; Wei, Qiang; Zhu, Yu-chun; Chen, Min; Zhou, Qiao

    2011-01-01

    To investigate the value of fluorescence in situ hybridization (FISH) examination of urine exfoliative cells in the diagnosis of urinary bladder neoplasms. The urine samples were collected from 100 patients with suspected urinary bladder neoplasms and 20 normal control subjects. Both FISH examination and cytology study of urine exfoliative cells were conducted with each sample. The specificity and sensitivity of FISH and cytology were analyzed on the basis of bladder biopsy histology. The sensitivity of FISH examination of bladder malignant tumor was 93.5% (87/93), which was much higher than that of cytology (49.5%, 46/93). Biopsies confirmed 88 cases of urothelial carcinoma among the 100 suspected patients, with 46 high grade tumors and 42 low grade tumors; 30 cases of high stage (T(2-4)) and 58 cases of low stage (T(a-1)). The sensitivity of FISH examination of urothelial carcinoma was 94.3%, which was much higher than that of cytology (52.3%). FISH examination was significantly more sensitive than cytology for low grade and low stage urothelial carcinoma, as well as for rare non-urothelial malignancies (P cytology of bladder malignancies was 92.6% (25/27) and 96.3% (26/27), for urothelial carcinoma was 81.3% (26/32) and 96.9% (31/32), respectively. FISH shows high sensitivity and relatively high specificity for the detection of urinary bladder neoplasms, especially for the diagnosis of low grade urothelial carcinoma and non-urothelial malignancies, which were difficult to be detected by cytology.

  1. FLUORESCENCE IN SITU HYBRIDIZATION COMBINED WITH IMMUNOFLUORESCENT STAINING FOR RAPID DETECTION OF Nmyc AMPLIFICATION IN NEUROBLASTOMA

    Institute of Scientific and Technical Information of China (English)

    WANG Wei王伟; Marianne Ifversen; ZHAO Chun-ting赵春亭; WANG Hong-yi汪洪毅; ZHAO Hong-guo赵洪国

    2004-01-01

    Objective: To establish a method to improve the detection of disseminated tumor cells in bone marrow and peripheral blood samples of neuroblastoma patients and analysis of cytogenetic aberration. Methods: Immunofluorescent staining was performed using a cocktail of primary monoclonal neuroblastoma antibodies (14.G2a, 5.1H11). Fluorescence in situ hybridization was applied with fluorescent probes specific for Nmyc genes afterwards. A novel computer assisted scanning system for automatic search, image analysis and repositioning of these positive cells was developed. Fifty-six bone marrow and peripheral blood samples from 7 patients were evaluated by this method. Results: Fluorescence in situ hybridization can be combined with immunofluorescent staining in detecting Nmyc amplification in neuroblastoma patients. Fluorescence in situ hybridization results correlated well with data obtained by conventional cytogenetic procedures. Conclusion: The technique described allows search of tumor cells in the bone marrow as well as detection of Nmyc amplification in interphase nuclei.

  2. The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ferris Vanessa

    2008-02-01

    Full Text Available Abstract Background Trypanosoma brucei undergoes genetic exchange in its insect vector, the tsetse fly, by an unknown mechanism. The difficulties of working with this experimental system of genetic exchange have hampered investigation, particularly because the trypanosome life cycle stages involved cannot be cultured in vitro and therefore must be examined in the insect. Searching for small numbers of hybrid trypanosomes directly in the fly has become possible through the incorporation of fluorescent reporter genes, and we have previously carried out a successful cross using a reporter-repressor strategy. However, we could not be certain that all fluorescent trypanosomes observed in that cross were hybrids, due to mutations of the repressor leading to spontaneous fluorescence, and we have therefore developed an alternative strategy. Results To visualize the production of hybrids in the fly, parental trypanosome clones were transfected with a gene encoding Green Fluorescent Protein (GFP or Red Fluorescent Protein (RFP. Co-infection of flies with red and green fluorescent parental trypanosomes produced yellow fluorescent hybrids, which were easily visualized in the fly salivary glands. Yellow trypanosomes were not seen in midgut or proventricular samples and first appeared in the glands as epimastigotes as early as 13 days after fly infection. Cloned progeny originating from individual salivary glands had yellow, red, green or no fluorescence and were confirmed as hybrids by microsatellite, molecular karyotype and kinetoplast (mitochondrial DNA analyses. Hybrid clones showed biparental inheritance of both nuclear and kinetoplast genomes. While segregation and reassortment of the reporter genes and microsatellite alleles were consistent with Mendelian inheritance, flow cytometry measurement of DNA content revealed both diploid and polyploid trypanosomes among the hybrid progeny clones. Conclusion The strategy of using production of yellow hybrids

  3. Fluorescence Hybridization Assay Based On Chitosan-Linked Softarrays

    Science.gov (United States)

    2003-07-01

    was incubated in the wells to reduce the Schiff base resulting from the reaction of aldehyde and amine groups. After this reaction, the yellowish...color representative of a Schiff base disappeared and the background fluorescence signal dropped to the initial ~8 to 12 fluorescence intensity (FI

  4. Phenylethynylpyrene excimer forming hybridization probes for fluorescence SNP detection

    DEFF Research Database (Denmark)

    Prokhorenko, Igor A.; Astakhova, Irina V.; Momynaliev, Kuvat T.

    2009-01-01

    Excimer formation is a unique feature of some fluorescent dyes (e.g., pyrene) which can be used for probing the proximity of biomolecules. Pyrene excimer fluorescence has previously been used for homogeneous detection of single nucleotide polymorphism (SNP) on DNA. 1-Phenylethynylpyrene (1-1-PEPy...

  5. USE OF FLUORESCENCE IN SITU HYBRIDIZATION ASSAY ON URINE SEDIMENT CELLS TO DIAGNOSE URINARY BLADDER CANCER AND ITS RECURRENCESY

    Directory of Open Access Journals (Sweden)

    I. E. Vorobtsova

    2014-07-01

    Full Text Available Fluorescence in situ hybridization (FISH assay was used to detect tumor cells in the urine sediment of patients diagnosed as having urinary bladder cancer (UBC. For this, the investigators applied a fluorescence DNA probe kit (UroVysion that could reveal the cytogenetic abnormalities characteristic for UBC, such as hyperploidy for chromosomes 3, 7, and 17 and deletion of the 9p21 locus, in the cast-off cells. Twenty-eight patients with the primary diagnosis of UBC, 12 with its suspected recurrence, 3 subjects without UBC were examined. The findings were compared with cystoscopic data after urine samples were taken. The sensitivity of the UroVysion test totaled 78.5 ± 9.7 % for all stages of primary cancer (pT1-pT4, 87.5 ± 11.6 % for its early stage (рТ1, and 100 % for UBC recurrences. Hyperploidy was a predominant type of cytogenetic abnormalities in the cast-off tumor cells. Among the abnormal cells, the types of hyperploidy (tri-, tetrasomy were most common for chromosome 3 and less for chromosome 7. Thus, the UroVysion test is a noninvasive highly sensitive tool that may be used in clinical practice to improve the diagnosis of UBC, to detect recurrences, and to monitor the efficiency of treatment.

  6. USE OF FLUORESCENCE IN SITU HYBRIDIZATION ASSAY ON URINE SEDIMENT CELLS TO DIAGNOSE URINARY BLADDER CANCER AND ITS RECURRENCESY

    Directory of Open Access Journals (Sweden)

    I. E. Vorobtsova

    2011-01-01

    Full Text Available Fluorescence in situ hybridization (FISH assay was used to detect tumor cells in the urine sediment of patients diagnosed as having urinary bladder cancer (UBC. For this, the investigators applied a fluorescence DNA probe kit (UroVysion that could reveal the cytogenetic abnormalities characteristic for UBC, such as hyperploidy for chromosomes 3, 7, and 17 and deletion of the 9p21 locus, in the cast-off cells. Twenty-eight patients with the primary diagnosis of UBC, 12 with its suspected recurrence, 3 subjects without UBC were examined. The findings were compared with cystoscopic data after urine samples were taken. The sensitivity of the UroVysion test totaled 78.5 ± 9.7 % for all stages of primary cancer (pT1-pT4, 87.5 ± 11.6 % for its early stage (рТ1, and 100 % for UBC recurrences. Hyperploidy was a predominant type of cytogenetic abnormalities in the cast-off tumor cells. Among the abnormal cells, the types of hyperploidy (tri-, tetrasomy were most common for chromosome 3 and less for chromosome 7. Thus, the UroVysion test is a noninvasive highly sensitive tool that may be used in clinical practice to improve the diagnosis of UBC, to detect recurrences, and to monitor the efficiency of treatment.

  7. Comparison Between Fluorescent In Situ Hybridization (FISH) and ...

    African Journals Online (AJOL)

    ... were collected, for culture method and bacteria characterized by biochemical ... for 24 hours and later preserved in 70% alcohol before in situ hybridization test. ... were observed in 47 to 75% while the bacterium was isolated on culture in 7 ...

  8. Double-staining chromogenic in situ hybridization as a useful alternative to split-signal fluorescence in situ hybridization in lymphoma diagnostics

    DEFF Research Database (Denmark)

    van Rijk, A.; Svenstroup-Poulsen, T.; Jones, M.;

    2010-01-01

    , their detection is an important adjunct for increasing the reliability of the diagnosis. Recently, split-signal fluorescence hi situ hybridization has become available as a robust method to detect chromosomal breaks in paraffin-embedded formalin-fixed tissues. A bright field approach would bring this technology...... within the reach of every pathology laboratory. Design and Methods Our study was initiated to determine the consistency between chromogenic in situ hybridization and fluorescence in situ hybridization, both using split-signal probes developed for the detection of chromosomal breaks. Five hundred...... after split-signal fluorescence in situ hybridization staining. Conclusions We conclude that double-staining chromogenic in situ hybridization is equally reliable as fluorescence in situ hybridization in detecting chromosomal breaks in lymphoid tissue. Although differences in morphology, hematoxylin...

  9. Metaphase FISH on a Chip: Miniaturized Microfluidic Device for Fluorescence in situ Hybridization

    DEFF Research Database (Denmark)

    Vedarethinam, Indumathi; Shah, Pranjul Jaykumar; Dimaki, Maria;

    2010-01-01

    Fluorescence in situ Hybridization (FISH) is a major cytogenetic technique for clinical genetic diagnosis of both inherited and acquired chromosomal abnormalities. Although FISH techniques have evolved and are often used together with other cytogenetic methods like CGH, PRINS and PNA-FISH, the pr......Fluorescence in situ Hybridization (FISH) is a major cytogenetic technique for clinical genetic diagnosis of both inherited and acquired chromosomal abnormalities. Although FISH techniques have evolved and are often used together with other cytogenetic methods like CGH, PRINS and PNA...

  10. A PDMS-Based Cylindrical Hybrid Lens for Enhanced Fluorescence Detection in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Bor-Shyh Lin

    2014-02-01

    Full Text Available Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  11. Detection of chromosome aberrations in interphase nuclei using fluorescence in situ hybridization technique.

    OpenAIRE

    1993-01-01

    We report here several experiences of interphase cytogenetics, using fluorescence in situ hybridization (FISH) technique, for the detection of chromosome aberrations. FISH, using alpha satellite specific probes of 18, X, Y chromosomes, was done in interphase nuclei from peripheral blood of patients with Edwards' syndrome, Klinefelter's syndrome and Turner's syndrome with healthy male and female controls, respectively. The distributions of fluorescent signals in 100 interphase nuclei were well...

  12. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.

    Science.gov (United States)

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-02-13

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  13. Chromosomal imbalances detected in primary bone tumors by comparative genomic hybridization and interphase fluorescence in situ hybridization

    OpenAIRE

    Baruffi Marcelo Razera; Engel Edgard Edward; Squire Jeremy Andrew; Tone Luis Gonzaga; Rogatto Silvia Regina

    2003-01-01

    We applied a combination of comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH), to characterize the genetic aberrations in three osteosarcomas (OS) and one Ewing's sarcoma. CGH identified recurrent chromosomal losses at 10p14-pter and gains at 8q22.3-24.1 in OS. Interphase FISH allowed to confirm 8q gain in two cases. A high amplification level of 11q12-qter was detected in one OS. The Ewing's sarcoma showed gain at 1p32-36.1 as the sole chromosome alteratio...

  14. Characterization of the Arachis (Leguminosae) D genome using fluorescence in situ hybridization (FISH) chromosome markers and total genome DNA hybridization

    OpenAIRE

    Germán Robledo; Guillermo Seijo

    2008-01-01

    Chromosome markers were developed for Arachis glandulifera using fluorescence in situ hybridization (FISH) of the 5S and 45S rRNA genes and heterochromatic 4'-6-diamidino-2-phenylindole (DAPI) positive bands. We used chromosome landmarks identified by these markers to construct the first Arachis species ideogram in which all the homologous chromosomes were precisely identified. The comparison of this ideogram with those published for other Arachis species revealed very poor homeologies with a...

  15. Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes.

    Science.gov (United States)

    Marras, Salvatore A E; Tyagi, Sanjay; Kramer, Fred Russell

    2006-01-01

    A number of formats for nucleic acid hybridization have been developed to identify DNA and RNA sequences that are involved in cellular processes and that aid in the diagnosis of genetic and infectious diseases. The introduction of hybridization probes with interactive fluorophore pairs has enabled the development of homogeneous hybridization assays for the direct identification of nucleic acids. A change in the fluorescence of these probes indicates the presence of a target nucleic acid, and there is no need to separate unbound probes from hybridized probes. The advantages of homogeneous hybridization assays are their speed and simplicity. In addition, homogeneous assays can be combined with nucleic acid amplification, enabling the detection of rare target nucleic acids. These assays can be followed in real time, providing quantitative determination of target nucleic acids over a broad range of concentrations.

  16. Laser capture microdissection of bacterial cells targeted by fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Schou, Kirstine Klitgaard; Mølbak, Lars; Jensen, Tim Kåre

    2005-01-01

    . By this method, a potentially pathogenic strain of the genus Brachyspira from formalin-fixed human colonic biopsies were visualized by fluorescence in situ hybridization (FISH) with a 16S rRNA-targeting oligonucleotide probe, followed by laser capture microdissection (LCM) of the targeted cells. Direct 16S r...

  17. Influence of growth rate and starvation on fluorescent in situ hybridization of Rhodopseudomonas palustris

    NARCIS (Netherlands)

    Oda, Y; Slagman, SJ; Meijer, WG; Forney, LJ; Gottschal, JC

    In situ hybridization with a fluorescently labeled 16S rRNA-targeted probe was examined using Rhodopseudomonas palustris as a model organism, which had been grown at different rates and under different conditions of growth and starvation. The specific growth rate did not affect the percentage of

  18. Identification of bacterial invasion in necrotizing enterocolitis specimens using fluorescent in situ hybridization

    NARCIS (Netherlands)

    Heida, F H; Harmsen, H J M; Timmer, A; Kooi, E M W; Bos, A F; Hulscher, J B F

    2016-01-01

    OBJECTIVE: Investigation of bacterial invasion into the intestinal wall in necrotizing enterocolitis (NEC) specimens. STUDY DESIGN: We compared 43 surgical NEC specimens with 43 age-matched controls. We used fluorescent in situ hybridization (FISH), a universal bacterial probe together with species-

  19. Fabrication of Magnetic-Antimicrobial-Fluorescent Multifunctional Hybrid Microspheres and Their Properties

    Directory of Open Access Journals (Sweden)

    Ling-Han Xiao

    2013-04-01

    Full Text Available Novel magnetic-antimicrobial-fluorescent multifunctional hybrid microspheres with well-defined nanostructure were synthesized by the aid of a poly(glycidyl methacrylate (PGMA template. The hybrid microspheres were fully characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, Fourier transform infrared (FTIR, X-ray diffraction (XRD and digital fluorescence microscope. The as-synthesized microspheres PGMA, amino-modified PGMA (NH2-PGMA and magnetic PGMA (M-PGMA have a spherical shape with a smooth surface and fine monodispersity. M-PGMA microspheres are super-paramagnetic, and their saturated magnetic field is 4.608 emu·g−1, which made M-PGMA efficiently separable from aqueous solution by an external magnetic field. After poly(haxemethylene guanidine hydrochloride (PHGH functionalization, the resultant microspheres exhibit excellent antibacterial performance against both Gram-positive and Gram-negative bacteria. The fluorescence feature originating from the quantum dot CdTe endowed the hybrid microspheres with biological functions, such as targeted localization and biological monitoring functions. Combination of magnetism, antibiosis and fluorescence into one single hybrid microsphere opens up the possibility of the extensive study of multifunctional materials and widens the potential applications.

  20. Detection of Helicobacter pylori in the Gastric Mucosa by Fluorescence In Vivo Hybridization

    DEFF Research Database (Denmark)

    Fontenete, Silvia; Leite, Marina; Figueiredo, Céu

    2017-01-01

    In this chapter, we describe a fluorescence in vivo hybridization (FIVH) protocol, using nucleic acid probes, for the detection of the bacterium Helicobacter pylori in the gastric mucosa of an infected C57BL/6 mouse model. This protocol should be easily extended to other microorganisms not only...

  1. Fluorescent Properties of Manganese Halide Benzothiazole Inorganic-Organic Hybrids.

    Science.gov (United States)

    Yu, Hui; Mei, YingXuan; Wei, ZhenHong; Mei, GuangQuan; Cai, Hu

    2016-11-01

    The reaction of manganese (II) halides MnX2 and benzothiazole (btz) in the concentrated acids HX (X = Cl, Br) at 80 °C resulted in the formation of two inorganic-organic hybrid complexes: [(btz)2(MnX4)]·2H2O (X = Cl, 1; X = Br, 2). Both compounds showed green luminescence and exhibited moderate quantum yields of 43.17 % for 1 and 26.18 % for 2, which were directly originated from the tetrahedral coordination of Mn(2+) ion. Two organic - inorganic hybrids [(btz)2(MnX4)]·2H2O based on MnCl2, benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light. Graphical abstract Two organic-inorganic hybrids [(btz)2(MnX4)]·2H2O based on MnCl2, benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light.

  2. Self-assembly of novel fluorescent quantum dot-cerasome hybrid for bioelectrochemistry.

    Science.gov (United States)

    Liu, Daliang; Zhuang, Qian; Zhang, Ling; Zhang, Hui; Wu, Shuyao; Kikuchi, Jun-Ichi; Han, Zhengbo; Zhang, Qian; Song, Xi-Ming

    2016-07-01

    A novel fluorescent nanohybrid was fabricated via the self-assembly of semiconductive quantum dots (QDs) on biocompatible cerasomes. The nanohybrid (denoted as QDs-cerasome) was used as an electrode material for visible protein immobilization and bioelectrochemistry. The morphology and surface properties of the QDs-cerasome hybrid were characterized by transmission electron microscopies, atomic force microscopies and zeta potential measurements. Because the QDs-cerasome hybrid possessed a positive charge in aqueous solution, it could be used as a matrix to immobilize negatively charged hemoglobin (Hb) via electrostatic interaction. Ultraviolet-visible spectroscopy demonstrated that Hb was immobilized on the hybrid matrix without denaturation. The fluorescence of the QDs-cerasome was quenched as Hb was immobilized, indicating that the protein immobilization process could be visibly detected. Compared with protein electrodes constructed using a single-component material, including Hb-QDs/GC and Hb-cerasome/GC electrodes, the Hb-QDs-cerasome/GC electrode not only realized enhanced direct electrochemistry, but also displayed higher sensitivity and a wider linear range toward the detection of hydrogen peroxide because of the synergistic effect of the QDs and cerasomes. The experimental results demonstrate that this fluorescent multicomponent hybrid material provides a novel and effective platform to immobilize a redox protein to realize direct electrochemistry. As such, this hybrid shows promise for application in third-generation electrochemical biosensors.

  3. Fusobacterium necrophorum determined as abortifacient in sheep by laser capture microdissection and fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Boye, Mette; Aalbæk, Bent; Agerholm, Jørgen S.

    2006-01-01

    at late pregnancy by a technique that combines laser capture microdissection (LCM) and fluorescent in situ hybridization (LCM-FISH). Cultural bacteriological examination had failed to identify an infectious agent but by histological examination, large colonies of bacteria associated with tissue......Fluorescent in situ hybridization (FISH) has been extensively used for identification of individual microbial cells within their natural environment. The present work describes the identification of Fusobacterium necrophorum in formalin-fixed tissue samples from three sets of ovine twins aborted......RNA-targeting oligonucleotide probe specific for F. necrophorum was used in a FISH assay. In situ hybridization showed a high density of F. necrophorum in all examined tissue sections. Simultaneous probing with a general bacterial probe EUB338 and the specific probe for F. necrophorum showed that no other bacteria could...

  4. Fluorescence in situ hybridization of old G-banded and mounted chromosome preparations

    DEFF Research Database (Denmark)

    Gerdes, A M; Pandis, N; Bomme, L;

    1997-01-01

    , that the amount of added probe is increased approximately 2.5 times, and that the amplification of signals is performed twice. The applicability of the method, which allows double painting with two differently labeled probes using two differently fluorescing colors, was tested on 11 cases involving different......An improved method for fluorescence in situ hybridization (FISH) investigation of old, previously G-banded, mounted chromosome preparations with chromosome specific painting probes and centromere-specific probes is described. Before hybridization, the slides are incubated in xylene until...... the coverslips detach spontaneously; any mechanical manipulation will jeopardize the results. The success of chromosome painting is improved by excluding the regular RNase treatment step prior to hybridization. Additional changes compared with standard FISH protocols are that the 2 x SSC step is omitted...

  5. Evaluation of a fluorescent DNA hybridization assay for the detection of Neisseria gonorrhoeae.

    Science.gov (United States)

    Cano, R J; Palomares, J C; Torres, M J; Klem, R E

    1992-07-01

    This study evaluates a four-hour fluorescent DNA hybridization assay using both known bacterial isolates and clinical specimens. A biotinylated oligonucleotide probe from a sequence of the plasmid-encoded gene cppB was used. Hybrids were detected by addition of a streptavidin-alkaline phosphatase conjugate, followed by incubation for 30 min in a fluorescent substrate for alkaline phosphatase. The level of detection of the fluorescent assay was 0.1 pg of cryptic plasmid DNA or 200 cfu of the plasmid-containing strain NG 34/85 of Neisseria gonorrhoeae. A total of 119 reference strains of Neisseria gonorrhoeae and other related bacteria were tested for reactivity with the probe. All Neisseria gonorrhoeae strains, including eight plasmid-free strains, hybridized with the probe. Fluorescence ratios were 2.67 for plasmid-free strains and 3.85 for plasmid-containing strains. Of the heterologous microorganisms tested, only one of six strains of Neisseria cinerea gave a fluorescence ratio above the 2.0 cut-off value for positivity with the probe at a cell density of 1 x 10(4) cfu. The probe was also evaluated using clinical specimens from 100 patients attending a clinic for sexually transmitted diseases. The sensitivity of the assay was 100% while the specificity was 97.5%. Positive and negative predictive values were 91.2% and 100%, respectively. The fluorescent DNA hybridization assay for the detection of Neisseria gonorrhoeae described here thus appears to be a highly specific and sensitive assay.

  6. Prediction of melting temperatures in fluorescence in situ hybridization (FISH) procedures using thermodynamic models

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Guimarães, Nuno; Wengel, Jesper

    2016-01-01

    Abstract The thermodynamics and kinetics of DNA hybridization, i.e. the process of self-assembly of one, two or more complementary nucleic acid strands, has been studied for many years. The appearance of the nearest-neighbor model led to several theoretical and experimental papers on DNA thermody......Abstract The thermodynamics and kinetics of DNA hybridization, i.e. the process of self-assembly of one, two or more complementary nucleic acid strands, has been studied for many years. The appearance of the nearest-neighbor model led to several theoretical and experimental papers on DNA...... thermodynamics that provide reasonably accurate thermodynamic information on nucleic acid duplexes and allow estimation of the melting temperature. Because there are no thermodynamic models specifically developed to predict the hybridization temperature of a probe used in a fluorescence in situ hybridization...

  7. Fluorescent in situ hybridization (FISH on the veterinary diagnostic field

    Directory of Open Access Journals (Sweden)

    Ján Dianovský

    2016-09-01

    Full Text Available Proceeding deals with of genomic changes detectable by FISH . The DSD syndrom in Yorkshire terrier 78,XY t (Y-;6p+ was observed by the use of X and Y FISH WCP probes. Following results indicated numerous genomic changes in cancers. Using comparative genomic hybridization numerous chromosomal rearrangements were detected, which indicated the heterogeneity in tumour growth. In Bernese Mountain Dog bitch,8 loses on chromosomes and gains on 18 different of chromosomes were detected. The last study was focused on chromosomal position and nucleotide sequencing of the LCA5L exons. Those were analysed in cattle of BTA1q44, sheep OAR1q43 and of CHI1q44 in the goats.

  8. The applications of fluorescence in situ hybridization technique in tumors of the genitourinary%荧光原位杂交技术在泌尿生殖肿瘤中的应用

    Institute of Scientific and Technical Information of China (English)

    袁振; 蒋雷鸣

    2012-01-01

    随着分子细胞遗传学的快速发展,荧光原位杂交(fluorescence in situ hybridization,FISH)技术已广泛应用于临床和科学研究.FISH技术综合了荧光信号的高度灵敏性、无放射性、直观性及原位杂交的准确性,通过检测样本中基因或染色体的异常改变而应用于遗传性疾病、肿瘤的研究及临床诊断和治疗监测.本文就荧光原位杂交技术在常见的泌尿生殖肿瘤中的应用进行综述.%With the rapid development of molecular cytogenetics, fluorescence in situ hybridization ( FISH ) technique has been widely used in clinical and research. FISH has the high sensitivity of fluorescence signal, non - radioactive , intuitive, and the accuracy of in situ hybridization, can be used in detecting the abnormal gene or chromosome change of genetic diseases, cancer research and clinical diagnosis and treatment monitoring. In this paper, the applications of fluorescence in situ hybridization technique in diagnosis and treatment of common urinary tract cancer are reviewed.

  9. Hybrid Surgical Guidance: Does Hardware Integration of γ- and Fluorescence Imaging Modalities Make Sense?

    Science.gov (United States)

    KleinJan, Gijs H; Hellingman, Daan; van den Berg, Nynke S; van Oosterom, Matthias N; Hendricksen, Kees; Horenblas, Simon; Valdes Olmos, Renato A; van Leeuwen, Fijs Wb

    2017-04-01

    The clinically applied hybrid tracer indocyanine green-(99m)Tc-nanocolloid enables combined radio- and fluorescence image guidance during sentinel node (SN) biopsy procedures. To provide optimal surgical guidance, this tracer requires the presence of both γ- and fluorescence modalities in the operating room. We reasoned that the combination or integration of these modalities could further evolve the hybrid surgical guidance concept. To study this potential, we clinically applied 2 setups that included the combination of γ-detection modalities and an open surgery fluorescence camera. Methods: To attach the fluorescence camera (VITOM) to either a γ-ray detection probe (GP; VITOM-GP) or a portable γ-camera (GC; Vitom GC), clip-on brackets were designed and printed in 3-dimensional sterilizable RC31. Both combined modalities were evaluated in, respectively, 5 and 6 patients with penile cancer during an SN biopsy procedure using indocyanine green-(99m)Tc-nanocolloid. Intraoperatively, radio- and fluorescence-guided SN detection rates were scored at working distances of 0, 10, 20, and 30 cm for both combinations. Results: Using the VITOM-GP combination, we evaluated 9 SNs. γ-tracing rates were shown to be 100%, 88.9%, 55.6%, and 55.6% at a respective working distance of 0, 10, 20, and 30 cm. Detection rates for the fluorescence imaging-based detection were found to be 100%, 77.8%, and 77.8%, at respective working distances of 10, 20, and 30 cm. When the VITOM-GC setup was used, all 10 intraoperatively evaluated SNs could be visualized with the γ-camera independent of the working distance. Fluorescence detection rates were 90%, 80%, and 80% at 10-, 20-, and 30-cm working distances. The integrated detection modalities were shown to work synergistically; overall the, GC was most valuable for rough localization (10- to 30-cm range) of the SNs, the GP for providing convenient real-time acoustic feedback, whereas fluorescence guidance allowed detailed real-time SN

  10. Assessment of asthmatic inflammation using hybrid fluorescence molecular tomography-x-ray computed tomography

    Science.gov (United States)

    Ma, Xiaopeng; Prakash, Jaya; Ruscitti, Francesca; Glasl, Sarah; Stellari, Fabio Franco; Villetti, Gino; Ntziachristos, Vasilis

    2016-01-01

    Nuclear imaging plays a critical role in asthma research but is limited in its readings of biology due to the short-lived signals of radio-isotopes. We employed hybrid fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) for the assessment of asthmatic inflammation based on resolving cathepsin activity and matrix metalloproteinase activity in dust mite, ragweed, and Aspergillus species-challenged mice. The reconstructed multimodal fluorescence distribution showed good correspondence with ex vivo cryosection images and histological images, confirming FMT-XCT as an interesting alternative for asthma research.

  11. Actinobacillus pleuropneumoniae osteomyelitis in pigs demonstrated by fluorescent in situ hybridization

    DEFF Research Database (Denmark)

    Jensen, Tim Kåre; Boye, Mette; Hagedorn-Olsen, T.

    1999-01-01

    Necrotizing osteomyelitis and fibrinopurulent arthritis with isolation of Actinobacillus pleuropneumoniae serotype 2 is reported in two pigs from a herd with lameness and mild coughing problems among 8 to 12-week-old pigs. Application of fluorescent in situ hybridization targeting 16S ribosomal RNA...... of A. pleuropneumoniae in formalin-fixed tissue was performed to verify the association of A. pleuropneumoniae with the bone and joint lesions. By in situ hybridization A. pleuropneumoniae was demonstrated as multiple microcolonies or single cells dispersed in focal fibrinonecrotizing pleuropneumonia...

  12. Fluorescent in-situ hybridization--some of its applications in clinical cytogenetics.

    Science.gov (United States)

    Gole, L A; Bongso, A

    1997-11-01

    Fluorescent in-situ hybridization (FISH) is becoming more and more relevant as an important future tool in prenatal and pre-implantation genetic diagnosis and cancer cytogenetics. This review describes the FISH technique as applied to whole chromosome spreads and interphase cells and discusses its applications in clinical cytogenetics. Information is presented on the various types of probes and the subsequent hybridization and detection procedures. The potential use of this novel FISH technique in the diagnosis of numerical and structural chromosomal aberrations in routine karyotyping for prenatal diagnosis, tumour cytogenetics and pre-implantation genetic diagnosis is outlined.

  13. Application of locked nucleic acid-based probes in fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Carvalho, Daniel R; Guimarães, Nuno

    2016-01-01

    Fluorescence in situ hybridization (FISH) employing nucleic acid mimics as probes is becoming an emerging molecular tool in the microbiology area for the detection and visualization of microorganisms. However, the impact that locked nucleic acid (LNA) and 2′-O-methyl (2′-OMe) RNA modifications have...... on the probe that is targeting microorganisms is unknown. In this study, the melting and hybridization efficiency properties of 18 different probes in regards to their use in FISH for the detection of the 16S rRNA of Helicobacter pylori were compared. For the same sequence and target, probe length and the type...

  14. Characterization of the Arachis (Leguminosae D genome using fluorescence in situ hybridization (FISH chromosome markers and total genome DNA hybridization

    Directory of Open Access Journals (Sweden)

    Germán Robledo

    2008-01-01

    Full Text Available Chromosome markers were developed for Arachis glandulifera using fluorescence in situ hybridization (FISH of the 5S and 45S rRNA genes and heterochromatic 4'-6-diamidino-2-phenylindole (DAPI positive bands. We used chromosome landmarks identified by these markers to construct the first Arachis species ideogram in which all the homologous chromosomes were precisely identified. The comparison of this ideogram with those published for other Arachis species revealed very poor homeologies with all A and B genome taxa, supporting the special genome constitution (D genome of A. glandulifera. Genomic affinities were further investigated by dot blot hybridization of biotinylated A. glandulifera total DNA to DNA from several Arachis species, the results indicating that the D genome is positioned between the A and B genomes.

  15. Comparison of Fluorescence In Situ Hybridization and Chromogenic In Situ Hybridization for Low and High Throughput HER2 Genetic Testing

    DEFF Research Database (Denmark)

    Poulsen, Tim S; Espersen, Maiken Lise Marcker; Kofoed, Vibeke

    2013-01-01

    results show that the differences between the HER2 genetic assays do not have an effect on the analytic performance and the CISH technology is superior to high throughput HER2 genetic testing due to scanning speed, while the IQ-FISH may still be a choice for fast low throughput HER2 genetic testing.......The purpose was to evaluate and compare 5 different HER2 genetic assays with different characteristics that could affect the performance to analyze the human epidermal growth factor 2 (HER2) gene copy number under low and high throughput conditions. The study included 108 tissue samples from breast...... cancer patients with HER2 immunohistochemistry (IHC) results scored as 0/1+, 2+, and 3+. HER2 genetic status was analysed using chromogenic in situ hybridization (CISH) and fluorescence in situ hybridization (FISH). Scoring results were documented through digital image analysis. The cancer region...

  16. Chromosomal imbalances detected in primary bone tumors by comparative genomic hybridization and interphase fluorescence in situ hybridization

    Directory of Open Access Journals (Sweden)

    Baruffi Marcelo Razera

    2003-01-01

    Full Text Available We applied a combination of comparative genomic hybridization (CGH and fluorescence in situ hybridization (FISH, to characterize the genetic aberrations in three osteosarcomas (OS and one Ewing's sarcoma. CGH identified recurrent chromosomal losses at 10p14-pter and gains at 8q22.3-24.1 in OS. Interphase FISH allowed to confirm 8q gain in two cases. A high amplification level of 11q12-qter was detected in one OS. The Ewing's sarcoma showed gain at 1p32-36.1 as the sole chromosome alteration. These studies demonstrate the value of molecular cytogenetic methods in the characterization of recurrent genomic alterations in bone tumor tissue.

  17. Analysis of Single-cell Gene Transcription by RNA Fluorescent In Situ Hybridization (FISH)

    DEFF Research Database (Denmark)

    Ronander, Elena; Bengtsson, Dominique C; Joergensen, Louise;

    2012-01-01

    and the consequence of differential binding on the clinical outcome of P. falciparum infections. Recently, the mutually exclusive transcription paradigm has been called into doubt by transcription assays based on individual P. falciparum transcript identification in single infected erythrocytic cells using RNA...... fluorescent in situ hybridization (FISH) analysis of var gene transcription by the parasite in individual nuclei of P. falciparum IE(1). Here, we present a detailed protocol for carrying out the RNA-FISH methodology for analysis of var gene transcription in single-nuclei of P. falciparum infected human...... erythrocytes. The method is based on the use of digoxigenin- and biotin- labeled antisense RNA probes using the TSA Plus Fluorescence Palette System(2) (Perkin Elmer), microscopic analyses and freshly selected P. falciparum IE. The in situ hybridization method can be used to monitor transcription...

  18. Identification of mosaicism in Prader-Willi syndrome using fluorescent in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Mowery-Rushton, P.A.; Surti, U. [Univ. of Pittsburgh, PA (United States); Hanchett, J.M. [Rehabilitation Inst., Pittsburgh, PA (United States)] [and others

    1996-12-30

    We report on our findings of 4 patients with mosaicism for a deletion of chromosome 15, most commonly associated with Prader-Willi syndrome (PWS). We examined a series of typical and atypical PWS patients in order to identify cytogenetically undetected deletions, using fluorescence in situ hybridization. In 4 of the patients analyzed we detected a deletion in 14-60% of peripheral blood leukocytes, using four commercially available probes. Our results indicate that mosaicism may play a role in the etiology of some PWS cases. These findings may be especially useful in patients who display discrepancies between clinical phenotype and established diagnostic criteria. Methylation and microsatellite polymorphism analyses of 2 patients with low-level mosaicism failed to identify the deletion. We propose that fluorescence in situ hybridization is the most effective method for detecting somatic mosaicism, since a large number of cells can be individually examined for the presence or absence of a specific deletion. 47 refs., 5 figs., 3 tabs.

  19. Microinjection and Fluorescence In Situ Hybridization Assay for Studying mRNA Export in Mammalian Cells.

    Science.gov (United States)

    Wang, Ke; Shi, Min; Cheng, Hong

    2017-01-01

    Microinjection and Fluorescence in situ Hybridization (FISH) assay is a useful method for mRNA export studies, which can overcome the problems of traditional transfection in cells. Here, we describe the method of microinjection and FISH assay applied in investigation of mRNA export. By this method we can estimate the mRNA export kinetics, examining mRNA export in cells with low transfection efficiencies, and observing nuclear export of aberrant RNAs.

  20. Fluorescent in situ hybridization for evaluation of Prader-Willi and Angelman syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Wenger, S.L.; Cummins, J.H. [Univ. of Pittsburgh, PA (United States)

    1995-07-17

    We have found fluorescence in situ hybridization (FISH) results more reliavle than high resolution chromosome analysis for the diagnosis of Prader-Willi (PWS) or Angelman syndromes (AS). Specifically, we have found success in the detection of 15q11q13 deletions among 55 cases. Our study suggests that FISH analysis using PWS/AS probes can facilitate diagnostic evaluation of these cases for deletions. 2 refs., 1 tab.

  1. Magneto-fluorescent hybrid of dye and SPION with ordered and radially distributed porous structures

    Science.gov (United States)

    Gogoi, Madhulekha; Deb, Pritam

    2014-04-01

    We have reported the development of a silica based magneto-fluorescent hybrid of a newly synthesized dye and superparamagnetic iron oxide nanoparticles with ordered and radially distributed porous structure. The dye is synthesized by a novel yet simple synthetic approach based on Michael addition between dimer of glutaraldehyde and oleylamine molecule. The surfactant used for phase transformation of the dye from organic to aqueous phase, also acts as a structure directing agent for the porous structure evolution of the hybrid with radial distribution. The evolution of the radially distributed pores in the hybrids can be attributed to the formation of rod-like micelles containing nanoparticles, for concentration of micelles greater than critical micelle concentration. A novel water extraction method is applied to remove the surfactants resulting in the characteristic porous structure of the hybrid. Adsorption isotherm analysis confirms the porous nature of the hybrids with pore diameter ∼2.4 nm. A distinct modification in optical and magnetic property is observed due to interaction of the dye and SPION within the silica matrix. The integration of multiple structural components in the so developed hybrid nanosystem results into a potential agent for multifunctional biomedical application.

  2. Fluorescent and cross-linked organic-inorganic hybrid nanoshells for monitoring drug delivery.

    Science.gov (United States)

    Sun, Lijuan; Liu, Tianhui; Li, Hua; Yang, Liang; Meng, Lingjie; Lu, Qinghua; Long, Jiangang

    2015-03-04

    Functionalized and monodisperse nanoshells have attracted significant attention owing to their well-defined structure, unique properties, and wide range of potential applications. Here, the synthesis of cross-linked organic-inorganic hybrid nanoshells with strong fluorescence properties was reported via a facile precipitation polymerization of hexachlorocyclotriphosphazene (HCCP) and fluorescein on silica particles used as templates. The resulting poly(cyclotriphosphazene-co-fluorescein) (PCTPF) nanoshells were firm cross-linked shells with ∼2.2 nm mesopores that facilitated the transport of drug molecules. The fluorescent nanoshells also exhibited excellent water dispersibility and biocompatibility; thus, they can be considered as ideal drug vehicles with high doxorubicin storage capacity (26.2 wt %) and excellent sustained release (up to 14 days). Compared to doxorubicin (DOX) alone, the PCTPF nanoshells more efficiently delivered DOX into and killed cancer cells. Moreover, the PCTPF nanoshells also exhibited remarkable fluorescent emission properties and improved photobleaching stability in both suspension and solid state owing to the covalent immobilization of fluorescein in the highly cross-linked organic-inorganic hybrids. The exceptional fluorescent properties enabled the release of DOX as well as the distribution of nanoshells and DOX to be monitored.

  3. Synthesis and fluorescence properties of six fluorescein-nitroxide radical hybrid-compounds.

    Science.gov (United States)

    Sato, Shingo; Endo, Susumu; Kurokawa, Yusuke; Yamaguchi, Masaki; Nagai, Akio; Ito, Tomohiro; Ogata, Tateaki

    2016-12-05

    Six fluorescein-nitroxide radical hybrid-compounds (2ab, 3ab, 4, and 5) were synthesized by the condensation of 5- or 6-carboxy-fluorescein and 4-amino-TEMPO (2ab), 5- or 6-aminofluorescein and 4-carboxy-TEMPO (3ab), and fluorescein and 4-carboxy-TEMPO (4), or by reaction of the 3-hydroxyl group of fluorescein with DPROXYL-3-ylmethyl methanesulfonate (5). Fluorescence intensities (around 520nm) after reduction of the radical increased to 1.43-, 1.38-, and 1.61-folds for 2a, 2b and 3b respectively; 3a alone exhibited a decrease in intensity on reduction. Since 4 was readily solvolyzed in PBS or even methanol to afford fluorescein and 4-carboxy-TEMPO, its fluorescence change could not be measured. Hybrid compound 5 containing an ether-linkage between the fluorescein phenol and 3-hydroxymethyl-DPROXYL hydroxyl centers, was stable and on reduction, showed a maximum increase (3.21-fold) in relative fluorescence intensity in PBS (pH5.0), despite its remarkably low absolute fluorescence intensity.

  4. Fluorescence in situ hybridization analysis of formalin fixed paraffin embedded tissues, including tissue microarrays.

    Science.gov (United States)

    Summersgill, Brenda M; Shipley, Janet M

    2010-01-01

    Formalin fixed paraffin embedded (FFPE) material is frequently the most convenient readily available source of diseased tissue, including tumors. Multiple cores of FFPE material are being used increasingly to construct tissue microarrays (TMAs) that enable simultaneous analyses of many archival samples. Fluorescence in situ hybridization (FISH) is an important approach to analyze FFPE material for specific genetic aberrations that may be associated with tumor types or subtypes, cellular morphology, and disease prognosis. Annealing, or hybridization of labeled nucleic acid sequences, or probes, to detect and locate one or more complementary nucleic acid sequences within fixed tissue sections allows the detection of structural (translocation/inversion) and numerical (deletion/gain) aberrations and their localization within tissues. The robust protocols described include probe preparation, hybridization, and detection and take 2-3 days to complete. A protocol is also described for the stripping of probes for repeat FISH in order to maximize the use of scarce tissue resources.

  5. High-Sensitivity Magnetization Measurements

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The three most common instruments for high-sensitivity magnetization measurements (the vibrating-sample magnetometer, the alternating gradient magnetometer, and the SQUID magne tometer) are described and their limiting sensitivities are discussed. The advantages and disad vantages of each are described. Magnetometers using micro-machined force detectors are briefly mentioned.

  6. Detection and quantification of Epstein-Barr virus EBER1 in EBV-infected cells by fluorescent in situ hybridization and flow cytometry

    Science.gov (United States)

    Stowe, R. P.; Cubbage, M. L.; Sams, C. F.; Pierson, D. L.; Barrett, A. D.

    1998-01-01

    A rapid and highly sensitive fluorescent in situ hybridization (FISH) assay was developed to detect Epstein Barr virus (EBV)-infected cells in peripheral blood. Multiple fluorescein-labeled antisense oligonucleotide probes were designed to hybridize to the EBER1 transcript, which is highly expressed in latently infected cells. After a rapid (30 min) hybridization, the cells were analyzed by flow cytometry. EBER1 was detected in several positive control cell lines that have variable numbers of EBV genome copies. No EBER1 was detected in two known EBV-negative cell lines. Northern blot analyses confirmed the presence and quantity of EBER1 transcripts in each cell line. This method was used to quantify the number of EBV-infected cells in peripheral blood from a patient with chronic mononucleosis. These results indicate that EBV-infected cells can be detected at the single cell level, and that this assay can be used to quantify the number of EBV-infected cells in clinical samples.

  7. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Mengjuan [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Chengquan [School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013 (China); Qian, Jing, E-mail: qianj@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kan; Yang, Zhenting; Liu, Qian; Mao, Hanping [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kun, E-mail: wangkun@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-08-12

    We herein proposed a simple and effective strategy for preparing graphene quantum dots (GQDs)-based core-satellite hybrid spheres and further explored the feasibility of using such spheres as the ratiometric fluorescence probe for the visual determination of Hg{sup 2+}. The red-emitting CdTe QDs were firstly entrapped in the silica nanosphere to reduce their toxicity and improve their photo and chemical stabilities, thus providing a built-in correction for environmental effects, while the GQDs possessing good biocompatibility and low toxicity were electrostatic self-assembly on the silica surface acting as reaction sites. Upon exposure to the increasing contents of Hg{sup 2+}, the blue fluorescence of GQDs can be gradually quenched presumably due to facilitating nonradiative electron/hole recombination annihilation. With the embedded CdTe QDs as the internal standard, the variations of the tested solution display continuous fluorescence color changes from blue to red, which can be easily observed by the naked eye without any sophisticated instrumentations and specially equipped laboratories. This sensor exhibits high sensitivity and selectivity toward Hg{sup 2+} in a broad linear range of 10 nM–22 μM with a low detection limit of 3.3 nM (S/N = 3), much lower than the allowable Hg{sup 2+} contents in drinking water set by U.S. Environmental Protection Agency. This prototype ratiometric probe is of good simplicity, low toxicity, excellent stabilities, and thus potentially attractive for Hg{sup 2+} quantification related biological systems. - Highlights: • A facile strategy for preparing GQDs based core-satellite hybrid spheres was reported. • Such spheres can be used as the ratiometric fluorescence probe for Hg{sup 2+} detection. • The Hg{sup 2+} content can be easily distinguished by the naked eye. • The sensor shows high sensitivity and selectivity toward Hg{sup 2+} detection. • The ratiometric probe is of good simplicity, low toxicity, and

  8. Hybridization chain reaction-based fluorescence immunoassay using DNA intercalating dye for signal readout.

    Science.gov (United States)

    Deng, Yan; Nie, Ji; Zhang, Xiao-hui; Zhao, Ming-Zhe; Zhou, Ying-Lin; Zhang, Xin-Xiang

    2014-07-07

    A novel format of fluorescence immunosorbent assay based on the hybridization chain reaction (HCR) using a DNA intercalating dye for signal readout was constructed for the sensitive detection of targets, both in competitive and sandwich modes. In this platform, the capture and recognition processes are based on immunoreactions and the signal amplification depends on the enzyme-free, isothermal HCR-induced labelling event. After a competitive or a sandwich immunoreaction, a biotinylated capture DNA was bound to a biotinylated signal antibody through avidin, and triggered the HCR by two specific hairpins into a nicked double helix. Gene Finder (GF), a fluorescent probe for double-strand DNA, was intercalated in situ into the amplified chain to produce the fluorescence signal. The limit of detection (LOD) for rabbit IgG in competitive mode by HCR/GF immunoassay was improved at least 100-fold compared with the traditional fluorescence immunoassay using the fluorescein isothiocyanate-labelled-streptavidin or fluorescein isothiocyanate-labelled second antibody as the signal readout. The proposed fluorescence immunoassay was also demonstrated by using α-fetoprotein as the model target in sandwich mode, and showed a wide linear range from 28 ng mL(-1) to 20 μg mL(-1) with a LOD of 6.0 ng mL(-1). This method also showed satisfactory analysis in spiked human serum, which suggested that it might have great potential for versatile applications in life science and point-of-care diagnostics.

  9. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    Science.gov (United States)

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Spatial Exploration and Characterization of Endozoicomonas spp. Bacteria in Stylophora pistillata Using Fluorescence In Situ Hybridization

    KAUST Repository

    Alsheikh-­Hussain, Areej

    2011-12-12

    Studies of coral-­associated bacterial communities have repeatedly demonstrated that the microbial assemblages of the coral host are highly specific and complex. In particular, bacterial community surveys of scleractinian and soft corals from geographically diverse reefs continually uncover a high abundance of sequences affiliated with the Gammaproteobacteria genus Endozoicomonas. The role of these bacteria within the complex coral holobiont is currently unknown. In order to localize these cells and gain an understanding of their potential interactions within the coral, we developed a fluorescence in situ hybridization(FISH) approach for reef-­building coral tissues. Using a custom small-­subunit ribosomal RNA gene database, we developed two Endozoicomonas-­specific probes that cover almost all known coral-­associated Endozoicomonas sequences. Probe hybridization conditions were quantitatively evaluated against target and non-­target bacterial cultures using fluorescence microscopy. Using these experimentally tested conditions, probes were then hybridized to the branching coral Stylophora pistillata, obtained from the Red Sea, using whole mount and paraffin embedding techniques. This study allowed preliminary spatial exploration and characterization of Endozoicomonas in coral, which has provided insight into their functional role and interactions within the coral holobiont.

  11. Detection of sex chromosome aneuploidy in dog spermatozoa by triple color fluorescence in situ hybridization.

    Science.gov (United States)

    Komaki, Haruna; Oi, Maya; Suzuki, Hiroshi

    2014-09-01

    With the development of a direct visualization of sex chromosome in a single sperm by fluorescence in situ hybridization (FISH) technique, the frequency of aberration (aneuploidy) in spermatozoa in several mammals has been investigated. However, there is no report in the incidence of X-Y aneuploidy in the sperm population of dogs. Therefore, in this study, the aneuploidy in dog spermatozoa was examined by multicolor FISH using specific molecular probes for canine sex chromosomes and autosome. Semen from eight male Labrador retrievers was used as specimen. For decondensation of sperm nuclei, the specimen was treated with 1 M NaOH for 4 minutes at room temperature. Probes for chromosomes X, Y, and 1, labeled with SpectrumGreen, Cy3 and Cy5, respectively, were hybridized with decondensed spermatozoa. Fluorescence in situ hybridization signals in sperm heads were clearly detected in each specimen, regardless of the sperm donor. The FISH signal of at least one of the three probes was detected in all sperm heads examined. There was no significant difference between the theoretical ratio (50:50) and the observed ratio of X and Y chromosomes in spermatozoa of all the eight dogs. Mean percentage of sex chromosome aneuploidy was 0.127% (ranged between 0% and 0.316%). This percentage of canine sex chromosome aneuploidy was lower than the one reported in cattle, horses, river buffalo, and goats sperm, but higher than that observed in mice and sheep.

  12. PNA-based fluorescence in situ hybridization for identification of bacteria in clinical samples

    DEFF Research Database (Denmark)

    Fazli, Mustafa; Bjarnsholt, Thomas; Høiby, Niels;

    2014-01-01

    Fluorescence in situ hybridization with PNA probes (PNA-FISH) that target specific bacterial ribosomal RNA sequences is a powerful and rapid tool for identification of bacteria in clinical samples. PNA can diffuse readily through the bacterial cell wall due to its uncharged backbone, and PNA-FISH....... In all these cases, bacteria can be identified in biofilm aggregates, which may explain their recalcitrance to antibiotic treatment.......Fluorescence in situ hybridization with PNA probes (PNA-FISH) that target specific bacterial ribosomal RNA sequences is a powerful and rapid tool for identification of bacteria in clinical samples. PNA can diffuse readily through the bacterial cell wall due to its uncharged backbone, and PNA......-FISH can be performed with high specificity due to the extraordinary thermal stability of RNA-PNA hybrid complexes. We describe a PNA-FISH procedure and provide examples of the application of PNA-FISH for the identification of bacteria in chronic wounds, cystic fibrosis lungs, and soft tissue fillers...

