WorldWideScience

Sample records for high-resolution temporal bone

  1. High resolution CT of temporal bone trauma

    International Nuclear Information System (INIS)

    Youn, Eun Kyung

    1986-01-01

    Radiographic studies of the temporal bone following head trauma are indicated when there is cerebrospinal fluid otorrhea or rhinorrhoea, hearing loss, or facial nerve paralysis. Plain radiography displays only 17-30% of temporal bone fractures and pluridirectional tomography is both difficult to perform, particularly in the acutely ill patient, and less satisfactory for the demonstration of fine fractures. Consequently, high resolution CT is the imaging method of choice for the investigation of suspected temporal bone trauma and allows special resolution of fine bony detail comparable to that attainable by conventional tomography. Eight cases of temporal bone trauma examined at Korea General Hospital April 1985 through May 1986. The results were as follows: Seven patients (87%) suffered longitudinal fractures. In 6 patients who had purely conductive hearing loss, CT revealed various ossicular chain abnormality. In one patient who had neuro sensory hearing loss, CT demonstrated intract ossicular with a fracture nearing lateral wall of the lateral semicircular canal. In one patient who had mixed hearing loss, CT showed complex fracture.

  2. High-resolution CT of temporal bone trauma: review of 38 cases

    International Nuclear Information System (INIS)

    Hiroual, M.R.; Zougarhi, A.; Cherif Idrissi El Ganouni, N.; Essadki, O.; Ousehal, A.; Tijani Adil, O.; Maliki, O.; Aderdour, L.; Raji, A.

    2010-01-01

    Purpose Temporal bone trauma is frequent but difficult to assess due to the diversity of clinical presentations and complex anatomy. We have sought to assess the different types of fractures and complications on high-resolution CT. Materials and methods Descriptive retrospective study over a 24 month period performed in the ENT radiology section of the Mohammed 6 university medical center in Marrakech. A total of 38 cases of temporal bone trauma were reviewed. All patients underwent ENT evaluation and high-resolution CT of the temporal bone using 1 mm axial and coronal sections. Results Mean patient age was 33 years (range: 14-55 years) with male predominance (sex ratio: 36/2). Clinical symptoms were mainly otorrhagia and conductive hearing loss. Oblique extra-labyrinthine fractures were most frequent. Two cases of pneumo-labyrinth were noted. Management was conservative in most cases with deafness in 3 cases. Conclusion High-resolution CT of the temporal bone provides accurate depiction of lesions explaining the clinical symptoms and helps guide management. MRI is complimentary to further assess the labyrinth and VII-VIII nerve complex. (author)

  3. High-resolution computed tomography of the temporal bone. Part 2.: pathology

    International Nuclear Information System (INIS)

    Grzegorzewski, M.; Boron, Z.; Burzynska-Makuch, M.

    1995-01-01

    Selected cases of the temporal bone pathology on high resolution CT were demonstrated. Transverse and coronal sections of the cases were selected from 68 patients with various otological diseases. (author)

  4. High-resolution computed tomography of the temporal bone. Part 1.: normal anatomy

    International Nuclear Information System (INIS)

    Grzegorzewski, M.; Boron, Z.; Burzynska-Makuch, M.

    1995-01-01

    Normal anatomy of the temporal bone in transverse and coronal sections was presented. CT studies were performed using high-resolution program. The images of an asymptomatic ear of 2 patients were selected from 68 cases examined on account of various otological diseases. All the sections showed as many as 68 anatomic structures. (author)

  5. Evaluation of temporal bone pneumatization on high resolution CT (HRCT) measurements of the temporal bone in normal and otitis media group and their correlation to measurements of internal auditory meatus, vestibular or cochlear aqueduct

    International Nuclear Information System (INIS)

    Nakamura, Miyako

    1988-01-01

    High resolution CT axial scans were made at the three levels of the temoral bone 91 cases. These cases consisted of 109 sides of normal pneumatization (NR group) and 73 of poor pneumatization resulted by chronic otitis (OM group). NR group included sensorineural hearing loss cases and/or sudden deafness on the side. Three levels of continuous slicing were chosen at the internal auditory meatus, the vestibular and the cochlear aqueduct, respectively. In each slice two sagittal and two horizontal measurements were done on the outer contour of the temporal bone. At the proper level, diameter as well as length of the internal acoustic meatus, the vestibular or the cochlear aqueduct were measured. Measurements of the temporal bone showed statistically significant difference between NR and OM groups. Correlation of both diameter and length of the internal auditory meatus to the temporal bone measurements were statistically significant. Neither of measurements on the vestibular or the cochlear aqueduct showed any significant correlation to that of the temporal bone. (author)

  6. Nerve canals at the fundus of the internal auditory canal on high-resolution temporal bone CT

    International Nuclear Information System (INIS)

    Ji, Yoon Ha; Youn, Eun Kyung; Kim, Seung Chul

    2001-01-01

    To identify and evaluate the normal anatomy of nerve canals in the fundus of the internal auditory canal which can be visualized on high-resolution temporal bone CT. We retrospectively reviewed high-resolution (1 mm thickness and interval contiguous scan) temporal bone CT images of 253 ears in 150 patients who had not suffered trauma or undergone surgery. Those with a history of uncomplicated inflammatory disease were included, but those with symptoms of vertigo, sensorineural hearing loss, or facial nerve palsy were excluded. Three radiologists determined the detectability and location of canals for the labyrinthine segment of the facial, superior vestibular and cochlear nerve, and the saccular branch and posterior ampullary nerve of the inferior vestibular nerve. Five bony canals in the fundus of the internal auditory canal were identified as nerve canals. Four canals were identified on axial CT images in 100% of cases; the so-called singular canal was identified in only 68%. On coronal CT images, canals for the labyrinthine segment of the facial and superior vestibular nerve were seen in 100% of cases, but those for the cochlear nerve, the saccular branch of the inferior vestibular nerve, and the singular canal were seen in 90.1%, 87.4% and 78% of cases, respectiveIy. In all detectable cases, the canal for the labyrinthine segment of the facial nerve was revealed as one which traversed anterolateralIy, from the anterosuperior portion of the fundus of the internal auditory canal. The canal for the cochlear nerve was located just below that for the labyrinthine segment of the facial nerve, while that canal for the superior vestibular nerve was seen at the posterior aspect of these two canals. The canal for the saccular branch of the inferior vestibular nerve was located just below the canal for the superior vestibular nerve, and that for the posterior ampullary nerve, the so-called singular canal, ran laterally or posteolateralIy from the posteroinferior aspect of

  7. Nerve canals at the fundus of the internal auditory canal on high-resolution temporal bone CT

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yoon Ha; Youn, Eun Kyung; Kim, Seung Chul [Sungkyunkwan Univ., School of Medicine, Seoul (Korea, Republic of)

    2001-12-01

    To identify and evaluate the normal anatomy of nerve canals in the fundus of the internal auditory canal which can be visualized on high-resolution temporal bone CT. We retrospectively reviewed high-resolution (1 mm thickness and interval contiguous scan) temporal bone CT images of 253 ears in 150 patients who had not suffered trauma or undergone surgery. Those with a history of uncomplicated inflammatory disease were included, but those with symptoms of vertigo, sensorineural hearing loss, or facial nerve palsy were excluded. Three radiologists determined the detectability and location of canals for the labyrinthine segment of the facial, superior vestibular and cochlear nerve, and the saccular branch and posterior ampullary nerve of the inferior vestibular nerve. Five bony canals in the fundus of the internal auditory canal were identified as nerve canals. Four canals were identified on axial CT images in 100% of cases; the so-called singular canal was identified in only 68%. On coronal CT images, canals for the labyrinthine segment of the facial and superior vestibular nerve were seen in 100% of cases, but those for the cochlear nerve, the saccular branch of the inferior vestibular nerve, and the singular canal were seen in 90.1%, 87.4% and 78% of cases, respectiveIy. In all detectable cases, the canal for the labyrinthine segment of the facial nerve was revealed as one which traversed anterolateralIy, from the anterosuperior portion of the fundus of the internal auditory canal. The canal for the cochlear nerve was located just below that for the labyrinthine segment of the facial nerve, while that canal for the superior vestibular nerve was seen at the posterior aspect of these two canals. The canal for the saccular branch of the inferior vestibular nerve was located just below the canal for the superior vestibular nerve, and that for the posterior ampullary nerve, the so-called singular canal, ran laterally or posteolateralIy from the posteroinferior aspect of

  8. Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging.

    Science.gov (United States)

    Meyer, Mathias; Haubenreisser, Holger; Raupach, Rainer; Schmidt, Bernhard; Lietzmann, Florian; Leidecker, Christianne; Allmendinger, Thomas; Flohr, Thomas; Schad, Lothar R; Schoenberg, Stefan O; Henzler, Thomas

    2015-01-01

    To prospectively evaluate radiation dose and image quality of a third generation dual-source CT (DSCT) without z-axis filter behind the patient for temporal bone CT. Forty-five patients were either examined on a first, second, or third generation DSCT in an ultra-high-resolution (UHR) temporal bone-imaging mode. On the third generation DSCT system, the tighter focal spot of 0.2 mm(2) removes the necessity for an additional z-axis-filter, leading to an improved z-axis radiation dose efficiency. Images of 0.4 mm were reconstructed using standard filtered-back-projection or iterative reconstruction (IR) technique for previous generations of DSCT and a novel IR algorithm for the third generation DSCT. Radiation dose and image quality were compared between the three DSCT systems. The statistically significantly highest subjective and objective image quality was evaluated for the third generation DSCT when compared to the first or second generation DSCT systems (all p generation examination as compared to the first and second generation DSCT. Temporal bone imaging without z-axis-UHR-filter and a novel third generation IR algorithm allows for significantly higher image quality while lowering effective dose when compared to the first two generations of DSCTs. • Omitting the z-axis-filter allows a reduction in radiation dose of 50% • A smaller focal spot of 0.2 mm (2) significantly improves spatial resolution • Ultra-high-resolution temporal-bone-CT helps to gain diagnostic information of the middle/inner ear.

  9. CT-diagnosis of temporal bone trauma

    Energy Technology Data Exchange (ETDEWEB)

    Valavanis, A.; Stuckmann, G.; Antonucci, F.; Schubiger, O.

    1986-02-01

    73 patients with 78 fractures of the temporal bone were examined by high-resolution computed tomography (CT). Analysis of the CT-findings disclosed 55 longitudinal, 12 transverse, 8 combined and 3 atypical fractures. For determination of the fracture type, axial sections usually proved sufficient. However, for precise topographic analysis of the course of the fracture additional coronal sections were necessary in most of the cases. In the radiologic evaluation of temporal bone fractures detection of associated. Complications is clinically important since these can be surgically corrected. In this series 20 lesions of the ossicular chain were demonstrated by the combined performance of axial and coronal sections and sagittal reformations. High resolution CT demonstrated a lesion of the facial nerve canal in 79% of a patient group with traumatic facial nerve palsy. The most frequent site of injury of the facial nerve canal was the region of the geniculate ganglion. With the use of metrizaminde-CT-cisternography the site of cerebrospinal fluid leakage was demonstrated in 7 of 9 patients with liquorrhea. It is concluded that high-resolution CT is the radiologic method of choice for both topographic evaluation of temporal bone fractures and detection and precise localization of fracture-complications. (orig.).

  10. Three-dimensional measurement of temporal bone by using personal computer

    International Nuclear Information System (INIS)

    Kimura, Hiroki; Murata, Kiyotaka; Isono, Michio; Azuma, Hiroji; Itou, Akihiko

    1996-01-01

    Measurement of anatomical indices in human temporal bone has been reported only sporadically using high resolution CT. We developed a method for measuring such indices by computer assisted processing of images obtained by high resolusion CT. Intensive measurement of distances between all anatomical points in the entire temporal bone structure became possible with this method. (author)

  11. Tympanic plate fractures in temporal bone trauma: prevalence and associated injuries.

    Science.gov (United States)

    Wood, C P; Hunt, C H; Bergen, D C; Carlson, M L; Diehn, F E; Schwartz, K M; McKenzie, G A; Morreale, R F; Lane, J I

    2014-01-01

    The prevalence of tympanic plate fractures, which are associated with an increased risk of external auditory canal stenosis following temporal bone trauma, is unknown. A review of posttraumatic high-resolution CT temporal bone examinations was performed to determine the prevalence of tympanic plate fractures and to identify any associated temporal bone injuries. A retrospective review was performed to evaluate patients with head trauma who underwent emergent high-resolution CT examinations of the temporal bone from July 2006 to March 2012. Fractures were identified and assessed for orientation; involvement of the tympanic plate, scutum, bony labyrinth, facial nerve canal, and temporomandibular joint; and ossicular chain disruption. Thirty-nine patients (41.3 ± 17.2 years of age) had a total of 46 temporal bone fractures (7 bilateral). Tympanic plate fractures were identified in 27 (58.7%) of these 46 fractures. Ossicular disruption occurred in 17 (37.0%). Fractures involving the scutum occurred in 25 (54.4%). None of the 46 fractured temporal bones had a mandibular condyle dislocation or fracture. Of the 27 cases of tympanic plate fractures, 14 (51.8%) had ossicular disruption (P = .016) and 18 (66.6%) had a fracture of the scutum (P = .044). Temporomandibular joint gas was seen in 15 (33%) but was not statistically associated with tympanic plate fracture (P = .21). Tympanic plate fractures are commonly seen on high-resolution CT performed for evaluation of temporal bone trauma. It is important to recognize these fractures to avoid the preventable complication of external auditory canal stenosis and the potential for conductive hearing loss due to a fracture involving the scutum or ossicular chain.

  12. 3D Printed Pediatric Temporal Bone: A Novel Training Model.

    Science.gov (United States)

    Longfield, Evan A; Brickman, Todd M; Jeyakumar, Anita

    2015-06-01

    Temporal bone dissection is a fundamental element of otologic training. Cadaveric temporal bones (CTB) are the gold standard surgical training model; however, many institutions do not have ready access to them and their cost can be significant: $300 to $500. Furthermore, pediatric cadaveric temporal bones are not readily available. Our objective is to develop a pediatric temporal bone model. Temporal bone model. Tertiary Children's Hospital. Pediatric patient model. We describe the novel use of a 3D printer for the generation of a plaster training model from a pediatric high- resolution CT temporal bone scan of a normal pediatric temporal bone. Three models were produced and were evaluated. The models utilized multiple colors (white for bone, yellow for the facial nerve) and were of high quality. Two models were drilled as a proof of concept and found to be an acceptable facsimile of the patient's anatomy, rendering all necessary surgical landmarks accurately. The only negative comments pertaining to the 3D printed temporal bone as a training model were the lack of variation in hardness between cortical and cancellous bone, noting a tactile variation from cadaveric temporal bones. Our novel pediatric 3D temporal bone training model is a viable, low-cost training option for previously inaccessible pediatric temporal bone training. Our hope is that, as 3D printers become commonplace, these models could be rapidly reproduced, allowing for trainees to print models of patients before performing surgery on the living patient.

  13. Surgical anatomy of the temporal bone: an atlas

    International Nuclear Information System (INIS)

    Chan, L.L.; Manolidis, S.; Taber, K.H.; Hayman, L.A.

    2001-01-01

    This atlas demonstrates the usefulness of reconstructed high-resolution CT for planning temporal bone surgery. The first part focuses on a sagittal plane, the second on a rotated longitudinal plane, and the third on a rotated transverse plane. We believe knowledge of temporal bone anatomy in these planes facilitates surgical planning by showing anatomic relationships and providing a customized map for each patient. This decreases the likelihood of surgical mishap and improves teaching. (orig.)

  14. Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging

    International Nuclear Information System (INIS)

    Meyer, Mathias; Haubenreisser, Holger; Schoenberg, Stefan O.; Henzler, Thomas; Raupach, Rainer; Schmidt, Bernhard; Leidecker, Christianne; Allmendinger, Thomas; Flohr, Thomas; Lietzmann, Florian; Schad, Lothar R.

    2015-01-01

    To prospectively evaluate radiation dose and image quality of a third generation dual-source CT (DSCT) without z-axis filter behind the patient for temporal bone CT. Forty-five patients were either examined on a first, second, or third generation DSCT in an ultra-high-resolution (UHR) temporal bone-imaging mode. On the third generation DSCT system, the tighter focal spot of 0.2 mm 2 removesthe necessity for an additional z-axis-filter, leading to an improved z-axis radiation dose efficiency. Images of 0.4 mm were reconstructed using standard filtered-back-projection or iterative reconstruction (IR) technique for previous generations of DSCT and a novel IR algorithm for the third generation DSCT. Radiation dose and image quality were compared between the three DSCT systems. The statistically significantly highest subjective and objective image quality was evaluated for the third generation DSCT when compared to the first or second generation DSCT systems (all p < 0.05). Total effective dose was 63 %/39 % lower for the third generation examination as compared to the first and second generation DSCT. Temporal bone imaging without z-axis-UHR-filter and a novel third generation IR algorithm allows for significantly higher image quality while lowering effective dose when compared to the first two generations of DSCTs. (orig.)

  15. A Novel Temporal Bone Simulation Model Using 3D Printing Techniques.

    Science.gov (United States)

    Mowry, Sarah E; Jammal, Hachem; Myer, Charles; Solares, Clementino Arturo; Weinberger, Paul

    2015-09-01

    An inexpensive temporal bone model for use in a temporal bone dissection laboratory setting can be made using a commercially available, consumer-grade 3D printer. Several models for a simulated temporal bone have been described but use commercial-grade printers and materials to produce these models. The goal of this project was to produce a plastic simulated temporal bone on an inexpensive 3D printer that recreates the visual and haptic experience associated with drilling a human temporal bone. Images from a high-resolution CT of a normal temporal bone were converted into stereolithography files via commercially available software, with image conversion and print settings adjusted to achieve optimal print quality. The temporal bone model was printed using acrylonitrile butadiene styrene (ABS) plastic filament on a MakerBot 2x 3D printer. Simulated temporal bones were drilled by seven expert temporal bone surgeons, assessing the fidelity of the model as compared with a human cadaveric temporal bone. Using a four-point scale, the simulated bones were assessed for haptic experience and recreation of the temporal bone anatomy. The created model was felt to be an accurate representation of a human temporal bone. All raters felt strongly this would be a good training model for junior residents or to simulate difficult surgical anatomy. Material cost for each model was $1.92. A realistic, inexpensive, and easily reproducible temporal bone model can be created on a consumer-grade desktop 3D printer.

  16. CT diagnosis and differential diagnosis of otodystrophic lesions of the temporal bone

    Energy Technology Data Exchange (ETDEWEB)

    D' Archambeau, O.; Parizel, P.M.; Schepper, A.M. De (Antwerp University Hospital (Belgium). Department of Radiology); Koekelkoren, E.; Van De Heyning, P. (Antwerp University Hospital (Belgium). Department of E.N.T.)

    The purpose of this study was to assess the diagnostic and differential diagnostic value of high-resolution computed tomography in the evaluation of temporal-bone dystrophies. The study group included 55 patients with osseous abnormalities of the temporal bone in general, and the labyrinthine capsule in particular. In 27 patients the CT scan revealed evidence of otodystrophic lesions. The CT findings in patients with otosclerosis (21 patients), osteogenesis imperfecta (two patients), fibrous dysplasia (one patient). Paget's disease (one patient) and osteoporosis (two patients) are described. The CT scans of 17 patients revealed secondary osseous lesions due to metastasis (five patients), post-inflammatory changes (10 patients) or labyrinthitis ossificans (two patients). Normal variants and congenital mineralization defects were diagnosed in nine patients, Down's syndrome in two. Our results indicate the importance of high-resolution computed tomography as the primary imaging modality in evaluating osseous lesions of the temporal bone and labyrinth. (author). 14 refs.; 13 figs; 2 tabs.

  17. CT diagnosis and differential diagnosis of otodystrophic lesions of the temporal bone

    International Nuclear Information System (INIS)

    D'Archambeau, O.; Parizel, P.M.; Schepper, A.M. De; Koekelkoren, E.; Van De Heyning, P.

    1990-01-01

    The purpose of this study was to assess the diagnostic and differential diagnostic value of high-resolution computed tomography in the evaluation of temporal-bone dystrophies. The study group included 55 patients with osseous abnormalities of the temporal bone in general, and the labyrinthine capsule in particular. In 27 patients the CT scan revealed evidence of otodystrophic lesions. The CT findings in patients with otosclerosis (21 patients), osteogenesis imperfecta (two patients), fibrous dysplasia (one patient). Paget's disease (one patient) and osteoporosis (two patients) are described. The CT scans of 17 patients revealed secondary osseous lesions due to metastasis (five patients), post-inflammatory changes (10 patients) or labyrinthitis ossificans (two patients). Normal variants and congenital mineralization defects were diagnosed in nine patients, Down's syndrome in two. Our results indicate the importance of high-resolution computed tomography as the primary imaging modality in evaluating osseous lesions of the temporal bone and labyrinth. (author). 14 refs.; 13 figs; 2 tabs

  18. Otosclerosis: Temporal Bone Pathology.

    Science.gov (United States)

    Quesnel, Alicia M; Ishai, Reuven; McKenna, Michael J

    2018-04-01

    Otosclerosis is pathologically characterized by abnormal bony remodeling, which includes bone resorption, new bone deposition, and vascular proliferation in the temporal bone. Sensorineural hearing loss in otosclerosis is associated with extension of otosclerosis to the cochlear endosteum and deposition of collagen throughout the spiral ligament. Persistent or recurrent conductive hearing loss after stapedectomy has been associated with incomplete footplate fenestration, poor incus-prosthesis connection, and incus resorption in temporal bone specimens. Human temporal bone pathology has helped to define the role of computed tomography imaging for otosclerosis, confirming that computed tomography is highly sensitive for diagnosis, yet limited in assessing cochlear endosteal involvement. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. X-ray diagnosis in temporal bone anomalies

    International Nuclear Information System (INIS)

    Schratter, M.; Canigiani, G.; Swoboda, H.; Brunner, E.

    1988-01-01

    The X-ray findings in temporal bone anomalies are reviewed. Radiological procedure and examination technique are presented, as are symptoms of important anomalies. The methods available are plain film X-ray of temporal bone, multi-directional tomography, and high-resolution CT. Although some of the abnormalities are visible even in plain films, consistent use of conventional tomography or CT is necessary for correct diagnosis. This procedure is indicated not only when an abnormality is clinically obvious, but also in all cases of unexplained hearing loss without evidence of acquired disease. The advantage of CT over conventional tomography is that soft tissue anomalies, such as primary cholesteatoma or tumor simulating vascular abnormalities, can be demonstrated. In these cases CT is obligatory. (orig.) [de

  20. CT and MRI characteristica of tumours of the temporal bone and the cerebello-pontine angle

    International Nuclear Information System (INIS)

    Imhof, H.; Henk, C.B.; Dirisamer, A.; Czerny, C.; Gstoettner, W.

    2003-01-01

    Tumours lesions of the temporal bone and of the cerebello-pontine angle are rare.This tumours can be separated into benign and malignant lesions. In this paper the CT and MRI characteristica of tumours of the temporal bone and the cerebello-pontane angle will be demonstrated. High resolution CT (HRCT) as usually performed in the axial plane are using a high resolution bone window level setting, coronal planes are the reconstructed from the axial data set or will be obtained directly. With the MRI FLAIR sequence in the axial plane the whole brain will be scanned either to depict or exclude a tumour invasion into the brain. After this,T2-weighted fast spin echo sequences or fatsuppressed inversion recovery sequences in high resolution technique in the axial plane will be obtained from the temporal bone and axial T1-weighted spinecho sequences before and after the intravenous application of contrast material will be obtained of this region. Finally T1-weighted spinecho sequences in high resolution technique with fatsuppression after the intravenous application of contrast material will be performed in the coronal plane. HRCT and MRI are both used to depict the most exact tumorous borders. HRCT excellently depicts the osseous changes for example exostosis of the external auditory canal, while also with HRCT osseous changes maybe characterized into more benign or malignant types. MRI has a very high soft tissue contrast and may therefore either characterize vascular space-occupying lesions for example glomus jugulare tumours or may differentiate between more benign or malignant lesions. In conclusion HRCT and MRI of the temporal bone are excellent methods to depict and mostly characterize tumour lesions and can help to differentiate between benign and malignant lesion. These imaging methods shall be used complementary and may have a great impact for the therapeutic planning. (orig.) [de

  1. Transverse axial plane anatomy of the temporal bone employing high spatial resolution computed tomography

    International Nuclear Information System (INIS)

    Russell, E.J.; Koslow, M.; Lasjaunias, P.; Bergeron, R.T.; Chase, N.

    1982-01-01

    Anatomical relationships of temporal bone structures are demonstrated by thin section edge detection computed tomography. Many otic structures are best appreciated in axial view, but reorientation to anatomy as seen in this plane is needed for optimal diagnosis. A level by level review of key structure is presented toward this end. The limitations and advantages of computed tomography are discussed. (orig.)

  2. Clinical significance of temporal bone CT with regard to hearing preservation in acoustic neurinoma removal

    Energy Technology Data Exchange (ETDEWEB)

    Umezu, Hiromichi; Seki, Yojirou; Aiba, Tadashi

    1988-02-01

    Since Rand and Kurze discussed the possibility of the anatomic preservation of the cochlear nerve via the posterior fossa transmeatal approach for the acoustic neurinoma, there have been increasingly many reports on the preservation of cochlear nerve function. With recent advances in diagnostic tools, today's neurosurgeon is able to make an earlier and more precise diagnosis of acoustic neurinomas even when the patient has good hearing. If useful hearing is to be kept, the cochlear nerve and blood supply of the labyrinth have to be preserved. In addition, surgical entry into the labyrinth, upon the removal of the posterior wall of the internal auditory canal, must be avoided, since it is likely to result in permanent hearing loss. Because of its superior contrast and spatial resolution, thin-section and high-resolution computed tomography of the temporal bone has the great advantage of demonstrating the exact relationship of the internal auditory canal to the posterior semicircular canal, the vestibule, and the common crus. In this study, thin-section, high-resolution computed tomography of the temporal bone was performed in 11 cases of acoustic neurinoma pre- and postoperatively. At operation, the lateral limit of the bone removal of the posterior internal auditory canal was determined on the basis of preoperative computed tomography of the temporal bone. As a result, inadvertent entry into the labyrinth was avoided, and useful hearing was preserved in 8 cases. In order to preserve useful hearing following total tumor removal, it is essential to plan the operative strategy meticulously on the basis of the findings of the preoperative investigation, Including temporal bone CT.

  3. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Michael R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)], E-mail: armstrong30@llnl.gov; Boyden, Ken [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Browning, Nigel D. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Gibson, David J.; Hartemann, Fred [N Division, Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-280, Livermore, CA 94550 (United States); Kim, Judy S. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)

    2007-04-15

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  4. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    International Nuclear Information System (INIS)

    Armstrong, Michael R.; Boyden, Ken; Browning, Nigel D.; Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M.; Gibson, David J.; Hartemann, Fred; Kim, Judy S.; King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R.

    2007-01-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10 7 electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution -6 s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed

  5. Ultra high spatial and temporal resolution breast imaging at 7T.

    Science.gov (United States)

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  6. The clinical significance of temporal bone CT with regard to hearing preservation in acoustic neurinoma removal

    International Nuclear Information System (INIS)

    Umezu, Hiromichi; Seki, Yojirou; Aiba, Tadashi

    1988-01-01

    Since Rand and Kurze discussed the possibility of the anatomic preservation of the cochlear nerve via the posterior fossa transmeatal approach for the acoustic neurinoma, there have been increasingly many reports on the preservation of cochlear nerve function. With recent advances in diagnostic tools, today's neurosurgeon is able to make an earlier and more precise diagnosis of acoustic neurinomas even when the patient has good hearing. If useful hearing is to be kept, the cochlear nerve and blood supply of the labyrinth have to be preserved. In addition, surgical entry into the labyrinth, upon the removal of the posterior wall of the internal auditory canal, must be avoided, since it is likely to result in permanent hearing loss. Because of its superior contrast and spatial resolution, thin-section and high-resolution computed tomography of the temporal bone has the great advantage of demonstrating the exact relationship of the internal auditory canal to the posterior semicircular canal, the vestibule, and the common crus. In this study, thin-section, high-resolution computed tomography of the temporal bone was performed in 11 cases of acoustic neurinoma pre- and postoperatively. At operation, the lateral limit of the bone removal of the posterior internal auditory canal was determined on the basis of preoperative computed tomography of the temporal bone. As a result, inadvertent entry into the labyrinth was avoided, and useful hearing was preserved in 8 cases. In order to preserve useful hearing following total tumor removal, it is essential to plan the operative strategy meticulously on the basis of the findings of the preoperative investigation, Including temporal bone CT. (author)

  7. Cadaveric Temporal Bone Dissection: Is It Obsolete Today?

    Directory of Open Access Journals (Sweden)

    Naik, Sulabha M.

    2014-01-01

    Full Text Available Introduction Traditionally, surgical training in otology, is imparted by dissecting harvested human cadaveric temporal bones. However, maintenance of a cadaveric temporal bone laboratory is expensive and carries risk of exposure to infection. In recent times, other modalities of training are gaining ground and are likely to eventually replace cadaveric temporal bone dissection altogether. Objectives Other alternative methods of training are emerging. New technology like simulation and virtual reality as high-fidelity, safer alternatives, are making rapid strides as teaching tools. Other options are the use of animal temporal bones as teaching tools. The advantages of these are compared. Data Synthesis None of these modalities can replicate the innumerable anatomical variations which are a characteristic feature of the human temporal bone. A novice surgeon not only needs exposure to surgical anatomy and it's variations but also needs to develop hand-eye coordination skills to gain expertise. Conclusion Deliberate practice on human cadaveric temporal bones only, will confer both mastery in anatomy and surgical technique. The human cadaveric temporal bone is ideal simulator for training in otology.

  8. Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-08-01

    To assess two compressed sensing cine magnetic resonance imaging (MRI) sequences with high spatial or high temporal resolution in comparison to a reference steady-state free precession cine (SSFP) sequence for reliable quantification of left ventricular (LV) volumes. LV short axis stacks of two compressed sensing breath-hold cine sequences with high spatial resolution (SPARSE-SENSE HS: temporal resolution: 40 msec, in-plane resolution: 1.0 × 1.0 mm(2) ) and high temporal resolution (SPARSE-SENSE HT: temporal resolution: 11 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) and of a reference cine SSFP sequence (standard SSFP: temporal resolution: 40 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) were acquired in 16 healthy volunteers on a 1.5T MR system. LV parameters were analyzed semiautomatically twice by one reader and once by a second reader. The volumetric agreement between sequences was analyzed using paired t-test, Bland-Altman plots, and Passing-Bablock regression. Small differences were observed between standard SSFP and SPARSE-SENSE HS for stroke volume (SV; -7 ± 11 ml; P = 0.024), ejection fraction (EF; -2 ± 3%; P = 0.019), and myocardial mass (9 ± 9 g; P = 0.001), but not for end-diastolic volume (EDV; P = 0.079) and end-systolic volume (ESV; P = 0.266). No significant differences were observed between standard SSFP and SPARSE-SENSE HT regarding EDV (P = 0.956), SV (P = 0.088), and EF (P = 0.103), but for ESV (3 ± 5 ml; P = 0.039) and myocardial mass (8 ± 10 ml; P = 0.007). Bland-Altman analysis showed good agreement between the sequences (maximum bias ≤ -8%). Two compressed sensing cine sequences, one with high spatial resolution and one with high temporal resolution, showed good agreement with standard SSFP for LV volume assessment. J. Magn. Reson. Imaging 2016;44:366-374. © 2016 Wiley Periodicals, Inc.

  9. Diagnosis of cholesteatoma by high resolution computed tomography

    International Nuclear Information System (INIS)

    Kakitsubata, Yousuke; Kakitsubata, Sachiko; Ogata, Noboru; Asada, Keiko; Watanabe, Katsushi; Tohno, Tetsuya; Makino, Kohji

    1988-01-01

    Three normal volunteers and 57 patients with cholesteatoma were examined by high resolution computed tomography. Serial sections were made through the temporal bone at the nasaly inclined position of 30 degree to the orbitomeatal line (semiaxial plane ; SAP). The findings of temporal bone structures in normal subjects were evaluated in SAP and axial plane (OM). Although the both planes showed good visualization, SAP showed both the eustachian tube and tympanic cavity in one slice. In cholesteatoma soft tissue masses in the tympanic cavity, mastoid air cells and Eustachian tube were demonstrated clearly by SAP. (author)

  10. Middle cranial fossa approach to repair tegmen defects assisted by three-dimensionally printed temporal bone models.

    Science.gov (United States)

    Ahmed, Sameer; VanKoevering, Kyle K; Kline, Stephanie; Green, Glenn E; Arts, H Alexander

    2017-10-01

    To explore the perioperative utility of three-dimensionally (3D)-printed temporal bone models of patients undergoing repair of lateral skull base defects and spontaneous cerebrospinal fluid leaks with the middle cranial fossa approach. Case series. 3D-printed temporal bone models-based on patient-specific, high-resolution computed tomographic imaging-were constructed using inexpensive polymer materials. Preoperatively, the models demonstrated the extent of temporal lobe retraction necessary to visualize the proposed defects in the lateral skull base. Also preoperatively, Silastic sheeting was arranged across the modeled tegmen, marked, and cut to cover all of the proposed defect sites. The Silastic sheeting was then sterilized and subsequently served as a precise intraoperative template for a synthetic dural replacement graft. Of note, these grafts were customized without needing to retract the temporal lobe. Five patients underwent the middle cranial fossa approach assisted by 3D-printed temporal bone models to repair tegmen defects and spontaneous cerebrospinal fluid leaks. No complications were encountered. The prefabricated dural repair grafts were easily placed and fit precisely onto the middle fossa floor without any additional modifications. All defects were covered as predicted by the 3D temporal bone models. At their postoperative visits, all five patients maintained resolution of their spontaneous cerebrospinal fluid leaks. Inexpensive 3D-printed temporal bone models of tegmen defects can serve as beneficial adjuncts during lateral skull base repair. The models provide a panoramic preoperative view of all tegmen defects and allow for custom templating of dural grafts without temporal lobe retraction. 4 Laryngoscope, 127:2347-2351, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory.

    Science.gov (United States)

    Wang, Haoyu; Miao, Yanwei; Zhou, Kun; Yu, Yanming; Bao, Shanglian; He, Qiang; Dai, Yongming; Xuan, Stephanie Y; Tarabishy, Bisher; Ye, Yongquan; Hu, Jiani

    2010-09-01

    To investigate the feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory. Two experiments were designed to investigate the feasibility of using reference image based compressed sensing (RICS) technique in DCE-MRI of the breast. The first experiment examined the capability of RICS to faithfully reconstruct uptake curves using undersampled data sets extracted from fully sampled clinical breast DCE-MRI data. An average approach and an approach using motion estimation and motion compensation (ME/MC) were implemented to obtain reference images and to evaluate their efficacy in reducing motion related effects. The second experiment, an in vitro phantom study, tested the feasibility of RICS for improving temporal resolution without degrading the spatial resolution. For the uptake-curve reconstruction experiment, there was a high correlation between uptake curves reconstructed from fully sampled data by Fourier transform and from undersampled data by RICS, indicating high similarity between them. The mean Pearson correlation coefficients for RICS with the ME/MC approach and RICS with the average approach were 0.977 +/- 0.023 and 0.953 +/- 0.031, respectively. The comparisons of final reconstruction results between RICS with the average approach and RICS with the ME/MC approach suggested that the latter was superior to the former in reducing motion related effects. For the in vitro experiment, compared to the fully sampled method, RICS improved the temporal resolution by an acceleration factor of 10 without degrading the spatial resolution. The preliminary study demonstrates the feasibility of RICS for faithfully reconstructing uptake curves and improving temporal resolution of breast DCE-MRI without degrading the spatial resolution.

  12. The demonstration of the auditory ossicles by high resolution CT

    International Nuclear Information System (INIS)

    Lloyd, G.A.S.; Boulay, G.H. du; Phelps, P.D.; Pullicino, P.

    1979-01-01

    The high resolution CT scanning system introduced by EMI in 1978 has added a new dimension to computerised tomography in otology. The apparatus used for this study was an EMI CT 5005 body scanner adapted for head and neck scanning and incorporating a high resolution facility. The latter has proved most advantageous in areas of relatively high differential absorption, so that its application to the demonstration of abnormalities in the petrous temporal bone, and in particular middle ear disease, has been very rewarding. Traumatic ossicular disruptions may now be demonstrated and the high contrast of CT often shows them better than conventional hypocycloidal tomography. The stapes is also better visualised and congenital abnormalities of its superstructure have been recorded. These studies have been achieved with a very acceptable level of radiation to the eye, lens and cornea and the technique is clearly a rival to conventional pluridirectional tomography in the assessment of the petrous temporal bone. With further design improvements high resolution CT could completely replace existing techniques. (orig.) [de

  13. High temporal resolution functional MRI using parallel echo volumar imaging

    International Nuclear Information System (INIS)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F.; Le Roux, P.; Dehaine-Lambertz, G.

    2008-01-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  14. SHEEP TEMPORAL BONE

    Directory of Open Access Journals (Sweden)

    Kesavan

    2016-03-01

    Full Text Available INTRODUCTION Human temporal bones are difficult to procure now a days due to various ethical issues. Sheep temporal bone is a good alternative due to morphological similarities, easy to procure and less cost. Many middle ear exercises can be done easily and handling of instruments is done in the procedures like myringoplasty, tympanoplasty, stapedotomy, facial nerve dissection and some middle ear implants. This is useful for resident training programme.

  15. High Spatio-Temporal Resolution Bathymetry Estimation and Morphology

    Science.gov (United States)

    Bergsma, E. W. J.; Conley, D. C.; Davidson, M. A.; O'Hare, T. J.

    2015-12-01

    In recent years, bathymetry estimates using video images have become increasingly accurate. With the cBathy code (Holman et al., 2013) fully operational, bathymetry results with 0.5 metres accuracy have been regularly obtained at Duck, USA. cBathy is based on observations of the dominant frequencies and wavelengths of surface wave motions and estimates the depth (and hence allows inference of bathymetry profiles) based on linear wave theory. Despite the good performance at Duck, large discrepancies were found related to tidal elevation and camera height (Bergsma et al., 2014) and on the camera boundaries. A tide dependent floating pixel and camera boundary solution have been proposed to overcome these issues (Bergsma et al., under review). The video-data collection is set estimate depths hourly on a grid with resolution in the order of 10x25 meters. Here, the application of the cBathy at Porthtowan in the South-West of England is presented. Hourly depth estimates are combined and analysed over a period of 1.5 years (2013-2014). In this work the focus is on the sub-tidal region, where the best cBathy results are achieved. The morphology of the sub-tidal bar is tracked with high spatio-temporal resolution on short and longer time scales. Furthermore, the impact of the storm and reset (sudden and large changes in bathymetry) of the sub-tidal area is clearly captured with the depth estimations. This application shows that the high spatio-temporal resolution of cBathy makes it a powerful tool for coastal research and coastal zone management.

  16. High-resolution T1-weighted 3D real IR imaging of the temporal bone using triple-dose contrast material

    Energy Technology Data Exchange (ETDEWEB)

    Naganawa, Shinji; Koshikawa, Tokiko; Nakamura, Tatsuya; Fukatsu, Hiroshi; Ishigaki, Takeo [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Shouwa-ku, 466-8550, Nagoya (Japan); Aoki, Ikuo [Medical System Company, Toshiba Corporation, Tokyo (Japan)

    2003-12-01

    The small structures in the temporal bone are surrounded by bone and air. The objectives of this study were (a) to compare contrast-enhanced T1-weighted images acquired by fast spin-echo-based three-dimensional real inversion recovery (3D rIR) against those acquired by gradient echo-based 3D SPGR in the visualization of the enhancement of small structures in the temporal bone, and (b) to determine whether either 3D rIR or 3D SPGR is useful for visualizing enhancement of the cochlear lymph fluid. Seven healthy men (age range 27-46 years) volunteered to participate in this study. All MR imaging was performed using a dedicated bilateral quadrature surface phased-array coil for temporal bone imaging at 1.5 T (Visart EX, Toshiba, Tokyo, Japan). The 3D rIR images (TR/TE/TI: 1800 ms/10 ms/500 ms) and flow-compensated 3D SPGR images (TR/TE/FA: 23 ms/10 ms/25 ) were obtained with a reconstructed voxel size of 0.6 x 0.7 x 0.8 mm{sup 3}. Images were acquired before and 1, 90, 180, and 270 min after the administration of triple-dose Gd-DTPA-BMA (0.3 mmol/kg). In post-contrast MR images, the degree of enhancement of the cochlear aqueduct, endolymphatic sac, subarcuate artery, geniculate ganglion of the facial nerve, and cochlear lymph fluid space was assessed by two radiologists. The degree of enhancement was scored as follows: 0 (no enhancement); 1 (slight enhancement); 2 (intermediate between 1 and 3); and 3 (enhancement similar to that of vessels). Enhancement scores for the endolymphatic sac, subarcuate artery, and geniculate ganglion were higher in 3D rIR than in 3D SPGR. Washout of enhancement in the endolymphatic sac appeared to be delayed compared with that in the subarcuate artery, suggesting that the enhancement in the endolymphatic sac may have been due in part to non-vascular tissue enhancement. Enhancement of the cochlear lymph space was not observed in any of the subjects in 3D rIR and 3D SPGR. The 3D rIR sequence may be more sensitive than the 3D SPGR sequence in

  17. Fracture of the temporal bone in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Secchi, Myrian Marajó Dal

    2012-01-01

    Full Text Available Introduction: The fractures in the temporal bone are lesions that are observed in patients with traumatic brain injury (TBI. The computed tomography of high-resolution (CT allows evaluating the fracture and the complications. Objective: Evaluate patients with TBI and temporal bone fracture. Way of study: Retrospective study. Method: Were evaluated 28 patients interned by TBI with clinical evidence and/or radiologic from temporal bone fractures. Results: The age ranged from 3 to 75 years. The most affected side was the right side 50% (n=14, left side 36% (n=10 and both sides 14% (n=4. The etiology of the trauma was the falling 25% (n=7, accidents with motorcycles and bicycles 21% (n=6, physical aggression 14% (n=4, running over 11% (n=3, fall of object 4% (n=1 and other causes 25% (n=7. The clinical signs were: Otorrhagia 78%, otalgia 11% (n=3, otorrhea 7% (n=2, facial paralysis 7% (n=2 and hearing loss 7% (n=2. The otoscopic findings: otorrhagia 57% (n=16, laceration of external auditory canal 36% (n=10, hemotympanum 11% (n=3, normal 7% (n=2 and Battle signal 7% (n=2. The findings for CT of skull were: with no alterations 54% (n=15 and temporal fracture 7% (n=2 and the CT of temporal bones were: line of fracture 71% (n=20, opacification of the mastoid 25% (n=7, glenoid cavity air 14% (n=1, dislocation of the ossicular chain 7% (n=2 and veiling of the middle ear 4% (n=1. Conclusion: Patients with TBI must be submitted to the otorhinolaryngological evaluation and imaging, for the early diagnosis of the complications and treatment.