  13. Synthesis and properties of fluorescent hybrid nanocomposites based on copolyacrylates with dansyl semicarbazide units

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Emil C., E-mail: emilbur@icmpp.r [' Petru Poni' Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Chibac, Andreea L.; Buruiana, Tinca; Musteata, Valentina [' Petru Poni' Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2011-07-15

    Our study examined a series of hybrid composites containing copolyacrylate with semicarbazide-dansyl groups prepared by conventional radical polymerization of monomers in the organic montmorillonite modified with alkyl chains of variable length or using the sol-gel technique. The structure and the chemical composition of the copolymers N-methacryloyloxyethylcarbamoyl-5- (dimethylaminonaphtalene-1-sulfonohydrazine)-co-methyl metahacrylate (DnsSA-co-MMA) and N-methacryloyloxyethylcarbamoyl -5-(dimethylaminonaphtalene-1-sulfonohydrazine)-co-dodecylacrylamide (DnsSA-co-DA) as well as their nanocomposites (HC-P1, HC-P2, HC-P3, HC-P4) were confirmed by spectral analysis ({sup 1}H NMR, FTIR, UV/vis), thermal methods and atomic force microscopy. To quantify the effect of the inorganic component compared to pure photopolymers we evaluated the properties of hybrid composites, including dielectric characterization. Additionally, these materials have been tested in experiments of fluorescence quenching by acids (HCl, p-toluenesulfonic acid, 1-S-camphorsulfonic acid), metallic cation (Cu{sup 2+}) and nitrobenzene. The results suggest that such nanocomposites could find applications as fluorescence-based chemosensors in homogeneous organic solutions or thin films. - Highlights: {yields} Dansylated hybrid composites were prepared by polymerization of monomers in organo-MMT or by sol-gel. {yields} Quenching effects by acids, Cu{sup 2+} and nitrobenzene in solution/film were evidenced. {yields} A fluorescence dequenching was observed for the composite with silsesquixane units. {yields} A reversible process occurs in the composite film exposed to nitrobenzene vapors.

  14. Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence

    Directory of Open Access Journals (Sweden)

    Fábio M. Pereira

    2016-10-01

    Full Text Available This paper describes the development of a novel microfluidic platform for multifactorial analysis integrating four label-free detection methods: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip. The structure of the platform consists of a three-dimensionally patterned polydimethylsiloxane top part attached to a bottom SU-8 epoxy-based negative photoresist part, where microelectrodes and optical fibers are incorporated to enable impedance and optical analysis. As a proof of concept, the chip functions have been tested and explored, enabling a diversity of applications: (i impedance-based identification of the size of micro beads, as well as counting and distinguishing of erythrocytes by their volume or membrane properties; (ii simultaneous determination of the refractive index and optical absorption properties of solutions; and (iii fluorescence-based bead counting.

  15. Interphase cytogenetics in pathology: principles, methods, and applications of fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Werner, M; Wilkens, L; Aubele, M; Nolte, M; Zitzelsberger, H; Komminoth, P

    1997-01-01

    Characteristic chromosome aberrations have been identified in various tumors. Fluorescence in situ hybridization (FISH) using specific probes that are generated by vector cloning or in vitro amplification and labeled with fluorescent dyes allow for the detection of these genetic changes in interphase cells. This technique, that is also referred to as "interphase cytogenetics", can be performed in cytological preparations as well as in sections of routinely formaldehyde-fixed and paraffin-embedded tissue. In cancer research and diagnostics, interphase cytogenetics by FISH is used to detect numerical chromosome changes and structural aberrations, e.g., translocations, deletions, or amplifications. In this technical overview, we explain the principles of the FISH method and provide protocols for FISH in cytological preparations and paraffin sections. Moreover, possible applications of FISH are discussed.

  16. Fluorescent deep-blue and hybrid white emitting devices based on a naphthalene-benzofuran compound

    KAUST Repository

    Yang, Xiaohui

    2013-08-01

    We report the synthesis, photophysics and electrochemical properties of naphthalene-benzofuran compound 1 and its application in organic light emitting devices. Fluorescent deep-blue emitting devices employing 1 as the emitting dopant embedded in 4-4′-bis(9-carbazolyl)-2,2′-biphenyl (CBP) host show the peak external quantum efficiency of 4.5% and Commission Internationale d\\'Énclairage (CIE) coordinates of (0.15, 0.07). Hybrid white devices using fluorescent blue emitting layer with 1 and a phosphorescent orange emitting layer based on an iridium-complex show the peak external quantum efficiency above 10% and CIE coordinates of (0.31, 0.37). © 2013 Published by Elsevier B.V.

  17. Exploring the origin of the D genome of oat by fluorescence in situ hybridization.

    Science.gov (United States)

    Luo, Xiaomei; Zhang, Haiqin; Kang, Houyang; Fan, Xing; Wang, Yi; Sha, Lina; Zhou, Yonghong

    2014-09-01

    Further understanding of the origin of cultivated oat would accelerate its genetic improvement. In particular, it would be useful to clarify which diploid progenitor contributed the D genome of this allohexaploid species. In this study, we demonstrate that the landmarks produced by fluorescence in situ hybridization (FISH) of species of Avena using probes derived from Avena sativa can be used to explore the origin of the D genome. Selected sets of probes were hybridized in several sequential experiments performed on exactly the same chromosome spreads, with multiple probes of cytological preparations. Probes pITS and A3-19 showed there might be a similar distribution of pITS between the Ac and D genomes. These results indicated that the Ac genome is closely related to the D genome, and that Avena canariensis (AcAc) could be the D-genome donor of cultivated oat.

  18. Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound

    KAUST Repository

    Yang, Xiaohui

    2011-07-28

    We report the synthesis, photophysics, and electrochemical characterization of carbazole/benzimidazole-based compound (Cz-2pbb) and efficient fluorescent deep-blue light emitting devices based on Cz-2pbb with the peak external quantum efficiency of 4.1% and Commission Internationale dÉnclairage coordinates of (0.16, 0.05). Efficient deep-blue emission as well as high triplet state energy of Cz-2pbb enables fabrication of hybrid white organic light emitting diodes with a single emissive layer. Hybrid white emitting devices based on Cz-2pbb show the peak external quantum efficiency exceeding 10% and power efficiency of 14.8 lm/W at a luminance of 500 cd/m2. © 2011 American Chemical Society.

  19. itFISH: Enhanced Staining by Iterative Fluorescent In Situ Hybridization.

    Science.gov (United States)

    Row, Richard H; Martin, Benjamin L

    2017-03-20

    Fluorescent in situ hybridization (FISH) is an important tool for zebrafish research, particularly when observing the expression of two different genes in the same embryo. Peroxidase-catalyzed deposition of tyramide-conjugated dyes is a widely used and cost-effective approach to performing FISH. A major limitation of the technique is that it does not work well for weakly expressed genes. Here we present a method adapted from planarian research for use in zebrafish that provides a dramatic enhancement of weak staining. By iterating the antibody staining and development steps, a strong signal can be obtained from probes that were previously too weak to detect.

  20. Heavy ion-induced chromosomal aberrations analyzed by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M. [Univ. ``Federico II``, Naples (Italy). Dept. of Physics]|[INFN, Naples (Italy); Cella, L.; Greco, O. [Univ. ``Federico II``, Naples (Italy). Dept. of Physics; Furusawa, Y. [NIRS, Chiba (Japan); George, K.; Yang, T.C. [NASA Lyndon B. Johnson Space Center, Houston, TX (United States)

    1997-09-01

    We have investigated the effectiveness of heavy ions in the induction of chromosomal aberrations in mammalian cells by the recent technique of fluorescence in situ hybridization (FISH) with whole-chromosome probes. FISH-painting was used both in metaphase and interphase (prematurely condensed) chromosomes. The purpose of our experiments was to address the following problems: (a) the ratio of different types of aberrations as a function of radiation quality (search for biomarkers); (b) the ratio between aberrations scored in interphase and metaphase as a function of radiation quality (role of apoptosis); (c) differences between cytogenetic effects produced by different ions at the same LET (role of track structure). (orig./MG)

  1. Multiway study of hybridization in nanoscale semiconductor labeled DNA based on fluorescence resonance energy transfer

    DEFF Research Database (Denmark)

    Gholami, Somayeh; Kompany Zare, Mohsen

    2013-01-01

    The resolution of the ternary-binary complex competition of a target sequence and of its two complementary probes in sandwich DNA hybridization is reported. To achieve this goal, Fluorescence Resonance Energy Transfer (FRET) between oligonucleotide-functionalized quantum dot (QD) nanoprobes (QD...... in the photoluminescence excitation (PLE) plot. From the obtained data, energy transfer efficiency and Forster radius (R-0) were calculated. In particular, our results demonstrated that energy transfer by using QD donor-QD acceptor FRET pairs is more efficient in comparison with QD donor-organic dye acceptor pairs. Soft...

  2. Intrinsically Labeled Fluorescent Oligonucleotide Probes on Quantum Dots for Transduction of Nucleic Acid Hybridization.

    Science.gov (United States)

    Shahmuradyan, Anna; Krull, Ulrich J

    2016-03-15

    Quantum dots (QDs) have been widely used in chemical and biosensing due to their unique photoelectrical properties and are well suited as donors in fluorescence resonance energy transfer (FRET). Selective hybridization interactions of oligonucleotides on QDs have been determined by FRET. Typically, the QD-FRET constructs have made use of labeled targets or have implemented labeled sandwich format assays to introduce dyes in proximity to the QDs for the FRET process. The intention of this new work is to explore a method to incorporate the acceptor dye into the probe molecule. Thiazole orange (TO) derivatives are fluorescent intercalating dyes that have been used for detection of double-stranded nucleic acids. One such dye system has been reported in which single-stranded oligonucleotide probes were doubly labeled with adjacent thiazole orange derivatives. In the absence of the fully complementary (FC) oligonucleotide target, the dyes form an H-aggregate, which results in quenching of fluorescence emission due to excitonic interactions between the dyes. The hybridization of the FC target to the probe provides for dissociation of the aggregate as the dyes intercalate into the double stranded duplex, resulting in increased fluorescence. This work reports investigation of the dependence of the ratiometric signal on the type of linkage used to conjugate the dyes to the probe, the location of the dye along the length of the probe, and the distance between adjacent dye molecules. The limit of detection for 34mer and 90mer targets was found to be identical and was 10 nM (2 pmol), similar to analogous QD-FRET using labeled oligonucleotide target. The detection system could discriminate a one base pair mismatch (1BPM) target and was functional without substantial compromise of the signal in 75% serum. The 1BPM was found to reduce background signal, indicating that the structure of the mismatch affected the environment of the intercalating dyes.

  3. Fluorescent in situ hybridization analyses of human oocytes in trisomy 18 and 21

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, E.Y.; Chen, Y.J.; Gartler, S.M. [Univ. of Washington School of Medicine, Seattle, WA (United States)

    1994-09-01

    The commonly accepted view of synapsis is that only 2 homologues can synapse at any one site and that this restriction applies to polyploids as well. However, triple synapsis has been observed is some triploid plants and in triploid chicken. In humans, triple synapsis of the long arm of chromosome 21 was detected in sperm of a trisomic 21 individual. More recently, studies of oocytes from trisomic 21 and 18 fetuses also indicated extensive triple synapsis along the entire length of the chromosomes. To further investigate this question, we undertook an evaluation of trivalent synapsis in fetal oocytes from 2 trisomic 21 and 2 trisomic 18 fetuses using fluorescent in situ hybridization (FISH) with whole chromosome probes. Oocytes were hybridized with whole chromosome probes obtained from ONCOR, Inc. after fixation with methanol and acetic acid. Slides were scored for the distribution of prophase stages, hybridization efficiency, and hybridization characteristics of chromosomes 18 and 21 in the trisomic 18 and 21 fetuses respectively. Fifty-eight per cent (379/650) of pachytenes analyzed for chromosome 18 contained a conspicous trivalent and 319 (48%) of these nuclei contained a single, thick, continuous fluorescent signal consistent with complete triple synapsis along the entire length of all 3 chromosomes. Sixteen per cent (104/650) of pachytene contained 2 signals consistent with a bivalent and a univalent, and 9 cells contained 3 thin signals consistent with asynapsis of all 3 chromosomes. The remaining 158 pachytenes had unusual pairing configurations that we could not classify, but they most likely represent trivalents with partial pairing between different homologues. In the 2 trisomic 21 fetuses, the majority (143/232) of pachytenes also contained one signal while only 52 cells contained a bivalent and univalent. Five cells contained 3 separate signals. These results confirm the existence of triple synapsis in human meiosis.

  4. Apoferritin fibers: a new template for 1D fluorescent hybrid nanostructures

    Science.gov (United States)

    Jurado, Rocío; Castello, Fabio; Bondia, Patricia; Casado, Santiago; Flors, Cristina; Cuesta, Rafael; Domínguez-Vera, José M.; Orte, Angel; Gálvez, Natividad

    2016-05-01

    Recently, research in the field of protein amyloid fibers has gained great attention due to the use of these materials as nanoscale templates for the construction of functional hybrid materials. The formation of apoferritin amyloid-like protein fibers is demonstrated herein for the first time. The morphology, size and stiffness of these one-dimensional structures are comparable to the fibers formed by β-lactoglobulin, a protein frequently used as a model in the study of amyloid-like fibrillar proteins. Nanometer-sized globular apoferritin is capable of self-assembling to form 1D micrometer-sized structures after being subjected to a heating process. Depending on the experimental conditions, fibers with different morphologies and sizes are obtained. The wire-like protein structure is rich in functional groups and allows chemical functionalization with diverse quantum dots (QD), as well as with different Alexa Fluor (AF) dyes, leading to hybrid fluorescent fibers with variable emission wavelengths, from green to near infrared, depending on the QD and AFs coupled. For fibers containing the pair AF488 and AF647, efficient fluorescence energy transfer from the covalently coupled donor (AF488) to acceptor tags (AF647) takes place. Apoferritin fibers are proposed here as a new promising template for obtaining hybrid functional materials.Recently, research in the field of protein amyloid fibers has gained great attention due to the use of these materials as nanoscale templates for the construction of functional hybrid materials. The formation of apoferritin amyloid-like protein fibers is demonstrated herein for the first time. The morphology, size and stiffness of these one-dimensional structures are comparable to the fibers formed by β-lactoglobulin, a protein frequently used as a model in the study of amyloid-like fibrillar proteins. Nanometer-sized globular apoferritin is capable of self-assembling to form 1D micrometer-sized structures after being subjected to a

  5. Fluorescence in situ hybridization applications for super-resolution 3D structured illumination microscopy.

    Science.gov (United States)

    Markaki, Yolanda; Smeets, Daniel; Cremer, Marion; Schermelleh, Lothar

    2013-01-01

    Fluorescence in situ hybridization on three-dimensionally preserved cells (3D-FISH) is an efficient tool to analyze the subcellular localization and spatial arrangement of targeted DNA sequences and RNA transcripts at the single cell level. 3D reconstructions from serial optical sections obtained by confocal laser scanning microscopy (CLSM) have long been considered the gold standard for 3D-FISH analyses. Recent super-resolution techniques circumvent the diffraction-limit of optical resolution and have defined a new state-of-the-art in bioimaging. Three-dimensional structured illumination microscopy (3D-SIM) represents one of these technologies. Notably, 3D-SIM renders an eightfold improved volumetric resolution over conventional imaging, and allows the simultaneous visualization of differently labeled target structures. These features make this approach highly attractive for the analysis of spatial relations and substructures of nuclear targets that escape detection by conventional light microscopy. Here, we focus on the application of 3D-SIM for the visualization of subnuclear 3D-FISH preparations. In comparison with conventional fluorescence microscopy, the quality of 3D-SIM data is dependent to a much greater extent on the optimal sample preparation, labeling and acquisition conditions. We describe typical problems encountered with super-resolution imaging of in situ hybridizations in mammalian tissue culture cells and provide optimized DNA-/(RNA)-FISH protocols including combinations with immunofluorescence staining (Immuno-FISH) and DNA replication labeling using click chemistry.

  6. Same-day prenatal diagnosis of common chromosomal aneuploidies using microfluidics-fluorescence in situ hybridization.

    Science.gov (United States)

    Ho, Sherry S Y; Chua, Cuiwen; Gole, Leena; Biswas, Arijit; Koay, Evelyn; Choolani, Mahesh

    2012-04-01

    Rapid molecular prenatal diagnostic methods, such as fluorescence in situ hybridization (FISH), quantitative fluorescence-PCR, and multiplex ligation-dependent probe amplification, can detect common fetal aneuploidies within 24 to 48 h. However, specific diagnosis or aneuploidy exclusion should be ideally available within the same day as fetal sampling to alleviate parental anxiety. Microfluidic technologies integrate different steps into a microchip, saving time and costs. We have developed a cost-effective, same-day prenatal diagnostic FISH assay using microfluidics. Amniotic fluids (1-4 mL from 40 pregnant women at 15-22 weeks of gestation) were fixed with Carnoy's before loading into the microchannels of a microfluidic FISH-integrated nanostructured device. The glass slides were coated with nanostructured titanium dioxide to facilitate cell adhesion. Pretreatment and hybridization were performed within the microchannels. Fifty nuclei were counted by two independent analysts, and all results were validated with their respective karyotypes. Of the 40 samples, we found three cases of fetal aneuploidies (trisomies 13, 18, and 21), whereas the remaining 37 cases were normal. Results were concordant with their karyotypes and ready to be released within 3 h of sample receipt. Microfluidic FISH, using 20-fold less than the recommended amount of probe, is a cost-effective method to diagnose common fetal aneuploidies within the same day of fetal sampling.

  7. Detection of a complex translocation using fluorescent in situ hybridization (FISH)

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, B.A. [Brandeis Univ., Waltham, MA (United States); Abuelo, D.N. [Rhode Island Hospital, Providence, RI (United States); Mark, H.F. [Brown Univ. School of Medicine, Providence, RI (United States)

    1994-09-01

    The use of fluorescent in situ hybridization (FISH) allowed the detection of a complex 3-way translocation in a patient with multiple congenital malformations and mental retardation. The patient was a 10-year-old girl with mental retardation, seizures, repaired cleft palate, esotropia, epicanthal folds, broad nasal bridge, upward slanting palpebral fissures, single transverse palmar crease, brachydactyly, hypoplastic nails, ectrodactyly between the third and fourth right toes, and hypoplasia of the left third toe. Chromosome analysis performed at birth was reported as normal. We performed high resolution banding analysis which revealed an apparently balanced translocation between chromosomes 2 and 9. However, because of her multiple abnormalities, further studies were ordered. Fluorescent in situ hybridization (FISH) using chromosome painting probes revealed a karyotype of 46,XX,t(2;8;9) (2pter{yields}q31::8q21.2{yields}8qter; 8pter{yields}q21.2::2q31{yields}q34::9q34{yields}qter; 9pter{yields}q34::2q34{yields}qter). The 3-way translocation appears to be de novo, as neither parent is a translocation carrier. This case illustrates the importance of using FISH to further investigate cases of apparently balanced translocations in the presence of phenotypic abnormalities and/or mental retardation.

  8. Detection of Helicobacter pylori in raw bovine milk by fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Angelidis, Apostolos S; Tirodimos, Ilias; Bobos, Mattheos; Kalamaki, Mary S; Papageorgiou, Demetrios K; Arvanitidou, Malamatenia

    2011-12-02

    The transmission pathways of Helicobacter pylori in humans have not been fully elucidated. Research in the last decade has proposed that foodborne transmission, among others, may be a plausible route of human infection. Owing to the organism's fastidious growth characteristics and its ability to convert to viable, yet unculturable states upon exposure to stress conditions, the detection of H. pylori in foods via culture-dependent methods has been proven to be laborious, difficult and in most cases unsuccessful. Hence, nucleic acid-based methods have been proposed as alternative methods but, to date, only PCR-based methods have been reported in the literature. In the current study, fluorescence in situ hybridization (FISH) was used for the detection of H. pylori in raw, bulk-tank bovine milk. After repeated milk centrifugation and washing steps, the bacterial flora of raw milk was subjected to fixation and permeabilization and H. pylori detection was conducted by FISH after hybridization with an H. pylori-specific 16S rRNA-directed fluorescent oligonucleotide probe. Using this protocol, H. pylori was detected in four out of the twenty (20%) raw milk samples examined. The data presented in this manuscript indicate that FISH can serve as an alternative molecular method for screening raw bovine milk for the presence of H. pylori.

  9. Synthesis of new Tb-doped Zn-Al LDH/tryptophan hybrids and their fluorescent property

    Institute of Scientific and Technical Information of China (English)

    陈玉凤; 王肖庆; 罗世地; 鲍垚

    2016-01-01

    A series of hybrids based on Tb-doped Zn-Al layered double hydroxides (Tb-LDHs) combined with tryptophan (hereafter shortened as Try) were synthesized by soft-chemical method. The composition, structure, and fluorescence of the Tb-LDH/Try hy-brids were analyzed by various characterizations. Compositional analysis indicated that the content of tryptophan present in the hybrids gradually increased while the Tb-LDH reacted with 0.05, 0.1, and 0.25 mol/L Try solution, respectively. XRD results revealed that new reflections appeared in the Tb-LDH/Try hybrids. TGA curves of the Tb-LDH/Try hybrids were different from that of Tb-LDH and Try. IR spectra manifested that the IR spectra of the hybrids were characteristic of the Try and Tb-LDH. Fluorescent spectra sug-gested that the green emission due to5D4→7F5 transition of Tb3+ greatly decreased but not quenched, and the emission attributed to Try obviously increased. Meanwhile the fluorescent spectra of Tb-LDH/Try hybrids presented broad continuous bands in visible region.

  10. The design of a microscopic system for typical fluorescent in-situ hybridization applications

    Science.gov (United States)

    Yi, Dingrong; Xie, Shaochuan

    2013-12-01

    Fluorescence in situ hybridization (FISH) is a modern molecular biology technique used for the detection of genetic abnormalities in terms of the number and structure of chromosomes and genes. The FISH technique is typically employed for prenatal diagnosis of congenital dementia in the Obstetrics and Genecology department. It is also routinely used to pick up qualifying breast cancer patients that are known to be highly curable by the prescription of Her2 targeted therapy. During the microscopic observation phase, the technician needs to count typically green probe dots and red probe dots contained in a single nucleus and calculate their ratio. This procedure need to be done to over hundreds of nuclei. Successful implementation of FISH tests critically depends on a suitable fluorescent microscope which is primarily imported from overseas due to the complexity of such a system beyond the maturity of the domestic optoelectrical industry. In this paper, the typical requirements of a fluorescent microscope that is suitable for FISH applications are first reviewed. The focus of this paper is on the system design and computational methods of an automatic florescent microscopy with high magnification APO objectives, a fast spinning automatic filter wheel, an automatic shutter, a cooled CCD camera used as a photo-detector, and a software platform for image acquisition, registration, pseudo-color generation, multi-channel fusing and multi-focus fusion. Preliminary results from FISH experiments indicate that this system satisfies routine FISH microscopic observation tasks.

  11. A simple and rapid fluorescence in situ hybridization microwave protocol for reliable dicentric chromosome analysis.

    Science.gov (United States)

    Cartwright, Ian M; Genet, Matthew D; Kato, Takamitsu A

    2013-03-01

    Fluorescence in situhybridization (FISH) is an extremely effective and sensitive approach to analyzing chromosome aberrations. Until recently, this procedure has taken multiple days to complete. The introduction of telomeric and centromeric peptide nucleic acid (PNA) probes has reduced the procedure's duration to several hours, but the protocols still call for a high temperature (80-90°C) step followed by 1-3 h of hybridization. The newest method to speed up the FISH protocol is the use of a microwave to shorten the heating element to less than a minute; however this protocol still calls for a 1-h hybridization period. We have utilized PNA centromere/telomere probes in conjunction with a microwave oven to show telomere and centromere staining in as little as 30 s. We have optimized the hybridization conditions to increase the sensitivity and effectiveness of the new protocol and can effectively stain chromosomes in 2 min and 30 s of incubation. We have found that our new approach to FISH produces extremely clear and distinct signals. Radiation-induced dicentric formation in mouse and human fibroblast cells was analyzed by two individual scorers and the observed dicentrics matched very well.

  12. [Fluorescence in situ hybridization with DNA probes derived from individual chromosomes and chromosome regions].

    Science.gov (United States)

    Bogomolov, A G; Karamysheva, T V; Rubtsov, N B

    2014-01-01

    A significant part of the eukaryotic genomes consists of repetitive DNA, which can form large clusters or distributed along euchromatic chromosome regions. Repeats located in chromosomal regions make a problem in analysis and identification of the chromosomal material with fluorescence in situ hybridization (FISH). In most cases, the identification of chromosome regions using FISH requires detection of the signal produced with unique sequences. The feasibility, advantages and disadvantages of traditional methods of suppression of repetitive DNA hybridization, methods of repeats-free probe construction and methods of chromosome-specific DNA sequences visualization using image processing of multicolor FISH results are considered in the paper. The efficiency of different techniques for DNA probe generation, different FISH protocols, and image processing of obtained microscopic images depends on the genomic size and structure of analyzing species. This problem was discussed and different approaches were considered for the analysis of the species with very large genome, rare species and species which specimens are too small in size to obtain the amount of genomic and Cot-1 DNA required for suppression of repetitive DNA hybridization.

  13. Prediction of melting temperatures in fluorescence in situ hybridization (FISH) procedures using thermodynamic models.

    Science.gov (United States)

    Fontenete, Sílvia; Guimarães, Nuno; Wengel, Jesper; Azevedo, Nuno Filipe

    2016-01-01

    The thermodynamics and kinetics of DNA hybridization, i.e. the process of self-assembly of one, two or more complementary nucleic acid strands, has been studied for many years. The appearance of the nearest-neighbor model led to several theoretical and experimental papers on DNA thermodynamics that provide reasonably accurate thermodynamic information on nucleic acid duplexes and allow estimation of the melting temperature. Because there are no thermodynamic models specifically developed to predict the hybridization temperature of a probe used in a fluorescence in situ hybridization (FISH) procedure, the melting temperature is used as a reference, together with corrections for certain compounds that are used during FISH. However, the quantitative relation between melting and experimental FISH temperatures is poorly described. In this review, various models used to predict the melting temperature for rRNA targets, for DNA oligonucleotides and for nucleic acid mimics (chemically modified oligonucleotides), will be addressed in detail, together with a critical assessment of how this information should be used in FISH.

  14. Application of fluorescence in situ hybridization%荧光原位杂交技术的应用

    Institute of Scientific and Technical Information of China (English)

    陈开慧; 韦赐秋

    2012-01-01

      荧光原位杂交(fluorescence in situ hybridization,FISH)技术是一门新兴的分子细胞遗传学技术,在疾病诊断中发挥了重要作用。本文主要对FISH技术的原理特点以及临床应用作一综述。%  Fluorescence in situ hybridization(FISH) technology is a new promising molecular cytogenetic technique, which plays a vital role in prognosis. This review focuses on the principle and clinical application of FISH.

  15. A hydrophobic dye-encapsulated nano-hybrid as an efficient fluorescent probe for living cell imaging.

    Science.gov (United States)

    Chang, Shu; Wu, Xumeng; Li, Yongsheng; Niu, Dechao; Ma, Zhi; Zhao, Wenru; Gu, Jinlou; Dong, Wenjie; Ding, Feng; Zhu, Weihong; Shi, Jianlin

    2012-07-01

    Water-soluble hydrophobic-dye@nano-hybrids (DPN@NHs) with extraordinarily enhanced fluorescent performance were fabricated by encapsulating the hydrophobic dye molecules into the core of the hybrid nanospheres based on the self-assembly of amphiphilic block copolymers followed by shell cross-linking using 3-mercaptopropyltrimethoxy-silane. The DPN@NHs are 50 nm in size, are monodispersed in aqueous solution and have a quantum yield enhanced by 30 times.

  16. Highly Sensitive DNA Sensor Based on Upconversion Nanoparticles and Graphene Oxide.

    Science.gov (United States)

    Alonso-Cristobal, P; Vilela, P; El-Sagheer, A; Lopez-Cabarcos, E; Brown, T; Muskens, O L; Rubio-Retama, J; Kanaras, A G

    2015-06-17

    In this work we demonstrate a DNA biosensor based on fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er nanoparticles and graphene oxide (GO). Monodisperse NaYF4:Yb,Er nanoparticles with a mean diameter of 29.1 ± 2.2 nm were synthesized and coated with a SiO2 shell of 11 nm, which allowed the attachment of single strands of DNA. When these DNA-functionalized NaYF4:Yb,Er@SiO2 nanoparticles were in the proximity of the GO surface, the π-π stacking interaction between the nucleobases of the DNA and the sp(2) carbons of the GO induced a FRET fluorescence quenching due to the overlap of the fluorescence emission of the NaYF4:Yb,Er@SiO2 and the absorption spectrum of GO. By contrast, in the presence of the complementary DNA strands, the hybridization leads to double-stranded DNA that does not interact with the GO surface, and thus the NaYF4:Yb,Er@SiO2 nanoparticles remain unquenched and fluorescent. The high sensitivity and specificity of this sensor introduces a new method for the detection of DNA with a detection limit of 5 pM.

  17. Estimation of protein concentration at high sensitivity using SDS-capillary gel electrophoresis-laser induced fluorescence detection with 3-(2-furoyl)quinoline-2-carboxaldehyde protein labeling.

    Science.gov (United States)

    Arrell, Miriam S; Kálmán, Franka

    2016-11-01

    3-(2-furoyl)quinoline-2-carboxaldehyde (FQ) is a sensitive fluorogenic dye, used for derivatization of proteins for SDS-CGE with LIF detection (SDS-CGE-LIF) at silver staining sensitivity (ng/mL). FQ labels proteins at primary amines, found at lysines and N-termini, which vary in number and accessibility for different proteins. This work investigates the accuracy of estimation of protein concentration with SDS-CGE-LIF in real biological samples, where a different protein must be used as a standard. Sixteen purified proteins varying in molecular weight, structure, and sequence were labeled with FQ at constant mass concentration applying a commonly used procedure for SDS-CGE-LIF. The fluorescence of these proteins was measured using a spectrofluorometer and found to vary with a RSD of 36%. This compares favorably with other less sensitive methods for estimation of protein concentration such as SDS-CGE-UV and SDS-PAGE-Coomassie and is vastly superior to the equivalently sensitive silver stain. Investigation into the number of labels bound with UHPLC-ESI-QTOF-MS revealed large variations in the labeling efficiency (percentage of labels to the number of labeling sites given by the sequence) for different proteins (from 3 to 30%). This explains the observation that fluorescence per mole of protein was not proportional to the number of lysines in the sequence. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Automated design of probes for rRNA-targeted fluorescence in situ hybridization reveals the advantages of using dual probes for accurate identification.

    Science.gov (United States)

    Wright, Erik S; Yilmaz, L Safak; Corcoran, Andrew M; Ökten, Hatice E; Noguera, Daniel R

    2014-08-01

    Fluorescence in situ hybridization (FISH) is a common technique for identifying cells in their natural environment and is often used to complement next-generation sequencing approaches as an integral part of the full-cycle rRNA approach. A major challenge in FISH is the design of oligonucleotide probes with high sensitivity and specificity to their target group. The rapidly expanding number of rRNA sequences has increased awareness of the number of potential nontargets for every FISH probe, making the design of new FISH probes challenging using traditional methods. In this study, we conducted a systematic analysis of published probes that revealed that many have insufficient coverage or specificity for their intended target group. Therefore, we developed an improved thermodynamic model of FISH that can be applied at any taxonomic level, used the model to systematically design probes for all recognized genera of bacteria and archaea, and identified potential cross-hybridizations for the selected probes. This analysis resulted in high-specificity probes for 35.6% of the genera when a single probe was used in the absence of competitor probes and for 60.9% when up to two competitor probes were used. Requiring the hybridization of two independent probes for positive identification further increased specificity. In this case, we could design highly specific probe sets for up to 68.5% of the genera without the use of competitor probes and 87.7% when up to two competitor probes were used. The probes designed in this study, as well as tools for designing new probes, are available online (http://DECIPHER.cee.wisc.edu).

  19. Karyotyping of Brassica napus L. Based on C0t-1 DNA Banding by Fluorescence In Situ Hybridization

    Institute of Scientific and Technical Information of China (English)

    Wen-Hui WEI; Wan-Peng ZHAO; Li-Jun WANG; Bo CHEN; Yun-Chang LI; Yun-Chun SONG

    2005-01-01

    In order to precisely recognize and karyotype Brassica napus L. chromosomes, C0t- 1 DNA was extracted from its genomic DNA, labeled with biotin- 11-dUTP and in situ hybridized. The hybridized locations were detected by Cy3-conjugated streptavidin. Specific fluorescence in situ hybridization (FISH)signal bands were detected on all individual chromosome pairs. Each chromosome pair showed specific banding patterns. The B. napus karyotype has been constructed, for the first time, on the basis of both C0t-1 DNA FISH banding patterns and chromosome morphology.

  20. Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Leite, Marina; Guimarães, Nuno

    2015-01-01

    acid (LNA)/ 2' O-methyl RNA (2'OMe) probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization......In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH) is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo...

  1. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    Science.gov (United States)

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay.

  2. Frequent TMPRSS2-ERG rearrangement in prostatic small cell carcinoma detected by fluorescence in situ hybridization: the superiority of fluorescence in situ hybridization over ERG immunohistochemistry.

    Science.gov (United States)

    Schelling, Lindsay A; Williamson, Sean R; Zhang, Shaobo; Yao, Jorge L; Wang, Mingsheng; Huang, Jiaoti; Montironi, Rodolfo; Lopez-Beltran, Antonio; Emerson, Robert E; Idrees, Muhammad T; Osunkoya, Adeboye O; Man, Yan-Gao; Maclennan, Gregory T; Baldridge, Lee Ann; Compérat, Eva; Cheng, Liang

    2013-10-01

    Small cell carcinoma of the prostate is both morphologically and immunohistochemically similar to small cell carcinoma of other organs such as the urinary bladder or lung. TMPRSS2-ERG gene fusion appears to be a highly specific alteration in prostatic carcinoma that is frequently shared by small cell carcinoma. In adenocarcinoma, immunohistochemistry for the ERG protein product has been reported to correlate well with the presence of the gene fusion, although in prostatic small cell carcinoma, this relationship is not completely understood. We evaluated 54 cases of small cell carcinoma of the prostate and compared TMPRSS2-ERG gene fusion status by fluorescence in situ hybridization (FISH) to immunohistochemical staining with antibody to ERG. Of 54 cases of prostatic small cell carcinoma, 26 (48%) were positive for TMPRSS2-ERG gene fusion by FISH and 12 (22%) showed overexpression of ERG protein by immunohistochemistry. Of the 26 cases positive by FISH, 11 were also positive for ERG protein by immunohistochemistry. One tumor was positive by immunohistochemistry but negative by FISH. Urinary bladder small cell carcinoma (n = 25) showed negative results by both methods; however, 2 of 14 small cell carcinomas of other organs (lung, head, and neck) showed positive immunohistochemistry but negative FISH. Positive staining for ERG by immunohistochemistry is present in a subset of prostatic small cell carcinomas and correlates with the presence of TMPRSS2-ERG gene fusion. Therefore, it may be useful in confirming prostatic origin when molecular testing is not accessible. However, sensitivity and specificity of ERG immunohistochemistry in small cell carcinoma are decreased compared to FISH.

  3. Laser capture microdissection of bacterial cells targeted by fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Schou, Kirstine Klitgaard; Mølbak, Lars; Jensen, Tim Kåre

    2005-01-01

    Direct cultivation-independent sequence retrieval of unidentified bacteria from histological tissue sections has been limited by the difficulty of selectively isolating specific bacteria from a complex environment. Here, a new DNA isolation approach is presented for prokaryotic cells....... By this method, a potentially pathogenic strain of the genus Brachyspira from formalin-fixed human colonic biopsies were visualized by fluorescence in situ hybridization (FISH) with a 16S rRNA-targeting oligonucleotide probe, followed by laser capture microdissection (LCM) of the targeted cells. Direct 16S r......RNA gene PCR was performed from the dissected microcolonies, and the subsequent DNA sequence analysis identified the dissected bacterial cells as belonging to the Brachyspira aalborgi cluster 1. The advantage of this technique is the ability to combine the histological recognition of the specific bacteria...

  4. DNA breakage detection-fluorescence in situ hybridization (DBD-FISH in buccal cells

    Directory of Open Access Journals (Sweden)

    E. I. Cortés-Gutiérrez

    2012-12-01

    Full Text Available DNA breakage detection-fluorescence in situ hybridization (DBD-FISH is a recently developed technique that allows cell-by-cell detection and quantification of DNA breakage in the whole genome or within specific DNA sequences. The present investigation was conducted to adapt the methodology of DBD-FISH to the visualization and evaluation of DNA damage in buccal epithelial cells. DBD-FISH revealed that DNA damage increased significantly according to H2O2 concentration (r2=0.91. In conclusion, the DBD-FISH technique is easy to apply in buccal cells and provides prompt results that are easy to interpret. Future studies are needed to investigate the potential applicability of a buccal cell DBD-FISH model to human biomonitoring and nutritional work.

  5. DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) in buccal cells.

    Science.gov (United States)

    Cortés-Gutiérrez, E I; Dávila-Rodríguez, M I; Fernández, J L; López-Fernández, C; Gosálvez, J

    2012-12-28

    DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) is a recently developed technique that allows cell-by-cell detection and quantification of DNA breakage in the whole genome or within specific DNA sequences. The present investigation was conducted to adapt the methodology of DBD-FISH to the visualization and evaluation of DNA damage in buccal epithelial cells. DBD-FISH revealed that DNA damage increased significantly according to H2O2 concentration (r2=0.91). In conclusion, the DBD-FISH technique is easy to apply in buccal cells and provides prompt results that are easy to interpret. Future studies are needed to investigate the potential applicability of a buccal cell DBD-FISH model to human biomonitoring and nutritional work.

  6. FOXP1 status in splenic marginal zone lymphoma: a fluorescence in situ hybridization and immunohistochemistry approach.

    Science.gov (United States)

    Baró, Cristina; Espinet, Blanca; Salido, Marta; Colomo, Lluís; Luño, Elisa; Florensa, Lourdes; Ferrer, Ana; Salar, Antonio; Campo, Elias; Serrano, Sergi; Solé, Francesc

    2009-11-01

    Splenic marginal zone lymphoma (SMZL) is a well-recognized entity in which chromosomal aberrations seem to be potential markers in diagnosis, prognosis and disease monitoring. FOXP1 is a transcriptional regulator of B lymphopoiesis that is deregulated in some types of NHL. Translocation t(3;14)(p14;q32) has been described in marginal zone lymphomas but few series have studied FOXP1 involvement in SMZL. We performed cytogenetic, fluorescence in situ hybridization (FISH) and immunohistochemical (IHC) studies in a series of 36 patients in order to study the status of FOXP1 in this entity. According to our results, FOXP1 is not rearranged in SMZL, although we were able to demonstrate gains of FOXP1 gene due to trisomy 3/3p by FISH. FOXP1 protein expression seemed to be not related to any aberration and IHC studies are not conclusive.

  7. Identification of triclosan-degrading bacteria using stable isotope probing, fluorescence in situ hybridization and microautoradiography

    DEFF Research Database (Denmark)

    Lolas, Ihab Bishara Lolas; Chen, Xijuan; Bester, Kai

    2012-01-01

    Triclosan is considered a ubiquitous pollutant and can be detected in a wide range of environmental samples. Triclosan removal by wastewater treatment plants has been largely attributed to biodegradation processes; however, very little is known about the micro-organisms involved. In this study, DNA......-based stable isotope probing (DNA-SIP) combined with microautoradiography-fluorescence in situ hybridization (MAR-FISH) was applied to identify active triclosan degraders in an enrichment culture inoculated with activated sludge. Clone library sequences of 16S rRNA genes derived from the heavy DNA fractions...... of enrichment culture incubated with 13C-labelled triclosan showed a predominant enrichment of a single bacterial clade most closely related to the betaproteobacterial genus Methylobacillus. To verify that members of the genus Methylobacillus were actively utilizing triclosan, a specific probe targeting...

  8. Chromosome translocations measured by fluorescence in-situ hybridization: A promising biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, J.N.; Straume, T.

    1995-10-01

    A biomarker for exposure and risk assessment would be most useful if it employs an endpoint that is highly quantitative, is stable with time, and is relevant to human risk. Recent advances in chromosome staining using fluorescence in situ hybridization (FISH) facilitate fast and reliable measurement of reciprocal translocations, a kind of DNA damage linked to both prior exposure and risk. In contrast to other biomarkers available, the frequency of reciprocal translocations in individuals exposed to whole-body radiation is stable with time post exposure, has a rather small inter-individual variability, and can be measured accurately at the low levels. Here, the authors discuss results from their studies demonstrating that chromosome painting can be used to reconstruct radiation dose for workers exposed within the dose limits, for individuals exposed a long time ago, and even for those who have been diagnosed with leukemia but not yet undergone therapy.

  9. Chromosome-Specific DNA Repeats: Rapid Identification in Silico and Validation Using Fluorescence in Situ Hybridization

    Directory of Open Access Journals (Sweden)

    Heinz-Ulrich G. Weier

    2012-12-01

    Full Text Available Chromosome enumeration in interphase and metaphase cells using fluorescence in situ hybridization (FISH is an established procedure for the rapid and accurate cytogenetic analysis of cell nuclei and polar bodies, the unambiguous gender determination, as well as the definition of tumor-specific signatures. Present bottlenecks in the procedure are a limited number of commercial, non-isotopically labeled probes that can be combined in multiplex FISH assays and the relatively high price and effort to develop additional probes. We describe a streamlined approach for rapid probe definition, synthesis and validation, which is based on the analysis of publicly available DNA sequence information, also known as “database mining”. Examples of probe preparation for the human gonosomes and chromosome 16 as a selected autosome outline the probe selection strategy, define a timeline for expedited probe production and compare this novel selection strategy to more conventional probe cloning protocols.

  10. Using Fluorescence in situ Hybridization to Identify DMD/BMD Deletion Carriers

    Institute of Scientific and Technical Information of China (English)

    Ren-li WANG; Yan-ping XIAO; Xiu-rong JIANG

    2003-01-01

    Objective To identify the deletions in Duchenne/Becker muscular dystrophy (DMD/BMD) by using fluorescence in situ hybridization (FISH) Methods The exon-specific cosmid DNA probes (representing 18 exons) were used to perform one-color FISH on metaphase and interphase preparations. The peripheral blood samples from 9 normal people (4 males and 5 females) and 5 females from independent deletion DMD/BMD families, as well as 2 amniotic fluid specimens and 2 chorionic villus samples (CVS) from normal pregnant females were analyzed.Results 72%~100% of peripheral blood lymphocyte metaphases or interphases, 60%~70% of amniocyte interphases, and 95~99% of chorionic villus cell interphases showed expected signals. One suspected female was identified as deletion carriers and two were excluded.Conclusion FISH in combination with other available techniques allows efficient screening of DMD/BMD deletion carriers, which also lay the ground work for prenatal diagnosis for potential fetal carriers.

  11. White organic light emitting devices with hybrid emissive layers combining phosphorescence and fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Lei Gangtie; Chen Xiaolan; Wang Lei; Zhu Meixiang; Zhu Weiguo [Key Lab of Environmental-friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 (China); Wang Liduo; Qiu Yong [Key Lab of Organic-Optoelectronics and Molecular Sciences of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084 (China)], E-mail: lgt@xtu.edu.cn

    2008-05-21

    We fabricated a white organic light-emitting diode (WOLED) by hybrid emissive layers which combined phosphorescence with fluorescence. In this device, the thin layer of 4-(dicyanomethylene)-2-(t-butyl)-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran played the role of undoped red emissive layer which was inserted between two blue phosphorescence emissive layers. The blue phosphorescent dye was bis[(4, 6-difluorophenyl)-pyridinato-N, C{sup 2}] (picolinato) Ir(III), which was doped in the host material, N, N'-dicarbazolyl-1, 4-dimethene-benzene. The WOLED showed stable Commission Internationale de L'Eclairage coordinates and a high efficency of 9.6 cd A{sup -1} when the current density was 1.8 A m{sup -2}. The maximum luminance of the device achieved was 17 400 cd m{sup -2} when the current density was 3000 A m{sup -2}.

  12. Detection of integrated herpesvirus genomes by fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Kaufer, Benedikt B

    2013-01-01

    Fluorescence in situ hybridization (FISH) is widely used to visualize nucleotide sequences in interphase cells or on metaphase chromosomes using specific probes that are complementary to the respective targets. Besides its broad application in cytogenetics and cancer research, FISH facilitates the localization of virus genomes in infected cells. Some herpesviruses, including human herpesvirus 6 (HHV-6) and Marek's disease virus (MDV), have been shown to integrate their genetic material into host chromosomes, which allows transmission of HHV-6 via the germ line and is required for efficient MDV-induced tumor formation. We describe here the detection by FISH of integrated herpesvirus genomes in metaphase chromosomes and interphase nuclei of herpesvirus-infected cells.

  13. Preparation of fluorescent-dye-labeled cDNA from RNA for microarray hybridization.

    Science.gov (United States)

    Ares, Manuel

    2014-01-01

    This protocol describes how to prepare fluorescently labeled cDNA for hybridization to microarrays. It consists of two steps: first, a mixture of anchored oligo(dT) and random hexamers is used to prime amine-modified cDNA synthesis by reverse transcriptase using a modified deoxynucleotide with a reactive amine group (aminoallyl-dUTP) and an RNA sample as a template. Second, the cDNA is purified and exchanged into bicarbonate buffer so that the amine groups in the cDNA react with the dye N-hydroxysuccinimide (NHS) esters, covalently joining the dye to the cDNA. The dye-coupled cDNA is purified again, and the amount of dye incorporated per microgram of cDNA is determined.

  14. Visualizing the Needle in the Haystack: In Situ Hybridization With Fluorescent Dendrimers

    Directory of Open Access Journals (Sweden)

    Gerhart Jacquelyn

    2004-01-01

    Full Text Available In situ hybridization with 3DNA™ dendrimers is a novel tool for detecting low levels of mRNA in tissue sections and whole embryos. Fluorescently labeled dendrimers were used to identify cells that express mRNA for the skeletal muscle transcription factor MyoD in the early chick embryo. A small population of MyoD mRNA positive cells was found in the epiblast prior to the initiation of gastrulation, two days earlier than previously detected using enzymatic or radiolabeled probes for mRNA. When isolated from the epiblast and placed in culture, the MyoD mRNA positive cells were able to differentiate into skeletal muscle cells. These results demonstrate that DNA dendrimers are sensitive and precise tools for identifying low levels of mRNA in single cells and tissues.

  15. Detection of chromosomal anomalies in endometrial atypical hyperplasia and carcinoma by using fluorescence in situ hybridization.

    Science.gov (United States)

    Qian, Junqi; Weber, Deena; Cochran, Richard; Hossain, Deloar; Bostwick, David G

    2010-04-25

    Endometrial cancer is the most common pelvic gynecological malignancy. The diagnosis of well-differentiated endometrial adenocarcinoma, atypical hyperplasia, and hyperplasia is often challenging. The authors sought to investigate the utility of chromosomal anomalies for the detection of endometrial hyperplasia and carcinoma using multitarget fluorescence in situ hybridization (FISH). Samples were collected by endometrial Tao brush and processed by liquid-based cytological preparation protocol from consecutive cases to include 50 benign, 50 hyperplasia without atypia, 47 atypical hyperplasia, and 53 endometrial cancers. Each was hybridized using fluorescence-labeled DNA probes to chromosomes 1, 8, and 10. The FISH signals were enumerated in 100 cells per case, and the chromosomal anomalies were correlated with pathologic findings, including histologic diagnoses on matched endometrial tissue samples. Numeric chromosomal anomalies were found in 0% (0 of 50) of benign, 20% (10 of 50) of hyperplasia, 74% (35 of 47) of atypical hyperplasia, and 87% (46 of 53) of carcinoma specimens. The mean percentage of cells with chromosomal changes was 55% in cancer specimens, which was significantly higher than that in hyperplasia without atypia (13%, P chromosomal anomaly was gain of chromosome 1. FISH anomalies had an overall sensitivity of 81% and specificity of 90% for the detection of atypical hyperplasia and/or endometrial carcinoma. There was no association with grade of endometrial carcinoma. Multitarget FISH appears to be useful for the differential diagnosis of hyperplasia, atypical hyperplasia, and endometrial adenocarcinoma, with a high level of sensitivity and specificity. It is also a potential tool for the early detection of neoplastic cells in endometrial cytology specimens. Endometrial hyperplasia with FISH-detected chromosomal anomalies may represent a clinically significant subset of cases that warrant close clinical follow-up. (c) 2010 American Cancer Society.

  16. Diagnostic accuracy: theoretical models for preimplantation genetic testing of a single nucleus using the fluorescence in situ hybridization technique

    NARCIS (Netherlands)

    P.N. Scriven; P.M.M. Bossuyt

    2010-01-01

    The aim of this study was to develop and use theoretical models to investigate the accuracy of the fluorescence in situ hybridization (FISH) technique in testing a single nucleus from a preimplantation embryo without the complicating effect of mosaicism. Mathematical models were constructed for thre

  17. Retrospective study of trisomy 18 in chorionic villi with fluorescent in situ hybridization on archival direct preparations

    NARCIS (Netherlands)

    A.R.M. van Opstal (Diane); C.D.F. van den Berg (Cardi); M.G. Jahoda (M.); H. Brandenburg (Helen); F.J. Los; P.A. In't Veld (Peter)

    1995-01-01

    textabstractTrisomy 18 in direct chorionic villus preparations needs further investigation since the chromosome abnormality may be confined to the placenta and may not represent the actual fetal karyotype. We performed, retrospectively, fluorescent in situ hybridization (FISH) with the chromosome 18

  18. Scanning electron microscopy and fluorescent in situ hybridization of experimental Brachyspira (Serpulina) pilosicoli infection in growing pigs

    DEFF Research Database (Denmark)

    Jensen, Tim Kåre; Møller, Kristian; Boye, Mette

    2000-01-01

    Two groups of six 8-week-old pigs were challenged with 1X10(9) cfu Brachyspira (Serpulina) pilosicoli or Serpulina intermedia daily for 3 consecutive days to study the pathology of porcine colonic spirochetosis by scanning electron microscopy (SEM) and fluorescent in situ hybridization (FISH...

  19. HER-2 protein concentrations in breast cancer cells increase before immunohistochemical and fluorescence in situ hybridization analysis turn positive

    DEFF Research Database (Denmark)

    Olsen, Dorte A; Østergaard, Birthe; Bokmand, Susanne

    2007-01-01

    BACKGROUND: The level of HER-2/neu in breast cancer cells is normally measured by immunohistochemistry (IHC) and/or fluorescence in situ hybridization (FISH). It determines whether patients should be treated with trastuzumab (Herceptin). In this study, HER-2 protein in breast cancer tissue...

  20. Section E9 of the American College of Medical Genetics technical standards and guidelines: fluorescence in situ hybridization.

    Science.gov (United States)

    Mascarello, James T; Hirsch, Betsy; Kearney, Hutton M; Ketterling, Rhett P; Olson, Susan B; Quigley, Denise I; Rao, Kathleen W; Tepperberg, James H; Tsuchiya, Karen D; Wiktor, Anne E

    2011-07-01

    This updated Section E9 has been incorporated into and supersedes the previous Section E9 in Section E: Clinical Cytogenetics of the 2008 Edition (Revised 02/2007) American College of Medical Genetics Standards and Guidelines for Clinical Genetics Laboratories. This section deals specifically with the standards and guidelines applicable to fluorescence in situ hybridization analysis.

  1. Fully Automated Fluorescent in situ Hybridization (FISH) Staining and Digital Analysis of HER2 in Breast Cancer : A Validation Study

    NARCIS (Netherlands)

    van der Logt, Elise M. J.; Kuperus, Deborah A. J.; van Setten, Jan W.; van den Heuvel, Marius C.; Boers, James. E.; Schuuring, Ed; Kibbelaar, Robby E.

    2015-01-01

    HER2 assessment is routinely used to select patients with invasive breast cancer that might benefit from HER2-targeted therapy. The aim of this study was to validate a fully automated in situ hybridization (ISH) procedure that combines the automated Leica HER2 fluorescent ISH system for Bond with su

  2. An Improved Protocol for Quantification of Freshwater Actinobacteria by Fluorescence In Situ Hybridization

    Science.gov (United States)

    Sekar, Raju; Pernthaler, Annelie; Pernthaler, Jakob; Warnecke, Falk; Posch, Thomas; Amann, Rudolf

    2003-01-01

    We tested a previously described protocol for fluorescence in situ hybridization of marine bacterioplankton with horseradish peroxidase-labeled rRNA-targeted oligonucleotide probes and catalyzed reporter deposition (CARD-FISH) in plankton samples from different lakes. The fraction of Bacteria detected by CARD-FISH was significantly lower than after FISH with fluorescently monolabeled probes. In particular, the abundances of aquatic Actinobacteria were significantly underestimated. We thus developed a combined fixation and permeabilization protocol for CARD-FISH of freshwater samples. Enzymatic pretreatment of fixed cells was optimized for the controlled digestion of gram-positive cell walls without causing overall cell loss. Incubations with high concentrations of lysozyme (10 mg ml−1) followed by achromopeptidase (60 U ml−1) successfully permeabilized cell walls of Actinobacteria for subsequent CARD-FISH both in enrichment cultures and environmental samples. Between 72 and >99% (mean, 86%) of all Bacteria could be visualized with the improved assay in surface waters of four lakes. For freshwater samples, our method is thus superior to the CARD-FISH protocol for marine Bacteria (mean, 55%) and to FISH with directly fluorochrome labeled probes (mean, 67%). Actinobacterial abundances in the studied systems, as detected by the optimized protocol, ranged from 32 to >55% (mean, 45%). Our findings confirm that members of this lineage are among the numerically most important Bacteria of freshwater picoplankton. PMID:12732568

  3. Fluorescence in situ hybridization rapidly detects three different pathogenic bacteria in urinary tract infection samples.

    Science.gov (United States)

    Wu, Qing; Li, Yan; Wang, Ming; Pan, Xiao P; Tang, Yong F

    2010-11-01

    The detection of pathogenic bacteria in urine is an important criterion for diagnosing urinary tract infections (UTIs). By using fluorescence in situ hybridization (FISH) with rRNA-targeted, fluorescently labeled oligonucleotide probes, bacterial pathogens present in urine samples were identified within 3-4 h. In this study, three probes that are specific for Escherichia coli, Enterococcus faecalis and Staphylococcus aureus were designed based on the conserved 16S RNA sequences, whereas probe Eub338 broadly recognizes all bacteria. We collected a total of 1000 urine samples, and 325 of these samples tested positive for a UTI via traditional culturing techniques; additionally, all 325 of these samples tested positive with the Eub338 probe in FISH analysis. FISH analyses with species-specific probes were performed in parallel to the test the ability to differentiate among several pathogenic bacteria. The samples for these experiments included 76 E. coli infected samples, 32 E. faecalis infected samples and 9 S. aureus infected samples. Compared to conventional methods of bacterial identification, the FISH method produced positive results for >90% of the samples tested. FISH has the potential to become an extremely useful diagnostic tool for UTIs because it has a quick turnaround time and high accuracy.

  4. Accuracy Assessment of Interphase Fluorescence In-Situ Hybridization on Uncultured Amniotic Fluid Cells

    Directory of Open Access Journals (Sweden)

    Hamideh Karimi

    2007-01-01

    Full Text Available Background: Parental anxiety while waiting for the results of amniocentesis has been investigatedby many authors. It seems that the implementation of faster techniques such as fluorescence in-situhybridization (FISH will have some benefits in reducing this anxiety. Besides the patients' attitudesto choosing this method, gynecologists who are the persons responsible for treatment, must feelcomfortable about prescribing FISH techniques.Materials and Methods: This study, using a simple methodology, was undertaken to evaluate theresults of FISH tests on the amniotic fluid from 40 pregnant women undergoing cesarean surgery.Two sets of probes including X/Y cocktail and 13, 21 and 18 were applied on different slides.Results: The results of FISH tests were compared with the reports of the pediatrician about thehealth condition of the newborn. Complete conformity between the two sets of findings, haveconvinced our gynecologists of the benefit of prescribing this method to reduce the anxiety ofpatients at risk of having abnormal offspring due to chromosomal anuploidies.Conclusion: As has been documented by many authors, conventional chromosome analysis hasgreat advantages over fluorescence in situ hybridization of interphase amniocytes, but reducing theanxiety of parents is a good reason for employing the FISH technique.

  5. Correlation of Particle Traversals with Clonogenic Survival Using Cell-Fluorescent Ion Track Hybrid Detector

    Science.gov (United States)

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Mairani, Andrea; Seidel, Philipp; Krunic, Damir; Jäkel, Oliver; Debus, Jürgen; Greilich, Steffen; Abdollahi, Amir

    2015-01-01

    Development of novel approaches linking the physical characteristics of particles with biological responses are of high relevance for the field of particle therapy. In radiobiology, the clonogenic survival of cells is considered the gold standard assay for the assessment of cellular sensitivity to ionizing radiation. Toward further development of next generation biodosimeters in particle therapy, cell-fluorescent ion track hybrid detector (Cell-FIT-HD) was recently engineered by our group and successfully employed to study physical particle track information in correlation with irradiation-induced DNA damage in cell nuclei. In this work, we investigated the feasibility of Cell-FIT-HD as a tool to study the effects of clinical beams on cellular clonogenic survival. Tumor cells were grown on the fluorescent nuclear track detector as cell culture, mimicking the standard procedures for clonogenic assay. Cell-FIT-HD was used to detect the spatial distribution of particle tracks within colony-initiating cells. The physical data were associated with radiation-induced foci as surrogates for DNA double-strand breaks, the hallmark of radiation-induced cell lethality. Long-term cell fate was monitored to determine the ability of cells to form colonies. We report the first successful detection of particle traversal within colony-initiating cells at subcellular resolution using Cell-FIT-HD. PMID:26697410

  6. Accuracy Assessment of Interphase Fluorescence In-Situ Hybridization on Uncultured Amniotic Fluid Cells

    Directory of Open Access Journals (Sweden)

    Hamid Gourabi

    2008-01-01

    Full Text Available Background: Parental anxiety while waiting for the results of amniocentesis has been investigatedby many authors. It seems that the implementation of faster techniques such as fluorescence in-situhybridization (FISH will have some benefits in reducing this anxiety. Besides the patients' attitudesto choosing this method, gynecologists who are the persons responsible for treatment, must feelcomfortable about prescribing FISH techniques.Materials and Methods: This study, using a simple methodology, was undertaken to evaluate theresults of FISH tests on the amniotic fluid from 40 pregnant women undergoing cesarean surgery.Two sets of probes including X/Y cocktail and 13, 21 and 18 were applied on different slides.Results: The results of FISH tests were compared with the reports of the pediatrician about thehealth condition of the newborn. Complete conformity between the two sets of findings, haveconvinced our gynecologists of the benefit of prescribing this method to reduce the anxiety ofpatients at risk of having abnormal offspring due to chromosomal anuploidies.Conclusion: As has been documented by many authors, conventional chromosome analysis hasgreat advantages over fluorescence in situ hybridization of interphase amniocytes, but reducing theanxiety of parents is a good reason for employing the FISH technique.

  7. Phylogenetic Relationship of Dendranthema (DC.) Des Moul. Revealed by Fluorescent In Situ Hybridization

    Institute of Scientific and Technical Information of China (English)

    Si-Lan DAI; Wen-Kui WANG; Mao-Xue LI; Ying-Xiu XU

    2005-01-01

    Phylogenetic relationships of the different species in the genus Dendranthema (DC.) Des Moul. were estimated based on chromosome fluorescent in situ hybridization (FISH) with 18S-26S rDNA of Arabidopsis and genomic DNA of Dendranthema as probes. The results revealed that there was no positive correlation between the number of nuclear organization region (NOR) loci and the ploidy of Dendranthema.The exact cytogenetic information of NORs about 14 operational taxonomic units (OTUs) indicated that D.vestitum (Hemsl.) Ling et Shih was closer to the cultivars than other putative species, whereas D. zawadskii (Herb.) Tzvel. was the most distinct. The ambiguously distributed signals of genomic in situ hybridization (GISH) with genomic DNA of lower ploidy species as probes suggested that different genomes among Dendranthema were mixed. The result also indicated the limitation of GISH in studies on the phylogenetic relationships of the different species in this genus Dendranthema and on the origin of cultivated chrysanthemums. Based on these results and previous research, the origin of Chinese cultivated chrysanthemum is discussed.

  8. Fluorescence In Situ Hybridization for MicroRNA Detection in Archived Oral Cancer Tissues

    Directory of Open Access Journals (Sweden)

    Zonggao Shi

    2012-01-01

    Full Text Available The noncoding RNA designated as microRNA (miRNA is a large group of small single-stranded regulatory RNA and has generated wide-spread interest in human disease studies. To facilitate delineating the role of microRNAs in cancer pathology, we sought to explore the feasibility of detecting microRNA expression in formalin-fixed paraffin-embedded (FFPE tissues. Using FFPE materials, we have compared fluorescent in situ hybridization (FISH procedures to detect miR-146a with (a different synthetic probes: regular custom DNA oligonucleotides versus locked nucleic acid (LNA incorporated DNA oligonucleotides; (b different reporters for the probes: biotin versus digoxigenin (DIG; (c different visualization: traditional versus tyramide signal amplification (TSA system; (d different blocking reagents for endogenous peroxidase. Finally, we performed miR-146a FISH on a commercially available oral cancer tissue microarray, which contains 40 cases of oral squamous cell carcinoma (OSCC and 10 cases of normal epithelia from the human oral cavity. A sample FISH protocol for detecting miR-146a is provided. In summary, we have established reliable in situ hybridization procedures for detecting the expression of microRNA in FFPE oral cancer tissues. This method is an important tool for studies on the involvement of microRNA in oral cancer pathology and may have potential prognostic or diagnostic value.

  9. Combined RNA/DNA fluorescence in situ hybridization on whole-mount Drosophila ovaries.

    Science.gov (United States)

    Shpiz, Sergey; Lavrov, Sergey; Kalmykova, Alla

    2014-01-01

    DNA FISH (fluorescent in situ hybridization) analysis reveals the chromosomal location of the gene of interest. RNA in situ hybridization is used to examine the amounts and cell location of transcripts. This method is commonly used to describe the localization of processed transcripts in different tissues or cell lines. Gene activation studies are often aimed at determining the mechanism of this activation (transcriptional or posttranscriptional). Elucidation of the mechanism of piRNA-mediated silencing of genomic repeats is at the cutting edge of small RNA research. The RNA/DNA FISH technique is a powerful method for assessing transcriptional changes at any particular genomic locus. Colocalization of the RNA and DNA FISH signals allows a determination of the accumulation of nascent transcripts at the transcribed genomic locus. This would be suggest that this gene is activated at the transcriptional (or co-transcriptional) level. Moreover, this method allows for the identification of transcriptional derepression of a distinct copy (copies) among a genomic repeat family. Here, a RNA/DNA FISH protocol is presented for the simultaneous detection of RNA and DNA in situ on whole-mount Drosophila ovaries using tyramide signal amplification. With subsequent immunostaining of chromatin components, this protocol can be easily extended for studying the interdependence between chromatin changes at genomic loci and their transcriptional activity.

  10. Detection of airborne Legionella while showering using liquid impingement and fluorescent in situ hybridization (FISH).

    Science.gov (United States)

    Deloge-Abarkan, Magali; Ha, Thi-Lan; Robine, Enric; Zmirou-Navier, Denis; Mathieu, Laurence

    2007-01-01

    Aerosols of water contaminated with Legionella bacteria constitute the only mode of exposure for humans. However, the prevention strategy against this pathogenic bacteria risk is managed through the survey of water contamination. No relationship linked the Legionella bacteria water concentration and their airborne abundance. Therefore, new approaches in the field of the metrological aspects of Legionella bioaerosols are required. This study was aimed at testing the main principles for bioaerosol collection (solid impaction, liquid impingement and filtration) and the in situ hybridization (FISH) method, both in laboratory and field assays, with the intention of applying such methodologies for airborne Legionella bacteria detection while showering. An aerosolization chamber was developed to generate controlled and reproducible L. pneumophila aerosols. This tool allowed the identification of the liquid impingement method as the most appropriate one for collecting airborne Legionella bacteria. The culturable fraction of airborne L. pneumophila recovered with the liquid impingement principle was 4 and 700 times higher compared to the impaction and filtration techniques, respectively. Moreover, the concentrations of airborne L. pneumophila in the impinger fluid were on average 7.0 x 10(5) FISH-cells m(-3) air with the fluorescent in situ hybridization (FISH) method versus 9.0 x 10(4) CFU m(-3) air with the culture method. These results, recorded under well-controlled conditions, were confirmed during the field experiments performed on aerosols generated by hot water showers in health institutions. This new approach may provide a more accurate characterization of aerobiocontamination by Legionella bacteria.

  11. A dumbell probe-mediated rolling circle amplification strategy for highly sensitive transcription factor detection.

    Science.gov (United States)

    Li, Chunxiang; Qiu, Xiyang; Hou, Zhaohui; Deng, Keqin

    2015-02-15

    Highly sensitive detection of transcription factors (TF) is essential to proteome and genomics research as well as clinical diagnosis. We describe herein a novel fluorescent-amplified strategy for ultrasensitive, quantitative, and inexpensive detection of TF. The strategy consists of a hairpin DNA probe containing a TF binding sequence for target TF, a dumbbell-shaped probe, a primer DNA probe designed partly complementary to hairpin DNA probe, and a dumbbell probe. In the presence of target TF, the binding of the TF with hairpin DNA probe will prohibit the hybridization of the primer DNA probe with the "stem" and "loop" region of the hairpin DNA probe, then the unhybridized region of the primer DNA will hybridize with dumbbell probe, subsequently promote the ligation reaction and the rolling circle amplification (RCA), finally, the RCA products are quantified via the fluorescent intensity of SYBR Green I (SG). Using TATA-binding protein (TBP) as a model transcription factor, the proposed assay system can specifically detect TBP with a detection limit as low as 40.7 fM, and with a linear range from 100 fM to 1 nM. Moreover, this assay related DNA probe does not involve any modification and the whole assay proceeds in one tube, which makes the assay simple and low cost. It is expected to become a powerful tool for bioanalysis and clinic diagnostic application.

  12. Fluorescence in situ hybridization assay detects upper urinary tract transitional cell carcinoma in patients with asymptomatic hematuria and negative urine cytology.

    Science.gov (United States)

    Huang, W T; Li, L Y; Pang, J; Ruan, X X; Sun, Q P; Yang, W J; Gao, X

    2012-01-01

    We evaluated the performance of a multiprobe FISH (fluorescence in situ hybridization) assay for noninvasive detection of upper urinary tract transitional cell carcinoma (UUT-TCC) in patients with asymptomatic hematuria and negative urine cytology. Voided urine samples from 285 patients with asymptomatic hematuria and negative urine cytology were prospectively analyzed by FISH technique. FISH assays were performed to detect chromosomal changes frequently associated with TCC, including aneuploidy of chromosomes 3, 7 and 17, and loss of the 9p21 locus. Eleven (3.9%) had a positive FISH result. Of the 11 patients, nine (81.8%) were found to have a TCC of the upper urinary tract, while no patients with negative FISH findings were found to have UUT-TCC. In this selected cohort, the sensitivity and specificity of FISH for the detection of UUT-TCC was 100% and 99.3%, respectively. Our preliminary data suggest that the clinical utility of FISH assay of chromosomes 3, 7, 9, and 17 as a noninvasive ancillary test for the diagnosis of UUT-TCC in a selected patient population with asymptomatic hematuria and negative urine cytology and by significant high sensitivity and specificity may be a reliable diagnostic approach for early detection of UUT-TCC patients. Further larger prospective and multicenter trials are needed to confirm our results.

  13. Analyses of numerical aberrations of chromosome 17 and tp53 gene deletion/amplification in human oral squamous cell carcinoma using dual-color fluorescence in situ hybridization

    Directory of Open Access Journals (Sweden)

    Noemi MESZAROS

    2010-05-01

    Full Text Available In Romania, oral and facial cancers represent approximately 5% of all cancers. Deactivation and unregulated expression of oncogenes and tumor suppressor genes may be involved in the pathogenesis of oral squamous cell carcinoma. The genomic change results in numerical and structural chromosomal alterations, particularly in chromosomes 3, 9, 11 and 17. The aim of our study was to identify numerical aberrations of chromosome 17, deletion or amplification of p53 gene and to reveal correlations between abnormalities of chromosome 17and of p53 gene with TNM status and grading in 15 subjects with oral squamous cell carcinoma. 80 % of cases presented chromosome 17 polysomy and only 20% of cases had chromosome 17 monosomy. 46.6 % of samples revealed p53 gene amplification and 33.3 % of them p53 deletion. Polysomy of chromosome 17 was also detected in tumor-adjacent epithelia. The degree of the cytogenetic abnormality did not correlate with the stage of the disease, the histological differentiation of oral squamous cell carcinoma and lymph node metastasis. Molecular cytogenetic techniques, using fluorescence in situ hybridization with chromosome-specific DNA probes, facilitate the confirmation of presumed chromosomal aberrations with high sensitivity and specificity.

  14. Enzyme-free fluorescent biosensor for the detection of DNA based on core-shell Fe3O4 polydopamine nanoparticles and hybridization chain reaction amplification.

    Science.gov (United States)

    Li, Na; Hao, Xia; Kang, Bei Hua; Xu, Zhen; Shi, Yan; Li, Nian Bing; Luo, Hong Qun

    2016-03-15

    A novel, highly sensitive assay for quantitative determination of DNA is developed based on hybridization chain reaction (HCR) amplification and the separation via core-shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs). In this assay, two hairpin probes are designed, one of which is labeled with a 6-carboxyfluorescein (FAM). Without target DNA, auxiliary hairpin probes are stable in solution. However, when target DNA is present, the HCR between the two hairpins is triggered. The HCR products have sticky ends of 24 nt, which are much longer than the length of sticky ends of auxiliary hairpins (6 nt) and make the adsorption much easier by Fe3O4@PDA NPs. With the addition of Fe3O4@PDA NPs, HCR products could be adsorbed because of the strong interaction between their sticky ends and Fe3O4@PDA NPs. As a result, supernatant of the solution with target DNA emits weak fluorescence after separation by magnet, which is much lower than that of the blank solution. The detection limit of the proposed method is as low as 0.05 nM. And the sensing method exhibits high selectivity for the determination between perfectly complementary sequence and target with single base-pair mismatch. Importantly, the application of the sensor for DNA detection in human serum shows that the proposed method works well for biological samples.

  15. Identification of Cannabis sativa L. using the 1-kbTHCA synthase-fluorescence in situ hybridization probe.

    Science.gov (United States)

    Jeangkhwoa, Pattraporn; Bandhaya, Achirapa; Umpunjun, Puangpaka; Chuenboonngarm, Ngarmnij; Panvisavas, Nathinee

    2017-03-01

    This study reports a successful application of fluorescence in situ hybridization (FISH) technique in the identification of Cannabis sativa L. cells recovered from fresh and dried powdered plant materials. Two biotin-16-dUTP-labeled FISH probes were designed from the Cannabis-specific tetrahydrocannabinolic acid synthase (THCAS) gene and the ITS region of the 45S rRNA gene. Specificity of probe-target hybridization was tested against the target and 4 non-target plant species, i.e., Humulus lupulus, Mitragyna speciosa, Papaver sp., and Nicotiana tabacum. The 1-kb THCA synthase hybridization probe gave Cannabis-specific hybridization signals, unlike the 700-bp Cannabis-ITS hybridization probe. Probe-target hybridization was also confirmed against 20 individual Cannabis plant samples. The 1-kb THCA synthase and 700-bp Cannabis-ITS hybridization probes clearly showed 2 hybridization signals per cell with reproducibility. The 1-kb THCA synthase probe did not give any FISH signal when tested against H. lupulus, its closely related member of the Canabaceae family. It was also showed that 1-kb THCA synthase FISH probe can be applied to identify small amount of dried powdered Cannabis material with an addition of rehydration step prior to the experimental process. This study provided an alternative identification method for Cannabis trace. Copyright © 2016. Published by Elsevier B.V.

  16. Magnified fluorescence detection of silver(I) ion in aqueous solutions by using nano-graphite-DNA hybrid and DNase I.

    Science.gov (United States)

    Wei, Yin; Li, Bianmiao; Wang, Xu; Duan, Yixiang

    2014-08-15

    This paper describes a novel approach utilizing nano-graphite-DNA hybrid and DNase I for the amplified detection of silver(I) ion in aqueous solutions for the first time. Nano-graphite can effectively quench the fluorescence of dye-labeled cytosine-rich single-stranded DNA due to its strong π-π stacking interactions; however, in the presence of Ag(+), C-Ag(+)-C coordination induces the probe to fold into a hairpin structure, which does not adsorb on the surface of nano-graphite and thus retains the dye fluorescence. Meanwhile, the hairpin structure can be cleaved by DNase I, and in such case Ag(+) is delivered from the complex. The released Ag(+) then binds other dye-labeled single-stranded DNA on the nano-graphite surface, and touches off another target recycling, resulting in the successive release of dye-labeled single-stranded DNA from the nano-graphite, which leads to significant amplification of the signal. The present magnification sensing system exhibits high sensitivity toward Ag(+) with a limit of detection of 0.3nM (S/N=3), which is much lower than the standard for Ag(+) in drinking water recommended by the Environmental Protection Agency (EPA). The selectivity of the sensor for Ag(+) against other biologically and environmentally related metal ions is outstanding due to the high specificity of C-Ag(+)-C formation. Moreover, the sensing system is used for the determination of Ag(+) in river water samples with satisfying results. The proposed assay is simple, cost-effective, and might open the door for the development of new assays for other metal ions or biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Identification of nitrite-reducing bacteria using sequential mRNA fluorescence in situ hybridization and fluorescence-assisted cell sorting.

    Science.gov (United States)

    Mota, Cesar R; So, Mark Jason; de los Reyes, Francis L

    2012-07-01

    Sequential mRNA fluorescence in situ hybridization (mRNA FISH) and fluorescence-assisted cell sorting (SmRFF) was used for the identification of nitrite-reducing bacteria in mixed microbial communities. An oligonucleotide probe labeled with horseradish peroxidase (HRP) was used to target mRNA of nirS, the gene that encodes nitrite reductase, the enzyme responsible for the dissimilatory reduction of nitrite to nitric oxide. Clones for nirS expression were constructed and used to provide proof of concept for the SmRFF method. In addition, cells from pure cultures of Pseudomonas stutzeri and denitrifying activated sludge were hybridized with the HRP probe, and tyramide signal amplification was performed, conferring a strongly fluorescent signal to cells containing nirS mRNA. Flow cytometry-assisted cell sorting was used to detect and physically separate two subgroups from a mixed microbial community: non-fluorescent cells and an enrichment of fluorescent, nitrite-reducing cells. Denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of 16S ribosomal RNA (rRNA) genes were used to compare the fragments amplified from the two sorted subgroups. Sequences from bands isolated from DGGE profiles suggested that the dominant, active nitrite reducers were closely related to Acidovorax BSB421. Furthermore, following mRNA FISH detection of nitrite-reducing bacteria, 16S rRNA FISH was used to detect ammonia-oxidizing and nitrite-oxidizing bacteria on the same activated sludge sample. We believe that the molecular approach described can be useful as a tool to help address the longstanding challenge of linking function to identity in natural and engineered habitats.

  18. Dynamics of hybrid amoeba proteus containing zoochlorellae studied using fluorescence spectroscopy

    Science.gov (United States)

    Liu, C.-H.; Fong, B. A.; Alfano, S. A., Jr.; Rakhlin, I.; Wang, W. B.; Ni, X. H.; Yang, Y. L.; Zhou, F.; Zuzolo, R. C.; Alfano, R. R.

    2011-03-01

    The microinjection of organelles, plants, particles or chemical solutions into Amoeba proteus coupled with spectroscopic analysis and observed for a period of time provides a unique new model for cancer treatment and studies. The amoeba is a eukaryote having many similar features of mammalian cells. The amoeba biochemical functions monitored spectroscopically can provide time sequence in vivo information about many metabolic transitions and metabolic exchanges between cellar organelles and substances microinjected into the amoeba. It is possible to microinject algae, plant mitochondria, drugs or carcinogenic solutions followed by recording the native fluorescence spectra of these composites. This model can be used to spectroscopically monitor the pre-metabolic transitions in developing diseased cells such as a cancer. Knowing specific metabolic transitions could offer solutions to inhibit cancer or reverse it as well as many other diseases. In the present study a simple experiment was designed to test the feasibility of this unique new model by injecting algae and chloroplasts into amoeba. The nonradiative dynamics found from these composites are evidence in terms of the emission ratios between the intensities at 337nm and 419nm; and 684nm bands. There were reductions in the metabolic and photosynthetic processes in amoebae that were microinjected with chloroplasts and zoochlorellae as well of those amoebae that ingested the algae and chloroplasts. The changes in the intensity of the emissions of the peaks indicate that the zoochlorellae lived in the amoebae for ten days. Spectral changes in intensity under the UV and 633nm wavelength excitation are from the energy transfer of DNA and RNA, protein-bound chromophores and chlorophylls present in zoochlorellae undergoing photosynthesis. The fluorescence spectroscopic probes established the biochemical interplay between the cell organelles and the algae present in the cell cytoplasm. This hybrid state is indicative

  19. Role of fluorescence in situ hybridization in sequencing the tomato genome.

    Science.gov (United States)

    Stack, S M; Royer, S M; Shearer, L A; Chang, S B; Giovannoni, J J; Westfall, D H; White, R A; Anderson, L K

    2009-01-01

    The tomato (Solanum lycopersicum L.) genome is being sequenced by a consortium of laboratories in 10 countries. Seventy-seven percent of the tomato genome (DNA) is located in repeat-rich, gene-poor, pericentric heterochromatin, while 23% of the genome is located in repeat-poor, gene-rich, distal euchromatin. It is estimated that approximately 90% of tomato's nuclear genes can be characterized by limiting the sequencing effort to euchromatin while avoiding the problems involved in sequencing the repetitive DNA in heterochromatin. Sequencing is being performed on tomato nuclear DNA cloned into bacterial artificial chromosome (BAC) vectors. Fluorescence in situ hybridization (FISH) is used to help direct the sequencing effort by cytologically demonstrating the location of selected BACs on tomato chromosomes. While mitotic metaphase chromosomes are too short and compact for this purpose, long pachytene chromosomes are ideal. BACs localized in euchromatin can be used confidently as anchors for the assembly of BAC contigs that extend through the euchromatic length of each chromosome arm. Another important role for FISH is identification of BACs near telomeres and near borders with pericentric heterochromatin to indicate that sequencing should not extend much further. This role of FISH is enhanced by our ability to estimate base pair distances between localized BACs and these chromosomal features. Finally, it is noteworthy that when BAC-FISH is combined with chromosomal in situ suppression (CISS) hybridization to block repeats and localize single/low copy sequences, the great majority of BACs localize to single sites. This observation is consistent with tomato being an ancient diploid. (c) 2009 S. Karger AG, Basel.

  20. Fluorescent Nanodiamond-Gold Hybrid Particles for Multimodal Optical and Electron Microscopy Cellular Imaging.

    Science.gov (United States)

    Liu, Weina; Naydenov, Boris; Chakrabortty, Sabyasachi; Wuensch, Bettina; Hübner, Kristina; Ritz, Sandra; Cölfen, Helmut; Barth, Holger; Koynov, Kaloian; Qi, Haoyuan; Leiter, Robert; Reuter, Rolf; Wrachtrup, Jörg; Boldt, Felix; Scheuer, Jonas; Kaiser, Ute; Sison, Miguel; Lasser, Theo; Tinnefeld, Philip; Jelezko, Fedor; Walther, Paul; Wu, Yuzhou; Weil, Tanja

    2016-10-12

    There is a continuous demand for imaging probes offering excellent performance in various microscopy techniques for comprehensive investigations of cellular processes by more than one technique. Fluorescent nanodiamond-gold nanoparticles (FND-Au) constitute a new class of "all-in-one" hybrid particles providing unique features for multimodal cellular imaging including optical imaging, electron microscopy, and, and potentially even quantum sensing. Confocal and optical coherence microscopy of the FND-Au allow fast investigations inside living cells via emission, scattering, and photothermal imaging techniques because the FND emission is not quenched by AuNPs. In electron microscopy, transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) analysis of FND-Au reveals greatly enhanced contrast due to the gold particles as well as an extraordinary flickering behavior in three-dimensional cellular environments originating from the nanodiamonds. The unique multimodal imaging characteristics of FND-Au enable detailed studies inside cells ranging from statistical distributions at the entire cellular level (micrometers) down to the tracking of individual particles in subcellular organelles (nanometers). Herein, the processes of endosomal membrane uptake and release of FNDs were elucidated for the first time by the imaging of individual FND-Au hybrid nanoparticles with single-particle resolution. Their convenient preparation, the availability of various surface groups, their flexible detection modalities, and their single-particle contrast in combination with the capability for endosomal penetration and low cytotoxicity make FND-Au unique candidates for multimodal optical-electronic imaging applications with great potential for emerging techniques, such as quantum sensing inside living cells.

  1. Fluorescent in situ hybridization (FISH) assessment of chromosome copy number in sperm

    Energy Technology Data Exchange (ETDEWEB)

    Sheu, M.; Sigman, M.; Mark, H.F.L. [Brown Univ. School of Medicine, Providence, RI (United States)

    1994-09-01

    Approximately 15% of all recognized pregnancies end in spontaneous abortions. The overall frequency of chromosome abnormalities in spontaneous abortions is approximately 50%. Thus aneuploidy is a significant cause of fetal wastage. In addition, structural and numerical abnormalities of chromosomes can also lead to birth defects, developmental delay, mental retardation and infertility. Conventional cytogenetic analysis via GTG- and other banding techniques is a powerful tool in the elucidation of the nature of chromosomal abnormalities. Fluorescent in situ hybridization (FISH) enables detection of numerical chromosomal abnormalities, especially trisomies, in intact cells. Using FISH and commercially available biotin-labeled probes, we have initiated a prospective study to assess specific chromosome copy number of preparations of unstained smears from men referred for a male infertility evaluation as well as smears from normal control males chosen randomly from the sample of sperm donors. A total of approximately 19,000 sperm nuclei have been examined thus far. Of those suitable for analysis, 7382 (38.75%) were normal possessing one copy of chromosome 8, 155 (0.81%) were disomic, and 15 (0.079%) had more than two copies of chromosome 8. Comparisons with data available in the literature will be discussed. Work is ongoing to increase the efficiency of hybridization using both reported and previously untried pretreatment and fixation protocols. We have also initiated studies using multicolor FISH with various chromosome enumeration probes. The assay described here is a potentially powerful tool for detecting rare events such as spontaneous germ cell aneuploidy, aneuploidy detected in semen from men with carcinoma in situ of the testis and aneuploidy induced by potential environmental genotoxicants. It can also be utilized for segregation analysis and for correlating chromosome copy number with germ cell morphology.

  2. Identification of Dekkera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes.

    Science.gov (United States)

    Stender, H; Kurtzman, C; Hyldig-Nielsen, J J; Sørensen, D; Broomer, A; Oliveira, K; Perry-O'Keefe, H; Sage, A; Young, B; Coull, J

    2001-02-01

    A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification of Brettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained from testing 127 different yeast strains, including 78 Brettanomyces isolates from wine, show that the spoilage organism Brettanomyces belongs to the species D. bruxellensis and that the new method is able to identify Brettanomyces (D. bruxellensis) with 100% sensitivity and 100% specificity.

  3. Unlocked nucleic acids with a pyrene-modified uracil: Synthesis, hybridization studies, fluorescent properties and i-motif stability

    DEFF Research Database (Denmark)

    Perlíková, P.; Karlsen, K.K.; Pedersen, E.B.

    2014-01-01

    .2, both under molecular crowding and noncrowding conditions. The presence of the pyrene-modified UNA monomers in DNA strands led to decreases in the thermal stabilities of DNA/DNA and DNA/RNA duplexes, but these duplexes' thermal stabilities were better than those of duplexes containing unmodified UNA...... intensities upon hybridization to DNA or RNA. Efficient quenching of fluorescence of pyrene-modified UNA monomers was observed after formation of i-motif structures at pH 5.2. The stabilizing/destabilizing effect of pyrene-modified nucleic acids might be useful for designing antisense oligonucleotides...... and hybridization probes....

  4. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors.

    Science.gov (United States)

    Noor, M Omair; Krull, Ulrich J

    2014-10-21

    Paper-based diagnostic assays are gaining increasing popularity for their potential application in resource-limited settings and for point-of-care screening. Achievement of high sensitivity with precision and accuracy can be challenging when using paper substrates. Herein, we implement the red-green-blue color palette of a digital camera for quantitative ratiometric transduction of nucleic acid hybridization on a paper-based platform using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). A nonenzymatic and reagentless means of signal enhancement for QD-FRET assays on paper substrates is based on the use of dry paper substrates for data acquisition. This approach offered at least a 10-fold higher assay sensitivity and at least a 10-fold lower limit of detection (LOD) as compared to hydrated paper substrates. The surface of paper was modified with imidazole groups to assemble a transduction interface that consisted of immobilized QD-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as an acceptor. A hybridization event that brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs was responsible for a FRET-sensitized emission from the acceptor dye, which served as an analytical signal. A hand-held UV lamp was used as an excitation source and ratiometric analysis using an iPad camera was possible by a relative intensity analysis of the red (Cy3 photoluminescence (PL)) and green (gQD PL) color channels of the digital camera. For digital imaging using an iPad camera, the LOD of the assay in a sandwich format was 450 fmol with a dynamic range spanning 2 orders of magnitude, while an epifluorescence microscope detection platform offered a LOD of 30 fmol and a dynamic range spanning 3 orders of magnitude. The selectivity of the hybridization assay was demonstrated by detection of a single nucleotide polymorphism at a contrast ratio of 60:1. This work provides an

  5. Re: Fluorescence In Situ Hybridization Detects Increased Sperm Aneuploidy in Men with Recurrent Pregnancy Loss

    Directory of Open Access Journals (Sweden)

    Ranjith Ramasamy,

    2015-06-01

    Full Text Available Male factor infertility can be overcome with the use of assisted reproductive technologies and for this purpose the mostly intracytoplasmic sperm injection (ICSI was used. Although using sperm from men with relatively normal semen parameters with high-tech methods, many couples fail to achieve pregnancy or face recurrent pregnancy loss (RPL. In this study, the authors tried to find an answer for potential causes of RPL and in vitro fertilization (IVF failure by using fluorescence in situ hybridization (FISH analysis. FISH analysis was used to detect numerical abnormalities in sex chromosomes (X,Y and autosomes (13,18, 21 in ejaculated sperm. Significantly higher percentage of sperm aneuploidy was found in men with RPL within the sex chromosomes and chromosomes 18,13 and 21. Although men with normal sperm parameter, 40% of abnormal sperm aneuploidy was found in all the chromosomes analyzed. In addition to that, men with abnormal sperm density and motility had a higher percentage of sex chromosome aneuploidy than men with normal density and motility. In conclusion, sperm FISH analysis can be suggested in men with RPL and normal sperm density/motility to understand the reason of pregnancy failure. Also, this study showed that men with oligoasthenoteratozoospermia (OAT might have a greater percentage of sperm aneuploidy compared to those with normal sperm parameters.

  6. Development of a fluorescent in situ hybridization (FISH) technique for visualizing CGMMV in plant tissues.

    Science.gov (United States)

    Shargil, D; Zemach, H; Belausov, E; Lachman, O; Kamenetsky, R; Dombrovsky, A

    2015-10-01

    Cucumber green mottle mosaic virus (CGMMV), which belongs to the genus Tobamovirus, is a major pathogen of cucurbit crops grown indoors and in open fields. Currently, immunology (e.g., ELISA) and molecular amplification techniques (e.g., RT-PCR) are employed extensively for virus detection in plant tissues and commercial seed lots diagnostics. In this study, a fluorescent in situ hybridization (FISH) technique, using oligonucleotides whose 5'-terminals were labeled with red cyanine 3 (Cy3) or green fluorescein isothiocyanate (FITC), was developed for the visualization of the pathogen in situ. This simple and reliable method allows detection and localization of CGMMV in the vegetative and reproductive tissues of cucumber and melon. When this technique was applied in male flowers, anther tissues were found to be infected; whereas the pollen grains were found to be virus-free. These results have meaningful epidemiological implications for the management of CGMMV, particularly with regard to virus transfer via seed and the role of insects as CGMMV vectors.

  7. The importance of using fluorescence in situ hybridization for the diagnosis of Smith-Magenis syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Juyal, R.C.; Greenberg, F.; Lupski, J.R. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable multiple congenital anomaly/mental retardation syndrome associated with deletion of chromosome 17p11.2. Quality metaphase preparations are required for unambiguous detection of the deletion. We and others have reported cases of SMS due to mosaicism for del(17)(p11.2). Examination of peripheral blood lymphocyte cultures of a patient with the SMS phenotype at 850 band level of resolution revealed a low level mosaicism (11%) for the deletion. Examination of fibroblasts at relatively low resolution revealed the deletion in all cells. In a second study, we reported molecular evidence for mosaicism in the unaffected mother of an SMS patient who demonstrated mosaicism (55%) for the deletion at a resolution level of < 500 bands. We now report a different SMS patient who was initially diagnosed as mosaic del(17)(p11.2) in two different cytogenetic laboratories. A third blinded cytogenetic study yielded a questionable diagnosis. Fluorescence in situ hybridization (FISH) conducted in two different laboratories with two different markers shown to be within the deletion region and a control marker from chromosome 17 demonstrated a deletion in 20/20 and 25/25 metaphases scored, respectively. It appears the latter patient may harbor a very small deletion and that FISH is a more reliable test for the Smith-Magenis deletion. Furthermore, FISH should be used to confirm or refute mosaicism seen in routine cytogenetics studies.

  8. Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent in situ hybridization (LNA-FISH).

    Science.gov (United States)

    Vilas Boas, Diana; Almeida, Carina; Sillankorva, Sanna; Nicolau, Ana; Azeredo, Joana; Azevedo, Nuno F

    2016-01-01

    Bacteriophage-host interaction studies in biofilm structures are still challenging due to the technical limitations of traditional methods. The aim of this study was to provide a direct fluorescence in situ hybridization (FISH) method based on locked nucleic acid (LNA) probes, which targets the phage replication phase, allowing the study of population dynamics during infection. Bacteriophages specific for two biofilm-forming bacteria, Pseudomonas aeruginosa and Acinetobacter, were selected. Four LNA probes were designed and optimized for phage-specific detection and for bacterial counterstaining. To validate the method, LNA-FISH counts were compared with the traditional plaque forming unit (PFU) technique. To visualize the progression of phage infection within a biofilm, colony-biofilms were formed and infected with bacteriophages. A good correlation (r = 0.707) was observed between LNA-FISH and PFU techniques. In biofilm structures, LNA-FISH provided a good discrimination of the infected cells and also allowed the assessment of the spatial distribution of infected and non-infected populations.

  9. Diagnosis of bacterial vaginosis by a new multiplex peptide nucleic acid fluorescence in situ hybridization method

    Science.gov (United States)

    Machado, António; Castro, Joana; Cereija, Tatiana; Almeida, Carina

    2015-01-01

    Bacterial vaginosis (BV) is one of most common vaginal infections. However, its diagnosis by classical methods reveals low specificity. Our goal was to evaluate the accuracy diagnosis of 150 vaginal samples with research gold standard methods and our Peptide Nucleic Acid (PNA) probes by Fluorescence in situ Hybridization (FISH) methodology. Also, we described the first PNA-FISH methodology for BV diagnosis, which provides results in approximately 3 h. The results showed a sensitivity of 84.6% (95% confidence interval (CI), from 64.3 to 95.0%) and a specificity of 97.6% (95% CI [92.6–99.4%]), demonstrating the higher specificity of the PNA-FISH method and showing false positive results in BV diagnosis commonly obtained by the classical methods. This methodology combines the specificity of PNA probes for Lactobacillus species and G. vaginalis visualization and the calculation of the microscopic field by Nugent score, allowing a trustful evaluation of the bacteria present in vaginal microflora and avoiding the occurrence of misleading diagnostics. Therefore, the PNA-FISH methodology represents a valuable alternative for BV diagnosis. PMID:25737820

  10. Fluorescence in situ hybridization for the identification of Treponema pallidum in tissue sections.

    Science.gov (United States)

    Petrich, Annett; Rojas, Pablo; Schulze, Julia; Loddenkemper, Christoph; Giacani, Lorenzo; Schneider, Thomas; Hertel, Moritz; Kikhney, Judith; Moter, Annette

    2015-10-01

    Syphilis is often called the great imitator because of its frequent atypical clinical manifestations that make the disease difficult to recognize. Because Treponema pallidum subsp. pallidum, the infectious agent of syphilis, is yet uncultivated in vitro, diagnosis is usually made using serology; however, in cases where serology is inconclusive or in patients with immunosuppression where these tests may be difficult to interpret, the availability of a molecular tool for direct diagnosis may be of pivotal importance. Here we present a fluorescence in situ hybridization (FISH) assay that simultaneously identifies and analyzes spatial distribution of T. pallidum in histological tissue sections. For this assay the species-specific FISH probe TPALL targeting the 16S rRNA of T. pallidum was designed in silico and evaluated using T. pallidum infected rabbit testicular tissue and a panel of non-syphilis spirochetes as positive and negative controls, respectively, before application to samples from four syphilis-patients. In a HIV positive patient, FISH showed the presence of T. pallidum in inguinal lymph node tissue. In a patient not suspected to suffer from syphilis but underwent surgery for phimosis, numerous T. pallidum cells were found in preputial tissue. In two cases with oral involvement, FISH was able to differentiate T. pallidum from oral treponemes and showed infection of the oral mucosa and tonsils, respectively. The TPALL FISH probe is now readily available for in situ identification of T. pallidum in selected clinical samples as well as T. pallidum research applications and animal models.

  11. Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology

    Directory of Open Access Journals (Sweden)

    Hovhannisyan Galina G

    2010-09-01

    Full Text Available Abstract Comet assay and micronucleus (MN test are widely applied in genotoxicity testing and biomonitoring. While comet assay permits to measure direct DNA-strand breaking capacity of a tested agent MN test allows estimating the induced amount of chromosome and/or genome mutations. The potential of these two methods can be enhanced by the combination with fluorescence in situ hybridization (FISH techniques. FISH plus comet assay allows the recognition of targets of DNA damage and repairing directly. FISH combined with MN test is able to characterize the occurrence of different chromosomes in MN and to identify potential chromosomal targets of mutagenic substances. Thus, combination of FISH with the comet assay or MN test proved to be promising techniques for evaluation of the distribution of DNA and chromosome damage in the entire genome of individual cells. FISH technique also permits to study comet and MN formation, necessary for correct application of these methods. This paper reviews the relevant literature on advantages and limitations of Comet-FISH and MN-FISH assays application in genetic toxicology.

  12. Fluorescence in situ hybridization (FISH analysis of primary ocular adnexal MALT lymphoma

    Directory of Open Access Journals (Sweden)

    Harada Mine

    2006-10-01

    Full Text Available Abstract Background It remains unknown whether primary ocular adnexal extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma is a homogeneous entity, as there are few reports of the results of cytogenetic or molecular analyses of these tumors. Methods We performed interphase fluorescence in situ hybridization (FISH analysis to detect translocations and aneuploidy in 34 cases of primary ocular adnexal MALT lymphoma, and reviewed the histopathological findings. Correlations between the results of FISH analysis, the histopathological features and the clinical data were also analyzed. Results Among the 34 cases, FISH analysis revealed t(14;18(q32;q21 in one case, trisomy 3 in 21 cases (62%, and trisomy 18 in 16 cases (47%. The cases with trisomy 18 had significantly more prominent lymphoepithelial lesions (LELs and less nodularity in the tumors. In regard to the clinical correlations, tumors with trisomy 18 were observed predominantly in females and younger patients; also, in the majority of the cases, the tumor was of conjunctival origin. All the cases with recurrence showed trisomy 18 in the tumor. Conclusion Primary ocular adnexal MALT lymphoma is a significantly heterogeneous entity. Cases with trisomy 18 may have unique clinicopathological features.

  13. Fifty probands with extra structurally abnormal chromosomes characterized by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, E.; Telenius, H.; Nordenskjoeld, M. [Karolinska Hospital, Stockholm (Sweden)] [and others

    1995-01-02

    Extra structurally abnormal chromosomes (ESACs) are small supernumerary chromosomes often associated with developmental abnormalities and malformations. We present 50 probands with ESACs characterized by fluorescence in situ hybridization using centromere-specific probes and chromosome-specific libraries. ESAC-specific libraries were constructed by flow sorting and subsequent amplification by DOP-PCR. Using such ESAC-specific libraries we were able to outline the chromosome regions involved. Twenty-three of the 50 ESACs were inverted duplications of chromosome 15 (inv dup(15)), including patients with normal phenotypes and others with similar clinical symptoms. These 2 groups differed in size and shape of the inv dup(15). Patients with a large inv dup(15), which included the Prader-Willi region, had a high risk of abnormality, whereas patients with a small inv dup(15), not including the Prader-Willi region, were normal. ESACs derived from chromosomes 13 or 21 appeared to have a low risk of abnormality, while one out of 3 patients with an ESAC derived from chromosome 14 had discrete symptoms. One out of 3 patients with an ESAC derived from chromosome 22 had severe anomalies, corresponding to some of the manifestations of the cat eye syndrome. Small extra ring chromosomes of autosomal origin and ESACs identified as i(12p) or i(18p) were all associated with a high risk of abnormality. 42 refs., 2 figs., 2 tabs.

  14. A Case of Renal Primitive Neuroectodermal Tumor Confirmed by Fluorescence in situ Hybridization

    Directory of Open Access Journals (Sweden)

    Toshiki Etani

    2015-04-01

    Full Text Available Primitive neuroectodermal tumor (PNET is a member of the Ewing's sarcoma family of tumors (ESFT. We report a case of PNET in a 66-year-old male who presented with a large solid tumor within the parenchyma of the middle pole of the left kidney with metastases to the left adrenal gland and right ischium. A fine-needle biopsy was performed and showed a small round cell tumor. Results of immunohistochemical staining suggested this tumor belonged to ESFT. Preoperative VDC-IE (combined vincristine, doxorubicin and cyclophosphamide followed by another combination of ifosfamide and etoposide chemotherapy and left radical nephrectomy and adrenalectomy were performed. The histopathological findings of the resected tumor were similar to those in the biopsy specimen, but the results of AE1/AE3 were different. For the diagnosis, fluorescence in situ hybridization was performed. Split signals of the EWSR1 gene were detected, and transmission electron microscopy showed neuroendocrine granules and microtubules. The final diagnosis of this tumor was PNET of the kidney.

  15. 9p21 deletion in the diagnosis of malignant mesothelioma, using fluorescence in situ hybridization analysis.

    Science.gov (United States)

    Takeda, Maiko; Kasai, Takahiko; Enomoto, Yasunori; Takano, Masato; Morita, Kouhei; Kadota, Eiji; Nonomura, Akitaka

    2010-05-01

    Homozygous deletion of 9p21, the locus harboring the p16 gene, has been reported as one of the most common genetic alterations in malignant mesotheliomas (MMs). Previous studies showed that this alteration might be useful for differentiating benign from malignant mesothelial tumors in cytology and surgical specimens. Although the diagnostic utility of 9p21 homozygous deletion by fluorescence in situ hybridization (FISH) analysis has been reported only recently, it has not been well demonstrated. The purpose of this study is to evaluate the diagnostic utility of 9p21 homozygous deletion assessed by FISH in mesothelial neoplasm and hyperplasia of Japanese patients using paraffin-embedded tissue. Simultaneously, p16 protein immunoexpression was explored as a potential diagnostic aid. FISH analysis demonstrated 9p21 deletion in 35 of 40 cases with MM (88%) (P multicystic tumor, reactive mesothelial hyperplasia or pleuritis showed 9p21 deletion (P < 0.005). 9p21 homozygous deletion correlated well with p16 protein expression in the tumor cells. Our study suggests that 9p21 homozygous deletion assessed by FISH on paraffin-embedded tissue may be very useful for differentiating MM from reactive mesothelial proliferation.

  16. Characterization by fluorescence and electron microscopy in situ hybridization of a double Y isochromosome

    Energy Technology Data Exchange (ETDEWEB)

    Fetni, R.; Lemieux, N.; Richer, C.L. [Universite de Montreal, Quebec (Canada)] [and others

    1996-06-14

    A patient with mixed gonadal dysgenesis and Y isochromosomes I(Y) is described. Lymphocyte cultures from peripheral blood contained a high proportion of 45,X cells and several other cell lines with two different marker chromosomes (mars). These markers had either a monocentric (mar1) or a dicentric appearance (mar2). Following high-resolution GTG, RBG, QFQ, and CBG bandings, five cell lines were identified; 45,X/46,X, + mar1/46,X, + mar2/47,X, + mar1x2/47,X + mar2x2. The percentages were 66/6/26/1/1%, respectively. Chromosome banding analyses were insufficient for characterization of the markers. In situ hybridization of specific probes for the Y centromere and its short arm showed, both in fluorescence and electron microscopy (ENT), two different Y rearrangements. Mar1 is an isochromosome for the short arm i(Yp) and mar2 is a dicentric which was shown by EM to be a double isochromosome Yp, inv dup i(Yp). The breakpoint producing mar1 is within the centromere and the one producing mar2 is within one of the short arms of the Y isochromosome. The findings of different cell populations in peripheral blood lymphocytes indicate the postzygotic instability of this i(Yp). 24 refs., 3 figs., 1 tab.

  17. Metaphase FISH on a Chip: Miniaturized Microfluidic Device for Fluorescence in situ Hybridization

    Directory of Open Access Journals (Sweden)

    Niels Tommerup

    2010-11-01

    Full Text Available Fluorescence in situ Hybridization (FISH is a major cytogenetic technique for clinical genetic diagnosis of both inherited and acquired chromosomal abnormalities. Although FISH techniques have evolved and are often used together with other cytogenetic methods like CGH, PRINS and PNA-FISH, the process continues to be a manual, labour intensive, expensive and time consuming technique, often taking over 3–5 days, even in dedicated labs. We have developed a novel microFISH device to perform metaphase FISH on a chip which overcomes many shortcomings of the current laboratory protocols. This work also introduces a novel splashing device for preparing metaphase spreads on a microscope glass slide, followed by a rapid adhesive tape-based bonding protocol leading to rapid fabrication of the microFISH device. The microFISH device allows for an optimized metaphase FISH protocol on a chip with over a 20-fold reduction in the reagent volume. This is the first demonstration of metaphase FISH on a microfluidic device and offers a possibility of automation and significant cost reduction of many routine diagnostic tests of genetic anomalies.

  18. Fluorescence in situ hybridization with Bacterial Artificial Chromosomes (BACs) to mitotic heterochromatin of Drosophila.