  18. Aneurysmal bone cyst of the temporal bone

    International Nuclear Information System (INIS)

    Buxi, Tarvinder; Sud Seema; Vohra, Rakesh; Sud, Aditi; Singh, Satnam

    2004-01-01

    Aneurysmal bone cyst (ABC) of the temporal bone is rare. The nature of the underlying disorder that converted into the ABC might, however, be difficult to ascertain on imaging as well as on histopathology. The unusual CT and MRI findings in a case of ABC of the temporal bone are presented. This had transdural intracerebral spread with a large component of solid enhancing matrix but no peripheral calcific rim. The patient was an adult of 45 years with a history of headache for more than 1 year Copyright (2004) Blackwell Publishing Asia Pty Ltd

  19. Study of a temporal bone of Homo heildelbergensis.

    Science.gov (United States)

    Urquiza, Rafael; Botella, Miguel; Ciges, Miguel

    2005-05-01

    The characteristic features of the Hh specimen conformed to those of other Pleistocene human fossils, indicating strong cranial structures and a heavy mandible. The mastoid was large and suggested a powerful sternocleidomastoid muscle. The inner ear and tympanic cavities were similar in size and orientation, suggesting that their functions were probably similar. Our observations suggest that the left ear of this Hh specimen was healthy. The large canaliculo-fenestral angle confirms that this ancestor was bipedal. It also strongly suggests that Hh individuals were predisposed to develop certain pathologies of the labyrinth capsule associated with bipedalism, in particular otosclerosis. We studied a temporal bone of Homo heidelbergensis (Hh) in order to investigate the clinical and physiological implications of certain morphological features, especially those associated with the evolutionary reorganization of the inner ear. The bone, found in a breach of a cave near MAáaga in southern Spain, together with Middle Upper Pleistocene faunal remains, is >300000 years old. Four analytical methods were employed. A 3D high-resolution surface laser scan was used for anatomical measurements. For the sectional analysis of the middle and inner ears of Hh we used high-resolution CT, simultaneously studying a normal temporal bone from Homo sapiens sapiens (Hss). To study the middle and inner ear spaces we used 3D reconstruction CT preceded by an intra-bone air shielding technique. To examine the tympanic cavities and measure the canaliculo fenestral angle, we used a special minimally invasive endoscopic procedure. The surface, sectional and 3D CT examinations showed that the Hh specimen was generally more robust and larger than the Hss specimen. It had a large glenoid fossa. The external meatus was wide and deep. The middle ear, and especially the mastoid, was large and widely pneumatized. There were no appreciable differences in the position and size of the labyrinthine spaces

  20. Computed tomography of temporal bone fractures and temporal region anatomy in horses.

    Science.gov (United States)

    Pownder, S; Scrivani, P V; Bezuidenhout, A; Divers, T J; Ducharme, N G

    2010-01-01

    In people, specific classifications of temporal bone fractures are associated with clinical signs and prognosis. In horses, similar classifications have not been evaluated and might be useful establishing prognosis or understanding pathogenesis of certain types of trauma. We hypothesized associations between temporal bone fracture location and orientation in horses detected during computed tomography (CT) and frequency of facial nerve (CN7) deficit, vestibulocochlear nerve (CN8) deficit, or temporohyoid osteoarthropathy (THO). Complex temporal region anatomy may confound fracture identification, and consequently a description of normal anatomy was included. All horses undergoing temporal region CT at our hospital between July 1998 and May 2008. Data were collected retrospectively, examiners were blinded, and relationships were investigated among temporal bone fractures, ipsilateral THO, ipsilateral CN7, or ipsilateral CN8 deficits by Chi-square or Fischer's exact tests. Seventy-nine horses had CT examinations of the temporal region (158 temporal bones). Sixteen temporal bone fractures were detected in 14 horses. Cranial nerve deficits were seen with fractures in all parts of the temporal bone (petrosal, squamous, and temporal) and, temporal bone fractures were associated with CN7 and CN8 deficits and THO. No investigated fracture classification scheme, however, was associated with specific cranial nerve deficits. Without knowledge of the regional anatomy, normal structures may be mistaken for a temporal bone fracture or vice versa. Although no fracture classification scheme was associated with the assessed clinical signs, simple descriptive terminology (location and orientation) is recommended for reporting and facilitating future comparisons.

  1. Bilateral Non-Hodgkin’s Lymphoma of the Temporal Bone: A Rare and Unusual Presentation

    Directory of Open Access Journals (Sweden)

    Sanjay Vaid

    2016-01-01

    Full Text Available Primary lymphoma of the temporal bone is an unusual finding in clinical practice and bilateral affection is even more rare. To the best of our knowledge, there are no reports of bilateral primary temporal bone lymphoma without middle ear involvement in the English medical literature so far. We report, for the first time, a case of primary lymphoma involving both temporal bones which presented with left-sided infranuclear facial palsy. A combination of contrast enhanced magnetic resonance imaging (MRI and high resolution computed tomography (HRCT was used to characterize and to map the extent of the lesion, as well as to identify the exact site of facial nerve affection. An excision biopsy and immunohistochemistry revealed diffuse large B-cell non-Hodgkin’s lymphoma (DLBCL. Whole body fluorodeoxyglucose (FDG positron emission tomography-computed tomography study (PET-CT was performed to stage the disease. The patient was treated with chemotherapy and radiation therapy and is now on regular follow-up. The patient is alive and asymptomatic without disease progression for the last twenty months after initial diagnosis.

  2. Temporal bone trauma and imaging

    International Nuclear Information System (INIS)

    Turetschek, K.; Czerny, C.; Wunderbaldinger, P.; Steiner, E.

    1997-01-01

    Fractures of the temporal bone result from direct trauma to the temporal bone or occur as one component of a severe craniocerebral injury. Complications of temporal trauma are hemotympanon, facial nerve paralysis, conductive or sensorineur hearing loss, and leakage of cerebrospinal fluid. Erly recognition and an appropiate therapy may improve or prevent permanent deficits related to such complications. Only 20-30% of temporal bone fractures can be visualized by plain films. CT has displaced plain radiography in the investigation of the otological trauma because subtle bony details are best evaluated by CT which even can be reformatted in multiple projections, regardless of the original plane of scanning. Associated epidural, subdural, and intracerebral hemorrhagic lesions are better defined by MRI. (orig.) [de

  3. Prevalence of radiographic semicircular canal dehiscence in very young children: an evaluation using high-resolution computed tomography of the temporal bones

    International Nuclear Information System (INIS)

    Hagiwara, Mari; Fatterpekar, Girish; Shaikh, Jamil A.; Fang, Yixin; Roehm, Pamela C.

    2012-01-01

    Previous studies suggest that semicircular canal dehiscences (SCDs) have a developmental origin. We hypothesized that if SCDs originate during development, incidence of radiographic SCDs in young children will be higher than in adults. Thirty-four temporal bone HRCTs of children younger than 2 years and 40 temporal bone HRCTs of patients older than 18 years were reformatted and re-evaluated for presence of SCD or canal thinning. Results were compared with indications for HRCT and clinical information. SCDs were detected in 27.3% of children younger than 2 years of age (superior, 13.8%; posterior, 20%) and in 3% of adults (P < 0.004). Of children with one radiographic dehiscence, 55.6% had multiple and 44% had bilateral SCDs on HRCT. No lateral canal SCDs were present. Thinning of bone overlying the semicircular canals was found in 44% of children younger than 2 years and 2.5% of adults (P < 0.0001). SCDs are more common on HRCTs of very young children. This supports the hypothesis that SCDs originate from discontinuation of bone deposition/maturation. However, SCDs on imaging do not necessarily correlate with canal dehiscence syndrome and should therefore be interpreted carefully. (orig.)

  4. Prevalence of radiographic semicircular canal dehiscence in very young children: an evaluation using high-resolution computed tomography of the temporal bones

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Mari; Fatterpekar, Girish [New York University School of Medicine, Department of Radiology, New York, NY (United States); Shaikh, Jamil A. [New York University School of Medicine, Department of Otolaryngology, New York, NY (United States); Fang, Yixin [New York University School of Medicine, Department of Otolaryngology, New York, NY (United States); New York University School of Medicine, Division of Biostatistics, Department of Environmental Medicine, New York, NY (United States); Roehm, Pamela C. [New York University School of Medicine, Department of Otolaryngology, New York, NY (United States); New York University School of Medicine, Department of Otolaryngology, Division of Otology/Neurotology, New York, NY (United States)

    2012-12-15

    Previous studies suggest that semicircular canal dehiscences (SCDs) have a developmental origin. We hypothesized that if SCDs originate during development, incidence of radiographic SCDs in young children will be higher than in adults. Thirty-four temporal bone HRCTs of children younger than 2 years and 40 temporal bone HRCTs of patients older than 18 years were reformatted and re-evaluated for presence of SCD or canal thinning. Results were compared with indications for HRCT and clinical information. SCDs were detected in 27.3% of children younger than 2 years of age (superior, 13.8%; posterior, 20%) and in 3% of adults (P < 0.004). Of children with one radiographic dehiscence, 55.6% had multiple and 44% had bilateral SCDs on HRCT. No lateral canal SCDs were present. Thinning of bone overlying the semicircular canals was found in 44% of children younger than 2 years and 2.5% of adults (P < 0.0001). SCDs are more common on HRCTs of very young children. This supports the hypothesis that SCDs originate from discontinuation of bone deposition/maturation. However, SCDs on imaging do not necessarily correlate with canal dehiscence syndrome and should therefore be interpreted carefully. (orig.)

  5. Direct comparison of high-temporal-resolution CINE MRI with Doppler ultrasound for assessment of diastolic dysfunction in mice.

    Science.gov (United States)

    Roberts, Thomas A; Price, Anthony N; Jackson, Laurence H; Taylor, Valerie; David, Anna L; Lythgoe, Mark F; Stuckey, Daniel J

    2017-10-01

    Diastolic dysfunction is a sensitive early indicator of heart failure and can provide additional data to conventional measures of systolic function. Transmitral Doppler ultrasound, which measures the one-dimensional flow of blood through the mitral valve, is currently the preferred method for the measurement of diastolic function, but the measurement of the left ventricular volume changes using high-temporal-resolution cinematic magnetic resonance imaging (CINE MRI) is an alternative approach which is emerging as a potentially more robust and user-independent technique. Here, we investigated the performance of high-temporal-resolution CINE MRI and compared it with ultrasound for the detection of diastolic dysfunction in a mouse model of myocardial infarction. An in-house, high-temporal-resolution, retrospectively gated CINE sequence was developed with a temporal resolution of 1 ms. Diastolic function in mice was assessed using a custom-made, open-source reconstruction package. Early (E) and late (A) left ventricular filling phases were easily identifiable, and these measurements were compared directly with high-frequency, pulsed-wave, Doppler ultrasound measurements of mitral valve inflow. A repeatability study established that high-temporal-resolution CINE MRI and Doppler ultrasound showed comparable accuracy when measuring E/A in normal control mice. However, when applied in a mouse model of myocardial infarction, high-temporal-resolution CINE MRI indicated diastolic heart failure (E/A = 0.94 ± 0.11), whereas ultrasound falsely detected normal cardiac function (E/A = 1.21 ± 0.11). The addition of high-temporal-resolution CINE MRI to preclinical imaging studies enhances the library of sequences available to cardiac researchers and potentially identifies diastolic heart failure early in disease progression. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  6. Development of temperature profile sensor at high temporal and spatial resolution

    International Nuclear Information System (INIS)

    Takiguchi, Hiroki; Furuya, Masahiro; Arai, Takahiro

    2017-01-01

    In order to quantify thermo-physical flow field for the industrial applications such as nuclear and chemical reactors, high temporal and spatial measurements for temperature, pressure, phase velocity, viscosity and so on are required to validate computational fluid dynamics (CFD) and subchannel analyses. The paper proposes a novel temperature profile sensor, which can acquire temperature distribution in water at high temporal (a millisecond) and spatial (millimeter) resolutions. The devised sensor acquires electric conductance between transmitter and receiver wires, which is a function of temperature. The sensor comprise wire mesh structure for multipoint and simultaneous temperature measurement in water, which indicated that three-dimensional temperature distribution can be detected in flexible resolutions. For the demonstration of the principle, temperature profile in water was estimated according to pre-determined temperature calibration line against time-averaged impedance. The 16×16 grid sensor visualized fast and multi-dimensional mixing process of a hot water jet into a cold water pool. (author)

  7. CT-scanning of ancient Greenlandic Inuit temporal bones

    International Nuclear Information System (INIS)

    Homoe, P.; Videbaek, H.

    1992-01-01

    Additional morphological evidence of former infectious middle ear disease (IMED) was found by CT-scanning in 5 of 6 Greenlandic Inuit crania strongly suspected for former IMED due to earlier examination revealing either bilateral hypocellularity or asymmetry of the pneumatized area of the temporal bones. The CT-scans showed sclerosing and obliteration of the air cells and even destruction of the cellular septae, and a high degree of irregularity of the cells. Sclerosing of the surrounding bone tissue was also found. The findings in one cranium were dubious and could both be regarded as a congenital malformation or an infection in infanthood. CT-scan confirms and even adds to the results of conventional X-ray of temporal bones making hypotheses of paleopathology more reliable. The findings also support the environmental theory of pneumatization of the air cell system in the temporal bones. (13 refs., 10 figs.)

  8. CT-scanning of ancient Greenlandic Inuit temporal bones

    Energy Technology Data Exchange (ETDEWEB)

    Homoe, P [Copenhagen Univ. (Denmark). Lab. of Biological Anthropology and Dept. of Otolaryngology, Head and Neck Surgery; Lynnerup, N [Copenhagen Univ., Lab. of Biological Anthropology and Univ. Inst. of Ferensic Medicine, Copenhagen (Denmark); Videbaek, H [Hvidovre Univ. Hospital, Copenhagen (Denmark). Dept. of Radiology

    1992-01-01

    Additional morphological evidence of former infectious middle ear disease (IMED) was found by CT-scanning in 5 of 6 Greenlandic Inuit crania strongly suspected for former IMED due to earlier examination revealing either bilateral hypocellularity or asymmetry of the pneumatized area of the temporal bones. The CT-scans showed sclerosing and obliteration of the air cells and even destruction of the cellular septae, and a high degree of irregularity of the cells. Sclerosing of the surrounding bone tissue was also found. The findings in one cranium were dubious and could both be regarded as a congenital malformation or an infection in infanthood. CT-scan confirms and even adds to the results of conventional X-ray of temporal bones making hypotheses of paleopathology more reliable. The findings also support the environmental theory of pneumatization of the air cell system in the temporal bones. (13 refs., 10 figs.).

  9. Computed tomography of the temporal bone and orbit

    International Nuclear Information System (INIS)

    Zonneveld, F.W.

    1987-01-01

    The basis for this dissertation is the combination of the best set of high-resolution CT scanning parameters, on the one hand, and the technique of scanning perpendicular to the tissue interface, or parallel to an elongated anatomical structure (direct multiplanar CT technique) on the other. Although this technique yields better visualization of a number of anatomical details, the problem remains that the radiologist is as yet unfamiliar with these alternative cross-sectional planes. For this reason, a technique for cryosectioning fresh frozen specimens was selected and improved to create cross-sectional images that can be correlated with the direct multiplanar CT scans. The selection of special scan planes, the positioning, preparation and examination of the patient, and the CT and correlative anatomy are discussed separately for the temporal bone and the orbit. A few clinical applications are discussed. In the orbit, the value of high-resolution CT is demonstrated in the establishment of the relationship between space-occupying lesions and the optic nerve, and in the management of fractures of the orbital floor. 548 refs.; 253 figs.; 24 tabs

  10. A review of simulation platforms in surgery of the temporal bone.

    Science.gov (United States)

    Bhutta, M F

    2016-10-01

    Surgery of the temporal bone is a high-risk activity in an anatomically complex area. Simulation enables rehearsal of such surgery. The traditional simulation platform is the cadaveric temporal bone, but in recent years other simulation platforms have been created, including plastic and virtual reality platforms. To undertake a review of simulation platforms for temporal bone surgery, specifically assessing their educational value in terms of validity and in enabling transition to surgery. Systematic qualitative review. Search of the Pubmed, CINAHL, BEI and ERIC databases. Assessment of reported outcomes in terms of educational value. A total of 49 articles were included, covering cadaveric, animal, plastic and virtual simulation platforms. Cadaveric simulation is highly rated as an educational tool, but there may be a ceiling effect on educational outcomes after drilling 8-10 temporal bones. Animal models show significant anatomical variation from man. Plastic temporal bone models offer much potential, but at present lack sufficient anatomical or haptic validity. Similarly, virtual reality platforms lack sufficient anatomical or haptic validity, but with technological improvements they are advancing rapidly. At present, cadaveric simulation remains the best platform for training in temporal bone surgery. Technological advances enabling improved materials or modelling mean that in the future plastic or virtual platforms may become comparable to cadaveric platforms, and also offer additional functionality including patient-specific simulation from CT data. © 2015 John Wiley & Sons Ltd.

  11. High-resolution-cone beam tomography analysis of bone microarchitecture in patients with acromegaly and radiological vertebral fractures.

    Science.gov (United States)

    Maffezzoni, Filippo; Maddalo, Michele; Frara, Stefano; Mezzone, Monica; Zorza, Ivan; Baruffaldi, Fabio; Doglietto, Francesco; Mazziotti, Gherardo; Maroldi, Roberto; Giustina, Andrea

    2016-11-01

    Vertebral fractures are an emerging complication of acromegaly but their prediction is still difficult occurring even in patients with normal bone mineral density. In this study we evaluated the ability of high-resolution cone-beam computed tomography to provide information on skeletal abnormalities associated with vertebral fractures in acromegaly. 40 patients (24 females, 16 males; median age 57 years, range 25-72) and 21 healthy volunteers (10 females, 11 males; median age 60 years, range: 25-68) were evaluated for trabecular (bone volume/trabecular volume ratio, mean trabecular separation, and mean trabecular thickness) and cortical (thickness and porosity) parameters at distal radius using a high-resolution cone-beam computed tomography system. All acromegaly patients were evaluated for morphometric vertebral fractures and for mineral bone density by dual-energy X-ray absorptiometry at lumbar spine, total hip, femoral neck, and distal radius. Acromegaly patients with vertebral fractures (15 cases) had significantly (p acromegaly patients did not have significant differences in bone density at either skeletal site. Patients with acromegaly showed lower bone volume/trabecular volume ratio (p = 0.003) and mean trabecular thickness (p acromegaly. High-resolution cone-beam computed tomography at the distal radius may be useful to evaluate and predict the effects of acromegaly on bone microstructure.

  12. Schneiderian papilloma of the temporal bone

    NARCIS (Netherlands)

    van der Putten, L.; Bloemena, E.; Merkus, P.; Hensen, E.F.

    2013-01-01

    Temporal bone Schneiderian papilloma may present as a primary tumour originating from the middle ear and mastoid process, or an extension from sinonasal disease. Both forms are rare, this being only the 18th case of primary temporal bone Schneiderian papilloma described to date. Although the current

  13. CT-MR image data fusion for computer assisted navigated neurosurgery of temporal bone tumors

    International Nuclear Information System (INIS)

    Nemec, Stefan Franz; Donat, Markus Alexander; Mehrain, Sheida; Friedrich, Klaus; Krestan, Christian; Matula, Christian; Imhof, Herwig; Czerny, Christian

    2007-01-01

    Purpose: To demonstrate the value of multi detector computed tomography (MDCT) and magnetic resonance imaging (MRI) in the preoperative work up of temporal bone tumors and to present, especially, CT and MR image fusion for surgical planning and performance in computer assisted navigated neurosurgery of temporal bone tumors. Materials and methods: Fifteen patients with temporal bone tumors underwent MDCT and MRI. MDCT was performed in high-resolution bone window level setting in axial plane. The reconstructed MDCT slice thickness was 0.8 mm. MRI was performed in axial and coronal plane with T2-weighted fast spin-echo (FSE) sequences, un-enhanced and contrast-enhanced T1-weighted spin-echo (SE) sequences, and coronal T1-weighted SE sequences with fat suppression and with 3D T1-weighted gradient-echo (GE) contrast-enhanced sequences in axial plane. The 3D T1-weighted GE sequence had a slice thickness of 1 mm. Image data sets of CT and 3D T1-weighted GE sequences were merged utilizing a workstation to create CT-MR fusion images. MDCT and MR images were separately used to depict and characterize lesions. The fusion images were utilized for interventional planning and intraoperative image guidance. The intraoperative accuracy of the navigation unit was measured, defined as the deviation between the same landmark in the navigation image and the patient. Results: Tumorous lesions of bone and soft tissue were well delineated and characterized by CT and MR images. The images played a crucial role in the differentiation of benign and malignant pathologies, which consisted of 13 benign and 2 malignant tumors. The CT-MR fusion images supported the surgeon in preoperative planning and improved surgical performance. The mean intraoperative accuracy of the navigation system was 1.25 mm. Conclusion: CT and MRI are essential in the preoperative work up of temporal bone tumors. CT-MR image data fusion presents an accurate tool for planning the correct surgical procedure and is a

  14. [Computed tomography of the temporal bone in diagnosis of chronic exudative otitis media].

    Science.gov (United States)

    Zelikovich, E I

    2005-01-01

    Computed tomography (CT) of the temporal bone was made in 37 patients aged 2 to 55 years with chronic exudative otitis media (CEOM). In 21 of them the pathology was bilateral. The analysis of 58 CT images has identified CT signs of chronic exudative otitis media. They include partial (17 temporary bones) or complete (38 temporal bones) block of the bone opening of the auditory tube, pneumatic defects of the tympanic cavity (58 temporal bones), pneumatic defects of the mastoid process and antrum (47 temporal bones), pathologic retraction of the tympanic membrane. The examination of the temporal bone detected both CT-signs of CEOM and other causes of hearing disorders in 14 patients (26 temporal bones) with CEOM symptoms and inadequately high hypoacusis. Among these causes were malformation of the auditory ossicula (n=5), malformation of the labynthine window (n=2), malformation of the middle and internal ear (n=4), a wide aqueduct of the vestibule, labyrinthine anomaly of Mondini's type (n=1), cochlear hypoplasia (n=4), stenosis of the internal acoustic meatuses (n=2). Sclerotic fibrous dysplasia was suggested in 2 temporal bones (by CT data). CT was repeated after surgical treatment of 10 patients (14 temporal bones) and visual assessment of tympanostomy results was made.

  15. Feasibility of fabricating personalized 3D-printed bone grafts guided by high-resolution imaging

    Science.gov (United States)

    Hong, Abigail L.; Newman, Benjamin T.; Khalid, Arbab; Teter, Olivia M.; Kobe, Elizabeth A.; Shukurova, Malika; Shinde, Rohit; Sipzner, Daniel; Pignolo, Robert J.; Udupa, Jayaram K.; Rajapakse, Chamith S.

    2017-03-01

    Current methods of bone graft treatment for critical size bone defects can give way to several clinical complications such as limited available bone for autografts, non-matching bone structure, lack of strength which can compromise a patient's skeletal system, and sterilization processes that can prevent osteogenesis in the case of allografts. We intend to overcome these disadvantages by generating a patient-specific 3D printed bone graft guided by high-resolution medical imaging. Our synthetic model allows us to customize the graft for the patients' macro- and microstructure and correct any structural deficiencies in the re-meshing process. These 3D-printed models can presumptively serve as the scaffolding for human mesenchymal stem cell (hMSC) engraftment in order to facilitate bone growth. We performed highresolution CT imaging of a cadaveric human proximal femur at 0.030-mm isotropic voxels. We used these images to generate a 3D computer model that mimics bone geometry from micro to macro scale represented by STereoLithography (STL) format. These models were then reformatted to a format that can be interpreted by the 3D printer. To assess how much of the microstructure was replicated, 3D-printed models were re-imaged using micro-CT at 0.025-mm isotropic voxels and compared to original high-resolution CT images used to generate the 3D model in 32 sub-regions. We found a strong correlation between 3D-printed bone volume and volume of bone in the original images used for 3D printing (R2 = 0.97). We expect to further refine our approach with additional testing to create a viable synthetic bone graft with clinical functionality.

  16. Design of a fusion reaction-history measurement system with high temporal resolution

    International Nuclear Information System (INIS)

    Peng Xiaoshi; Wang Feng; Liu Shenye; Jiang Xiaohua; Tang Qi

    2010-01-01

    In order to accurately measure the history of fusion reaction for experimental study of inertial confinement fusion, we advance the design of a fusion reaction-history measurement system with high temporal resolution. The diagnostic system is composed of plastic scintillator and nose cone, an optical imaging system and the system of optic streak camera. Analyzing the capability of the system indicated that the instrument measured fusion reaction history at temporal resolution as low as 55ps and 40ps correspond to 2.45MeV DD neutrons and 14.03MeV DT neutrons. The instrument is able to measure the fusion reaction history at yields 1.5 x 10 9 DD neutrons, about 4 x 10 8 DT neutrons are required for a similar quality signal. (authors)

  17. A study with high resolution computed tomography of bone destruction in cholesteatoma

    International Nuclear Information System (INIS)

    Kikuchi, Shigeru; Yamaso, Tatsuya; Higo, Ryusaburo; Senba, Tetsuo; Iinuma, Yoshitaka.

    1992-01-01

    The modes and incidences of bone destruction in the middle ear cholesteatoma were evaluated by high resolution computed tomography, comparing with chronic otitis media with central perforation (COM) as control. The head of the malleus, the body and long process of the incus were more markedly destroyed in cholesteatoma than in COM with statistical significance. With the further extension of cholesteatoma into the antrum, the tegmen of the aditus ad antrum, the lateral semicircular canal, the handle of the malleus and the Korner's septum were involved in bone destruction. (author)

  18. Assessment of skills using a virtual reality temporal bone surgery simulator.

    Science.gov (United States)

    Linke, R; Leichtle, A; Sheikh, F; Schmidt, C; Frenzel, H; Graefe, H; Wollenberg, B; Meyer, J E

    2013-08-01

    Surgery on the temporal bone is technically challenging due to its complex anatomy. Precise anatomical dissection of the human temporal bone is essential and is fundamental for middle ear surgery. We assessed the possible application of a virtual reality temporal bone surgery simulator to the education of ear surgeons. Seventeen ENT physicians with different levels of surgical training and 20 medical students performed an antrotomy with a computer-based virtual temporal bone surgery simulator. The ease, accuracy and timing of the simulated temporal bone surgery were assessed using the automatic assessment software provided by the simulator device and additionally with a modified Final Product Analysis Scale. Trained ENT surgeons, physicians without temporal bone surgical training and medical students were all able to perform the antrotomy. However, the highly trained ENT surgeons were able to complete the surgery in approximately half the time, with better handling and accuracy as assessed by the significant reduction in injury to important middle ear structures. Trained ENT surgeons achieved significantly higher scores using both dissection analysis methods. Surprisingly, there were no significant differences in the results between medical students and physicians without experience in ear surgery. The virtual temporal bone training system can stratify users of known levels of experience. This system can be used not only to improve the surgical skills of trained ENT surgeons for more successful and injury-free surgeries, but also to train inexperienced physicians/medical students in developing their surgical skills for the ear.

  19. Multi-material 3D Models for Temporal Bone Surgical Simulation.

    Science.gov (United States)

    Rose, Austin S; Kimbell, Julia S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Buchman, Craig A

    2015-07-01

    A simulated, multicolor, multi-material temporal bone model can be created using 3-dimensional (3D) printing that will prove both safe and beneficial in training for actual temporal bone surgical cases. As the process of additive manufacturing, or 3D printing, has become more practical and affordable, a number of applications for the technology in the field of Otolaryngology-Head and Neck Surgery have been considered. One area of promise is temporal bone surgical simulation. Three-dimensional representations of human temporal bones were created from temporal bone computed tomography (CT) scans using biomedical image processing software. Multi-material models were then printed and dissected in a temporal bone laboratory by attending and resident otolaryngologists. A 5-point Likert scale was used to grade the models for their anatomical accuracy and suitability as a simulation of cadaveric and operative temporal bone drilling. The models produced for this study demonstrate significant anatomic detail and a likeness to human cadaver specimens for drilling and dissection. Simulated temporal bones created by this process have potential benefit in surgical training, preoperative simulation for challenging otologic cases, and the standardized testing of temporal bone surgical skills. © The Author(s) 2015.

  20. Magnetic Particle Imaging for High Temporal Resolution Assessment of Aneurysm Hemodynamics.

    Directory of Open Access Journals (Sweden)

    Jan Sedlacik

    Full Text Available The purpose of this work was to demonstrate the capability of magnetic particle imaging (MPI to assess the hemodynamics in a realistic 3D aneurysm model obtained by additive manufacturing. MPI was compared with magnetic resonance imaging (MRI and dynamic digital subtraction angiography (DSA.The aneurysm model was of saccular morphology (7 mm dome height, 5 mm cross-section, 3-4 mm neck, 3.5 mm parent artery diameter and connected to a peristaltic pump delivering a physiological flow (250 mL/min and pulsation rate (70/min. High-resolution (4 h long 4D phase contrast flow quantification (4D pc-fq MRI was used to directly assess the hemodynamics of the model. Dynamic MPI, MRI, and DSA were performed with contrast agent injections (3 mL volume in 3 s through a proximally placed catheter.4D pc-fq measurements showed distinct pulsatile flow velocities (20-80 cm/s as well as lower flow velocities and a vortex inside the aneurysm. All three dynamic methods (MPI, MRI, and DSA also showed a clear pulsation pattern as well as delayed contrast agent dynamics within the aneurysm, which is most likely caused by the vortex within the aneurysm. Due to the high temporal resolution of MPI and DSA, it was possible to track the contrast agent bolus through the model and to estimate the average flow velocity (about 60 cm/s, which is in accordance with the 4D pc-fq measurements.The ionizing radiation free, 4D high resolution MPI method is a very promising tool for imaging and characterization of hemodynamics in human. It carries the possibility of overcoming certain disadvantages of other modalities like considerably lower temporal resolution of dynamic MRI and limited 2D characteristics of DSA. Furthermore, additive manufacturing is the key for translating powerful pre-clinical techniques into the clinic.

  1. Establishing a temporal bone laboratory: considerations for ENT specialist training.

    LENUS (Irish Health Repository)

    Fennessy, B G

    2012-02-01

    Cadaveric temporal bone dissection in a temporal bone laboratory is a vital component in training safe, competent otorhinolaryngologists. Recent controversies pertaining to organ retention have resulted in a more limited supply of temporal bones. Consequently, current trainees are dissecting far fewer bones than their consultants. We discuss the establishment of a temporal bone laboratory in the Department of Anatomy in the University College Cork, from the timely preparation and preservation of the tissue to its disposal. Comparisons are drawn between our experience and that of the United States training schemes. The temporal bone laboratory in Cork is the only one in existence in Ireland. The exposure and experience obtained by registrars rotating through Cork, has resulted in noticeable improvements in their operative abilities. The temporal bone laboratory remains a core component to training. It is hoped that this article may facilitate other units overcoming obstacles to establish a temporal bone laboratory.

  2. Chondroblastoma of temporal bone

    Energy Technology Data Exchange (ETDEWEB)

    Tanohta, K.; Noda, M.; Katoh, H.; Okazaki, A.; Sugiyama, S.; Maehara, T.; Onishi, S.; Tanida, T.

    1986-07-01

    The case of a 55-year-old female with chondroblastoma arising from the left temporal bone is presented. Although 10 cases of temporal chondroblastoma have been reported, this is the first in which plain radiography, pluridirectional tomography, computed tomography (CT) and angiography were performed. We discuss the clinical and radiological aspects of this rare tumor.

  3. IgG4-Related Disease of Bilateral Temporal Bones.

    Science.gov (United States)

    Li, Lilun; Ward, Bryan; Cocks, Margaret; Kheradmand, Amir; Francis, Howard W

    2017-03-01

    IgG4-related disease (IgG4-RD) is an idiopathic inflammatory condition that causes pseudotumor formation in single or multiple organs, including those of the head and neck. Temporal bone involvement is rare, with only 3 cases of unilateral temporal bone IgG4-RD described in the literature. We report the first known case of IgG4-RD of bilateral temporal bones and describe its clinical presentation, diagnosis, and treatment. The patient was a 52-year-old man with latent tuberculosis (TB) who presented with a 10-year history of bilateral profound hearing loss and vestibular dysfunction. Computed tomography and magnetic resonance imaging demonstrated bilateral labyrinthine destruction with invasion of the posterior fossa. Immunoglobulin level testing showed elevated total serum IgG levels with normal IgG4 levels. Bilateral mastoidectomies were performed, with biopsy samples demonstrating IgG4 staining with IgG4-positive plasma cells up to 40/HPF (high power field) on the right and 20/HPF on the left, consistent with bilateral IgG4-RD. IgG4-RD of bilateral temporal bones presents with chronic and progressive bilateral hearing loss and vestibular dysfunction. Clinical presentation and radiologic findings are nonspecific, and definitive diagnosis must be made with histopathology and immunostaining. Corticosteroids are therapeutic, but surgical resection may be necessary for temporal bone IgG4-RD to improve long-term remission.

  4. CT and MRI findings of temporal bone anomaly in patients with tinnitus

    International Nuclear Information System (INIS)

    Wang Bing; Xian Junfang; Wang Zhenchang; Liu Zhaohui

    2011-01-01

    Objective: To study high resolution CT (HRCT) and MRI findings of temporal hone anomaly in patients with tinnitus and identify the optimal examination method in the detection of the anomaly. Methods: The HRCT and MRI data were analyzed retrospectively in 1015 patients including 145 patients with pulsatile tinnitus (PT) and 870 patients with nonpulsatile tinnitus (NPT). The positive rates of HRCT and MRI in the identification of temporal bone anomaly were analyzed and the efficiency of various examination methods was compared in revealing the anomaly. Data were tested by Chi-square test analysis. Results: Among 1015 patients, anomaly was seen in 767 cases (75.57%). High jugular bulb was found in 414 patients, accounting for 40.79%. Sigmoid sinus anomaly was detected in 387 patients (38.13%), while otitis media was found in 148 cases (14.58%), and low middle cranial fossa in 70 cases (6.90%). The positive rate of HRCT in the detection of high jugular bulb was 54.89% (365/665), which was significantly higher than those of other methods (P 2 =56.537, P<0.01). The fast imaging employing steady-state acquisition (FIESTA) sequence was the best examination method in displaying the vessel within the internal auditory canal (42/42,100%). Conclusions: High jugular bulb and sigmoid sinus anomaly were the most frequent abnormal findings of temporal bone in patients with tinnitus. Enhanced HRCT was the choice of modality in patients with PT. Plain HRCT was recommended for NPT. FIESTA sequence was the best in the evaluation of the vessel within the internal auditory canal. (authors)

  5. Impaired temporal, not just spatial, resolution in amblyopia.

    Science.gov (United States)

    Spang, Karoline; Fahle, Manfred

    2009-11-01

    In amblyopia, neuronal deficits deteriorate spatial vision including visual acuity, possibly because of a lack of use-dependent fine-tuning of afferents to the visual cortex during infancy; but temporal processing may deteriorate as well. Temporal, rather than spatial, resolution was investigated in patients with amblyopia by means of a task based on time-defined figure-ground segregation. Patients had to indicate the quadrant of the visual field where a purely time-defined square appeared. The results showed a clear decrease in temporal resolution of patients' amblyopic eyes compared with the dominant eyes in this task. The extent of this decrease in figure-ground segregation based on time of motion onset only loosely correlated with the decrease in spatial resolution and spanned a smaller range than did the spatial loss. Control experiments with artificially induced blur in normal observers confirmed that the decrease in temporal resolution was not simply due to the acuity loss. Amblyopia not only decreases spatial resolution, but also temporal factors such as time-based figure-ground segregation, even at high stimulus contrasts. This finding suggests that the realm of neuronal processes that may be disturbed in amblyopia is larger than originally thought.

  6. Face and content validation of a virtual reality temporal bone simulator.

    Science.gov (United States)

    Arora, Asit; Khemani, Sam; Tolley, Neil; Singh, Arvind; Budge, James; Varela, David A Diaz Voss; Francis, Howard W; Darzi, Ara; Bhatti, Nasir I

    2012-03-01

    To validate the VOXEL-MAN TempoSurg simulator for temporal bone dissection. Prospective international study. Otolaryngology departments of 2 academic health care institutions in the United Kingdom and United States. Eighty-five subjects were recruited consisting of an experienced and referent group. Participants performed a standardized familiarization session and temporal bone dissection task. Realism, training effectiveness, and global impressions were evaluated across 21 domains using a 5-point Likert-type scale. A score of 4 was the minimum threshold for acceptability. The experienced group comprised 25 otolaryngology trainers who had performed 150 mastoid operations. The referent group comprised 60 trainees (mean otolaryngology experience of 2.9 years). Familiarization took longer in the experienced group (P = .01). User-friendliness was positively rated (mean score 4.1). Seventy percent of participants rated anatomical appearance as acceptable. Trainers rated drill ergonomics worse than did trainees (P = .01). Simulation temporal bone training scored highly (mean score 4.3). Surgical anatomy, drill navigation, and hand-eye coordination accounted for this. Trainees were more likely to recommend temporal bone simulation to a colleague than were trainers (P = .01). Transferability of skills to the operating room was undecided (mean score 3.5). Realism of the VOXEL-MAN virtual reality temporal bone simulator is suboptimal in its current version. Nonetheless, it represents a useful adjunct to existing training methods and is particularly beneficial for novice surgeons before performing cadaveric temporal bone dissection. Improvements in realism, specifically drill ergonomics and visual-spatial perception during deeper temporal bone dissection, are warranted.

  7. Correlations of External Landmarks With Internal Structures of the Temporal Bone.

    Science.gov (United States)

    Piromchai, Patorn; Wijewickrema, Sudanthi; Smeds, Henrik; Kennedy, Gregor; O'Leary, Stephen

    2015-09-01

    The internal anatomy of a temporal bone could be inferred from external landmarks. Mastoid surgery is an important skill that ENT surgeons need to acquire. Surgeons commonly use CT scans as a guide to understanding anatomical variations before surgery. Conversely, in cases where CT scans are not available, or in the temporal bone laboratory where residents are usually not provided with CT scans, it would be beneficial if the internal anatomy of a temporal bone could be inferred from external landmarks. We explored correlations between internal anatomical variations and metrics established to quantify the position of external landmarks that are commonly exposed in the operating room, or the temporal bone laboratory, before commencement of drilling. Mathematical models were developed to predict internal anatomy based on external structures. From an operating room view, the distances between the following external landmarks were observed to have statistically significant correlations with the internal anatomy of a temporal bone: temporal line, external auditory canal, mastoid tip, occipitomastoid suture, and Henle's spine. These structures can be used to infer a low lying dura mater (p = 0.002), an anteriorly located sigmoid sinus (p = 0.006), and a more lateral course of the facial nerve (p external landmarks. The distances between these two landmarks and the operating view external structures were able to further infer the laterality of the facial nerve (p internal structures with a high level of accuracy: the distance from the sigmoid sinus to the posterior external auditory canal (p external landmarks found on the temporal bone. These relationships could be used as a guideline to predict challenges during drilling and choosing appropriate temporal bones for dissection.

  8. Computationally-optimized bone mechanical modeling from high-resolution structural images.

    Directory of Open Access Journals (Sweden)

    Jeremy F Magland

    Full Text Available Image-based mechanical modeling of the complex micro-structure of human bone has shown promise as a non-invasive method for characterizing bone strength and fracture risk in vivo. In particular, elastic moduli obtained from image-derived micro-finite element (μFE simulations have been shown to correlate well with results obtained by mechanical testing of cadaveric bone. However, most existing large-scale finite-element simulation programs require significant computing resources, which hamper their use in common laboratory and clinical environments. In this work, we theoretically derive and computationally evaluate the resources needed to perform such simulations (in terms of computer memory and computation time, which are dependent on the number of finite elements in the image-derived bone model. A detailed description of our approach is provided, which is specifically optimized for μFE modeling of the complex three-dimensional architecture of trabecular bone. Our implementation includes domain decomposition for parallel computing, a novel stopping criterion, and a system for speeding up convergence by pre-iterating on coarser grids. The performance of the system is demonstrated on a dual quad-core Xeon 3.16 GHz CPUs equipped with 40 GB of RAM. Models of distal tibia derived from 3D in-vivo MR images in a patient comprising 200,000 elements required less than 30 seconds to converge (and 40 MB RAM. To illustrate the system's potential for large-scale μFE simulations, axial stiffness was estimated from high-resolution micro-CT images of a voxel array of 90 million elements comprising the human proximal femur in seven hours CPU time. In conclusion, the system described should enable image-based finite-element bone simulations in practical computation times on high-end desktop computers with applications to laboratory studies and clinical imaging.

  9. Chondroblastoma of temporal bone

    International Nuclear Information System (INIS)

    Tanohta, K.; Noda, M.; Katoh, H.; Okazaki, A.; Sugiyama, S.; Maehara, T.; Onishi, S.; Tanida, T.

    1986-01-01

    The case of a 55-year-old female with chondroblastoma arising from the left temporal bone is presented. Although 10 cases of temporal chondroblastoma have been reported, this is the first in which plain radiography, pluridirectional tomography, computed tomography (CT) and angiography were performed. We discuss the clinical and radiological aspects of this rare tumor. (orig.)

  10. Global-Scale Associations of Vegetation Phenology with Rainfall and Temperature at a High Spatio-Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Nicholas Clinton

    2014-08-01

    Full Text Available Phenology response to climatic variables is a vital indicator for understanding changes in biosphere processes as related to possible climate change. We investigated global phenology relationships to precipitation and land surface temperature (LST at high spatial and temporal resolution for calendar years 2008–2011. We used cross-correlation between MODIS Enhanced Vegetation Index (EVI, MODIS LST and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN gridded rainfall to map phenology relationships at 1-km spatial resolution and weekly temporal resolution. We show these data to be rich in spatiotemporal information, illustrating distinct phenology patterns as a result of complex overlapping gradients of climate, ecosystem and land use/land cover. The data are consistent with broad-scale, coarse-resolution modeled ecosystem limitations to moisture, temperature and irradiance. We suggest that high-resolution phenology data are useful as both an input and complement to land use/land cover classifiers and for understanding climate change vulnerability in natural and anthropogenic landscapes.

  11. Echo planar perfusion imaging with high spatial and temporal resolution: methodology and clinical aspects

    International Nuclear Information System (INIS)

    Bitzer, M.; Klose, U.; Naegele, T.; Friese, S.; Kuntz, R.; Voigt, K.; Fetter, M.; Opitz, H.

    1999-01-01

    The purpose of the present study was to analyse specific advantages of calculated parameter images and their limitations using an optimized echo-planar imaging (EPI) technique with high spatial and temporal resolution. Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) was performed in 12 patients with cerebrovascular disease and in 13 patients with brain tumours. For MR imaging of cerebral perfusion an EPI sequence was developed which provides a temporal resolution of 0.68 s for three slices with a 128 x 128 image matrix. To evaluate DSC-MRI, the following parameter images were calculated pixelwise: (1) Maximum signal reduction (MSR); (2) maximum signal difference (ΔSR); (3) time-to-peak (T p ); and (4) integral of signal-intensity-time curve until T p (S Int ). The MSR maps were superior in the detection of acute infarctions and ΔSR maps in the delineation of vasogenic brain oedema. The time-to-peak (T p ) maps seemed to be highly sensitive in the detection of poststenotic malperfused brain areas (sensitivity 90 %). Hyperperfused areas of brain tumours were detectable down to a diameter of 1 cm with high sensitivity (> 90 %). Distinct clinical and neuroradiological conditions revealed different suitabilities for the parameter images. The time-to-peak (T p ) maps may be an important advantage in the detection of poststenotic ''areas at risk'', due to an improved temporal resolution using an EPI technique. With regard to spatial resolution, a matrix size of 128 x 128 is sufficient for all clinical conditions. According to our results, a further increase in matrix size would not improve the spatial resolution in DSC-MRI, since the degree of the vascularization of lesions and the susceptibility effect itself seem to be the limiting factors. (orig.)

  12. Dynamic Raman imaging system with high spatial and temporal resolution

    Science.gov (United States)

    Wang, Lei; Dai, Yinzhen; He, Hao; Lv, Ruiqi; Zong, Cheng; Ren, Bin

    2017-09-01

    There is an increasing need to study dynamic changing systems with significantly high spatial and temporal resolutions. In this work, we integrated point-scanning, line-scanning, and wide-field Raman imaging techniques into a single system. By using an Electron Multiplying CCD (EMCCD) with a high gain and high frame rate, we significantly reduced the time required for wide-field imaging, making it possible to monitor the electrochemical reactions in situ. The highest frame rate of EMCDD was ˜50 fps, and the Raman images for a specific Raman peak can be obtained by passing the signal from the sample through the Liquid Crystal Tunable Filter. The spatial resolutions of scanning imaging and wide-field imaging with a 100× objective (NA = 0.9) are 0.5 × 0.5 μm2 and 0.36 × 0.36 μm2, respectively. The system was used to study the surface plasmon resonance of Au nanorods, the surface-enhanced Raman scattering signal distribution for Au Nanoparticle aggregates, and dynamic Raman imaging of an electrochemical reacting system.

  13. Bone scintigraphy in the diagnosis of fracture and infection of the temporal bone

    International Nuclear Information System (INIS)

    Djupesland, G.; Nakken, K.F.; Mueller, C.; Skjoerten, F.; Roehrt, T.; Eldevik, P.

    1983-01-01

    The sensivit of Tc99m-MDP-bone-scintiscanning in the diagnosis of temporal bone fracture was found to that of conventional radiography if the patients were examined 10 days after the trauma. Temporal bone osteomyelitis with concomitant moderate osteosclerosis was demonstrated by bone scintigraphy in 5 cases of mastoiditis with atypical symptoms. A case of apicitis was for the first time demonstrated by scintigraphy. A low sensivity of 67 Ga-scintigraphy was demonstrated by positive Tc99m-bone-scintigraphy and negative 67 Ga-scintigraphy in a patient with atypical mastoiditis. Tc99m-scintigraphy was negative in 5 cases of otitis media suppurative and in 3 cases of otitis media chronica cum cholesteatoma, all with slight degree of osteosclerosis in the mastoid. The sensitivity of Tc99m-bone-scintigraphy in fracture and osteomyelitis of the temporal bone seems to be a function of the amount of reactive new bone formed. (Authors)

  14. Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer

    Science.gov (United States)

    Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel

    2017-04-01

    This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.

  15. Temporal Bone Fracture Causing Superior Semicircular Canal Dehiscence

    Directory of Open Access Journals (Sweden)

    Kevin A. Peng

    2014-01-01

    Full Text Available Importance. Superior semicircular canal dehiscence (SCD is a third window lesion of the inner ear causing symptoms of vertigo, autophony, tinnitus, and hearing loss. A “two-hit” hypothesis has traditionally been proposed, whereby thinly developed bone overlying the superior canal is disrupted by a sudden change in intracranial pressure. Although the symptoms of SCD may be precipitated by head injury, no previous reports have described a temporal bone fracture directly causing SCD. Observations. Two patients sustained temporal bone fractures after closed head trauma, and developed unilateral otologic symptoms consistent with SCD. In each instance, computed tomography imaging revealed fractures extending through the bony roof of the superior semicircular canal. Conclusions and Relevance. Temporal bone fractures, which are largely treated nonoperatively, have not previously been reported to cause SCD. As it is a potentially treatable entity, SCD resulting from temporal bone fracture must be recognized as a possibility and diagnosed promptly if present.

  16. Bone Density Development of the Temporal Bone Assessed by Computed Tomography.

    Science.gov (United States)

    Takahashi, Kuniyuki; Morita, Yuka; Ohshima, Shinsuke; Izumi, Shuji; Kubota, Yamato; Horii, Arata

    2017-12-01

    The temporal bone shows regional differences in bone development. The spreading pattern of acute mastoiditis shows age-related differences. In infants, it spreads laterally and causes retroauricular swelling, whereas in older children, it tends to spread medially and causes intracranial complications. We hypothesized that bone maturation may influence the spreading pattern of acute mastoiditis. Eighty participants with normal hearing, aged 3 months to 42 years, participated in this study. Computed tomography (CT) values (Hounsfield unit [HU]) in various regions of the temporal bone, such as the otic capsule (OC), lateral surface of the mastoid cavity (LS), posterior cranial fossa (PCF), and middle cranial fossa (MCF), were measured as markers of bone density. Bone density development curves, wherein CT values were plotted against age, were created for each region. The age at which the CT value exceeded 1000 HU, which is used as an indicator of bone maturation, was calculated from the development curves and compared between the regions. The OC showed mature bone at birth, whereas the LS, PCF, and MCF showed rapid maturation in early childhood. However, there were significant regional differences in the ages of maturation: 1.7, 3.9, and 10.8 years for the LS, PCF, and MCF, respectively. To our knowledge, this is the first report to show regional differences in the maturation of temporal bone, which could partly account for the differences in the spreading pattern of acute mastoiditis in individuals of different ages.

  17. Aspects of temporal bone anatomy and pathology in conjunction with cochlear implant surgery

    Energy Technology Data Exchange (ETDEWEB)

    Stjernholm, Christina [Karolinska Inst., Stockholm (Sweden). Soedersjukhuset

    2003-07-01

    Cochlear implantation is a treatment for patients with severe sensorineural hearing loss/deafness, who get no help from ordinary hearing aids. The cochlear implant is surgically placed under the skin near the ear and a very thin electrode array is introduced into the cochlea of the inner ear, where it stimulates the remaining nerve fibers. The operation is complicated; it is performed with the aid of a microscope, and involves drilling very close to vital vessels and important nerves. High resolution computed tomography (CT) of the temporal bone is a part of the preoperative evaluation preceding cochlear implantation. It is a method for visualizing the bony structures of the middle and inner ear - to diagnose pathology and to describe the anatomy. The first work concerns CT of the temporal bone and cochlear implant surgery in children with CHARGE association. This is a rare condition with multiple congenital abnormalities, sometimes lethal. Children with CHARGE have different combinations of disabilities, of which impairments of vision and hearing, as well as balance problems and facial palsy can lead to developmental delay. There have been few reports of radiological temporal bone changes and none of cochlear implant surgery for this group. The work includes a report of the findings on preoperative CT and at surgery, as well as postimplant results in two children. A review of the latest diagnostic criteria of CHARGE and the temporal bone changes found in international literature is also included. The conclusion was that certain combinations of temporal bone changes in CHARGE are, if not specific, at least extremely rare in other materials. CT can visualize these changes and be used as a diagnostic tool. This is important, since some of the associated disabilities are not so obvious from the start. Early treatment is vital for the child's development. This work also shows that cochlear implantation may help some of these often very isolated children to

  18. Aspects of temporal bone anatomy and pathology in conjunction with cochlear implant surgery

    International Nuclear Information System (INIS)

    Stjernholm, Christina

    2003-01-01

    Cochlear implantation is a treatment for patients with severe sensorineural hearing loss/deafness, who get no help from ordinary hearing aids. The cochlear implant is surgically placed under the skin near the ear and a very thin electrode array is introduced into the cochlea of the inner ear, where it stimulates the remaining nerve fibers. The operation is complicated; it is performed with the aid of a microscope, and involves drilling very close to vital vessels and important nerves. High resolution computed tomography (CT) of the temporal bone is a part of the preoperative evaluation preceding cochlear implantation. It is a method for visualizing the bony structures of the middle and inner ear - to diagnose pathology and to describe the anatomy. The first work concerns CT of the temporal bone and cochlear implant surgery in children with CHARGE association. This is a rare condition with multiple congenital abnormalities, sometimes lethal. Children with CHARGE have different combinations of disabilities, of which impairments of vision and hearing, as well as balance problems and facial palsy can lead to developmental delay. There have been few reports of radiological temporal bone changes and none of cochlear implant surgery for this group. The work includes a report of the findings on preoperative CT and at surgery, as well as postimplant results in two children. A review of the latest diagnostic criteria of CHARGE and the temporal bone changes found in international literature is also included. The conclusion was that certain combinations of temporal bone changes in CHARGE are, if not specific, at least extremely rare in other materials. CT can visualize these changes and be used as a diagnostic tool. This is important, since some of the associated disabilities are not so obvious from the start. Early treatment is vital for the child's development. This work also shows that cochlear implantation may help some of these often very isolated children to communicate

  19. Primary pericranial Ewing's sarcoma on the temporal bone: A case report.

    Science.gov (United States)

    Kawano, Hiroto; Nitta, Naoki; Ishida, Mitsuaki; Fukami, Tadateru; Nozaki, Kazuhiko

    2016-01-01

    Primary Ewing's sarcoma originating in the pericranium is an extremely rare disease entity. A 9-year-old female patient was admitted to our department due to a left temporal subcutaneous mass. The mass was localized under the left temporal muscle and attached to the surface of the temporal bone. Head computed tomography revealed a mass with bony spicule formation on the temporal bone, however, it did not show bone destruction or intracranial invasion. F-18 fluorodeoxyglucose positron emission tomography showed no lesions other than the mass on the temporal bone. Magnetic resonance imaging showed that the mass was located between the temporal bone and the pericranium. The mass was completely resected with the underlying temporal bone and the overlying deep layer of temporal muscle, and was diagnosed as primary Ewing's sarcoma. Because the tumor was located in the subpericranium, we created a new classification, "pericranial Ewing's sarcoma," and diagnosed the present tumor as pericranial Ewing's sarcoma. We herein present an extremely rare case of primary pericranial Ewing's sarcoma that developed on the temporal bone.

  20. Face and content validation of a novel three-dimensional printed temporal bone for surgical skills development.

    Science.gov (United States)

    Da Cruz, M J; Francis, H W

    2015-07-01

    To assess the face and content validity of a novel synthetic, three-dimensional printed temporal bone for surgical skills development and training. A synthetic temporal bone was printed using composite materials and three-dimensional printing technology. Surgical trainees were asked to complete three structured temporal bone dissection exercises. Attitudes and impressions were then assessed using a semi-structured questionnaire. Previous cadaver and real operating experiences were used as a reference. Trainees' experiences of the synthetic temporal bone were analysed in terms of four domains: anatomical realism, usefulness as a training tool, task-based usefulness and overall reactions. Responses across all domains indicated a high degree of acceptance, suggesting that the three-dimensional printed temporal bone was a useful tool in skills development. A sophisticated three-dimensional printed temporal bone that demonstrates face and content validity was developed. The efficiency in cost savings coupled with low associated biohazards make it likely that the printed temporal bone will be incorporated into traditional temporal bone skills development programmes in the near future.

  1. Osteoradionecrosis of the temporal bone

    International Nuclear Information System (INIS)

    Fujimori, Masato; Koyama, Yukiko; Enomoto, Fuyuki; Ichikawa, Ginichiro

    2002-01-01

    We report a case of temporal bone necrosis that emerged after radiotherapy for epipharyngeal carcinoma performed 13 years ago. The patient was a 51-year-old male. His major complaint was left facial swelling. The patient underwent chemotherapy and radiotherapy (Co 60, 6120 rad), as the treatment of that period, for epipharyngeal carcinoma from September 30, 1986 to January 31, 1987. He also underwent lobectomy of the left temporal lobe in brain surgery for left temporal lobe necrosis in August, 1989. After that operation, we saw constriction in his left external acoustic meatus and continued the follow-up. On October 22, 1999 he felt a left facial swelling. We found skin defects and ulcer formation in the front part of his left ear. Although we administered an antiseptic and antibiotic to the diseased area, his condition did not improve. He was hospitalized for the purpose of undergoing medical treatment on January 6, 2000. We found extensive skin necrosis and defects in his left auricular area. The corrupted temporal bone reached the zygomatic, the bone department external acoustic meatus and the mastoid process was exposing. We performed debridement of the diseased area on January 19, 2000. On February 23, we performed reconstruction by left trapezius muscle flap after debridement once again. One year after the operation, the flap was completely incorporated. (author)

  2. Osteoradionecrosis of the temporal bone

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Masato; Koyama, Yukiko; Enomoto, Fuyuki; Ichikawa, Ginichiro [Juntendo Univ., Tokyo (Japan). School of Medicine

    2002-08-01

    We report a case of temporal bone necrosis that emerged after radiotherapy for epipharyngeal carcinoma performed 13 years ago. The patient was a 51-year-old male. His major complaint was left facial swelling. The patient underwent chemotherapy and radiotherapy (Co 60, 6120 rad), as the treatment of that period, for epipharyngeal carcinoma from September 30, 1986 to January 31, 1987. He also underwent lobectomy of the left temporal lobe in brain surgery for left temporal lobe necrosis in August, 1989. After that operation, we saw constriction in his left external acoustic meatus and continued the follow-up. On October 22, 1999 he felt a left facial swelling. We found skin defects and ulcer formation in the front part of his left ear. Although we administered an antiseptic and antibiotic to the diseased area, his condition did not improve. He was hospitalized for the purpose of undergoing medical treatment on January 6, 2000. We found extensive skin necrosis and defects in his left auricular area. The corrupted temporal bone reached the zygomatic, the bone department external acoustic meatus and the mastoid process was exposing. We performed debridement of the diseased area on January 19, 2000. On February 23, we performed reconstruction by left trapezius muscle flap after debridement once again. One year after the operation, the flap was completely incorporated. (author)

  3. Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms

    Science.gov (United States)

    Bryson, M.; Johnson-Roberson, M.; Murphy, R.

    2012-07-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  4. Classification of temporal bone pneumatization based on sigmoid sinus using computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.-J. [Department of Otorhinolaryngology, National Health Insurance Corporation Ilsan Hospital, Seoul (Korea, Republic of); Song, M.H. [Department of Otorhinolaryngology, Yonsei University College of Medicine, Kang-nam Gu, Do-gok Dong, 146-92, Seoul, Republic of Korea 135-720 (Korea, Republic of); Kim, J. [Department of Radiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, W.-S. [Department of Otorhinolaryngology, Yonsei University College of Medicine, Kang-nam Gu, Do-gok Dong, 146-92, Seoul, Republic of Korea 135-720 (Korea, Republic of); Lee, H.-K. [Department of Otorhinolaryngology, Yonsei University College of Medicine, Kang-nam Gu, Do-gok Dong, 146-92, Seoul, Republic of Korea 135-720 (Korea, Republic of)], E-mail: hoki@yuhs.ac

    2007-11-15

    Aim: To analyse several reference structures using axial computed tomography (CT) imaging of the temporal bone, which may reflect pneumatization of the entire temporal bone by statistical correlation to the actual volume of the temporal bone measured using three-dimensional reconstruction. Materials and methods: One hundred and sixteen temporal bones were studied, comprising 48 with normal findings and 68 sides showing chronic otitis media or temporal bone fracture. After measuring the volume of temporal bone air cells by the volume rendering technique using three-dimensional reconstruction images, classification of temporal bone pneumatization was performed using various reference structures on axial images to determine whether significant differences in the volume of temporal bone air cells could be found between the groups. Results: When the sigmoid sinus at the level of the malleoincudal complex was used in the classification, there were statistically significant differences between the groups that correlated with the entire volume of the temporal bone. Grouping based on the labyrinth and the ascending carotid artery showed insignificant differences in volume. Furthermore, there was no significant correlation between the cross-sectional area of the antrum and the entire volume of the temporal bone. Conclusion: The degree of pneumatization of temporal bone can be estimated easily by the evaluation of the air cells around the sigmoid sinus on axial CT images.

  5. High-resolution computed tomography findings in pulmonary complications after bone marrow transplantation: iconographic essay

    International Nuclear Information System (INIS)

    Gasparetto, Emerson L.; Ono, Sergio E.; Souza, Carolina A.; Escuissato, Dante L.; Rocha, Gabriela de Melo; Inoue, Cezar; Falavigna, Joao M.; Marchiori, Edson; Universidade Federal, Rio de Janeiro

    2005-01-01

    Bone marrow transplantation has been the treatment of choice for many hematologic diseases. However, pulmonary complications, which may occur in up to 60% of the patients, are the main cause of treatment failure and may be divided in three phases according to the patient's immunity. In the first phase, up to 30 days after the procedure, there is a predominance of non-infectious complications and fungal pneumonia. Viral infections, mainly by cytomegalovirus, are common in the second phase (up to 100 days after bone marrow transplantation). Finally, in the late phase after bone marrow transplantation, non-infectious complications as bronchiolitis obliterans organizing pneumonia and graft-versus-host disease are most commonly seen. The authors present a pictorial essay of the high-resolution computed tomography findings in patients with pulmonary complications after bone marrow transplantation. (author)

  6. Temporal bone trauma and complications: computed tomography findings

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ana Maria Doffemond; Gaiotti, Juliana Oggioni; Couto, Caroline Laurita Batista; Gomes, Natalia Delage; Diniz, Renata Lopes Furletti Caldeira; Motta, Emilia Guerra Pinto Coelho, E-mail: anadoffemond@yahoo.com.br [Hospital Mater Dei, Belo Horizonte, MG (Brazil). Unit of Radiology and Imaging Diagnosis

    2013-03-15

    Most temporal bone fractures result from high-energy blunt head trauma, and are frequently related to other skull fractures or to polytrauma. Fractures and displacements of ossicular chain in the middle ear represent some of the main complications of temporal bone injury, and hence they will be more deeply approached in the present article. Other types of injuries include labyrinthine fractures, dural fistula, facial nerve paralysis and extension into the carotid canal. Computed tomography plays a fundamental role in the initial evaluation of polytrauma patients, as it can help to identify important structural injuries that may lead to severe complications such as sensorineural hearing loss, conductive hearing loss, dizziness and balance dysfunction, perilymphatic fistulas, facial nerve paralysis, vascular injury and others. (author)

  7. Temporal bone trauma and complications: computed tomography findings

    International Nuclear Information System (INIS)

    Costa, Ana Maria Doffemond; Gaiotti, Juliana Oggioni; Couto, Caroline Laurita Batista; Gomes, Natalia Delage; Diniz, Renata Lopes Furletti Caldeira; Motta, Emilia Guerra Pinto Coelho

    2013-01-01

    Most temporal bone fractures result from high-energy blunt head trauma, and are frequently related to other skull fractures or to polytrauma. Fractures and displacements of ossicular chain in the middle ear represent some of the main complications of temporal bone injury, and hence they will be more deeply approached in the present article. Other types of injuries include labyrinthine fractures, dural fistula, facial nerve paralysis and extension into the carotid canal. Computed tomography plays a fundamental role in the initial evaluation of polytrauma patients, as it can help to identify important structural injuries that may lead to severe complications such as sensorineural hearing loss, conductive hearing loss, dizziness and balance dysfunction, perilymphatic fistulas, facial nerve paralysis, vascular injury and others. (author)

  8. Tracking channel bed resiliency in forested mountain catchments using high temporal resolution channel bed movement

    Science.gov (United States)

    Martin, Sarah E.; Conklin, Martha H.

    2018-01-01

    This study uses continuous-recording load cell pressure sensors in four, high-elevation (1500-1800 m), Sierra Nevada headwater streams to collect high-temporal-resolution, bedload-movement data for investigating the channel bed movement patterns within these streams for water years 2012-2014. Data show an annual pattern where channel bed material in the thalweg starts to build up in early fall, peaks around peak snow melt, and scours back to baseline levels during hydrograph drawdown and base flow. This pattern is punctuated by disturbance and recovery of channel bed material associated with short-term storm events. A conceptual model, linking sediment sources at the channel margins to patterns of channel bed fill and scour in the thalweg, is proposed building on the results of Martin et al. (2014). The material in the thalweg represents a balance between sediment supply from the channel margins and sporadic, conveyor-belt-like downstream transport in the thalweg. The conceptual model highlights not only the importance of production and transport rates but also that seasonal connectedness between the margins and thalweg is a key sediment control, determining the accumulation rate of sediment stores at the margins and the redistribution of sediment from margins to thalweg that feeds the conveyor belt. Disturbance and recovery cycles are observed at multiple temporal scales; but long term, the channel beds are stable, suggesting that the beds act as short-term storage for sediment but are in equilibrium interannually. The feasibility of use for these sensors in forested mountain stream environments is tested. Despite a high failure rate (50%), load cell pressure sensors show potential for high-temporal-resolution bedload measurements, allowing for the collection of channel bed movement data to move beyond time-integrated change measurements - where many of the subtleties of bedload movement patterns may be missed - to continuous and/or real-time measurements. This

  9. 3D-CT of the temporal bone area with high-speed processing

    International Nuclear Information System (INIS)

    Hattori, Taku

    1994-01-01

    Three-dimentional (3D)-CT was introduced to represent abnormal findings in the temporal bone area utilizing a SOMATOM DRH CT scanner with accessory 3D reconstruction software and an exclusive high-speed 3D processing system, VOXEL FLINGER. In a patient with eosinophilic granuloma, a defect in the squamous part of the temporal bone was demonstrated suggesting exposure of the dura mater during surgery. In a patient with a normal ear, well-developed mastoid cavity, a part of the handle and the head of the malleus, the incudomalleal joint, the short limb, body and a part of the long limb of the incus and the round window niche were demonstrated. In a case of chronic otitis media, poorly developed mastoid cavity and a possible defect of the tip of the long limb of the incus were demonstrated, in contrast to the patient with the normal ear. 3D-CT yields objective and solid images which are useful for diagnosis, treatment planning and explanation of the pathology to patients and their family. To obtain convincing 3D images, physicians themselves have to choose exact rotation angles. It is not adequate to reconstruct original CT data using a CT computer with accessory 3D software whose processing capability is not good enough for this purpose. The conclusion is as follows: 1) it is necessary and effective to transfer original CT data into the memory of the exclusive high-speed 3D processing system and 2) process the data by the voxel memory method to establish a clinically valuable 3D-CT imaging system. (author)

  10. Chondrosarcoma of the temporal bone: a case report

    International Nuclear Information System (INIS)

    Park, Man Soo; Lee, Sang Youl; Chung, Jae Gul; Lee, Deok Hee; Jung, Seung Mun; Ryu, Dae Sik

    2001-01-01

    Chondrosarcoma of the temporal bone is a rare lesion. Clinically it has been confused with chordoma, glomus jugulare tumor and meningioma, among other conditions, and due to its anatomic location, cranial nerve palsy is frequently observed. We report a case involving a 50-year-old woman with chondrosarcoma of the temporal bone

  11. Chondrosarcoma of the temporal bone: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Man Soo; Lee, Sang Youl; Chung, Jae Gul; Lee, Deok Hee; Jung, Seung Mun; Ryu, Dae Sik [Kang Nung Hospital, Ulsan Univ. Kangnung (Korea, Republic of)

    2001-07-01

    Chondrosarcoma of the temporal bone is a rare lesion. Clinically it has been confused with chordoma, glomus jugulare tumor and meningioma, among other conditions, and due to its anatomic location, cranial nerve palsy is frequently observed. We report a case involving a 50-year-old woman with chondrosarcoma of the temporal bone.

  12. Anatomical study of the pigs temporal bone by microdissection.

    Science.gov (United States)

    Garcia, Leandro de Borborema; Andrade, José Santos Cruz de; Testa, José Ricardo Gurgel

    2014-01-01

    Initial study of the pig`s temporal bone anatomy in order to enable a new experimental model in ear surgery. Dissection of five temporal bones of Sus scrofa pigs obtained from UNIFESP - Surgical Skills Laboratory, removed with hole saw to avoid any injury and stored in formaldehyde 10% for better conservation. The microdissection in all five temporal bone had the following steps: inspection of the outer part, external canal and tympanic membrane microscopy, mastoidectomy, removal of external ear canal and tympanic membrane, inspection of ossicular chain and middle ear. Anatomically it is located at the same position than in humans. Some landmarks usually found in humans are missing. The tympanic membrane of the pig showed to be very similar to the human, separating the external and the middle ear. The middle ear`s appearance is very similar than in humans. The ossicular chain is almost exactly the same, as well as the facial nerve, showing the same relationship with the lateral semicircular canal. The temporal bone of the pigs can be used as an alternative for training in ear surgery, especially due the facility to find it and its similarity with temporal bone of the humans.

  13. Time-resolved PIV technique for high temporal resolution measurement of mechanical prosthetic aortic valve fluid dynamics.

    Science.gov (United States)

    Kaminsky, R; Morbiducci, U; Rossi, M; Scalise, L; Verdonck, P; Grigioni, M

    2007-02-01

    Prosthetic heart valves (PHVs) have been used to replace diseased native valves for more than five decades. Among these, mechanical PHVs are the most frequently implanted. Unfortunately, these devices still do not achieve ideal behavior and lead to many complications, many of which are related to fluid mechanics. The fluid dynamics of mechanical PHVs are particularly complex and the fine-scale characteristics of such flows call for very accurate experimental techniques. Adequate temporal resolution can be reached by applying time-resolved PIV, a high-resolution dynamic technique which is able to capture detailed chronological changes in the velocity field. The aim of this experimental study is to investigate the evolution of the flow field in a detailed time domain of a commercial bileaflet PHV in a mock-loop mimicking unsteady conditions, by means of time-resolved 2D Particle Image Velocimetry (PIV). The investigated flow field corresponded to the region immediately downstream of the valve plane. Spatial resolution as in "standard" PIV analysis of prosthetic valve fluid dynamics was used. The combination of a Nd:YLF high-repetition-rate double-cavity laser with a high frame rate CMOS camera allowed a detailed, highly temporally resolved acquisition (up to 10000 fps depending on the resolution) of the flow downstream of the PHV. Features that were observed include the non-homogeneity and unsteadiness of the phenomenon and the presence of large-scale vortices within the field, especially in the wake of the valve leaflets. Furthermore, we observed that highly temporally cycle-resolved analysis allowed the different behaviors exhibited by the bileaflet valve at closure to be captured in different acquired cardiac cycles. By accurately capturing hemodynamically relevant time scales of motion, time-resolved PIV characterization can realistically be expected to help designers in improving PHV performance and in furnishing comprehensive validation with experimental data

  14. Intra-temporal facial nerve centerline segmentation for navigated temporal bone surgery

    Science.gov (United States)

    Voormolen, Eduard H. J.; van Stralen, Marijn; Woerdeman, Peter A.; Pluim, Josien P. W.; Noordmans, Herke J.; Regli, Luca; Berkelbach van der Sprenkel, Jan W.; Viergever, Max A.

    2011-03-01

    Approaches through the temporal bone require surgeons to drill away bone to expose a target skull base lesion while evading vital structures contained within it, such as the sigmoid sinus, jugular bulb, and facial nerve. We hypothesize that an augmented neuronavigation system that continuously calculates the distance to these structures and warns if the surgeon drills too close, will aid in making safe surgical approaches. Contemporary image guidance systems are lacking an automated method to segment the inhomogeneous and complexly curved facial nerve. Therefore, we developed a segmentation method to delineate the intra-temporal facial nerve centerline from clinically available temporal bone CT images semi-automatically. Our method requires the user to provide the start- and end-point of the facial nerve in a patient's CT scan, after which it iteratively matches an active appearance model based on the shape and texture of forty facial nerves. Its performance was evaluated on 20 patients by comparison to our gold standard: manually segmented facial nerve centerlines. Our segmentation method delineates facial nerve centerlines with a maximum error along its whole trajectory of 0.40+/-0.20 mm (mean+/-standard deviation). These results demonstrate that our model-based segmentation method can robustly segment facial nerve centerlines. Next, we can investigate whether integration of this automated facial nerve delineation with a distance calculating neuronavigation interface results in a system that can adequately warn surgeons during temporal bone drilling, and effectively diminishes risks of iatrogenic facial nerve palsy.

  15. Intra-temporal facial nerve centerline segmentation for navigated temporal bone surgery

    NARCIS (Netherlands)

    Voormolen, E.H.J.; Stralen, van M.; Woerdeman, P.A.; Pluim, J.P.W.; Noordmans, H.J.; Regli, L.; Berkelbach van der Sprenkel, J.W.; Viergever, M.A.; Wong, K.H.; Holmes III, D.R.

    2011-01-01

    Approaches through the temporal bone require surgeons to drill away bone to expose a target skull base lesion while evading vital structures contained within it, such as the sigmoid sinus, jugular bulb, and facial nerve. We hypothesize that an augmented neuronavigation system that continuously

  16. Post traumatic facial nerve palsy without temporal bone fracture

    International Nuclear Information System (INIS)

    Scuotto, A.; Cappabianca, S.; Capasso, R.; Porto, A.; D'Oria, S.; Rotondo, M.

    2016-01-01

    Facial nerve injury following head trauma is a frequent event with or without temporal bone fractures. Computed tomography is the imaging modality of choice for assessing the possible bone disruption of the facial nerve canal. Magnetic resonance is helpful in presence of a facial nerve paralysis, unexplained by computed tomography findings. We present a case of delayed post-traumatic facial nerve palsy without radiological evidence of temporal bone fractures, in which magnetic resonance was crucial for diagnosing the nerve impairment. Radiological findings in accordance both with electrodiagnostic tests and clinical presentation suggested the successful conservative management. - Highlights: • Facial nerve is more prone to damage than any other cranial nerve after trauma. • Facial nerve trauma is usually associated with temporal bone fractures. • MRI is mandatory in case of no evidence of bone disruption at CT.

  17. Can high-resolution peripheral quantitative computed tomography imaging of subchondral and cortical bone predict condylar fracture in Thoroughbred racehorses?

    Science.gov (United States)

    Trope, G D; Ghasem-Zadeh, A; Anderson, G A; Mackie, E J; Whitton, R C

    2015-07-01

    High-resolution 3D imaging may improve the prediction and/or early identification of condylar fractures of the distal metacarpus/tarsus and reduce the frequency of breakdown injury in racehorses. To test the hypotheses that horses suffering condylar fractures have higher bone volume fraction (BV/TV) of the distal metacarpal epiphysis, greater subchondral bone thickness at the fracture site and higher second moment of inertia in the metacarpal midshaft as identified with high-resolution 3D imaging. Cross-sectional study using cadaver material. Thoroughbreds that died on racetracks were grouped as: 1) horses with third metacarpal (McIII) fractures with a condylar component (cases, n = 13); 2) horses with no limb fracture (controls, n = 8); 3) horses with fractures in other bones or suspensory apparatus disruption (other fatal injuries, n = 16). The palmar condyles of McIII and the midshaft were examined with high resolution peripheral quantitative computed tomography (HR-pQCT). Statistical analysis included logistic regression and Spearman's correlation. There were no significant differences in BV/TV of distal McIII and second moment of inertia of the midshaft between cases and controls. Epiphyseal bone BV/TV was greater in injured limbs of horses with any fatal limb injury (Groups 1 and 3 combined) compared with controls (odds ratio = 1.20, 95% confidence interval 1.01-1.42, P = 0.034). An epiphyseal BV/TV>0.742 resulted in a sensitivity of 82.8% and specificity of 62.5% in identifying horses with fatal limb injury. In horses without condylar fracture, increased subchondral bone thickness was associated with palmar osteochondral disease lesions in the adjacent condyle (rs = 0.65, Phorses at risk of any fatal breakdown injury but not metacarpal condylar fractures. Measurement of parasagittal groove subchondral bone thickness is complicated by adjacent palmar osteochondral disease lesions. Thus, high-resolution imaging of the distal metacarpus appears to have limited

  18. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements

    DEFF Research Database (Denmark)

    Rowlands, D. D.; Luthcke, S. B.; Klosko, S. M.

    2005-01-01

    resolution. Using 4° × 4° blocks at 10-day intervals, we estimate the mass of surplus or deficit water over a 52° × 60° grid centered on the Amazon basin for July 2003. We demonstrate that the recovered signals are coherent and correlate well with the expected hydrological signal....... the estimation of static monthly parameters. Through an analysis of the GRACE data residuals, we show that the fundamental temporal and spatial resolution of the GRACE data is 10 days and 400 km. We present an approach similar in concept to altimetric methods that recovers submonthly mass flux at a high spatial...

  19. Massive Cerebrospinal Fluid Leak of the Temporal Bone

    Directory of Open Access Journals (Sweden)

    Giannicola Iannella

    2016-01-01

    Full Text Available Cerebrospinal fluid (CSF leakage of the temporal bone region is defined as abnormal communications between the subarachnoidal space and the air-containing spaces of the temporal bone. CSF leak remains one of the most frequent complications after VS surgery. Radiotherapy is considered a predisposing factor for development of temporal bone CSF leak because it may impair dural repair mechanisms, thus causing inadequate dural sealing. The authors describe the case of a 47-year-old man with a massive effusion of CSF which extended from the posterior and lateral skull base to the first cervical vertebrae; this complication appeared after a partial enucleation of a vestibular schwannoma (VS with subsequent radiation treatment and second operation with total VS resection.

  20. CT features of fibrous dysplasia of the temporal bone

    International Nuclear Information System (INIS)

    Charrada-Ben Farhat, L.; Bourkhis, S.; Ben Yaacoub, I.; Dali, N.; Askri, A.; Hendaoui, L.

    2006-01-01

    Fibrous dysplasia is characterized by a progressive replacement of normal bone elements by fibrous tissue. The temporal bone is rarely involved. In this location, complications such as facial deformity, conductive hearing loss and facial peripheral neural involvement can occur. Positive diagnosis can be established with computerized tomography which also enables assessment of extension and detection of complications. We report a case of a 27-year-old man with extensive fibrous dysplasia of the right temporal bone presenting with conductive hearing loss secondary to progressive stenosis of the external auditory canal. Computerized tomography of the temporal region was performed. (authors)

  1. Image Fusion-Based Land Cover Change Detection Using Multi-Temporal High-Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Biao Wang

    2017-08-01

    Full Text Available Change detection is usually treated as a problem of explicitly detecting land cover transitions in satellite images obtained at different times, and helps with emergency response and government management. This study presents an unsupervised change detection method based on the image fusion of multi-temporal images. The main objective of this study is to improve the accuracy of unsupervised change detection from high-resolution multi-temporal images. Our method effectively reduces change detection errors, since spatial displacement and spectral differences between multi-temporal images are evaluated. To this end, a total of four cross-fused images are generated with multi-temporal images, and the iteratively reweighted multivariate alteration detection (IR-MAD method—a measure for the spectral distortion of change information—is applied to the fused images. In this experiment, the land cover change maps were extracted using multi-temporal IKONOS-2, WorldView-3, and GF-1 satellite images. The effectiveness of the proposed method compared with other unsupervised change detection methods is demonstrated through experimentation. The proposed method achieved an overall accuracy of 80.51% and 97.87% for cases 1 and 2, respectively. Moreover, the proposed method performed better when differentiating the water area from the vegetation area compared to the existing change detection methods. Although the water area beneath moderate and sparse vegetation canopy was captured, vegetation cover and paved regions of the water body were the main sources of omission error, and commission errors occurred primarily in pixels of mixed land use and along the water body edge. Nevertheless, the proposed method, in conjunction with high-resolution satellite imagery, offers a robust and flexible approach to land cover change mapping that requires no ancillary data for rapid implementation.

  2. Cranial base morphology and temporal bone pneumatization in Asian Homo erectus.

    Science.gov (United States)

    Balzeau, Antoine; Grimaud-Hervé, Dominique

    2006-10-01

    The external morphological features of the temporal bone are used frequently to determine taxonomic affinities of fossils of the genus Homo. Temporal bone pneumatization has been widely studied in great apes and in early hominids. However, this feature is rarely examined in the later hominids, particularly in Asian Homo erectus. We provide a comparative morphological and quantitative analysis of Asian Homo erectus from the sites of Ngandong, Sambungmacan, and Zhoukoudian, and of Neandertals and anatomically modern Homo sapiens in order to discuss causes and modalities of temporal bone pneumatization during hominid evolution. The evolution of temporal bone pneumatization in the genus Homo is more complex than previously described. Indeed, the Zhoukoudian fossils have a unique pattern of temporal bone pneumatization, whereas Ngandong and Sambungmacan fossils, as well as the Neandertals, more closely resemble the modern human pattern. Moreover, these Chinese fossils are characterized by a wide midvault and a relatively narrow occipital bone. Our results support the point of view that cell development does not play an active role in determining cranial base morphology. Instead, pneumatization is related to available space and to temporal bone morphology, and its development is related to correlated morphology and the relative disposition of the bones and cerebral lobes. Because variation in pneumatization is extensive within the same species, the phyletic implications of pneumatization are limited in the taxa considered here.