    Science.gov (United States)

    Accardo, Maria Carmela; Dimitri, Patrizio

    2010-01-01

    The organization of eukaryotic chromosomes into euchromatin and heterochromatin represents an enigmatic aspect of genome evolution. Constitutive heterochromatin is a basic, yet still poorly understood component of eukaryotic genomes and its molecular characterization by means of standard genomic approaches is intrinsically difficult. Drosophila melanogaster polytene chromosomes do not seem to be particularly useful to map heterochromatin sequences because the typical features of heterochromatin, organized as it is into a chromocenter, limit cytogenetic analysis. In contrast, constitutive heterochromatin has been well-defined at the cytological level in mitotic chromosomes of neuroblasts and has been subdivided into several bands with differential staining properties. Fluorescence in situ hybridization (FISH) using Bacterial Artificial Chromosomes (BAC) probes that carry large genomic portions defined by sequence annotation has yielded a "revolution" in the field of cytogenetics because it has allowed the mapping of multiple genes at once, thus rendering constitutive heterochromatin amenable to easy and fast cytogenetics analyses. Indeed, BAC-based FISH approaches on Drosophila mitotic chromosomes have made it possible to correlate genomic sequences to their cytogenetic location, aiming to build an integrated map of the pericentric heterochromatin. This chapter presents our standard protocols for BAC-based FISH, aimed at mapping large chromosomal regions of mitotic heterochromatin in Drosophila melanogaster.

  19. Correlation of Particle Traversals with Clonogenic Survival Using Cell-Fluorescent Ion Track Hybrid Detector

    Directory of Open Access Journals (Sweden)

    Ivana eDokic

    2015-12-01

    Full Text Available Development of novel approaches linking the physical characteristics of particles with biological responses are of high relevance for the field of particle therapy. In radiobiology, the clonogenic survival of cells is considered the gold standard assay for assessment of cellular sensitivity to ionizing radiation. Towards further development of next generation biodosimeters in particle therapy, cell-fluorescent ion track hybrid detector (Cell-FIT-HD was recently engineered by our group and successfully employed to study physical particle track information in correlation with irradiation- induced DNA damage in cell nuclei. In this work, we investigated the feasibility of Cell-FIT-HD as a tool to study the effects of clinical beams on cellular clonogenic survival. Tumor cells were grown on the FNTD as cell culture, mimicking the standard procedures for clonogenic assay. Cell-FIT-HD was used to detect the spatial distribution of particle tracks within colony-initiating cells. The physical data were associated to radiation induced foci as surrogates for DNA double strand breakages (DSB, the hallmark of radiation ‐induced cell lethality. Long‐term cell fate was monitored to determine the ability of cells to form colonies. We report the first successful detection of particle traversal within colony-initiating cells at subcellular resolution using Cell-FIT-HD.

  20. Comparative gene mapping in cattle, Indian muntjac, and Chinese muntjac by fluorescence in situ hybridization.

    Science.gov (United States)

    Murmann, Andrea E; Mincheva, Antoaneta; Scheuermann, Markus O; Gautier, Mathieu; Yang, Fentang; Buitkamp, Johannes; Strissel, Pamela L; Strick, Reiner; Rowley, Janet D; Lichter, Peter

    2008-11-01

    The Indian muntjac (Muntiacus muntjak vaginalis) has a karyotype of 2n = 6 in the female and 2n = 7 in the male. The karyotypic evolution of Indian muntjac via extensive tandem fusions and several centric fusions are well documented by molecular cytogenetic studies mainly utilizing chromosome paints. To achieve higher resolution mapping, a set of 42 different genomic clones coding for 37 genes and the nucleolar organizer region were used to examine homologies between the cattle (2n = 60), human (2n = 46), Indian muntjac (2n = 6/7) and Chinese muntjac (2n = 46) karyotypes. These genomic clones were mapped by fluorescence in situ hybridization (FISH). Localization of genes on all three pairs of M. m. vaginalis chromosomes and on the acrocentric chromosomes of M. reevesi allowed not only the analysis of the evolution of syntenic regions within the muntjac genus but also allowed a broader comparison of synteny with more distantly related species, such as cattle and human, to shed more light onto the evolving genome organization.

  1. Differential detection of pathogenic Yersinia spp. by fluorescence in situ hybridization.

    Science.gov (United States)

    Rohde, Alexander; Hammerl, Jens Andre; Appel, Bernd; Dieckmann, Ralf; Al Dahouk, Sascha

    2017-04-01

    Yersinia enterocolitica, Y. pseudotuberculosis and Y. pestis are pathogens of major medical importance, which are responsible for a considerable number of infections every year. The detection of these species still relies on cultural methods, which are slow, labour intensive and often hampered by the presence of high amounts of accompanying flora. In this study, fluorescence in situ hybridization (FISH) was used to develop a fast, sensitive and reliable alternative to detect viable bacteria in food. For this purpose, highly specific probes targeting the 16S and 23S ribosomal RNA were employed to differentially detect each of the three species. In order to enable the differentiation of single nucleotide polymorphisms (SNPs), suitable competitor oligonucleotides and locked nucleic acids (LNAs) were used. Starved cells still showed a strong signal and a direct viable count (DVC) approach combined with FISH optimized live/dead discrimination. Sensitivity of the FISH test was high and even a single cell per gram of spiked minced pork meat could be detected within a day, demonstrating the applicability to identify foodborne hazards at an early stage. In conclusion, the established FISH tests proved to be promising tools to compensate existing drawbacks of the conventional cultural detection of these important zoonotic agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Estimate of true incomplete exchanges using fluorescence in situ hybridization with telomere probes

    Science.gov (United States)

    Wu, H.; George, K.; Yang, T. C.

    1998-01-01

    PURPOSE: To study the frequency of true incomplete exchanges in radiation-induced chromosome aberrations. MATERIALS AND METHODS: Human lymphocytes were exposed to 2 Gy and 5 Gy of gamma-rays. Chromosome aberrations were studied using the fluorescence in situ hybridization (FISH) technique with whole chromosome-specific probes, together with human telomere probes. Chromosomes 2 and 4 were chosen in the present study. RESULTS: The percentage of incomplete exchanges was 27% when telomere signals were not considered. After excluding false incomplete exchanges identified by the telomere signals, the percentage of incomplete exchanges decreased to 11%. Since telomere signals appear on about 82% of the telomeres, the percentage of true incomplete exchanges should be even lower and was estimated to be 3%. This percentage was similar for chromosomes 2 and 4 and for doses of both 2 Gy and 5 Gy. CONCLUSIONS: The percentage of true incomplete exchanges is significantly lower in gamma-irradiated human lymphocytes than the frequencies reported in the literature.

  3. Endothelial cell chimerism by fluorescence in situ hybridization in gender mismatched renal allograft biopsies

    Institute of Scientific and Technical Information of China (English)

    BAI Hong-wei; SHI Bing-yi; QIAN Ye-yong; NA Yan-qun; ZENG Xuan; ZHONG Ding-rong; LU Min; ZOU Wan-zhong; WU Shi-fei

    2007-01-01

    Background The blood vessels of a transplanted organ are the interface between donor and recipient. The endothelium in the blood vessels is thought to be the major target for graft rejection. Endothelial cells of a transplanted organ can be of recipient origin after transplantation. In this study, we tested whether endothelial chimerism correlated with the graft rejection and cold ischemia.Methods We studied the biopsy samples from 34 renal transplants of female recipients who received the kidney from a male donor for the presence of endothelial cells of recipient origin. We examined the tissue sections of renal biopsy samples by fluorescence in situ hybridization (FISH) for the presence of endothelial cells containing two X chromosomes using a biotinylated Y chromosome probe and digoxigenin labelled X chromosome probe, and then analyzed the relationship between the endothelial cell chimerism and the rejection and cold ischemia.Results Endothelial chimerism was common and irrespective of rejections (P>0.05). The cold ischemic time of chimerism group was longer than no chimerism group ((14.83±4.03) hours vs (11.27±3.87) hours, P<0.05).Conclusions There is no correlation between the percentage of recipient endothelial cells in vascular endothelial cells and the type of graft rejection. The endothelium damaged by ischemic injury might be repaired by the endothelial cells from the recipient.

  4. Specific detection of Lawsonia intracellularis in porcine proliferative enteropathy inferred from fluorescent rRNA in situ hybridization

    DEFF Research Database (Denmark)

    Boye, Mette; Jensen, Tim Kåre; Møller, Kristian;

    1998-01-01

    of the probe was determined by simultaneous comparison with indirect immunofluorescence assay for detection of L. intracellularis in formalin-fixed tissue samples from 15 pigs affected by porcine proliferative enteropathy. We used 10 tissue samples from pigs without proliferative mucosal changes as negative...... controls. The results showed that the oligonucleotide probe is specific for L. intracellularis and that fluorescent in situ hybridization targeting ribosomal RNA is a suitable and fast method for specific detection and histological recognition of L. intracellularis in formalin-fixed tissue.......Fluorescent in situ hybridization targeting 16S ribosomal RNA was used for specific detection of the obligate intracellular bacterium Lawsonia intracellularis in enterocytes from pigs affected by proliferative enteropathy. A specific oligonucleotide probe was designed and the specificity...

  5. Gonadoblastomas in 45,X/46,XY mosaicism: analysis of Y chromosome distribution by fluorescence in situ hybridization.

    Science.gov (United States)

    Iezzoni, J C; Von Kap-Herr, C; Golden, W L; Gaffey, M J

    1997-08-01

    Gonadoblastomas are composed of nests of neoplastic germ cells and sex cord derivatives surrounded by ovarian-type stroma. These tumors are found almost exclusively in persons with gonadal dysgenesis associated with a Y chromosome or Y chromosome fragment, and accordingly, the Y chromosome has been implicated in gonadoblastoma oncogenesis. To evaluate this association, we used two-color fluorescence in situ hybridization with chromosome-specific probes to determine the distribution of the X and Y chromosomes in the tumor nests and surrounding stromal cells in paraffin tissue sections of three gonadoblastomas in two patients with gonadal dysgenesis and 45,X/46,XY mosaicism. Statistical analysis of the data from the fluorescence in situ hybridization demonstrated that in all three gonadoblastomas, the proportion of nuclei with a Y chromosome signal was significantly higher in the tumor cells than in the nontumoral cells of the surrounding stroma (P<.001). These results suggest that Y chromosome material participates in gonadoblastoma tumorigenesis.

  6. Localization of the human OB gene (OBS) to chromosome 7q32 by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Geffroy, S.; Duban, B.; Martinville, B. de [Universitaire de Lille (France)] [and others

    1995-08-10

    An important gene involved in the pathogenesis of obesity is the product of the human homologue of the murine obese gene (gene symbol OBS). Using fluorescence in situ hybridization (FISH), we have localized the human OB gene to human chromosome 7, specifically to region 7q32.1. The FISH data of human OBS provide a gene-associated marker for genetic mapping. 8 refs., 1 fig.

  7. Retrospective study of trisomy 18 in chorionic villi with fluorescent in situ hybridization on archival direct preparations

    OpenAIRE

    Van Opstal, Diane; Berg, Cardi; Jahoda, M.; Brandenburg, Helen; Los, F.J.; in 't Veld, Peter

    1995-01-01

    textabstractTrisomy 18 in direct chorionic villus preparations needs further investigation since the chromosome abnormality may be confined to the placenta and may not represent the actual fetal karyotype. We performed, retrospectively, fluorescent in situ hybridization (FISH) with the chromosome 18 centromere probe (L1.84) on interphase nuclei of destained slides of all cases of full trisomy 18 (n=22) and mosaic trisomy 18 (n=8) detected among 7600 first-trimester chorionic villus samples du...

  8. Ecophysiological Analysis of Microorganisms in Complex Microbial Systems by Combination of Fluorescence In Situ Hybridization with Extracellular Staining Techniques

    Science.gov (United States)

    Nielsen, Jeppe Lund; Kragelund, Caroline; Nielsen, Per Halkjær

    Ecophysiological analysis and functions of single cells in complex microbial systems can be examined by simple combinations of Fluorescence in situ hybridization (FISH) for identification with various staining techniques targeting functional phenotypes. In this chapter, we describe methods and protocols optimized for the study of extracellular enzymes, surface hydrophobicity and specific surface structures. Although primarily applied to the study of microbes in wastewater treatment (activated sludge and biofilms), the methods may also be used with minor modifications in several other ecosystems.

  9. Karyotyping of Brassica oleracea L.based on rDNA and Cot-1 DNA fluorescence in situ hybridization

    Institute of Scientific and Technical Information of China (English)

    WANG Taixia; WU Chunhong; HUANG Jinyong; WEI Wenhui

    2007-01-01

    To explore an effective and reliable karyotyping method in Brassica crop plants,Cot-1 DNA was isolated from Brassica oleracea genome,labeled as probe with Biotin-Nick Translation Mix kit,in situ hybridized to mitotic spreads,and where specific fluorescent bands showed on each chromosome pair.25S and 5S rDNA were labeled as probes with DIG-Nick Translation Mix kit and Biotin-Nick Translation Mix kit,respectively,in situ hybridized to mitotic preparations,where 25S rDNA could be detected on two chromosome pairs and 5S rDNA on only one.Cot-1 DNA contains rDNA and chromosome sites identity between Cot-1 DNA and 25S rDNA was determined by dual-colour fluorescence in situ hybridization.All these showed that the karyotyping technique based on a combination of rDNA and Cot-1 DNA chromosome landmarks is superior to all but one.A more exact karyotype ofB.oleracea has been analyzed based on a combination of rDNA sites,Cot-1 DNA fluorescent bands,chromosome lengths and arm ratios.

  10. Studies of the Ecophysiology of Single Cells in Microbial Communities by (Quantitative) Microautoradiography and Fluorescence In Situ Hybridization (MAR-FISH)

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2015-01-01

    Microautoradiography (MAR) in combination with fluorescence in situ hybridization (FISH) is a powerful method of obtaining information about the ecophysiology of probe-defined single cells in mixed microbial communities. The incorporation of radiolabelled substrates can be quantified by automated...

  11. Iodinated silica/porphyrin hybrid nanoparticles for X-ray computed tomography/fluorescence dual-modal imaging of tumors

    Directory of Open Access Journals (Sweden)

    Koichiro Hayashi

    2014-12-01

    Full Text Available Silica nanoparticles containing covalently linked iodine and a near-infrared (NIR fluorescence dye, namely porphyrin, have been synthesized through a one-pot sol–gel reaction. These particles are called iodinated silica/porphyrin hybrid nanoparticles (ISP HNPs. The ISP HNPs have both high X-ray absorption coefficient and NIR fluorescence. The ISP HNPs modified with folic acid (FA and polyethylene glycol (PEG, denoted as FA-PEG-ISP HNPs, enabled the successful visualization of tumors in mice by both X-ray computed tomography (CT and fluorescence imaging (FI. Thus, the FA-PEG-ISP HNPs are useful as contrast agents or probes for CT/FI dual-modal imaging.

  12. Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids.

    Science.gov (United States)

    Su, Liang; Yuan, Haifeng; Lu, Gang; Rocha, Susana; Orrit, Michel; Hofkens, Johan; Uji-i, Hiroshi

    2016-02-23

    Optical antennas made of metallic nanostructures dramatically enhance single-molecule fluorescence to boost the detection sensitivity. Moreover, emission properties detected at the optical far field are dictated by the antenna. Here we study the emission from molecule-antenna hybrids by means of super-resolution localization and defocused imaging. Whereas gold nanorods make single-crystal violet molecules in the tip's vicinity visible in fluorescence, super-resolution localization on the enhanced molecular fluorescence reveals geometrical centers of the nanorod antenna instead. Furthermore, emission angular distributions of dyes linked to the nanorod surface resemble that of nanorods in defocused imaging. The experimental observations are consistent with numerical calculations using the finite-difference time-domain method.

  13. A nucleic acid probe labeled with desmethyl thiazole orange: a new type of hybridization-sensitive fluorescent oligonucleotide for live-cell RNA imaging.

    Science.gov (United States)

    Okamoto, Akimitsu; Sugizaki, Kaori; Yuki, Mizue; Yanagisawa, Hiroyuki; Ikeda, Shuji; Sueoka, Takuma; Hayashi, Gosuke; Wang, Dan Ohtan

    2013-01-14

    A new fluorescent nucleotide with desmethyl thiazole orange dyes, D'(505), has been developed for expansion of the function of fluorescent probes for live-cell RNA imaging. The nucleoside unit of D'(505) for DNA autosynthesis was soluble in organic solvents, which made the preparation of nucleoside units and the reactions in the cycles of DNA synthesis more efficient. The dyes of D'(505)-containing oligodeoxynucleotide were protonated below pH 7 and the oligodeoxynucleotide exhibited hybridization-sensitive fluorescence emission through the control of excitonic interactions of the dyes of D'(505). The simplified procedure and effective hybridization-sensitive fluorescence emission produced multicolored hybridization-sensitive fluorescent probes, which were useful for live-cell RNA imaging. The acceptor-bleaching method gave us information on RNA in a specific cell among many living cells.

  14. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2009-01-06

    Fluorescence resonance energy transfer (FRET) using immobilized quantum dots (QDs) as energy donors was explored as a transduction method for the detection of nucleic acid hybridization at an interface. This research was motivated by the success of the QD-FRET-based transduction of nucleic acid hybridization in solution-phase assays. This new work represents a fundamental step toward the assembly of a biosensor, where immobilization of the selective chemistry on a surface is desired. After immobilizing QD-probe oligonucleotide conjugates on optical fibers, a demonstration of the retention of selectivity was achieved by the introduction of acceptor (Cy3)-labeled single-stranded target oligonucleotides. Hybridization generated the proximity required for FRET, and the resulting fluorescence spectra provided an analytical signal proportional to the amount of target. This research provides an important framework for the future development of nucleic acid biosensors based on QDs and FRET. The most important findings of this work are that (1) a QD-FRET solid-phase hybridization assay is viable and (2) a passivating layer of denatured bovine serum albumin alleviates nonspecific adsorption, ultimately resulting in (3) the potential for a reusable assay format and mismatch discrimination. In this, the first incarnation of a solid-phase QD-FRET hybridization assay, the limit of detection was found to be 5 nM, and the dynamic range was almost 2 orders of magnitude. Selective discrimination of the target was shown using a three-base-pairs mismatch from a fully complementary sequence. Despite a gradual loss of signal, reuse of the optical fibers over multiple cycles of hybridization and dehybridization was possible. Directions for further improvement of the analytical performance by optimizing the design of the QD-probe oligonucleotide interface are identified.

  15. Evaluation of fluorescence in situ hybridization for the detection of bacteria in feline inflammatory liver disease.

    Science.gov (United States)

    Twedt, David C; Cullen, John; McCord, Kelly; Janeczko, Stephanie; Dudak, Julie; Simpson, Kenny

    2014-02-01

    The etiopathogenesis of feline inflammatory liver disease (ILD) is unclear. Therefore, we sought to determine the presence and distribution of bacteria within the livers of cats with ILD using eubacterial fluorescence in situ hybridization (FISH). Histopathology from 39 cats with ILD and 19 with histologically normal livers (C) were classified using World Small Animal Veterinary Association guidelines. Hepatic sections were examined by 16 and 23S ribosomal RNA FISH. Antibodies against cytokeratins and factor VIIIa were used to distinguish bile ducts and vascular structures. Histopathologic findings included non-specific reactive hepatitis (12), neutrophilic cholangitis (NC; 12), lymphocytic cholangitis (seven), cholestasis/obstruction (three), probable lymphoma (three) and acute hepatitis (two). Bacteria were observed in 21/39 ILD and 3/19 C (P = 0.0054). In 8/39 ILD and 2/19 C bacteria were restricted to the outer liver capsule (P = 0.29) and may represent contaminants. The prevalence of intrahepatic bacteria was higher (P = 0.008) in ILD (13/31) than C (1/17). Bacteria in ILD were more frequently (P cats. Concurrent non-hepatic disease, predominantly pancreatic and intestinal (8/10 cats biopsied), was present in all 13 cats with intrahepatic bacteria. Bacterial culture was positive (predominantly E coli and Enterococcus species) in 11/23 (48%) samples, and concurred with FISH in 15/23 cases. The presence of intrahepatic bacteria in 13/31 (41%) cats with ILD suggests a role in etiopathogenesis. The distribution of bacteria within the liver supports the possibility of colonization via either enteric translocation or hematogenous seeding.

  16. Identification of a centromeric exchange of acrocentric chromosomes by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.W.; Immken, L.; Curry, C.J.R. [UCSF, Fresno, CA (United States)] [and others

    1994-09-01

    Exchanges of the peri-centromeric area of acrocentric chromosomes are difficult to identify using the conventional cytogenetic techniques. Fluorescence in situ hybridization (FISH) provides a new way for precisely identifying such rearrangements. Here we report a case of centromeric rearrangement in an amniotic fluid specimen with an extra marker chromosome. M.G., a 41-year-old G1, was referred for advanced maternal age. Chromosome studies revealed a 47,XX +mar karyotype. The marker appeared to be bi-satallited with a single C band. Chromosome studies from the parents were normal. The parents elected to terminate the pregnancy. Anatomical examination of the abortus revealed a very short neck, posteriorly rotated ears, high set cecum, absent hepatic lobation and low abdominal kidneys with short ureters. FISH studies with alpha-satellite probes of 13/21, 14/22, and 15, and the DiGeorge probe, indicated that there is a translocation of 21 alpha-satellite to the 22, and that the marker chromosome probably consists of 14/22 alpha-satellite material. FISH analysis of the parents chromosome revealed that father had the translocation of 21 alpha-satellite to the 22 as well. Exchanges of centromeric material among the acrocentric chromosomes may not be an uncommon event in humans. Although it probably has no clinical significance, it may result in non-disjunction or marker chromosome formation from an uncommon satellite association. With the use of FISH techniques, exchanges involving the centromeric regions of acrocentric chromosomes can be identified.

  17. Fluorescence in situ hybridization in uncultured amniocytes for detection of aneuploidy in 4210 prenatal cases

    Institute of Scientific and Technical Information of China (English)

    JIA Chan-wei; WANG Shu-yu; MA Yan-min; LAN Yong-lian; SI Yan-mei; YU Lan; ZHOU Li-ying

    2011-01-01

    Background Almost all reported fluorescence in situ hybridization (FISH) kits for prenatal diagnosis use probes from foreign (non-Chinese) countries. The aim of this study was to analyze the reliability of domestic (Chinese) FISH probe sets to detect aneuploidies of chromosomes 13, 18, 21, X, and Y related to prenatal diagnosis in 4210 cases.Methods Cytogenetic karyotyping was carded out as a standard prenatal diagnostic test, and amniotic fluid cell interphase FISH analysis was performed using two sets of probes (centromeric probes for chromosomes 18, X, and Y,and locus-specific probes for chromosomes 13 and 21) provided by GP Medical Technologies, Beijing, China. Then we compared the two results and found the performance characteristics for informative FISH results of aneuploidies by the domestic kit probes.Results In 4210 cases, 4126 cases generated karyotype results and 133 abnormal karyotypes (including 97 aneuploidies) were found. The FISH results of 98 cases (among them, 31 cases gave normal cytogenetic results) were uninformative. The rate of abnormal cases was 3.2% (133/4126). For the abnormal karyotypes, the rate of aneuploidy was 72.9% (97/133). Among the 97 aneuploidies, there were 58 cases of trisomy 21 (58/97, 59.8%), four cases of trisomy 13, 23 cases of trisomy 18, and 12 cases of sex chromosomal aneuploidies. The total concordance of the two methods was 97.9% (95/97; two cases were mosaics that had a low percentage of abnormal cells), and the concordance of trisomy 21, 13, and 18 by the two methods was 100%.Conclusions The two sets of the domestic FISH kit probes are reliable for prenatal diagnosis. The results demonstrate that FISH is a rapid and accurate clinical method for prenatal identification of chromosome aneuploidies.

  18. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome.

    Science.gov (United States)

    Shearer, Lindsay A; Anderson, Lorinda K; de Jong, Hans; Smit, Sandra; Goicoechea, José Luis; Roe, Bruce A; Hua, Axin; Giovannoni, James J; Stack, Stephen M

    2014-05-30

    The order and orientation (arrangement) of all 91 sequenced scaffolds in the 12 pseudomolecules of the recently published tomato (Solanum lycopersicum, 2n = 2x = 24) genome sequence were positioned based on marker order in a high-density linkage map. Here, we report the arrangement of these scaffolds determined by two independent physical methods, bacterial artificial chromosome-fluorescence in situ hybridization (BAC-FISH) and optical mapping. By localizing BACs at the ends of scaffolds to spreads of tomato synaptonemal complexes (pachytene chromosomes), we showed that 45 scaffolds, representing one-third of the tomato genome, were arranged differently than predicted by the linkage map. These scaffolds occur mostly in pericentric heterochromatin where 77% of the tomato genome is located and where linkage mapping is less accurate due to reduced crossing over. Although useful for only part of the genome, optical mapping results were in complete agreement with scaffold arrangement by FISH but often disagreed with scaffold arrangement based on the linkage map. The scaffold arrangement based on FISH and optical mapping changes the positions of hundreds of markers in the linkage map, especially in heterochromatin. These results suggest that similar errors exist in pseudomolecules from other large genomes that have been assembled using only linkage maps to predict scaffold arrangement, and these errors can be corrected using FISH and/or optical mapping. Of note, BAC-FISH also permits estimates of the sizes of gaps between scaffolds, and unanchored BACs are often visualized by FISH in gaps between scaffolds and thus represent starting points for filling these gaps.

  19. c-myc in Kaposi's sarcoma: analyses by fluorescent in situ hybridization and immunohistochemistry.

    Science.gov (United States)

    Feller, K; Yang, S; Tung, N; Lee, J; Mahalingam, M

    2014-01-01

    The c-myc proto-oncogene plays a central role in the regulation of cellular transcription, differentiation, and apoptosis, and has been shown to be deregulated in many types of human cancer. Recent findings have demonstrated its amplification in select vascular neoplasms, such as secondary angiosarcomas, suggesting a role in angiogenesis as well. In vitro studies have shown that the c-Myc protein is an important regulatory molecule of spindle cell proliferation and migration in Kaposi's sarcoma (KS). In light of these findings, our primary aim was to ascertain whether c-myc, by promoting proliferation and angiogenesis, is an essential co-factor in the aetiopathogenesis of KS. We also attempted to determine a correlation between immunohistochemical expression of the c-Myc protein and c-myc gene copy amplification using fluorescent in situ hybridization (FISH). Samples analyzed included archival tissue of KS (n = 24). PCR for detection of Kaposi's sarcoma-associated herpesvirus DNA was performed on all samples of KS. For FISH analyses, a dual-labelled technique was employed and probes for the c-myc gene and chromosome 8 were used. The monoclonal anti-c-myc antibody, 9E10, was used for immunohistochemical analyses. While FISH analyses revealed no amplification of c-myc in any of the cases of KS, immunohistochemical analyses revealed positive staining for c-Myc in 13/24 cases (54%). Amplification of the c-myc gene was not witnessed in this preliminary study of 24 cases and thus cannot be correlated with the expression of the c-Myc protein. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  20. A pre-breeding screening program for transgenic boars based on fluorescence in situ hybridization assay.

    Science.gov (United States)

    Bou, Gerelchimeg; Sun, Mingju; Lv, Ming; Zhu, Jiang; Li, Hui; Wang, Juan; Li, Lu; Liu, Zhongfeng; Zheng, Zhong; He, Wenteng; Kong, Qingran; Liu, Zhonghua

    2014-08-01

    For efficient transgenic herd expansion, only the transgenic animals that possess the ability to transmit transgene into next generation are considered for breeding. However, for transgenic pig, practically lacking a pre-breeding screening program, time, labor and money is always wasted to maintain non-transgenic pigs, low or null transgenic transmission pigs and the related fruitless gestations. Developing a pre-breeding screening program would make the transgenic herd expansion more economical and efficient. In this technical report, we proposed a three-step pre-breeding screening program for transgenic boars simply through combining the fluorescence in situ hybridization (FISH) assay with the common pre-breeding screening workflow. In the first step of screening, combined with general transgenic phenotype analysis, FISH is used to identify transgenic boars. In the second step of screening, combined with conventional semen test, FISH is used to detect transgenic sperm, thus to identify the individuals producing high quality semen and transgenic sperm. In the third step of screening, FISH is used to assess the in vitro fertilization embryos, thus finally to identify the individuals with the ability to produce transgenic embryos. By this three-step screening, the non-transgenic boars and boars with no ability to produce transgenic sperm or transgenic embryos would be eliminated; therefore only those boars could produce transgenic offspring are maintained and used for breeding and herd expansion. It is the first time a systematic pre-breeding screening program is proposed for transgenic pigs. This program might also be applied in other transgenic large animals, and provide an economical and efficient strategy for herd expansion.

  1. Williams-Beuren syndrome: cardiovascular abnormalities in 20 patients diagnosed with fluorescence in situ hybridization

    Directory of Open Access Journals (Sweden)

    Sugayama Sofia Mizuho Miura

    2003-01-01

    Full Text Available OBJECTIVE: To evaluate the cardiovascular findings and clinical follow-up of patients with Williams-Beuren syndrome. METHODS: We studied 20 patients (11 males, mean age at diagnosis: 5.9 years old, assessed for cardiovascular abnormalities with electrocardiography and Doppler echocardiography. Fluorescence in situ hybridization (FISH was used to confirm the diagnosis of the syndrome. RESULTS: Elastin gene locus microdeletion was detected in 17 patients (85% (positive FISH, and in 3 patients deletion was not detected (negative FISH. Sixteen patients with a positive FISH (94% had congenital cardiovascular disease (mean age at diagnosis: 2,3 years old. We observed isolated (2/16 supravalvular aortic stenosis and supravalvular aortic stenosis associated (11/16 with pulmonary artery stenosis (4/11; mitral valve prolapse (3/11; bicuspid aortic valve (3/11; aortic coarctation (2/11, thickened pulmonary valve (2/11; pulmonary valvular stenosis (1/11; supravalvular pulmonary stenosis (1/11; valvular aortic stenosis (1/11; fixed subaortic stenosis (1/11; pulmonary artery stenosis (2/16 associated with pulmonary valvar stenosis (1/2 and with mitral valve prolapse (1/2; and isolated mitral valve prolapse (1/16. Four patients with severe supravalvular aortic stenosis underwent surgery (mean age: 5.7 years old, and 2 patients had normal pressure gradients (mean follow-up: 8.4 years. CONCLUSION: A detailed cardiac evaluation must be performed in all patients with Williams-Beuren syndrome due to the high frequency of cardiovascular abnormalities.

  2. The role of fluorescence in situ hybridization and gene expression profiling in myeloma risk stratification.

    Science.gov (United States)

    Hose, Dirk; Seckinger, Anja; Jauch, Anna; Rème, Thierry; Moreaux, Jérôme; Bertsch, Uta; Neben, Kai; Klein, Bernard; Goldschmidt, Hartmut

    2011-12-01

    Multiple myeloma patients' survival under treatment varies from a few months to more than 15 years. Clinical prognostic factors, especially beta2-microglobulin (B2M) and the international staging system (ISS), allow risk assessment to a certain extent, but do not identify patients at very high risk. As malignant plasma cells are characterized by a variety of chromosomal aberrations and changes in gene expression, a molecular characterization ofCD138-purified myeloma cells by interphase fluorescence in situ hybridization (iFISH) and gene expression profiling (GEP) can be used for improved risk assessment, iFISH allows a risk stratification with presence of a translocation t(4;14) and/or deletion of 17p13 being the best documented adverse prognostic factors. A deletion of 13q14 is no longer considered to define adverse risk. Patients harbouring a t(4;14) seems to benefit from a bortezomib- or lenalidomide containing regimen, whereas patients with deletion 17p13 seem only to benefit from a high dose therapy approach using long term bortezomib (in induction and maintenance) and autologous tandem-transplantation as used in the GMMG-HD4 trial, or the total therapy 3 concept. Gene expression profiling allows the assessment of high risk scores (IFM, UAMS), remaining prognostic despite treatment with novel agents, and prognostic surrogates of biological factors (e.g. proliferation) and (prognostic) target gene expression (e.g. Aurora-kinase A). Thus, assessment of B2M and ISS-stage, iFISH, and GEP is considered extended routine diagnostics in therapy requiring multiple myeloma patients for risk assessment and, even now, to a certain extent selection of treatment.

  3. BAP1 immunohistochemistry has limited prognostic utility as a complement of CDKN2A (p16) fluorescence in situ hybridization in malignant pleural mesothelioma.

    Science.gov (United States)

    M McGregor, Stephanie; McElherne, James; Minor, Agata; Keller-Ramey, Jennifer; Dunning, Ryan; Husain, Aliya N; Vigneswaran, Wickii; Fitzpatrick, Carrie; Krausz, Thomas

    2017-02-01

    BRCA-associated protein 1 (BAP1) immunohistochemistry (IHC) and CDKN2A (p16) fluorescence in situ hybridization (FISH) have shown clinical utility in confirming the diagnosis of malignant pleural mesothelioma (MPM), but the role for using these 2 markers to guide clinical management is not yet clear. Although p16 loss is predictive of poor prognosis, there is controversy as to whether BAP1 loss is predictive of a more favorable prognosis; how these results interact with one another has not been explored. We performed CDKN2A FISH on a previously published tissue microarray on which we had performed BAP1 IHC, revealing combined BAP1/p16 status for 93 MPM cases. As expected, BAP1 IHC in combination with CDKN2A FISH resulted in high sensitivity (84%) and specificity (100%) for MPM, and p16 loss was an independent predictor of poor survival (hazard ratio, 2.2553; P = .0135). There was no association between BAP1 loss and p16 loss, as 26%, 28%, 30%, and 16% of overall cases demonstrated loss of BAP1 alone, loss of p16 alone, loss of both BAP1 and p16, or neither abnormality, respectively. Although multivariate analysis demonstrated that BAP1 IHC is not an independent predictor of prognosis, when viewed in combination with homozygous CDKN2A deletion, risk stratification was evident. More specifically, patients with CDKN2A disomy and loss of BAP1 expression had improved outcomes compared with those with CDKN2A disomy and retained BAP1 expression (hazard ratio, 0.2286; P = .0017), and this finding was notably evident among epithelioid cases. We conclude that BAP1 IHC provides prognostic information within the context of CDKN2A FISH that may have clinical utility beyond diagnosis.

  4. Effects of Nitrogen Fertilizer Level on Chlorophyll Fluorescence Characteristics in Flag Leaf of Super Hybrid Rice at Late Growth Stage

    Institute of Scientific and Technical Information of China (English)

    LONG Ji-rui; MA Guo-hui; WAN Yi-zheng; SONG Chun-fang; SUN Jian; QIN Rui-jun

    2013-01-01

    To compare the effects of slow-release nitrogen fertilizer at six different levels on the flag leaf chlorophyll fluorescence characteristics of super hybrid rice,a field fertilization experiment was conducted with super hybrid rice Y Liangyou 1 as a test material.The photosynthetic electron transport rate (ETR),effective quantum yield (EQY),photochemical quenching coefficient (qp),and non-photochemical quenching coefficient (NPQ) of flag leaves were measured at the initial heading,full heading,10 d after full heading and 20 d after full heading stages.Results showed that the values of ETR,EQY and qp increased with rice development from initial heading to 20 d after full heading,whereas the NPQ decreased.During the measured stages,ETR,EQY and qp increased initially and then decreased as nitrogen application amount increased,but they peaked at different nitrogen fertilizer levels.The maximum ETR and EQY values appeared at the treatment of 135 kg/hm2 N.In conclusion,the optimum nitrogen amount for chlorophyll fluorescence characteristics of super hybrid rice was 135-180 kg/hm2.

  5. Array-based comparative genomic hybridization is more informative than conventional karyotyping and fluorescence in situ hybridization in the analysis of first-trimester spontaneous abortion

    Directory of Open Access Journals (Sweden)

    Gao Jinsong

    2012-07-01

    Full Text Available Abstract Background Array-based comparative genomic hybridization (aCGH is a new technique for detecting submicroscopic deletions and duplications, and can overcome many of the limitations associated with classic cytogenetic analysis. However, its clinical use in spontaneous abortion needs comprehensive evaluation. We used aCGH to investigate chromosomal imbalances in 100 spontaneous abortions and compared the results with G-banding karyotyping and fluorescence in situ hybridization (FISH. Inconsistent results were verified by quantitative fluorescence PCR. Results Abnormalities were detected in 61 cases. aCGH achieved the highest detection rate (93.4%, 57/61 compared with traditional karyotyping (77%, 47/61 and FISH analysis (68.9%, 42/61. aCGH identified all chromosome abnormalities reported by traditional karyotyping and interphase FISH analysis, with the exception of four triploids. It also detected three additional aneuploidy cases in 37 specimens with ‘normal’ karyotypes, one mosaicism and 10 abnormalities in 14 specimens that failed to grow in vitro. Conclusions aCGH analysis circumvents many limitations in traditional karyotyping or FISH. The accuracy and efficiency of aCGH in spontaneous abortions highlights its clinical usefulness for the future. As aborted tissues have the potential to be contaminated with maternal cells, the threshold value of detection in aCGH should be lowered to avoid false negatives.

  6. Potential actionable targets in appendiceal cancer detected by immunohistochemistry, fluorescent in situ hybridization, and mutational analysis

    Science.gov (United States)

    Millis, Sherri Z.; Kimbrough, Jeffery; Doll, Nancy; Von Hoff, Daniel; Ramanathan, Ramesh K.

    2017-01-01

    Background Appendiceal cancers are rare and consist of carcinoid, mucocele, pseudomyxoma peritonei (PMP), goblet cell carcinoma, lymphoma, and adenocarcinoma histologies. Current treatment involves surgical resection or debulking, but no standard exists for adjuvant chemotherapy or treatment for metastatic disease. Methods Samples were identified from approximately 60,000 global tumors analyzed at a referral molecular profiling CLIA-certified laboratory. A total of 588 samples with appendix primary tumor sites were identified (male/female ratio of 2:3; mean age =55). Sixty-two percent of samples were adenocarcinomas (used for analysis); the rest consisted of 9% goblet cell, 15% mucinous; 6% pseudomyxoma, and less than 5% carcinoids and 2% neuroendocrine. Tests included sequencing [Sanger, next generation sequencing (NGS)], protein expression/immunohistochemistry (IHC), and gene amplification [fluorescent in situ hybridization (FISH) or CISH]. Results Profiling across all appendiceal cancer histological subtypes for IHC revealed: 97% BRCP, 81% MRP1, 81% COX-2, 71% MGMT, 56% TOPO1, 5% PTEN, 52% EGFR, 40% ERCC1, 38% SPARC, 35% PDGFR, 35% TOPO2A, 25% RRM1, 21% TS, 16% cKIT, and 12% for TLE3. NGS revealed mutations in the following genes: 50.4% KRAS, 21.9% P53, 17.6% GNAS, 16.5% SMAD4, 10% APC, 7.5% ATM, 5.5% PIK3CA, 5.0% FBXW7, and 1.8% BRAF. Conclusions Appendiceal cancers show considerable heterogeneity with high levels of drug resistance proteins (BCRP and MRP1), which highlight the difficulty in treating these tumors and suggest an individualized approach to treatment. The incidence of low TS (79%) could be used as a backbone of therapy (using inhibitors such as 5FU/capecitabine or newer agents). Therapeutic options includeTOPO1 inhibitors (irinotecan/topotecan), EGFR inhibitors (erlotinib, cetuximab), PDGFR antagonists (regorafenib, axitinib), MGMT (temozolomide). Clinical trials targeting pathways involving KRAS, p53, GNAS, SMAD4, APC, ATM, PIK3CA, FBXW7, and

  7. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gyoyeon [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon (Korea, Republic of); Lee, Hansol [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Jiyeon, E-mail: jylee@kist.re.kr [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon (Korea, Republic of)

    2015-11-13

    The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Pt conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH. - Highlights: • We prepared a probe linked between QD and telomeric oligonucleotide with platinum-guanine bonding. • Telomeres were detected by our new telomere probes successfully in three different human metaphase chromosomes. • QDPt-DNA probe has high fluorescence intensity in comparison with organic dye-DNA probe.

  8. High Sensitivity deflection detection of nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sanii, Babak; Ashby, Paul

    2009-10-28

    A critical limitation of nanoelectromechanical systems (NEMS) is the lack of a high-sensitivity position detection mechanism. We introduce a noninterferometric optical approach to determine the position of nanowires with a high sensitivity and bandwidth. Its physical origins and limitations are determined by Mie scattering analysis. This enables a dramatic miniaturization of detectable cantilevers, with attendant reductions to the fundamental minimum force noise in highly damping environments. We measure the force noise of an 81{+-}9??nm radius Ag{sub 2}Ga nanowire cantilever in water at 6{+-}3??fN/{radical}Hz.

  9. In vitro cytotoxicity of fluorescent silica nanoparticles hybridized with aggregation-induced emission luminogens for living cell imaging.

    Science.gov (United States)

    Xia, Yun; Li, Min; Peng, Tao; Zhang, Weijie; Xiong, Jun; Hu, Qinggang; Song, Zifang; Zheng, Qichang

    2013-01-07

    Fluorescent silica nanoparticles (FSNPs) can provide high-intensity and photostable fluorescent signals as a probe for biomedical analysis. In this study, FSNPs hybridized with aggregation-induced emission (AIE) luminogens (namely FSNP-SD) were successfully fabricated by a surfactant-free sol-gel method. The FSNP-SD were spherical, monodisperse and uniform in size, with an average diameter of approximately 100 nm, and emitted strong fluorescence at the peak of 490 nm. The FSNP-SD selectively stained the cytoplasmic regions and were distributed in the cytoplasm. Moreover, they can stay inside cells, enabling the tacking of cells over a long period of time. The intracellular vesicles and multinucleated cells were increase gradually with the rise of FSNP-SD concentration. Both cell viability and survival only lost less than 20% when the cells were exposed to the high concentration of 100 μg/mL FSNP-SD. Additionally, the cell apoptosis and intracellular ROS assay indicated that FSNP-SD had no significant toxic effects at the maximum working concentration of 80 μg/mL. This study demonstrated that the FSNP-SD are promising biocompatible fluorescent probes for living cell imaging.

  10. In Vitro Cytotoxicity of Fluorescent Silica Nanoparticles Hybridized with Aggregation-Induced Emission Luminogens for Living Cell Imaging

    Directory of Open Access Journals (Sweden)

    Yun Xia

    2013-01-01

    Full Text Available Fluorescent silica nanoparticles (FSNPs can provide high-intensity and photostable fluorescent signals as a probe for biomedical analysis. In this study, FSNPs hybridized with aggregation-induced emission (AIE luminogens (namely FSNP-SD were successfully fabricated by a surfactant-free sol-gel method. The FSNP-SD were spherical, monodisperse and uniform in size, with an average diameter of approximately 100 nm, and emitted strong fluorescence at the peak of 490 nm. The FSNP-SD selectively stained the cytoplasmic regions and were distributed in the cytoplasm. Moreover, they can stay inside cells, enabling the tacking of cells over a long period of time. The intracellular vesicles and multinucleated cells were increase gradually with the rise of FSNP-SD concentration. Both cell viability and survival only lost less than 20% when the cells were exposed to the high concentration of 100 μg/mL FSNP-SD. Additionally, the cell apoptosis and intracellular ROS assay indicated that FSNP-SD had no significant toxic effects at the maximum working concentration of 80 μg/mL. This study demonstrated that the FSNP-SD are promising biocompatible fluorescent probes for living cell imaging.

  11. Multiplex fluorescence in situ hybridization (M-FISH) and confocal laser scanning microscopy (CLSM) to analyze multispecies oral biofilms.

    Science.gov (United States)

    Karygianni, Lamprini; Hellwig, Elmar; Al-Ahmad, Ali

    2014-01-01

    Multiplex fluorescence in situ hybridization (M-FISH) constitutes a favorable microbiological method for the analysis of spatial distribution of highly variable phenotypes found in multispecies oral biofilms. The combined use of confocal laser scanning microscopy (CLSM) produces high-resolution three-dimensional (3D) images of individual bacteria in their natural environment. Here, we describe the application of M-FISH on early (Streptococcus spp., Actinomyces naeslundii) and late colonizers (Fusobacterium nucleatum, Veillonella spp.) of in situ-formed oral biofilms, the acquisition of CLSM images, as well as the qualitative and quantitative analysis of these digitally obtained and processed images.

  12. Enumeration of respiring Pseudomonas spp. in milk within 6 hours by fluorescence in situ hybridization following formazan reduction.

    Science.gov (United States)

    Kitaguchi, Akiko; Yamaguchi, Nobuyasu; Nasu, Masao

    2005-05-01

    Respiring Pseudomonas spp. in milk were quantified within 6 h by fluorescence in situ hybridization (FISH) with vital staining. FISH with an oligonucleotide probe based on 16S rRNA sequences was used for the specific detection of Pseudomonas spp. at the single cell level. 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was used to estimate bacterial respiratory activity. The numbers of respiring Pseudomonas cells as determined by FISH with CTC staining (CTC-FISH) were almost the same or higher than the numbers of CFU as determined by the conventional culture method.

  13. Localization of 18S + 28S and 5S ribosomal RNA genes in the dog by fluorescence in situ hybridization.

    Science.gov (United States)

    Mäkinen, A; Zijlstra, C; de Haan, N A; Mellink, C H; Bosma, A A

    1997-01-01

    The gene clusters encoding 18S + 28S and 5S rRNA in the dog (Canis familiaris) have been localized by using GTG-banding and fluorescence in situ hybridization. The 18S + 28S rDNA maps to chromosome regions 7q2.5-->q2.7, 17q1.7, qter of a medium-sized, not yet numbered autosome, and Yq1.2-->q1.3. Our data show that there is one cluster of 5S rDNA in the dog, which maps to chromosome region 4q1.4.

  14. Fluorescence in situ hybridizations (FISH) for the localization of viruses and endosymbiotic bacteria in plant and insect tissues.

    Science.gov (United States)

    Kliot, Adi; Kontsedalov, Svetlana; Lebedev, Galina; Brumin, Marina; Cathrin, Pakkianathan Britto; Marubayashi, Julio Massaharu; Skaljac, Marisa; Belausov, Eduard; Czosnek, Henryk; Ghanim, Murad

    2014-02-24

    Fluorescence in situ hybridization (FISH) is a name given to a variety of techniques commonly used for visualizing gene transcripts in eukaryotic cells and can be further modified to visualize other components in the cell such as infection with viruses and bacteria. Spatial localization and visualization of viruses and bacteria during the infection process is an essential step that complements expression profiling experiments such as microarrays and RNAseq in response to different stimuli. Understanding the spatiotemporal infections with these agents complements biological experiments aimed at understanding their interaction with cellular components. Several techniques for visualizing viruses and bacteria such as reporter gene systems or immunohistochemical methods are time-consuming, and some are limited to work with model organisms and involve complex methodologies. FISH that targets RNA or DNA species in the cell is a relatively easy and fast method for studying spatiotemporal localization of genes and for diagnostic purposes. This method can be robust and relatively easy to implement when the protocols employ short hybridizing, commercially-purchased probes, which are not expensive. This is particularly robust when sample preparation, fixation, hybridization, and microscopic visualization do not involve complex steps. Here we describe a protocol for localization of bacteria and viruses in insect and plant tissues. The method is based on simple preparation, fixation, and hybridization of insect whole mounts and dissected organs or hand-made plant sections, with 20 base pairs short DNA probes conjugated to fluorescent dyes on their 5' or 3' ends. This protocol has been successfully applied to a number of insect and plant tissues, and can be used to analyze expression of mRNAs or other RNA or DNA species in the cell.

  15. Chromosomal changes detected by fluorescence in situ hybridization in patients with acute lymphoblastic leukemia

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lijun 张丽君; PARKHURST JB; KERN WF; SCOTT KV; NICCUM D; MULVIHILL JJ; LI Shibo 李师伯

    2003-01-01

    Objectives To investigate patients with acute lymphoblastic leukemia (ALL) for TEL/AML1 fusion, BCR/ABL fusion, MLL gene rearrangements, and numerical changes of chromosomes 4, 10, 17 and 21 by fluorescence in situ hybridization (FISH) and to determine the relationship and the significance of those findings.Methods Fifty-one American patients (34 men and 17 women) were included in this study. Of them there were 41 patients with pro-B cell type ALL, 9 with B cell type ALL and 1 with T cell type ALL. Chromosome metaphases of each sample were prepared according to standard protocols. Fluorescence in situ hybridization was performed using commercially available DNA probes, including whole chromosome painting probes, locus specific probes, specific chromosome centromere probes and dual color/multiple color translocation fusion probes. The digital image analysis was carried out using Cytovision and Quips FISH programs.Results An overall incidence of chromosomal anomalies, including t (9;22), MLL gene rearrangements, t (12;21), and numerical chromosomal anomalies of chromosomes 4, 10, 17 and 21 was found in 33 patients (65%). Thirty-one of them were pediatric patients and two adults. The t (12;21) was the commonest chromosomal anomaly detected in this population; 14 out of the 45 pediatric patients (31%) were positive for TEL/AML1 fusion, among which three had an additional derivative 21 [t (12;21)], four had a deletion of 12p and two had an extra copy of chromosome 21. All 14 patients with positive TEL/AML1 fusion had ALL pre-B cell or B-cell lineage according to standard immunotyping. The percentage of cells with fusion signals ranged from 20% to 80%. All fourteen patients positive for TEL/AML1 gene fusion were mosaic. Three out of the 14 patients positive for the TEL/AML1 gene fusion were originally reported to be culture failures and none of the remaining eleven samples had been found to have chromosome 12 abnormalities by conventional cytogenetic techniques. All

  16. Delineation of chromosome translocations by fluorescence in situ hybridization%用荧光原位杂交技术显示染色体易位

    Institute of Scientific and Technical Information of China (English)

    朱冠山; Barts.,O

    2000-01-01

    目的:应用荧光原位杂交技术(fl uorescence in situ hybridization,FISH)对G显带提示有染色体易位的病例进行分析 ,阐明易位本质.方法:以定位于待研究染色体区段的酵母人工染色体(yeast artificialchromosome,YAC)作为DNA来源,采用DOP-PCR(degenerate oligonucl eotide-primed,PCR)方法制备荧光标记的位点特异性探针,进行染色体原位杂交.结果:两例经G显带未能明确显示的染色体结构异常,经FISH证实,一例为发生于11号染色体与13号染色体之间的平衡易位;另一例为发生于6号染色体与X染色体之间的不平衡易位.结论:FISH技术以其高度的灵敏性及特异性,成为常规染色体显带技术的一个重要补充,特别适用于对微小染色体结构重排以及染色体片段起源的阐明.%Objective:To delineate the G-banding-sug gested chromosome translocations by fluorescence in situ hybridization (FISH ) technique. Methods: Locus-specific probes, generated by degen erate oligonucleotide-primed PCR (DOP-PCR) technique from yeast artificial chr omosomes (YACs) mapping the regions in question, were used for FISH tests. Results: Among the 2 cases unresolved by G-banding, FISH confirm ed that one had a balanced translocation between chromosome 11 and chromosome 13 , the other had an unbalanced translocation between chromosome 6 and chromosome X.Conclusion: Because of its high sensitivity and specificity, FISH technique is a powerful adjunct to chromosome banding techniques, particula rly for the delineation of subtle chromosome rearrangement(s) and the origin of segment(s).

  17. Aluminum nanocantilevers for high sensitivity mass sensors

    DEFF Research Database (Denmark)

    Davis, Zachary James; Boisen, Anja

    2005-01-01

    We have fabricated Al nanocantilevers using a simple, one mask contact UV lithography technique with lateral and vertical dimensions under 500 and 100 nm, respectively. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties. Furthermore, it is shown ...

  18. Nonclassical characteristic functions for highly sensitive measurements

    CERN Document Server

    Richter, T; Richter, Th.

    2007-01-01

    Characteristic functions are shown to be useful for highly sensitive measurements. Redistributions of motional Fock states of a trapped atom can be directly monitored via the most fragile nonclassical part of the characteristic function. The method can also be used for decoherence measurements in optical quantum-information systems.

  19. Water-soluble fluorescent conjugated polymer-enzyme hybrid system for the determination of both hydroquinone and hydrogen peroxide.

    Science.gov (United States)

    Huang, Hui; Xu, Min; Gao, Yuan; Wang, Guannan; Su, Xingguang

    2011-10-30

    In this paper, a sensitive and simple detecting system was developed for quantitative analysis of both hydroquinone (H(2)Q) and hydrogen peroxide (H(2)O(2)), based on the successful combination of horse radish peroxidase (HRP) and water-soluble conjugate fluorescence polymers PPESO(3). In the presence of HRP and H(2)O(2), H(2)Q could be oxidized to 1,4-benzoquinone (BQ), an intermediate, which plays the main role in the enhanced quenching of the photoluminescence (PL) intensity of PPESO(3). The quenching PL intensity of PPESO(3) (I(0)/I) was proportional to the concentration of H(2)Q and H(2)O(2) in the range of 1.0 × 10(-6) to 2.0 × 10(-3)mol/L (R(2)=0.996) and 6.0 × 10(-6) to 2.0 × 10(-3)mol/L (R(2)=0.999), respectively. The detection limit for H(2)Q and H(2)O(2) was 5.0 × 10(-7)mol/L and 1.0 × 10(-6)mol/L, respectively. The present fluorescence quenching method was successfully applied for the determination of H(2)Q in the lake water, rainwater, tap-water and chemical plant wastewater samples. Compared with previous reports, the fluorescence quenching approach described in this work is simple and rapid with high sensitivity, which has a potential application for detecting various analytes which can be translated into quinone.

  20. Fluorescence detection of KRAS2 mRNA hybridization in lung cancer cells with PNA-peptides containing an internal thiazole orange.

    Science.gov (United States)

    Sonar, Mahesh V; Wampole, Matthew E; Jin, Yuan-Yuan; Chen, Chang-Po; Thakur, Mathew L; Wickstrom, Eric

    2014-09-17

    We previously developed reporter-peptide nucleic acid (PNA)-peptides for sequence-specific radioimaging and fluorescence imaging of particular mRNAs in cells and tumors. However, a direct test for PNA-peptide hybridization with RNA in the cytoplasm would be desirable. Thiazole orange (TO) dye at the 5' end of a hybridization agent shows a strong increase in fluorescence quantum yield when stacked upon a 5' terminal base pair, in solution and in cells. We hypothesized that hybridization agents with an internal TO could distinguish a single base mutation in RNA. Thus, we designed KRAS2 PNA-IGF1 tetrapeptide agents with an internal TO adjacent to the middle base of the 12th codon, a frequent site of cancer-initiating mutations. Our molecular dynamics calculations predicted a disordered bulge with weaker hybridization resulting from a single RNA mismatch. We observed that single-stranded PNA-IGF1 tetrapeptide agents with an internal TO showed low fluorescence, but fluorescence escalated 5-6-fold upon hybridization with KRAS2 RNA. Circular dichroism melting curves showed ∼10 °C higher Tm for fully complementary vs single base mismatch TO-PNA-peptide agent duplexes with KRAS2 RNA. Fluorescence measurements of treated human lung cancer cells similarly showed elevated cytoplasmic fluorescence intensity with fully complementary vs single base mismatch agents. Sequence-specific elevation of internal TO fluorescence is consistent with our hypothesis of detecting cytoplasmic PNA-peptide:RNA hybridization if a mutant agent encounters the corresponding mutant mRNA.

  1. Improved signal recognition for interphase fluorescent in-situ hybridization using a non-ionic detergent (NP-40) pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.M.; Day-Salvatore, D.L.; Sciorra, L.J. [Univ. of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States)] [and others

    1994-09-01

    We have reported that the non-ionic detergent ethylphenolpoly (ethyleneglycolether)x known as Noniet-P40 (Shell International Petroleum) can gently disrupt cell membranes, resulting in cells with varying degrees of free chromatin release. The extent of this phenomena is dependent upon the concentration of NP-40 and the detergent`s exposure time to the cells. Treated cells can range from halos of DNA around the cells to fully extended free chromatin configurations. We have demonstrated that these treated cells are excellent targets for many different fluorescently labelled probes used for in situ hybridization studies. Recently, we have compared NP-40 harvested lymphocytes with normally harvested cells to see if we could improve upon the number of cells showing discreet signals in interphase fluorescent in situ hybridization. Preliminary work has shown that using a trisomy 21 cell line, one can get a statistically significant improvement with NP-40 pretreatment cells over control levels, in the number of cells having three discreet signals in interphase {open_quotes}FISH{close_quotes}. Such a pretreatment is simple to perform and may be of value when the number of cells available for analysis is low, as in the search for fetal cells from maternal circulation.

  2. Detection of aneuploidy in sperm of an ataxia telangiectasia patient using three-chromosome fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, X.R.; Baulch, J.E. [Lawrence Livermore National Lab., CA (United States); Arnheim, N. [USC, Los Angeles, CA (United States)] [and others

    1994-09-01

    Ataxia telangiectasia (A-T) is an inherited, recessive, cancer-prone disorder. Fluorescence in situ hybridization (FISH) with DNA probes specific for three chromosomes was applied to sperm of an A-T patient to determine if there may be an increased germinal risk for aneuploidy. Air-dried sperm smears were treated with proteinase K and were decondensed with DTT and LIS. The slides were then hybridized with fluorescently labeled repetitive DNA probes specific for chromosomes X, Y and 8, and a total of 11,825 sperm cells were scored. The ratio of sperm bearing X-8 and Y-8 was 1:1, as predicted. The frequencies of hyperhaploidy were 3.9, 1.0, 17.6 and 7.8 per 10,000 cells for categories X-X-8, Y-Y-8, X-Y-8 and 8-8-(X or Y), respectively, In addition, the frequency of diploidy (X-Y-8-8) was 18.6 and auto-diploidies (X-X-8-8 and Y-Y-8-8) were 1.0 and 2.0, respectively. These frequencies were not significantly different when compared with levels in healthy men (p > 0.1). Our finding suggests that chromosome X, Y and 8 aneuploidies are not elevated in the sperm of A-T patients, but studies with additional patients and chromosomes are needed.

  3. Novel hybrid structure silica/CdTe/molecularly imprinted polymer: synthesis, specific recognition, and quantitative fluorescence detection of bovine hemoglobin.

    Science.gov (United States)

    Li, Dong-Yan; He, Xi-Wen; Chen, Yang; Li, Wen-You; Zhang, Yu-Kui

    2013-12-11

    This work presented a novel strategy for the synthesis of the hybrid structure silica/CdTe/molecularly imprinted polymer (Si-NP/CdTe/MIP) to recognize and detect the template bovine hemoglobin (BHb). First, amino-functionalized silica nanoparticles (Si-NP) and carboxyl-terminated CdTe quantum dots (QDs) were assembled into composite nanoparticles (Si-NP/CdTe) using the EDC (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride) chemistry. Next, Si-NP/CdTe/MIP was synthesized by anchoring molecularly imprinted polymer (MIP) layer on the surface of Si-NP/CdTe through the sol-gel technique and surface imprinting technique. The hybrid structure possessed the selectivity of molecular imprinting technique and the sensitivity of CdTe QDs as well as well-defined morphology. The binding experiment and fluorescence method demonstrated its special recognition performance toward the template BHb. Under the optimized conditions, the fluorescence intensity of the Si-NP/CdTe/MIP decreased linearly with the increase of BHb in the concentration range 0.02-2.1 μM, and the detection limit was 9.4 nM. Moreover, the reusability and reproducibility and the successful applications in practical samples indicated the synthesis of Si-NP/CdTe/MIP provided an alternative solution for special recognition and determination of protein from real samples.

  4. A strategy for antimicrobial regulation based on fluorescent conjugated oligomer-DNA hybrid hydrogels.

    Science.gov (United States)

    Cao, Ali; Tang, Yanli; Liu, Yue; Yuan, Huanxiang; Liu, Libing

    2013-06-21

    New fluorescent oligo(phenylene ethynylene)-DNA hydrogels have been prepared and used for the controllable biocidal activity driven by DNase. This study opens a new way of controllable drug release and antimicrobial regulation.

  5. Hybrid white organic light-emitting devices based on phosphorescent iridium-benzotriazole orange-red and fluorescent blue emitters

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhen-Yuan, E-mail: xiazhenyuan@hotmail.com [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Su, Jian-Hua [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Chang, Chi-Sheng; Chen, Chin H. [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu, Taiwan 300 (China)

    2013-03-15

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange-red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N{sup 1},C{sup 3}] iridium acetylacetonate, Ir(TBT){sub 2}(acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1 Prime ;4 Prime ,1 Double-Prime ]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT){sub 2}(acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N Prime -(4,4 Prime -(1E,1 Prime E)-2,2 Prime -(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange-red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy){sub 3} ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: Black-Right-Pointing-Pointer An iridium-based orange-red phosphor Ir(TBT){sub 2}(acac) was applied in hybrid white OLEDs. Black-Right-Pointing-Pointer Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. Black-Right-Pointing-Pointer Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  6. High sensitivity knitted fabric strain sensors

    Science.gov (United States)

    Xie, Juan; Long, Hairu; Miao, Menghe

    2016-10-01

    Wearable sensors are increasingly used in smart garments for detecting and transferring vital signals and body posture, movement and respiration. Existing fabric strain sensors made from metallized yarns have low sensitivity, poor comfort and low durability to washing. Here we report a knitted fabric strain sensor made from a cotton/stainless steel (SS) fibre blended yarn which shows much higher sensitivity than sensors knitted from metallized yarns. The fabric feels softer than pure cotton textiles owing to the ultrafine stainless steel fibres and does not lose its electrical property after washing. The reason for the high sensitivity of the cotton/SS knitted fabric sensor was explored by comparing its sensing mechanism with the knitted fabric sensor made from metallized yarns. The results show that the cotton/SS yarn-to-yarn contact resistance is highly sensitive to strain applied to hooked yarn loops.

  7. Towards Fluorescence In Vivo Hybridization (FIVH Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes.

    Directory of Open Access Journals (Sweden)

    Sílvia Fontenete

    Full Text Available In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo FISH-based method (FIVH that directly detects and allows the visualization of the bacterium within the human body would significantly reduce the time of analysis, allowing the diagnosis to be performed during endoscopy. In a previous study we designed and synthesized a phosphorothioate locked nucleic acid (LNA/ 2' O-methyl RNA (2'OMe probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH. In conclusion, this methodology is a promising approach that might be used in vivo in the future in combination with a confocal laser endomicroscope for H. pylori visualization.

  8. Identification and characterization of marker chromosomes, de novo rearrangements and microdeletions in 100 cases with fluorescence in situ hybridization (FISH)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.M.; Liu, Y.; Papenhausen, P.R. [Roche Biomedical Labs., Research Triangle Park, NC (United States)

    1994-09-01

    Results of molecular cytogenetic analysis are presented for 100 cases in which fluorescence in situ hybridization (FISH) was used as an adjunct to standard cytogenetics. Commercially available centromeric, telomeric, chromosome painting and unique sequence probes were used. Cases were from a 12-month period (June 1993-May 1994) and included examples of sex chromosome abnormalities (8), duplications (5), de novo translocations (6), satellited (12) and non-satellited (7) markers, and microdeletion syndromes (62). Satellited marker chromosomes were evaluated using a combination of DAPI/Distamycin A staining, hybridization with a classical satellite probe for chromosome 15 and hybridization with alpha-satellite probes for chromosomes 13, 14, 21 and 22. Markers positive for the chromosome 15 probe were further evaluated using unique sequence probes for the Prader-Willi/Angelman region. Microdeletion analysis was performed for Prader-Willi/Angelman (49) and DiGeorge/VCF (13) syndromes. Seven cases evaluated for Prader-Willi/Angelman syndrome demonstrated evidence of a deletion within this region. Uniparental disomy analysis was available in cases where a deletion was not detected by FISH, yet follow-up was clinically indicated. Two cases evaluated for DiGeorge/VCF syndrome demonstrated molecular evidence of a deletion. Included in our analysis is an example of familial DiGeorge syndrome.

  9. Nucleic Acid Sandwich Hybridization Assay with Quantum Dot-Induced Fluorescence Resonance Energy Transfer for Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Cheng-Chung Chou

    2012-12-01

    Full Text Available This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD-induced fluorescence resonance energy transfer (FRET reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor in a molar ratio of 10:1 (probe-to-QD, and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED, optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection.

  10. Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes

    Science.gov (United States)

    Fontenete, Sílvia; Leite, Marina; Guimarães, Nuno; Madureira, Pedro; Ferreira, Rui Manuel; Figueiredo, Céu; Wengel, Jesper; Azevedo, Nuno Filipe

    2015-01-01

    In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH) is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo FISH-based method (FIVH) that directly detects and allows the visualization of the bacterium within the human body would significantly reduce the time of analysis, allowing the diagnosis to be performed during endoscopy. In a previous study we designed and synthesized a phosphorothioate locked nucleic acid (LNA)/ 2’ O-methyl RNA (2’OMe) probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH). In conclusion, this methodology is a promising approach that might be used in vivo in the future in combination with a confocal laser endomicroscope for H. pylori visualization. PMID:25915865

  11. Pallister-Killian syndrome: A mild case diagnosed by fluorescence in situ hybridization. Review of the literature and expansion of the phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Bielanska, M.M.; Khalifa, M.M.; Duncan, A.M.V. [Queen`s Univ., Kingston, Ontario (Canada)

    1996-10-16

    Pallister-Killian syndrome (PKS) is a rare disorder characterized by a specific combination of anomalies, mental retardation and mosaic presence of a supernumerary isochromosome 12p which is tissue-limited. We report an atypical case of PKS with a mild phenotype. Fluorescence in situ hybridization (FISH) was used to demonstrate that the supernumerary marker chromosome identified in the patient`s fibroblasts was an isochromosome 12p. This study broadens the spectrum of PKS phenotype. It also illustrates the usefulness of fluorescence in situ hybridization in diagnosis of patients with chromosomal abnormalities and mild or atypical clinical findings. 40 refs., 2 figs., 1 tab.

  12. Nucleic acid in-situ hybridization detection of infectious agents

    Science.gov (United States)

    Thompson, Curtis T.

    2000-04-01

    Limitations of traditional culture methods and newer polymerase chain reaction (PCR)-based methods for detection and speciation of infectious agents demonstrate the need for more rapid and better diagnostics. Nucleic acid hybridization is a detection technology that has gained wide acceptance in cancer and prenatal cytogenetics. Using a modification of the nucleic acid hybridization technique known as fluorescence in-situ hybridization, infectious agents can be detected in a variety of specimens with high sensitivity and specificity. The specimens derive from all types of human and animal sources including body fluids, tissue aspirates and biopsy material. Nucleic acid hybridization can be performed in less than one hour. The result can be interpreted either using traditional fluorescence microscopy or automated platforms such as micro arrays. This paper demonstrates proof of concept for nucleic acid hybridization detection of different infectious agents. Interpretation within a cytologic and histologic context is possible with fluorescence microscopic analysis, thereby providing confirmatory evidence of hybridization. With careful probe selection, nucleic acid hybridization promises to be a highly sensitive and specific practical diagnostic alternative to culture, traditional staining methods, immunohistochemistry and complicated nucleic acid amplification tests.

  13. Photochemical properties in flag leaves of a super-high-yielding hybrid rice and a traditional hybrid rice (Oryza sativa L.) probed by chlorophyll a fluorescence transient.

    Science.gov (United States)

    Zhang, Meiping; Shan, YongJie; Kochian, Leon; Strasser, Reto J; Chen, GuoXiang

    2015-12-01

    Chlorophyll a fluorescence of flag leaves in a super-high-yielding hybrid rice (Oryza sativa L.) LYPJ, and a traditional hybrid rice SY63 cultivar with lower grain yield, which were grown in the field, were investigated from emergence through senescence of flag leaves. As the flag leaf matured, there was an increasing trend in photosynthetic parameters such as quantum efficiency of primary photochemistry ([Formula: see text] Po) and efficiency of electron transport from PS II to PS I (Ψ Eo). The overall photosynthetic performance index (PIABS) was significantly higher in the high-yielding LYPJ compared to SY63 during the entire reproductive stage of the plant, the same to MDA content. However, [Formula: see text] Po(=F V/F M), an indicator of the primary photochemistry of the flag leaf, did not display significant changes with leaf age and was not significantly different between the two cultivars, suggesting that PIABS is a more sensitive parameter than [Formula: see text] Po (=F V/F M) during leaf age for distinguishing between cultivars differing in yield.

  14. Fluorescent resonance energy transfer based detection of biological contaminants through hybrid quantum dot-quencher interactions.

    Science.gov (United States)

    Ramadurai, D; Norton, E; Hale, J; Garland, J W; Stephenson, L D; Stroscio, M A; Sivananthan, S; Kumar, A

    2008-06-01

    A nanoscale sensor employing fluorescent resonance energy transfer interactions between fluorescent quantum dots (QDs) and organic quencher molecules can be used for the multiplexed detection of biological antigens in solution. Detection occurs when the antigens to be detected displace quencher-labelled inactivated (or dead) antigens of the same type attached to QD-antibody complexes through equilibrium reactions. This unquenches the QDs, allowing detection to take place through the observation of photoluminescence in solution or through the fluorescence imaging of unquenched QD complexes trapped on filter surfaces. Multiplexing can be accomplished by using several different sizes of QDs, with each size QD labelled with an antibody for a different antigen, providing the ability to detect several types of antigens or biological contaminants simultaneously in near real-time with high specificity and sensitivity.

  15. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella

    Science.gov (United States)

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-01

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  16. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays.

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Mitchell R.; Fruetel, Julia A.; Foster, Michael E.; Hayden, Carl C.; Buckley, Heather L.; Arnold, John

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves "Click" chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  17. Identification of Provocentrum minimum and Takayama pulchella by fluorescence in situ hybridization through epifluorescence microscopy and flow cytometry

    Institute of Scientific and Technical Information of China (English)

    HOU Jianjun; LAI Hongyan; HUANG Bangqin; CHEN Jixin

    2009-01-01

    Partial rDNA sequences of Prorocentrum minimum and Takayama pulchella were amplified,cloned and sequenced,and these sequence data were deposited in the GenBank.Eight oligonucleotide probes(DNA probes)were designed based on the sequence analysis.The probes were employed to detect and identify P.minimum and T. pulchella in unialgal and mixed algal samples with a fuorescence in situ hybridization method using flow cytometry.Epifluorescence micrographs showed that these specific probes labeled with fluorescein isothiocyanate entered the algal cells and bound to target sequences,and the fluorescence signal resulting from whole-cell hybridization varied from probe to probe.These DNA probes and the hybridization protocol we developed were specific and effective for P.minimum and T. pulchella,without any specific binding to other algal species.The hyrbridization efficiency of difierent probes specific to P.minimum was in the order:PMl8S02>PM28S02>PM28S01>PM18S01,and that of the probes specific to T. pulchella was TP18S02>TP28S01>TP28S02>TP18S01.The djfferent hybridization efficiency of the DNA probes could also be shown in the fuorescent signals between the labeled and unlabeled cells demonstrated using flow cytometry.The DNA probes PM18S02,PM28S02,TPl8S02 and TP28S01,and the protocol,were also useful for the detection of algae in natural samples.

  18. Fluorescence quenching method for the determination of catechol with gold nanoparticles and tyrosinase hybrid system

    Institute of Scientific and Technical Information of China (English)

    Martin; M.F.Choi

    2010-01-01

    The determination method of catechol by fluorescence quenching was developed.The assay was based on the combination of the unique property of gold nanoparticles with tyrosinase enzymatic reaction.In the presence of tyrosinase,the fluorescence of gold nanoparticles was quenched by catechol which can be employed to detect catechol.Under the optimal conditions,a linear range 5.0×10~(-7)-1.0×10~(-3) mol L~(-1) and a detection limit 1.0×10~(-7) mol L~(-1) of catechol were obtained.o-Quinone intermediate produ...

  19. A green method for the preparation of fluorescent hybrid structures of gold and corrole

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ângela S., E-mail: aspereira@ua.pt; Barata, Joana F. B. [University of Aveiro, CICECO – Chemistry Department, Aveiro Institute of Materials (Portugal); Vaz Serra, Vanda I. R. C. [University of Aveiro, QOPNA Chemistry Department (Portugal); Pereira, Sérgio; Trindade, Tito [University of Aveiro, CICECO – Chemistry Department, Aveiro Institute of Materials (Portugal)

    2015-10-15

    Gold/soap nanostructures were prepared by a green methodology using saponified household sunflower oil, as reducing and organic dispersing agent of auric acid. The incorporation of hydrophobic molecules on the novel water-soluble gold nanoparticles was followed by fluorescence lifetime imaging microscopy, using as model hydrophobic compound 5,10,15-tris-(pentafluorophenyl)corrolatogallium(III)(pyridine) (GaPFC), a highly fluorescent corrole. The results showed the hydrophobic GaPFC located between the organic bilayer surrounding several Au nanoparticles, which in turn were coated with fatty acids salts anchored by the double bond at the gold’s surface.

  20. Visualization and quantification of archaeal and bacterial metabolically active cells in soil using fluorescence in situ hybridization method

    Science.gov (United States)

    Semenov, Mikhail; Manucharova, Natalia; Stepanov, Alexey

    2015-04-01

    The method of in situ hybridization using fluorescent labeled 16S rRNA-targeted oligonucleotide probes (FISH - fluorescence in situ hybridization) combines identification and quantification of groups of microorganisms at different phylogenetic levels, from domain to species. The FISH method enables to study the soil microbial community in situ, avoiding plating on nutrient media, and allows to identify and quantify living, metabolically active cells of Bacteria and Archaea. The full procedure consists of the following steps: desorption of the cells from the soil particles, fixation of cells, coating a fixed sample on the glass slide, hybridization with the specific probes and, finally, microscopic observation and cell counting. For the FISH analysis of Bacteria and Archaea, the paraformaldehyde-fixed samples were hybridized with Cy3-labeled Archaea-specific probe(Arc915) and 6-carboxyfluorescein (FAM)-labeled Bacteria-specific probe(EUB338). When a molecular probe is incorporated into a cell, it can hybridize solely with a complementary rRNA sequence. The hybridization can be visualized under the fluorescent microscope and counted. The application of FISH will be demonstrated by the abundance of metabolically active cells of Archaea and Bacteria depending on soil properties, depth and land use. The research was carried out at field and natural ecosystems of European part of Russia. Samples were collected within the soil profiles (3-6 horizons) of Chernozem and Kastanozem with distinct land use. Quantification of metabolically active cells in virgin and arable Chernozem revealed that the abundance of Archaea in topsoil of virgin Chernozem was doubled as compared with arable soil, but it leveled off in the deeper horizons. Plowing of Chernozem decreased an amount of archaeal and bacterial active cells simultaneously, however, Bacteria were more resistant to agrogenic impact than Archaea. In Kastanozem, a significant change in the abundance of metabolically active

  1. Chromosomal localization of silkworm (Bombyx mori) sericin gene 1 and chymotrypsin inhibitor 13 using fluorescence in situ hybridization

    Institute of Scientific and Technical Information of China (English)

    SONG FangZhou; CHANG PingAn; ZHANG PingBo; YI FaPing; MA YongPing; LU Cheng; Yutaka BANNO; Hiroshi FUJII

    2008-01-01

    The chromosomal locations of two single-copy genes, Ser-1 and C1-13, in silkworm (Bombyx mori)were detected at the molecular cytogenetics level by fluorescence in situ hybridization in the study. The resuits showed that Ser-1 is located near the distal end of the 11th linkage group, relatively st the 12.5±1.4position in pachytene; and that C1-13 has been mapped near the distal end of the 2nd linkage group,relatively at the 8.2±1.2 position in pachytene. Furthermore, their location model map-FISH map on silkworm chromosome was drawn. The FISH technique and its application to silkworm are also discussed in this paper.

  2. Chromosomal localization of silkworm (Bombyx mori) sericin gene 1 and chymotrypsin inhibitor 13 using fluorescence in situ hybridization

    Institute of Scientific and Technical Information of China (English)

    Yutaka; BANNO; Hiroshi; FUJII

    2008-01-01

    The chromosomal locations of two single-copy genes, Ser-1 and CI-13, in silkworm (Bombyx mori) were detected at the molecular cytogenetics level by fluorescence in situ hybridization in the study. The results showed that Ser-1 is located near the distal end of the 11th linkage group, relatively at the 12.5±1.4 position in pachytene; and that CI-13 has been mapped near the distal end of the 2nd linkage group, relatively at the 8.2±1.2 position in pachytene. Furthermore, their location model map-FISH map on silkworm chromosome was drawn. The FISH technique and its application to silkworm are also discussed in this paper.

  3. Distribution characteristics of ammonia-oxidizing bacteria in the Typha latifolia constructed wetlands using fluorescent in situ hybridization (FISH).

    Science.gov (United States)

    Yan, Li; Inamori, Ryuhei; Gui, Ping; Xu, Kai-qin; Kong, Hai-nan; Matsumura, Masatoshi; Inamori, Yuhei

    2005-01-01

    A molecular biology method, fluorescent in situ hybridization (FISH), in which the pre-treatment was improved in allusion to the media of the constructed wetlands (CW), e.g. the soil and the grit, was used to investigate the vertical distribution characteristics of ammonia-oxidizing bacteria (AOB) quantity and the relation with oxidation-reduction potential (ORP) in the Typha latifolia constructed wetlands under three different loadings in summer from May to September. Results showed that the quantity of the AOB decreased in the Typha latifolia CW with the increase of vertical depth. However, the AOB quantity was 2-4 times the quantity of the control in the root area. Additionally, ORP in the rhizosphere was found to be higher than other areas, which showed that Typha latifolia CW was in an aerobic state in summer when using simulated non-point sewage at the rural area of Taihu Lake in China and small town combined sewage.

  4. Fluorescence in-situ hybridization analysis of chromosomal constitution in spermatozoa from a mosaic 47,XYY/46,XY male.

    Science.gov (United States)

    Wang, J Y; Samura, O; Zhen, D K; Cowan, J M; Cardone, V; Summers, M; Bianchi, D W

    2000-07-01

    Sex-chromosome mosaicism in spermatozoa from a mosaic 47,XYY[20%]/46, XY[80%] male with fertility problems was assessed using triple-probe fluorescence in-situ hybridization (FISH) studies. Chromosome-specific probes for X, Y and 18 were used, and the possible outcomes were deduced. In normal haploid spermatozoa of the patient and a normal 46,XY male control, the X:Y ratio was close to 1:1. There was a significant difference in the total incidence of karyotypically abnormal spermatozoa between the patient and the 46, XY male control (2.31% versus 1.46%, P genetic diagnosis may increase the likelihood of a successful pregnancy.

  5. Quantitative assessment of toxic and nontoxic Microcystis colonies in natural environments using fluorescence in situ hybridization and flow cytometry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Toxic cyanobacterial blooms constitute a threat to human safety because Microcystis sp. releases microcystins during growth, and particularly during cell death. Therefore, analysis of toxic and nontoxic Microcystis in natural communities is required in order to assess and predict bloom dynamics and toxin production by these organisms. In this study, an analysis combining fluorescence in situ hybridization (FISH) with flow cytometry (FCM) was used to discriminate between toxic and nontoxic Microcystis and also to quantify the percentage of toxic Microcystis present in blooms. The results demonstrate that the combination of FISH and flow cytometry is a useful approach for studying the ecology of Microcystis toxin production and for providing an early warning for toxic Microcystis blooms.

  6. Localization of introduced genes on the chromosomes of transgenic barley, wheat and triticale by fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Pedersen, C.; Zimny, J.; Becker, D.

    1997-01-01

    transformant showed a totally different integration pattern. Southern analysis confirmed that the inserted genes were segregating independently, resulting in different integration patterns among the progeny lines. The application of the FISH technique for the analysis of transgenic plants is discussed.......Using fluorescence in situ hybridization (FISH) we localized introduced genes on metaphase chromosomes of barley, wheat, and triticale transformed by microprojectile bombardment of microspores and scutellar tissue with the pDB1 plasmid containing the uidA and bar genes. Thirteen integration sites...... of single-copy integrations. There was a slight tendency towards the localization of transgenes in distal chromosome regions. Using the GAA-satellite sequence for chromosome banding, the chromosomes containing the inserted genes were identified in most cases. Two barley lines derived from the same...

  7. Coumarin-based fluorescence hybrid silica material used for selective detection and absorption of Hg2+ in aqueous media

    Science.gov (United States)

    Meng, Qingtao; Jia, Hongmin; Wang, Cuiping; Zhao, Hongbin; Lu, Gonghao; Hu, Zhizhi; Zhang, Zhiqiang; Duan, Chunying

    2014-11-01

    An inorganic-organic hybrid fluorescence material (C-SBA-15) was prepared by covalent immobilization of a coumarin derivative within the channels of SBA-15. The characterization results of XRD, TEM micrographs, FT-IR and UV-vis demonstrate that coumarin is successfully grafted onto the inner surface of SBA-15 and its organized structure is preserved. C-SBA-15 can detect Hg2+ with high selectivity to Pb2+, Zn2+, Cu2+, Mn2+, Cd2+, Co2+, Ag+, Fe3+, Ni2+, K+, Na+, Ca2+, Mg2+ and Li+ in water. Furthermore, the fluorogenical response is reversible by treating with EDTA and do not vary over a broad pH range (5.0-10.5). C-SBA-15 features more outstanding absorbing capacity for Hg2+ among other HTM ions in water.

  8. Human cDNA mapping using fluorescence in situ hybridization. Progress report, April 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1993-03-04

    Genetic mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach generated 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  9. Karyotyping and single-gene detection using fluorescence in situ hybridization on chromosomes of Hydra magnipapillata (Cnidaria: Hydrozoa

    Directory of Open Access Journals (Sweden)

    B Anokhin

    2010-12-01

    Full Text Available The fresh water polyp Hydra L., 1758 (Cnidaria, Hydrozoa plays a key role as a model organism in modern evolutionary and developmental biology. A complete genome sequence has been published recently for Hydra magnipapillata Ito, 1947 and molecular data are rapidly accumulating in the literature, but little information is available on its chromosomes. In this study, an efficient fluorescence in situ hybridization (FISH method is described for H. magnipapillata which not only allows identification of the chromosomes but also visualization of the location of individual genetic loci. Together with cDNA and genomic sequencing this may provide the foundation for increasingly precise genetic and physical mapping in this basal metazoan model organism.

  10. Validation of interphase fluorescence in situ hybridization (iFISH for multiple myeloma using CD138 positive cells

    Directory of Open Access Journals (Sweden)

    Renata Kiyomi Kishimoto

    2016-06-01

    Full Text Available ABSTRACT BACKGROUND: Multiple myeloma is a plasma cell neoplasm with acquired genetic abnormalities of clinical and prognostic importance. Multiple myeloma differs from other hematologic malignancies due to a high fraction of low proliferating malignant plasma cells and the paucity of plasma cells in bone marrow aspiration samples, making cytogenetic analysis a challenge. An abnormal karyotype is found in only one-third of patients with multiple myeloma and interphase fluorescence in situ hybridization is the most useful test for studying the chromosomal abnormalities present in almost 90% of cases. However, it is necessary to study the genetic abnormalities in plasma cells after their identification or selection by morphology, immunophenotyping or sorting. Other challenges are the selection of the most informative FISH panel and determining cut-off levels for FISH probes. This study reports the validation of interphase fluorescence in situ hybridization using CD138 positive cells, according to proposed guidelines published by the European Myeloma Network (EMN in 2012. METHOD: Bone marrow samples from patients with multiple myeloma were used to standardize a panel of five probes [1q amplification, 13q14 deletion, 17p deletion, t(4;14, and t(14;16] in CD138+ cells purified by magnetic cell sorting. RESULTS: This test was validated with a low turnaround time and good reproducibility. Five of six samples showed genetic abnormalities. Monosomy/deletion 13 plus t(4;14 were found in two cases. CONCLUSION: This technique together with magnetic cell sorting is effective and can be used in the routine laboratory practice. In addition, magnetic cell sorting provides a pure plasma cell population that allows other molecular and genomic studies.

  11. High sensitivity troponin and valvular heart disease.

    Science.gov (United States)

    McCarthy, Cian P; Donnellan, Eoin; Phelan, Dermot; Griffin, Brian P; Sarano, Maurice Enriquez-; McEvoy, John W

    2017-01-16

    Blood-based biomarkers have been extensively studied in a range of cardiovascular diseases and have established utility in routine clinical care, most notably in the diagnosis of acute coronary syndrome (e.g., troponin) and the management of heart failure (e.g., brain-natriuretic peptide). The role of biomarkers is less well established in the management of valvular heart disease (VHD), in which the optimal timing of surgical intervention is often challenging. One promising biomarker that has been the subject of a number of recent VHD research studies is high sensitivity troponin (hs-cTn). Novel high-sensitivity assays can detect subclinical myocardial damage in asymptomatic individuals. Thus, hs-cTn may have utility in the assessment of asymptomatic patients with severe VHD who do not have a clear traditional indication for surgical intervention. In this state-of-the-art review, we examine the current evidence for hs-cTn as a potential biomarker in the most commonly encountered VHD conditions, aortic stenosis and mitral regurgitation. This review provides a synopsis of early evidence indicating that hs-cTn has promise as a biomarker in VHD. However, the impact of its measurement on clinical practice and VHD outcomes needs to be further assessed in prospective studies before routine clinical use becomes a reality.

  12. Highly sensitive catalytic spectrophotometric determination of ruthenium

    Science.gov (United States)

    Naik, Radhey M.; Srivastava, Abhishek; Prasad, Surendra

    2008-01-01

    A new and highly sensitive catalytic kinetic method (CKM) for the determination of ruthenium(III) has been established based on its catalytic effect on the oxidation of L-phenylalanine ( L-Pheala) by KMnO 4 in highly alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance at 526 nm. The proposed CKM is based on the fixed time procedure under optimum reaction conditions. It relies on the linear relationship where the change in the absorbance (Δ At) versus added Ru(III) amounts in the range of 0.101-2.526 ng ml -1 is plotted. Under the optimum conditions, the sensitivity of the proposed method, i.e. the limit of detection corresponding to 5 min is 0.08 ng ml -1, and decreases with increased time of analysis. The method is featured with good accuracy and reproducibility for ruthenium(III) determination. The ruthenium(III) has also been determined in presence of several interfering and non-interfering cations, anions and polyaminocarboxylates. No foreign ions interfered in the determination ruthenium(III) up to 20-fold higher concentration of foreign ions. In addition to standard solutions analysis, this method was successfully applied for the quantitative determination of ruthenium(III) in drinking water samples. The method is highly sensitive, selective and very stable. A review of recently published catalytic spectrophotometric methods for the determination of ruthenium(III) has also been presented for comparison.

  13. Comparison of viable cell counts and fluorescence in situ hybridization using specific rRNA-based probes for the quantification of human fecal bacteria

    NARCIS (Netherlands)

    Harmsen, HJM; Gibson, GR; Elfferich, P; Raangs, GC; Wildeboer-Veloo, ACM; Argaiz, A; Roberfroid, MB; Welling, GW

    2000-01-01

    Conventional cultivation and fluorescence in situ hybridization (FISH) using 16S rRNA-based probes were compared for the enumeration of human colonic bacteria. Groups of common intestinal anaerobic bacteria were enumerated in slurries prepared From fecal samples of three healthy volunteers. To intro

  14. Phylogeny-function analysis of (meta)genomic libraries: screening for expression of ribosomal RNA genes by large-insert library fluorescent in situ hybridization (LIL-FISH)

    NARCIS (Netherlands)

    Leveau, J.H.J.; Gerards, S.; De Boer, W.; Van Veen, J.A.

    2004-01-01

    We assessed the utility of fluorescent in situ hybridization (FISH) in the screening of clone libraries of (meta)genomic or environmental DNA for the presence and expression of bacterial ribosomal RNA (rRNA) genes. To establish proof-of-principle, we constructed a fosmid-based library in Escherichia

  15. Cytogenetic follow-up by karyotyping and fluorescence in situ hybridization: implications for monitoring patients with myelodysplastic syndrome and deletion 5q treated with lenalidomide

    Science.gov (United States)

    Göhring, Gudrun; Giagounidis, Aristoteles; Büsche, Guntram; Hofmann, Winfried; Kreipe, Hans Heinrich; Fenaux, Pierre; Hellström-Lindberg, Eva; Schlegelberger, Brigitte

    2011-01-01

    In patients with low and intermediate risk myelodysplastic syndrome and deletion 5q (del(5q)) treated with lenalidomide, monitoring of cytogenetic response is mandatory, since patients without cytogenetic response have a significantly increased risk of progression. Therefore, we have reviewed cytogenetic data of 302 patients. Patients were analyzed by karyotyping and fluorescence in situ hybridization. In 85 patients, del(5q) was only detected by karyotyping. In 8 patients undergoing karyotypic evolution, the del(5q) and additional chromosomal aberrations were only detected by karyotyping. In 3 patients, del(5q) was only detected by fluorescence in situ hybridization, but not by karyotyping due to a low number of metaphases. Karyotyping was significantly more sensitive than fluorescence in situ hybridization in detecting the del(5q) clone. In conclusion, to optimize therapy control of myelodysplastic syndrome patients with del(5q) treated with lenalidomide and to identify cytogenetic non-response or progression as early as possible, fluorescence in situ hybridization alone is inadequate for evaluation. Karyotyping must be performed to optimally evaluate response. (clinicaltrials.gov identifier: NCT01099267 and NCT00179621) PMID:21109690

  16. Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid.

    Science.gov (United States)

    Lin, Ting-An; Chatterjee, Tanmay; Tsai, Wei-Lung; Lee, Wei-Kai; Wu, Meng-Jung; Jiao, Min; Pan, Kuan-Chung; Yi, Chih-Lung; Chung, Chin-Lung; Wong, Ken-Tsung; Wu, Chung-Chih

    2016-08-01

    Extremely efficient sky-blue organic electroluminescence with external quantum efficiency of ≈37% is achieved in a conventional planar device structure, using a highly efficient thermally activated delayed fluorescence emitter based on the spiroacridine-triazine hybrid and simultaneously possessing nearly unitary (100%) photoluminescence quantum yield, excellent thermal stability, and strongly horizontally oriented emitting dipoles (with a horizontal dipole ratio of 83%).

  17.   In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Dige, Irene; Kilian, Mogens; Nilsson, Holger

    2007-01-01

    Confocal laser scanning microscopy (CLSM) has been employed as a method for studying intact natural biofilm. When combined with fluorescence in situ hybridization (FISH) it is possible to analyze spatial relationships and changes of specific members of microbial populations over time. The aim...

  18. A new method for identification of Trichomonas vaginalis by fluorescent DNA in situ hybridization.

    OpenAIRE

    Muresu, R; Rubino, S.; Rizzu, P.; Baldini, A.; Colombo, M; Cappuccinelli, P.

    1994-01-01

    The protozoan flagellate Trichomonas vaginalis is responsible for human trichomoniasis, one of the most widespread sexually transmitted diseases in the world. Several methods are currently used for laboratory diagnosis, including direct microscopic observation, cell culture, immunological techniques, and more recently, DNA probing and gene amplification. This report describes an in situ hybridization technique with specific DNA probes labeled with either biotin, rhodamine, or fluorescein for ...

  19. Peptide nucleic acid fluorescence in situ hybridization for identification of Listeria genus, Listeria monocytogenes and Listeria ivanovii.

    Science.gov (United States)

    Zhang, Xiaofeng; Wu, Shan; Li, Ke; Shuai, Jiangbing; Dong, Qiang; Fang, Weihuan

    2012-07-02

    A fluorescent in situ hybridization (FISH) method in conjunction with fluorescin-labeled peptide nucleic acid (PNA) probes (PNA-FISH) for detection of Listeria species was developed. In silico analysis showed that three PNA probes Lis-16S-1, Lm-16S-2 and Liv-16S-5 were suitable for specific identification of Listeria genus, Listeria monocytogenes and Listeria ivanovii, respectively. These probes were experimentally verified by their reactivity against 19 strains of six Listeria species (excluding newly described species Listeria marthii and Listeria rocourtiae) and eight other bacterial species. The PNA-FISH method was optimized as 30 min of hybridization with 0.2% Triton X-100 in the solution and used to identify 85 Listeria strains from individual putative Listeria colonies on PALCAM agar plates streaked from selectively enriched cultures of 780 food or food-related samples. Of the 85 Listeria strains, thirty-seven were identified as L. monocytogenes with the probe Lm-16S-2 and two as L. ivanovii with the probe Liv-16S-5 which was in agreement with the results obtained by the API LISTERIA method. Thus, the PNA-FISH protocol has the potential for identification of pathogenic Listeria spp. from food or food-related samples.

  20. Pre-implantation genetic screening using fluorescence in situ hybridization in couples of Indian ethnicity: Is there a scope?

    Directory of Open Access Journals (Sweden)

    Shailaja Gada Saxena

    2014-01-01

    Full Text Available Context: There is a high incidence of numerical chromosomal aberration in couples with repeated in vitro fertilization (IVF failure, advanced maternal age, repeated unexplained abortions, severe male factor infertility and unexplained infertility. Pre-implantation genetic screening (PGS, a variant of pre-implantation genetic diagnosis, screens numerical chromosomal aberrations in couples with normal karyotype, experiencing poor reproductive outcome. The present study includes the results of the initial pilot study on 9 couples who underwent 10 PGS cycles. Aim: The aim of the present study was to evaluate the beneficial effects of PGS in couples with poor reproductive outcome. Settings and Design: Data of initial 9 couples who underwent 10 PGS for various indications was evaluated. Subjects and Methods: Blastomere biopsy was performed on cleavage stage embryos and subjected to two round fluorescence in situ hybridization (FISH testing for chromosomes 13, 18, 21, X and Y as a two-step procedure. Results: Six of the 9 couples (10 PGS cycles conceived, including a twin pregnancy in a couple with male factor infertility, singleton pregnancies in a couple with secondary infertility, in three couples with adverse obstetric outcome in earlier pregnancies and in one couple with repeated IVF failure. Conclusion: In the absence of availability of array-comparative genomic hybridization in diagnostic clinical scenario for PGS and promising results with FISH based PGS as evident from the current pilot study, it is imperative to offer the best available services in the present scenario for better pregnancy outcome for patients.

  1. Development of a flow-fluorescence in situ hybridization protocol for the analysis of microbial communities in anaerobic fermentation liquor.

    Science.gov (United States)

    Nettmann, Edith; Fröhling, Antje; Heeg, Kathrin; Klocke, Michael; Schlüter, Oliver; Mumme, Jan

    2013-12-04

    The production of bio-methane from renewable raw material is of high interest because of the increasing scarcity of fossil fuels. The process of biomethanation is based on the inter- and intraspecific metabolic activity of a highly diverse and dynamic microbial community. The community structure of the microbial biocenosis varies between different biogas reactors and the knowledge about these microbial communities is still fragmentary. However, up to now no approaches are available allowing a fast and reliable access to the microbial community structure. Hence, the aim of this study was to originate a Flow-FISH protocol, namely a combination of flow cytometry and fluorescence in situ hybridization, for the analysis of the metabolically active microorganisms in biogas reactor samples. With respect to the heterogenic texture of biogas reactor samples and to collect all cells including those of cell aggregates and biofilms the development of a preceding purification procedure was indispensable. Six different purification procedures with in total 29 modifications were tested. The optimized purification procedure combines the use of the detergent sodium hexametaphosphate with ultrasonic treatment and a final filtration step. By this treatment, the detachment of microbial cells from particles as well as the disbandment of cell aggregates was obtained at minimized cell loss. A Flow-FISH protocol was developed avoiding dehydration and minimizing centrifugation steps. In the exemplary application of this protocol on pure cultures as well as biogas reactor samples high hybridization rates were achieved for commonly established domain specific oligonucleotide probes enabling the specific detection of metabolically active bacteria and archaea. Cross hybridization and autofluorescence effects could be excluded by the use of a nonsense probe and negative controls, respectively. The approach described in this study enables for the first time the analysis of the metabolically

  2. Establishment of a new human pleomorphic malignant fibrous histiocytoma cell line, FU-MFH-2: molecular cytogenetic characterization by multicolor fluorescence in situ hybridization and comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Isayama Teruto

    2010-11-01

    Full Text Available Abstract Background Pleomorphic malignant fibrous histiocytoma (MFH is one of the most frequent malignant soft tissue tumors in adults. Despite the considerable amount of research on MFH cell lines, their characterization at a molecular cytogenetic level has not been extensively analyzed. Methods and results We established a new permanent human cell line, FU-MFH-2, from a metastatic pleomorphic MFH of a 72-year-old Japanese man, and applied multicolor fluorescence in situ hybridization (M-FISH, Urovysion™ FISH, and comparative genomic hybridization (CGH for the characterization of chromosomal aberrations. FU-MFH-2 cells were spindle or polygonal in shape with oval nuclei, and were successfully maintained in vitro for over 80 passages. The histological features of heterotransplanted tumors in severe combined immunodeficiency mice were essentially the same as those of the original tumor. Cytogenetic and M-FISH analyses displayed a hypotriploid karyotype with numerous structural aberrations. Urovysion™ FISH revealed a homozygous deletion of the p16INK4A locus on chromosome band 9p21. CGH analysis showed a high-level amplification of 9q31-q34, gains of 1p12-p34.3, 2p21, 2q11.2-q21, 3p, 4p, 6q22-qter, 8p11.2, 8q11.2-q21.1, 9q21-qter, 11q13, 12q24, 15q21-qter, 16p13, 17, 20, and X, and losses of 1q43-qter, 4q32-qter, 5q14-q23, 7q32-qter, 8p21-pter, 8q23, 9p21-pter, 10p11.2-p13, and 10q11.2-q22. Conclusion The FU-MFH-2 cell line will be a particularly useful model for studying molecular pathogenesis of human pleomorphic MFH.

  3. Photofunctional hybrids of lanthanide functionalized bio-MOF-1 for fluorescence tuning and sensing.

    Science.gov (United States)

    Shen, Xiang; Yan, Bing

    2015-08-01

    A series of luminescent Ln(3+)@bio-MOF-1 (Ln=Eu, Tb, bio-MOF-1=Zn8(ad)4(BPDC)6O⋅2Me2NH2 (ad=adeninate, BPDC=biphenyldicarboxylate)) are synthesized via postsynthetic cation exchange by encapsulating lanthanide ions into an anionic metal-organic framework (MOF), and their photophysical properties are studied. After loading 2-thenoyltrifluroacetone (TTA) as sensitized ligand by a gas diffusion ("ship-in-bottle") method, it is found that the luminescent intensity of Eu(3+) is enhanced. Especially, when loading two different lanthanide cations into bio-MOF-1, the luminescent color can be tuned to close white (light pink) light output. Additionally, bio-MOF-1 and Eu(3+)@bio-MOF-1 are selected as representative samples for sensing metal ions. When bio-MOF-1 is immersed in the aqueous solutions of different metal ions, it shows highly sensitive sensing for Fe(3+) as well as Eu(3+)@bio-MOF-1 immersed in the DMF solutions of different metal ion. The results are benefit for the further application of functionalized bio-MOFs in practical fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Olsen, Jakob Lind

    This thesis present a highly sensitive silicon microreactor and examples of its use in studying catalysis. The experimental setup built for gas handling and temperature control for the microreactor is described. The implementation of LabVIEW interfacing for all the experimental parts makes...... automated experiments and data collection possible. An argon ush at the O-rings (used to interface the silicon microreactor with the gas system), which was developed, is presented. It enables experiments with temperatures up to 400., and up to 500. for short periods of time. The CO oxidation reaction...... of adsorbates readily converted to methanol as the source of the transient increase in methanol production, is eliminated. A study of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source, deposited in microreactors, is presented. It is, shown that CO methanation can be measured...

  5. High-sensitivity fiber optic acoustic sensors

    Science.gov (United States)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  6. Detection of Embryo Sex Chromosome by Dual Color Fluorescent In-Situ Hybridization

    Institute of Scientific and Technical Information of China (English)

    刘群; 朱桂金

    2003-01-01

    Summary: In order to evaluate the effects of sex chromosomal mosaicism on the accuracy of single-cell gender diagnosis, sex chromosomes of 21 normal fertilized embryos were detected by dual colorfluorescent in-situ hybridization (FISH). The results showed that 4 embryos had sex chromosomalmosaicism (19%) and the remaining 17 showed uniformly XX or XY signals in all blastomeres. Inconclusion, identification of sex by dual color FISH analysis of a single cell was accurate and efficient,and sex chromosomal mosaicism would not affect preimplantation gender diagnosis.

  7. Hybrid aptamer-antibody linked fluorescence resonance energy transfer based detection of trinitrotoluene.

    Science.gov (United States)

    Sabherwal, Priyanka; Shorie, Munish; Pathania, Preeti; Chaudhary, Shilpa; Bhasin, K K; Bhalla, Vijayender; Suri, C Raman

    2014-08-05

    Combining synthetic macromolecules and biomolecular recognition units are promising in developing novel diagnostic and analysis techniques for detecting environmental and/or clinically important substances. Fluorescence resonance energy transfer (FRET) apta-immunosensor for explosive detection is reported using 2,4,6-trinitrotoluene (TNT) specific aptamer and antibodies tagged with respective FRET pair dyes in a sandwich immunoassay format. FITC-labeled aptamer was used as a binder molecule in the newly developed apta-immunoassay format where the recognition element was specific anti-TNT antibody labeled with rhodamine isothiocyanate. The newly developed sensing platform showed excellent sensitivity with a detection limit of the order of 0.4 nM presenting a promising candidate for routine screening of TNT in samples.

  8. Mismatch discrimination in fluorescent in situ hybridization using different types of nucleic acids

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Joana, Barros; Pedro, Madureira

    2015-01-01

    in biological targets, Helicobacter pylori and Helicobacter acinonychis. This is also the first study where unlocked nucleic acids (UNA) were used as chemistry modification in oligonucleotides for FISH methodologies. The effectiveness in detecting the specific target and in mismatch discrimination appears...... acid monomers might be crucial to the success of the analysis. To achieve the expected accuracy in detection, FISH probes should have high binding affinity towards their complementary strands and discriminate effectively the noncomplementary strands. In this study, we investigate the effect...... of different chemical modifications in fluorescent probes on their ability to successfully detect the complementary target and discriminate the mismatched base pairs by FISH. To our knowledge, this paper presents the first study where this analysis is performed with different types of FISH probes directly...

  9. Clinical Application of Fluorescence in Situ Hybridization (FISH) to Detect HER-2 Gene in Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Maurie Buehler; Ellie Guardino; Jung Sik Park; Eun Jeong Jang

    2014-01-01

    Objective: To investigate the clinical application of the detection of HER-2 gene by lfuorescence in situ hybridization (FISH) in breast cancer and the correlation between HER-2 gene ampliifcation and clinicopathology of breast cancer. Methods:Parafifn-embedded breast inifltrating ductal carcinoma from 48 patients were detected by FISH and immunohistochemistry (IHC) respectively for comparing the results of two methods. Results: HER-2 protein expressions were classified into three groups (3+/2+/1+ or 0) and the positive rates of HER-2 gene ampliifcation by FISH were 77.8%, 57.1% and 10.5%, respectively. Of the 29 cases with positive axillary lymph node, 12 were with HER-2 gene ampliifcation (P0.05). Conclusion:The false positive and negative rates are higher in HER-2 protein expression by IHC. Compared with IHC, FISH, being more effective and precise, can be applied extensively in clinic. HER-2 gene ampliifcation is concerned with axillary nodes metastases.