  3. Evaluation of CT-scanning of the temporal bone in the diagnosis of ear diseases

    International Nuclear Information System (INIS)

    Murata, Kiyotaka; Isono, Michio; Nishimae, Tadahide; Tamaki, Katsuhiko; Hosoi, Hiroshi; Ohta, Fumihiko

    1983-01-01

    CT-scanning of 96 temporal bones was carried out to reveal the extension of cholesteatoma, periossicular drainage, fracture lines, enlarged internal acoustic meatus and anomalies of labyrinthine capsules and ossicles. The clinical aspects of CT-scanning of the temporal bone (CTTB) were as follows: 1) Inner ear anomalies were observed in 17 temporal bones of unilateral deafness, high tone loss from unknown origin and fluctuant hearing loss. CTTB may explain the pathology of deafness from unknown origin. 2) Inner ear anomalies may be classified into more detailed groups than before. 3) The extension of cholesteatoma, localization and size of labyrinthine fistula can be estimated prior to surgery. 4) Cholesteatoma in a mastoidectomy cavity may be detected. 5) The malleus and incus may be visualized, although the stapes can hardly be found. 6) Fracture lines of a temporal bone, destruction of the internal acoustic meatus may be clearly detected. (author)

  4. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.

    Science.gov (United States)

    Maynard, Jonathan J; Karl, Jason W

    2017-01-01

    Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral 'fingerprint' of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites

  5. A case of osteoradionecrosis of the temporal bone

    International Nuclear Information System (INIS)

    Okuno, Hideji; Saito, Yozo; Katori, Kimiaki; Hata, Yuko

    1983-01-01

    A case of osteoradionecrosis of the temporal bone was described. The patient had received radiotherapy for her nasopharyngeal cancer. Her symptoms of osteoradionecrosis of the temporal bone, otorrhea and earache, first appeared 5 years after her radiotherapy. Since then, conservative therapy was continued for 5 years, but her symptoms were not controlled with it. Ten years after her radiotherapy, the symptoms worsened rapidly, and the pain became intolerable, which necessitated mastoidectomy. After this surgery, she was free of symptoms until now. Based on this case, we discussed the pathologic, diagnostic and therapeutic aspects of osteoradionecrosis of the temporal bone. Emphasis was placed on the possibility of the occurence of this pathologic condition among all the patients who have received radiotherapy for malignant tumors of the head and neck or brain. (author)

  6. Experimental studies of the visualisation of spongious bone by high resolution computed tomography

    International Nuclear Information System (INIS)

    Henschel, M.G.; Freyschmidt, J.; Holland, B.R.

    1995-01-01

    18 native human lumbar vertebrae were placed in a water phantom and examined by HR-CT. The scans were compared with contact radiographs of correlating thin bone sections by morphologic criteria. The measured lower limit of visualisation of cancellous bone structures is celarly worse than expected from the measurements of spatial resolution with standard phantoms used for HR-CT (0.6 versus 0.4 mm). True and exact imaging of normal cancellous bone cannot be achieved even by modern HR-CT. Noise creates structures mimicking cancellous bone. (orig./MG) [de

  7. Erythrocyte orientation and lung conductivity analysis with a high temporal resolution FEM model for bioimpedance measurements

    NARCIS (Netherlands)

    Ulbrich, M.; Paluchowski, P.; Muehlsteff, J.; Leonhardt, S.

    2012-01-01

    Impedance cardiography (ICG) is a simple and cheap method to acquirehemodynamic parameters. In this work, the influence of three dynamic physiological sources has been analyzed using a model of the humanthorax with a high temporal resolution. Therefore, simulations havebeen conducted using the

  8. Temporal Bone Osteomyelitis: The Relationship with Malignant Otitis Externa, the Diagnostic Dilemma, and Changing Trends

    Directory of Open Access Journals (Sweden)

    Jia-Cheng Chen

    2014-01-01

    Full Text Available Fifty-five patients hospitalized for osteomyelitis of the temporal bone between 1990 and 2011 were divided into two study groups: group 1 was patients collected from 1990 to 2001 and group 2 was composed of patients between 2002 and 2011. Clinical diagnostic criteria and epidemiologic data were analyzed to illustrate the altering features of osteomyelitis of the temporal bone. Group 1 patients were characterized by high prevalence of diabetes and more commonly suffered from otalgia, otitis externa and granulation tissue in the external auditory canal and higher positive culture for Pseudomonas aeruginosa. Noticeable changing trends were found between both groups, including declining prevalence of diabetes, fewer patients complaining of pain or presenting with otitis externa, and canal granulation, and increased variety of pathogens in group 2. We should highlight the index of clinical suspicion for osteomyelitis of the temporal bone, even in nondiabetic or immunocompetent patients. Painless otorrhea patients were also at risk of osteomyelitis of the temporal bone, especially patients with previous otologic operation. Increased multiplicity of pathogens amplified the difficulty of diagnosis for osteomyelitis of the temporal bone.

  9. Quantitative measurement of zinc secretion from pancreatic islets with high temporal resolution using droplet-based microfluidics.

    Science.gov (United States)

    Easley, Christopher J; Rocheleau, Jonathan V; Head, W Steven; Piston, David W

    2009-11-01

    We assayed glucose-stimulated insulin secretion (GSIS) from live, murine islets of Langerhans in microfluidic devices by the downstream formation of aqueous droplets. Zinc ions, which are cosecreted with insulin from beta-cells, were quantitatively measured from single islets with high temporal resolution using a fluorescent indicator, FluoZin-3. Real-time storage of secretions into droplets (volume of 0.470 +/- 0.009 nL) effectively preserves the temporal chemical information, allowing reconstruction of the secretory time record. The use of passive flow control within the device removes the need for syringe pumps, requiring only a single hand-held syringe. Under stimulatory glucose levels (11 mM), bursts of zinc as high as approximately 800 fg islet(-1) min(-1) were measured. Treatment with diazoxide effectively blocked zinc secretion, as expected. High temporal resolution reveals two major classes of oscillations in secreted zinc, with predominate periods at approximately 20-40 s and approximately 5-10 min. The more rapid oscillation periods match closely with those of intraislet calcium oscillations, while the slower oscillations are consistent with insulin pulses typically measured in bulk islet experiments or in the bloodstream. This droplet sampling technique should be widely applicable to time-resolved cellular secretion measurements, either in real-time or for postprocessing.

  10. Downscaling of coarse resolution LAI products to achieve both high spatial and temporal resolution for regions of interest

    KAUST Repository

    Houborg, Rasmus; McCabe, Matthew; Gao, Feng

    2015-01-01

    This paper presents a flexible tool for spatio-temporal enhancement of coarse resolution leaf area index (LAI) products, which is readily adaptable to different land cover types, landscape heterogeneities and cloud cover conditions. The framework integrates a rule-based regression tree approach for estimating Landsat-scale LAI from existing 1 km resolution LAI products, and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to intelligently interpolate the downscaled LAI between Landsat acquisitions. Comparisons against in-situ records of LAI measured over corn and soybean highlights its utility for resolving sub-field LAI dynamics occurring over a range of plant development stages.

  11. Downscaling of coarse resolution LAI products to achieve both high spatial and temporal resolution for regions of interest

    KAUST Repository

    Houborg, Rasmus

    2015-11-12

    This paper presents a flexible tool for spatio-temporal enhancement of coarse resolution leaf area index (LAI) products, which is readily adaptable to different land cover types, landscape heterogeneities and cloud cover conditions. The framework integrates a rule-based regression tree approach for estimating Landsat-scale LAI from existing 1 km resolution LAI products, and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to intelligently interpolate the downscaled LAI between Landsat acquisitions. Comparisons against in-situ records of LAI measured over corn and soybean highlights its utility for resolving sub-field LAI dynamics occurring over a range of plant development stages.

  12. CT and MRI findings of temporal bone anomaly in patients with tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Bing, Wang; Junfang, Xian; Zhenchang, Wang; Zhaohui, Liu [Department of Radiology, Beijing Tongren Hospital, Capital Medical University (China)

    2011-03-15

    Objective: To study high resolution CT (HRCT) and MRI findings of temporal hone anomaly in patients with tinnitus and identify the optimal examination method in the detection of the anomaly. Methods: The HRCT and MRI data were analyzed retrospectively in 1015 patients including 145 patients with pulsatile tinnitus (PT) and 870 patients with nonpulsatile tinnitus (NPT). The positive rates of HRCT and MRI in the identification of temporal bone anomaly were analyzed and the efficiency of various examination methods was compared in revealing the anomaly. Data were tested by Chi-square test analysis. Results: Among 1015 patients, anomaly was seen in 767 cases (75.57%). High jugular bulb was found in 414 patients, accounting for 40.79%. Sigmoid sinus anomaly was detected in 387 patients (38.13%), while otitis media was found in 148 cases (14.58%), and low middle cranial fossa in 70 cases (6.90%). The positive rate of HRCT in the detection of high jugular bulb was 54.89% (365/665), which was significantly higher than those of other methods (P<0.05). The positive rate of enhanced HRCT in showing sigmoid sinus anomaly was 73.68% (56/76), which was significantly higher than those of other methods (P<0.05). Sigmoid sinus anomaly was the most frequent finding in patients with PT, accounting for 66.21% (96/145). The incidence of sigmoid sinus anomaly was higher in PT than in NPT (291/870, 33.45%; χ{sup 2}=56.537, P<0.01). The fast imaging employing steady-state acquisition (FIESTA) sequence was the best examination method in displaying the vessel within the internal auditory canal (42/42,100%). Conclusions: High jugular bulb and sigmoid sinus anomaly were the most frequent abnormal findings of temporal bone in patients with tinnitus. Enhanced HRCT was the choice of modality in patients with PT. Plain HRCT was recommended for NPT. FIESTA sequence was the best in the evaluation of the vessel within the internal auditory canal. (authors)

  13. High resolution X-ray imaging of bone-implant interface by large area flat-panel detector

    International Nuclear Information System (INIS)

    Kytyr, D; Jirousek, O; Dammer, J

    2011-01-01

    The aim of the research was to investigate the cemented bone-implant interface behavior (cement layer degradation and bone-cement interface debonding) with emphasis on imaging techniques suitable to detect the early defects in the cement layer. To simulate in vivo conditions a human pelvic bone was implanted with polyurethane acetabular cup using commercial acrylic bone cement. The implanted cup was then loaded in a custom hip simulator to initiate fatigue crack propagation in the bone cement. The pelvic bone was then repetitively scanned in a micro-tomography device. Reconstructed tomography images showed failure processes that occurred in the cement layer during the first 250,000 cycles. A failure in cemented acetabular implant - debonding, crumbling and smeared cracks - has been found to be at the bone-cement interface. Use of micro-focus source and high resolution flat panel detector of large physical dimensions allowed to reconstruct the micro-structural models suitable for investigation of migration, micro-motions and consecutive loosening of the implant. The large area flat panel detector with physical dimensions 120 x 120mm with 50μm pixel size provided a superior image quality compared to clinical CT systems with 300-150μm pixel size.

  14. A Numerical Method to Generate High Temporal Resolution Precipitation Time Series by Combining Weather Radar Measurements with a Nowcast Model

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    The topic of this paper is temporal interpolation of precipitation observed by weather radars. Precipitation measurements with high spatial and temporal resolution are, in general, desired for urban drainage applications. An advection-based interpolation method is developed which uses methods...

  15. Geo-Parcel Based Crop Identification by Integrating High Spatial-Temporal Resolution Imagery from Multi-Source Satellite Data

    Directory of Open Access Journals (Sweden)

    Yingpin Yang

    2017-12-01

    Full Text Available Geo-parcel based crop identification plays an important role in precision agriculture. It meets the needs of refined farmland management. This study presents an improved identification procedure for geo-parcel based crop identification by combining fine-resolution images and multi-source medium-resolution images. GF-2 images with fine spatial resolution of 0.8 m provided agricultural farming plot boundaries, and GF-1 (16 m and Landsat 8 OLI data were used to transform the geo-parcel based enhanced vegetation index (EVI time-series. In this study, we propose a piecewise EVI time-series smoothing method to fit irregular time profiles, especially for crop rotation situations. Global EVI time-series were divided into several temporal segments, from which phenological metrics could be derived. This method was applied to Lixian, where crop rotation was the common practice of growing different types of crops, in the same plot, in sequenced seasons. After collection of phenological features and multi-temporal spectral information, Random Forest (RF was performed to classify crop types, and the overall accuracy was 93.27%. Moreover, an analysis of feature significance showed that phenological features were of greater importance for distinguishing agricultural land cover compared to temporal spectral information. The identification results indicated that the integration of high spatial-temporal resolution imagery is promising for geo-parcel based crop identification and that the newly proposed smoothing method is effective.

  16. High-resolution space-time characterization of convective rain cells: implications on spatial aggregation and temporal sampling operated by coarser resolution instruments

    Science.gov (United States)

    Marra, Francesco; Morin, Efrat

    2017-04-01

    Forecasting the occurrence of flash floods and debris flows is fundamental to save lives and protect infrastructures and properties. These natural hazards are generated by high-intensity convective storms, on space-time scales that cannot be properly monitored by conventional instrumentation. Consequently, a number of early-warning systems are nowadays based on remote sensing precipitation observations, e.g. from weather radars or satellites, that proved effective in a wide range of situations. However, the uncertainty affecting rainfall estimates represents an important issue undermining the operational use of early-warning systems. The uncertainty related to remote sensing estimates results from (a) an instrumental component, intrinsic of the measurement operation, and (b) a discretization component, caused by the discretization of the continuous rainfall process. Improved understanding on these sources of uncertainty will provide crucial information to modelers and decision makers. This study aims at advancing knowledge on the (b) discretization component. To do so, we take advantage of an extremely-high resolution X-Band weather radar (60 m, 1 min) recently installed in the Eastern Mediterranean. The instrument monitors a semiarid to arid transition area also covered by an accurate C-Band weather radar and by a relatively sparse rain gauge network ( 1 gauge/ 450 km2). Radar quantitative precipitation estimation includes corrections reducing the errors due to ground echoes, orographic beam blockage and attenuation of the signal in heavy rain. Intense, convection-rich, flooding events recently occurred in the area serve as study cases. We (i) describe with very high detail the spatiotemporal characteristics of the convective cores, and (ii) quantify the uncertainty due to spatial aggregation (spatial discretization) and temporal sampling (temporal discretization) operated by coarser resolution remote sensing instruments. We show that instantaneous rain intensity

  17. DIfferential Subsampling with Cartesian Ordering (DISCO): a high spatio-temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging.

    Science.gov (United States)

    Saranathan, Manojkumar; Rettmann, Dan W; Hargreaves, Brian A; Clarke, Sharon E; Vasanawala, Shreyas S

    2012-06-01

    To develop and evaluate a multiphasic contrast-enhanced MRI method called DIfferential Sub-sampling with Cartesian Ordering (DISCO) for abdominal imaging. A three-dimensional, variable density pseudo-random k-space segmentation scheme was developed and combined with a Dixon-based fat-water separation algorithm to generate high temporal resolution images with robust fat suppression and without compromise in spatial resolution or coverage. With institutional review board approval and informed consent, 11 consecutive patients referred for abdominal MRI at 3 Tesla (T) were imaged with both DISCO and a routine clinical three-dimensional SPGR-Dixon (LAVA FLEX) sequence. All images were graded by two radiologists using quality of fat suppression, severity of artifacts, and overall image quality as scoring criteria. For assessment of arterial phase capture efficiency, the number of temporal phases with angiographic phase and hepatic arterial phase was recorded. There were no significant differences in quality of fat suppression, artifact severity or overall image quality between DISCO and LAVA FLEX images (P > 0.05, Wilcoxon signed rank test). The angiographic and arterial phases were captured in all 11 patients scanned using the DISCO acquisition (mean number of phases were two and three, respectively). DISCO effectively captures the fast dynamics of abdominal pathology such as hyperenhancing hepatic lesions with a high spatio-temporal resolution. Typically, 1.1 × 1.5 × 3 mm spatial resolution over 60 slices was achieved with a temporal resolution of 4-5 s. Copyright © 2012 Wiley Periodicals, Inc.

  18. An Improved Method for Producing High Spatial-Resolution NDVI Time Series Datasets with Multi-Temporal MODIS NDVI Data and Landsat TM/ETM+ Images

    OpenAIRE

    Rao, Yuhan; Zhu, Xiaolin; Chen, Jin; Wang, Jianmin

    2015-01-01

    Due to technical limitations, it is impossible to have high resolution in both spatial and temporal dimensions for current NDVI datasets. Therefore, several methods are developed to produce high resolution (spatial and temporal) NDVI time-series datasets, which face some limitations including high computation loads and unreasonable assumptions. In this study, an unmixing-based method, NDVI Linear Mixing Growth Model (NDVI-LMGM), is proposed to achieve the goal of accurately and efficiently bl...

  19. High temporal resolution magnetic resonance imaging: development of a parallel three dimensional acquisition method for functional neuroimaging

    International Nuclear Information System (INIS)

    Rabrait, C.

    2007-11-01

    Echo Planar Imaging is widely used to perform data acquisition in functional neuroimaging. This sequence allows the acquisition of a set of about 30 slices, covering the whole brain, at a spatial resolution ranging from 2 to 4 mm, and a temporal resolution ranging from 1 to 2 s. It is thus well adapted to the mapping of activated brain areas but does not allow precise study of the brain dynamics. Moreover, temporal interpolation is needed in order to correct for inter-slices delays and 2-dimensional acquisition is subject to vascular in flow artifacts. To improve the estimation of the hemodynamic response functions associated with activation, this thesis aimed at developing a 3-dimensional high temporal resolution acquisition method. To do so, Echo Volume Imaging was combined with reduced field-of-view acquisition and parallel imaging. Indeed, E.V.I. allows the acquisition of a whole volume in Fourier space following a single excitation, but it requires very long echo trains. Parallel imaging and field-of-view reduction are used to reduce the echo train durations by a factor of 4, which allows the acquisition of a 3-dimensional brain volume with limited susceptibility-induced distortions and signal losses, in 200 ms. All imaging parameters have been optimized in order to reduce echo train durations and to maximize S.N.R., so that cerebral activation can be detected with a high level of confidence. Robust detection of brain activation was demonstrated with both visual and auditory paradigms. High temporal resolution hemodynamic response functions could be estimated through selective averaging of the response to the different trials of the stimulation. To further improve S.N.R., the matrix inversions required in parallel reconstruction were regularized, and the impact of the level of regularization on activation detection was investigated. Eventually, potential applications of parallel E.V.I. such as the study of non-stationary effects in the B.O.L.D. response

  20. Diagnosis of hearing impairment by high resolution CT scanning of inner ear anomalies

    International Nuclear Information System (INIS)

    Murata, Kiyotaka; Isono, Michio; Ohta, Fumihiko

    1988-01-01

    High resolution CT scanning of the temporal bone in our clinic has provided a more detailed radiological classification of inner ear anomalies than before. The statistical analysis of inner ear malformations based on the theory of quantification II has produced discriminant equations for the measurable diagnosis of hearing impairment and development of the inner ear. This analysis may make it possible to diagnose total and partial deafness on ipsi- and contralateral sides. (author)

  1. Temporal bone radiography using the orthopantomograph

    International Nuclear Information System (INIS)

    Tatezawa, T.

    1981-01-01

    Temporal bone radiographs obtained with an Orthopantomograph were compared with conventional radiographs. In acoustic neurinoma, cholesteatoma, otitis media, and middle fossa tumors, both methods demonstrated the abnormalities well. In two cases with lesions extending beyond the range of conventional projections, the broad orthopantomographic coverage was very valuable. Mastoid air cells, the mastoid process, petrous ridge, and internal auditory meatus were well demonstrated by both techniques. Orthopantomography was found to be superior in the demonstration of the petrous apex, while the superior semicircular canal was better demonstrated on the conventional views. Bilateral symmetry was particularly good and because of fewer films, radiation exposure was considerably less with orthopantomography. For many applications, orthopantomography is an adequate convenient substitute for conventional methods of examining the temporal bones

  2. Higher Resolution and Faster MRI of 31Phosphorus in Bone

    Science.gov (United States)

    Frey, Merideth; Barrett, Sean; Sethna, Zachary; Insogna, Karl; Vanhouten, Joshua

    2013-03-01

    Probing the internal composition of bone on the sub-100 μm length scale is important to study normal features and to look for signs of disease. However, few useful non-destructive techniques are available to evaluate changes in the bone mineral chemical structure and functional micro-architecture on the interior of bones. MRI would be an excellent candidate, but bone is a particularly challenging tissue to study given the relatively low water density, wider linewidths of its solid components leading to low spatial resolution, and the long imaging time compared to conventional 1H MRI. Our lab has recently made advances in obtaining high spatial resolution (sub-400 μm)3 three-dimensional 31Phosphorus MRI of bone through use of the quadratic echo line-narrowing sequence (1). In this talk, we describe our current results using proton decoupling to push this technique even further towards the factor of 1000 increase in spatial resolution imposed by fundamental limits. We also discuss our work to speed up imaging through novel, faster reconstruction algorithms that can reconstruct the desired image from very sparse data sets. (1) M. Frey, et al. PNAS 109: 5190 (2012).

  3. High spatial and temporal resolution interrogation of fully distributed chirped fiber Bragg grating sensors

    OpenAIRE

    Ahmad, Eamonn J.; Wang, Chao; Feng, Dejun; Yan, Zhijun; Zhang, Lin

    2017-01-01

    A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are...

  4. MRI of the hip at 7T: feasibility of bone microarchitecture, high-resolution cartilage, and clinical imaging.

    Science.gov (United States)

    Chang, Gregory; Deniz, Cem M; Honig, Stephen; Egol, Kenneth; Regatte, Ravinder R; Zhu, Yudong; Sodickson, Daniel K; Brown, Ryan

    2014-06-01

    To demonstrate the feasibility of performing bone microarchitecture, high-resolution cartilage, and clinical imaging of the hip at 7T. This study had Institutional Review Board approval. Using an 8-channel coil constructed in-house, we imaged the hips of 15 subjects on a 7T magnetic resonance imaging (MRI) scanner. We applied: 1) a T1-weighted 3D fast low angle shot (3D FLASH) sequence (0.23 × 0.23 × 1-1.5 mm(3) ) for bone microarchitecture imaging; 2) T1-weighted 3D FLASH (water excitation) and volumetric interpolated breath-hold examination (VIBE) sequences (0.23 × 0.23 × 1.5 mm(3) ) with saturation or inversion recovery-based fat suppression for cartilage imaging; 3) 2D intermediate-weighted fast spin-echo (FSE) sequences without and with fat saturation (0.27 × 0.27 × 2 mm) for clinical imaging. Bone microarchitecture images allowed visualization of individual trabeculae within the proximal femur. Cartilage was well visualized and fat was well suppressed on FLASH and VIBE sequences. FSE sequences allowed visualization of cartilage, the labrum (including cartilage and labral pathology), joint capsule, and tendons. This is the first study to demonstrate the feasibility of performing a clinically comprehensive hip MRI protocol at 7T, including high-resolution imaging of bone microarchitecture and cartilage, as well as clinical imaging. Copyright © 2013 Wiley Periodicals, Inc.

  5. Calibrating a numerical model's morphology using high-resolution spatial and temporal datasets from multithread channel flume experiments.

    Science.gov (United States)

    Javernick, L.; Bertoldi, W.; Redolfi, M.

    2017-12-01

    Accessing or acquiring high quality, low-cost topographic data has never been easier due to recent developments of the photogrammetric techniques of Structure-from-Motion (SfM). Researchers can acquire the necessary SfM imagery with various platforms, with the ability to capture millimetre resolution and accuracy, or large-scale areas with the help of unmanned platforms. Such datasets in combination with numerical modelling have opened up new opportunities to study river environments physical and ecological relationships. While numerical models overall predictive accuracy is most influenced by topography, proper model calibration requires hydraulic data and morphological data; however, rich hydraulic and morphological datasets remain scarce. This lack in field and laboratory data has limited model advancement through the inability to properly calibrate, assess sensitivity, and validate the models performance. However, new time-lapse imagery techniques have shown success in identifying instantaneous sediment transport in flume experiments and their ability to improve hydraulic model calibration. With new capabilities to capture high resolution spatial and temporal datasets of flume experiments, there is a need to further assess model performance. To address this demand, this research used braided river flume experiments and captured time-lapse observed sediment transport and repeat SfM elevation surveys to provide unprecedented spatial and temporal datasets. Through newly created metrics that quantified observed and modeled activation, deactivation, and bank erosion rates, the numerical model Delft3d was calibrated. This increased temporal data of both high-resolution time series and long-term temporal coverage provided significantly improved calibration routines that refined calibration parameterization. Model results show that there is a trade-off between achieving quantitative statistical and qualitative morphological representations. Specifically, statistical

  6. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  7. Giant osteoblastoma of temporal bone: case report

    Directory of Open Access Journals (Sweden)

    FIGUEIREDO EBERVAL GADELHA

    1998-01-01

    Full Text Available Benign osteoblastoma is an uncommon bone tumor accounting for approximately 1% of all bone tumors. There are only 35 cases of skull osteoblastoma reported in the literature. We describe the case of a 23 year old male with a giant osteoblastoma of temporal bone submitted to a total removal of the tumor after an effective embolization of all external carotid branches. The authors discuss diagnostic and management aspects of this uncommon skull tumor.

  8. Imaging cortical activity following affective stimulation with a high temporal and spatial resolution

    Directory of Open Access Journals (Sweden)

    Catani Claudia

    2009-07-01

    Full Text Available Abstract Background The affective and motivational relevance of a stimulus has a distinct impact on cortical processing, particularly in sensory areas. However, the spatial and temporal dynamics of this affective modulation of brain activities remains unclear. The purpose of the present study was the development of a paradigm to investigate the affective modulation of cortical networks with a high temporal and spatial resolution. We assessed cortical activity with MEG using a visual steady-state paradigm with affective pictures. A combination of a complex demodulation procedure with a minimum norm estimation was applied to assess the temporal variation of the topography of cortical activity. Results Statistical permutation analyses of the results of the complex demodulation procedure revealed increased steady-state visual evoked field amplitudes over occipital areas following presentation of affective pictures compared to neutral pictures. This differentiation shifted in the time course from occipital regions to parietal and temporal regions. Conclusion It can be shown that stimulation with affective pictures leads to an enhanced activity in occipital region as compared to neutral pictures. However, the focus of differentiation is not stable over time but shifts into temporal and parietal regions within four seconds of stimulation. Thus, it can be crucial to carefully choose regions of interests and time intervals when analyzing the affective modulation of cortical activity.

  9. Cerebrospinal otorrhoea--a temporal bone report.

    Science.gov (United States)

    Walby, A P

    1988-05-01

    Spontaneous cerebrospinal otorrhoea is a rare complication of a cholesteatoma. The histological findings in a temporal bone from such a case are reported. The cholesteatoma had eroded deeply through the vestibule into the internal auditory meatus.

  10. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures.

    Science.gov (United States)

    Pakdel, Amirreza; Fialkov, Jeffrey; Whyne, Cari M

    2016-06-14

    Accurate finite element (FE) modeling of complex skeletal anatomy requires high resolution in both meshing and the heterogeneous mapping of material properties onto the generated mesh. This study introduces Node-based elastic Modulus Assignment with Partial-volume correction (NMAP) as a new approach for FE material property assignment to thin bone structures. The NMAP approach incorporates point spread function based deblurring of CT images, partial-volume correction of CT image voxel intensities and anisotropic interpolation and mapping of CT intensity assignment to FE mesh nodes. The NMAP procedure combined with a derived craniomaxillo-facial skeleton (CMFS) specific density-isotropic elastic modulus relationship was applied to produce specimen-specific FE models of 6 cadaveric heads. The NMAP procedure successfully generated models of the complex thin bone structures with surface elastic moduli reflective of cortical bone material properties. The specimen-specific CMFS FE models were able to accurately predict experimental strains measured under in vitro temporalis and masseter muscle loading (r=0.93, slope=1.01, n=5). The strength of this correlation represents a robust validation for CMFS FE modeling that can be used to better understand load transfer in this complex musculoskeletal system. The developed methodology offers a systematic process-flow able to address the complexity of the CMFS that can be further applied to create high-fidelity models of any musculoskeletal anatomy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Content Validity of Temporal Bone Models Printed Via Inexpensive Methods and Materials.

    Science.gov (United States)

    Bone, T Michael; Mowry, Sarah E

    2016-09-01

    Computed tomographic (CT) scans of the 3-D printed temporal bone models will be within 15% accuracy of the CT scans of the cadaveric temporal bones. Previous studies have evaluated the face validity of 3-D-printed temporal bone models designed to train otolaryngology residents. The purpose of the study was to determine the content validity of temporal bone models printed using inexpensive printers and materials. Four cadaveric temporal bones were randomly selected and clinical temporal bone CT scans were obtained. Models were generated using previously described methods in acrylonitrile butadiene styrene (ABS) plastic using the Makerbot Replicator 2× and Hyrel printers. Models were radiographically scanned using the same protocol as the cadaveric bones. Four images from each cadaveric CT series and four corresponding images from the model CT series were selected, and voxel values were normalized to black or white. Scan slices were compared using PixelDiff software. Gross anatomic structures were evaluated in the model scans by four board certified otolaryngologists on a 4-point scale. Mean pixel difference between the cadaver and model scans was 14.25 ± 2.30% at the four selected CT slices. Mean cortical bone width difference and mean external auditory canal width difference were 0.58 ± 0.66 mm and 0.55 ± 0.46 mm, respectively. Expert raters felt the mastoid air cells were well represented (2.5 ± 0.5), while middle ear and otic capsule structures were not accurately rendered (all averaged bones for training residents in cortical mastoidectomies, but less effective for middle ear procedures.

  12. High-resolution axial MR imaging of tibial stress injuries

    Directory of Open Access Journals (Sweden)

    Mammoto Takeo

    2012-05-01

    Full Text Available Abstract Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries.

  13. High-resolution axial MR imaging of tibial stress injuries

    Science.gov (United States)

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  14. A case of a temporal bone meningioma presenting as a serous otitis media

    International Nuclear Information System (INIS)

    Nicolay, Simon; De Foer, Bert; Bernaerts, Anja; Van Dinther, Joost; Parizel, Paul M

    2014-01-01

    We report the imaging features of a case of a temporal bone meningioma extending into the middle ear cavity and clinically presenting as a serous otitis media. Temporal bone meningioma extending in the mastoid or the middle ear cavity, however, is very rare. In case of unexplained or therapy-resistant serous otitis media and a nasopharyngeal tumor being ruled out, a temporal bone computed tomography (CT) should be performed. If CT findings are suggestive of a temporal bone meningioma, a magnetic resonance imaging (MRI) examination with gadolinium will confirm diagnosis and show the exact extension of the lesion

  15. [A temporal bone CT study of the infants with hearing loss referred from universal newborn hearing screening].

    Science.gov (United States)

    Tao, Zheng; Li, Yun; Hou, Zheng; Cheng, Lan

    2007-02-01

    To explore the high resolution CT image of temporal bone in infants with hearing loss, and its value in evaluating the cause of hearing loss. In 2005, 0.12 million newborns have been included in the hearing screening system in Shanghai, and 1077 infants have failed to pass the hearing screening. One hundred and eight four infants were diagnosed as congenital hearing loss from mild to profound. A temporal bone HRCT scanning was performed to these infants. Among the 184 patients with congenital hearing loss, HRCT showed that 26 cases (14.1%) were associated with external ear malformation, and 21 cases (11.4%) were associated with middle ear malformation, 31 cases (16.8%) associated with inner ear malformation. The patients with inner ear malformation included 12 cases with Mondini malformation, 1 case with common cavity malformation, 6 cases with large vestibule malformation, 5 cases with internal auditory canal abnormalities, and 10 cases with vestibule, semicircular canals abnormalities. In addition, there were 20 cases (10.8%) with fluid in middle ear. HRCT image play an important role in the differential diagnosis and treatment of infants with congenital hearing loss.

  16. [Development of biogenic VOC emissions inventory with high temporal and spatial resolution].

    Science.gov (United States)

    Hu, Y; Zhang, Y; Xie, S; Zeng, L

    2001-11-01

    A new method was developed to estimate biogenic VOC emissions with high temporal and spatial resolution by use of Mesoscale Meteorology Modeling System Version5 (MM5). In this method, the isoprene and monoterpene standard emission factors for some types of tree in China were given and the standard VOC emission factors and seasonally average densities of leaf biomass for all types of vegetation were determined. A biogenic VOC emissions inventory in South China was established which could meet the requirement of regional air quality modeling. Total biogenic VOC emissions in a typical summer day were estimated to be 1.12 x 10(4) metric tons in an area of 729 km x 729 km of South China. The results showed the temporal and spatial distributions of biogenic VOC emission rates in this area. The results also showed that the geographical distribution of biogenic VOC emission rates depended on vegetation types and their distributions and the diurnal variation mainly depended on the solar radiation and temperature. The uncertainties of estimating biogenic VOC emissions were also discussed.

  17. An Improved Method for Producing High Spatial-Resolution NDVI Time Series Datasets with Multi-Temporal MODIS NDVI Data and Landsat TM/ETM+ Images

    Directory of Open Access Journals (Sweden)

    Yuhan Rao

    2015-06-01

    Full Text Available Due to technical limitations, it is impossible to have high resolution in both spatial and temporal dimensions for current NDVI datasets. Therefore, several methods are developed to produce high resolution (spatial and temporal NDVI time-series datasets, which face some limitations including high computation loads and unreasonable assumptions. In this study, an unmixing-based method, NDVI Linear Mixing Growth Model (NDVI-LMGM, is proposed to achieve the goal of accurately and efficiently blending MODIS NDVI time-series data and multi-temporal Landsat TM/ETM+ images. This method firstly unmixes the NDVI temporal changes in MODIS time-series to different land cover types and then uses unmixed NDVI temporal changes to predict Landsat-like NDVI dataset. The test over a forest site shows high accuracy (average difference: −0.0070; average absolute difference: 0.0228; and average absolute relative difference: 4.02% and computation efficiency of NDVI-LMGM (31 seconds using a personal computer. Experiments over more complex landscape and long-term time-series demonstrated that NDVI-LMGM performs well in each stage of vegetation growing season and is robust in regions with contrasting spatial and spatial variations. Comparisons between NDVI-LMGM and current methods (i.e., Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM, Enhanced STARFM (ESTARFM and Weighted Linear Model (WLM show that NDVI-LMGM is more accurate and efficient than current methods. The proposed method will benefit land surface process research, which requires a dense NDVI time-series dataset with high spatial resolution.

  18. Large-Area, High-Resolution Tree Cover Mapping with Multi-Temporal SPOT5 Imagery, New South Wales, Australia

    Directory of Open Access Journals (Sweden)

    Adrian Fisher

    2016-06-01

    Full Text Available Tree cover maps are used for many purposes, such as vegetation mapping, habitat connectivity and fragmentation studies. Small remnant patches of native vegetation are recognised as ecologically important, yet they are underestimated in remote sensing products derived from Landsat. High spatial resolution sensors are capable of mapping small patches of trees, but their use in large-area mapping has been limited. In this study, multi-temporal Satellite pour l’Observation de la Terre 5 (SPOT5 High Resolution Geometrical data was pan-sharpened to 5 m resolution and used to map tree cover for the Australian state of New South Wales (NSW, an area of over 800,000 km2. Complete coverages of SPOT5 panchromatic and multispectral data over NSW were acquired during four consecutive summers (2008–2011 for a total of 1256 images. After pre-processing, the imagery was used to model foliage projective cover (FPC, a measure of tree canopy density commonly used in Australia. The multi-temporal imagery, FPC models and 26,579 training pixels were used in a binomial logistic regression model to estimate the probability of each pixel containing trees. The probability images were classified into a binary map of tree cover using local thresholds, and then visually edited to reduce errors. The final tree map was then attributed with the mean FPC value from the multi-temporal imagery. Validation of the binary map based on visually assessed high resolution reference imagery revealed an overall accuracy of 88% (±0.51% standard error, while comparison against airborne lidar derived data also resulted in an overall accuracy of 88%. A preliminary assessment of the FPC map by comparing against 76 field measurements showed a very good agreement (r2 = 0.90 with a root mean square error of 8.57%, although this may not be representative due to the opportunistic sampling design. The map represents a regionally consistent and locally relevant record of tree cover for NSW, and

  19. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers

    Science.gov (United States)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas

    2017-04-01

    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  20. Temporal super resolution using variational methods

    DEFF Research Database (Denmark)

    Keller, Sune Høgild; Lauze, Francois Bernard; Nielsen, Mads

    2010-01-01

    Temporal super resolution (TSR) is the ability to convert video from one frame rate to another and is as such a key functionality in modern video processing systems. A higher frame rate than what is recorded is desired for high frame rate displays, for super slow-motion, and for video/film format...... observed when watching video on large and bright displays where the motion of high contrast edges often seem jerky and unnatural. A novel motion compensated (MC) TSR algorithm using variational methods for both optical flow calculation and the actual new frame interpolation is presented. The flow...

  1. CT of temporal bone - IV. inner ear

    International Nuclear Information System (INIS)

    Kwon, Jae Yoon; Sung, Kyu Bo; Youn, Eun Kyoung; Park, Youn Kyeung; Lee, Young Uk

    1990-01-01

    Temporal bone CT was done in 697 patients from April 1985 to October 1989. The abnormal findings were seen in 453 patients, which were chronic otitis media in 355 patients, fracture in 49 patients and congenital anomaly in 44 patients, etc. The abnormal findings of inner ear were observed on 46 patients. The results were summarized as follows : 1. The incidence of inner ear involvement by chronic otitis media was 7.3% (26/355 : labyrinthine fistula in 17 patients, labyrinthitis ossificans in 9 patients). Labyrinthine fistula was most commonly located on lateral semicircular canal (15/17, 88.2%). 2. Fusion of vestibule with lateral semicircular canal and formation of common cavity was demonstrated incidentally in 5 patients (0.7% of total number of temporal bone CT), and bilateral in 3 patients. 3. The incidence of inner ear anomaly in congenital ear anomaly was 11.4% (5/44). All cases were bilateral and three patients showed associated middle ear anomaly. 4. The incidence of involvement of bony labyrinth in temporal bone fracture was 10.2% (5/49). Labyrinthine fracture was seen all patients of transverse(3) and mixed fracture(1). In longitudinal fracture, labyrinthine fracture was seen in 2.2% (1/45). 5. Others were traumatic labyrinthitis ossificans(1), intracanalicular acoustic neuroma(3) and facial nerve neuroma(1)

  2. High temporal resolution in situ measurement of the effective particle size characteristics of fluvial suspended sediment.

    Science.gov (United States)

    Williams, N D; Walling, D E; Leeks, G J L

    2007-03-01

    This paper reports the use of a LISST-100 device to monitor the effective particle size characteristics of suspended sediment in situ, and at a quasi-continuous temporal resolution. The study site was located on the River Exe at Thorverton, Devon, UK. This device has not previously been utilized in studies of fluvial suspended sediment at the storm event scale, and existing studies of suspended sediment dynamics have not involved such a high temporal resolution for extended periods. An evaluation of the field performance of the instrument is presented, with respect to innovative data collection and analysis techniques. It was found that trends in the effective particle size distribution (EPSD) and degree of flocculation of suspended sediment at the study site were highly complex, and showed significant short-term variability that has not previously been documented in the fluvial environment. The collection of detailed records of EPSD facilitated interpretation of the dynamic evolution of the size characteristics of suspended sediment, in relation to its likely source and delivery and flocculation mechanisms. The influence of measurement frequency is considered in terms of its implications for future studies of the particle size of fluvial suspended sediment employing in situ data acquisition.

  3. Anatomia do osso temporal de ovelhas sob aspectos didáticos Lambs' temporal bone anatomy under didactic aspects

    Directory of Open Access Journals (Sweden)

    André Gurr

    2011-02-01

    Full Text Available É difícil encontrar ossos temporais humanos para o ensino de cirurgia otológica. Ossos temporais de ovelhas podem representar uma possível alternativa. MATERIAIS E MÉTODOS: Os ossos temporais de ovelhas foram dissecados em um programa convencional de dissecação de osso temporal no laboratório. Incluímos mastoidectomia, abordagens endaurais, mas também analisamos a aparência externa, o meato acústico externo e o hipotímpano. Algumas etapas são diferentes das preparações de ossos humanos. Os resultados morfométricos foram comparados à anatomia conhecida de humanos para verificar se o osso temporal de ovelhas seria utilizável para o ensino de cirurgia otológica. RESULTADOS: O osso temporal de ovelhas parece menor do que o humano. Encontramos uma área bolhosa se estendendo ao hipotímpano abaixo do meato acústico externo. A membrana timpânica é muito semelhante à humana. O meato acústico externo é menor e mais curto. A cadeia ossicular exibe analogias para com a humana. DISCUSSÃO: Esse estudo mostra que especificamente o ouvido médio, a membrana timpânica e o conduto auditivo externo são morfologicamente semelhantes às suas contrapartidas encontradas nos ossos temporais humanos. A ovelha parece ser um modelo viável para o ensino da anatomia do ouvido. A menor escala de algumas estruturas, especialmente dos componentes externos do osso temporal representa uma desvantagem. CONCLUSÕES: A ovelha parece representar uma alternativa viável no ensino de cirurgia otológica.Human temporal bones in teaching ear surgery are rare. The lamb's temporal bone might be a possible alternative. MATERIAL AND METHODS: Temporal bones of the lamb were dissected with a typical temporal bone lab drilling program. We included a mastoidectomy, endaural approaches, but also analyzed the outer appearance, the external ear canal and the hypotympanon. Some steps differed from preparation done in humans. The morphometric results were compared to

  4. Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration

    DEFF Research Database (Denmark)

    Neldam, Camilla Albeck; Lauridsen, Torsten; Rack, Alexander

    2015-01-01

    The purpose of this study was to describe a refined method using high-resolution synchrotron radiation microtomography (SRmicro-CT) to evaluate osseointegration and peri-implant bone volume fraction after titanium dental implant insertion. SRmicro-CT is considered gold standard evaluating bone...... microarchitecture. Its high resolution, high contrast, and excellent high signal-to-noise-ratio all contribute to the highest spatial resolutions achievable today. Using SRmicro-CT at a voxel size of 5 μm in an experimental goat mandible model, the peri-implant bone volume fraction was found to quickly increase...