  10. Photocatalytic oxidation removal of Hg0 using ternary Ag/AgI-Ag2CO3 hybrids in wet scrubbing process under fluorescent light

    Science.gov (United States)

    Zhang, Anchao; Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao; Xiang, Jun

    2017-01-01

    A series of ternary Ag/AgI-Ag2CO3 photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg0 removal in a wet scrubbing reactor. The hybrids were characterized by N2 adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg0 removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg0 removal. NO exhibited significant effect on Hg0 removal in comparison to SO2. Among these ternary Ag/AgI-Ag2CO3 hybrids, Ag/AgI(0.1)-Ag2CO3 showed the highest Hg0 removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag2CO3 and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag0 NPs). The trapping studies of reactive radicals showed that the superoxide radicals (rad O2-) may play a key role in Hg0 removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg0 removal over Ag/AgI(0.1)-Ag2CO3 hybrid under fluorescent light was proposed.

  11. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Chen, Chuanxiang [School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Pan, Yan; Deng, Linhong [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Liu, Li [School of pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164 (China); Kong, Yong, E-mail: yzkongyong@126.com [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China)

    2016-10-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the –NH{sub 2} groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. - Graphical abstract: Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Display Omitted - Highlights: • Highly fluorescent GQDs-CS hybrid xerogels were facilely synthesized. • The as-made xerogels exhibited various morphologies with different GQDs contents. • The GQDs-CS exhibited a porous and 3D network when the content of GQDs reached 43%. • The GQDs-CS could be applied for in vivo imaging since it showed strong luminescence. • The protonation/deprotonation of –NH{sub 2} on CS result in a pH-dependent drug delivery.

  12. High-sensitive cardiac troponin T

    Institute of Scientific and Technical Information of China (English)

    Ru-Yi Xu; Xiao-Fa Zhu; Ye Yang; Ping Ye

    2013-01-01

    Cardiac troponin is the preferred biomarker for the diagnosis of acute myocardial infarction (AMI). The recent development of a high-sensitive cardiac troponin T (hs-cTnT) assay permits detection of very low levels of cTnT. Using the hs-cTnT assay improves the overall diagnostic accuracy in patients with suspected AMI, while a negative result also has a high negative predictive value. The gain in sensitivity may be particularly important in patients with a short duration from symptom onset to admission. Measurement of cardiac troponin T with the hs-cTnT assay may provide strong prognostic information in patients with acute coronary syndromes, stable coronary artery disease, heart failure and even in the general population; however, increased sensitivity comes at a cost of decreased specificity. Serial testing, as well as clinical context and co-existing diseases, are likely to become increasingly important for the interpretation of hs-cTnT assay results.

  13. Highly sensitive direct conversion ultrasound interferometer

    Science.gov (United States)

    Svitelskiy, Oleksiy; Grossmann, John; Suslov, Alexey

    2015-03-01

    Being invented more than fifty years ago, the ultrasonic pulse-echo technique has proven itself as a valuable and indispensable non-destructive tool to explore elastic properties of materials in engineering and scientific tasks. We propose a new design for the instrument based on mass-produced integral microchips. In our design the radiofrequency echo-pulse signal is processed by AD8302 RF gain and phase detector (www.analog.com).Its phase output is linearly proportional to the phase difference between the exciting and response signals. The gain output is proportional to the log of the ratio of amplitudes of the received to the exciting signals. To exclude the non-linear fragments and to enable exploring large phase changes, we employ parallel connection of two detectors, fed by in-phase and quadrature signals respectively. The instrument allowed us exploring phase transitions with precision of ΔV / V ~10-7 (V is the ultrasound speed). The high sensitivity of the logarithmic amplifiers embedded into AD8302 requires good grounding and screening of the receiving circuitry.

  14. High sensitivity field asymmetric ion mobility spectrometer

    Science.gov (United States)

    Chavarria, Mario A.; Matheoud, Alessandro V.; Marmillod, Philippe; Liu, Youjiang; Kong, Deyi; Brugger, Jürgen; Boero, Giovanni

    2017-03-01

    A high sensitivity field asymmetric ion mobility spectrometer (FAIMS) was designed, fabricated, and tested. The main components of the system are a 10.6 eV UV photoionization source, an ion filter driven by a high voltage/high frequency n-MOS inverter circuit, and a low noise ion detector. The ion filter electronics are capable to generate square waveforms with peak-to-peak voltages up to 1000 V at frequencies up to 1 MHz with adjustable duty cycles. The ion detector current amplifier has a gain up to 1012 V/A with an effective equivalent input noise level down to about 1 fA/Hz1/2 during operation with the ion filter at the maximum voltage and frequency. The FAIMS system was characterized by detecting different standard chemical compounds. Additionally, we investigated the use of a synchronous modulation/demodulation technique to improve the signal-to-noise ratio in FAIMS measurements. In particular, we implemented the modulation of the compensation voltage with the synchronous demodulation of the ion current. The analysis of the measurements at low concentration levels led to an extrapolated limit of detection for acetone of 10 ppt with an averaging time of 1 s.

  15. Application of rRNA probes and fluorescence in situ hybridization for rapid detection of the toxic dinoflagellate Alexandrium minutum

    Science.gov (United States)

    Tang, Xianghai; Yu, Rencheng; Zhou, Mingjiang; Yu, Zhigang

    2012-03-01

    The dinoflagellate Alexandrium minutum is often associated with harmful algal blooms (HABs). This species consists of many strains that differ in their ability to produce toxins but have similar morphology, making identification difficult. In this study, species-specific rRNA probes were designed for whole-cell fluorescence in situ hybridization (FISH) to distinguish A. minutum from two phylogenetic clades. We acquired the complete SSU to LSU rDNA sequences (GenBank accession numbers JF906989-JF906999) of 11 Alexandrium strains and used these to design rRNA targeted oligonucleotide probes. Three ribotype-specific probes, M-GC-1, M-PC-2, and M-PC-3, were designed. The former is specific for the GC clade ("Global clade") of A. minutum, the majority of which have been found non-toxic, and the latter two are specific for the PSP (paralytic shellfish poisoning)-producing PC clade ("Pacific clade"). The specificity of these three probes was confirmed by FISH. All cells in observed fields of view were fluorescently labeled when probes and target species were incubated under optimized FISH conditions. However, the accessibility of rRNA molecules in ribosomes varied among the probe binding positions. Thus, there was variation in the distribution of positive signals in labeled cells within nucleolus and cytosol (M-GC-1, M-PC-3), or just nucleolus (M-PC-2). Our results provide a methodological basis for studying the biogeography and population dynamics of A. minutum, and providing an early warning of toxic HABs.

  16. Identification of Fetal Inflammatory Cells in Eosinophilic/T-cell Chorionic Vasculitis Using Fluorescent In Situ Hybridization.

    Science.gov (United States)

    Katzman, Philip J; Li, LiQiong; Wang, Nancy

    2015-01-01

    Eosinophilic/T-cell chorionic vasculitis (ETCV) is an inflammatory lesion of placental fetal vessels. In contrast to acute chorionic vasculitis, inflammation in ETCV is seen in chorionic vessel walls opposite the amnionic surface. It is not known whether inflammation in ETCV consists of maternal cells from the intervillous space or fetal cells migrating from the vessel. We used fluorescent in situ hybridization (FISH) to differentiate fetal versus maternal cells in ETCV. Placentas with ETCV, previously identified for a published study, were used. Infant sex in each case was identified using the electronic medical record. For male infants, 3-μm sections were cut from archived tissue blocks from placentas involving ETCV and stained with fluorescent X- and Y-chromosome centromeric probes. A consecutive hematoxylin/eosin-stained section was used for correlation. FISH analysis was performed on 400 interphase nuclei at the site of ETCV to determine the proportion of XX, XY, X, and Y cells. Of 31 ETCV cases, 20 were female and 10 were male (1 sex not recorded). Six of 10 cases with male infants had recuts with visible ETCV. In these 6 cases the average percentages (ranges) of XY cells, X-only cells, and Y-only cells in the region of inflammation were 81 (70-90), 11 (6-17), and 8 (2-14), respectively. There was a 2:1 female:male infant ratio in ETCV. Similar to acute chorionic vasculitis, the inflammation in ETCV is of fetal origin. It is still unknown, however, whether the stimulus for ETCV is of fetal or maternal origin.

  17. Fully automated fluorescent in situ hybridization (FISH staining and digital analysis of HER2 in breast cancer: a validation study.

    Directory of Open Access Journals (Sweden)

    Elise M J van der Logt

    Full Text Available HER2 assessment is routinely used to select patients with invasive breast cancer that might benefit from HER2-targeted therapy. The aim of this study was to validate a fully automated in situ hybridization (ISH procedure that combines the automated Leica HER2 fluorescent ISH system for Bond with supervised automated analysis with the Visia imaging D-Sight digital imaging platform. HER2 assessment was performed on 328 formalin-fixed/paraffin-embedded invasive breast cancer tumors on tissue microarrays (TMA and 100 (50 selected IHC 2+ and 50 random IHC scores full-sized slides of resections/biopsies obtained for diagnostic purposes previously. For digital analysis slides were pre-screened at 20x and 100x magnification for all fluorescent signals and supervised-automated scoring was performed on at least two pictures (in total at least 20 nuclei were counted with the D-Sight HER2 FISH analysis module by two observers independently. Results were compared to data obtained previously with the manual Abbott FISH test. The overall agreement with Abbott FISH data among TMA samples and 50 selected IHC 2+ cases was 98.8% (κ = 0.94 and 93.8% (κ = 0.88, respectively. The results of 50 additionally tested unselected IHC cases were concordant with previously obtained IHC and/or FISH data. The combination of the Leica FISH system with the D-Sight digital imaging platform is a feasible method for HER2 assessment in routine clinical practice for patients with invasive breast cancer.

  18. Application of rRNA probes and fluorescence in situ hybridization for rapid detection of the toxic dinoflagellate Alexandrium minutum

    Institute of Scientific and Technical Information of China (English)

    TANG Xianghai; YU Rencheng; ZHOU Mingjiang; YU Zhigang

    2012-01-01

    The dinoflagellate Alexandrium minutum is often associated with harmful algal blooms (HABs).This species consists of many strains that differ in their ability to produce toxins but have similar morphology,making identification difficult.In this study,species-specific rRNA probes were designed for whole-cell fluorescence in situ hybridization (FISH) to distinguish A.minutum from two phylogenetic clades.We acquired the complete SSU to LSU rDNA sequences (GenBank accession numbers JF906989-JF906999) of 11 Alexandrium strains and used these to design rRNA targeted oligonucleotide probes.Three ribotype-specific probes,M-GC-1,M-PC-2,and M-PC-3,were designed.The former is specific for the GC clade (“Global clade”) of A.minutum,the majority of which have been found non-toxic,and the latter two are specific for the PSP (paralytic shellfish poisoning)-producing PC clade (“Pacific clade”).The specificity of these three probes was confirmed by FISH.All cells in observed fields of view were fluorescently labeled when probes and target species were incubated under optimized FISH conditions.However,the accessibility of rRNA molecules in ribosomes varied among the probe binding positions.Thus,there was variation in the distribution of positive signals in labeled cells within nucleolus and cytosol (M-GC-1,M-PC-3),or just nucleolus (M-PC-2).Our results provide a methodological basis for studying the biogeography and population dynamics of A.minutum,and providing an early warning of toxic HABs.

  19. LNA probes substantially improve the detection of bacterial endosymbionts in whole mount of insects by fluorescent in-situ hybridization

    Directory of Open Access Journals (Sweden)

    Priya Natarajan

    2012-05-01

    Full Text Available Abstract Background Detection of unculturable bacteria and their localization in the host, by fluorescent in-situ hybridization (FISH, is a powerful technique in the study of host-bacteria interaction. FISH probes are designed to target the 16 s rRNA region of the bacteria to be detected. LNA probes have recently been used in FISH studies and proven to be more efficient. To date no report has employed LNA probes for FISH detection of bacterial endosymbiont in the whole mount tissues. Further, though speculated, bacteriocytes have not been reported from males of Bemisia tabaci. Results In this study, we compared the efficiency in detecting bacteria by fluorescent DNA oligonucleotides versus modified probes containing Locked Nucleic Acid (LNA substitution in their structure. We used the insect Bemisia tabaci as the experimental material since it carried simultaneous infection by two bacteria: one a primary endosymbiont, Portiera (and present in more numbers while the other a secondary endosymbiont Arsenophonus (and present in less numbers. Thus a variation in the abundance of bacteria was expected. While detecting both the bacteria, we found a significant increase in the signal whenever LNA probes were used. However, the difference was more pronounced in detecting the secondary endosymbiont, wherein DNA probes gave weak signals when compared to LNA probes. Also, signal to noise ratio for LNA probes was higher than DNA probes. We found that LNA considerably improved sensitivity of FISH, as compared to the commonly used DNA oligonucleotide probe. Conclusion By employing LNA probes we could detect endosymbiotic bacteria in males, which have never been reported previously. We were able to detect bacteriocytes containing Portiera and Arsenophonus in the males of B. tabaci. Thus, employing LNA probes at optimized conditions will help to significantly improve detection of bacteria at the lowest concentration and may give a comprehensible depiction

  20. Fluorescent in situ hybridization analysis of open lactic acid fermentation of kitchen refuse using rRNA-targeted oligonucleotide probes.

    Science.gov (United States)

    Sakai, Kenji; Mori, Masatsugu; Fujii, Akira; Iwami, Yuko; Chukeatirote, Ekachai; Shirai, Yoshihito

    2004-01-01

    Reproducible amounts of lactic acid accumulate in minced kitchen refuse under open conditions with intermittent pH neutralization [Sakai et al., Food Sci. Technol. Res., 6, 140 (2000)]. Here, we showed that such pH-controlled open fermentation of kitchen refuse reproducibly resulted a selective proliferation of a major lactic acid bacterial (LAB) species. In one experiment, the predominant microorganisms isolated during the early phase (6 h) were Gammaproteobacteria. In contrast, those that predominated during the late phase (48 h) were always Lactobacillus plantarum in three independent experiments. To further quantify the microbial community within open lactic acid fermentation, we performed fluorescent in situ hybridization (FISH) analysis targeting 16S (23S) rRNA. We designed two new group-specific DNA probes: LAC722(L) was active for most LAB including the genera Lactobacillus, Pediococcus, Leuconostoc and Weisella, whereas Lplan477 was specific for L. plantarum and its related species. We then optimized sample preparation using lysozyme and hybridization conditions including temperature, as well as the formamide concentration and the salt concentration in the washing buffer. We succeeded in quantification of microorganisms in semi-solid, complex biological materials such as minced kitchen refuse by taking color microphotographs in modified RGB balance on pre-coated slides. FISH analysis of the fermentation of kitchen refuse indicated that control of the pH swing leads to domination by the LAB population in minced kitchen refuse under open conditions. We also confirmed that L. plantarum, which generates lactic acid in high quantities but with low optical activity, became the dominant microorganism in kitchen refuse during the late phase of open fermentation.

  1. Contribution of fluorescence in situ hybridization to immunohistochemistry for the evaluation of HER-2 in breast cancer.

    Science.gov (United States)

    Cianciulli, Anna M; Botti, Claudio; Coletta, Angela M; Buglioni, Simonetta; Marzano, Raffaella; Benevolo, Maria; Cione, Antonio; Mottolese, Marcella

    2002-02-01

    The main focus of the present study was to assess the efficacy of interphase cytogenetics using fluorescence in situ hybridization (FISH) as a valid alternative to immunohistochemistry (IHC) in paraffin-embedded tissue sections and/or the efficacy of the combination of the two methods, while, at the same time, aiming to provide additional information on the use of the two methods. For this study, selected breast cancer patients (n=66) were tested for HER-2 gene amplification by FISH. The probe contains DNA sequences specific for the HER-2 human gene locus and hybridizes to the 17q11.2 through q12 region of human chromosome 17. The same samples were tested previously for HER-2 overexpression by two monoclonal antibodies (300G9 and CB11), recognizing an extracellular and an internal domain of gp185(Her-2), respectively. HER-2 overexpression also was evaluated using the HerceptTest Kit (Dako, Milan, Italy). The HerceptTest was performed according to the manufacturer's standard procedures, and results were scored on a 0 to 3+ scale. A total of 34 (51%) of 66 breast tumors enrolled in this study were positive by FISH. Of the 34 cases amplified by FISH, 9 were negative by IHC using both monoclonal antibody (MoAb) 300G9 and MoAb CB11, with a concordance rate from 80.3% to 83.3%. A higher concordance was verified (92.4%) when we used the HerceptTest Kit. Of the 32 cases found negative with the HerceptTest, FISH analysis identified HER-2 gene amplification in more than 10%. Our results indicate that with the combined use of both methods, several amplified samples classified negative by IHC can be used thus improving therapeutic planning for specific therapy with the monoclonal antibody trastuzumab.

  2. Prenatal detection of aneuploidies using fluorescence in situ hybridization: A preliminary experience in an Indian set up

    Indian Academy of Sciences (India)

    Vaidehi Jobanputra; Kalol Kumar Roy; Kiran Kucheria

    2002-03-01

    Fluorescence in situ hybridization (FISH) is a powerful molecular cytogenetic technique which allows rapid detection of aneuploidies on interphase cells and metaphase spreads. The aim of the present study was to evaluate FISH as a tool in prenatal diagnosis of aneuploidies in high risk pregnancies in an Indian set up. Prenatal diagnosis was carried out in 88 high-risk pregnancies using FISH and cytogenetic analysis. Multicolour commercially available FISH probes specific for chromosomes 13, 18, 21, X and Y were used. Interphase FISH was done on uncultured cells from chorionic villus and amniotic fluid samples. FISH on metaphase spreads was done from cord blood samples. The results of FISH were in conformity with the results of cytogenetic analysis in all the normal and aneuploid cases except in one case of structural chromosomal abnormality. The hybridization efficiency of the 5 probes used for the detection of aneuploidies was 100%. Using these probes FISH assay yielded discrete differences in the signal profiles between cytogenetically normal and abnormal samples. The overall mean interphase disomic signal patterns of chromosomes 13, 18, 21, X and Y were 94.45%; for interphase trisomic signal pattern of chromosome 21 was 97.3%. Interphase FISH is very useful in urgent high risk cases. The use of FISH overcomes the difficulties of conventional banding on metaphase spreads and reduces the time of reporting. However, with the limited number of probes used, the conventional cytogenetic analysis serves as a gold standard at present. It should be employed as an adjunctive tool to conventional cytogenetics.

  3. Rapid detection of t(15;17)(q24;q21) in acute promyelocytic leukaemia by microwave-assisted fluorescence in situ hybridization.

    Science.gov (United States)

    Soriani, Silvia; Mura, Cinzia; Panico, Anna Rita; Scarpa, Anna Maria; Recchimuzzo, Patrizia; Dadati, Raffaella; Farioli, Renata; De Canal, Gabriella; Mura, Maria Angela; Cesana, Clara

    2017-03-01

    Acute promyelocytic leukaemia (APL) is a hematologic malignancy characterized by the rearrangement of the PML and RARα genes, mostly due to a reciprocal chromosomal translocation t(15;17)(q24;q21). A quick APL diagnosis is essential for starting a prompt suitable therapy. We describe a new rapid diagnostic laboratory approach to detect the PML-RARα rearrangement, which gives clear genetic results within 30 min of hybridization. It combines quick cell harvesting, fluorescence in situ hybridization performed with commercial DNA probe and microwave beams supplied by a domestic microwave oven. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Automation of ALK gene rearrangement testing with fluorescence in situ hybridization (FISH): a feasibility study.

    Science.gov (United States)

    Zwaenepoel, Karen; Merkle, Dennis; Cabillic, Florian; Berg, Erica; Belaud-Rotureau, Marc-Antoine; Grazioli, Vittorio; Herelle, Olga; Hummel, Michael; Le Calve, Michele; Lenze, Dido; Mende, Stefanie; Pauwels, Patrick; Quilichini, Benoit; Repetti, Elena

    2015-02-01

    In the past several years we have observed a significant increase in our understanding of molecular mechanisms that drive lung cancer. Specifically in the non-small cell lung cancer sub-types, ALK gene rearrangements represent a sub-group of tumors that are targetable by the tyrosine kinase inhibitor Crizotinib, resulting in significant reductions in tumor burden. Phase II and III clinical trials were performed using an ALK break-apart FISH probe kit, making FISH the gold standard for identifying ALK rearrangements in patients. FISH is often considered a labor and cost intensive molecular technique, and in this study we aimed to demonstrate feasibility for automation of ALK FISH testing, to improve laboratory workflow and ease of testing. This involved automation of the pre-treatment steps of the ALK assay using various protocols on the VP 2000 instrument, and facilitating automated scanning of the fluorescent FISH specimens for simplified enumeration on various backend scanning and analysis systems. The results indicated that ALK FISH can be automated. Significantly, both the Ikoniscope and BioView system of automated FISH scanning and analysis systems provided a robust analysis algorithm to define ALK rearrangements. In addition, the BioView system facilitated consultation of difficult cases via the internet.

  5. [Heterogeneity and clonal evolution in pediatric ETV6-RUNX1(+) acute lymphoblastic leukemia by quantitative multigene fluorescence in situ hybridization].

    Science.gov (United States)

    Zhang, L; Hu, L P; Liu, X M; Guo, Y; Yang, W Y; Zhang, J Y; Liu, F; Liu, T F; Wang, S C; Chen, X J; Ruan, M; Qi, B Q; Chang, L X; Chen, Y M; Zou, Y; Zhu, X F

    2017-07-14

    Objective: To evaluate heterogeneity and clonal evolution in pediatric ETV6-RUNX1(+) acute lymphoblastic leukemia (ALL) in China. Methods: Totally 48 children (<14 years) with newly diagnosed ETV6-RUNX1(+) ALL in Institute of Hematology and Blood Disease Hospital, CAMS and PUMC, from February 2006 to June 2011 were included. The copy number variations were analyzed by quantitative multigene fluorescence in situ hybridization (QM-FISH) in 48 patients. Non-normal distribution of measurement data were shown with Median (range) , count data were shown with percent (%) . Overall survival and event-free survival were estimated by the Kaplan-Meier method and compared with the log-rank test. Results: Forty-eight patients were tested by QM-FISH. Of 48 patients, 70.8% harbored one clone, 18.8% two subclones, and 10.4% three or more subclones. The clone heterogeneity was detected by two different models: the linear succession model and the branching evolution model. ETV6-RUNX1(+) ALL relapse evolved from an ancestral clone or a new clone. The patients relapsed from a new clone got the worse outcome. Conclusion: The clone evolution was detected in pediatric ETV6-RUNX1(+) ALL in China. QM-FISH might be helpful to evaluate the outcome of relapsed patients. A new clone was associated with a poorer outcome.

  6. Comparative cytogenetics of six Indo-Pacific moray eels (Anguilliformes: Muraenidae) by chromosomal banding and fluorescence in situ hybridization.

    Science.gov (United States)

    Coluccia, E; Deidda, F; Cannas, R; Lobina, C; Cuccu, D; Deiana, A M; Salvadori, S

    2015-09-01

    A comparative cytogenetic analysis, using both conventional staining techniques and fluorescence in situ hybridization, of six Indo-Pacific moray eels from three different genera (Gymnothorax fimbriatus, Gymnothorax flavimarginatus, Gymnothorax javanicus, Gymnothorax undulatus, Echidna nebulosa and Gymnomuraena zebra), was carried out to investigate the chromosomal differentiation in the family Muraenidae. Four species displayed a diploid chromosome number 2n = 42, which is common among the Muraenidae. Two other species, G. javanicus and G. flavimarginatus, were characterized by different chromosome numbers (2n = 40 and 2n = 36). For most species, a large amount of constitutive heterochromatin was detected in the chromosomes, with species-specific C-banding patterns that enabled pairing of the homologous chromosomes. In all species, the major ribosomal genes were localized in the guanine-cytosine-rich region of one chromosome pair, but in different chromosomal locations. The (TTAGGG)n telomeric sequences were mapped onto chromosomal ends in all muraenid species studied. The comparison of the results derived from this study with those available in the literature confirms a substantial conservation of the diploid chromosome number in the Muraenidae and supports the hypothesis that rearrangements have occurred that have diversified their karyotypes. Furthermore, the finding of two species with different diploid chromosome numbers suggests that additional chromosomal rearrangements, such as Robertsonian fusions, have occurred in the karyotype evolution of the Muraenidae.

  7. Detection of MYCN Gene Amplification in Neuroblastoma by Fluorescence In Situ Hybridization: A Pediatric Oncology Group Study

    Directory of Open Access Journals (Sweden)

    Prasad Mathew

    2001-01-01

    Full Text Available To assess the utility of fluorescence in situ hybridization (FISH for analysis of MYCN gene amplification in neuroblastoma, we compared this assay with Southern blot analysis using tumor specimens collected from 232 patients with presenting characteristics typical of this disease. The FISH technique identified MYCN amplification in 47 cases, compared with 39 by Southern blotting, thus increasing the total number of positive cases by 21%. The major cause of discordancy was a low fraction of tumor cells (≤30% replacement in clinical specimens, which prevented an accurate estimate of MYCN copy number by Southern blotting. With FISH, by contrast, it was possible to analyze multiple interphase nuclei of tumor cells, regardless of the proportion of normal peripheral blood, bone marrow, or stromal cells in clinical samples. Thus, FISH could be performed accurately with very small numbers of tumor cells from touch preparations of needle biopsies. Moreover, this procedure allowed us to discern the heterogeneous pattern of MYCN amplification that is characteristic of neuroblastoma. We conclude that FISH improves the detection of MYCN gene amplification in childhood neuroblastomas in a clinical setting, thus facilitating therapeutic decisions based on the presence or absence of this prognostically important biologic marker.

  8. Induced chromosome aberrations analyzed by fluorescence in situ hybridization. Eight years follow up of the Goiania radiation accident victims

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, A.T.; Santos, S.J.; Darroudi, F.; Hadjidikova, V.; Vermeulen, S.; Chatterjee, S.; Van de Berg, M.; Grigorova, M. [Leiden University Medical Centrum LUMC, Department of Radiation Genetics and Chemical Mutagenesis, Wassenaarseweg 72, 2333 AL Leiden (Netherlands); Sakamoto-Hojo, E.T. [Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto (Brazil); Granath, F. [Department of Mathematical Statistics, Stockholm University, Stockholm (Sweden); Ramalho, A.T. [Institute of Radioprotection and Dosimetry, National Commission of Nuclear Energy, Rio de Janeiro (Brazil); Curado, M.P. [Foundation Leide das Neves Ferreira, Goiania (Brazil)

    1998-05-25

    The radiation accident in focus here occurred in a section of Goiania (Brazil) where more than a hundred individuals were contaminated with on September 1987. In order to estimate the absorbed radiation doses, initial frequencies of dicentrics and rings were determined in 129 victims [A.T. Ramalho, PhD Thesis, Subsidios a tecnica de dosimetria citogenetica gerados a partir da analise de resultados obtidos com o acidente radiologico de Goiania, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 1992]. We have followed some of these victims cytogenetically over the years seeking for parameters that could be used as basis for retrospective radiation dosimetry. Our data on translocation frequencies obtained by fluorescence in situ hybridization (FISH) could be directly compared to the baseline frequencies of dicentrics available for those same victims. Our results provided valuable information on how precise these estimates are. The frequencies of translocations observed years after the radiation exposure were two to three times lower than the initial dicentrics frequencies, the differences being larger at higher doses (>1 Gy). The accuracy of such dose estimates might be increased by scoring sufficient amount of cells. However, factors such as the persistence of translocation carrying lymphocytes, translocation levels not proportional to chromosome size, and inter-individual variation reduce the precision of these estimates

  9. Validation of break-apart and fusion MYC probes using a digital fluorescence in situ hybridization capture and imaging system

    Directory of Open Access Journals (Sweden)

    Michael Liew

    2016-01-01

    Full Text Available Introduction: Detection of MYC translocations using fluorescence in situ hybridization (FISH is important in the evaluation of lymphomas, in particular, Burkitt lymphoma and diffuse large B-cell lymphoma. Our aim was to validate a digital FISH capture and imaging system for the detection of MYC 8q24 translocations using LSI-MYC (a break-apart probe and MYC 8;14 translocation using IGH-MYC (a fusion probe. Materials and Methods: LSI-MYC probe was evaluated using tissue sections from 35 patients. IGH-MYC probe was evaluated using tissue sections from forty patients. Sections were processed for FISH and analyzed using traditional methods. FISH slides were then analyzed using the GenASIs capture and analysis system. Results: Results for LSI-MYC had a high degree of correlation between traditional method of FISH analysis and digital FISH analysis. Results for IGH-MYC had a 100% concordance between traditional method of FISH analysis and digital FISH analysis. Conclusion: Annotated whole slide images of H and E and FISH sections can be digitally aligned, so that areas of tumor within a section can be matched and evaluated with a greater degree of accuracy. Images can be archived permanently, providing a means for examining the results retrospectively. Digital FISH imaging of the MYC translocations provides a better diagnostic tool compared to traditional methods for evaluating lymphomas.

  10. Smith-Magenis syndrome deletion: A case with equivocal cytogenetic findings resolved by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Juyal, R.C.; Patel, P.I.; Greenberg, F. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1995-09-11

    The availability of markers for the 17p11.2 region has enabled the diagnosis of Smith-Magenis syndrome (SMS) by fluorescence in situ hybridization (FISH). SMS is typically associated with a discernible deletion of band 17p11.2 upon cytogenetic analysis at a resolution of 400-550 bands. We present a case that illustrates the importance of using FISH to confirm a cytogenetic diagnosis of del(17)(p11.2). Four independent cytogenetic analyses were performed with different conclusions. Results of low resolution analyses of amniocytes and peripheral blood lymphocytes were apparently normal, while high resolution analyses of peripheral blood samples in two laboratories indicated mosaicism for del(17)(p11.2). FISH clearly demonstrated a 17p deletion on one chromosome of all peripheral blood cells analyzed and ruled out mosaicism unambiguously. The deletion was undetectable by flow cytometric quantitation of chromosomal DNA content, suggesting that it is less than 2 Mb. We conclude that FISH should be used to detect the SMS deletion when routine chromosome analysis fails to detect it and to verify mosaicism. 23 refs., 3 figs., 1 tab.

  11. Cytogenetic characterization of complex karyotypes in seven established melanoma cell lines by multiplex fluorescence in situ hybridization and DAPI banding.

    Science.gov (United States)

    Schulten, Hans Jürgen; Gunawan, Bastian; Otto, Friedrich; Hassmann, René; Hallermann, Christian; Noebel, Albrecht; Füzesi, László

    2002-03-01

    We report the use of multiplex fluorescence in situ hybridization (M-FISH) to resolve chromosomal aberrations in seven established melanoma cell lines with hypotriploid to hypertetraploid complex karyotypes. By simultaneous identification of all human chromosomes in single FISH experiments using a set of 52 directly labeled, whole chromosome painting probes, cryptic chromosomal translocations and the origin of unclear chromosomal material in structural rearranged and marker chromosomes could be identified, refining the tumor karyotypes in all seven cell lines. The number of structural aberrations in each cell line assigned with combined M-FISH and DAPI banding analysis ranged from 15 to 45. Altogether, 275 breakpoints could be assigned to defined chromosomal regions or bands. The chromosome arms 1p, 6q, 7p, 9p, and 11q which are known to be nonrandomly associated with melanoma tumorigenesis, were frequently involved in chromosomal breaks and/or copy number changes. This study also demonstrated the practical usefulness of combining M-FISH with conventional cytogenetic banding techniques for the characterization of complex tumor karyotypes with massive genomic alterations.

  12. Feasibility of using fluorescence in situ hybridization (FISH) to detect early gene changes in sputum cells from uranium miners

    Energy Technology Data Exchange (ETDEWEB)

    Neft, R.E.; Rogers, J.L.; Belinsky, S.A. [and others

    1995-12-01

    Epidemiological studies have shown that combined exposure to radon progeny and tobacco smoke produce a greater than additive or synergistic increase in lung cancer risk. Lung cancer results from multiple genetic changes over a long period of time. An early change that occurs in lung cancer is trisomy 7 which is found in 50% of non-small cell lung cancer and in the far margins of resected lung tumors. The 80% mortality associated with lung cancer is in part related to the high proportion of patients who present with an advanced, unresectable tumor. Therefore, early detection of patients at risk for tumor development is critical to improve treatment of this disease. Currently, it is difficult to detect lung cancer early while it is still amendable by surgery. Saccomanno, G. has shown that premalignant cytologic changes in sputum cells collected from uranium miners can be detected by a skilled, highly trained cytopathologist. A more objective alternative for identifying premalignant cells in sputum may be to determine whether an early genetic change such as trisomy 7 is present in these cells. Fluorescence in situ hybridization (FISH) can be used to identify cells with trisomy 7. The results of this investigation indicate that FISH may prove to be an accurate, efficient method to test at-risk individuals for genetic alterations in bronchial epithelial cells from sputum.

  13. Validation of break-apart and fusion MYC probes using a digital fluorescence in situ hybridization capture and imaging system

    Science.gov (United States)

    Liew, Michael; Rowe, Leslie; Clement, Parker W.; Miles, Rodney R.; Salama, Mohamed E.

    2016-01-01

    Introduction: Detection of MYC translocations using fluorescence in situ hybridization (FISH) is important in the evaluation of lymphomas, in particular, Burkitt lymphoma and diffuse large B-cell lymphoma. Our aim was to validate a digital FISH capture and imaging system for the detection of MYC 8q24 translocations using LSI-MYC (a break-apart probe) and MYC 8;14 translocation using IGH-MYC (a fusion probe). Materials and Methods: LSI-MYC probe was evaluated using tissue sections from 35 patients. IGH-MYC probe was evaluated using tissue sections from forty patients. Sections were processed for FISH and analyzed using traditional methods. FISH slides were then analyzed using the GenASIs capture and analysis system. Results: Results for LSI-MYC had a high degree of correlation between traditional method of FISH analysis and digital FISH analysis. Results for IGH-MYC had a 100% concordance between traditional method of FISH analysis and digital FISH analysis. Conclusion: Annotated whole slide images of H and E and FISH sections can be digitally aligned, so that areas of tumor within a section can be matched and evaluated with a greater degree of accuracy. Images can be archived permanently, providing a means for examining the results retrospectively. Digital FISH imaging of the MYC translocations provides a better diagnostic tool compared to traditional methods for evaluating lymphomas. PMID:27217970

  14. Interphase fluorescence in situ hybridization and reverse transcription polymerase chain reaction as a diagnostic aid for synovial sarcoma.

    Science.gov (United States)

    Shipley, J; Crew, J; Birdsall, S; Gill, S; Clark, J; Fisher, C; Kelsey, A; Nojima, T; Sonobe, H; Cooper, C; Gusterson, B

    1996-02-01

    Identification of the t(X;18)(p11.2;q11.2) that is associated with a high proportion of synovial sarcoma can be a useful diagnostic aid. The translocation results in fusion of the SYT gene on chromosome 18 to either the SSX1 or the SSX2 gene, two homologous genes within Xp11.2. Two-color interphase fluorescence in situ hybridization and reverse transcription polymerase chain reaction were assessed as approaches to identify the rearrangement in well characterized cases. The presence of the translocation, and the specific chromosome X gene disrupted, were inferred from the configuration of signals from chromosome-specific centromere probes, paints, and markers flanking each gene in preparations of interphase nuclei. Rearrangement was found in two cell lines and eight of nine tumor samples, including analysis of five touch imprints. This was consistent with cytogenetic data in four cases and reverse transcription polymerase chain reaction analysis using primers known to amplify both SYT-SSX1 and SYT-SSX2 transcripts. The transcripts were distinguished by restriction with LspI and SmaI. Contrary to previous suggestions, there was no obvious correlation between histological subtype and involvement of the SSX1 or SSX2 gene. These approaches could also be applied to the identification of tumor-free margins and metastatic disease.

  15. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H. [Ohio State University, Wooster, OH (United States). Environmental Science Graduate Programme

    2006-07-15

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant.

  16. Human cDNA mapping using fluorescence in situ hybridization. Progress report, April 1--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1993-12-31

    The ultimate goal of this proposal is to create a cDNA map of the human genome. Mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach will generate 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  17. Spatial organization of bacterial flora in normal and inflamed intestine:A fluorescence in situ hybridization study in mice

    Institute of Scientific and Technical Information of China (English)

    Alexander Swidsinski; Vera Loening-Baucke; Herbert Lochs; Laura P. Hale

    2005-01-01

    AIM: To studythe role of intestinal flora in inflammatory bowel disease (IBD).METHODS: The spatial organization of intestinal flora was investigated in normal mice and in two models of murine colitis using fluorescence in situ hybridization.RESULTS: The murine small intestine was nearly bacteriafree. The normal colonic flora was organized in three distinct compartments (crypt, interlaced, and fecal), each with different bacterial compositions. Crypt bacteria were present in the cecum and proximal colon. The fecal compartment was composed of homogeneously mixed bacterial groups that directly contacted the colonic wall in the cecum but were separated from the proximal colonic wall by a dense interlaced layer. Beginning in the middle colon, a mucus gap of growing thickness physically separated all intestinal bacteria from contact with the epithelium. Colonic inflammation was accompanied with a depletion of bacteria within the fecal compartment, a reduced surface area in which feces had direct contact with the colonic wall, increased thickness and spread of the mucus gap, and massive increases of bacterial concentrations in the crypt and interlaced compartments. Adhesive and infiltrative bacteria were observed in inflamed colon only, with dominant Bacteroides species.CONCLUSION: The proximal and distal colons are functionally different organs with respect to the intestinal flora, representing a bioreactor and a Segregation device.The highly organized structure of the colonic flora, its specific arrangement in different colonic segments, and its specialized response to inflammatory stimuli indicate that the intestinal flora is an innate part of host immunity that is under complex control.

  18. Monitoring of chimerism using fluorescence in situ hybridization in a child with severe combined immune deficiency following bone marrow transplant

    Energy Technology Data Exchange (ETDEWEB)

    Wenger, S.L.; Chen, X.O.; Katz, A.J. [Children`s Hospital of Pittsburgh, PA (United States)]|[Univ. of Pittsburgh, PA (United States)

    1994-09-01

    A boy with severe combined immunodeficiency received a bone marrow transplant from his sister when he was approximately 3 years of age. His peripheral blood karyotype at age 3 and 4 years was 46,XX (20 cells analyzed). Because of a decline in antibody production at 19 years of age, the patient`s peripheral blood was analyzed again for suspected chimerism. His karyotype in phytohemagglutinin (PHA)-stimulated culture was 46,XX in 49 cells and 46,XY in one cell. Both metaphase and interphase cells were examined for sex chromosome constitution using X and Y dual-color alpha-satellite probes for fluorescence in situ hybridization (FISH). FISH results for metaphase cells showed 1/50 XY cells, but 38% of interphase cells showed the presence of both X and Y centromere. Pokeweed mitogen (PWM)-stimulated cultures grew poorly and were therefore analyzed using FISH only: 81% of interphase cells were 46,XX. The discrepancy between metaphase and interphase in the PHA-stimulated cultures most likely represents a failure of this boy`s own XY T-cells to be stimulated.

  19. Analysis of methanogenic activity in a thermophilic-dry anaerobic reactor: use of fluorescent in situ hybridization.

    Science.gov (United States)

    Montero, B; García-Morales, J L; Sales, D; Solera, R

    2009-03-01

    Methanogenic activity in a thermophilic-dry anaerobic reactor was determined by comparing the amount of methane generated for each of the organic loading rates with the size of the total and specific methanogenic population, as determined by fluorescent in situ hybridization. A high correlation was evident between the total methanogenic activity and retention time [-0.6988Ln(x)+2.667] (R(2) 0.8866). The total methanogenic activity increased from 0.04x10(-8) mLCH(4) cell(-1)day(-1) to 0.38x10(-8) mLCH(4) cell(-1)day(-1) while the retention time decreased, augmenting the organic loading rates. The specific methanogenic activities of H(2)-utilizing methanogens and acetate-utilizing methanogens increased until they stabilised at 0.64x10(-8) mLCH(4) cell(-1)day(-1) and 0.33x10(-8) mLCH(4) cell(-1)day(-1), respectively. The methanogenic activity of H(2)-utilizing methanogens was higher than acetate-utilizing methanogens, indicating that maintaining a low partial pressure of hydrogen does not inhibit the acetoclastic methanogenesis or the anaerobic process.

  20. Chromosome analysis of nuclear power plant workers using fluorescence in situ hybridization and Giemsa assay

    Science.gov (United States)

    Hristova, Rositsa; Hadjidekova, Valeria; Grigorova, Mira; Nikolova, Teodora; Bulanova, Minka; Popova, Ljubomira; Staynova, Albena; Benova, Donka

    2013-01-01

    The aim of this study was to evaluate the genotoxic effects of ionizing radiation in vivo in exposed Bulgarian nuclear power plant workers by using classical cytogenetic and molecular cytogenetic analyses of peripheral lymphocytes. Chromosome analysis using fluorescence in situ hybrydization (FISH) and Giemsa techniques was undertaken on 63 workers and 45 administrative staff controls from the Bulgarian Nuclear Power Plant. Using the Giemsa method, the frequencies of cells studied with chromosome aberrations, dicentrics plus rings and chromosome fragments in the radiation workers were significantly higher compared with the control group (P = 0.044, P = 0.014, and P = 0.033, respectively). A significant association between frequencies of dicentrics plus rings and accumulated doses was registered (P < 0.01). In the present study, a FISH cocktail of whole chromosome paints for chromosomes 1, 4 and 11 was used. A significant association between frequency of translocations and accumulated doses was also observed (P < 0.001). Within the control group, a correlation was found between age and the spontaneous frequency of translocations. No correlation was found between smoking status and frequency of translocations. When compared with the control group, workers with accumulated doses up to 100 mSv showed no increase in genome translocation frequency, whereas workers with accumulated doses from 101 to 200 mSv showed a statistically significant doubling of genome translocation frequency (P = 0.009). Thus, in cases of chronic exposure and for purposes of retrospective dosimetry, the genome frequency of translocations is a more useful marker for evaluation of genotoxic effects than dicentric frequency. PMID:23536543

  1. Chromosome analysis of nuclear power plant workers using fluorescence in situ hybridization and Giemsa assay.

    Science.gov (United States)

    Hristova, Rositsa; Hadjidekova, Valeria; Grigorova, Mira; Nikolova, Teodora; Bulanova, Minka; Popova, Ljubomira; Staynova, Albena; Benova, Donka

    2013-09-01

    The aim of this study was to evaluate the genotoxic effects of ionizing radiation in vivo in exposed Bulgarian nuclear power plant workers by using classical cytogenetic and molecular cytogenetic analyses of peripheral lymphocytes. Chromosome analysis using fluorescence in situ hybrydization (FISH) and Giemsa techniques was undertaken on 63 workers and 45 administrative staff controls from the Bulgarian Nuclear Power Plant. Using the Giemsa method, the frequencies of cells studied with chromosome aberrations, dicentrics plus rings and chromosome fragments in the radiation workers were significantly higher compared with the control group (P = 0.044, P = 0.014, and P = 0.033, respectively). A significant association between frequencies of dicentrics plus rings and accumulated doses was registered (P < 0.01). In the present study, a FISH cocktail of whole chromosome paints for chromosomes 1, 4 and 11 was used. A significant association between frequency of translocations and accumulated doses was also observed (P < 0.001). Within the control group, a correlation was found between age and the spontaneous frequency of translocations. No correlation was found between smoking status and frequency of translocations. When compared with the control group, workers with accumulated doses up to 100 mSv showed no increase in genome translocation frequency, whereas workers with accumulated doses from 101 to 200 mSv showed a statistically significant doubling of genome translocation frequency (P = 0.009). Thus, in cases of chronic exposure and for purposes of retrospective dosimetry, the genome frequency of translocations is a more useful marker for evaluation of genotoxic effects than dicentric frequency.

  2. Locked Nucleic Acid Flow Cytometry-fluorescence in situ Hybridization (LNA flow-FISH): A Method for Bacterial Small RNA Detection

    Science.gov (United States)

    2012-01-10

    Friedrich, U. & Lenke, J. Improved Enumeration of Lactic Acid Bacteria in Mesophilic Dairy Starter Cultures by Using Multiplex Quantitative Real...messenger RNA using locked nucleic acid probes. Anal. Biochem. 390, 109-114 (2009). 13. Waters, L. & Storz, G. Regulatory RNAs in bacteria . Cell. 136, 615...Video Article Locked Nucleic Acid Flow Cytometry-fluorescence in situ Hybridization (LNA flow-FISH): a Method for Bacterial Small RNA Detection Kelly

  3. Identification of Streptococcus agalactiae by fluorescent in situ hybridization compared to culturing and the determination of prevalence of Streptococcus agalactiae colonization among pregnant women in Bushehr, Iran

    OpenAIRE

    Tajbakhsh, Saeed; Norouzi Esfahani, Marjan; Emaneini, Mohammad; Motamed, Niloofar; Rahmani, Elham; Gharibi, Somayyeh

    2013-01-01

    Background Pregnant women colonized by Streptococcus agalactiae (group B streptococci [GBS]) may transfer this microorganism to their newborns. S. agalactiae is an important cause of pneumonia, sepsis, and meningitis in newborns. Fluorescent in situ hybridization (FISH) is considered as a method of identification in the field of diagnostic microbiology. In this paper, we have designed a study to compare the DNA FISH after 7 h Lim broth enrichment and culturing for the identification of S. aga...

  4. Specific metaphase and interphase detection of the breakpoint region in 8q24 of burkitt lymphoma cells by triple-color fluorescence in situ hybridization

    OpenAIRE

    Ried, Thomas; Lengauer, Christoph; Cremer, Thomas; Wiegant, Joop; Raap, Anton K.; Van Der Ploeg, Mels; Groitl, Peter; Lipp, Martin

    1992-01-01

    Triple fluorescence in situ hybridization with a plasmid DNA library from sorted human chromosomes 8 in combination with bacteriophage clones flanking the breakpoint in 8q24 of the Burkitt lymphoma cell line Jl was used for the specific delineation of this breakpoint in individual tumor cells. With this approach, tumor-specific breakpoints in translocation chromosomes can be detected at all stages of the cell cycle with high specificity.

  5. The in situ physiology of "Nostocoida limicola" II, a filamentous bacterial morphotype in bulking activated sludge, using fluorescence in situ hybridization and microautoradiography.

    Science.gov (United States)

    Seviour, E M; Eales, K; Izzard, L; Beer, M; Carr, E L; Seviour, R J

    2006-01-01

    The in situ physiology of the actinobacterial bulking and foaming filamentous bacterium "Nostocoida limicola" II was studied by fluorescence in situ hybridization/microautoradiography. Substrate assimilation patterns of pure cultures of this bacterium were different to those seen in activated sludge biomass samples. There was no evidence to suggest that "N. limicola" II preferred hydrophobic substrates, but evidence was produced to support the view that it is metabolically active under anaerobic conditions in activated sludge.

  6. Interfacial Chemistry and the Design of Solid-Phase Nucleic Acid Hybridization Assays Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer

    OpenAIRE

    Krull, Ulrich J.; W. Russ Algar

    2011-01-01

    The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling th...

  7. Subtyping of renal cortical neoplasms in fine needle aspiration biopsies using a decision tree based on genomic alterations detected by fluorescence in situ hybridization

    OpenAIRE

    Gowrishankar, Banumathy; Cahill, Lynnette; Arndt, Alexandra E; Al-Ahmadie, Hikmat; Lin, Oscar; Chadalavada, Kalyani; Chaganti, Seeta; Nanjangud, Gouri J; Murty, Vundavalli V; Chaganti, Raju S K; Reuter, Victor E.; Houldsworth, Jane

    2014-01-01

    Objectives To improve the overall accuracy of diagnosis in needle biopsies of renal masses, especially small renal masses (SRMs), using fluorescence in situ hybridization (FISH), and to develop a renal cortical neoplasm classification decision tree based on genomic alterations detected by FISH. Patients and Methods Ex vivo fine needle aspiration biopsies of 122 resected renal cortical neoplasms were subjected to FISH using a series of seven-probe sets to assess gain or loss of 10 chromosomes ...

  8. Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA.

    Science.gov (United States)

    Zelenka, Jaroslav; Alán, Lukáš; Jabůrek, Martin; Ježek, Petr

    2014-04-01

    Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.

  9. A hybrid segmentation approach for geographic atrophy in fundus auto-fluorescence images for diagnosis of age-related macular degeneration.

    Science.gov (United States)

    Lee, Noah; Laine, Andrew F; Smith, R Theodore

    2007-01-01

    Fundus auto-fluorescence (FAF) images with hypo-fluorescence indicate geographic atrophy (GA) of the retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). Manual quantification of GA is time consuming and prone to inter- and intra-observer variability. Automatic quantification is important for determining disease progression and facilitating clinical diagnosis of AMD. In this paper we describe a hybrid segmentation method for GA quantification by identifying hypo-fluorescent GA regions from other interfering retinal vessel structures. First, we employ background illumination correction exploiting a non-linear adaptive smoothing operator. Then, we use the level set framework to perform segmentation of hypo-fluorescent areas. Finally, we present an energy function combining morphological scale-space analysis with a geometric model-based approach to perform segmentation refinement of false positive hypo- fluorescent areas due to interfering retinal structures. The clinically apparent areas of hypo-fluorescence were drawn by an expert grader and compared on a pixel by pixel basis to our segmentation results. The mean sensitivity and specificity of the ROC analysis were 0.89 and 0.98%.

  10. Application of dual color fluorescence in situ hybridization (D—FISH) to the diagnosis of a 49,XXXXY chromosomal abnormality

    Institute of Scientific and Technical Information of China (English)

    LiuYZ; ZengX

    2002-01-01

    Objective:To study the technique of D-FISH and its application in the diagnosis of a 49.XXXXY chromosomal abnormality.Methods:Biotin-labeled alpha satellite X chromosome DNA(pBamX7) probe and digoxi-genin-labeled Y chromosome long arm terminal repetitive sequence (pY3.4) probe in situ hybridized with pre-treated slides of peripheral blood chromosome and interphase nucleus.After washing,the slides were treated with avidin-FITC,rhodamine-FITC and anti-avidin,amplified with an additional layer and counter-stained with DAPI in an antifade solution.The hybridization signals and chromosomal or interphase nucleus settings were observed respectively with WIB,WIG and WU filters under fluorescent microscope (Olympus AX-70) and the number of metaphase chromosome and interphase nucleus in the peripheral blood was counted.Results:The biotin-labeled pBamX7 probe showed 4 green hybridization signal and the digoxigenin-labeled pY3.4 probe showed 1 red hybridization signal.The chromosome or cytoplasm counter-stained with DAPI showed blue.The positive rate of X chromosome hybridization signal for the 350 metaphase chromosomes and interphase nucleus was 91.43% and 92.57%,respectively,while that of the Y chromosome hybridization signal was 99.5% and 99.8%,respectively.Conclusion:D-FISH is a valuable technique in diagnosing 49,XXXXY chromosomal abnormality and other sex chromosomal abnormalities.

  11. Conducting polymer nanofibers for high sensitivity detection of chemical analytes.

    Science.gov (United States)

    Kumar, Abhishek; Leshchiner, Ignaty; Nagarajan, Subhalakshmi; Nagarajan, Ramaswamy; Kumar, Jayant

    2008-03-01

    Possessing large surface area materials is vital for high sensitivity detection of analyte. We report a novel, inexpensive and simple technique to make high surface area sensing interfaces using electrospinning. Conducting polymers (CP) nanotubes were made by electrospinning a solution of a catalyst (ferric tosylate) along with poly (lactic acid), which is an environment friendly biodegradable polymer. Further vapor deposition polymerization of the monomer ethylenedioxy thiophene (EDOT) on the nanofiber surface yielded poly (EDOT) covered fibers. X-ray photo electron spectroscopy (XPS) study reveals the presence of PEDOT predominantly on the surface of nanofibers. Conducting nanotubes had been received by dissolving the polymer in the fiber core. By a similar technique we had covalently incorporated fluorescent dyes on the nanofiber surface. The materials obtained show promise as efficient sensing elements. UV-Vis characterization confirms the formation of PEDOT nanotubes and incorporation of chromophores on the fiber surface. The morphological characterization was carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  12. Highly Sensitive Assay for Measurement of Arenavirus-cell Attachment.