  5. Statistical model estimating the occurrence of otitis media from temporal bone pneumatization

    DEFF Research Database (Denmark)

    Homøe, P; Lynnerup, N; Rasmussen, N

    1994-01-01

    In order to investigate the relationship between the pneumatization of temporal bones and the occurrence of otitis media in Greenlandic Inuit, 36 Greenlandic Inuit were examined by radiography of the temporal bones. The pneumatized cell area was measured planimetrically. All subjects answered...

  6. Papercraft temporal bone in the first step of anatomy education.

    Science.gov (United States)

    Hiraumi, Harukazu; Sato, Hiroaki; Ito, Juichi

    2017-06-01

    (1) To compare temporal bone anatomy comprehension taught to speech therapy students with or without a papercraft model. (2) To explore the effect of papercraft simulation on the understanding of surgical approaches in first-year residents. (1) One-hundred and ten speech therapy students were divided into three classes. The first class was taught with a lecture only. The students in the second class were given a lecture and a papercraft modeling task without instruction. The third class modeled a papercraft with instruction after the lecture. The students were tested on their understanding of temporal bone anatomy. (2) A questionnaire on the understanding of surgical approaches was completed by 10 residents before and after the papercraft modeling. The papercraft models were cut with scissors to simulate surgical approaches. (1) The average scores were 4.4/8 for the first class, 4.3/8 for the second class, and 6.3/8 for the third class. The third class had significantly better results than the other classes (ppapercraft modeling and cutting were 2.6/7 and 4.9/7, respectively. The numerical rating scale score significantly improved (ppapercraft temporal bone model is effective in the first step of learning temporal bone anatomy and surgical approaches. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Changes in bone macro- and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography

    Science.gov (United States)

    Kerckhofs, G.; Durand, M.; Vangoitsenhoven, R.; Marin, C.; van der Schueren, B.; Carmeliet, G.; Luyten, F. P.; Geris, L.; Vandamme, K.

    2016-10-01

    High resolution microfocus X-ray computed tomography (HR-microCT) was employed to characterize the structural alterations of the cortical and trabecular bone in a mouse model of obesity-driven type 2 diabetes (T2DM). C57Bl/6J mice were randomly assigned for 14 weeks to either a control diet-fed (CTRL) or a high fat diet (HFD)-fed group developing obesity, hyperglycaemia and insulin resistance. The HFD group showed an increased trabecular thickness and a decreased trabecular number compared to CTRL animals. Midshaft tibia intracortical porosity was assessed at two spatial image resolutions. At 2 μm scale, no change was observed in the intracortical structure. At 1 μm scale, a decrease in the cortical vascular porosity of the HFD bone was evidenced. The study of a group of 8 week old animals corresponding to animals at the start of the diet challenge revealed that the decreased vascular porosity was T2DM-dependant and not related to the ageing process. Our results offer an unprecedented ultra-characterization of the T2DM compromised skeletal micro-architecture and highlight an unrevealed T2DM-related decrease in the cortical vascular porosity, potentially affecting the bone health and fragility. Additionally, it provides some insights into the technical challenge facing the assessment of the rodent bone structure using HR-microCT imaging.

  8. Changes in bone macro- and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography

    Science.gov (United States)

    Kerckhofs, G.; Durand, M.; Vangoitsenhoven, R.; Marin, C.; Van der Schueren, B.; Carmeliet, G.; Luyten, F. P.; Geris, L.; Vandamme, K.

    2016-01-01

    High resolution microfocus X-ray computed tomography (HR-microCT) was employed to characterize the structural alterations of the cortical and trabecular bone in a mouse model of obesity-driven type 2 diabetes (T2DM). C57Bl/6J mice were randomly assigned for 14 weeks to either a control diet-fed (CTRL) or a high fat diet (HFD)-fed group developing obesity, hyperglycaemia and insulin resistance. The HFD group showed an increased trabecular thickness and a decreased trabecular number compared to CTRL animals. Midshaft tibia intracortical porosity was assessed at two spatial image resolutions. At 2 μm scale, no change was observed in the intracortical structure. At 1 μm scale, a decrease in the cortical vascular porosity of the HFD bone was evidenced. The study of a group of 8 week old animals corresponding to animals at the start of the diet challenge revealed that the decreased vascular porosity was T2DM-dependant and not related to the ageing process. Our results offer an unprecedented ultra-characterization of the T2DM compromised skeletal micro-architecture and highlight an unrevealed T2DM-related decrease in the cortical vascular porosity, potentially affecting the bone health and fragility. Additionally, it provides some insights into the technical challenge facing the assessment of the rodent bone structure using HR-microCT imaging. PMID:27759061

  9. A metastatic glomus jugulare tumor. A temporal bone report

    International Nuclear Information System (INIS)

    El Fiky, F.M.; Paparella, M.M.

    1984-01-01

    The clinicopathologic findings in the temporal bone of a patient with a highly malignant metastasizing glomus jugulare tumor are reported. The patient exhibited all the symptoms of primary malignant tumors of the ear, including facial paralysis, otorrhea, pain, hearing loss, tinnitus, dizziness, and vertigo. He was treated with cobalt irradiation followed by radium implant in the ear canal for a residual tumor; then a left-sided radical mastoidectomy was performed

  10. Utility of 3D printed temporal bones in pre-surgical planning for complex BoneBridge cases.

    Science.gov (United States)

    Mukherjee, Payal; Cheng, Kai; Flanagan, Sean; Greenberg, Simon

    2017-08-01

    With the advent of single-sided hearing loss increasingly being treated with cochlear implantation, bone conduction implants are reserved for cases of conductive and mixed hearing loss with greater complexity. The BoneBridge (BB, MED-EL, Innsbruck, Austria) is an active fully implantable device with no attenuation of sound energy through soft tissue. However, the floating mass transducer (FMT) part of the device is very bulky, which limits insertion in complicated ears. In this study, 3D printed temporal bones of patients were used to study its utility in preoperative planning on complicated cases. Computed tomography (CT) scans of 16 ears were used to 3D print their temporal bones. Three otologists graded the use of routine preoperative planning provided by MED-EL and that of operating on the 3D printed bone of the patient. Data were collated to assess the advantage and disadvantage of the technology. There was a statistically significant benefit in using 3D printed temporal bones to plan surgery for difficult cases of BoneBridge surgery compared to the current standard. Surgeons preferred to have the printed bones in theatre to plan their drill sites and make the transition of the planning to the patient's operation more precise. 3D printing is an innovative use of technology in the use of preoperative planning for complex ear surgery. Surgical planning can be done on the patient's own anatomy which may help to decrease operating time, reduce cost, increase surgical precision and thus reduce complications.

  11. High temporal versus high spatial resolution in MR quantitative pulmonary perfusion imaging of two-year old children after congenital diaphragmatic hernia repair

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, M.; Hagelstein, C.; Schoenberg, S.O.; Neff, K.W. [University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, Mannheim (Germany); Zoellner, F.G.; Schad, L.R. [Heidelberg University, Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim (Germany); Zahn, K. [University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Department of Pediatric Surgery, Mannheim (Germany); Schaible, T. [University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Department of Pediatrics, Mannheim (Germany)

    2014-10-15

    Congenital diaphragmatic hernia (CDH) leads to lung hypoplasia. Using dynamic contrast-enhanced (DCE) MR imaging, lung perfusion can be quantified. As MR perfusion values depend on temporal resolution, we compared two protocols to investigate whether ipsilateral lung perfusion is impaired after CDH, whether there are protocol-dependent differences, and which protocol is preferred. DCE-MRI was performed in 36 2-year old children after CDH on a 3 T MRI system; protocol A (n = 18) based on a high spatial (3.0 s; voxel: 1.25 mm{sup 3}) and protocol B (n = 18) on a high temporal resolution (1.5 s; voxel: 2 mm{sup 3}). Pulmonary blood flow (PBF), pulmonary blood volume (PBV), mean transit time (MTT), and peak-contrast-to-noise-ratio (PCNR) were quantified. PBF was reduced ipsilaterally, with ipsilateral PBF of 45 ± 26 ml/100 ml/min to contralateral PBF of 63 ± 28 ml/100 ml/min (p = 0.0016) for protocol A; and for protocol B, side differences were equivalent (ipsilateral PBF = 62 ± 24 vs. contralateral PBF = 85 ± 30 ml/100 ml/min; p = 0.0034). PCNR was higher for protocol B (30 ± 18 vs. 20 ± 9; p = 0.0294). Protocol B showed higher values of PBF in comparison to protocol A (p always <0.05). Ipsilateral lung perfusion is reduced in 2-year old children following CDH repair. Higher temporal resolution and increased voxel size show a gain in PCNR and lead to higher perfusion values. Protocol B is therefore preferred. (orig.)

  12. Aggressive osteoblastoma in mastoid process of temporal bone with facial palsy

    Directory of Open Access Journals (Sweden)

    Manoj Jain

    2013-01-01

    Full Text Available Osteoblastoma is an uncommon primary bone tumor with a predilection for posterior elements of spine. Its occurrence in temporal bone and middle ear is extremely rare. Clinical symptoms are non-specific and cranial nerve involvement is uncommon. The cytomorphological features of osteoblastoma are not very well defined and the experience is limited to only few reports. We report an interesting and rare case of aggressive osteoblastoma, with progressive hearing loss and facial palsy, involving the mastoid process of temporal bone and middle ear along with the description of cyto-morphological features.

  13. Incidental internal carotid artery calcifications on temporal bone CT in children

    International Nuclear Information System (INIS)

    Koch, Bernadette; Jones, Blaise; Blackham, Aaron

    2007-01-01

    Incidental internal carotid artery (ICA) calcifications are occasionally noted on CT images of the brain and temporal bone. In adults, incidental calcifications have been correlated with increased incidence of hypercholesterolemia, cardiac disease, diabetes and carotid stenosis. To determine the incidence of incidental calcifications of the carotid siphon on temporal bone CT in children. We retrospectively reviewed 24 months of consecutive temporal bone CT examinations in children aged 18 years and younger. CT examinations on 663 patients were reviewed and the presence or absence of ICA calcifications was ranked as absent, questionable or definitive. In patients in whom definitive calcifications were identified, hospital charts were reviewed for evidence of diabetes mellitus, hypercholesterolemia, hypertriglyceridemia, hyperlipidemia and chronic renal disease as potential causes of early atherosclerosis. Of the 663 patients, 25% had definitive calcifications within the wall of the ICA: 6% of children younger than 2 years and 28% of children 12-19 years of age. Incidentally noted ICA calcifications are a common finding on temporal bone CT in children, most likely a physiologic response to turbulent flow at natural bends in the artery rather than secondary to underlying disease predisposing to early atherosclerotic calcification. (orig.)

  14. Incidental internal carotid artery calcifications on temporal bone CT in children

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Bernadette; Jones, Blaise [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Blackham, Aaron [University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2007-02-15

    Incidental internal carotid artery (ICA) calcifications are occasionally noted on CT images of the brain and temporal bone. In adults, incidental calcifications have been correlated with increased incidence of hypercholesterolemia, cardiac disease, diabetes and carotid stenosis. To determine the incidence of incidental calcifications of the carotid siphon on temporal bone CT in children. We retrospectively reviewed 24 months of consecutive temporal bone CT examinations in children aged 18 years and younger. CT examinations on 663 patients were reviewed and the presence or absence of ICA calcifications was ranked as absent, questionable or definitive. In patients in whom definitive calcifications were identified, hospital charts were reviewed for evidence of diabetes mellitus, hypercholesterolemia, hypertriglyceridemia, hyperlipidemia and chronic renal disease as potential causes of early atherosclerosis. Of the 663 patients, 25% had definitive calcifications within the wall of the ICA: 6% of children younger than 2 years and 28% of children 12-19 years of age. Incidentally noted ICA calcifications are a common finding on temporal bone CT in children, most likely a physiologic response to turbulent flow at natural bends in the artery rather than secondary to underlying disease predisposing to early atherosclerotic calcification. (orig.)

  15. Quantification of errors induced by temporal resolution on Lagrangian particles in an eddy-resolving model

    Science.gov (United States)

    Qin, Xuerong; van Sebille, Erik; Sen Gupta, Alexander

    2014-04-01

    Lagrangian particle tracking within ocean models is an important tool for the examination of ocean circulation, ventilation timescales and connectivity and is increasingly being used to understand ocean biogeochemistry. Lagrangian trajectories are obtained by advecting particles within velocity fields derived from hydrodynamic ocean models. For studies of ocean flows on scales ranging from mesoscale up to basin scales, the temporal resolution of the velocity fields should ideally not be more than a few days to capture the high frequency variability that is inherent in mesoscale features. However, in reality, the model output is often archived at much lower temporal resolutions. Here, we quantify the differences in the Lagrangian particle trajectories embedded in velocity fields of varying temporal resolution. Particles are advected from 3-day to 30-day averaged fields in a high-resolution global ocean circulation model. We also investigate whether adding lateral diffusion to the particle movement can compensate for the reduced temporal resolution. Trajectory errors reveal the expected degradation of accuracy in the trajectory positions when decreasing the temporal resolution of the velocity field. Divergence timescales associated with averaging velocity fields up to 30 days are faster than the intrinsic dispersion of the velocity fields but slower than the dispersion caused by the interannual variability of the velocity fields. In experiments focusing on the connectivity along major currents, including western boundary currents, the volume transport carried between two strategically placed sections tends to increase with increased temporal averaging. Simultaneously, the average travel times tend to decrease. Based on these two bulk measured diagnostics, Lagrangian experiments that use temporal averaging of up to nine days show no significant degradation in the flow characteristics for a set of six currents investigated in more detail. The addition of random

  16. Mixed reality temporal bone surgical dissector: mechanical design.

    Science.gov (United States)

    Hochman, Jordan Brent; Sepehri, Nariman; Rampersad, Vivek; Kraut, Jay; Khazraee, Milad; Pisa, Justyn; Unger, Bertram

    2014-08-08

    The Development of a Novel Mixed Reality (MR) Simulation. An evolving training environment emphasizes the importance of simulation. Current haptic temporal bone simulators have difficulty representing realistic contact forces and while 3D printed models convincingly represent vibrational properties of bone, they cannot reproduce soft tissue. This paper introduces a mixed reality model, where the effective elements of both simulations are combined; haptic rendering of soft tissue directly interacts with a printed bone model. This paper addresses one aspect in a series of challenges, specifically the mechanical merger of a haptic device with an otic drill. This further necessitates gravity cancelation of the work assembly gripper mechanism. In this system, the haptic end-effector is replaced by a high-speed drill and the virtual contact forces need to be repositioned to the drill tip from the mid wand. Previous publications detail generation of both the requisite printed and haptic simulations. Custom software was developed to reposition the haptic interaction point to the drill tip. A custom fitting, to hold the otic drill, was developed and its weight was offset using the haptic device. The robustness of the system to disturbances and its stable performance during drilling were tested. The experiments were performed on a mixed reality model consisting of two drillable rapid-prototyped layers separated by a free-space. Within the free-space, a linear virtual force model is applied to simulate drill contact with soft tissue. Testing illustrated the effectiveness of gravity cancellation. Additionally, the system exhibited excellent performance given random inputs and during the drill's passage between real and virtual components of the model. No issues with registration at model boundaries were encountered. These tests provide a proof of concept for the initial stages in the development of a novel mixed-reality temporal bone simulator.

  17. The application of high-resolution CT in the visualization of the vestibular aqueduct (Meniere's disease) and labyrinthine otospongiosis

    International Nuclear Information System (INIS)

    Zonneveld, F.W.; Groot, J.A.M. de; Huizing, E.H.; Damsma, H.; Waes, P.F.G.M. van

    1984-01-01

    Ever since the introduction of temporal bone imaging by means of high-resolution CT, it appears that the combination of high spatial resolution, high density resolution and the freedom of patient positioning for scanning of optimal otological planes may play a unique role in the diagnosis and follow-up of a number of otological disorder. Two examples are described here. The first is the possibility of determining whether the vestibular aqueduct in idiopathic Meniere's disease is obliterated or not, and if so, whether it is a bony or a fibrous obliteration. Although the results are preliminary, there are indications that all three cathegories occur and that the efficacy of drainage of the endolymphatic sac can be evaluated prior to surgery. The second example is the possibility of outlining and quantifying the bone mineral loss in cases of labyrinthine otospongiosis. Preliminary studies have outlined that there is a relationship between the degree of decalcification and the severity of sensorineural hearing loss. These examples show high-resolution, thin-section multiplanar CT to have great potential in the diagnosis and treatment of otological disorders. This will become evident as the techniques that were used here are worked out in more detail and become more widely known. (orig.)

  18. la dysplasie fibreuse du rocher fibrous dysplasia of the temporal bone

    African Journals Online (AJOL)

    view of the disease and its manifestations in the temporal bone. Ann. OtolRhinolLaryngol 1982;92(Suppl.): 1–52. 5- Papadakis CE, Skoulakis CE, Propakapis EP, et al. Fibrous dyspla- sia of the temporal bone: report of a case and review of its characteris- tics. Ear Nose Throat J, 2000;79:52–57. 6- Yang H, Chen S, Zheng Y, ...

  19. Bone-marrow densitometry: Assessment of marrow space of human vertebrae by single energy high resolution-quantitative computed tomography

    International Nuclear Information System (INIS)

    Peña, Jaime A.; Damm, Timo; Bastgen, Jan; Barkmann, Reinhard; Glüer, Claus C.; Thomsen, Felix; Campbell, Graeme M.

    2016-01-01

    Purpose: Accurate noninvasive assessment of vertebral bone marrow fat fraction is important for diagnostic assessment of a variety of disorders and therapies known to affect marrow composition. Moreover, it provides a means to correct fat-induced bias of single energy quantitative computed tomography (QCT) based bone mineral density (BMD) measurements. The authors developed new segmentation and calibration methods to obtain quantitative surrogate measures of marrow-fat density in the axial skeleton. Methods: The authors developed and tested two high resolution-QCT (HR-QCT) based methods which permit segmentation of bone voids in between trabeculae hypothesizing that they are representative of bone marrow space. The methods permit calculation of marrow content in units of mineral equivalent marrow density (MeMD). The first method is based on global thresholding and peeling (GTP) to define a volume of interest away from the transition between trabecular bone and marrow. The second method, morphological filtering (MF), uses spherical elements of different radii (0.1–1.2 mm) and automatically places them in between trabeculae to identify regions with large trabecular interspace, the bone-void space. To determine their performance, data were compared ex vivo to high-resolution peripheral CT (HR-pQCT) images as the gold-standard. The performance of the methods was tested on a set of excised human vertebrae with intact bone marrow tissue representative of an elderly population with low BMD. Results: 86% (GTP) and 87% (MF) of the voxels identified as true marrow space on HR-pQCT images were correctly identified on HR-QCT images and thus these volumes of interest can be considered to be representative of true marrow space. Within this volume, MeMD was estimated with residual errors of 4.8 mg/cm 3 corresponding to accuracy errors in fat fraction on the order of 5% both for GTP and MF methods. Conclusions: The GTP and MF methods on HR-QCT images permit noninvasive

  20. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.

    Science.gov (United States)

    Montufar, E B; Casas-Luna, M; Horynová, M; Tkachenko, S; Fohlerová, Z; Diaz-de-la-Torre, S; Dvořák, K; Čelko, L; Kaiser, J

    2018-04-01

    In this work alpha tricalcium phosphate (α-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 μm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of α-TCP areas rather than β-TCP areas, suggesting that α-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures. Biodegradable alpha-tricalcium phosphate/iron (α-TCP/Fe) composites are promising candidates for the fabrication of temporal osteosynthesis devices. Similar to biodegradable metals, these composites can avoid implant removal after bone fracture healing, particularly in

  1. Pre-operative simulation of pediatric mastoid surgery with 3D-printed temporal bone models.

    Science.gov (United States)

    Rose, Austin S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Rawal, Rounak B; Iseli, Claire E

    2015-05-01

    As the process of additive manufacturing, or three-dimensional (3D) printing, has become more practical and affordable, a number of applications for the technology in the field of pediatric otolaryngology have been considered. One area of promise is temporal bone surgical simulation. Having previously developed a model for temporal bone surgical training using 3D printing, we sought to produce a patient-specific model for pre-operative simulation in pediatric otologic surgery. Our hypothesis was that the creation and pre-operative dissection of such a model was possible, and would demonstrate potential benefits in cases of abnormal temporal bone anatomy. In the case presented, an 11-year-old boy underwent a planned canal-wall-down (CWD) tympano-mastoidectomy for recurrent cholesteatoma preceded by a pre-operative surgical simulation using 3D-printed models of the temporal bone. The models were based on the child's pre-operative clinical CT scan and printed using multiple materials to simulate both bone and soft tissue structures. To help confirm the models as accurate representations of the child's anatomy, distances between various anatomic landmarks were measured and compared to the temporal bone CT scan and the 3D model. The simulation allowed the surgical team to appreciate the child's unusual temporal bone anatomy as well as any challenges that might arise in the safety of the temporal bone laboratory, prior to actual surgery in the operating room (OR). There was minimal variability, in terms of absolute distance (mm) and relative distance (%), in measurements between anatomic landmarks obtained from the patient intra-operatively, the pre-operative CT scan and the 3D-printed models. Accurate 3D temporal bone models can be rapidly produced based on clinical CT scans for pre-operative simulation of specific challenging otologic cases in children, potentially reducing medical errors and improving patient safety. Copyright © 2015 Elsevier Ireland Ltd. All rights

  2. Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    Science.gov (United States)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-07-01

    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transformation (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-2010 dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar, and fertilizer amount were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes (around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity.

  3. High-resolution MR imaging of talar osteochondral lesions with new classification

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, James Francis; Lau, Domily Ting Yi; Yeung, David Ka Wai [Prince of Wales Hospital, Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Shatin, NT (China); Wong, Margaret Wan Nar [Prince of Wales Hospital, Chinese University of Hong Kong, Department of Orthopaedics and Traumatology, Shatin (China)

    2012-04-15

    Retrospective review of high-resolution MR imaging features of talar dome osteochondral lesions and development of new classification system based on these features. Over the past 7 years, 70 osteochondral lesions of the talar dome from 70 patients (49 males, 21 females, mean age 42 years, range 15-62 years) underwent high-resolution MR imaging with a microscopy coil at 1.5 T. Sixty-one (87%) of 70 lesions were located on the medial central aspect and ten (13%) lesions were located on the lateral central aspect of the talar dome. Features evaluated included cartilage fracture, osteochondral junction separation, subchondral bone collapse, bone:bone separation, and marrow change. Based on these findings, a new five-part grading system was developed. Signal-to-noise characteristics of microscopy coil imaging at 1.5 T were compared to dedicated ankle coil imaging at 3 T. Microscopy coil imaging at 1.5 T yielded 20% better signal-to-noise characteristics than ankle coil imaging at 3 T. High-resolution MR revealed that osteochondral junction separation, due to focal collapse of the subchondral bone, was a common feature, being present in 28 (45%) of 61 medial central osteochondral lesions. Reparative cartilage hypertrophy and bone:bone separation in the absence of cartilage fracture were also common findings. Complete osteochondral separation was uncommon. A new five-part grading system incorporating features revealed by high-resolution MR imaging was developed. High-resolution MRI reveals clinically pertinent features of talar osteochondral lesions, which should help comprehension of symptomatology and enhance clinical decision-making. These features were incorporated in a new MR-based grading system. Whenever possible, symptomatic talar osteochondral lesions should be assessed by high-resolution MR imaging. (orig.)

  4. High-resolution MR imaging of talar osteochondral lesions with new classification

    International Nuclear Information System (INIS)

    Griffith, James Francis; Lau, Domily Ting Yi; Yeung, David Ka Wai; Wong, Margaret Wan Nar

    2012-01-01

    Retrospective review of high-resolution MR imaging features of talar dome osteochondral lesions and development of new classification system based on these features. Over the past 7 years, 70 osteochondral lesions of the talar dome from 70 patients (49 males, 21 females, mean age 42 years, range 15-62 years) underwent high-resolution MR imaging with a microscopy coil at 1.5 T. Sixty-one (87%) of 70 lesions were located on the medial central aspect and ten (13%) lesions were located on the lateral central aspect of the talar dome. Features evaluated included cartilage fracture, osteochondral junction separation, subchondral bone collapse, bone:bone separation, and marrow change. Based on these findings, a new five-part grading system was developed. Signal-to-noise characteristics of microscopy coil imaging at 1.5 T were compared to dedicated ankle coil imaging at 3 T. Microscopy coil imaging at 1.5 T yielded 20% better signal-to-noise characteristics than ankle coil imaging at 3 T. High-resolution MR revealed that osteochondral junction separation, due to focal collapse of the subchondral bone, was a common feature, being present in 28 (45%) of 61 medial central osteochondral lesions. Reparative cartilage hypertrophy and bone:bone separation in the absence of cartilage fracture were also common findings. Complete osteochondral separation was uncommon. A new five-part grading system incorporating features revealed by high-resolution MR imaging was developed. High-resolution MRI reveals clinically pertinent features of talar osteochondral lesions, which should help comprehension of symptomatology and enhance clinical decision-making. These features were incorporated in a new MR-based grading system. Whenever possible, symptomatic talar osteochondral lesions should be assessed by high-resolution MR imaging. (orig.)

  5. Temporal bone dissection simulator for training pediatric otolaryngology surgeons

    Science.gov (United States)

    Tabrizi, Pooneh R.; Sang, Hongqiang; Talari, Hadi F.; Preciado, Diego; Monfaredi, Reza; Reilly, Brian; Arikatla, Sreekanth; Enquobahrie, Andinet; Cleary, Kevin

    2017-03-01

    Cochlear implantation is the standard of care for infants born with severe hearing loss. Current guidelines approve the surgical placement of implants as early as 12 months of age. Implantation at a younger age poses a greater surgical challenge since the underdeveloped mastoid tip, along with thin calvarial bone, creates less room for surgical navigation and can result in increased surgical risk. We have been developing a temporal bone dissection simulator based on actual clinical cases for training otolaryngology fellows in this delicate procedure. The simulator system is based on pre-procedure CT (Computed Tomography) images from pediatric infant cases (hospital. The simulator includes: (1) simulation engine to provide the virtual reality of the temporal bone surgery environment, (2) a newly developed haptic interface for holding the surgical drill, (3) an Oculus Rift to provide a microscopic-like view of the temporal bone surgery, and (4) user interface to interact with the simulator through the Oculus Rift and the haptic device. To evaluate the system, we have collected 10 representative CT data sets and segmented the key structures: cochlea, round window, facial nerve, and ossicles. The simulator will present these key structures to the user and warn the user if needed by continuously calculating the distances between the tip of surgical drill and the key structures.

  6. Phase division multiplexed EIT for enhanced temporal resolution.

    Science.gov (United States)

    Dowrick, T; Holder, D

    2018-03-29

    The most commonly used EIT paradigm (time division multiplexing) limits the temporal resolution of impedance images due to the need to switch between injection electrodes. Advances have previously been made using frequency division multiplexing (FDM) to increase temporal resolution, but in cases where a fixed range of frequencies is available, such as imaging fast neural activity, an upper limit is placed on the total number of simultaneous injections. The use of phase division multiplexing (PDM) where multiple out of phase signals can be injected at each frequency is investigated to increase temporal resolution. TDM, FDM and PDM were compared in head tank experiments, to compare transfer impedance measurements and spatial resolution between the three techniques. A resistor phantom paradigm was established to investigate the imaging of one-off impedance changes, of magnitude 1% and with durations as low as 500 µs (similar to those seen in nerve bundles), using both PDM and TDM approaches. In head tank experiments, a strong correlation (r  >  0.85 and p  EIT injections.

  7. Influence of spatial and temporal coherences on atomic resolution high angle annular dark field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Andreas, E-mail: andreas.beyer@physik.uni-marburg.de; Belz, Jürgen; Knaub, Nikolai; Jandieri, Kakhaber; Volz, Kerstin

    2016-10-15

    Aberration-corrected (scanning) transmission electron microscopy ((S)TEM) has become a widely used technique when information on the chemical composition is sought on an atomic scale. To extract the desired information, complementary simulations of the scattering process are inevitable. Often the partial spatial and temporal coherences are neglected in the simulations, although they can have a huge influence on the high resolution images. With the example of binary gallium phosphide (GaP) we elucidate the influence of the source size and shape as well as the chromatic aberration on the high angle annular dark field (HAADF) intensity. We achieve a very good quantitative agreement between the frozen phonon simulation and experiment for different sample thicknesses when a Lorentzian source distribution is assumed and the effect of the chromatic aberration is considered. Additionally the influence of amorphous layers introduced by the preparation of the TEM samples is discussed. Taking into account these parameters, the intensity in the whole unit cell of GaP, i.e. at the positions of the different atomic columns and in the region between them, is described correctly. With the knowledge of the decisive parameters, the determination of the chemical composition of more complex, multinary materials becomes feasible. - Highlights: • Atomic resolution high angle annular dark field images of gallium phosphide are compared quantitatively with simulated ones. • The influence of partial spatial and temporal coherence on the HAADF-intensity is investigated. • The influence of amorphous layers introduced by the sample preparation is simulated.

  8. Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage.

    Science.gov (United States)

    Koen, Joshua D; Borders, Alyssa A; Petzold, Michael T; Yonelinas, Andrew P

    2017-02-01

    The medial temporal lobe (MTL) plays a critical role in episodic long-term memory, but whether the MTL is necessary for visual short-term memory is controversial. Some studies have indicated that MTL damage disrupts visual short-term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short-term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short-term memory in patients with damage to the MTL and controls for high resolution and low resolution object-location and object-color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two-alternative forced-choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short-term memory, but importantly, they were more impaired for high resolution object-location and object-color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers.

    Science.gov (United States)

    Chen, Jiageng; Liu, Qingwen; He, Zuyuan

    2017-09-04

    We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.

  10. Geo-statistical model of Rainfall erosivity by using high temporal resolution precipitation data in Europe

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2015-04-01

    Rainfall erosivity (R-factor) is among the 6 input factors in estimating soil erosion risk by using the empirical Revised Universal Soil Loss Equation (RUSLE). R-factor is a driving force for soil erosion modelling and potentially can be used in flood risk assessments, landslides susceptibility, post-fire damage assessment, application of agricultural management practices and climate change modelling. The rainfall erosivity is extremely difficult to model at large scale (national, European) due to lack of high temporal resolution precipitation data which cover long-time series. In most cases, R-factor is estimated based on empirical equations which take into account precipitation volume. The Rainfall Erosivity Database on the European Scale (REDES) is the output of an extensive data collection of high resolution precipitation data in the 28 Member States of the European Union plus Switzerland taking place during 2013-2014 in collaboration with national meteorological/environmental services. Due to different temporal resolutions of the data (5, 10, 15, 30, 60 minutes), conversion equations have been applied in order to homogenise the database at 30-minutes interval. The 1,541 stations included in REDES have been interpolated using the Gaussian Process Regression (GPR) model using as covariates the climatic data (monthly precipitation, monthly temperature, wettest/driest month) from WorldClim Database, Digital Elevation Model and latitude/longitude. GPR has been selected among other candidate models (GAM, Regression Kriging) due the best performance both in cross validation (R2=0.63) and in fitting dataset (R2=0.72). The highest uncertainty has been noticed in North-western Scotland, North Sweden and Finland due to limited number of stations in REDES. Also, in highlands such as Alpine arch and Pyrenees the diversity of environmental features forced relatively high uncertainty. The rainfall erosivity map of Europe available at 500m resolution plus the standard error

  11. Evaluation of High-Temporal-Resolution Bedload Sensors for Tracking Channel Bed Movement and Transport Thresholds in Forested Mountain Headwater Catchments.

    Science.gov (United States)

    Martin, S.; Conklin, M. H.; Bales, R. C.

    2014-12-01

    High temporal resolution data is required to take channel bed movement data beyond time integrated changes between measurements where many of the subtleties of bedload movement patterns are often missed. This study used continuous bedload scour sensors (flexible, fluid-filled pans connected to a pressure transducer) to collect high temporal resolution, long term bedload movement data for 4 high elevation (1500-1800 m) Sierra Nevada headwater streams draining 1 km2 catchments and to investigate the physical channel characteristics under which they perform best. Data collected by the scour sensors were used to investigate the disturbance and recovery patterns of these streams, to relate the observed patterns to channel bed stability, and to evaluate whether the channel bed is acting as a sediment source, sink, or storage across various temporal scales. Finally, attempts are made to identify discharge thresholds for bed movement from scour sensor and discharge data and to compare these threshold values to observed changes in the channel bed. Bedload scour data, turbidity data, and stream discharge data were collected at 15 minute intervals for (WY 2011 to WY 2014), including both above average (2011) and below average (2012, 2013, 2014) water years. Bedload scour sensors were found to have a relatively high (60%) failure rate in these systems. In addition, they required in situ calibrations as the factory and laboratory calibrations did not translate well to the field deployments. Data from the working sensors, showed patterns of abrupt channel bed disturbance (scour and/or fill) on an hour to day temporal scale followed by gradual recovery on a day to month scale back to a stable equilibrium bed surface elevation. These observed patterns suggest the bed acts as a short term source or sink for sediment, but is roughly sediment neutral over longer time periods implying the changes in bed elevation are reflective of fluctuations in storage rather than a true source or

  12. Measuring the volume of temporal lobe in healthy Chinese adults of the Han nationality on the high-resolution MRI

    International Nuclear Information System (INIS)

    Jia Kefeng; Wu Li; Duan Hui; Han Dan; Chen Nan; Li Kuncheng

    2010-01-01

    Objective: To explore the morphological features of temporal lobe of healthy Chinese Han adults on the high-resolution MRI and provide morphological data of temporal lobe for the construction of database for Chinese Standard Brain. Methods: This is a clinical multi-center study. Three hundred healthy Chinese volunteers (male 150, and female 150) recruited from 15 hospitals were divided equally into five groups according to their age, i.e., 18-30 (Group A), 31-40 (Group B), 41-50 (Group C), 51- 60(Group D), 61-70(Group E). All subjects were scanned using T 1 WI 3D MPRAGE sequence and volumes of standardized temporal lobe were collected. The bilateral volumes of standardized temporal lobe were compared by variance analysis between male and female subjects and among five age groups. Results: The mean volumes of left and right temporal lobe were (97 126±15 703) mm 3 and (97 015 ± 15 545) mm 3 respectively for men, and (95 123 ± 14 564) mm 3 and (96 423 ± 13 407) mm 3 for women. The difference temporal lobe volume between male and female wasn't significant on the same side (F=1.336, 0.127, P= 0.249, 0.722). The left temporal lobe volumes of Group A-E were (93 873±13 351), (95 566± 11 964), (10 1890 ± 14 511), (93 972 ± 14 050) and (95 636 ± 19 864) mm 3 respectively, and those on the right side were (93 409 ± 10 984), (98 158 ± 16 392), (102 079 ± 15 112), (95 448 ± 11 123) and (94 658 ± 16 928) mm 3 . There were significant differences among 5 groups between left and right temporal lobe volume(F=2.940, 3.514, P=0.021, 0.008). Further pairwise comparison revealed that left and right temporal lobe volume in Group C is higher than those of Group A and D (P 0.05). Conclusion: High-resolution MRI could offer detailed images and precise morphological data of temporal lobe, which provides morphological data of temporal lobe for the construction of database for Chinese Standard Brain. (authors)

  13. Osteoradionecrosis of the temporal bone with cancer of the middle ear. A case report

    International Nuclear Information System (INIS)

    Ishida, Katsunori; Sakai, Makoto; Shinkawa, Atsushi

    1999-01-01

    Osteoradionecrosis of the temporal bone may occur as a result of radiation therapy for head and neck carcinomas or brain tumors. A 64-year-old female received radiation therapy for squamous cell carcinoma of the middle ear 20 years ago, and then she developed osteoradionecrosis of the temporal bone. The patient underwent extensive debridement with removal of sequestrations in the temporal bone and adjacent areas, and abscess drainage. Her postoperative course was satisfactory and there was no progression of the disease. (author)

  14. Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality

    International Nuclear Information System (INIS)

    Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas

    2012-01-01

    The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols. (orig.)

  15. Conventional diagnostic imaging of the temporal bone. A historical review

    International Nuclear Information System (INIS)

    Canigiani, G.

    1997-01-01

    The Viennese Medical School played an important role in the development of radiological examinations and signs of the temporal bone with conventional X-rays. Famous pioneers include E.G. Mayer (1893-1969) and L. Psenner (1910-1986). Nowadays conventional X-rays and tomography have lost their important role in diagnostic radiology of the temporal bone, but the basic principles established in those early years of radiology are still used now. This statement is correct not only for conventional X-rays, but particularly for 'poly'-tomography in comparison with CT. (orig.) [de

  16. Cochlear Implant Electrode Localization Using an Ultra-High Resolution Scan Mode on Conventional 64-Slice and New Generation 192-Slice Multi-Detector Computed Tomography.

    Science.gov (United States)

    Carlson, Matthew L; Leng, Shuai; Diehn, Felix E; Witte, Robert J; Krecke, Karl N; Grimes, Josh; Koeller, Kelly K; Bruesewitz, Michael R; McCollough, Cynthia H; Lane, John I

    2017-08-01

    A new generation 192-slice multi-detector computed tomography (MDCT) clinical scanner provides enhanced image quality and superior electrode localization over conventional MDCT. Currently, accurate and reliable cochlear implant electrode localization using conventional MDCT scanners remains elusive. Eight fresh-frozen cadaveric temporal bones were implanted with full-length cochlear implant electrodes. Specimens were subsequently scanned with conventional 64-slice and new generation 192-slice MDCT scanners utilizing ultra-high resolution modes. Additionally, all specimens were scanned with micro-CT to provide a reference criterion for electrode position. Images were reconstructed according to routine temporal bone clinical protocols. Three neuroradiologists, blinded to scanner type, reviewed images independently to assess resolution of individual electrodes, scalar localization, and severity of image artifact. Serving as the reference standard, micro-CT identified scalar crossover in one specimen; imaging of all remaining cochleae demonstrated complete scala tympani insertions. The 192-slice MDCT scanner exhibited improved resolution of individual electrodes (p implant imaging compared with conventional MDCT. This technology provides important feedback regarding electrode position and course, which may help in future optimization of surgical technique and electrode design.

  17. Towards the Implementation of First-Order Temporal Resolution:the Expanding Domain Case

    OpenAIRE

    Konev, B; Dixon, C; Degtyarev, A; Fisher, M; Hustadt, U

    2003-01-01

    First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. In this paper, we develop a clausal resolution method for the monodic fragment of first-order temporal logic over expanding domains. We first define a normal form for monodic formulae and th...

  18. From AWE-GEN to AWE-GEN-2d: a high spatial and temporal resolution weather generator

    Science.gov (United States)

    Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2016-04-01

    A new weather generator, AWE-GEN-2d (Advanced WEather GENerator for 2-Dimension grid) is developed following the philosophy of combining physical and stochastic approaches to simulate meteorological variables at high spatial and temporal resolution (e.g. 2 km x 2 km and 5 min for precipitation and cloud cover and 100 m x 100 m and 1 h for other variables variable (temperature, solar radiation, vapor pressure, atmospheric pressure and near-surface wind). The model is suitable to investigate the impacts of climate variability, temporal and spatial resolutions of forcing on hydrological, ecological, agricultural and geomorphological impacts studies. Using appropriate parameterization the model can be used in the context of climate change. Here we present the model technical structure of AWE-GEN-2d, which is a substantial evolution of four preceding models (i) the hourly-point scale Advanced WEather GENerator (AWE-GEN) presented by Fatichi et al. (2011, Adv. Water Resour.) (ii) the Space-Time Realizations of Areal Precipitation (STREAP) model introduced by Paschalis et al. (2013, Water Resour. Res.), (iii) the High-Resolution Synoptically conditioned Weather Generator developed by Peleg and Morin (2014, Water Resour. Res.), and (iv) the Wind-field Interpolation by Non Divergent Schemes presented by Burlando et al. (2007, Boundary-Layer Meteorol.). The AWE-GEN-2d is relatively parsimonious in terms of computational demand and allows generating many stochastic realizations of current and projected climates in an efficient way. An example of model application and testing is presented with reference to a case study in the Wallis region, a complex orography terrain in the Swiss Alps.

  19. Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization

    International Nuclear Information System (INIS)

    Gupta, Rajiv; Brady, Tom; Grasruck, Michael; Suess, Christoph; Schmidt, Bernhard; Stierstorfer, Karl; Popescu, Stefan; Flohr, Thomas; Bartling, Soenke H.

    2006-01-01

    Digital flat-panel-based volume CT (VCT) represents a unique design capable of ultra-high spatial resolution, direct volumetric imaging, and dynamic CT scanning. This innovation, when fully developed, has the promise of opening a unique window on human anatomy and physiology. For example, the volumetric coverage offered by this technology enables us to observe the perfusion of an entire organ, such as the brain, liver, or kidney, tomographically (e.g., after a transplant or ischemic event). By virtue of its higher resolution, one can directly visualize the trabecular structure of bone. This paper describes the basic design architecture of VCT. Three key technical challenges, viz., scatter correction, dynamic range extension, and temporal resolution improvement, must be addressed for successful implementation of a VCT scanner. How these issues are solved in a VCT prototype and the modifications necessary to enable ultra-high resolution volumetric scanning are described. The fundamental principles of scatter correction and dose reduction are illustrated with the help of an actual prototype. The image quality metrics of this prototype are characterized and compared with a multi-detector CT (MDCT). (orig.)

  20. Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Rajiv; Brady, Tom [Massachusetts General Hospital, Department of Radiology, Founders House, FND-2-216, Boston, MA (United States); Grasruck, Michael; Suess, Christoph; Schmidt, Bernhard; Stierstorfer, Karl; Popescu, Stefan; Flohr, Thomas [Siemens Medical Solutions, Forchheim (Germany); Bartling, Soenke H. [Hannover Medical School, Department of Neuroradiology, Hannover (Germany)

    2006-06-15

    Digital flat-panel-based volume CT (VCT) represents a unique design capable of ultra-high spatial resolution, direct volumetric imaging, and dynamic CT scanning. This innovation, when fully developed, has the promise of opening a unique window on human anatomy and physiology. For example, the volumetric coverage offered by this technology enables us to observe the perfusion of an entire organ, such as the brain, liver, or kidney, tomographically (e.g., after a transplant or ischemic event). By virtue of its higher resolution, one can directly visualize the trabecular structure of bone. This paper describes the basic design architecture of VCT. Three key technical challenges, viz., scatter correction, dynamic range extension, and temporal resolution improvement, must be addressed for successful implementation of a VCT scanner. How these issues are solved in a VCT prototype and the modifications necessary to enable ultra-high resolution volumetric scanning are described. The fundamental principles of scatter correction and dose reduction are illustrated with the help of an actual prototype. The image quality metrics of this prototype are characterized and compared with a multi-detector CT (MDCT). (orig.)

  1. Semicircular canal dehiscence: Frequency and distribution on temporal bone CT and its relationship with the clinical outcomes

    International Nuclear Information System (INIS)

    Elmali, Muzaffer; Polat, Ahmet Veysel; Kucuk, Harun; Atmaca, Sinan; Aksoy, Ahmet

    2013-01-01

    Purpose: In this study, we aimed to investigate the frequency of SCD and its distribution and relationship with clinical outcomes on thin-section CT of the temporal bone. Materials and methods: Digital temporal bone CT images of 850 consecutive patients (1700 temporal bone CTs, 5100 SCs) who presented with a range of complaints such as vertigo, deafness, ear pain, fullness, and discharge between January 2008 and December 2011 were re-evaluated. Axial and oblique coronal reconstruction images of the temporal bone were made with a reconstruction thickness of 0.5 mm. Additionally, superior SC was evaluated in two perpendicular planes. Results: Out of 850 patients, 70 had completely normal temporal bone CT. Ninety-three patients had at least one SCD. In the temporal bone-based evaluation, 119 (26 bilateral, 67 unilateral) of 1700 temporal bones (7%) showed dehiscence. The SC-based evaluation revealed 125 SCD (2.5%) in 5100 SCs. The total number and rates of SCD were as follows: superior 103 (82.4%), posterior 13 (10.4%), and lateral nine (7.2%). Twenty of the 93 patients with SCD (21.5%) revealed no other findings on their temporal bone CTs. We determined a significant correlation between vestibular complaints, conductive hearing loss and SCD but there was no correlation between mixed, sensorineural hearing loss and SCD. Conclusion: We determined the frequency of SCD in 11% of patients and 7% of temporal bones. With regards to the distribution, the superior SC showed the highest dehiscence rate (82.4%). We found a significant correlation between vestibular symptoms, conductive hearing loss and SCD

  2. Semicircular canal dehiscence: Frequency and distribution on temporal bone CT and its relationship with the clinical outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Elmali, Muzaffer, E-mail: muzafel@yahoo.com.tr [Department of Radiology, Ondokuz Mayis University, Faculty of Medicine, Samsun (Turkey); Polat, Ahmet Veysel, E-mail: veyselp@hotmail.com [Department of Radiology, Ondokuz Mayis University, Faculty of Medicine, Samsun (Turkey); Kucuk, Harun, E-mail: hardrmd@yahoo.com [Department of Otorhinolaryngology, Ondokuz Mayis University, Faculty of Medicine, Samsun (Turkey); Atmaca, Sinan, E-mail: sinanatmaca@yahoo.com [Department of Otorhinolaryngology, Ondokuz Mayis University, Faculty of Medicine, Samsun (Turkey); Aksoy, Ahmet, E-mail: toxocara47@hotmail.com [Department of Otorhinolaryngology, Ondokuz Mayis University, Faculty of Medicine, Samsun (Turkey)

    2013-10-01

    Purpose: In this study, we aimed to investigate the frequency of SCD and its distribution and relationship with clinical outcomes on thin-section CT of the temporal bone. Materials and methods: Digital temporal bone CT images of 850 consecutive patients (1700 temporal bone CTs, 5100 SCs) who presented with a range of complaints such as vertigo, deafness, ear pain, fullness, and discharge between January 2008 and December 2011 were re-evaluated. Axial and oblique coronal reconstruction images of the temporal bone were made with a reconstruction thickness of 0.5 mm. Additionally, superior SC was evaluated in two perpendicular planes. Results: Out of 850 patients, 70 had completely normal temporal bone CT. Ninety-three patients had at least one SCD. In the temporal bone-based evaluation, 119 (26 bilateral, 67 unilateral) of 1700 temporal bones (7%) showed dehiscence. The SC-based evaluation revealed 125 SCD (2.5%) in 5100 SCs. The total number and rates of SCD were as follows: superior 103 (82.4%), posterior 13 (10.4%), and lateral nine (7.2%). Twenty of the 93 patients with SCD (21.5%) revealed no other findings on their temporal bone CTs. We determined a significant correlation between vestibular complaints, conductive hearing loss and SCD but there was no correlation between mixed, sensorineural hearing loss and SCD. Conclusion: We determined the frequency of SCD in 11% of patients and 7% of temporal bones. With regards to the distribution, the superior SC showed the highest dehiscence rate (82.4%). We found a significant correlation between vestibular symptoms, conductive hearing loss and SCD.

  3. Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution

    Directory of Open Access Journals (Sweden)

    Francesco Pennacchio

    2017-07-01

    Full Text Available Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect. Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.

  4. Unbiased Stereologic Estimation of the Spatial Distribution of Paget’s Disease in the Human Temporal Bone

    DEFF Research Database (Denmark)

    Bloch, Sune Land; Sørensen, Mads Sølvsten

    2014-01-01

    remodeling around the inner ear space and to compare it with that of otosclerosis in a contemporary context of temporal bone dynamics. MATERIALS AND METHODS: From the temporal bone collection of Massachusetts Eye and Ear Infirmary, 15 of 29 temporal bones with Paget's disease were selected to obtain...... an independent sample. All volume distributions were obtained along the normal axis of capsular bone remodeling activity by the use of vector-based stereology. RESULTS: Pagetic bone remodeling was distributed centrifugally around the inner ear space at the individual and the general level. This pattern...

  5. Bone-marrow densitometry: Assessment of marrow space of human vertebrae by single energy high resolution-quantitative computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Peña, Jaime A.; Damm, Timo; Bastgen, Jan; Barkmann, Reinhard; Glüer, Claus C., E-mail: glueer@rad.uni-kiel.de [Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Christian-Albrechts-Universität zu Kiel, Campus Kiel, Kiel 24118 (Germany); Thomsen, Felix [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur, Bahía Blanca 8000 (Argentina); Campbell, Graeme M. [Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Christian-Albrechts-Universität zu Kiel, Campus Kiel, Kiel 24118, Germany and Institut für Biomechanik, Technische Universität Hamburg-Harburg (TUHH), Hamburg 21073 (Germany)

    2016-07-15

    Purpose: Accurate noninvasive assessment of vertebral bone marrow fat fraction is important for diagnostic assessment of a variety of disorders and therapies known to affect marrow composition. Moreover, it provides a means to correct fat-induced bias of single energy quantitative computed tomography (QCT) based bone mineral density (BMD) measurements. The authors developed new segmentation and calibration methods to obtain quantitative surrogate measures of marrow-fat density in the axial skeleton. Methods: The authors developed and tested two high resolution-QCT (HR-QCT) based methods which permit segmentation of bone voids in between trabeculae hypothesizing that they are representative of bone marrow space. The methods permit calculation of marrow content in units of mineral equivalent marrow density (MeMD). The first method is based on global thresholding and peeling (GTP) to define a volume of interest away from the transition between trabecular bone and marrow. The second method, morphological filtering (MF), uses spherical elements of different radii (0.1–1.2 mm) and automatically places them in between trabeculae to identify regions with large trabecular interspace, the bone-void space. To determine their performance, data were compared ex vivo to high-resolution peripheral CT (HR-pQCT) images as the gold-standard. The performance of the methods was tested on a set of excised human vertebrae with intact bone marrow tissue representative of an elderly population with low BMD. Results: 86% (GTP) and 87% (MF) of the voxels identified as true marrow space on HR-pQCT images were correctly identified on HR-QCT images and thus these volumes of interest can be considered to be representative of true marrow space. Within this volume, MeMD was estimated with residual errors of 4.8 mg/cm{sup 3} corresponding to accuracy errors in fat fraction on the order of 5% both for GTP and MF methods. Conclusions: The GTP and MF methods on HR-QCT images permit noninvasive

  6. Precision of high-resolution dual energy x-ray absorptiometry of bone mineral status and body composition in small animal models

    Directory of Open Access Journals (Sweden)

    Lochmüller E. M.

    2001-01-01

    Full Text Available The purpose of this study was to analyze the in situ precision (reproducibility of bone mineral and body composition measurements in mice of different body weights and rats, using a high-resolution DXA (dual energy X-ray absorptiometry scanner. We examined 48 NMRI mice weighing approximately 10 to 60 g, and 10 rats weighing approximately 140 g. Four repeated measurements were obtained on different days. In mice, the standard deviations of repeated measurements ranged from 2.5 to 242 mg for bone mineral content (BMC, from 0.16 to 3.74 g for fat, and from 0.40 to 4.21 g for lean mass. The coefficient of variation in percent (CV% for BMC/BMD (bone mineral density was highest in the 10 g mice (12.8% / 4.9% and lowest in the 40 g mice (3.5% /1.7%. In rats, it was 2.5 /1.2% in the lower extremity, 7.1/3.0 % in the spine, 5.7/2.0 % in the femur, and 3.6%/2.1% in the tibia. The CV% for fat and lean mass in mice was higher than for BMC. The study demonstrates good precision of bone mineral and moderate precision of body composition measure-ments in small animals, using a high-resolution DXA system. The technique can be used for testing the efficacy of drugs in small animal models, for muta-genesis screens, and for the phenotypic characterization of transgenic mice.

  7. Temporal resolution for the perception of features and conjunctions.

    Science.gov (United States)

    Bodelón, Clara; Fallah, Mazyar; Reynolds, John H

    2007-01-24

    The visual system decomposes stimuli into their constituent features, represented by neurons with different feature selectivities. How the signals carried by these feature-selective neurons are integrated into coherent object representations is unknown. To constrain the set of possible integrative mechanisms, we quantified the temporal resolution of perception for color, orientation, and conjunctions of these two features. We find that temporal resolution is measurably higher for each feature than for their conjunction, indicating that time is required to integrate features into a perceptual whole. This finding places temporal limits on the mechanisms that could mediate this form of perceptual integration.

  8. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution

    Science.gov (United States)

    Xiang, D.; Fu, F.; Zhang, J.; Huang, X.; Wang, L.; Wang, X.; Wan, W.

    2014-09-01

    We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. We anticipate that u-TEMs with a product of temporal and spatial resolution beyond 10-19 ms will open up new opportunities in probing matter at ultrafast temporal and ultrasmall spatial scales.

  9. Single-shot 35 fs temporal resolution electron shadowgraphy

    Energy Technology Data Exchange (ETDEWEB)

    Scoby, C. M.; Li, R. K.; Threlkeld, E.; To, H.; Musumeci, P. [Department of Physics and Astronomy, UCLA, Los Angeles, California 90095 (United States)

    2013-01-14

    We obtain single-shot time-resolved shadowgraph images of the electromagnetic fields resulting from the interaction of a high intensity ultrashort laser pulse with a metal surface. Using a high brightness relativistic electron beam and a high streaking speed radiofrequency deflector, we report <35 fs temporal resolution enabling a direct visualization of the retarded-time dominated field evolution which follows the laser-induced charge emission. A model including the finite signal propagation speed well reproduces the data and yields measurements of fundamental parameters in short pulse laser-matter interaction such as the amount of emitted charge and the emission time scale.

  10. Single-shot 35 fs temporal resolution electron shadowgraphy

    International Nuclear Information System (INIS)

    Scoby, C. M.; Li, R. K.; Threlkeld, E.; To, H.; Musumeci, P.

    2013-01-01

    We obtain single-shot time-resolved shadowgraph images of the electromagnetic fields resulting from the interaction of a high intensity ultrashort laser pulse with a metal surface. Using a high brightness relativistic electron beam and a high streaking speed radiofrequency deflector, we report <35 fs temporal resolution enabling a direct visualization of the retarded-time dominated field evolution which follows the laser-induced charge emission. A model including the finite signal propagation speed well reproduces the data and yields measurements of fundamental parameters in short pulse laser-matter interaction such as the amount of emitted charge and the emission time scale.

  11. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery

    Directory of Open Access Journals (Sweden)

    Jordi Inglada

    2015-09-01

    Full Text Available Crop area extent estimates and crop type maps provide crucial information for agricultural monitoring and management. Remote sensing imagery in general and, more specifically, high temporal and high spatial resolution data as the ones which will be available with upcoming systems, such as Sentinel-2, constitute a major asset for this kind of application. The goal of this paper is to assess to what extent state-of-the-art supervised classification methods can be applied to high resolution multi-temporal optical imagery to produce accurate crop type maps at the global scale. Five concurrent strategies for automatic crop type map production have been selected and benchmarked using SPOT4 (Take5 and Landsat 8 data over 12 test sites spread all over the globe (four in Europe, four in Africa, two in America and two in Asia. This variety of tests sites allows one to draw conclusions applicable to a wide variety of landscapes and crop systems. The results show that a random forest classifier operating on linearly temporally gap-filled images can achieve overall accuracies above 80% for most sites. Only two sites showed low performances: Madagascar due to the presence of fields smaller than the pixel size and Burkina Faso due to a mix of trees and crops in the fields. The approach is based on supervised machine learning techniques, which need in situ data collection for the training step, but the map production is fully automatic.

  12. High spatial and temporal resolution charge exchange recombination spectroscopy on the HL-2A tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y. L.; Yu, D. L., E-mail: yudl@swip.ac.cn; Liu, L.; Cao, J. Y.; Sun, A. P.; Ma, Q.; Chen, W. J.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Liu, Yong [Southwestern Institute of Physics, Chengdu 610041 (China); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Hellermann, M. von [ITER Diagnostic Team, IO, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); FOM-Institute for Plasma physics “Rijnhuizen,” Association EURATOM, Trilateral Euregio Cluster, 3430 BE Nieuwegein (Netherlands)

    2014-10-01

    A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ~1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8–7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode)

  13. Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration.

    Science.gov (United States)

    Neldam, Camilla Albeck; Lauridsen, Torsten; Rack, Alexander; Lefolii, Tore Tranberg; Jørgensen, Niklas Rye; Feidenhans'l, Robert; Pinholt, Else Marie

    2015-06-01

    The purpose of this study was to describe a refined method using high-resolution synchrotron radiation microtomography (SRmicro-CT) to evaluate osseointegration and peri-implant bone volume fraction after titanium dental implant insertion. SRmicro-CT is considered gold standard evaluating bone microarchitecture. Its high resolution, high contrast, and excellent high signal-to-noise-ratio all contribute to the highest spatial resolutions achievable today. Using SRmicro-CT at a voxel size of 5 μm in an experimental goat mandible model, the peri-implant bone volume fraction was found to quickly increase to 50% as the radial distance from the implant surface increased, and levelled out to approximately 80% at a distance of 400 μm. This method has been successful in depicting the bone and cavities in three dimensions thereby enabling us to give a more precise answer to the fraction of the bone-to-implant contact compared to previous methods. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Evaluating the Effect of Virtual Reality Temporal Bone Simulation on Mastoidectomy Performance: A Meta-analysis.

    Science.gov (United States)

    Lui, Justin T; Hoy, Monica Y

    2017-06-01

    Background The increasing prevalence of virtual reality simulation in temporal bone surgery warrants an investigation to assess training effectiveness. Objectives To determine if temporal bone simulator use improves mastoidectomy performance. Data Sources Ovid Medline, Embase, and PubMed databases were systematically searched per the PRISMA guidelines. Review Methods Inclusion criteria were peer-reviewed publications that utilized quantitative data of mastoidectomy performance following the use of a temporal bone simulator. The search was restricted to human studies published in English. Studies were excluded if they were in non-peer-reviewed format, were descriptive in nature, or failed to provide surgical performance outcomes. Meta-analysis calculations were then performed. Results A meta-analysis based on the random-effects model revealed an improvement in overall mastoidectomy performance following training on the temporal bone simulator. A standardized mean difference of 0.87 (95% CI, 0.38-1.35) was generated in the setting of a heterogeneous study population ( I 2 = 64.3%, P virtual reality simulation temporal bone surgery studies, meta-analysis calculations demonstrate an improvement in trainee mastoidectomy performance with virtual simulation training.

  15. Agro-hydrology and multi-temporal high-resolution remote sensing: toward an explicit spatial processes calibration

    Science.gov (United States)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-12-01

    The growing availability of high-resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the possibilities offered for improving crop-growth dynamic simulation with the distributed agro-hydrological model: topography-based nitrogen transfer and transformation (TNT2). We used a leaf area index (LAI) map series derived from 105 Formosat-2 (F2) images covering the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated against discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2005-2010 data set (climate, land use, agricultural practices, and discharge and nitrate fluxes at the outlet). Data from the first year (2005) were used to initialize the hydrological model. A priori agricultural practices obtained from an extensive field survey, such as seeding date, crop cultivar, and amount of fertilizer, were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop-field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics using the a priori input parameters displayed temporal shifts from those observed LAI profiles that are irregularly distributed in space (between field crops) and time (between years). By resetting the seeding date at the crop-field level, we have developed an optimization method designed to efficiently minimize this temporal shift and better fit the crop growth against both the spatial observations and crop production. This optimization of simulated LAI has a negligible impact on water budgets at the catchment scale (1 mm yr-1 on average) but a noticeable impact on in-stream nitrogen fluxes (around 12%), which is of interest when considering nitrate stream contamination issues and the objectives of TNT2 modeling. This study demonstrates the potential contribution of the forthcoming high spatial and temporal resolution

  16. Balanced steady-state free precession with parallel imaging gives distortion-free fMRI with high temporal resolution.

    Science.gov (United States)

    Chappell, Michael; Håberg, Asta K; Kristoffersen, Anders

    2011-01-01

    Research on the functions of the human brain requires that functional magnetic resonance imaging (MRI) moves towards producing images with less distortion and higher temporal and spatial resolution. This study compares passband balanced steady-state free precession (bSSFP) acquisitions with and without parallel imaging (PI) to investigate whether combining PI with this pulse sequence is a viable option for functional MRI. Such a novel combination has the potential to offer the distortion-free advantages of bSSFP with the reduced acquisition time of PI. Scans were done on a Philips 3T Intera, using the installed bSSFP pulse sequence, both with and without the sensitivity encoding (SENSE) PI option. The task was a visual flashing checkerboard, and the viewing window covered the visual cortex. Sensitivity comparisons with and without PI were done using the same manually drawn region of interest for each time course of the subject, and comparing the z-score summary statistics: number of voxels with z>2.3, the mean of those voxels, their 90th percentile and their maximum value. We show that PI greatly improves the temporal resolution in bSSFP, reducing the volume acquisition time by more than half in this study to 0.67 s with 3-mm isotropic voxels. At the same time, a statistically significant increase was found for the maximum z-score using bSSFP with PI as compared to without it (P=.02). This improvement can be understood in terms of physiological noise, as demonstrated by noise measurements. This produces observed increases in the overall temporal signal to noise of the functional time series, giving greater sensitivity to functional activations with PI. This study demonstrates for the first time the possibility of combining PI with bSSFP to achieve distortion-free functional images without loss of sensitivity and with high temporal resolution. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Temporal Bone Fractures and its Classification: Retrospective Study of Incidence, Causes, Clinical Features, Complications and Outcome

    Directory of Open Access Journals (Sweden)

    Umamaheshwari Basavaraju

    2017-10-01

    Full Text Available Introduction: Temporal bone fracture is usually associated with high energy head injury and can cause potentially severe complications. Immediate detection of temporal bone fracture and its complications helps in providing early and effective treatment, which if left untreated can have drastic consequences. Aim: The main objective of the study is to document the frequency and most prevalent type of temporal bone fracture, co-existing complications and to establish association between them. Materials and Methods: One year (2015-2016 retrospective study of head injured patients presented to the Emergency Department, Mysore Medical College And Research Institute was conducted. Age and gender distribution, cause of injury, radiological findings, otorhinolaryngological clinical presentations and treatment given were analyzed. The results were tabulated and were evaluated by Microsoft Excel 2013. Results: Out of 1450 patients evaluated for head injury 154 patients were positive for temporal bone fracture. Incidence of the study was 10.6%. Majority of the patients were male (66.2% and were between 30 to 40 years (50.1%. The major cause of injury was motor vehicle accidents (84.48%. Right side was involved (58.4% more than the left side (41.5%. Most common clinical presentation was otorrhea 68.8%, followed by otalgia (35.04% and otorhinorrhea (24.67%. Longitudinal type fracture was most frequent 56.25%. Otic capsule involvement was present in 35.93%. Most of the fractures were managed conservatively whereas surgery was required in 12 patients (7.7%. Conclusion: Temporal bone fractures were frequently associated with severe traumatic brain injury leading to serious long term morbidity and sequelae. CT-scan is of utmost importance in detection of fractures and its complications.

  18. Benign osteoblastoma of the temporal bone: case report and literature review

    Directory of Open Access Journals (Sweden)

    Yoo, Hea Jung

    2008-09-01

    Full Text Available Introduction: Osteoblastoma is defined as a lesion of bone, which is rich in osteoblasts, well-vascularized, and affects mainly the spinal cord. Although it is benign, it presents malignant features and simulates osteosarcoma. It affects mainly young adults between 20 and 40 years old. It rarely compromises the temporal bone. Objective: To present a rare case in the temporal bone with clinical malignant features whose the anatomopathological study has revealed to be a benign tumor. Method: The patient presented a tumor which affected the middle ear cleft, the mastoid, and the right middle fossa. The patient underwent a surgery and, in association with otorhinolaryngology, the tumor was completely dried out from the middle fossa and the middle ear. Fascia lata was used to repair the dural impairment and an acrylic plate was used to cover the bone impairment. Result: Post-surgery evolved positively, however the acrylic plate has moved itself and has stenosed the right external acoustic meato, which had to be removed 3 years later. The patient has had a good followup, which is still being carried through. Conclusion: Osteoblastoma is a multiform tumor that might affect the temporal bone with malignant features, which simulates osteosarcoma, but, in histological terms, it does not present any malignant signals. However, there is a need for a long post-surgery follow-up.

  19. Inflammatory Pseudotumor of the Temporal Bone: Three Cases and a Review of the Literature

    Directory of Open Access Journals (Sweden)

    Huiqin Tian

    2013-01-01

    Full Text Available Inflammatory pseudotumor (IP is a clinically aggressive but histologically benign condition of unknown cause. Its appearance in the temporal bone is uncommon. We present clinical, radiological, and histopathologic findings of three cases originating in the temporal bone. In the first case, a simultaneous IP of the temporal bone and parotid gland was found with histopathologic confirmation. In the second case, an enlarged cervical node, which was also believed to be related to IP, was observed accompanied with the temporal lesion. While the third case presented with chronic suppurative otitis media. Two of them were treated by surgery alone with complete resolve of the diseases. Another one underwent tympanomastoidectomy in combination with oral steroids, radiation, and chemotherapy, but the IP still recurred. A comprehensive review of the literature on clinical features of the temporal pseudotumor was conducted.

  20. Functional microimaging. A hierarchical investigation of bone failure behavior

    International Nuclear Information System (INIS)

    Voide, Romain; Lenthe, G.Harry van; Stauber, Martin; Schneider, Philipp; Thurner, Philipp J.; Mueller, Ralph; Wyss, Peter; Stampanoni, Marco

    2008-01-01

    Biomechanical testing is the gold standard to determine bone competence, and has been used extensively. Direct mechanical testing provides detailed information on overall bone mechanical and material properties, but fails in revealing local properties such as local deformations and strains and does not permit quantification of fracture progression. Therefore, we incorporated several imaging methods in our mechanical setups to get a better insight into bone deformation and failure characteristics on various levels of structural organization. Our aim was to develop an integrative approach for hierarchical investigation of bone, working at different scales of resolution ranging from the whole bone to its ultrastructure. Inbred strains of mice make useful models to study bone properties. In this study, we concentrated on C57BL/6 (B6) and in C3H/He (C3H) mice, two strains known for their differences in bone phenotype. At the macroscopic level, we used high-resolution and high-speed cameras which allowed to visualize global failure behavior and fracture initiation with high temporal resolution. This image data proved especially important when dealing with small bones such as murine femora. At the microscopic level, bone microstructure, i.e. trabecular architecture and cortical porosity, are known to influence bone strength and failure mechanisms significantly. For this reason, we developed an image-guided failure assessment technique, also referred to as functional microimaging, allowing direct time-lapsed three-dimensional visualization and computation of local displacements and strains for better quantification of fracture initiation and progression. While the resolution of conventional desktop micro-computed tomography is typically around a few micrometers, computer tomography systems based on highly brilliant synchrotron radiation X-ray sources permit to explore the sub-micrometer world. This allowed, for the first time, to uncover fully nondestructively the 3D

  1. Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality.

    Science.gov (United States)

    Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas

    2012-03-01

    The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols.

  2. Transparent model of temporal bone and vestibulocochlear organ made by 3D printing.

    Science.gov (United States)

    Suzuki, Ryoji; Taniguchi, Naoto; Uchida, Fujio; Ishizawa, Akimitsu; Kanatsu, Yoshinori; Zhou, Ming; Funakoshi, Kodai; Akashi, Hideo; Abe, Hiroshi

    2018-01-01

    The vestibulocochlear organ is composed of tiny complex structures embedded in the petrous part of the temporal bone. Landmarks on the temporal bone surface provide the only orientation guide for dissection, but these need to be removed during the course of dissection, making it difficult to grasp the underlying three-dimensional structures, especially for beginners during gross anatomy classes. We report herein an attempt to produce a transparent three-dimensional-printed model of the human ear. En bloc samples of the temporal bone from donated cadavers were subjected to computed tomography (CT) scanning, and on the basis of the data, the surface temporal bone was reconstructed with transparent resin and the vestibulocochlear organ with white resin to create a 1:1.5 scale model. The carotid canal was stuffed with red cotton, and the sigmoid sinus and internal jugular vein were filled with blue clay. In the inner ear, the internal acoustic meatus, cochlea, and semicircular canals were well reconstructed in detail with white resin. The three-dimensional relationships of the semicircular canals, spiral turns of the cochlea, and internal acoustic meatus were well recognizable from every direction through the transparent surface resin. The anterior semicircular canal was obvious immediately beneath the arcuate eminence, and the topographical relationships of the vestibulocochlear organ and adjacent great vessels were easily discernible. We consider that this transparent temporal bone model will be a very useful aid for better understanding of the gross anatomy of the vestibulocochlear organ.

  3. The evolution of active Lavina di Roncovetro landslides by multi-temporal high-resolution topographic data

    Science.gov (United States)

    Isola, Ilaria; Fornaciai, Alessandro; Favalli, Massimiliano; Gigli, Giovanni; Nannipieri, Luca; Mucchi, Lorenzo; Intrieri, Emanuele; Pizziolo, Marco; Bertolini, Giovanni; Trippi, Federico; Casagli, Nicola; Schina, Rosa; Carnevale, Ennio

    2017-04-01

    High-resolution topographic data has been collected over the Lavina di Roncovetro active landslide (Reggio Emilia, Italy) for about 3 years by using various methods and technologies. Tha Lavina di Roncovetro landslide can be considered as a fluid-viscous mudflow, which can reach a down flow maximum rate of 10 m/day. The landslide started between the middle and the end of the XIX century and since then it has had a rapid evolution mainly characterized by the rapid retrogression of the crown to the extent that now reaches the top of Mount Staffola. In the frame of EU Wireless Sensor Network for Ground Instability Monitoring - Wi-GIM project (LIFE12ENV/IT/001033) the Lavina di Roncovetro landslide has been periodically tracked using technologies that span from the LiDAR, both terrestrial and aerial, to the Structure from Motion (SfM) photogrammetry method based on Unmanned Aerial Vehicle (UAV) and aerial survey. These data are used to create six high-resolution Digital Terrain Models (DEMs), which imaged the landslide surface on March 2014, October 2014, June 2015, July 2015, January 2016 and December 2016. Multi-temporal high-resolution topographic data have been used for qualitative and quantitative morphometric analysis and topographic change detection of the landslide with the aim to estimate and map the volume of removed and/or accumulated material, the average rates of vertical and horizontal displacement and the deformation structures affecting the landslide over the investigated period.

  4. Attention-Based Recurrent Temporal Restricted Boltzmann Machine for Radar High Resolution Range Profile Sequence Recognition

    Directory of Open Access Journals (Sweden)

    Yifan Zhang

    2018-05-01

    Full Text Available The High Resolution Range Profile (HRRP recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR. However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.

  5. Primary Ewing's Sarcoma of the Temporal Bone: A Rare Case Report and Literature Review.

    Science.gov (United States)

    Gupta, Divya; Gulati, Achal; Purnima

    2017-09-01

    Ewing's sarcoma is a malignant, round cell tumor arising from the bones and primarily affecting children and adolescent, accounting for 3 % of all childhood malignancies. Although the long bones and the trunk are typically affected, rare cases of it involving isolated bones throughout the body have been reported. Involvement of the skull bones is rare, constituting 1-6 % of the total Ewing's sarcoma cases but those affecting the cranial bones are rarer still, constituting only 1 %. We describe an 8 months old infant having Ewing sarcoma, of the petrous and mastoid parts of temporal bone along with the occipital bone, whose clinical presentation mimicked mastoiditis with facial nerve palsy. We discuss the clinical and therapeutic course of an extensive primary Ewing sarcoma of the temporal bone, which was treated without performing surgery and review this entity's literature in detail.

  6. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  7. Peripheral Vasculature: High-Temporal- and High-Spatial-Resolution Three-dimensional Contrast-enhanced MR Angiography1

    Science.gov (United States)

    Haider, Clifton R.; Glockner, James F.; Stanson, Anthony W.; Riederer, Stephen J.

    2009-01-01

    Purpose: To prospectively evaluate the feasibility of performing high-spatial-resolution (1-mm isotropic) time-resolved three-dimensional (3D) contrast material–enhanced magnetic resonance (MR) angiography of the peripheral vasculature with Cartesian acquisition with projection-reconstruction–like sampling (CAPR) and eightfold accelerated two-dimensional (2D) sensitivity encoding (SENSE). Materials and Methods: All studies were approved by the institutional review board and were HIPAA compliant; written informed consent was obtained from all participants. There were 13 volunteers (mean age, 41.9; range, 27–53 years). The CAPR sequence was adapted to provide 1-mm isotropic spatial resolution and a 5-second frame time. Use of different receiver coil element sizes for those placed on the anterior-to-posterior versus left-to-right sides of the field of view reduced signal-to-noise ratio loss due to acceleration. Results from eight volunteers were rated independently by two radiologists according to prominence of artifact, arterial to venous separation, vessel sharpness, continuity of arterial signal intensity in major arteries (anterior and posterior tibial, peroneal), demarcation of origin of major arteries, and overall diagnostic image quality. MR angiographic results in two patients with peripheral vascular disease were compared with their results at computed tomographic angiography. Results: The sequence exhibited no image artifact adversely affecting diagnostic image quality. Temporal resolution was evaluated to be sufficient in all cases, even with known rapid arterial to venous transit. The vessels were graded to have excellent sharpness, continuity, and demarcation of the origins of the major arteries. Distal muscular branches and the communicating and perforating arteries were routinely seen. Excellent diagnostic quality rating was given for 15 (94%) of 16 evaluations. Conclusion: The feasibility of performing high-diagnostic-quality time-resolved 3D

  8. Anatomic and Quantitative Temporal Bone CT for Preoperative Assessment of Branchio-Oto-Renal Syndrome.

    Science.gov (United States)

    Ginat, D T; Ferro, L; Gluth, M B

    2016-12-01

    We describe the temporal bone computed tomography (CT) findings of an unusual case of branchio-oto-renal syndrome with ectopic ossicles that are partially located in the middle cranial fossa. We also describe quantitative temporal bone CT assessment pertaining to cochlear implantation in the setting of anomalous cochlear anatomy associated with this syndrome.

  9. Three-dimensional assessment of the temporal bone and mandible deformations in patients with congenital aural atresia.

    Science.gov (United States)

    Fu, Yaoyao; Li, Chenlong; Dai, Peidong; Zhang, Tianyu

    2017-10-01

    To investigate the deformations of temporal bone and mandible combined with congenital aural atresia. A total of 158 patients with congenital aural atresia were included in the study. The raw CT data of the temporal bone was imported into MIMICS v 12 and threshold dissection, region growing and three-dimensional (3D) calculation were used to calculate 3D models. The 3D characteristics of the temporal bone and upper part of mandible were assessed. The tympanic part of the temporal bone was all undeveloped. Of all the patients included, 14 patients were found to have severe maxillofacial malformations. Among them, 2 cases have floating arch, 4 cases have interrupted arch, 5 cases have mandibular processes hypoplasia and 3 cases have interrupted arch combined with severe maxillary malformation. Ten of the 14 patients were suffered from dysplasia of the mastoid part of the temporal bone as well. Maxillofacial malformations may sometimes coexist with congenital aural atresia. Otolaryngologists should not neglect the coexisted maxillofacial malformations and give timely referral to maxillofacial surgeons. Copyright © 2017. Published by Elsevier B.V.

  10. Definition of a temporal distribution index for high temporal resolution precipitation data over Peninsular Spain and the Balearic Islands: the fractal dimension; and its synoptic implications

    Science.gov (United States)

    Meseguer-Ruiz, Oliver; Osborn, Timothy J.; Sarricolea, Pablo; Jones, Philip D.; Cantos, Jorge Olcina; Serrano-Notivoli, Roberto; Martin-Vide, Javier

    2018-03-01

    Precipitation on the Spanish mainland and in the Balearic archipelago exhibits a high degree of spatial and temporal variability, regardless of the temporal resolution of the data considered. The fractal dimension indicates the property of self-similarity, and in the case of this study, wherein it is applied to the temporal behaviour of rainfall at a fine (10-min) resolution from a total of 48 observatories, it provides insights into its more or less convective nature. The methodology of Jenkinson & Collison which automatically classifies synoptic situations at the surface, as well as an adaptation of this methodology at 500 hPa, was applied in order to gain insights into the synoptic implications of extreme values of the fractal dimension. The highest fractal dimension values in the study area were observed in places with precipitation that has a more random behaviour over time with generally high totals. Four different regions in which the atmospheric mechanisms giving rise to precipitation at the surface differ from the corresponding above-ground mechanisms have been identified in the study area based on the fractal dimension. In the north of the Iberian Peninsula, high fractal dimension values are linked to a lower frequency of anticyclonic situations, whereas the opposite occurs in the central region. In the Mediterranean, higher fractal dimension values are associated with a higher frequency of the anticyclonic type and a lower frequency of the advective type from the east. In the south, lower fractal dimension values indicate higher frequency with respect to the anticyclonic type from the east and lower frequency with respect to the cyclonic type.

  11. Emotional cues enhance the attentional effects on spatial and temporal resolution.

    Science.gov (United States)

    Bocanegra, Bruno R; Zeelenberg, René

    2011-12-01

    In the present study, we demonstrated that the emotional significance of a spatial cue enhances the effect of covert attention on spatial and temporal resolution (i.e., our ability to discriminate small spatial details and fast temporal flicker). Our results indicated that fearful face cues, as compared with neutral face cues, enhanced the attentional benefits in spatial resolution but also enhanced the attentional deficits in temporal resolution. Furthermore, we observed that the overall magnitudes of individuals' attentional effects correlated strongly with the magnitude of the emotion × attention interaction effect. Combined, these findings provide strong support for the idea that emotion enhances the strength of a cue's attentional response.

  12. Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera

    Directory of Open Access Journals (Sweden)

    Wei Feng

    2016-03-01

    Full Text Available High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device or CMOS (complementary metal oxide semiconductor camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second gain in temporal resolution by using a 25 fps camera.

  13. High spatial and temporal resolution cell manipulation techniques in microchannels.

    Science.gov (United States)

    Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P

    2016-03-21

    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.

  14. Spatial and temporal variations of the callus mechanical properties during bone transport

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Macias, J.; Reina-Romo, E.; Pajares, A.; Miranda, P.; Dominguez, J.

    2016-07-01

    Nanoindentation allows obtaining the elastic modulus and the hardness of materials point by point. This technique has been used to assess the mechanical propeties of the callus during fracture healing. However, as fas as the authors know, the evaluation of mechanical properties by this technique of the distraction and the docking-site calluses generated during bone transport have not been reported yet. Therefore, the aim of this work is using nanoindentation to assess the spatial and temporal variation of the elastic modulus of the woven bone generated during bone transport. Nanoindentation measurements were carried out using 6 samples from sheep sacrificed at different stages of the bone transport experiments. The results obtained show an important heterogeneity of the elastic modulus of the woven bone without spatial trends. In the case of temporal variation, a clear increase of the mean elastic modulus with time after surgery was observed (from 7±2GPa 35 days after surgery to 14±2GPa 525 days after surgery in the distraction callus and a similar increase in the docking site callus). Comparison with the evolution of the elastic modulus in the woven bone generated during fracture healing shows that mechanical properties increase slower in the case of the woven bone generated during bone transport. (Author)

  15. Differential diagnosis between chronic otitis media with and without cholesteatoma by temporal bone CT: focus on bone change and mass effect

    International Nuclear Information System (INIS)

    Jung, Cheol Kyu; Park, Dong Woo; Seong, Jin Yong; Lee, Kak Soo; Park Choong Ki; Lee, Seung Ro; Hahm, Chang Kok

    2000-01-01

    In order to determine specific differences, we compared the temporal bone CT findings of chronic otitis media (COM) with and without cholesteatoma, focusing on bone change. Between 1997 and 1998, 82 patients (84 cases) underwent temporal bone CT and were shown to have COM, with or without cholesteatoma after mastoidectomy and tympanoplasty. There were 36 cases of COM with cholesteatoma (26 patients, M:F =3D 11:15; age range, 16-61 (mean, 36,2) years), and 58 cases without chlesteatoma (56 patients, M:F =3D 25:31, age range, 15-61 (mean, 36.2) years). The findings of temporal bone CT were analysed at the point of bony changes including erosion and medial displacement of ossicles (malleus, incus, and stapes), erosion or destruction of the scutum, tegmen, facial canal, and lateral semicircular canal, and ballooning of the tympanic cavity and mastoid antrum. In addition, the soft tissue changes seen on temporal bone CT were analyzed at the site of lateral bulging of soft tissue in Prussak's space, perforation of the pars flaccida, tympanic membrane retraction, and tympanosclerosis. We retrospectively compared the findings of temporal bone CT with the surgical findings, and to assess statistical significance, the Chi-square test was used. Bone erosion or destruction was seen in 36.2% of COM cases without cholesteatoma, and in 96.2% of cases with cholesteatoma. Comparing COM with and without cholesteatoma, the erosion of ossicles including the malleus (81%, 24%), incus (88%, 14%), stapes (58%, 10%), scutum (88%, 10%), facial canal (8%, 0%), and lateral semicircular canal (8%, 0%), was more common in COM with cholesteatoma (p-value less than 0.05), with the exception of erosion of the tegmen (8%, 3%). Other bony changes including medial displacement of ossicles (27%, 3%), ballooning of tympanic cavity and mastoid antrum (96%, 16%), and the soft tissue changes including lateral bulging of soft tissue in Prussak's space (58%, 14%) and perforation of the pars flaccida (35

  16. Differential diagnosis between chronic otitis media with and without cholesteatoma by temporal bone CT: focus on bone change and mass effect

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Cheol Kyu; Park, Dong Woo; Seong, Jin Yong; Lee, Kak Soo; Park Choong Ki; Lee, Seung Ro; Hahm, Chang Kok [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2000-01-01

    In order to determine specific differences, we compared the temporal bone CT findings of chronic otitis media (COM) with and without cholesteatoma, focusing on bone change. Between 1997 and 1998, 82 patients (84 cases) underwent temporal bone CT and were shown to have COM, with or without cholesteatoma after mastoidectomy and tympanoplasty. There were 36 cases of COM with cholesteatoma (26 patients, M:F =3D 11:15; age range, 16-61 (mean, 36,2) years), and 58 cases without chlesteatoma (56 patients, M:F =3D 25:31, age range, 15-61 (mean, 36.2) years). The findings of temporal bone CT were analysed at the point of bony changes including erosion and medial displacement of ossicles (malleus, incus, and stapes), erosion or destruction of the scutum, tegmen, facial canal, and lateral semicircular canal, and ballooning of the tympanic cavity and mastoid antrum. In addition, the soft tissue changes seen on temporal bone CT were analyzed at the site of lateral bulging of soft tissue in Prussak's space, perforation of the pars flaccida, tympanic membrane retraction, and tympanosclerosis. We retrospectively compared the findings of temporal bone CT with the surgical findings, and to assess statistical significance, the Chi-square test was used. Bone erosion or destruction was seen in 36.2% of COM cases without cholesteatoma, and in 96.2% of cases with cholesteatoma. Comparing COM with and without cholesteatoma, the erosion of ossicles including the malleus (81%, 24%), incus (88%, 14%), stapes (58%, 10%), scutum (88%, 10%), facial canal (8%, 0%), and lateral semicircular canal (8%, 0%), was more common in COM with cholesteatoma (p-value less than 0.05), with the exception of erosion of the tegmen (8%, 3%). Other bony changes including medial displacement of ossicles (27%, 3%), ballooning of tympanic cavity and mastoid antrum (96%, 16%), and the soft tissue changes including lateral bulging of soft tissue in Prussak's space (58%, 14%) and perforation of the pars

  17. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    International Nuclear Information System (INIS)

    Kobayashi, T.; Yoshinuma, M.; Ohdachi, S.; Ida, K.; Itoh, K.; Moon, C.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I.; Inagaki, S.