    Science.gov (United States)

    Klaus, Joseph P; Botten, Jason

    2016-03-02

    Arenaviruses are a family of enveloped RNA viruses that cause severe human disease. The first step in the arenavirus life cycle is attachment of viral particles to host cells. While virus-cell attachment can be measured through the use of virions labeled with biotin, radioactive isotopes, or fluorescent dyes, these approaches typically require high multiplicities of infection (MOI) to enable detection of bound virus. We describe a quantitative (q)RT-PCR-based assay that measures Junin virus strain Candid 1 attachment via quantitation of virion-packaged viral genomic RNA. This assay has several advantages including its extreme sensitivity and ability to measure attachment over a large dynamic range of MOIs without the need to purify or label input virus. Importantly, this approach can be easily tailored for use with other viruses through the use of virus-specific qRT-PCR reagents. Further, this assay can be modified to permit measurement of particle endocytosis and genome uncoating. In conclusion, we describe a simple, yet robust assay for highly sensitive measurement of arenavirus-cell attachment.

  13. Development of a fluorescence in situ hybridization protocol for the identification of micro-organisms associated with wastewater particles and flocs.

    Science.gov (United States)

    Ormeci, Banu; Linden, Karl G

    2008-11-01

    Fluorescence in situ hybridization (FISH) provides a unique tool to study micro-organisms associated with particles and flocs. FISH enables visual examination of micro-organisms while they are structurally intact and associated with particles. However, application of FISH to wastewater and sludge samples presents a specific set of problems. Wastewater samples generate high background fluorescence due to their organic and inorganic content making it difficult to differentiate a probe-conferred signal from naturally fluorescing particles with reasonable certainty. Furthermore, some of the FISH steps involve harsh treatment of samples, and are likely to disrupt the floc structure. This study developed a FISH protocol for studying micro-organisms that are associated with particles and flocs. The results indicate that choice of a proper fluorochrome and labeling technique is a key step in reducing the background fluorescence and non-specific binding, and increasing the intensity of the probe signal. Compared to other fluorochromes tested, CY3 worked very well and enabled the observation of particles and debris in red and probe signal from microbes in yellow. Fixation, hybridization, and washing steps disturbed the floc structure and particle-microbe association. Modifications to these steps were necessary, and were achieved by replacing centrifugation with filtration and employment of nylon filters. Microscope slides generated excellent quality images, but polycarbonate membrane filters performed better in preserving the floc structure.

  14. Performance of hybrid angle-energy dispersive X-ray diffraction and fluorescence portable system for non-invasive surface-mineral identification in Archaeometry

    CERN Document Server

    Cuevas, Ariadna Mendoza

    2016-01-01

    Low power energy dispersive XRD-XRF portable instruments equipped with multiple angle scanning can take advantage of the shorter acquisition time of EDXRD with respect to ADXRD, and bring closer higher accuracy and resolution of inter-planar distance with those obtained by ADXRD. The data produced by this new hybrid configuration is correlated in the sense that a single XRF or XRD specimen appear in multiple spectra (the later shifted in energy for differing angles). Hence, for fully benefit from the richer data released by this configuration, the analysis should not be confined to the independent processing of the spectra, specialized hybrid data processing should be conceived. We previously reported some advances in the processing of the resulting 3D data (intensity, energy and angle). Here the analytical performance of the first hybrid angle-energy dispersive X-ray diffraction and fluorescence portable system is assessed for non-invasive surface mineral analysis of samples relevant for archaeometrical appl...

  15. Oral biofilm analysis of palatal expanders by fluorescence in-situ hybridization and confocal laser scanning microscopy.

    Science.gov (United States)

    Klug, Barbara; Rodler, Claudia; Koller, Martin; Wimmer, Gernot; Kessler, Harald H; Grube, Martin; Santigli, Elisabeth

    2011-10-20

    Confocal laser scanning microscopy (CLSM) of natural heterogeneous biofilm is today facilitated by a comprehensive range of staining techniques, one of them being fluorescence in situ hybridization (FISH). We performed a pilot study in which oral biofilm samples collected from fixed orthodontic appliances (palatal expanders) were stained by FISH, the objective being to assess the three-dimensional organization of natural biofilm and plaque accumulation. FISH creates an opportunity to stain cells in their native biofilm environment by the use of fluorescently labeled 16S rRNA-targeting probes. Compared to alternative techniques like immunofluorescent labeling, this is an inexpensive, precise and straightforward labeling technique to investigate different bacterial groups in mixed biofilm consortia. General probes were used that bind to Eubacteria (EUB338 + EUB338II + EUB338III; hereafter EUBmix), Firmicutes (LGC354 A-C; hereafter LGCmix), and Bacteroidetes (Bac303). In addition, specific probes binding to Streptococcus mutans (MUT590) and Porphyromonas gingivalis (POGI) were used. The extreme hardness of the surface materials involved (stainless steel and acrylic resin) compelled us to find new ways of preparing the biofilm. As these surface materials could not be readily cut with a cryotome, various sampling methods were explored to obtain intact oral biofilm. The most workable of these approaches is presented in this communication. Small flakes of the biofilm-carrying acrylic resin were scraped off with a sterile scalpel, taking care not to damage the biofilm structure. Forceps were used to collect biofilm from the steel surfaces. Once collected, the samples were fixed and placed directly on polysine coated glass slides. FISH was performed directly on these slides with the probes mentioned above. Various FISH protocols were combined and modified to create a new protocol that was easy to handle. Subsequently the samples were analyzed by confocal laser scanning

  16. Photothermal Microscopy for High Sensitivity and High Resolution Absorption Contrast Imaging of Biological Tissues

    Directory of Open Access Journals (Sweden)

    Jun Miyazaki

    2017-04-01

    Full Text Available Photothermal microscopy is useful to visualize the distribution of non-fluorescence chromoproteins in biological specimens. Here, we developed a high sensitivity and high resolution photothermal microscopy with low-cost and compact laser diodes as light sources. A new detection scheme for improving signal to noise ratio more than 4-fold is presented. It is demonstrated that spatial resolution in photothermal microscopy is up to nearly twice as high as that in the conventional widefield microscopy. Furthermore, we demonstrated the ability for distinguishing or identifying biological molecules with simultaneous muti-wavelength imaging. Simultaneous photothermal and fluorescence imaging of mouse brain tissue was conducted to visualize both neurons expressing yellow fluorescent protein and endogenous non-fluorescent chromophores.

  17. Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Watt, Michelle; Hugenholtz, Philip; White, Rosemary; Vinall, Kerry

    2006-05-01

    Native bacteria, Pseudomonas and filamentous bacteria were quantified and localized on wheat roots grown in the field using fluorescence in situ hybridization (FISH). Seminal roots were sampled through the season from unploughed soil in a conservation farming system. Such soils are spatially heterogeneous, and many roots grow slowly through hard soil with cracks and pores containing dead roots remnant from previous crops. Root and rhizosphere morphology, and contact with soil particles were preserved, and autofluorescence was avoided by observing sections in the far-red with Cy5 and Cy5.5 fluorochromes. Spatial analyses showed that bacteria were embedded in a stable matrix (biofilm) within 11 microm of the root surface (range 2-30 microm) and were clustered on 40% of roots. Half the clusters co-located with axial grooves between epidermal cells, soil particles, cap cells or root hairs; the other half were not associated with visible features. Across all wheat roots, although variable, bacteria averaged 15.4 x 10(5) cells per mm(3) rhizosphere, and of these, Pseudomonas and filaments comprised 10% and 4%, respectively, with minor effects of sample time, and no effect of plant age. Root caps were most heavily colonized by bacteria along roots, and elongation zones least heavily colonized. Pseudomonas varied little with root development and were 17% of bacteria on the elongation zone. Filamentous bacteria were not found on the elongation zone. The most significant factor to rhizosphere populations along a wheat root, however, was contact with dead root remnants, where Pseudomonas were reduced but filaments increased to 57% of bacteria (P < 0.001). This corresponded with analyses of root remnants showing they were heavily colonized by bacteria, with 48% filaments (P < 0.001) and 1.4%Pseudomonas (P = 0.014). Efforts to manage rhizosphere bacteria for sustainable agricultural systems should continue to focus on root cap and mucilage chemistry, and remnant roots as

  18. [Clinical value of interphase fluorescent in situ hybridization in diagnosis of core-binding factor acute myelocytic leukemia].

    Science.gov (United States)

    Yang, Hui; Fan, Lei; Qiu, Hai-Rong; Wang, Rong; Zhang, Jian-Fu; Wu, Yu-Jie; Li, Jian-Yong; Liu, Peng

    2011-10-01

    The purpose of this study was to evaluate the clinical value of interphase fluorescence in situ hybridization (I-FISH) in diagnosis of core-binding factor acute myelocytic leukemia (CBF AML). The cytogenetic characteristics in leukemia cells from 82 cases of AML-M(2) and 43 cases of AML-M(4)/M(5) were detected by using I-FISH with AML1-ETO double color double fusion probe and double color break point isolated gene probe CBFβ-MYH11, and the detected results were compared with results detected by conventional cytogenetic R banding technique (CC). The results indicated that AML1-ETO fusion gene was detected in 30.5% cases (25/82) by FISH, and t(8;21)(q22;q22) karyotypic aberrations was found in 28.0% cases (23/82) by CC method. Among 25 FISH positive cases, typical FISH positive signal pattern (1R1G2F) was displayed in 22 cases and atypical signal pattern (1R2G1F and 2R1G2F) was found in the other 3 cases. Among all 43 AML-M(4)/M(5) cases, the CBFβ-MYH11 fusion gene was detected in 23.3% cases (10/43) by FISH, which sensitivity was significant higher than that by CC method (2/43) (p < 0.05). It is concluded that some insufficiency of CC technique can be compensated by FISH, and combination of I-FISH with CC technique play a crucial role in diagnosis of CBF AML and in monitoring of minimal residual disease.

  19. Trisomy 10p resulting from an inv dup of 10p defined by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Clement, S.J.; Easterling, T.R.; Leppig, K.A. [Univ. of Washington, Seattle, WA (United States)] [and others

    1994-09-01

    De novo cases of trisomy for the entire short arm of chromosome 10 are infrequently reported and are most commonly the result of translocation of 10p to an acrocentric chromosome. Most reported cases of trisomy 10p are not trisomy for the complete short arm of chromosome 10, but are duplication, deficiency syndromes that result from either inheritance of an unbalanced translocation from a parent possessing a balanced reciprocal translocation, or from a recombinant chromosome derived from a parental pericentric inversion of chromosome 10. Here, we report a case of a de novo trisomy 10p that resulted from an inverted duplication of the entire short arm of chromosome 10. A 42 year old G7,P5,SAB1 woman was referred for amniocentesis because of advanced maternal age. Ultrasound examination at 17 weeks demonstrated a fetus of normal size with no apparent anatomic abnormalities. Cytogenetic evaluation demonstrated one homologue of chromosome 10 had a tandem inverted duplication of the short arm. The fetal karyotype was interpreted to be 46,XX,inv dup (10) (peter-cen::cen-p15::q11-pter). Parental karyotype are normal. Fluorescence in situ hybridization (FISH) using a chromosome 10 paint, chromosome 10 centromere, and all telomere probe, confirmed the inverted duplication involved the entire short arm of chromosome 10. Termination of pregnancy was performed at 20 weeks gestation. Autopsy revealed multiple anomalies including low-set posteriorly rotated ears, cleft of the soft palate, ocular hypertelorism, small upturned nose, agenesis of the gallbladder, sacral hemivertebrae, and abnormal flexion of the thumbs. The fetal karyotype was confirmed by cytogenetic analysis in lung and kidney. This is the second reported case of a de novo tandem duplication of 10p of which we are aware, and the first using FISH technology to characterize the abnormality.

  20. Fluorescence in situ hybridization and immunohistochemistry as diagnostic methods for ALK positive non-small cell lung cancer patients.

    Directory of Open Access Journals (Sweden)

    Pablo Martinez

    Full Text Available BACKGROUND: Anaplastic Lymphoma Kinase (ALK positivity represents a novel molecular target in a subset of Non-Small Cell Lung Cancers (NSCLC. We explore Fluorescence in situ Hybridization (FISH and Immunohistochemistry (IHC as diagnostic methods for ALK positive patients and to describe its prevalence and outcomes in a population of NSCLC patients. METHODS: NSCLC patients previously screened for Epidermal Growth Factor Receptor (EGFR at our institution were selected. ALK positive patients were identified by FISH and the value of IHC (D5F3 was explored. RESULTS: ninety-nine patients were identified. Median age was 61.5 years (range 35-83, all were caucasians, eighty percent were adenocarcinomas, fifty-one percent were male and thirty-eight percent were current smokers. Seven (7.1% patients were ALK positive by FISH, thirteen (13.1% were EGFR mutant, and 65 (65.6% were negative/Wild Type (WT for both ALK and EGFR. ALK positivity and EGFR mutations were mutually exclusive. ALK positive patients tend to be younger than EGFR mutated or wt patients. ALK positive patients were predominantly never smokers (71.4% and adenocarcinoma (71.4%. ALK positive and EGFR mutant patients have a better outcome than negative/WT. All patients with ALK FISH negative tumours were negative for ALK IHC. Out of 6 patients positive for ALK FISH with more tissue available, 5 were positive for ALK IHC and 1 negative. CONCLUSIONS: ALK positive patients represent 7.1% of a population of selected NSCLC. ALK positive patients have different clinical features and a better outcome than EGFR WT and ALK negative patients. IHC is a promising method for detecting ALK positive NSCLC patients.

  1. Rapid differentiation of Francisella species and subspecies by fluorescent in situ hybridization targeting the 23S rRNA

    Directory of Open Access Journals (Sweden)

    Trebesius Karlheinz

    2010-03-01

    Full Text Available Abstract Background Francisella (F. tularensis is the causative agent of tularemia. Due to its low infectious dose, ease of dissemination and high case fatality rate, F. tularensis was the subject in diverse biological weapons programs and is among the top six agents with high potential if misused in bioterrorism. Microbiological diagnosis is cumbersome and time-consuming. Methods for the direct detection of the pathogen (immunofluorescence, PCR have been developed but are restricted to reference laboratories. Results The complete 23S rRNA genes of representative strains of F. philomiragia and all subspecies of F. tularensis were sequenced. Single nucleotide polymorphisms on species and subspecies level were confirmed by partial amplification and sequencing of 24 additional strains. Fluorescent In Situ Hybridization (FISH assays were established using species- and subspecies-specific probes. Different FISH protocols allowed the positive identification of all 4 F. philomiragia strains, and more than 40 F. tularensis strains tested. By combination of different probes, it was possible to differentiate the F. tularensis subspecies holarctica, tularensis, mediasiatica and novicida. No cross reactivity with strains of 71 clinically relevant bacterial species was observed. FISH was also successfully applied to detect different F. tularensis strains in infected cells or tissue samples. In blood culture systems spiked with F. tularensis, bacterial cells of different subspecies could be separated within single samples. Conclusion We could show that FISH targeting the 23S rRNA gene is a rapid and versatile method for the identification and differentiation of F. tularensis isolates from both laboratory cultures and clinical samples.

  2. Use of fluorescence in situ hybridization to assess the chromosomal status of embryos obtained from cryopreserved oocytes.

    Science.gov (United States)

    Cobo, A; Rubio, C; Gerli, S; Ruiz, A; Pellicer, A; Remohí, J

    2001-02-01

    To analyze the chromosomal status of human embryos obtained from frozen-thawed oocytes. Fluorescence in situ hybridization analysis of embryos obtained after oocyte cryopreservation. Department of Obstetrics and Gynecology at the University of Perugia, Italy, and the Instituto Valenciano de Infertilidad, Spain. Oocyte donors (n = 43). Fertilization, development, and chromosomal status of the embryos were compared with a control group (n = 18) of patients undergoing preimplantation genetic diagnosis for sex chromosome-linked diseases. Collection of oocytes after conventional ovarian stimulation and cryopreservation using propanediol as the cryoprotectant and a slow freezing procedure. Microinjection of surviving metaphase II oocytes and evaluation of fertilization and embryo development up to blastocyst stage. Chromosomal analysis after embryo biopsy. Survival, fertilization, and blastocyst rates. Embryo chromosomal analysis employing specific probes for chromosomes 13,18,21, X and Y. The overall survival rate was 59.4%. There was no difference between cryopreservation and control groups in fertilization rates (76.5% vs. 90.5%) or blastocyst development (29.6% vs. 35%). The percentage of blastocysts from the original number of cryopreserved oocytes was only 5.6%, comparable to the 5.9% obtained in the control group. The percentage of embryos with abnormal number of chromosomes in the cryopreservation group (28.6%) was comparable to the 26% observed in the controls. Fertilization and cleavage rates after oocyte freezing are acceptable. Survival is, however, still poor, leading to overall results that make the technique clinically inefficient. There is no increase in the rate of chromosomal abnormalities, indicating that the technique is, nevertheless, safe enough to be further explored and improved.

  3. Investigation of the frequency of chromosomal aneuploidy using triple fluorescence in situ hybridization in 12 Chinese infertile men

    Institute of Scientific and Technical Information of China (English)

    张群芳; 卢光琇

    2004-01-01

    Background Chromosomal aberrations are the major cause of pre-and post-implantation embryo wastage and some studies suggest that half of all human conceptions have a chromosomal abnormality. A chromosomal aberration in human sperms is also one of the causes of failure of in vitro fertilization. This study was designed to ascertain whether chromosomal aneuploidy in spermatozoa is a risk factor for male infertility.Methods Twelve infertile men were divided into two groups: 10 with oligoasthenoteratozoospermia (OAT, Group A) and two with a normal semen analysis (Group B). Two normal healthy sperm donors acted as controls (Group C). We used fluorescence in situ hybridization (FISH) and probes for chromosomes X, Y and 18 to determine the frequency of aneuploidy.Results The frequencies of spermatozoa disomy for chromosomes X, Y and 18 were 0.30% and 0.30%, respectively, in Group B. The percentages were not significantly different from those of Group C (0.15% and 0. 16%). The frequencies of nullisomy for chromosomes X, Y and 18 were 0.15%and 0 for Group B, and 0 and 0.15% for Group C (P>0.05). In Group A, the incidences of disomy were 1.13% and 0. 96% and the frequencies of nullisomy were 1.13% and 1.60%. In these three groups, the incidences of diploidy were 0.60%, 1.00%, and 0.30%, respectively. Both the frequencies of disomic and nullisomic spermatozoa for chromosomes X, Y, and 18 and of diploid spermatozoa were significantly higher in Group A than in Groups B and C. The estimated total aneuploidy rates in the sperm from the three groups were 42.44%, 6.05%, and 2.59%,respectively.Conclusion These results indicate that chromosomal aneuploidy in spermatozoa may be a risk factor for infertility.

  4. Assessment of chromosomal abnormalities in sperm of infertile men using sperm karyotyping and multicolour fluorescence in situ hybridization (FISH)

    Energy Technology Data Exchange (ETDEWEB)

    Moosani, N.; Martin, R.H. [Alberta Children`s Hospital and Univ. of Calgary (Canada)

    1994-09-01

    Individuals with male factor infertility resulting from idiopathic oligo-, astheno- or teratozoospermia are frequently offered IVF in an attempt to increase their chances of having a child. A concern remains whether these infertile males have an elevated risk of transmitting chromosomal abnormalities to their offspring. Sperm chromosomal complements from these men were assayed using the human sperm/hamster oocyte fusion system and fluorescence in situ hybridization (FISH) on sperm nuclei. For each of 5 infertile patients, 100 sperm karyotypes were analyzed and multicolour FISH analysis was performed on a minimum of 10,000 sperm nuclei for each chromosome-specific DNA probe for chromosomes 1 (pUC1.77), 12 (D12Z3), X (XC) and Y (DYZ3). As a group, the infertile patients showed increased frequencies of both numerical ({chi}{sup 2}=17.26, {proportional_to} <0.001) and total abnormalities ({chi}{sup 2}=7.78, {proportional_to} <0.01) relative to control donors when assessed by sperm karyotypes. Analysis of sperm nuclei by FISH indicated a significant increase in the frequency of disomy for chromosome 1 in three of the five patients as compared to control donors ({chi}{sup 2}>8.35, {proportional_to} <0.005). In addition, the frequency of XY disomy was significantly higher in four of the five patients studied by FISH ({chi}{sup 2}>10.58, {proportional_to}<0.005), suggesting that mis-segregation caused by the failure of the XY bivalent to pair may play a role in idiopathic male infertility.

  5. Preparations of meiotic pachytene chromosomes and extended DNA fibers from cotton suitable for fluorescence in situ hybridization.

    Directory of Open Access Journals (Sweden)

    Renhai Peng

    Full Text Available Fluorescence in situ hybridization (FISH has become one of the most important techniques applied in plant molecular cytogenetics. However, the application of this technique in cotton has lagged behind because of difficulties in chromosome preparation. The focus of this article was FISH performed not only on cotton pachytene chromosomes, but also on cotton extended DNA fibers. The cotton pollen mother cells (PMCs instead of buds or anthers were directly digested in enzyme to completely breakdown the cell wall. Before the routine acetic acid treatment, PMCs were incubated in acetic acid and enzyme mixture to remove the cytoplasm and clear the background. The method of ice-cold Carnoy's solution spreading chromosome was adopted instead of nitrogen removed method to avoid chromosomes losing and fully stretch chromosome. With the above-improved steps, the high-quality well-differentiated pachytene chromosomes with clear background were obtained. FISH results demonstrated that a mature protocol of cotton pachytene chromosomes preparation was presented. Intact and no debris cotton nuclei were obtained by chopping from etiolation cotyledons instead of the conventional liquid nitrogen grinding method. After incubating the nuclei with nucleus lysis buffer on slide, the parallel and clear background DNA fibers were acquired along the slide. This method overcomes the twist, accumulation and fracture of DNA fibers compared with other methods. The entire process of DNA fibers preparation requires only 30 min, in contrast, it takes 3 h with routine nitrogen grinding method. The poisonous mercaptoethanol in nucleus lysis buffer is replaced by nonpoisonous dithiothreitol. PVP40 in nucleus isolation buffer is used to prevent oxidation. The probability of success in isolating nuclei for DNA fiber preparation is almost 100% tested with this method in cotton. So a rapid, safe, and efficient method for the preparation of cotton extended DNA fibers suitable for FISH

  6. Fluorescent in-situ hybridization (FISH for BCR/ABL in chronic myeloid leukemia after bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Lopes Ferrari Chauffaille

    2001-01-01

    Full Text Available CONTEXT: Identification of Philadelphia chromosome or BCR/ABL gene rearrangement in chronic myeloid leukemia is important at diagnosis as well as after treatment. OBJECTIVE: To compare the results of karyotyping using fluorescent in-situ hybridization (FISH upon diagnosis and 1 year after bone marrow transplantation in 12 patients. TYPE OF STUDY: Diagnostic test and residual disease detection. SETTING: Hematology and Hemotherapy Department, Federal University of São Paulo/Escola Paulista de Medicina, São Paulo, Brazil. SAMPLE: 12 patients with chronic myeloid leukemia at diagnosis and 1 year after bone marrow transplantation. DIAGNOSTIC TEST: Karyotyping was done in the usual way and the BCR/ABL gene-specific probe was used for FISH. MAIN MEASUREMENTS: Disease at diagnosis and residual. RESULTS: At diagnosis, 10 patients presented t(9;22(q34.1;q11 as well as positive FISH. Two cases did not have metaphases but FISH was positive. After bone marrow transplantation, 8 patients presented normal karyotype, 1 had persistence of identifiable Philadelphia chromosome and 3 had no metaphases. Two cases showed complete chimera and 2 had donor and host cells simultaneously. FISH was possible in all cases after bone marrow transplantation and confirmed the persistence of identifiable Philadelphia chromosome clone in one patient, and identified another that did not present metaphases for analysis. Cases that showed mixed chimera in karyotype were negative for BCR/ABL by FISH. CONCLUSION: The applicability of FISH is clear, particularly for residual disease detection. Classical and molecular cytogenetics are complementary methods.

  7. SU-E-T-20: A Novel Hybrid CBCT, Bioluminescence and Fluorescence Tomography System for Preclinical Radiation Research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B; Eslami, S; Iordachita, I [Johns Hopkins University, Baltimore, Maryland (United States); Yang, Y [University of Miami School of Medicine, Miami, FL (United States); Patterson, M [Hamilton Regional Cancer Ctr., Hamilton, ON (Canada); Wong, J [Johns Hopkins University, Baltimore, MD (United States); Wang, K [Johns Hopkins Hospital, Baltimore, MD (United States)

    2014-06-01

    Purpose: A novel standalone bioluminescence and fluorescence tomography (BLT and FT) system equipped with high resolution CBCT has been built in our group. In this work, we present the system calibration method and validate our system in both phantom and in vivo environment. Methods: The CBCT is acquired by rotating the animal stage while keeping the x-ray source and detector panel static. The optical signal is reflected by the 3-mirror system to a multispectral filter set and then delivered to the CCD camera with f/1.4 lens mounted. Nine fibers passing through the stage and in contact with the mouse skin serve as the light sources for diffuse optical tomography (DOT) and FT. The anatomical information and optical properties acquired from the CBCT and DOT, respectively, are used as the priori information to improve the BLT/FT reconstruction accuracy. Flat field correction for the optical system was acquired at multiple wavelengths. A home-built phantom is used to register the optical and CBCT coordinates. An absolute calibration relating the CCD photon counts rate to the light fluence rate emitted at animal surface was developed to quantify the bioluminescence power or fluorophore concentration. Results: An optical inhomogeneous phantom with 2 light sources (3mm separation) imbedded is used to test the system. The optical signal is mapped onto the mesh generated from CBCT for optical reconstruction. Our preliminary results show that the center of mass can be reconstructed within 2.8mm accuracy. A live mouse with the light source imbedded is also used to validate our system. Liver or lung metastatic luminescence tumor model will be used for further testing. Conclusion: This hybrid system transforms preclinical research to a level that even sub-palpable volume of cells can be imaged rapidly and non-invasively, which largely extends the scope of radiobiological research. The research is supported by the NCI grant R01CA158100-01.

  8. Identification of intracellular bacteria in adenoid and tonsil tissue specimens: the efficiency of culture versus fluorescent in situ hybridization (FISH).

    Science.gov (United States)

    Stępińska, M; Olszewska-Sosińska, O; Lau-Dworak, M; Zielnik-Jurkiewicz, B; Trafny, E A

    2014-01-01

    Monocyte/macrophage cells from human nasopharyngeal lymphoid tissue can be a source of bacteria responsible for human chronic and recurrent upper respiratory tract infection. Detection and characterization of pathogens surviving intracellularly could be a key element in bacteriological diagnosis of the infections as well as in the study on interactions between bacteria and their host. The present study was undertaken to assess the possibility of isolation of viable bacteria from the cells expressing monocyte/macrophage marker CD14 in nasopharyngeal lymphoid tissue. Overall, 74 adenotonsillectomy specimens (adenoids and tonsils) from 37 children with adenoid hypertrophy and recurrent infections as well as 15 specimens from nine children with adenoid hypertrophy, which do not suffer from upper respiratory tract infections (the control group), were studied. The suitability of immunomagnetic separation for extraction of CD14(+) cells from lymphoid tissue and for further isolation of the intracellular pathogens has been shown. The coexistence of living pathogens including Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pyogenes with the bacteria representing normal nasopharyngeal microbiota inside CD14(+) cells was demonstrated. Twenty-four strains of these pathogens from 32.4 % of the lysates of CD14(+) cells were isolated. Concurrently, the fluorescent in situ hybridization (FISH) with a universal EUB388, and the species-specific probes demonstrated twice more often the persistence of these bacterial species in the lysates of CD14(+) cells than conventional culture. Although the FISH technique appears to be more sensitive than traditional culture in the intracellular bacteria identification, the doubts on whether the bacteria are alive, and therefore, pathogenic would still exist without the strain cultivation.

  9. Homoeologous chromosome pairing in the distant hybrid Alstroemeria aurea x A. inodora and the genome composition of its backcross derivatives determined by fluorescence in situ hybridization with species-specific probes.

    Science.gov (United States)

    Kamstra, S A; Ramanna, M S; de Jeu, M J; Kuipers, A G; Jacobsen, E

    1999-01-01

    A distant hybrid between two diploid species (2n = 2x = 16), Alstroemeria aurea and A. inodora, was investigated for homoeologous chromosome pairing, crossability with A. inodora and chromosome transmission to its BC1 offspring. Fluorescence in situ hybridization (FISH) with two species-specific probes, A001-I (A. aurea specific) and D32-13 (A. inodora specific), was used to analyse chromosome pairing in the hybrid and the genome constitution of its BC1 progeny plants. High frequencies of associated chromosomes were observed in both genotypes of the F1 hybrid, A1P2-2 and A1P4. In the former, both univalents and bivalents were found at metaphase I, whereas the latter plant also showed tri- and quadrivalents. Based on the hybridization sites of DNA probes on the chromosomes of both parental species, it was established that hybrid A1P4 contains a reciprocal translocation between the short arm of chromosome 1 and the long arm of chromosome 8 of A. inodora. Despite regular homoeologous chromosome pairing in 30% of the pollen mother cells, both hybrids were highly sterile. They were backcrossed reciprocally with one of the parental species, A. inodora. Two days after pollination, embryo rescue was applied and, eventually, six BC1 progeny plants were obtained. Among these, two were aneuploids (2n = 2x + 1 = 17) and four were triploids (2n = 3x = 24). The aneuploid plants had originated when the interspecific hybrid was used as a female parent, indicating that n eggs were functional in the hybrid. In addition, 2n gametes were also functional in the hybrid, resulting in the four triploid BC1 plants. Of these four plants, three had received 2n pollen grains from the hybrid and one a 2n egg. Using FISH, homoeologous crossing over between the chromosomes of the two parental species in the hybrid was clearly detected in all BC1 plants. The relevance of these results for the process of introgression and the origin of n and 2n gametes are discussed.

  10. Fluorescent nanodiamond and lanthanide labelled in situ hybridization for the identification of RNA transcripts in fixed and CLARITY-cleared central nervous system tissues (Conference Presentation)

    Science.gov (United States)

    Parker, Lindsay M.; Staikopoulos, Vicky; Cordina, Nicole M.; Sayyadi, Nima; Hutchinson, Mark R.; Packer, Nicolle H.

    2016-03-01

    Despite significant advancement in the methodology used to conjugate, incorporate and visualize fluorescent molecules at the cellular and tissue levels, biomedical imaging predominantly relies on the limitations of established fluorescent molecules such as fluorescein, cyanine and AlexaFluor dyes or genetic incorporation of fluorescent proteins by viral or other means. These fluorescent dyes and conjugates are highly susceptible to photobleaching and compete with cellular autofluorescence, making biomedical imaging unreliable, difficult and time consuming in many cases. In addition, some proteins have low copy numbers and/or poor antibody recognition, further making detection and imaging difficult. We are developing better methods for imaging central nervous system neuroinflammatory markers using targeted mRNA transcripts labelled with fluorescent nanodiamonds or lanthanide chelates. These tags have increased signal and photostability and can also discriminate against tissue/cell autofluorescence. Brains and spinal cords from BALB/c mice with a chronic constriction model of neuropathic pain (neuroinflammation group) or that have undergone sham surgeries (control group) were collected. A subset of brains and spinal cords were perfused and fixed with paraformaldehyde (n=3 sham and n=3 pain groups) prior to sectioning and in situ hybridization using nanodiamond or lanthanide chelate conjugated complementary RNA probes. Another subset of brains and spinal cords from the same cohort of animals were perfused and processed for CLARITY hydrogel based clearing prior to in situ hybridization with the same probes. We will present our findings on the photostability, sensitivity and discrimination from background tissue autofluorescence of our novel RNA probes, compared to traditional fluorophore tags.

  11. Investigation of kinetics and thermodynamics of DNA hybridization by means of 2-D fluorescence spectroscopy and soft/hard modeling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Sara; Kompany-Zareh, Mohsen, E-mail: kmpz@dr.com

    2016-02-04

    Reversible hybridization reaction plays a key role in fundamental biological processes, in many laboratory techniques, and also in DNA based sensing devices. Comprehensive investigation of this process is, therefore, essential for the development of more sophisticated applications. Kinetics and thermodynamics of the hybridization reaction, as a second order process, are systematically investigated with the aid of the soft and hard chemometric methods. Labeling two complementary 21 mer DNA single strands with FAM and Texas red fluorophores, enabled recording of the florescence excitation−emission matrices during the experiments which led to three-way data sets. The presence of fluorescence resonance energy transfer in excitation and emission modes and the closure in concentration mode, made the three-way data arrays rank deficient. To acquire primary chemical information, restricted Tucker3 as a soft method was employed. Herein a model-based method, hard restricted trilinear decomposition, is introduced for in depth analysis of rank deficient three-way data sets. By employing proposed hard method, the nonlinear model parameters as well as the correct profiles could be estimated. In addition, a simple constraint is presented to extract chemically reasonable output profiles regarding the core elements of restricted Tucker3 model. - Highlights: • Hard restricted trilinear decomposition (HrTD) was introduced for model-based analysis of three-way rank deficient data. • DNA hybridization was investigated by two-dimensional fluorescence spectroscopy and soft/hard multi-way techniques. • Restricted Tucker3 analysis enabled accurate estimation of pure FRET profiles in the hybridized form. • HrTD was successfully employed to estimate kinetic and equilibrium parameters of DNA hybridization system. • The performance of the proposed methods in response to different physical stimuli was successfully evaluated.

  12. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Shahmuradyan, Anna; Krull, Ulrich J

    2013-02-05

    A paper-based solid-phase assay is presented for transduction of nucleic acid hybridization using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) were FRET-paired with Cy3 acceptor. Hybridization of Cy3-labeled oligonucleotide targets provided the proximity required for FRET-sensitized emission from Cy3, which served as an analytical signal. The assay exhibited rapid transduction of nucleic acid hybridization within minutes. Without any amplification steps, the limit of detection of the assay was found to be 300 fmol with the upper limit of the dynamic range at 5 pmol. The implementation of glutathione-coated QDs for the development of nucleic acid hybridization assay integrated on a paper-based platform exhibited excellent resistance to nonspecific adsorption of oligonucleotides and showed no reduction in the performance of the assay in the presence of large quantities of noncomplementary DNA. The selectivity of nucleic acid hybridization was demonstrated by single-nucleotide polymorphism (SNP) detection at a contrast ratio of 19 to 1. The reuse of paper over multiple cycles of hybridization and dehybridization was possible, with less than 20% reduction in the performance of the assay in five cycles. This work provides an important framework for the development of paper-based solid-phase QD-FRET nucleic acid hybridization assays that make use of a ratiometric approach for detection and analysis.

  13. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    Science.gov (United States)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  14. Fluorescence in situ hybridization and sequential catalysed reporter deposition (2C-FISH for the flow cytometric sorting of freshwater ultramicrobacteria

    Directory of Open Access Journals (Sweden)

    Stefan M Neuenschwander

    2015-03-01

    Full Text Available Flow cytometric sorting is a powerful tool to physically separate cells within mixed microbial communities. If combined with phylogenetic staining (fluorescence in situ hybridization, FISH it allows to specifically sort defined genotypic microbial populations from complex natural samples. However, the targeted enrichment of freshwater ultramicrobacteria, such as members of the LD12 clade of Alphaproteobacteria (SAR11-IIIb, is still challenging. Current FISH protocols, even in combination with signal amplification by catalysed reporter deposition (CARD, are not sufficiently sensitive for the distinction of these bacteria from background noise by flow cytometry, presumably due to their low ribosome content and small cell sizes. We, therefore, modified a CARD based flow sorting protocol with the aim of increasing its sensitivity to a level sufficient for ultramicrobacteria. This was achieved by a second signal amplification step mediated by horseradish peroxidase labelled antibodies targeted to the fluorophores that were previously deposited by CARD-FISH staining. The protocol was tested on samples from an oligo-mesotrophic lake. Ultramicrobacteria affiliated with LD12 Alphaproteobacteria could be successfully sorted to high purity by flow cytometry. The ratios of median fluorescence signal to background ranged around 20, and hybridization rates determined by flow cytometry were comparable to those obtained by fluorescence microscopy. Potential downstream applications of our modified cell staining approach range from the analysis of microdiversity within 16S rRNA-defined populations to that of functional properties, such as the taxon-specific incorporation rates of organic substrates.

  15. Dynamics of Excited States for Fluorescent Emitters with Hybridized Local and Charge-Transfer Excited State in Solid Phase: A QM/MM Study.

    Science.gov (United States)

    Fan, Jianzhong; Cai, Lei; Lin, Lili; Wang, Chuan-Kui

    2016-12-01

    The highly efficient organic light-emitting diodes (OLEDS) based on fluorescent emitters with hybridized local and charge-transfer (HLCT) excited state have attracted great attention recently. The excited-state dynamics of the fluorescent molecule with consideration of molecular interaction are studied using the hybrid quantum mechanics/molecular mechanics method. The results show that, in solid state, the internal conversion rate (KIC) between the first singlet excited state (S1) and the ground state (S0) is smaller than the fluorescent rate (Kr), while in gas phase KIC is much larger than Kr. By analyzing the Huang-Rhys (HR) factor and reorganization energy (λ), we find that these two parameters in solid state are much smaller than those in gas phase due to the suppression of the vibration modes in low-frequency regions (solid state than that in gas phase. Moreover, combining the dynamics of the excited states and the adiabatic energy structures calculated in solid state, we illustrate the suggested "hot-exciton" mechanism of the HLCT emitters in OLEDs. Our work presents a rational explanation for the experimental results and demonstrates the importance of molecular interaction for theoretical simulation of the working principle of OLEDs.

  16. An easy-to-use excimer fluorescence derivatization reagent, 2-chloro-4-methoxy-6-(4-(pyren-4-yl)butoxy)-1,3,5-triazine, for use in the highly sensitive and selective liquid chromatography analysis of histamine in Japanese soy sauces.

    Science.gov (United States)

    Nakano, Tatsuki; Todoroki, Kenichiro; Ishii, Yasuhiro; Miyauchi, Chiemi; Palee, Arpaporn; Min, Jun Zhe; Inoue, Koichi; Suzuki, Kuniaki; Toyo'oka, Toshimasa

    2015-06-23

    In this study, a novel pre-column excimer fluorescence derivatization reagent, 2-chloro-4-methoxy-6-(4-(pyren-4-yl)butoxy)-1,3,5-triazine (CMPT), was developed for polyamines, specifically histamine. By CMPT derivatization, the polyamines, histamine and tyramine were converted to polypyrene derivatives, and emitted intra-molecular excimer fluorescence at 475nm. This could clearly be distinguished from the normal fluorescence emitted from reagent blanks at 375 nm. Unlike conventional excimer fluorescence derivatization reagents, CMPT is chemically stable and its reactivity sustained over at least 36 days even in solution state. We successfully applied this reagent to the sensitive and selective analysis of histamine in different kinds of Japanese commercial soy sauces. The detection and quantification limits of histamine were 15 and 50 μg L(-1), respectively, equating to 1.35 pmol and 4.5 pmol for a 6 μL injection. This sensitivity helped the direct analysis of soy sauce samples only treated by one-step liquid-liquid extraction without concentration. The histamine levels of commercial soy sauce samples (koikuchi, usukuchi and saishikomi) investigated were 1.24-768.5 mg L(-1).

  17. Quantitative real-time PCR and fluorescence in situ hybridization approaches for enumerating Brevundimonas diminuta in drinking water.

    Science.gov (United States)

    Donofrio, Robert S; Bestervelt, Lorelle L; Saha, Ratul; Bagley, Susan T

    2010-09-01

    Brevundimonas diminuta is a small Gram-negative bacterium used for validation of membranes and filters used in the pharmaceutical and drinking water treatment industries. Current assays are time consuming, nonselective, and may be subject to interference by competing indigenous microorganisms. The focus of this study is to develop rapid and specific enumeration methodologies for B. diminuta. Quantitative real-time polymerase chain reaction (qPCR) and fluorescence in situ hybridization (FISH) assays were developed based on the gyrB (1,166 bp) and rpoD (829 bp) gene sequences of B. diminuta ATCC 19146. Species-specific primers and probes were designed, and a 100-200 bp segment of each gene was targeted in the qPCR studies. For both the qPCR and FISH assays, an internal 25 bp sequence was selected for use as a TaqMan probe (labeled with 6-FAM and a Black Hole Quencher). Probe specificity studies, conducted against Gram-negative and Gram-positive reference strains as well as environmental strains, revealed high specificity of the primer/probe pairs to B. diminuta. Sensitivities of the qPCR reactions using purified genomic DNA from B. diminuta were determined to be 0.89 pg for rpoD and 8.9 pg for gyrB. The feasibility of using whole-cell B. diminuta suspensions directly with the rpoD qPCR protocol was also evaluated. The greatest sensitivity observed for B. diminuta was 1 x 10(3) colony forming units (CFU) per mL when tryptic soy broth was used as the growth medium. When compared with direct microscopic enumeration using a 5' 6-FAM FISH probe, traditional plating methods showed significant underestimation of B. diminuta concentration (P = 0.01) when this organism was cultivated in saline lactose broth. The results of this investigation demonstrate that qPCR and FISH are effective methods for rapid (alternatives to plating when validating drinking water filtration systems.

  18. Cytogenetic characteristics of B cell chronic lymphocytic leukemia in 275 Chinese patients by fluorescence in situ hybridization: a multicenter study

    Institute of Scientific and Technical Information of China (English)

    LAI Yue-yun; HUANG Xiao-jun

    2011-01-01

    Background Under conventional cytogenetic (CC) analysis, only 30%-50% of B cell chronic lymphocytic leukemia (B-CLL) cases show clonal aberrations. Using fluorescence in situ hybridization (FISH), the percentage of patients with abnormalities rises to almost 80%, among them, the most frequent abnormalities were 13q14, 11q22, p53 deletions and trisomy 12. The aim of this study was to explore the incidence of cytogenetic changes in Chinese patients with B-CLL.Methods We used FISH methods to detect the cytogenetic features in 275 cases of B-CLL from 48 hospitals. The correlation between FISH abnormalities and clinical characteristics such as age, gender, white blood cell count,peripheral hemoglobin (Hb) level, peripheral platelet count (PLT), lactate dehydrogenase (LDH) level, Rai stage, Binet stage, and overall survival was analyzed, and the relationship between them and overall survival was also analyzed to evaluate their prognostic implications.Results Of the 275 patients, genetic aberrations were found in 77.8% using FISH. The frequencies of abnormalities were as follows: 13q deletion (56.4%), trisomy 12 (34.5%), p53 deletion (33.5%) and 11q22 deletion (30.5%). It was obvious that the patients with p53 deletion had lower level of Hb (P=0.001) and PLT (P=0.003) when compared to patients without p53 deletion. Significant differences were obtained in the distribution of p53 deletion according to Rai and Binet classification systems (P=0.016 and 0.008 respectively). Significant differences were also observed when the overall survival was correlated with p53 deletion (P=0.043), Rai stage (P=0.006), Binet stage (P=0.013), Hb level (P=0.004) and PLT level (P=0.010).Conclusions Chinese CLL patients have the similar frequencies of del(13q), trisomy 12, del(11q) and a higher frequency of del(17p) when compared to literatures. Del(17p) is associated with advanced stage and low levels of Hb and PLT. Patients with p53 deletion, or advanced stage probably have poor survival in

  19. Highly sensitive detection of human IgG using a novel bio-barcode assay combined with DNA chip technology

    Science.gov (United States)

    Liu, Zhenbao; Zhou, Bo; Wang, Haiqing; Lu, Feng; Liu, Tianjun; Song, Cunxian; Leng, Xigang

    2013-09-01

    A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 μm in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The Cy3-ssDNA conjugate with DNA chip as the third-level. The highly sensitive technique showed an increased response of the fluorescence intensity to the increased concentration of human IgG through a detection range from 1 pg mL-1 to 10 ng mL-1. This sensing technique could not only improve the detection sensitivity for the low concentration of human IgG but also present a robust and efficient signal amplification model. The detection method has good stability, specificity, and reproducibility and could be applied in the detection of human IgG in the real samples.

  20. Highly sensitive detection of human IgG using a novel bio-barcode assay combined with DNA chip technology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhenbao [Central South University, School of Pharmaceutical Sciences (China); Zhou, Bo, E-mail: zhoubo1771@163.com [The Affiliated Zhongda Hospital of Southeast University, Department of Gerontology (China); Wang, Haiqing; Lu, Feng; Liu, Tianjun; Song, Cunxian; Leng, Xigang, E-mail: lengxigyky@163.com [Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College (China)

    2013-09-15

    A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 {mu}m in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The Cy3-ssDNA conjugate with DNA chip as the third-level. The highly sensitive technique showed an increased response of the fluorescence intensity to the increased concentration of human IgG through a detection range from 1 pg mL{sup -1} to 10 ng mL{sup -1}. This sensing technique could not only improve the detection sensitivity for the low concentration of human IgG but also present a robust and efficient signal amplification model. The detection method has good stability, specificity, and reproducibility and could be applied in the detection of human IgG in the real samples.

  1. Registration procedure for spatial correlation of physical energy deposition of particle irradiation and cellular response utilizing cell-fluorescent ion track hybrid detectors

    Science.gov (United States)

    Niklas, M.; Zimmermann, F.; Schlegel, J.; Schwager, C.; Debus, J.; Jäkel, O.; Abdollahi, A.; Greilich, S.

    2016-09-01

    The hybrid technology cell-fluorescent ion track hybrid detector (Cell-Fit-HD) enables the investigation of radiation-related cellular events along single ion tracks on the subcellular scale in clinical ion beams. The Cell-Fit-HD comprises a fluorescent nuclear track detector (FNTD, the physical compartment), a device for individual particle detection and a substrate for viable cell-coating, i.e. the biological compartment. To date both compartments have been imaged sequentially in situ by confocal laser scanning microscopy (CLSM). This is yet in conflict with a functional read-out of the Cell-Fit-HD utilizing a fast live-cell imaging of the biological compartment with low phototoxicity on greater time scales. The read-out of the biological from the physical compartment was uncoupled. A read-out procedure was developed to image the cell layer by conventional widefield microscopy whereas the FNTD was imaged by CLSM. Point mapping registration of the confocal and widefield imaging data was performed. Non-fluorescent crystal defects (spinels) visible in both read-outs were used as control point pairs. The accuracy achieved was on the sub-µm scale. The read-out procedure by widefield microscopy does not impair the unique ability of spatial correlation by the Cell-Fit-HD. The uncoupling will enlarge the application potential of the hybrid technology significantly. The registration allows for an ultimate correlation of microscopic physical beam parameters and cell kinetics on greater time scales. The method reported herein will be instrumental for the introduction of a novel generation of compact detectors facilitating biodosimetric research towards high-throughput analysis.

  2. Cool and warm hybrid white organic light-emitting diode with blue delayed fluorescent emitter both as blue emitter and triplet host

    Science.gov (United States)

    Cho, Yong Joo; Yook, Kyoung Soo; Lee, Jun Yeob

    2015-01-01

    A hybrid white organic light-emitting diode (WOLED) with an external quantum efficiency above 20% was developed using a new blue thermally activated delayed fluorescent material, 4,6-di(9H-carbazol-9-yl)isophthalonitrile (DCzIPN), both as a blue emitter and a host for a yellow phosphorescent emitter. DCzIPN showed high quantum efficiency of 16.4% as a blue emitter and 24.9% as a host for a yellow phosphorescent emitter. The hybrid WOLEDs with the DCzIPN host based yellow emitting layer sandwiched between DCzIPN emitter based blue emitting layers exhibited high external quantum efficiency of 22.9% with a warm white color coordinate of (0.39, 0.43) and quantum efficiency of 21.0% with a cool white color coordinate of (0.31, 0.33) by managing the thickness of the yellow emitting layer. PMID:25598436

  3. The application of fluorescence in situ hybridization (FISH technique for studying the microbial communities in intestinal tissues of white shrimp (Penaeus vannamei

    Directory of Open Access Journals (Sweden)

    Supamattaya, K.

    2005-02-01

    Full Text Available Fluorescence in situ hybridization technique is very useful for the evaluation of microbial communities in various environments. It is possible to apply this technique to study the intestinal microflora in white shrimp (Penaeus vannamei. Different fixatives and storage temperature were tested in this technique. It was found that fixation with 10% buffered formalin for 12 hours and changed to 70% ethanol shown positive results when compared to the fixation with Davidson's fixative or RF fixative. The best signaling was obtainedfrom the samples which were stored in -20ºC. By using the DNA probe targeted to the Eubacteria domain (EUB338 probe, 5′-GCT GCC TCC CGT AGG AGT-3′ labeled with fluorescein as a hybridizing probe, it was found that most intestinal microflora were aggregated with the intestinal contents, or dispersed in the lumen. There was not evidence of the attachment of the microflora with the intestinal epithelium in this study.

  4. Interphase fluorescence in situ hybridization in multiple myeloma and monoclonal gammopathy of undetermined significance without and with positive plasma cell identification

    DEFF Research Database (Denmark)

    Christensen, Jacob H; Abildgaard, Niels; Plesner, Torben

    2007-01-01

    Interphase fluorescence in-situ hybridization (i-FISH) was used to investigate 192 patients with multiple myeloma (MM; n = 182) and benign monoclonal gammopathy of undetermined significance (MGUS; n = 10). Of the 182 MM cases, 132 were investigated without and 50 with positive plasma cell......32. Of these, translocations t(4;14) constituted 9% and t(11;14), 20%. Finally, based on the small number of cytogenetically abnormal cases, it is recommended to include cytogenetics (and, for example, the DNA index) in the prognostic armamentarium....

  5. Demonstration of Brachyspira aalborgi lineages 2 and 3 in human colonic biopsies with intestinal spirochaetosis by specific fluorescent in situ hybridization

    DEFF Research Database (Denmark)

    Jensen, Tim Kåre; Teglbjærg, Peter S.; Lindboe, Christian F.;

    2004-01-01

    of these organisms in human intestinal spirochaetosis. Seventeen human colonic biopsies from Norway and Denmark with intestinal spirochaetosis caused by Brachyspira-like organisms different from the type strain of B. aalborgi (lineage 1) were examined. Application of the probe gave a positive signal in two Norwegian...... biopsies, whereas the 15 other biopsies were hybridization-negative. The positive reaction visualized the spirochaetes as a fluorescent, 3-5 mum-high fringe on the surface epithelium, extending into the crypts. The study verified the presence of B. aalborgi lineages 2 and 3 and identified the bacteria...

  6. Physical mapping of 18S-25S rDNA and 5S rDNA in Lupinus via fluorescent in situ hybridization.

    Science.gov (United States)

    Naganowska, Barbara; Zielińska, Anna

    2002-01-01

    Double-target fluorescent in situ hybridization (FISH) was used to determine the genomic distribution of ribosomal RNA genes in five Lupinus species: L. cosentinii (2n=32), L. pilosus (2n=42), L. angustifolius (2n=40), L. luteus (2n=52) and L. mutabilis (2n=48). 18S-25S rDNA and 5S rDNA were used as probes. Some interspecific variation was observed in the number and size of the 18S-25S rDNA loci. All the studied species had one chromosome pair carrying 5S rDNA.