    2016-01-01

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  18. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T., E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp; Yoshinuma, M.; Ohdachi, S. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Itoh, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Moon, C.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I. [National Institute for Fusion Science, Toki 509-5292 (Japan); Inagaki, S. [Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan)

    2016-04-15

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  19. Three cases of temporal bone osteoradionecrosis after nasopharyngeal carcinoma treatment

    International Nuclear Information System (INIS)

    Yamatodani, Takashi; Mizuta, Kunihiro; Nakanishi, Hiroshi; Takizawa, Yoshinori; Hosokawa, Kumiko; Hosokawa, Seiji; Mineta, Hiroyuki

    2012-01-01

    Osteoradionecrosis is most commonly caused by radiation-induced injury. We report on 3 cases of temporal bone necrosis that occurred after chemoradiotherapy for nasopharyngeal carcinoma performed more than 10 years previously. Case 1 was a 42-year-old woman who had nasopharyngeal carcinoma in 1991. The patient underwent chemoradiotherapy (70 Gy total) in 1991, and gamma knife irradiation (20 Gy) in 1998 for local recurrence. The bone in the posterior wall of the left external auditory canal began to be exposed in 2003. Otorrhea from the left ear increased and we found a skin defect and ulcer formation in the postauricular region. We performed radical mastoidectomy and debridement on April, 2010. The area of the defect was covered and filled in with a pedicle musculoperiosteal flap. The intra-aural skin became dry in 6 months, however, she lost consciousness due to a temporal lobe abscess and underwent an emergency operation on April, 2011. After operation, the patient recovered with no neurological symptoms and infections up to the present date. Case 2 was a 58-year-old man who had nasopharyngeal carcinoma in 2001. The patient underwent chemoradiotherapy (66 Gy total) in 2001, and X knife irradiation (15 Gy) 3 months later due to the remaining tumor. The left posterior ear canal wall collapsed and the tympanic membrane retracted with pooling epithelial debris appearing in 2007. Left facial nerve palsy was seen in December 2010. We performed a mastoidectomy on January, 2011. Cholesteatoma and necrotic granuloma with fragile bone filled the mastoid cavity, and a facial canal bone defect was seen. Bone necrosis with cholesteatoma and inflammatory granuloma was revealed by the pathological examination. The facial palsy improved after the operation. Case 3 was a 59-year-old man who had left abducens palsy with nasopharyngeal carcinoma invading the clivus. The patient underwent chemoradiotherapy (60 Gy total) in 2001, and X knife irradiation (24 Gy) 4 months later for

  20. Endolymphatic Sac Tumors and Papillary Adenocarcinoma of the Temporal Bone:Role of MRI and CT

    OpenAIRE

    Mahmood F. Mafee; Hemant Shah

    2003-01-01

    Adenomatous Tumors of the temporal bone are rare. Benign adenomatous neoplasms (adenoma) of the middle ear are a distinctive benign tumor based on histological and clinical observations. Papillary adenocarcinomas of the temporal bone are invasive tumors. Although, the exact site of origin of these neoplasms is not identified, owing to the local bone destruction (usually centered at posterior petromastoid plate), the general consensus favors the endolymphatic sac as being the origin of these t...

  1. Interactive atlas using web browser: CT and MRI of the temporal bone

    International Nuclear Information System (INIS)

    Chung, Eun Chul; Youn, Eun Kyung; Lee, Young Uk

    2000-01-01

    The purposes of this study were to construct an interactive atlas of the temporal bone using a web-browser and to provide a template for web-based teaching files, using free and shared applets and scripts on the internet. HRCT and MR images of the temporal bone including its normal anatomy, tumors, trauma, inflammation, anomalies and vascular diseases were used in this study. Acquired radiologic images were transformed to GIF/JPG formats and to achieve appropriate image quality, were retouched. Text and image files of normal anatomy and diseases were written by HTML. JavaScript and applets were inserted in the HTML files for the interactive display of images and texts. In order to review anatomic features and diseases, a search index was also attached to the last part of the file. Using interactive images and text, temporal bone anatomy and disorders were displayed. Scripts and applets were also useful for indicating specific points of interest when a mouse was placed over the anatomic sites. The atlas may be viewed in the form of a CD-ROM, or via the internet using any computer platform or web-browser. This web-based teaching file of the temporal bone offers dynamic and interactive education. It can be usefully employed as a template for the production of interactive educational materials, offering JavaScript and providing suitable input for classes. It can replace texts and imaging contents. (author)

  2. Locating the scala media in the fixed human temporal bone for therapeutic access: a preliminary study.

    Science.gov (United States)

    Pau, H; Fagan, P; Oleskevich, S

    2006-11-01

    To investigate the location of the scala media in relation to the round window niche in human temporal bones. Ten human temporal bones were investigated by radical mastoidectomy and promontory drill-out. Temporal bone laboratory. The distance from the scala media to the anterior edge of the round window niche, measured by Fisch's stapedectomy measuring cylinders. The scala media was identified at the transection point of a vertical line 1.6 to 2.2 mm (mean=1.8 mm; standard deviation=0.2) anterior to the anterior edge of the round window niche and a horizontal line 0.2 mm inferior to the lower border of the oval window. This report demonstrates the point of entry into the scala media via the promontory in fixed temporal bone models, which may provide a site of entry for stem cells and gene therapy insertion.

  3. Angioinvasive pulmonary aspergillosis after allogeneic bone marrow transplantation: clinical and high-resolution computed tomography findings in 12 cases

    OpenAIRE

    Gasparetto, Emerson L.; Souza, Carolina A.; Tazoniero, Priscilla; Davaus, Taisa; Escuissato, Dante L.; Marchiori, Edson

    2007-01-01

    The aim of this study was to present the clinical and high-resolution CT scan findings of angioinvasive pulmonary aspergillosis (APA) in 12 patients who underwent allogeneic bone marrow transplantation (BMT). The CT scans were reviewed by three chest radiologists who assessed the pattern and distribution of findings by consent. There were 7 (58%) female and 5 (42%) male patients, with aging between 5 and 50 years (average of 26 years). All patients were submitted to BMT for the treatment of h...

  4. Three dimensional CT of stapes. Stapedial imagings in dry temporal bone and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Edamatsu, Hideo; Kubota, Osamu; Yamashita, Koichi [Kanazawa Medical Univ., Ishikawa (Japan)

    1995-03-01

    This study was performed to evaluate the usefulness and limitations of three dimensional (3-D) imagings of stapes in the middle ear by high speed helical CT. One dissected human temporal bone, ten normal and diseased ears were scanned with a slice of 1.0 mm and reconstructed in a thickness of 0.2-0.5 mm. Every specimen of 3-D can be observed in any plane and from any direction. Ossicular imagings of the temporal bone in 3-D were reconstructed as if the malleus, incus and stapes were observed under microscope. The whole structure of stapes was impossible to be represented by two dimensional CT heretofore in use, but 3-D in our study showed the head, crus and foot plate of the stapes in detail. Stapedial imagings of 3-D CT in normal ears showed the same findings as those recorded in temporal bone. Preoperative diagnostic findings of ossicles in the affected ears were very useful. Especially in ossicular anomalies, 3-D CT was positive in diagnosis and its accuracies were confirmed with operative observation. For the postoperative evaluation concerning the ossicular reconstruction, i.e. TORP and PORP, 3-D CT was also important method. It could present an anatomical relation between those prosthesis and the oval window. High speed helical CT can scan an object more quickly and clearly than formerly used CT, and its biological damage for human is less than that of the others. 3-D CT can be more clearly reconstructed with helical CT than former CT. (author).

  5. Facial nerve palsy associated with a cystic lesion of the temporal bone.

    Science.gov (United States)

    Kim, Na Hyun; Shin, Seung-Ho

    2014-03-01

    Facial nerve palsy results in the loss of facial expression and is most commonly caused by a benign, self-limiting inflammatory condition known as Bell palsy. However, there are other conditions that may cause facial paralysis, such as neoplastic conditions of the facial nerve, traumatic nerve injury, and temporal bone lesions. We present a case of facial nerve palsy concurrent with a benign cystic lesion of the temporal bone, adjacent to the tympanic segment of the facial nerve. The patient's symptoms subsided after facial nerve decompression via a transmastoid approach.

  6. Chondroblastoma of the temporal bone

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yuko; Murakami, Ryusuke; Toba, Masahiro; Ichikawa, Taro [Dept. of Radiology, Nippon Medical School, Tokyo (Japan); Kanazawa, Ryuzaburo; Sanno, Naoko; Shimura, Toshiro [Dept. of Neurosurgery, Nippon Medical School, Tokyo (Japan); Sawada, Namie; Hosone, Masaru [Dept. of Pathology, Nippon Medical School, Tokyo (Japan); Kumazaki, Tatsuo [Dept. of Radiology, Nippon Medical School, Tokyo (Japan)

    2001-12-01

    A rare case of chondroblastoma arising from the temporal bone that occurred in a 60-year-old woman is reported. The tumor appeared well demarcated and osteolytic on the radiographs. CT scan clearly depicted marginal and central calcification in the tumor. MR imaging demonstrated two components in the tumor: a solid component with predominantly low signal intensities on both T1- and T2-weighted sequences, and a multilocular cystic component with T1- and T2-elongation and fluid-fluid levels on the T2-weighted images. Postcontrast MR imaging revealed marked enhancement in the solid component and the septa of the cystic component. (orig.)

  7. QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks

    Science.gov (United States)

    Minaudo, Camille; Curie, Florence; Jullian, Yann; Gassama, Nathalie; Moatar, Florentina

    2018-04-01

    To allow climate change impact assessment of water quality in river systems, the scientific community lacks efficient deterministic models able to simulate hydrological and biogeochemical processes in drainage networks at the regional scale, with high temporal resolution and water temperature explicitly determined. The model QUALity-NETwork (QUAL-NET) was developed and tested on the Middle Loire River Corridor, a sub-catchment of the Loire River in France, prone to eutrophication. Hourly variations computed efficiently by the model helped disentangle the complex interactions existing between hydrological and biological processes across different timescales. Phosphorus (P) availability was the most constraining factor for phytoplankton development in the Loire River, but simulating bacterial dynamics in QUAL-NET surprisingly evidenced large amounts of organic matter recycled within the water column through the microbial loop, which delivered significant fluxes of available P and enhanced phytoplankton growth. This explained why severe blooms still occur in the Loire River despite large P input reductions since 1990. QUAL-NET could be used to study past evolutions or predict future trajectories under climate change and land use scenarios.

  8. QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks

    Directory of Open Access Journals (Sweden)

    C. Minaudo

    2018-04-01

    Full Text Available To allow climate change impact assessment of water quality in river systems, the scientific community lacks efficient deterministic models able to simulate hydrological and biogeochemical processes in drainage networks at the regional scale, with high temporal resolution and water temperature explicitly determined. The model QUALity-NETwork (QUAL-NET was developed and tested on the Middle Loire River Corridor, a sub-catchment of the Loire River in France, prone to eutrophication. Hourly variations computed efficiently by the model helped disentangle the complex interactions existing between hydrological and biological processes across different timescales. Phosphorus (P availability was the most constraining factor for phytoplankton development in the Loire River, but simulating bacterial dynamics in QUAL-NET surprisingly evidenced large amounts of organic matter recycled within the water column through the microbial loop, which delivered significant fluxes of available P and enhanced phytoplankton growth. This explained why severe blooms still occur in the Loire River despite large P input reductions since 1990. QUAL-NET could be used to study past evolutions or predict future trajectories under climate change and land use scenarios.

  9. Cholesterol granuloma of temporal bone: CT and MR findings

    International Nuclear Information System (INIS)

    Ruiz Jauriguizuria, J.C.; Ferrero Collado, A.; Ereno Ealo, M.J.; Grande Icaran, D.

    1994-01-01

    Three cases of cholesterol granuloma of the left temporal bone are presented, two located in the petrous apex and the other at the otomastoid level. One of the patients had a history of mastoid surgery and the other surgery of the bone ridge. The three cases were confirmed histologically following surgical resection. The etiopathogenesis of the lesion is discussed, as are the clinical, histological and radiological features, with a broad description of the computed tomography and magnetic resonance findings. The differential diagnosis is also dealt with. (Author)

  10. Histology of sheep temporal bone A histologia do osso temporal do ovino

    Directory of Open Access Journals (Sweden)

    Hormy Biavatti Soares

    2011-06-01

    Full Text Available Previous studies suggest that there is an excellent correlation between the morphology and dimensions of ear structures in sheep and human beings. AIM: To analyze and describe the histology of structures inside the temporal bone in sheep. MATERIAL AND METHODS: A total of 307 slides obtained from vertical and horizontal sections of the temporal bone of eight sheep were analyzed. Structures were classified as similar or not similar to human structures, based on cellularity and histological architecture parameters. STUDY DESIGN: Experimental. RESULTS: The study revealed similarities between sheep and humans in terms of type of epithelium, bone component, spaces in the auditory meatus, in addition to a marked histological resemblance of cellularity and that of the structures surrounding the ear. The main differences observed were the presence of an anatomic bulla, the absence of aeration in the mastoid and the inferior opening of the hypotympanum into the bulla in sheep. CONCLUSION: Based on these observations, it is possible to conclude that sheep represent an adequate option for training and research in otologic surgery.Resultados prévios apontam para uma ótima correlação entre a morfologia e as dimensões das estruturas anatômicas de ovelhas e seres humanos. OBJETIVO: Analisar e descrever a histologia das estruturas que compõem o osso temporal do ovino. MATERIAL E MÉTODO: Um total de 307 lâminas obtidas a partir de secções verticais e horizontais do osso temporal de oito ovelhas foi analisado. As estruturas foram caracterizadas como semelhantes ou não semelhantes às do ser humano, com base na celularidade e na arquitetura histológica das estruturas. DESENHO CIENTÍFICO: Experimental. RESULTADOS: Constatou-se semelhança quanto ao tipo de epitélio, componente ósseo, espaços da fenda auditiva e arquitetura, além da semelhança, em nível histológico, tanto dos componentes celulares como das estruturas contíguas ao ouvido. As

  11. Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses

    International Nuclear Information System (INIS)

    Polli, D.; Lanzani, G.; Brida, D.; Cerullo, G.; Mukamel, S.

    2010-01-01

    This paper introduces a general theoretical description of femtosecond pump-probe spectroscopy with chirped pulses whose joint spectral and temporal profile is expressed by Wigner spectrograms. We demonstrate that the actual experimental time resolution intimately depends on the pulse-sample interaction and that the commonly used instrumental response function needs to be replaced by a sample-dependent effective response function. We also show that, using the proper configurations in excitation and/or detection, it is possible to overcome the temporal smearing of the measured dynamics due to chirp-induced pulse broadening and recover the temporal resolution that would be afforded by the transform-limited pulses. We verify these predictions with experiments using broadband chirped pump and probe pulses. Our results allow optimization of the temporal resolution in the common case when the chirp of the pump and/or probe pulse is not corrected and may be extended to a broad range of time-resolved experiments.

  12. A new method for measuring temporal resolution in electrocardiogram-gated reconstruction image with area-detector computed tomography

    International Nuclear Information System (INIS)

    Kaneko, Takeshi; Takagi, Masachika; Kato, Ryohei; Anno, Hirofumi; Kobayashi, Masanao; Yoshimi, Satoshi; Sanda, Yoshihiro; Katada, Kazuhiro

    2012-01-01

    The purpose of this study was to design and construct a phantom for using motion artifact in the electrocardiogram (ECG)-gated reconstruction image. In addition, the temporal resolution under various conditions was estimated. A stepping motor was used to move the phantom over an arc in a reciprocating manner. The program for controlling the stepping motor permitted the stationary period and the heart rate to be adjusted as desired. Images of the phantom were obtained using a 320-row area-detector computed tomography (ADCT) system under various conditions using the ECG-gated reconstruction method. For estimation, the reconstruction phase was continuously changed and the motion artifacts were quantitatively assessed. The temporal resolution was calculated from the number of motion-free images. Changes in the temporal resolution according to heart rate, rotation time, the number of reconstruction segments and acquisition position in z-axis were also investigated. The measured temporal resolution of ECG-gated half reconstruction is 180 ms, which is in good agreement with the nominal temporal resolution of 175 ms. The measured temporal resolution of ECG-gated segmental reconstruction is in good agreement with the nominal temporal resolution in most cases. The estimated temporal resolution improved to approach the nominal temporal resolution as the number of reconstruction segments was increased. Temporal resolution in changing acquisition position is equal. This study shows that we could design a new phantom for estimating temporal resolution. (author)

  13. An investigation into the effects of temporal resolution on hepatic dynamic contrast-enhanced MRI in volunteers and in patients with hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Gill, Andrew B; Graves, Martin J; Lomas, David J; Black, Richard T; Bowden, David J; Priest, Andrew N

    2014-01-01

    This study investigated the effect of temporal resolution on the dual-input pharmacokinetic (PK) modelling of dynamic contrast-enhanced MRI (DCE-MRI) data from normal volunteer livers and from patients with hepatocellular carcinoma. Eleven volunteers and five patients were examined at 3 T. Two sections, one optimized for the vascular input functions (VIF) and one for the tissue, were imaged within a single heart-beat (HB) using a saturation-recovery fast gradient echo sequence. The data was analysed using a dual-input single-compartment PK model. The VIFs and/or uptake curves were then temporally sub-sampled (at interval ▵t = [2–20] s) before being subject to the same PK analysis. Statistical comparisons of tumour and normal tissue PK parameter values using a 5% significance level gave rise to the same study results when temporally sub-sampling the VIFs to HB < ▵t <4 s. However, sub-sampling to ▵t > 4 s did adversely affect the statistical comparisons. Temporal sub-sampling of just the liver/tumour tissue uptake curves at ▵t ≤ 20 s, whilst using high temporal resolution VIFs, did not substantially affect PK parameter statistical comparisons. In conclusion, there is no practical advantage to be gained from acquiring very high temporal resolution hepatic DCE-MRI data. Instead the high temporal resolution could be usefully traded for increased spatial resolution or SNR. (paper)

  14. Sclerosteosis involving the temporal bone: histopathologic aspects.

    Science.gov (United States)

    Nager, G T; Hamersma, H

    1986-01-01

    Sclerosteosis is a rare, potentially lethal, autosomal recessive, progressive craniotubular sclerosing bone dysplasia with characteristic facial and skeletal features. The temporal bone changes include a marked increase in overall size, extensive sclerosis, narrowing of the external auditory canal, and severe constriction of the internal auditory meatus, fallopian canal, eustachian tube, and middle ear cleft. Attenuation of the bony canals of the 9th, 10th, and 11th cranial nerves, reduction in size of the internal carotid artery, and severe obliteration of the sigmoid sinus and jugular bulb also occur. Loss of hearing, generally bilateral, is a frequent symptom. It often manifests in early childhood and initially is expressed as sound conduction impairment. Later, a sensorineural hearing loss and loss of vestibular nerve function often develop. Impairment of facial nerve function is another feature occasionally present at birth. In the beginning, a unilateral intermittent facial weakness may occur which eventually progresses to a bilateral permanent facial paresis. The histologic examination of the temporal bones from a patient with sclerosteosis explains the mechanisms involved in the progressive impairment of sound conduction and loss of cochlear, vestibular, and facial nerve function. There is a decrease of the arterial blood supply to the brain and an obstruction of the venous drainage from it. The histopathology reveals the obstacles to decompression of the middle ear cleft, ossicular chain, internal auditory and facial canals, and the risks, and in many instances the contraindications, to such procedures. On the other hand, decompression of the sigmoid sinus and jugular bulb should be considered as an additional life-saving procedure in conjunction with the prophylactic craniotomy recommended in all adult patients.

  15. The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences

    Science.gov (United States)

    Schwalbe, Ellen; Maas, Hans-Gerd

    2017-12-01

    This paper presents a comprehensive method for the determination of glacier surface motion vector fields at high spatial and temporal resolution. These vector fields can be derived from monocular terrestrial camera image sequences and are a valuable data source for glaciological analysis of the motion behaviour of glaciers. The measurement concepts for the acquisition of image sequences are presented, and an automated monoscopic image sequence processing chain is developed. Motion vector fields can be derived with high precision by applying automatic subpixel-accuracy image matching techniques on grey value patterns in the image sequences. Well-established matching techniques have been adapted to the special characteristics of the glacier data in order to achieve high reliability in automatic image sequence processing, including the handling of moving shadows as well as motion effects induced by small instabilities in the camera set-up. Suitable geo-referencing techniques were developed to transform image measurements into a reference coordinate system.The result of monoscopic image sequence analysis is a dense raster of glacier surface point trajectories for each image sequence. Each translation vector component in these trajectories can be determined with an accuracy of a few centimetres for points at a distance of several kilometres from the camera. Extensive practical validation experiments have shown that motion vector and trajectory fields derived from monocular image sequences can be used for the determination of high-resolution velocity fields of glaciers, including the analysis of tidal effects on glacier movement, the investigation of a glacier's motion behaviour during calving events, the determination of the position and migration of the grounding line and the detection of subglacial channels during glacier lake outburst floods.

  16. Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training.

    Science.gov (United States)

    Fang, Te-Yung; Wang, Pa-Chun; Liu, Chih-Hsien; Su, Mu-Chun; Yeh, Shih-Ching

    2014-02-01

    Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students. Copyright © 2013. Published by Elsevier Ireland Ltd.

  17. Bone Microarchitecture and Estimated Strength in 499 Adult Danish Women and Men: A Cross-Sectional, Population-Based High-Resolution Peripheral Quantitative Computed Tomographic Study on Peak Bone Structure

    DEFF Research Database (Denmark)

    Hansen, Stinus; Shanbhogue, V.; Folkestad, L.

    2014-01-01

    High-resolution peripheral quantitative computed tomography (HR-pQCT) allows in vivo assessment of cortical and trabecular bone mineral density (BMD), geometry, and microarchitecture at the distal radius and tibia in unprecedented detail. In this cross-sectional study, we provide normative and de...... and descriptive HR-pQCT data from a large population-based sample of Danish Caucasian women and men (n = 499) aged 20-80 years. In young adults (...

  18. Validation of exposure visualization and audible distance emission for navigated temporal bone drilling in phantoms.

    Directory of Open Access Journals (Sweden)

    Eduard H J Voormolen

    Full Text Available BACKGROUND: A neuronavigation interface with extended function as compared with current systems was developed to aid during temporal bone surgery. The interface, named EVADE, updates the prior anatomical image and visualizes the bone drilling process virtually in real-time without need for intra-operative imaging. Furthermore, EVADE continuously calculates the distance from the drill tip to segmented temporal bone critical structures (e.g. the sigmoid sinus and facial nerve and produces audiovisual warnings if the surgeon drills in too close vicinity. The aim of this study was to evaluate the accuracy and surgical utility of EVADE in physical phantoms. METHODOLOGY/PRINCIPAL FINDINGS: We performed 228 measurements assessing the position accuracy of tracking a navigated drill in the operating theatre. A mean target registration error of 1.33±0.61 mm with a maximum error of 3.04 mm was found. Five neurosurgeons each drilled two temporal bone phantoms, once using EVADE, and once using a standard neuronavigation interface. While using standard neuronavigation the surgeons damaged three modeled temporal bone critical structures. No structure was hit by surgeons utilizing EVADE. Surgeons felt better orientated and thought they had improved tumor exposure with EVADE. Furthermore, we compared the distances between surface meshes of the virtual drill cavities created by EVADE to actual drill cavities: average maximum errors of 2.54±0.49 mm and -2.70±0.48 mm were found. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that EVADE gives accurate feedback which reduces risks of harming modeled critical structures compared to a standard neuronavigation interface during temporal bone phantom drilling.

  19. Creation of a 3D printed temporal bone model from clinical CT data.

    Science.gov (United States)

    Cohen, Joss; Reyes, Samuel A

    2015-01-01

    Generate and describe the process of creating a 3D printed, rapid prototype temporal bone model from clinical quality CT images. We describe a technique to create an accurate, alterable, and reproducible rapid prototype temporal bone model using freely available software to segment clinical CT data and generate three different 3D models composed of ABS plastic. Each model was evaluated based on the appearance and size of anatomical structures and response to surgical drilling. Mastoid air cells had retained scaffolding material in the initial versions. This required modifying the model to allow drainage of the scaffolding material. External auditory canal dimensions were similar to those measured from the clinical data. Malleus, incus, oval window, round window, promontory, horizontal semicircular canal, and mastoid segment of the facial nerve canal were identified in all models. The stapes was only partially formed in two models and absent in the third. Qualitative feel of the ABS plastic was softer than bone. The pate produced by drilling was similar to bone dust when appropriate irrigation was used. We present a rapid prototype temporal bone model made based on clinical CT data using 3D printing technology. The model can be made quickly and inexpensively enough to have potential applications for educational training. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Sex & vision I: Spatio-temporal resolution

    Directory of Open Access Journals (Sweden)

    Abramov Israel

    2012-09-01

    Full Text Available Abstract Background Cerebral cortex has a very large number of testosterone receptors, which could be a basis for sex differences in sensory functions. For example, audition has clear sex differences, which are related to serum testosterone levels. Of all major sensory systems only vision has not been examined for sex differences, which is surprising because occipital lobe (primary visual projection area may have the highest density of testosterone receptors in the cortex. We have examined a basic visual function: spatial and temporal pattern resolution and acuity. Methods We tested large groups of young adults with normal vision. They were screened with a battery of standard tests that examined acuity, color vision, and stereopsis. We sampled the visual system’s contrast-sensitivity function (CSF across the entire spatio-temporal space: 6 spatial frequencies at each of 5 temporal rates. Stimuli were gratings with sinusoidal luminance profiles generated on a special-purpose computer screen; their contrast was also sinusoidally modulated in time. We measured threshold contrasts using a criterion-free (forced-choice, adaptive psychophysical method (QUEST algorithm. Also, each individual’s acuity limit was estimated by fitting his or her data with a model and extrapolating to find the spatial frequency corresponding to 100% contrast. Results At a very low temporal rate, the spatial CSF was the canonical inverted-U; but for higher temporal rates, the maxima of the spatial CSFs shifted: Observers lost sensitivity at high spatial frequencies and gained sensitivity at low frequencies; also, all the maxima of the CSFs shifted by about the same amount in spatial frequency. Main effect: there was a significant (ANOVA sex difference. Across the entire spatio-temporal domain, males were more sensitive, especially at higher spatial frequencies; similarly males had significantly better acuity at all temporal rates. Conclusion As with other sensory systems

  1. Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution.

    Science.gov (United States)

    Göstl, Robert; Senf, Antti; Hecht, Stefan

    2014-03-21

    The foundation of the chemical enterprise has always been the creation of new molecular entities, such as pharmaceuticals or polymeric materials. Over the past decades, this continuing effort of designing compounds with improved properties has been complemented by a strong effort to render their preparation (more) sustainable by implementing atom as well as energy economic strategies. Therefore, synthetic chemistry is typically concerned with making specific bonds and connections in a highly selective and efficient manner. However, to increase the degree of sophistication and expand the scope of our work, we argue that the modern aspiring chemist should in addition be concerned with attaining (better) control over when and where chemical bonds are being made or broken. For this purpose, photoswitchable molecular systems, which allow for external modulation of chemical reactions by light, are being developed and in this review we are covering the current state of the art of this exciting new field. These "remote-controlled synthetic tools" provide a remarkable opportunity to perform chemical transformations with high spatial and temporal resolution and should therefore allow regulating biological processes as well as material and device performance.

  2. Analysing the Advantages of High Temporal Resolution Geostationary MSG SEVIRI Data Compared to Polar Operational Environmental Satellite Data for Land Surface Monitoring in Africa

    Science.gov (United States)

    Fensholt, R.; Anyamba, A.; Huber, S.; Proud, S. R.; Tucker, C. J.; Small, J.; Pak, E.; Rasmussen, M. O.; Sandholt, I.; Shisanya, C.

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on-board MSG with an imaging capability every 15 minutes which is substantially greater than any temporal resolution that can be obtained from existing polar operational environmental satellites (POES) systems currently in use for environmental monitoring. Different areas of the African continent were affected by droughts and floods in 2008 caused by periods of abnormally low and high rainfall, respectively. Based on the effectiveness of monitoring these events from Earth Observation (EO) data the current analyses show that the new generation of geostationary remote sensing data can provide higher temporal resolution cloud-free (less than 5 days) measurements of the environment as compared to existing POES systems. SEVIRI MSG 5-day continental scale composites will enable rapid assessment of environmental conditions and improved early warning of disasters for the African continent such as flooding or droughts. The high temporal resolution geostationary data will complement existing higher spatial resolution polar-orbiting satellite data for various dynamic environmental and natural resource applications of terrestrial ecosystems.

  3. Craniofacial and temporal bone CT findings in cleidocranial dysplasia

    International Nuclear Information System (INIS)

    Gonzalez, Guido E.; Caruso, Paul A.; Curtin, Hugh D.; Small, Juan E.; Jyung, Robert W.; Troulis, Maria J.

    2008-01-01

    Cleidocranial dysplasia (CCD) is a multistructural polyostotic genetic disorder that results from mutation of the CBFA1 gene. Hearing loss is a frequent finding in CCD. We describe the CT craniofacial findings in CCD and provide a comprehensive discussion of the CT temporal bone findings in these patients. (orig.)

  4. Reflective type objective based spectral-domain phase-sensitive optical coherence tomography for high-sensitive structural and functional imaging of cochlear microstructures through intact bone of an excised guinea pig cochlea

    Science.gov (United States)

    Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.

    2013-03-01

    Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.

  5. Spatial models for probabilistic prediction of wind power with application to annual-average and high temporal resolution data

    DEFF Research Database (Denmark)

    Lenzi, Amanda; Pinson, Pierre; Clemmensen, Line Katrine Harder

    2017-01-01

    average wind power generation, and for a high temporal resolution (typically wind power averages over 15-min time steps). In both cases, we use a spatial hierarchical statistical model in which spatial correlation is captured by a latent Gaussian field. We explore how such models can be handled...... with stochastic partial differential approximations of Matérn Gaussian fields together with Integrated Nested Laplace Approximations. We demonstrate the proposed methods on wind farm data from Western Denmark, and compare the results to those obtained with standard geostatistical methods. The results show...

  6. Quantifying temporal bone morphology of great apes and humans: an approach using geometric morphometrics

    Science.gov (United States)

    Lockwood, Charles A; Lynch, John M; Kimbel, William H

    2002-01-01

    The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty-three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade. PMID:12489757

  7. Magnetic resonance imaging of trabecular and cortical bone in mice: comparison of high resolution in vivo and ex vivo MR images with corresponding histology

    International Nuclear Information System (INIS)

    Weber, Michael H.; Sharp, Jonathan C.; Latta, Peter; Sramek, Milos; Hassard, H. Thomas; Orr, F. William

    2005-01-01

    Measurements of bone morphometry and remodeling have been shown to reflect bone strength and can be used to diagnose degenerative bone disease. In this study, in vivo and ex vivo magnetic resonance imaging (MRI) techniques to assess trabecular and cortical bone properties have been compared to each other and to histology as a novel means for the quantification of bone. Femurs of C57Bl/6 mice were examined both in vivo and ex vivo on an 11.7 T MRI scanner, followed by histologic processing and morphometry. A thresholding analysis technique was applied to the MRI images to generate contour lines and to delineate the boundaries between bone and marrow. Using MRI, an optimal correlation with histology was obtained with an in vivo longitudinal sectioned short echo time gradient-echo versus an in vivo long echo time spin-echo sequence or an ex vivo pulse sequence. Gradient-echo images were acquired with a maximum in-plane resolution of 35 μm. Our results demonstrated that in both the in vivo and ex vivo data sets, the percent area of marrow increases and percent area of trabecular bone and cortical bone thickness decreases moving from the epiphyseal growth plate to the diaphysis. These changes, observed with MRI, correlate with the histological data. Investigations using in vivo MRI gradient-echo sequences consistently gave the best correlation with histology. Our quantitative evaluation using both ex vivo and in vivo MRI was found to be an effective means to visualize non-invasively the normal variation in trabecular and cortical bone as compared to a histological 'gold standard' The experiments validated in vivo MRI as a potential high resolution technique for investigating both soft tissue, such as marrow, and bone without radiation exposure

  8. Towards high-resolution positron emission tomography for small volumes

    International Nuclear Information System (INIS)

    McKee, B.T.A.

    1982-01-01

    Some arguments are made regarding the medical usefulness of high spatial resolution in positron imaging, even if limited to small imaged volumes. Then the intrinsic limitations to spatial resolution in positron imaging are discussed. The project to build a small-volume, high resolution animal research prototype (SHARP) positron imaging system is described. The components of the system, particularly the detectors, are presented and brief mention is made of data acquisition and image reconstruction methods. Finally, some preliminary imaging results are presented; a pair of isolated point sources and 18 F in the bones of a rabbit. Although the detector system is not fully completed, these first results indicate that the goals of high sensitivity and high resolution (4 mm) have been realized. (Auth.)

  9. Simplified Summative Temporal Bone Dissection Scale Demonstrates Equivalence to Existing Measures.

    Science.gov (United States)

    Pisa, Justyn; Gousseau, Michael; Mowat, Stephanie; Westerberg, Brian; Unger, Bert; Hochman, Jordan B

    2018-01-01

    Emphasis on patient safety has created the need for quality assessment of fundamental surgical skills. Existing temporal bone rating scales are laborious, subject to evaluator fatigue, and contain inconsistencies when conferring points. To address these deficiencies, a novel binary assessment tool was designed and validated against a well-established rating scale. Residents completed a mastoidectomy with posterior tympanotomy on identical 3D-printed temporal bone models. Four neurotologists evaluated each specimen using a validated scale (Welling) and a newly developed "CanadaWest" scale, with scoring repeated after a 4-week interval. Nineteen participants were clustered into junior, intermediate, and senior cohorts. An ANOVA found significant differences between performance of the junior-intermediate and junior-senior cohorts for both Welling and CanadaWest scales ( P .05). Cohen's kappa found strong intrarater reliability (0.711) with a high degree of interrater reliability of (0.858) for the CanadaWest scale, similar to scores on the Welling scale of (0.713) and (0.917), respectively. The CanadaWest scale was facile and delineated performance by experience level with strong intrarater reliability. Comparable to the validated Welling Scale, it distinguished junior from senior trainees but was challenged in differentiating intermediate and senior trainee performance.

  10. High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions.

    Science.gov (United States)

    Xue, Hui; Kellman, Peter; Larocca, Gina; Arai, Andrew E; Hansen, Michael S

    2013-11-14

    Cine cardiovascular magnetic resonance (CMR) is challenging in patients who cannot perform repeated breath holds. Real-time, free-breathing acquisition is an alternative, but image quality is typically inferior. There is a clinical need for techniques that achieve similar image quality to the segmented cine using a free breathing acquisition. Previously, high quality retrospectively gated cine images have been reconstructed from real-time acquisitions using parallel imaging and motion correction. These methods had limited clinical applicability due to lengthy acquisitions and volumetric measurements obtained with such methods have not previously been evaluated systematically. This study introduces a new retrospective reconstruction scheme for real-time cine imaging which aims to shorten the required acquisition. A real-time acquisition of 16-20s per acquired slice was inputted into a retrospective cine reconstruction algorithm, which employed non-rigid registration to remove respiratory motion and SPIRiT non-linear reconstruction with temporal regularization to fill in missing data. The algorithm was used to reconstruct cine loops with high spatial (1.3-1.8 × 1.8-2.1 mm²) and temporal resolution (retrospectively gated, 30 cardiac phases, temporal resolution 34.3 ± 9.1 ms). Validation was performed in 15 healthy volunteers using two different acquisition resolutions (256 × 144/192 × 128 matrix sizes). For each subject, 9 to 12 short axis and 3 long axis slices were imaged with both segmented and real-time acquisitions. The retrospectively reconstructed real-time cine images were compared to a traditional segmented breath-held acquisition in terms of image quality scores. Image quality scoring was performed by two experts using a scale between 1 and 5 (poor to good). For every subject, LAX and three SAX slices were selected and reviewed in the random order. The reviewers were blinded to the reconstruction approach and acquisition protocols and

  11. Three-Dimensional Water and Carbon Cycle Modeling at High Spatial-Temporal Resolutions

    Science.gov (United States)

    Liao, C.; Zhuang, Q.

    2017-12-01

    Terrestrial ecosystems in cryosphere are very sensitive to the global climate change due to the presence of snow covers, mountain glaciers and permafrost, especially when the increase in near surface air temperature is almost twice as large as the global average. However, few studies have investigated the water and carbon cycle dynamics using process-based hydrological and biogeochemistry modeling approach. In this study, we used three-dimensional modeling approach at high spatial-temporal resolutions to investigate the water and carbon cycle dynamics for the Tanana Flats Basin in interior Alaska with emphases on dissolved organic carbon (DOC) dynamics. The results have shown that: (1) lateral flow plays an important role in water and carbon cycle, especially in dissolved organic carbon (DOC) dynamics. (2) approximately 2.0 × 104 kg C yr-1 DOC is exported to the hydrological networks and it compromises 1% and 0.01% of total annual gross primary production (GPP) and total organic carbon stored in soil, respectively. This study has established an operational and flexible framework to investigate and predict the water and carbon cycle dynamics under the changing climate.

  12. Resolution enhancement in MR spectroscopy of red bone marrow fat via intermolecular double-quantum coherences

    Science.gov (United States)

    Bao, Jianfeng; Cui, Xiaohong; Huang, Yuqing; Zhong, Jianhui; Chen, Zhong

    2015-08-01

    High-resolution 1H magnetic resonance spectroscopy (MRS) is generally inaccessible in red bone marrow (RBM) tissues using conventional MRS techniques. This is because signal from these tissues suffers from severe inhomogeneity in the main static B0 field originated from the intrinsic honeycomb structures in trabecular bone. One way to reduce effects of B0 field inhomogeneity is by using the intermolecular double quantum coherence (iDQC) technique, which has been shown in other systems to obtain signals insensitive to B0 field inhomogeneity. In the present study, we employed an iDQC approach to enhance the spectral resolution of RBM. The feasibility and performance of this method for achieving high resolution MRS was verified by experiments on phantoms and pig vertebral bone samples. Unsaturated fatty acid peaks which overlap in the conventional MRS were well resolved and identified in the iDQC spectrum. Quantitative comparison of fractions of three types of fatty acids was performed between iDQC spectra on the in situ RMB and conventional MRS on the extracted fat from the same RBM. Observations of unsaturated fatty acids with iDQC MRS may provide valuable information and may hold potential in diagnosis of diseases such as obesity, diabetes, and leukemia.

  13. Coronary artery visibility in free-breathing young children on non-gated chest CT: impact of temporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Bridoux, Alexandre; Hutt, Antoine; Faivre, Jean-Baptiste; Pagniez, Julien; Remy, Jacques; Remy-Jardin, Martine [CHRU et Universite de Lille, Department of Thoracic Imaging, Hospital Calmette (EA 2694), 59037 Lille Cedex (France); Flohr, Thomas [Siemens Healthcare, Department of Research and Development in CT, Forchheim (Germany); Duhamel, Alain [Universite de Lille, Department of Biostatistics, Lille (France)

    2015-11-15

    Dual-source CT allows scanning of the chest with high pitch and high temporal resolution, which can improve the detection of proximal coronary arteries in infants and young children when scanned without general anesthesia, sedation or beta-blockade. To compare coronary artery visibility between higher and standard temporal resolution. We analyzed CT images in 93 children who underwent a standard chest CT angiographic examination with reconstruction of images with a temporal resolution of 75 ms (group 1) and 140 ms (group 2). The percentage of detected coronary segments was higher in group 1 than in group 2 when considering all segments (group 1: 27%; group 2: 24%; P = 0.0004) and proximal segments (group 1: 37%; group 2: 32%; P = 0.0006). In both groups, the highest rates of detection were observed for the left main coronary artery (S1) (group 1: 65%; group 2: 58%) and proximal left anterior descending coronary artery (S2) (group 1: 43%; group 2: 42%). Higher rates of detection were seen in group 1 for the left main coronary artery (P = 0.03), proximal right coronary artery (P = 0.01), proximal segments of the left coronary artery (P = 0.02) and proximal segments of the left and right coronary arteries (P = 0.0006). Higher temporal resolution improved the visibility of proximal coronary arteries in pediatric chest CT. (orig.)