  7. Novel karyotype in the Ullrich-Turner syndrome - 45,X/46,X,r(X)/46,X,dic(X) - investigated with fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Robson, L.; Jackson, J.; Cowell, C.; Sillence, D.; Smith, A. [Children`s Hospital, Camperdown (Australia)

    1994-04-15

    A 10-year-old girl with Ullrich-Turner syndrome was found to have the novel karyotype 45,X/46,X,r(X)(p11q11)/46,X,dic(X)(p11). Fluorescence in situ hybridization (FISH) with the {alpha} satellite X centromere probe established the origin of the small ring chromosome. Scanning a large number of cells by interphase FISH showed that the dicentric (X) was the least prevalent cell line. The common breakpoint of Xp11 suggests a sequence of errors as the mechanism whereby these 3 distinct cell lines have arisen. 11 refs., 4 figs., 1 tab.

  8. Construction of a repeat-free dual color fluorescent in situ hybridization probe for ROS1 gene in non-small cell lung cancer diagnosis

    Institute of Scientific and Technical Information of China (English)

    程弘夏

    2014-01-01

    Objective To establish a repeat-free ROS1 gene fluorescence in situ hybridization(FISH)probe,and to compare its efficacy with those of commercial FISH probes in non-small cell lung cancer.Methods The probe was constructed by combining human Cot-1 DNA genome into double-stranded sequence,and then digested by duples specific nuclease to establish a repeat-free sequene.The final repeat-free ROS1 FISH probe was labeled by red and green fluoresceins.Results Compared

  9. Fluorescence in situ hybridization (FISH screening for the 22q11.2 deletion in patients with clinical features of velocardiofacial syndrome but without cardiac anomalies

    Directory of Open Access Journals (Sweden)

    Paula Sandrin-Garcia

    2007-01-01

    Full Text Available The velocardiofacial syndrome (VCFS, a condition associated with 22q11.2 deletions, is characterized by a typical facies, palatal anomalies, learning disabilities, behavioral disturbances and cardiac defects. We investigated the frequency of these chromosomal deletions in 16 individuals with VCFS features who presented no cardiac anomalies, one of the main characteristics of VCFS. Fluorescent in situ hybridization (FISH with the N25 (D22S75; 22q11.2 probe revealed deletions in ten individuals (62%. Therefore, even in the absence of cardiac anomalies testing for the 22q11.2 microdeletions in individuals showing other clinical features of this syndrome is recommended.

  10. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2011-01-01

    The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling the regeneration and reuse of solid-phase QD-FRET hybridization assays. FRET-sensitized emission from acceptor dyes associated with hybridization events at immobilized QD donors provides the analytical signal in these assays. The minimization of active sensing area reduces background from QD donor PL and allows the resolution of smaller amounts of acceptor emission, thus lowering the LOD. The association of multiple acceptor dyes with each hybridization event can enhance FRET efficiency, thereby improving sensitivity. Many previous studies have used interfacial protein layers to generate selectivity; however, transient destabilization of these layers is shown to prevent efficient regeneration. To this end, we report a protein-free interfacial chemistry and demonstrate the specific detection of as little as 2 pmol of target, as well as an improved capacity for regeneration.

  11. Phylogeny-function analysis of (meta)genomic libraries: screening for expression of ribosomal RNA genes by large-insert library fluorescent in situ hybridization (LIL-FISH).

    Science.gov (United States)

    Leveau, Johan H J; Gerards, Saskia; de Boer, Wietse; van Veen, Johannes A

    2004-09-01

    We assessed the utility of fluorescent in situ hybridization (FISH) in the screening of clone libraries of (meta)genomic or environmental DNA for the presence and expression of bacterial ribosomal RNA (rRNA) genes. To establish proof-of-principle, we constructed a fosmid-based library in Escherichia coli of large-sized genomic DNA fragments of the mycophagous soil bacterium Collimonas fungivorans, and hybridized 768 library clones with the Collimonas-specific fluorescent probe CTE998-1015. Critical to the success of this approach (which we refer to as large-insert library FISH or LIL-FISH) was the ability to induce fosmid copy number, the exponential growth status of library clones in the FISH assay and the use of a simple pooling strategy to reduce the number of hybridizations. Twelve out of 768 E. coli clones were suspected to harbour and express Collimonas 16S rRNA genes based on their hybridization to CTE998-1015. This was confirmed by the finding that all 12 clones were also identified in an independent polymerase chain reaction-based screening of the same 768 clones using a primer set for the specific detection of Collimonas 16S ribosomal DNA (rDNA). Fosmids isolated from these clones were grouped by restriction analysis into two distinct contigs, confirming that C. fungivorans harbours at least two 16S rRNA genes. For one contig, representing 1-2% of the genome, the nucleotide sequence was determined, providing us with a narrow but informative view of Collimonas genome structure and content.

  12. Study on the fluorescence and thermal stability of hybrid materials Eu(Phen)2Cl3/MCM-41

    Institute of Scientific and Technical Information of China (English)

    Liangzhun YANG; Lanfen ZHANG; Jun CHEN; Liwen REN; Yanting ZHU; Xiuying WANG; Xibin YU

    2009-01-01

    A series of luminescent hybrid materials Eu (Phen)2Cl3/MCM-41 that the different assembled mass of Eu(Phen)2Cl3 included into the channels of MCM , have been synthesized by combining ultrasound technology. The properties of the hybrid materials were characterized by XRD(X-ray Diffraction), N2-adsorption-desorption, FT-IR and luminescence spectrum. The results show that the rare-earth compounds had been loaded into the holes of mesoporous material MCM-41. The luminescence intensities of the hybrid materials were improved as the increase of the loading concentration of the rare-earth complexes. The hybrid material has the maximal luminescence intensity when it reached the saturated loading concentration (7.17%). To compare with the pure rare-earth complex, the thermal stability of the hybrid materials were enhanced by about 100°C.

  13. Methionine-pyrene hybrid based fluorescent probe for trace level detection and estimation of Hg(II) in aqueous environmental samples: experimental and computational studies.

    Science.gov (United States)

    Banerjee, Arnab; Karak, Debasis; Sahana, Animesh; Guha, Subarna; Lohar, Sisir; Das, Debasis

    2011-02-15

    A new fluorescent, Hg(2+) selective chemosensor, 4-methylsulfanyl-2-[(pyren-4-ylmethylene)-amino] butyric acid methyl ester (L, MP) was synthesized by blending methionine with pyrene. It was well characterized by different analytical techniques, viz. (1)H NMR, (13)C NMR, QTOF mass spectra, elemental analysis, FTIR and UV-vis spectroscopy. The reaction of this ligand with Hg(2+) was studied by steady state and time-resolved fluorescence spectroscopy. The Hg(2+) complexation process was confirmed by comparing FTIR, UV-vis, thermal, QTOF mass spectra and (1)H NMR data of the product with that of the free ligand values. The composition (Hg(2+):L=1:1) of the Hg(2+) complex in solution was evaluated by fluorescence titration method. Based on the chelation assisted fluorescence quenching, a highly sensitive spectrofluorometric method was developed for the determination of trace amounts of Hg(2+) in water. The ligand had an excitation and emission maxima at 360 nm and 455 nm, respectively. The fluorescence life times of the ligand and its Hg(2+) complex were 1.54 ns and 0.72 ns respectively. The binding constant of the ligand, L with Hg(2+) was calculated using Benesi-Hildebrand equation and was found to be 7.5630×10(4). The linear range of the method was from 0 to 16 μg L(-1) with a detection limit of 0.056 μg L(-1) for Hg(2+). The quantum yields of the ligand and its Hg(2+) complex were found to be 0.1206 and 0.0757 respectively. Both the ligand and its Hg(2+) complex have been studied computationally (Ab-initio, Hartree Fock method) to get their optimized structure and other related physical parameters, including bond lengths, bond angles, dipole moments, orbital interactions etc. The binding sites of the ligand to the Hg(2+) ion as obtained from the theoretical calculations were well supported by (1)H NMR titration. The interference of foreign ions was negligible. This method has been successfully applied to the determination of mercury(II) in industrial waste water

  14. Label-free and high-sensitive detection for genetic point mutation based on hyperspectral interferometry

    Science.gov (United States)

    Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang

    2016-10-01

    Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.

  15. Discrepancy between fluorescence in situ hybridization and multiplex ligation-dependent probe amplification in orbital recurrence of uveal melanoma 26 years after enucleation.

    Science.gov (United States)

    Russo, Andrea; Rene, Cornelius; Coupland, Sarah E; Sagili, Suresh; Damato, Bertil

    2012-01-01

    Cytogenetic analysis has transformed the management of uveal melanoma in recent years and allows categorization of such tumors into low-grade tumors with a favorable prognosis and high-grade tumors that metastasize with a fatal outcome. The authors report the case of a 73-year-old man who presented with recurrent melanoma in his left socket, 26 years after enucleation for uveal melanoma. Chromosomal analysis by multiplex ligation-dependent probe amplification revealed partial loss of chromosome 3 and gains in chromosomes 6 and 8, which were missed with fluorescence in situ hybridization. The patient developed multiple liver metastases 14 months after orbital exenteration and died 8 months later. To the best of authors' knowledge, this is the first report of late recurrence of uveal melanoma after enucleation, in which multiplex ligation-dependent probe amplification chromosomal analysis has been used. The case also highlights the limitations of fluorescence in situ hybridization and the benefits of multiplex ligation-dependent probe amplification, which is more reliable at predicting survival.

  16. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Krull, Ulrich J

    2013-08-06

    A multiplexed solid-phase nucleic acid hybridization assay on a paper-based platform is presented using multicolor immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize two types of QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) and red-emitting QDs (rQDs) served as donors with Cy3 and Alexa Fluor 647 (A647) acceptors. The gQD/Cy3 FRET pair served as an internal standard, while the rQD/A647 FRET pair served as a detection channel, combining the control and analytical test zones in one physical location. Hybridization of dye-labeled oligonucleotide targets provided the proximity for FRET sensitized emission from the acceptor dyes, which served as an analytical signal. Hybridization assays in the multicolor format provided a limit of detection of 90 fmol and an upper limit of dynamic range of 3.5 pmol. The use of an array of detection zones was designed to provide improved analytical figures of merit compared to that which could be achieved on one type of array design in terms of relative concentration of multicolor QDs. The hybridization assays showed excellent resistance to nonspecific adsorption of oligonucleotides. Selectivity of the two-plex hybridization assay was demonstrated by single nucleotide polymorphism (SNP) detection at a contrast ratio of 50:1. Additionally, it is shown that the use of preformed QD-probe oligonucleotide conjugates and consideration of the relative number density of the two types of QD-probe conjugates in the two-color assay format is advantageous to maximize assay sensitivity and the upper limit of dynamic range.

  17. Quantitative fluorescent in-situ hybridization: a hypothesized competition mode between two dominant bacteria groups in hydrogen-producing anaerobic sludge processes.

    Science.gov (United States)

    Huang, C-L; Chen, C-C; Lin, C-Y; Liu, W-T

    2009-01-01

    Two hydrogen-producing continuous flow stirred tank reactors (CSTRs) fed respectively with glucose and sucrose were investigated by polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE) and fluorescent in-situ hybridization (FISH). The substrate was fed in a continuous mode decreased from hydraulic retention time (HRT) 10 hours to 6, 5, 4, 3, and 2 hours. Quantitative fluorescent in-situ hybridization (FISH) observations further demonstrated that two morphotypes of bacteria dominated both microbial communities. One was long rod bacteria which can be targeted either by Chis150 probe designed to hybridize the gram positive low G + C bacteria or the specific oligonucleotide probe Lg10-6. The probe Lg10-6, affiliated with Clostridium pasteurianum, was designed and then checked with other reference organisms. The other type, unknown group, which cannot be detected by Chis150 was curved rod bacteria. Notably, the population ratios of the two predominant groups reflected the different operational performance of the two reactors, such as hydrogen producing rates, substrate turnover rates and metabolites compositions. Therefore, a competition mode of the two dominant bacteria groups was hypothesized. In the study, 16S rRNA-based gene library of hydrogen-producing microbial communities was established. The efficiency of hydrogen yields was correlated with substrates (glucose or sucrose), HRT, metabolites compositions (acetate, propionate, butyrate and ethanol), thermal pre-treatment (seed biomass was heated at 100 degrees C for 45 minutes), and microbial communities in the bioreactor, not sludge sources (municipal sewage sludge, alcohol-processing sludge, or bean-processing sludge). The designed specific oligonucleotide probe Lg10-6 also provides us a useful and fast molecular tool to screen hydrogen-producing microbial communities in the future research.

  18. Speckle-type POZ (pox virus and zinc finger protein) protein gene deletion in ovarian cancer: Fluorescence in situ hybridization analysis of a tissue microarray.

    Science.gov (United States)

    Hu, Xiaoyu; Yang, Zhu; Zeng, Manman; Liu, Y I; Yang, Xiaotao; Li, Yanan; Li, X U; Yu, Qiubo

    2016-07-01

    The aim of the present study was to investigate the status of speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) gene located on chromosome 17q21 in ovarian cancer (OC). The present study evaluated a tissue microarray, which contained 90 samples of ovarian cancer and 10 samples of normal ovarian tissue, using fluorescence in situ hybridization (FISH). FISH is a method where a SPOP-specific DNA red fluorescence probe was used for the experimental group and a centromere-specific DNA green fluorescence probe for chromosome 17 was used for the control group. The present study demonstrated that a deletion of the SPOP gene was observed in 52.27% (46/88) of the ovarian cancer tissues, but was not identified in normal ovarian tissues. Simultaneously, monosomy 17 was frequently identified in the ovarian cancer tissues, but not in the normal ovarian tissues. Furthermore, the present data revealed that the ovarian cancer histological subtype and grade were significantly associated with a deletion of the SPOP gene, which was assessed by the appearance of monosomy 17 in the ovarian cancer samples; the deletion of the SPOP gene was observed in a large proportion of serous epithelial ovarian cancer (41/61; 67.21%), particularly in grade 3 (31/37; 83.78%). In conclusion, deletion of the SPOP gene on chromosome 17 in ovarian cancer samples, which results from monosomy 17, indicates that the SPOP gene may serve as a tumor suppressor gene in ovarian cancer.

  19. Exploiting p-Type Delayed Fluorescence in Hybrid White OLEDs: Breaking the Trade-off between High Device Efficiency and Long Lifetime.

    Science.gov (United States)

    Zhang, Dongdong; Zhang, Deqiang; Duan, Lian

    2016-09-01

    Despite that the majority of practical organic light-emitting diodes (OLEDs) still rely on blue fluorophors with low triplet (T1) for creating blue light, hybrid white OLEDs based on low T1 blue fluorophors are still much lagged behind in power efficiency. Here, "ideal" hybrid WOLEDs with recorded efficiency as well as low roll-off, good color-stability and long lifetime were realized by utilizing the bipolar mixed materials as the host of green phosphor as well as the spacer to reduce T1 trap, while blue fluorophors with p-type delayed fluorescence to recycle the trapped T1. An electron transport material with both high electron mobility and good exciton confinement ability was used to boost the TTA efficiency. Hybrid WOLEDs with maximum current efficiency, external quantum efficiency and power efficiency of 49.6 cd/A, 19.1%, and 49.3 lm/W, respectively, together with a high color rendering index of 80 and a half lifetime of over 7000 h at an initial luminescence of 1000 cd/m(2) were realized, manifesting the high potential of the strategy.

  20. Sensitive optical bio-sensing of p-type WSe2 hybridized with fluorescent dye attached DNA by doping and de-doping effects

    Science.gov (United States)

    Han, Kyu Hyun; Kim, Jun Young; Jo, Seong Gi; Seo, Changwon; Kim, Jeongyong; Joo, Jinsoo

    2017-10-01

    Layered transition metal dichalcogenides, such as MoS2, WSe2 and WS2, are exciting two-dimensional (2D) materials because they possess tunable optical and electrical properties that depend on the number of layers. In this study, the nanoscale photoluminescence (PL) characteristics of the p-type WSe2 monolayer, and WSe2 layers hybridized with the fluorescent dye Cy3 attached to probe-DNA (Cy3/p-DNA), have been investigated as a function of the concentration of Cy3/DNA by using high-resolution laser confocal microscopy. With increasing concentration of Cy3/p-DNA, the measured PL intensity decreases and its peak is red-shifted, suggesting that the WSe2 layer has been p-type doped with Cy3/p-DNA. Then, the PL intensity of the WSe2/Cy3/p-DNA hybrid system increases and the peak is blue-shifted through hybridization with relatively small amounts of target-DNA (t-DNA) (50–100 nM). This effect originates from charge and energy transfer from the Cy3/DNA to the WSe2. For t-DNA detection, our systems using p-type WSe2 have the merit in terms of the increase of PL intensity. The p-type WSe2 monolayers can be a promising nanoscale 2D material for sensitive optical bio-sensing based on the doping and de-doping responses to biomaterials.

  1. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Noor, M. Omair; Tavares, Anthony J.; Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca

    2013-07-25

    Graphical abstract: -- Highlights: •Solid-phase multiplexed QD-FRET nucleic acid assay in electrokinetic fluidic chip. •Concurrent detection of two oligonucleotides based on channel length coverage. •Selection of “turn-on” and “turn-off” signals from two acceptor dyes and two colors of immobilized QDs, respectively. •No loss in assay sensitivity when implementing multiplexed assay format. -- Abstract: A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical

  2. NEMS Capacitive Sensors for Highly Sensitive, Label-Free Nucleic-Acid Analysis

    Science.gov (United States)

    Mannoor, Manu Sebastian; James, Teena; Ivanov, Dentcho V.; Beadling, Les; Braunlin, William

    A highly sensitive NEMS capacitive sensor with electrode separation in the order of Debye length is fabricated for label free DNA analysis. The use of nano-scale electrode separation provides better insight in to the target-probe interaction which was not previously attainable with macro or even micro scale devices. As the double layers from both the capacitive electrodes merge together and occupy a major fraction of the capacitive volume, the contribution from bulk sample resistance and noises due to electrode polarization effects are eliminated. The dielectric properties during hybridization reaction were measured using 10-mer nucleotide sequences. A 45-50% change in relative permittivity (capacitance) was observed due to DNA hybridization at 10Hz. Capacitive sensors with 30nm electrode separation were fabricated using standard silicon micro/nano technology and show promise for future electronic DNA arrays and high throughput screening of nucleic acid samples.

  3. Fluorescent in situ hybridization with specific DNA probes offers adequate detection of Enterococcus faecalis and Enterococcus faecium in clinical samples

    NARCIS (Netherlands)

    Waar, K; Degener, JE; van Luyn, MJ; Harmsen, HJM

    2005-01-01

    Enterococcus faecalis and Enterococcus faecium are among the leading causes of hospital-acquired infections. Reliable and quick identification of E faecalis and E faecium is important for accurate treatment and understanding their role in the pathogenesis of infections. Fluorescent in situ hybridiza

  4. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    Energy Technology Data Exchange (ETDEWEB)

    Noor, M. Omair; Hrovat, David [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Moazami-Goudarzi, Maryam [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Espie, George S. [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada)

    2015-07-23

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  5. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleicacid probes and tyramide signal amplification

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli N.; Nolting, Dorrit; Andersen, Lars Dyrskjøt;

    2007-01-01

    The ability to determine spatial and temporal microRNA (miRNA) accumulation at the tissue, cell and subcellular levels is essential for understanding the biological roles of miRNAs and miRNA-associated gene regulatory networks. This protocol describes a method for fast and effective detection of mi......RNAs in frozen tissue sections using fluorescence in situ hybridization (FISH). The method combines the unique miRNA recognition properties of locked nucleic acid (LNA)-modified oligonucleotide probes with FISH using the tyramide signal amplification (TSA) technology. Although both approaches have previously...... protocol can be completed within approximately 6 h and allows miRNA detection in a wide variety of animal tissue cryosections as well as in human tumor biopsies at high cellular resolution....

  6. A populational survey of 45S rDNA polymorphism in the Jefferson salamander Ambystoma jeffersonianum revealed by fluorescence in situ hybridization (FISH)

    Institute of Scientific and Technical Information of China (English)

    Ke BI; James P.BOGART; Jinzhong FU

    2009-01-01

    The chromosomal localization of 45S ribosomal RNA genes in Ambystoma jeffersonianum was determined by fluorescence in situ hybridization with 18S rDNA fragment as a probe (FISH-rDNA). Our results revealed the presence of rDNA polymorphism among A.jeffersonianum populations in terms of number, location and FISH signal intensity on the chromosomes. Nine rDNA cytotypes were found in ten geographically isolated populations and most of them contained derivative rDNA sites. Our preliminary study provides strong indication of karyotypic diversification of A.jeffersonianum that is demonstrated by intraspecific variation of 45S rDNA cytotypes. rDNA cytotype polymorphism has been described in many other caudate amphibians. We predict that habitat isolation, low dispersal ability and decline of effective population size could facilitate the fixation and accumulation of variable rDNA cytotypes during their chromosome evolution [Current Zoology 55(2):145-149,2009].

  7. Specific detection of the genus Serpulina, S-hyodysenteriae and S-pilosicoli in porcine intestines by fluorescent rRNA in situ hybridization

    DEFF Research Database (Denmark)

    Boye, Mette; Jensen, Tim Kåre; Møller, Kristian;

    1998-01-01

    , for the detection of Serpulina isolates at genus level as well as for specific detection of S. hyodysenteriae and S. pilosicoli in formalin-fixed colon tissue sections from pigs suffering from swine dysentery and porcine colonic spirochaetosis, respectively. Tissue sections were also used from pigs without any......A fluorescent-labelled in situ hybridization method targeting rRNA was devised to facilitate specific identification and diagnosis of diarrhoea and colitis in pigs caused by the genus Serpulina, as well as to distinguish the species Serpulina hyodysenteriae and Serpulina pilosicoli in formalin......-fixed colon tissue sections. A genus-specific oligonucleotide probe SER1410 targeting the five species of porcine Serpulina was thus designed. Furthermore, species specific oligonucleotide probes (Hyo1210, Pilosi209 and Pilosi1405) were also designed to detect, identify and differentiate S. hyodysenteriae...

  8. [Interphase cytogenetics of the breast tumors with fluorescence in situ hybridization (FISH) on cytologic preparation--its practice and clinical applications].

    Science.gov (United States)

    Shibuya, M; Osamura, R Y

    1996-05-01

    Fluorescence in situ hybridization (FISH) study with the chromosome specific probes is performed in the interphase nuclei of the routinely processed cytologic preparation of the breast tumors. Numerical aberrations on the chromosomes 1, 3, 11 or 17 were detected in more than 80% of the malignant tumors, but not in the benign tumors. Marked heterogeneity of the polysomies is noted in the malignant tumor cells. A few malignant cases revealed monosomy of chromosome 17. No apparent correlation between the numerical abnormalities and the histological features in malignant tumors is identified. These results suggest that the interphase cytogenetics with FISH for the breast tumors may be useful for differential diagnosis of malignancy. The practice and the clinical applications of the FISH study are discussed.

  9.   In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Dige, Irene; Kilian, Mogens; Nilsson, Holger

    2007-01-01

    Confocal laser scanning microscopy (CLSM) has been employed as a method for studying intact natural biofilm. When combined with fluorescence in situ hybridization (FISH) it is possible to analyze spatial relationships and changes of specific members of microbial populations over time. The aim...... of this study was to perform a systematic description of the pattern of initial dental biofilm formation by applying 16S rRNA- targeted oligonucleotide probes to the identification of streptococci and other bacteria, and to evaluate the usefulness of the combination of CLSM and FISH for structural studies......) and analysed by CLSM. The current approach of using FISH techniques enabled differentiation of streptococci from other bacteria and determination of their spatio-temporal organization. The presence of chimney-like multilayered microcolonies with different microbial compo- sitions demonstrated...

  10. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleicacid probes and tyramide signal amplification

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli N.; Nolting, Dorrit; Andersen, Lars Dyrskjøt

    2007-01-01

    RNAs in frozen tissue sections using fluorescence in situ hybridization (FISH). The method combines the unique miRNA recognition properties of locked nucleic acid (LNA)-modified oligonucleotide probes with FISH using the tyramide signal amplification (TSA) technology. Although both approaches have previously...... been shown to increase detection sensitivity in FISH, combining these techniques into one protocol significantly decreases the time needed for miRNA detection in cryosections, while simultaneously retaining high detection sensitivity. Starting with fixation of the tissue sections, this miRNA FISH...... protocol can be completed within approximately 6 h and allows miRNA detection in a wide variety of animal tissue cryosections as well as in human tumor biopsies at high cellular resolution....

  11. Dicentric chromosome aberration analysis using giemsa and centromere specific fluorescence in-situ hybridization for biological dosimetry: An inter- and intra-laboratory comparison in Indian laboratories.

    Science.gov (United States)

    Bhavani, M; Tamizh Selvan, G; Kaur, Harpreet; Adhikari, J S; Vijayalakshmi, J; Venkatachalam, P; Chaudhury, N K

    2014-09-01

    To facilitate efficient handling of large samples, an attempt towards networking of laboratories in India for biological dosimetry was carried out. Human peripheral blood samples were exposed to (60)Co γ-radiation for ten different doses (0-5Gy) at a dose rate of 0.7 and 2Gy/min. The chromosomal aberrations (CA) were scored in Giemsa-stained and fluorescence in-situ hybridization with centromere-specific probes. No significant difference (p>0.05) was observed in the CA yield for given doses except 4 and 5Gy, between the laboratories, among the scorers and also staining methods adapted suggest the reliability and validates the inter-lab comparisons exercise for triage applications.

  12. Mosaic vs. nonmosaic trisomy 9: Report of a liveborn infant evaluated by fluorescence in situ hybridization and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Cantu, E.S.; Eicher, D.J.; Shashidhar Pai, G.; Donahue, C.J.; Harley, R.A. [Medical Univ. of South Carolina, Chalreston, SC (United States)

    1996-04-24

    We report on a newborn infant with multiple congenital anomalies and apparent nonmosaic trisomy 9 in the blood (by conventional cytogenetic studies) who died shortly after birth. Clinical observations at birth and autopsy are compared with phenotypes of mosaic and nonmosaic trisomy 9 cases reported previously. Unlike the initial cytogenetic analysis, fluorescence in situ hybridization (FISH) studies of metaphase and interphase blood cells and skin fibroblasts detected the presence of euploid and trisomy 9 cells. These results suggest that earlier reports of trisomy 9, which relied on conventional chromosome analysis of a few metaphase cells and/or only one tissue type, may not have excluded mosaicism, and that trisomy 9 may be viable only in the mosaic state. 39 refs., 3 figs., 2 tabs.

  13. Variations of 18S rDNA Loci Among Six Populations of Paeonia obovata Maxim. (Paeoniaceae) Revealed by Fluorescence In Situ Hybridization

    Institute of Scientific and Technical Information of China (English)

    Rui Luo; Chao Wang; Daming Zhang

    2006-01-01

    The localization of 18S ribosomal RNA genes (rDNA) by fluorescence in situ hybridization (FISH) had been performed for some species of Paeonia. However, the pattern of 18S rDNA loci among populations is indistinct. In the present study, we localized 18S rDNA loci on meiotic or mitotic chromosomes of six populations of Paeonia obovata Maxim. (Paeoniaceae). Different numbers of rDNA loci were found with different diploid (2n=10) populations, namely eight (Lushi and Mt. Jiuhua populations), 10 (Mt. Taibai population), and seven (Mt. Guandi population), whereas tetraploid (2n=20) populations were all found with 16 loci. All rDNA loci were mapped near telomeres of mitotic chromosomes and there was no chromosome with two loci. The present results show that molecular cytological polymorphism exists among P. obovata diploid populations, indicating that structural variations occurred frequently during the evolutionary history of this species, accompanied with differentiation among populations.

  14. A populational survey of 45S rDNA polymorphism in the Jefferson salamander Ambystoma jeffersonianum revealed by fluorescence in situ hybridization (FISH

    Directory of Open Access Journals (Sweden)

    Jinzhong FU

    2009-04-01

    Full Text Available The chromosomal localization of 45S ribosomal RNA genes in Ambystoma jeffersonianum was determined by fluorescence in situ hybridization with 18S rDNA fragment as a probe (FISH-rDNA. Our results revealed the presence of rDNA polymorphism among A.jeffersonianum populations in terms of number, location and FISH signal intensity on the chromosomes. Nine rDNA cytotypes were found in ten geographically isolated populations and most of them contained derivative rDNA sites. Our preliminary study provides strong indication of karyotypic diversification of A.jeffersonianum that is demonstrated by intraspecific variation of 45S rDNA cytotypes. rDNA cytotype polymorphism has been described in many other caudate amphibians. We predict that habitat isolation, low dispersal ability and decline of effective population size could facilitate the fixation and accumulation of variable rDNA cytotypes during their chromosome evolution.

  15. Identification of the origin of marker chromosomes by two-color fluorescence in situ hybridization and polymerase chain reaction in azoospermic patients.

    Science.gov (United States)

    Wei, C L; Cheng, J L; Yang, W C; Li, L Y; Cheng, H C; Fu, J J

    2015-11-19

    Y chromosomal microdeletions at the azoospermia factor locus and chromosome abnormalities have been implicated as the major causes of idiopathic male infertility. A marker chromosome is a structurally abnormal chromosome in which no part can be identified by cytogenetics. In this study, to identify the origin of the marker chromosomes and to perform a genetic diagnosis of patients with azoospermia, two-color fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR) techniques were carried out. The marker chromosomes for the two patients with azoospermia originated in the Y chromosome; it was ascertained that the karyotype of both patients was 46,X, ish del(Y)(q11)(DYZ3+, DXZ1-). The combination of two-color FISH and PCR techniques is an important method for the identification of the origin of marker chromosomes. Thus, genetic counseling and a clear genetic diagnosis of patients with azoospermia before intracytoplasmic sperm injection or other clinical managements are important.

  16. Application of fluorescence in situ hybridization in the diagnosis of urothelial carcinoma%荧光原位杂交技术在尿路上皮癌诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    张卫兵; 刘波; 王行环; 程忠源; 郑新民; 李世文

    2012-01-01

    目的 探讨荧光原位杂交技术( FISH)在尿路上皮癌诊断中的应用价值.方法 采用FISH检测100例血尿患者尿脱落细胞中第3、7、17号染色体和第9号染色体p16位点异常,以组织病理学确诊尿路上皮癌为金标准,评估FISH诊断的敏感度和特异度,并与尿细胞学检查结果进行比较.结果 FISH检测和尿细胞学检查诊断尿路上皮癌的敏感度分别为82.5%和49.2%, 差异有统计学意义(P<0.05);特异度分别为86.7%和96.6%,差异无统计学意义(P>0.05).结论 与尿细胞学比较,FISH诊断尿路上皮癌具有较高的敏感度和相似的特异度.%Objective To evaluate the results of fluorescence in situ hybridization (FISH) for detecting urothelial carcinoma.Methods Voided urine samples from 100 patients with haematuria were analyzed by FISH and cytology; labeled probes for chromosomes 3,7,17 and 9 p16 were used to assess chromosomal abnormalities.The gold standard was pathology diagnosis.The overall sensitivity and specificity of FISH were evaluated and compared with cytology.Results The sensitivity of FISH and cytology in detection urothelial cancer were 82.5% and 49.2% respectively,and the specificity was 86.7% and 96.6% respectively.There was a significant difference between the sensitivity( P < 0.05 ),and the different between the specificity was not significant ( P > 0.05 ).Conclusion Compared with urine cytology,FISH diagnosis of urothelial carcinoma with high sensitivity and a similar specificity.

  17. A highly sensitive upconverting nano-glass-ceramic-based optical thermometer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn; Liu, Shen; Wan, Zhongyi; Chen, Yan, E-mail: chenyan@hdu.edu.cn

    2016-07-05

    Yb/Tm: YF{sub 3} nanoparticles embedded transparent bulk glass ceramic was successfully prepared to explore its possible application in optical temperature sensors. Specifically, owing to the competition of electron population in the thermally coupled Tm{sup 3+3}F{sub 2,3} and {sup 3}H{sub 4} excited states, two upconversion emission bands corresponding to Tm{sup 3+}: {sup 3}F{sub 2,3} → {sup 3}H{sub 6} transition and {sup 1}G{sub 4}→{sup 3}F{sub 4} one exhibited opposite temperature-dependent behaviors, which resulted in monotonous enhancement of the related fluorescence intensity ratio with increase of temperature. As a consequence, Tm{sup 3+} activators in the present YF{sub 3} glass ceramic had advantages of a high sensitivity of 1.84% per K, an avoidable spectral overlapping and a negligible thermal effect for accurate temperature detecting. - Highlights: • Yb/Tm: β-YF{sub 3} embedded transparent glass ceramic was fabricated. • Glass crystallization induced greatly enhancement of upconversion luminescence. • Different T-sensitive emission behaviors of two thermally coupled states were observed. • Tm{sup 3+} fluorescence intensity ratio intensified with increase of temperature. • The glass ceramic exhibited a high sensitivity of 1.84% K{sup −1} and a negligible thermal effect.

  18. Fluorescent in situ hybridization for the localization of viruses, bacteria and other microorganisms in insect and plant tissues.

    Science.gov (United States)

    Kliot, Adi; Ghanim, Murad

    2016-04-01

    Methods for the localization of cellular components such as nucleic acids, proteins, cellular vesicles and more, and the localization of microorganisms including viruses, bacteria and fungi have become an important part of any research program in biological sciences that enable the visualization of these components in fixed and live tissues without the need for complex processing steps. The rapid development of microscopy tools and technologies as well as related fluorescent markers and fluorophores for many cellular components, and the ability to design DNA and RNA sequence-based molecular probes and antibodies which can be visualized fluorescently, have rapidly advanced this field. This review will focus on some of the localizations methods which have been used in plants and insect pests in agriculture, and other microorganisms, which are rapidly advancing the research in agriculture-related fields.

  19. Aluminum nano-cantilevers for high sensitivity mass sensors

    DEFF Research Database (Denmark)

    Davis, Zachary James; Boisen, Anja

    2005-01-01

    We have fabricated Al nano-cantilevers using a very simple one mask contact UV lithography technique with lateral dimensions under 500 nm and vertical dimensions of approximately 100 nm. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties. Further...

  20. Highly Sensitive AMS Measurement of 53Mn at CIAE

    Institute of Scientific and Technical Information of China (English)

    DONG; Ke-jun; HU; Hao; LIU; Guang-shan; HE; Ming; LI; Zhen-yu; DOU; Liang; XIE; Lin-bo; LIU; Jian-cheng; WANG; Xiang-gao; SHEN; Hong-tao; LIN; De-yu; ZHENG; Guo-wen; WANG; Xiao-bo; LI; Heng; LI; Chao-li; WU; Shao-yong; YOU; Qu-bo; JIN; Chun-sheng; CHEN; Zhi-gang; YUAN; Jian; JIANG; Shan

    2013-01-01

    Methods for highly sensitive AMS measurement of 53Mn were explored by extracting different Mn-containing molecular ions in ion source and using different chemical forms of sample materials.Preliminary results indicate that a method for AMS measurement of 53Mn has been established and a-155355

  1. A fluorescent coumarin-thiophene hybrid as a ratiometric chemosensor for anions: Synthesis, photophysics, anion sensing and orbital interactions

    Science.gov (United States)

    Yanar, Ufuk; Babür, Banu; Pekyılmaz, Damla; Yahaya, Issah; Aydıner, Burcu; Dede, Yavuz; Seferoğlu, Zeynel

    2016-03-01

    A colorimetric and fluorimetric fluorescent chemosensor (CT-2), having a coumarin ring as a signaling unit and an acetamido thiophene ring as an H-donor receptor, has been synthesized from amino derivative (CT-1) of CT-2 for the purpose of recognition of anions in DMSO. The absorption and emission maxima were both determined for the fluorescent dye in different solvents. Both hypsochromic shift at the absorption maximum, and quenching of fluorescence after interactions between the anions and the receptoric part, were observed. This phenomenon was explained using orbital interactions based on quantum chemical calculations. The selectivity and sensitivity of CT-2 for F-, Cl-, Br-, I-, AcO-, CN-, H2PO4-, HSO4- and ClO4- anions were determined with spectrophotometric, fluorimetric and 1H NMR titration techniques and it was found that CT-2 be utilized for the detection of CN-, F- and AcO- in the presence of other ions as competitors. Color and fluorescence changes visible to the naked eye and under UV (365 nm) were observed upon addition of CN-, F- and AcO- to the solution of chemosensor (CT-2) in DMSO. The sensor showed no colorimetric and fluorimetric response for the anions such as Cl-, Br-, I-, H2PO4-, HSO4-, and ClO4-. However, 1H NMR titration shows that the chemosensor was more sensitive to CN-, than F- and AcO- at the stochiometric ratio of 1:2.5 respectively. Additionally, the compounds CT-1 and CT-2 showed good thermal stability for practical applications.

  2. Fluorescent in situ hybridization as a tool to retrospectively identify Cryptosporidium parvum and Giardia lamblia in samples from terrestrial mammalian wildlife.

    Science.gov (United States)

    Bednarska, Malgorzata; Bajer, Anna; Sinski, Edward; Girouard, Autumn S; Tamang, Leena; Graczyk, Thaddeus K

    2007-02-01

    Fecal samples of five terrestrial mammalian wildlife species stored at 4 degrees C or at -20 degrees C for up to 36 months have been tested for human zoonotic enteric parasites (i.e., Cryptosporidium parvum and Giardia lamblia) using combined fluorescent in situ hybridization (FISH) and direct fluorescent antibody techniques. The prevalence of C. parvum and G. lamblia varied from 20 to 63% (mean, 45.8%) and from 13 to 100% (mean, 53.2%), respectively. The prevalence of C. parvum and G. lamblia infections was higher in small rodents (mean, 68.5%) than in other wildlife (mean, 21%). Overall, 31.1% of animals were coinfected, and coinfections were more prevalent in small rodents (mean, 52%) than in other wildlife species (mean, 13.2%). The present study has shown that the FISH assay can be retrospectively applied to fecal samples for the identification of C. parvum oocysts, but is less suitable for the identification of G. lamblia cysts in such samples. Terrestrial mammalian wildlife, particularly small rodents, can contribute to watershed contamination with C. parvum oocysts and G. lamblia cysts. To control contamination, the management of pristine watersheds used for drinking water purposes should incorporate control measures for terrestrial wildlife, especially field rodents residing within such watersheds.

  3. Groping for Quantitative Digital 3-D Image Analysis: An Approach to Quantitative Fluorescence In Situ Hybridization in Thick Tissue Sections of Prostate Carcinoma

    Directory of Open Access Journals (Sweden)

    Karsten Rodenacker

    1997-01-01

    Full Text Available In molecular pathology numerical chromosome aberrations have been found to be decisive for the prognosis of malignancy in tumours. The existence of such aberrations can be detected by interphase fluorescence in situ hybridization (FISH. The gain or loss of certain base sequences in the desoxyribonucleic acid (DNA can be estimated by counting the number of FISH signals per cell nucleus. The quantitative evaluation of such events is a necessary condition for a prospective use in diagnostic pathology. To avoid occlusions of signals, the cell nucleus has to be analyzed in three dimensions. Confocal laser scanning microscopy is the means to obtain series of optical thin sections from fluorescence stained or marked material to fulfill the conditions mentioned above. A graphical user interface (GUI to a software package for display, inspection, count and (semi‐automatic analysis of 3‐D images for pathologists is outlined including the underlying methods of 3‐D image interaction and segmentation developed. The preparative methods are briefly described. Main emphasis is given to the methodical questions of computer‐aided analysis of large 3‐D image data sets for pathologists. Several automated analysis steps can be performed for segmentation and succeeding quantification. However tumour material is in contrast to isolated or cultured cells even for visual inspection, a difficult material. For the present a fully automated digital image analysis of 3‐D data is not in sight. A semi‐automatic segmentation method is thus presented here.

  4. Monitoring of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris (synonym Candida zemplinina) populations during alcoholic fermentation by fluorescence in situ hybridization.

    Science.gov (United States)

    Wang, Chunxiao; Esteve-Zarzoso, Braulio; Mas, Albert

    2014-11-17

    Various molecular approaches have been applied as culture-independent techniques to monitor wine fermentations over the last decade. Among them, those based on RNA detection have been widely used for yeast cell detection, assuming that RNA only exists in live cells. Fluorescence in situ hybridization (FISH) targeting intracellular rRNA is considered a promising technique for the investigation of wine ecology. For the present study, we applied the FISH technique in combination with epifluorescence microscopy and flow cytometry to directly quantify populations of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris during alcoholic fermentations. A new specific probe that hybridizes with eight species of Hanseniaspora genus and a second probe specific for Starm. bacillaris were designed, and the conditions for their application to pure cultures, mixed cultures, and wine samples were optimized. Single and mixed fermentations were performed with natural, concentrated must at two different temperatures, 15 °C and 25 °C. The population dynamics revealed that the Sacch. cerevisiae population increased to 10(7)-10(8)cells/ml during all fermentations, whereas H. uvarum and Starm. bacillaris tended to increase in single fermentations but remained at levels similar to their inoculations at 10(6)cells/ml in mixed fermentations. Temperature mainly affected the fermentation duration (slower at the lower temperature) but did not affect the population sizes of the different species. The use of these probes in natural wine fermentations has been validated.

  5. High-resolution cytogenetic mapping of 342 new cosmid markers including 43 RFLP markers on human chromosome 17 by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Inazawa, Johji; Ariyama, Takeshi; Abe, Tatsuo (Kyoto Prefectual Univ. of Medicine (Japan)); Saito, Hiroko; Nakamura, Yusuke (Cancer Institute, Tokyo (Japan))

    1993-07-01

    The authors have constructed a high-resolution cytogenetic map of human chromosome 17 with 342 cosmid markers, each newly isolated from a cosmid library constructed from a human-mouse hybrid cell line containing a single human chromosome 17. Direct mapping on R- and/or G-banded (pro)metaphase chromosomes by fluorescence in situ hybridization localized these markers throughout the chromosome, although density was highest in the R-band-dominant regions of 17p13, 17p11.2, 17q11.2-q12, 17q21.3, 17q23, and 17q25. By screening some of the cosmid clones, they identified 71 polymorphic systems with 43 markers; 11 of these are VNTRs. As the high-resolution cytogenetic map contains a large number of markers, it can provide useful landmarks for a contig map of chromosome 17. Furthermore, the map will contribute to positional cloning of aberrant genes responsible for inherited diseases such as Miller-Dieker syndrome (MDS), Smith-Magenis syndrome (SMS), and familial early-onset breast cancer, as well as putative tumor suppressor genes on this chromosome. 47 refs., 2 figs., 2 tabs.

  6. 5-bp Classical Satellite DNA Loci from Chromosome-1 Instability in Cervical Neoplasia Detected by DNA Breakage Detection/Fluorescence in Situ Hybridization (DBD-FISH).

    Science.gov (United States)

    Cortés-Gutiérrez, Elva I; Ortíz-Hernández, Brenda L; Dávila-Rodríguez, Martha I; Cerda-Flores, Ricardo M; Fernández, José Luis; López-Fernández, Carmen; Gosálvez, Jaime

    2013-02-19

    We aimed to evaluate the association between the progressive stages of cervical neoplasia and DNA damage in 5-bp classical satellite DNA sequences from chromosome-1 in cervical epithelium and in peripheral blood lymphocytes using DNA breakage detection/fluorescence in situ hybridization (DBD-FISH). A hospital-based unmatched case-control study was conducted in 2011 with a sample of 30 women grouped according to disease stage and selected according to histological diagnosis; 10 with low-grade squamous intraepithelial lesions (LG-SIL), 10 with high-grade SIL (HG-SIL), and 10 with no cervical lesions, from the Unidad Medica de Alta Especialidad of The Mexican Social Security Institute, IMSS, Mexico. Specific chromosome damage levels in 5-bp classical satellite DNA sequences from chromosome-1 were evaluated in cervical epithelium and peripheral blood lymphocytes using the DBD-FISH technique. Whole-genome DNA hybridization was used as a reference for the level of damage. Results of Kruskal-Wallis test showed a significant increase according to neoplastic development in both tissues. The instability of 5-bp classical satellite DNA sequences from chromosome-1 was evidenced using chromosome-orientation FISH. In conclusion, we suggest that the progression to malignant transformation involves an increase in the instability of 5-bp classical satellite DNA sequences from chromosome-1.

  7. Simultaneous 16S and 18S rRNA fluorescence in situ hybridization (FISH) on LR White sections demonstrated in Vestimentifera (Siboglinidae) tubeworms.

    Science.gov (United States)

    Schimak, Mario P; Toenshoff, Elena R; Bright, Monika

    2012-02-01

    Traditional morphological identification of invertebrate marine species is limited in early life history stages for many taxa. In this study, we demonstrate, by example of Vestimentiferan tubeworms (Siboglinidae, Polychaeta), that the simultaneous fluorescence in situ hybridization (FISH) of both eukaryotic host and bacterial symbiont cells is possible on a single semi-thin (1 μm) section. This allows the identification of host specimens to species level as well as offering visualization of bacteria distributed within the host tissue. Previously published 18S rRNA host-specific oligonucleotide probes for Riftia pachyptila, Tevnia jerichonana and a newly designed Oasisia alvinae probe, as well as a 16S rRNA probe targeting symbionts found in all host species, were applied. A number of standard fixation and hybridization parameters were tested and optimized for the best possible signal intensity and cellular resolution. Ethanol conserved samples embedded in LR White low viscosity resin yielded the best results with regard to both signal intensity and resolution. We show that extended storage times of specimens does not affect the quality of signals attained by FISH and use our protocol to identify morphologically unidentifiable tubeworm individuals from a small data set, conforming to previous findings in succession studies of the Siboglinidae family.

  8. 5-bp Classical Satellite DNA Loci from Chromosome-1 Instability in Cervical Neoplasia Detected by DNA Breakage Detection/Fluorescence in Situ Hybridization (DBD-FISH)

    Science.gov (United States)

    Cortés-Gutiérrez, Elva I.; Ortíz-Hernández, Brenda L.; Dávila-Rodríguez, Martha I.; Cerda-Flores, Ricardo M; Fernández, José Luis; López-Fernández, Carmen; Gosálvez, Jaime

    2013-01-01

    We aimed to evaluate the association between the progressive stages of cervical neoplasia and DNA damage in 5-bp classical satellite DNA sequences from chromosome-1 in cervical epithelium and in peripheral blood lymphocytes using DNA breakage detection/fluorescence in situ hybridization (DBD-FISH). A hospital-based unmatched case-control study was conducted in 2011 with a sample of 30 women grouped according to disease stage and selected according to histological diagnosis; 10 with low-grade squamous intraepithelial lesions (LG-SIL), 10 with high-grade SIL (HG-SIL), and 10 with no cervical lesions, from the Unidad Medica de Alta Especialidad of The Mexican Social Security Institute, IMSS, Mexico. Specific chromosome damage levels in 5-bp classical satellite DNA sequences from chromosome-1 were evaluated in cervical epithelium and peripheral blood lymphocytes using the DBD-FISH technique. Whole-genome DNA hybridization was used as a reference for the level of damage. Results of Kruskal-Wallis test showed a significant increase according to neoplastic development in both tissues. The instability of 5-bp classical satellite DNA sequences from chromosome-1 was evidenced using chromosome-orientation FISH. In conclusion, we suggest that the progression to malignant transformation involves an increase in the instability of 5-bp classical satellite DNA sequences from chromosome-1. PMID:23429197

  9. Subcuticular bacteria associated with two common New Zealand echinoderms: Characterization using 16S rRNA sequence analysis and fluorescence in situ hybridization.

    Science.gov (United States)

    Lawrence, Scott A; O'Toole, Ronan; Taylor, Michael W; Davy, Simon K

    2010-02-01

    Many echinoderms contain subcuticular bacteria (SCB), symbionts which reside in the lumen between the host's epidermal cells and outer cuticle. This relationship is common, existing in about 60% of echinoderms studied so far, yet the function of SCB remains largely unknown. In this study, phylogenetic analysis was carried out on 16S rRNA sequences obtained from echinoderm-associated bacteria, resulting in the identification of four species of putative SCB. All four bacteria were identified from the holothurian Stichopus mollis, and two of the four were also found in the asteroid Patiriella sp. Two of these bacteria belong to the Alphaproteobacteria, and two to the Gammaproteobacteria. In addition to phylogenetic analysis, fluorescence in situ hybridization (FISH) assays were carried out on Patiriella sp., S. mollis, and the asteroid Astrostole scabra. Results showed that Patiriella sp. and S. mollis contain SCB, in agreement with the phylogenetic analysis, while SCB were not detected in A. scabra. Of the bacteria detected using FISH, more than 80% were recognized as belonging to the Alphaproteobacteria in both host species. However, in S. mollis about 20% of the detected SCB successfully hybridized with the Gammaproteobacteria-specific probe, whereas bacteria belonging to this class were never observed in Patiriella sp. This is only the second study to characterize SCB by molecular means, and is the first to identify SCB in situ using FISH.

  10. 5-bp Classical Satellite DNA Loci from Chromosome-1 Instability in Cervical Neoplasia Detected by DNA Breakage Detection/Fluorescence in Situ Hybridization (DBD-FISH

    Directory of Open Access Journals (Sweden)

    Jaime Gosálvez

    2013-02-01

    Full Text Available We aimed to evaluate the association between the progressive stages of cervical neoplasia and DNA damage in 5-bp classical satellite DNA sequences from chromosome-1 in cervical epithelium and in peripheral blood lymphocytes using DNA breakage detection/fluorescence in situ hybridization (DBD-FISH. A hospital-based unmatched case-control study was conducted in 2011 with a sample of 30 women grouped according to disease stage and selected according to histological diagnosis; 10 with low-grade squamous intraepithelial lesions (LG-SIL, 10 with high-grade SIL (HG-SIL, and 10 with no cervical lesions, from the Unidad Medica de Alta Especialidad of The Mexican Social Security Institute, IMSS, Mexico. Specific chromosome damage levels in 5-bp classical satellite DNA sequences from chromosome-1 were evaluated in cervical epithelium and peripheral blood lymphocytes using the DBD-FISH technique. Whole-genome DNA hybridization was used as a reference for the level of damage. Results of Kruskal-Wallis test showed a significant increase according to neoplastic development in both tissues. The instability of 5-bp classical satellite DNA sequences from chromosome-1 was evidenced using chromosome-orientation FISH. In conclusion, we suggest that the progression to malignant transformation involves an increase in the instability of 5-bp classical satellite DNA sequences from chromosome-1.

  11. Numerical and structural genomic aberrations are reliably detectable in tissue microarrays of formalin-fixed paraffin-embedded tumor samples by fluorescence in-situ hybridization.

    Directory of Open Access Journals (Sweden)

    Heike Horn

    Full Text Available Few data are available regarding the reliability of fluorescence in-situ hybridization (FISH, especially for chromosomal deletions, in high-throughput settings using tissue microarrays (TMAs. We performed a comprehensive FISH study for the detection of chromosomal translocations and deletions in formalin-fixed and paraffin-embedded (FFPE tumor specimens arranged in TMA format. We analyzed 46 B-cell lymphoma (B-NHL specimens with known karyotypes for translocations of IGH-, BCL2-, BCL6- and MYC-genes. Locus-specific DNA probes were used for the detection of deletions in chromosome bands 6q21 and 9p21 in 62 follicular lymphomas (FL and six malignant mesothelioma (MM samples, respectively. To test for aberrant signals generated by truncation of nuclei following sectioning of FFPE tissue samples, cell line dilutions with 9p21-deletions were embedded into paraffin blocks. The overall TMA hybridization efficiency was 94%. FISH results regarding translocations matched karyotyping data in 93%. As for chromosomal deletions, sectioning artefacts occurred in 17% to 25% of cells, suggesting that the proportion of cells showing deletions should exceed 25% to be reliably detectable. In conclusion, FISH represents a robust tool for the detection of structural as well as numerical aberrations in FFPE tissue samples in a TMA-based high-throughput setting, when rigorous cut-off values and appropriate controls are maintained, and, of note, was superior to quantitative PCR approaches.

  12. Numerical and structural genomic aberrations are reliably detect