  14. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis.

    Science.gov (United States)

    Lee, Chia-Fone; Chen, Peir-Rong; Lee, Wen-Jeng; Chen, Jyh-Horng; Liu, Tien-Chen

    2006-05-01

    To present a systematic and practical approach that uses high-resolution computed tomography to derive models of the middle ear for finite element analysis. This prospective study included 31 subjects with normal hearing and no previous otologic disorders. Temporal bone images obtained from 15 right ears and 16 left ears were used for evaluation and reconstruction. High-resolution computed tomography of temporal bone was performed using simultaneous acquisition of 16 sections with a collimated slice thickness of 0.625 mm. All images were transferred to an Amira visualization system for three-dimensional reconstruction. The created three-dimensional model was translated into two commercial modeling packages, Patran and ANSYS, for finite element analysis. The characteristic dimensions of the model were measured and compared with previously published histologic section data. This result confirms that the geometric model created by the proposed method is accurate except that the tympanic membrane is thicker than when measured by the histologic section method. No obvious difference in the geometrical dimension between right and left ossicles was found (P > .05). The three-dimensional model created by finite element method and predicted umbo and stapes displacements are close to the bounds of the experimental curves of Nishihara's, Huber's, Gan's, and Sun's data across the frequency range of 100 to 8000 Hz. The model includes a description of the geometry of the middle ear components and dynamic equations of vibration. The proposed method is quick, practical, low-cost, and, most importantly, noninvasive as compared with histologic section methods.

  15. High-fidelity haptic and visual rendering for patient-specific simulation of temporal bone surgery.

    Science.gov (United States)

    Chan, Sonny; Li, Peter; Locketz, Garrett; Salisbury, Kenneth; Blevins, Nikolas H

    2016-12-01

    Medical imaging techniques provide a wealth of information for surgical preparation, but it is still often the case that surgeons are examining three-dimensional pre-operative image data as a series of two-dimensional images. With recent advances in visual computing and interactive technologies, there is much opportunity to provide surgeons an ability to actively manipulate and interpret digital image data in a surgically meaningful way. This article describes the design and initial evaluation of a virtual surgical environment that supports patient-specific simulation of temporal bone surgery using pre-operative medical image data. Computational methods are presented that enable six degree-of-freedom haptic feedback during manipulation, and that simulate virtual dissection according to the mechanical principles of orthogonal cutting and abrasive wear. A highly efficient direct volume renderer simultaneously provides high-fidelity visual feedback during surgical manipulation of the virtual anatomy. The resulting virtual surgical environment was assessed by evaluating its ability to replicate findings in the operating room, using pre-operative imaging of the same patient. Correspondences between surgical exposure, anatomical features, and the locations of pathology were readily observed when comparing intra-operative video with the simulation, indicating the predictive ability of the virtual surgical environment.

  16. Primary Ewing's Sarcoma of the temporal bone in an infant.

    Science.gov (United States)

    Goudarzipour, Kourosh; Shamsian, Shahin; Alavi, Samin; Nourbakhsh, Kazem; Aghakhani, Roxana; Eydian, Zahra; Arzanian, Mohammad Taghi

    2015-04-01

    Introduction : Ewing's sarcoma is the second most common primary malignant tumor of bone found in children after Osteosarcoma. It accounts for 4-9% of primary malignant bone tumors and it affects bones of the skull or face in only 1-4% of cases. Hence it rarely affects the head and neck. Subject and Method : In this case report, we describe a case of primary Ewing's sarcoma occurring in the temporal bone. The tumor was surgically excised, and the patient underwent chemotherapy for ten months. Results : Neither recurrence nor distant metastasis was noted in these 10 months after surgery but about 18 months after surgery our patient was expired. Conclusion : Although the prognosis of Ewing's sarcoma is generally poor because of early metastasis to the lungs and to other bones, a review of the article suggested that Ewing's sarcoma occurring in the skull can often be successfully managed by intensive therapy with radical excision and chemotherapy. This result was supported by the case reported here.

  17. Displasia fibrosa do osso temporal: relato de dois casos Fibrous dysplasia of the temporal bone: report of two cases

    Directory of Open Access Journals (Sweden)

    Roberto Claudio B. Oliveira

    2004-10-01

    Full Text Available A displasia fibrosa do osso temporal é uma doença de etiologia ainda controversa, manifestando-se principalmente por estenose progressiva do conduto auditivo externo e pela perda condutiva da audição. Outras manifestações incluem abaulamento na região temporal ou retroauricular, otorréia, otalgia e disacusia sensório-neural. A incidência é maior no sexo masculino e acomete principalmente a raça branca. O exame radiológico característico demonstra um aspecto de "vidro-fosco" homogêneo envolvido por uma concha de tecido cortical denso, embora existam outros padrões radiológicos desta enfermidade. O exame microscópico demonstra um trabeculado ósseo semelhante aos caracteres chineses. Este estudo relata dois casos de displasia fibrosa do osso temporal que se destacam, pois ultrapassaram o osso temporal, acometendo a região zigomática, sendo que no segundo caso houve também comprometimento do osso esfenóide e o pterigóide. Os pacientes foram submetidos à mastoidectomia radical modificada e tiveram boa evolução.Fibrous dysplasia of the temporal bone (FDTB is a disorder which etiology is still controversial. Its main clinical feature is a progressive narrowing of the external auditory canal following by conductive hearing loss. Temporal or retroauricular enlargement, ear discharge, otalgia, and sensorineural hearing loss are additional findings. Women and Caucasians are more affected. The prominent finding is a homogeneous radiodense "grounded glass" like image shell surrounded by dense cortical tissue. However, other radiological patterns of this disease may be displayed. Microscopically, a trabecular of bone in "Chinese letter" configuration is found. The two cases of FDTB herein reported are particularly special for a far beyond temporal commitment reaching the zygomatic area in the first case and sphenoid and pterygoid bones in the second one. This infrequent clinical feature with unusual radiological findings made these

  18. Lightning Forcing in Global Fire Models: The Importance of Temporal Resolution

    Science.gov (United States)

    Felsberg, A.; Kloster, S.; Wilkenskjeld, S.; Krause, A.; Lasslop, G.

    2018-01-01

    In global fire models, lightning is typically prescribed from observational data with monthly mean temporal resolution while meteorological forcings, such as precipitation or temperature, are prescribed in a daily resolution. In this study, we investigate the importance of the temporal resolution of the lightning forcing for the simulation of burned area by varying from daily to monthly and annual mean forcing. For this, we utilize the vegetation fire model JSBACH-SPITFIRE to simulate burned area, forced with meteorological and lightning data derived from the general circulation model ECHAM6. On a global scale, differences in burned area caused by lightning forcing applied in coarser temporal resolution stay below 0.55% compared to the use of daily mean forcing. Regionally, however, differences reach up to 100%, depending on the region and season. Monthly averaged lightning forcing as well as the monthly lightning climatology cause differences through an interaction between lightning ignitions and fire prone weather conditions, accounted for by the fire danger index. This interaction leads to decreased burned area in the boreal zone and increased burned area in the Tropics and Subtropics under the coarser temporal resolution. The exclusion of interannual variability, when forced with the lightning climatology, has only a minor impact on the simulated burned area. Annually averaged lightning forcing causes differences as a direct result of the eliminated seasonal characteristics of lightning. Burned area is decreased in summer and increased in winter where fuel is available. Regions with little seasonality, such as the Tropics and Subtropics, experience an increase in burned area.

  19. Visualization of subtle temporal bone structures. Comparison of cone beam CT and MDCT

    International Nuclear Information System (INIS)

    Pein, M.K.; Plontke, S.K.; Brandt, S.; Koesling, S.

    2014-01-01

    The purpose of this study was to compare the visualization of subtle, non-pathological temporal bone structures on cone beam computed tomography (CBCT) and multi-detector computed tomography (MDCT) in vivo. Temporal bone studies of images from 38 patients archived in the picture archiving and communication system (PACS) were analyzed (slice thickness MDCT 0.6 mm and CBCT 0.125 mm) of which 23 were imaged by MDCT and 15 by CBCT using optimized standard protocols. Inclusion criteria were normal radiological findings, absence of previous surgery and anatomical variants. Images were evaluated blind by three trained observers. Using a five-point scale the visualization of ten subtle structures of the temporal bone was analyzed. Subtle middle ear structures showed a tendency to be more easily distinguishable by CBCT with significantly better visualization of the tendon of the stapedius muscle and the crura of the stapes on CBCT (p = 0.003 and p = 0.033, respectively). In contrast, inner ear components, such as the osseus spiral lamina and the modiolus tended to be better detectable on MDCT, showing significant differences for the osseous spiral lamina (p = 0.001). The interrater reliability was 0.73 (Cohen's kappa coefficient) and intraobserver reliability was 0.89. The use of CBCT and MDCT allows equivalent and excellent imaging results if optimized protocols are chosen. With both imaging techniques subtle temporal bone structures could be visualized with a similar degree of definition. In vivo differences do not seem to be as large as suggested in several previous studies. (orig.) [de

  20. Spatial interpolation of climate variables in Northern Germany—Influence of temporal resolution and network density

    Directory of Open Access Journals (Sweden)

    C. Berndt

    2018-02-01

    New hydrological insights: Geostatistical techniques provide a better performance for all climate variables compared to simple methods Radar data improves the estimation of rainfall with hourly temporal resolution, while topography is useful for weekly to yearly values and temperature in general. No helpful information was found for cloudiness, sunshine duration, and wind speed, while interpolation of humidity benefitted from additional temperature data. The influences of temporal resolution, spatial variability, and additional information appear to be stronger than station density effects. High spatial variability of hourly precipitation causes the highest error, followed by wind speed, cloud coverage and sunshine duration. Lowest errors occur for temperature and humidity.

  1. Intraoperative cone-beam computed tomography and multi-slice computed tomography in temporal bone imaging for surgical treatment.

    Science.gov (United States)

    Erovic, Boban M; Chan, Harley H L; Daly, Michael J; Pothier, David D; Yu, Eugene; Coulson, Chris; Lai, Philip; Irish, Jonathan C

    2014-01-01

    Conventional computed tomography (CT) imaging is the standard imaging technique for temporal bone diseases, whereas cone-beam CT (CBCT) imaging is a very fast imaging tool with a significant less radiation dose compared with conventional CT. We hypothesize that a system for intraoperative cone-beam CT provides comparable image quality to diagnostic CT for identifying temporal bone anatomical landmarks in cadaveric specimens. Cross-sectional study. University tertiary care facility. Twenty cadaveric temporal bones were affixed into a head phantom and scanned with both a prototype cone-beam CT C-arm and multislice helical CT. Imaging performance was evaluated by 3 otologic surgeons and 1 head and neck radiologist. Participants were presented images in a randomized order and completed landmark identification questionnaires covering 21 structures. CBCT and multislice CT have comparable performance in identifying temporal structures. Three otologic surgeons indicated that CBCT provided statistically equivalent performance for 19 of 21 landmarks, with CBCT superior to CT for the chorda tympani and inferior for the crura of the stapes. Subgroup analysis showed that CBCT performed superiorly for temporal bone structures compared with CT. The radiologist rated CBCT and CT as statistically equivalent for 18 of 21 landmarks, with CT superior to CBCT for the crura of stapes, chorda tympani, and sigmoid sinus. CBCT provides comparable image quality to conventional CT for temporal bone anatomical sites in cadaveric specimens. Clinical applications of low-dose CBCT imaging in surgical planning, intraoperative guidance, and postoperative assessment are promising but require further investigation.

  2. Diagnosis of temporal bone diseases using three-dimensional images with multislice CT

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Yoshihiro; Togami, Taro; Murota, Makiko; Fukunaga, Kotaro; Hino, Ichiro; Sato, Katashi; Ohkawa, Motoomi [Kagawa Medical Univ., Miki (Japan)

    2001-08-01

    We evaluated the usefulness of three-dimensional images with multislice CT in the temporal bone diseases. Fifty-nine cases (26 with medial otitis, 8 choresteatoma, 10 congenital malformation, 3 high jugular bulb, 2 otosclerosis, and 10 others) were included in this study. In the ossicular and inner ear lesions, oblique multiplanar images of the long axis of each ossicle was useful the detection of abnormality. Structural deformity of ossicles and bony labyrinth were clearly delineated by surface rendering images. (author)

  3. On temporal correlations in high-resolution frequency counting

    OpenAIRE

    Dunker, Tim; Hauglin, Harald; Rønningen, Ole Petter

    2016-01-01

    We analyze noise properties of time series of frequency data from different counting modes of a Keysight 53230A frequency counter. We use a 10 MHz reference signal from a passive hydrogen maser connected via phase-stable Huber+Suhner Sucoflex 104 cables to the reference and input connectors of the counter. We find that the high resolution gap-free (CONT) frequency counting process imposes long-term correlations in the output data, resulting in a modified Allan deviation that is characteristic...

  4. Comparison of cadaveric and isomorphic three-dimensional printed models in temporal bone education.

    Science.gov (United States)

    Hochman, Jordan B; Rhodes, Charlotte; Wong, Dana; Kraut, Jay; Pisa, Justyn; Unger, Bertram

    2015-10-01

    Current three-dimensional (3D) printed simulations are complicated by insufficient void spaces and inconsistent density. We describe a novel simulation with focus on internal anatomic fidelity and evaluate against template/identical cadaveric education. Research ethics board-approved prospective cohort study. Generation of a 3D printed temporal bone was performed using a proprietary algorithm that deconstructs the digital model into slices prior to printing. This supplemental process facilitates removal of residual material from air-containing spaces and permits requisite infiltrative access to the all regions of the model. Ten otolaryngology trainees dissected a cadaveric temporal bone (CTB) followed by a matched/isomorphic 3D printed bone model (PBM), based on derivative micro-computed tomography data. Participants rated 1) physical characteristics, 2) specific anatomic constructs, 3) usefulness in skill development, and 4) perceived educational value. The survey instrument employed a seven-point Likert scale. Trainees felt physical characteristics of the PBM were quite similar to CTB, with highly ranked cortical (5.5 ± 1.5) and trabecular (5.2 ± 1.3) bone drill quality. The overall model was considered comparable to CTB (5.9 ± 0.74), with respectable air cell reproduction (6.1 ± 1.1). Internal constructs were rated as satisfactory (range, 4.9-6.2). The simulation was considered a beneficial training tool for all types of mastoidectomy (range, 5.9-6.6), posterior tympanotomy (6.5 ± 0.71), and skull base approaches (range, 6-6.5). Participants believed the model to be an effective training instrument (6.7 ± 0.68), which should be incorporated into the temporal bone lab (7.0 ± 0.0). The PBM was thought to improve confidence (6.7 ± 0.68) and operative performance (6.7 ± 0.48). Study participants found the PBM to be an effective platform that compared favorably to CTB. The model was considered a valuable adjunctive

  5. Longitudinal profile diagnostic scheme with subfemtosecond resolution for high-brightness electron beams

    Directory of Open Access Journals (Sweden)

    G. Andonian

    2011-07-01

    Full Text Available High-resolution measurement of the longitudinal profile of a relativistic electron beam is of utmost importance for linac based free-electron lasers and other advanced accelerator facilities that employ ultrashort bunches. In this paper, we investigate a novel scheme to measure ultrashort bunches (subpicosecond with exceptional temporal resolution (hundreds of attoseconds and dynamic range. The scheme employs two orthogonally oriented deflecting sections. The first imparts a short-wavelength (fast temporal resolution horizontal angular modulation on the beam, while the second imparts a long-wavelength (slow angular kick in the vertical dimension. Both modulations are observable on a standard downstream screen in the form of a streaked sinusoidal beam structure. We demonstrate, using scaled variables in a quasi-1D approximation, an expression for the temporal resolution of the scheme and apply it to a proof-of-concept experiment at the UCLA Neptune high-brightness injector facility. The scheme is also investigated for application at the SLAC NLCTA facility, where we show that the subfemtosecond resolution is sufficient to resolve the temporal structure of the beam used in the echo-enabled free-electron laser. We employ beam simulations to verify the effect for typical Neptune and NLCTA parameter sets and demonstrate the feasibility of the concept.

  6. A high-resolution regional reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.

    2015-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  7. Assessing the Resolution Adaptability of the Zhang-McFarlane Cumulus Parameterization With Spatial and Temporal Averaging: RESOLUTION ADAPTABILITY OF ZM SCHEME

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yuxing [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China; Fan, Jiwen [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Xiao, Heng [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Zhang, Guang J. [Scripps Institution of Oceanography, University of California, San Diego CA USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Xu, Kuan-Man [NASA Langley Research Center, Hampton VA USA; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Gustafson, William I. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-11-01

    Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32 km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.

  8. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images.

    Science.gov (United States)

    Leong, Andrew F T; Fouras, Andreas; Islam, M Sirajul; Wallace, Megan J; Hooper, Stuart B; Kitchen, Marcus J

    2013-04-01

    Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions ≈ 16.2 μm). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using this technique, it is possible to measure

  9. High-resolution mini gamma camera for diagnosis and radio-guided surgery in diabetic foot infection

    International Nuclear Information System (INIS)

    Scopinaro, F.; Capriotti, G.; Di Santo, G.; Capotondi, C.; Micarelli, A.; Massari, R.; Trotta, C.; Soluri, A.

    2006-01-01

    The diagnosis of diabetic foot osteomyelitis is often difficult. 99m Tc-WBC (White Blood Cell) scintigraphy plays a key role in the diagnosis of bone infections. Spatial resolution of Anger camera is not always able to differentiate soft tissue from bone infection. Aim of present study is to verify if HRD (High-Resolution Detector) is able to improve diagnosis and to help surgery. Patients were studied by HRD showing 25.7x25.7 mm 2 FOV, 2 mm spatial resolution and 18% energy resolution. The patients were underwent to surgery and, when necessary, bone biopsy, both guided by HRD. Four patients were positive at Anger camera without specific signs of osteomyelitis. HRS (High-Resolution Scintigraphy) showed hot spots in the same patients. In two of them the hot spot was bar-shaped and it was localized in correspondence of the small phalanx. The presence of bone infection was confirmed at surgery, which was successfully guided by HRS. 99m Tc-WBC HRS was able to diagnose pedal infection and to guide the surgery of diabetic foot, opening a new way in the treatment of infected diabetic foot

  10. High-resolution mini gamma camera for diagnosis and radio-guided surgery in diabetic foot infection

    Energy Technology Data Exchange (ETDEWEB)

    Scopinaro, F. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy); Capriotti, G. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy); Di Santo, G. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy); Capotondi, C. [Unit of Radiology, S. Andrea Hospital, Rome (Italy); Micarelli, A. [Nuclear Medicine, Sulmona Hospital, Sulmona (AQ) (Italy); Massari, R. [Institute of Biomedical Engineering, ISIB-CNR, Rome-Li-tech srl, Lauzacco Pavia di Udine (UD) (Italy); Trotta, C. [Institute of Biomedical Engineering, ISIB-CNR, Rome-Li-tech srl, Lauzacco Pavia di Udine (UD) (Italy); Soluri, A. [Institute of Biomedical Engineering, ISIB-CNR, Rome-Li-tech srl, Lauzacco Pavia di Udine (UD) (Italy)]. E-mail: soluri@isib.cnr.it

    2006-12-20

    The diagnosis of diabetic foot osteomyelitis is often difficult. {sup 99m}Tc-WBC (White Blood Cell) scintigraphy plays a key role in the diagnosis of bone infections. Spatial resolution of Anger camera is not always able to differentiate soft tissue from bone infection. Aim of present study is to verify if HRD (High-Resolution Detector) is able to improve diagnosis and to help surgery. Patients were studied by HRD showing 25.7x25.7 mm{sup 2} FOV, 2 mm spatial resolution and 18% energy resolution. The patients were underwent to surgery and, when necessary, bone biopsy, both guided by HRD. Four patients were positive at Anger camera without specific signs of osteomyelitis. HRS (High-Resolution Scintigraphy) showed hot spots in the same patients. In two of them the hot spot was bar-shaped and it was localized in correspondence of the small phalanx. The presence of bone infection was confirmed at surgery, which was successfully guided by HRS. {sup 99m}Tc-WBC HRS was able to diagnose pedal infection and to guide the surgery of diabetic foot, opening a new way in the treatment of infected diabetic foot.

  11. Oversampling in the computed tomography measurements applied for bone structure studies as a method of spatial resolution improvement

    International Nuclear Information System (INIS)

    Tatoń, Grzegorz; Rokita, Eugeniusz; Rok, Tomasz; Beckmann, Felix

    2012-01-01

    Our purpose was to check the potential ability of oversampling as a method for computed tomography axial resolution improvement. The method of achieving isotropic and fine resolution, when the scanning system is characterized by anisotropic resolutions is proposed. In case of typical clinical system the axial resolution is much lower than the planar one. The idea relies on the scanning with a wide overlapping layers and subsequent resolution recovery on the level of scanning step. Simulated three-dimensional images, as well as the real microtomographic images of rat femoral bone were used in proposed solution tests. Original high resolution images were virtually scanned with a wide beam and a small step in order to simulate the real measurements. The low resolution image series were subsequently processed in order to back to the original fine one. Original, virtually scanned and recovered images resolutions were compared with the use of modulation transfer function (MTF). A good ability of oversampling as a method for the resolution recovery was showed. It was confirmed by comparing the resolving powers after and before resolution recovery. The MTF analysis showed resolution improvement. The resolution improvement was achieved but the image noise raised considerably, which is clearly visible on image histograms. Despite this disadvantage the proposed method can be successfully used in practice, especially in the trabecular bone studies because of high contrast between trabeculae and intertrabecular spaces

  12. Technical note: Coupling infrared gas analysis and cavity ring down spectroscopy for autonomous, high-temporal-resolution measurements of DIC and δ13C-DIC

    Science.gov (United States)

    Call, Mitchell; Schulz, Kai G.; Carvalho, Matheus C.; Santos, Isaac R.; Maher, Damien T.

    2017-03-01

    A new approach to autonomously determine concentrations of dissolved inorganic carbon (DIC) and its carbon stable isotope ratio (δ13C-DIC) at high temporal resolution is presented. The simple method requires no customised design. Instead it uses two commercially available instruments currently used in aquatic carbon research. An inorganic carbon analyser utilising non-dispersive infrared detection (NDIR) is coupled to a Cavity Ring-down Spectrometer (CRDS) to determine DIC and δ13C-DIC based on the liberated CO2 from acidified aliquots of water. Using a small sample volume of 2 mL, the precision and accuracy of the new method was comparable to standard isotope ratio mass spectrometry (IRMS) methods. The system achieved a sampling resolution of 16 min, with a DIC precision of ±1.5 to 2 µmol kg-1 and δ13C-DIC precision of ±0.14 ‰ for concentrations spanning 1000 to 3600 µmol kg-1. Accuracy of 0.1 ± 0.06 ‰ for δ13C-DIC based on DIC concentrations ranging from 2000 to 2230 µmol kg-1 was achieved during a laboratory-based algal bloom experiment. The high precision data that can be autonomously obtained by the system should enable complex carbonate system questions to be explored in aquatic sciences using high-temporal-resolution observations.

  13. Spatial-Temporal Dynamics of High-Resolution Animal Networks: What Can We Learn from Domestic Animals?

    Directory of Open Access Journals (Sweden)

    Shi Chen

    Full Text Available Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density, subgroup clustering (modularity, triadic property (transitivity, and dyadic interactions (correlation coefficient from a quadratic assignment procedure at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level or temporal (aggregated at daily level resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc. also changed substantially at different time and locations. There were certain time (feeding and location (hay that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect disease transmission pathways.

  14. Temporal bone fracture following blunt trauma caused by a flying fish.

    Science.gov (United States)

    Goldenberg, D; Karam, M; Danino, J; Flax-Goldenberg, R; Joachims, H Z

    1998-10-01

    Blunt trauma to the temporal region can cause fracture of the skull base, loss of hearing, vestibular symptoms and otorrhoea. The most common causes of blunt trauma to the ear and surrounding area are motor vehicle accidents, violent encounters, and sports-related accidents. We present an obscure case of a man who was struck in the ear by a flying fish while wading in the sea with resulting temporal bone fracture, sudden deafness, vertigo, cerebrospinal fluid otorrhoea, and pneumocephalus.

  15. Quantifying the Uncertainty in High Spatial and Temporal Resolution Synthetic Land Surface Reflectance at Pixel Level Using Ground-Based Measurements

    Science.gov (United States)

    Kong, J.; Ryu, Y.

    2017-12-01

    Algorithms for fusing high temporal frequency and high spatial resolution satellite images are widely used to develop dense time-series land surface observations. While many studies have revealed that the synthesized frequent high spatial resolution images could be successfully applied in vegetation mapping and monitoring, validation and correction of fused images have not been focused than its importance. To evaluate the precision of fused image in pixel level, in-situ reflectance measurements which could account for the pixel-level heterogeneity are necessary. In this study, the synthetic images of land surface reflectance were predicted by the coarse high-frequency images acquired from MODIS and high spatial resolution images from Landsat-8 OLI using the Flexible Spatiotemporal Data Fusion (FSDAF). Ground-based reflectance was measured by JAZ Spectrometer (Ocean Optics, Dunedin, FL, USA) on rice paddy during five main growth stages in Cheorwon-gun, Republic of Korea, where the landscape heterogeneity changes through the growing season. After analyzing the spatial heterogeneity and seasonal variation of land surface reflectance based on the ground measurements, the uncertainties of the fused images were quantified at pixel level. Finally, this relationship was applied to correct the fused reflectance images and build the seasonal time series of rice paddy surface reflectance. This dataset could be significant for rice planting area extraction, phenological stages detection, and variables estimation.

  16. Clinical cone beam computed tomography compared to high-resolution peripheral computed tomography in the assessment of distal radius bone.

    Science.gov (United States)

    de Charry, C; Boutroy, S; Ellouz, R; Duboeuf, F; Chapurlat, R; Follet, H; Pialat, J B

    2016-10-01

    Clinical cone beam computed tomography (CBCT) was compared to high-resolution peripheral quantitative computed tomography (HR-pQCT) for the assessment of ex vivo radii. Strong correlations were found for geometry, volumetric density, and trabecular structure. Using CBCT, bone architecture assessment was feasible but compared to HR-pQCT, trabecular parameters were overestimated whereas cortical ones were underestimated. HR-pQCT is the most widely used technique to assess bone microarchitecture in vivo. Yet, this technology has been only applicable at peripheral sites, in only few research centers. Clinical CBCT is more widely available but quantitative assessment of the bone structure is usually not performed. We aimed to compare the assessment of bone structure with CBCT (NewTom 5G, QR, Verona, Italy) and HR-pQCT (XtremeCT, Scanco Medical AG, Brüttisellen, Switzerland). Twenty-four distal radius specimens were scanned with these two devices with a reconstructed voxel size of 75 μm for Newtom 5G and 82 μm for XtremeCT, respectively. A rescaling-registration scheme was used to define the common volume of interest. Cortical and trabecular compartments were separated using a semiautomated double contouring method. Density and microstructure were assessed with the HR-pQCT software on both modality images. Strong correlations were found for geometry parameters (r = 0.98-0.99), volumetric density (r = 0.91-0.99), and trabecular structure (r = 0.94-0.99), all p < 0.001. Correlations were lower for cortical microstructure (r = 0.80-0.89), p < 0.001. However, absolute differences were observed between modalities for all parameters, with an overestimation of the trabecular structure (trabecular number, 1.62 ± 0.37 vs. 1.47 ± 0.36 mm(-1)) and an underestimation of the cortical microstructure (cortical porosity, 3.3 ± 1.3 vs. 4.4 ± 1.4 %) assessed on CBCT images compared to HR-pQCT images. Clinical CBCT devices are able to

  17. Dual-time-point FDG-PET/CT Imaging of Temporal Bone Chondroblastoma: A Report of Two Cases

    Directory of Open Access Journals (Sweden)

    Akira Toriihara

    2015-07-01

    Full Text Available Temporal bone chondroblastoma is an extremely rare benign bone tumor. We encountered two cases showing similar imaging findings on computed tomography (CT, magnetic resonance imaging (MRI, and dual-time-point 18F-fluorodeoxyglucose (18F-FDG positron emission tomography (PET/CT. In both cases, CT images revealed temporal bone defects and sclerotic changes around the tumor. Most parts of the tumor showed low signal intensity on T2- weighted MRI images and non-uniform enhancement on gadolinium contrast-enhanced T1-weighted images. No increase in signal intensity was noted in diffusion-weighted images. Dual-time-point PET/CT showed markedly elevated 18F-FDG uptake, which increased from the early to delayed phase. Nevertheless, immunohistochemical analysis of the resected tumor tissue revealed weak expression of glucose transporter-1 and hexokinase II in both tumors. Temporal bone tumors, showing markedly elevated 18F-FDG uptake, which increases from the early to delayed phase on PET/CT images, may be diagnosed as malignant bone tumors. Therefore, the differential diagnosis should include chondroblastoma in combination with its characteristic findings on CT and MRI.

  18. Theoretical analysis of the spatio-temporal structure of bone multicellular units

    International Nuclear Information System (INIS)

    Buenzli, P R; Pivonka, P; Gardiner, B S; Smith, D W; Dunstan, C R; Mundy, G R

    2010-01-01

    Bone multicellular units (BMUs) maintain the viability of the skeletal tissue by coordinating locally the sequence of bone resorption and bone formation performed by cells of the osteoclastic and osteoblastic lineage. Understanding the emergence and the net bone balance of such structured microsystems out of the complex network of biochemical interactions between bone cells is fundamental for many bone-related diseases and the evaluation of fracture risk. Based on current experimental knowledge, we propose a spatio-temporal continuum model describing the interactions of osteoblastic and osteoclastic cells. We show that this model admits travelling-wave-like solutions with well-confined cell profiles upon specifying external conditions mimicking the environment encountered in cortical bone remodelling. The shapes of the various cell concentration profiles within this travelling structure are intrinsically linked to the parameters of the model such as differentiation, proliferation, and apoptosis rates of bone cells. The internal structure of BMUs is reproduced, allowing for experimental calibration. The spatial distribution of the key regulatory factors can also be exhibited, which in diseased states could give hints as to the biochemical agent most accountable for the disorder.

  19. Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland.

    Science.gov (United States)

    de Hoogh, Kees; Héritier, Harris; Stafoggia, Massimo; Künzli, Nino; Kloog, Itai

    2018-02-01

    Spatiotemporal resolved models were developed predicting daily fine particulate matter (PM 2.5 ) concentrations across Switzerland from 2003 to 2013. Relatively sparse PM 2.5 monitoring data was supplemented by imputing PM 2.5 concentrations at PM 10 sites, using PM 2.5 /PM 10 ratios at co-located sites. Daily PM 2.5 concentrations were first estimated at a 1 × 1km resolution across Switzerland, using Multiangle Implementation of Atmospheric Correction (MAIAC) spectral aerosol optical depth (AOD) data in combination with spatiotemporal predictor data in a four stage approach. Mixed effect models (1) were used to predict PM 2.5 in cells with AOD but without PM 2.5 measurements (2). A generalized additive mixed model with spatial smoothing was applied to generate grid cell predictions for those grid cells where AOD was missing (3). Finally, local PM 2.5 predictions were estimated at each monitoring site by regressing the residuals from the 1 × 1km estimate against local spatial and temporal variables using machine learning techniques (4) and adding them to the stage 3 global estimates. The global (1 km) and local (100 m) models explained on average 73% of the total,71% of the spatial and 75% of the temporal variation (all cross validated) globally and on average 89% (total) 95% (spatial) and 88% (temporal) of the variation locally in measured PM 2.5 concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. European status on temporal bone training

    DEFF Research Database (Denmark)

    Frithioff, Andreas; Sørensen, Mads Sølvsten; Andersen, Steven Arild Wuyts

    2018-01-01

    laboratory facilities for training seems to be decreasing. Alternatives to traditional training can consist of drilling artificial models made of plaster or plastic but also virtual reality (VR) simulation. Nevertheless, the integration and availability of these alternatives into specialist training programs...... training modality. CONCLUSIONS: VR simulation and artificial models are reported to be used at many leading training departments already. Decreasing availability of cadavers, lower costs of VR simulation and artificial models, in addition to established evidence for a positive effect on the trainees......' competency, were reported as the main reasons. Most remaining departments expect to implement VR simulation and artificial models for temporal bone training into their residency programs in the near future....

  1. Clinical application of bilateral high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging of the breast at 7 T

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, K.; Baltzer, P.; Bernathova, M.; Weber, M.; Leithner, D.; Helbich, T.H. [Medical University Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Waehringer Guertel 18-20, 1090, Vienna (Austria); Bogner, W.; Trattnig, S.; Gruber, S.; Zaric, O. [Medical University Vienna, Department of Biomedical Imaging and Image-guided Therapy, MR Centre of Excellence, Vienna (Austria); Abeyakoon, O. [King' s College, Department of Radiology, London (United Kingdom); Dubsky, P. [Medical University Vienna, Department of Surgery, Vienna (Austria); Bago-Horvath, Z. [Medical University Vienna, Department of Pathology, Vienna (Austria)

    2014-04-15

    The objective of our study was to evaluate the clinical application of bilateral high spatial and temporal resolution dynamic contrast-enhanced magnetic resonance imaging (HR DCE-MRI) of the breast at 7 T. Following institutional review board approval 23 patients with a breast lesion (BIRADS 0, 4-5) were included in our prospective study. All patients underwent bilateral HR DCE-MRI of the breast at 7 T (spatial resolution of 0.7 mm{sup 3} voxel size, temporal resolution of 14 s). Two experienced readers (r1, r2) and one less experienced reader (r3) independently assessed lesions according to BI-RADS registered. Image quality, lesion conspicuity and artefacts were graded from 1 to 5. Sensitivity, specificity and diagnostic accuracy were assessed using histopathology as the standard of reference. HR DCE-MRI at 7 T revealed 29 lesions in 23 patients (sensitivity 100 % (19/19); specificity of 90 % (9/10)) resulting in a diagnostic accuracy of 96.6 % (28/29) with an AUC of 0.95. Overall image quality was excellent in the majority of cases (27/29) and examinations were not hampered by artefacts. There was excellent inter-reader agreement for diagnosis and image quality parameters (κ = 0.89-1). Bilateral HR DCE-MRI of the breast at 7 T is feasible with excellent image quality in clinical practice and allows accurate breast cancer diagnosis. (orig.)

  2. Inflammation and tumors of the temporal bone; Entzuendungen und Tumoren des Schlaefenbeins

    Energy Technology Data Exchange (ETDEWEB)

    Burian, M. [Universitaetsklinik fuer Hals-, Nasen- und Ohrenkrankheiten, Allgemeines Krankenhaus, Wien (Austria)

    1997-12-01

    The term `inflammation of the middle ear` covers a couple of deseases which range from the acute otitis media to the middle ear cholesteatoma. However, a clear characterization of a certain pathology is essential for any further treatment. Therefore this article presents a short overview about the different types of infections and their clinical manifestation. The tumors of the temporal bone show a great variety in their incidence. Even if tumors like the acoustic neurinoma or the paraganglioma are compareable common, the chondroblastoma of the temporal bone is absolutely rare. In spite of these differences the individual temporal bone neoplasias are shortly mentioned herein. (orig.) [Deutsch] Der Begriff Mittelohrentzuendung umfasst ein weites Spektrum von Krankheiten welches von der akuten Mittelohrentzuendung bis hin zum Cholesteatom reicht. Es soll in diesem Artikel eine kurze Uebersicht ueber die verschiedenen Entzuendungen gegeben werden, wobei vor allem auf eine klare Begriffsdefinition der einzelnen Entzuendungsformen und deren klinisches Erscheinungsbild geachtet wurde. Bei den Tumoren des Schlaefenbeins ist ein grosser Unterschied in der Inzidenz der einzelnen Tumoren gegeben. Waehrend Neubildungen wie das Akustikusneurinom oder das Paragangliom vergleichsweise haeufig im klinischen Alltag zu sehen sind, stellen Veraenderungen wie das Chondroblastom eine Raritaet dar. Trotz dieses Unterschieds im Vorkommen der verschiedenen Tumoren, wurde versucht, einen kurzen Gesamtueberblick ueber die Tumore des Mittel- und Innenohres zu geben. (orig.)

  3. Effect of temporal resolution on the accuracy of ADCP measurements

    Science.gov (United States)

    Gonzalez-Castro, J. A.; Oberg, K.; Duncker, J.J.

    2004-01-01

    The application of acoustic Doppler current profilers (ADCP's) in river flow measurements is promoting a great deal of progress in hydrometry. ADCP's not only require shorter times to collect data than traditional current meters, but also allow streamflow measurements at sites where the use of conventional meters is either very expensive, unsafe, or simply not possible. Moreover, ADCP's seem to offer a means for collecting flow data with spatial and temporal resolutions that cannot be achieved with traditional current-meters. High-resolution data is essential to characterize the mean flow and turbulence structure of streams, which can in turn lead to a better understanding of the hydrodynamic and transport processes in rivers. However, to properly characterize the mean flow and turbulence intensities of stationary flows in natural turbulent boundary layers, velocities need to be sampled over a long-enough time span. The question then arises, how long should velocities be sampled in the flow field to achieve an adequate temporal resolution? Theoretically, since velocities cannot be sampled over an infinitely long time interval, the error due to finite integration time must be considered. This error can be estimated using the integral time scale. The integral time scale is not only a measure of the time interval over which a fluctuating function is correlated with itself but also a measure of the time span over which the function is dependent on itself. This time scale, however, is not a constant but varies spatially in the flow field. In this paper we present an analysis of the effect of the temporal resolution (sampling time span) on the accuracy of ADCP measurements based on the integral time scale. Single ping velocity profiles collected with frequencies of 1 Hz in the Chicago River at Columbus Drive using an uplooking 600 kHz ADCP are used in this analysis. The integral time scale at different depths is estimated based on the autocorrelation function of the

  4. Autonomous agricultural remote sensing systems with high spatial and temporal resolutions

    Science.gov (United States)

    Xiang, Haitao

    In this research, two novel agricultural remote sensing (RS) systems, a Stand-alone Infield Crop Monitor RS System (SICMRS) and an autonomous Unmanned Aerial Vehicles (UAV) based RS system have been studied. A high-resolution digital color and multi-spectral camera was used as the image sensor for the SICMRS system. An artificially intelligent (AI) controller based on artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) was developed. Morrow Plots corn field RS images in the 2004 and 2006 growing seasons were collected by the SICMRS system. The field site contained 8 subplots (9.14 m x 9.14 m) that were planted with corn and three different fertilizer treatments were used among those subplots. The raw RS images were geometrically corrected, resampled to 10cm resolution, removed soil background and calibrated to real reflectance. The RS images from two growing seasons were studied and 10 different vegetation indices were derived from each day's image. The result from the image processing demonstrated that the vegetation indices have temporal effects. To achieve high quality RS data, one has to utilize the right indices and capture the images at the right time in the growing season. Maximum variations among the image data set are within the V6-V10 stages, which indicated that these stages are the best period to identify the spatial variability caused by the nutrient stress in the corn field. The derived vegetation indices were also used to build yield prediction models via the linear regression method. At that point, all of the yield prediction models were evaluated by comparing the R2-value and the best index model from each day's image was picked based on the highest R 2-value. It was shown that the green normalized difference vegetation (GNDVI) based model is more sensitive to yield prediction than other indices-based models. During the VT-R4 stages, the GNDVI based models were able to explain more than 95% potential corn yield

  5. Cetuximab with radiotherapy as an alternative treatment for advanced squamous cell carcinoma of the temporal bone.

    Science.gov (United States)

    Ebisumoto, Koji; Okami, Kenji; Hamada, Masashi; Maki, Daisuke; Sakai, Akihiro; Saito, Kosuke; Shimizu, Fukuko; Kaneda, Shoji; Iida, Masahiro

    2018-06-01

    The prognosis of advanced temporal bone cancer is poor, because complete surgical resection is difficult to achieve. Chemoradiotherapy is one of the available curative treatment options; however, its systemic effects on the patient restrict the use of this treatment. A 69-year-old female (who needed peritoneal dialysis) presented at our clinic with T4 left external auditory canal cancer and was treated with cetuximab plus radiotherapy (RT). The primary lesion showed complete response. The patient is currently alive with no evidence of disease two years after completion of the treatment and does not show any late toxicity. This is the first advanced temporal bone cancer patient treated with RT plus cetuximab. Cetuximab plus RT might be a treatment alternative for patients with advanced temporal bone cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT.

    Science.gov (United States)

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-03-01

    The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same amount of data being used

  7. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT

    International Nuclear Information System (INIS)

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-01-01

    Purpose: The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. Methods: To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. Results: While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same

  8. Temporal Resolution and Active Auditory Discrimination Skill in Vocal Musicians

    Directory of Open Access Journals (Sweden)

    Kumar, Prawin

    2015-12-01

    Full Text Available Introduction Enhanced auditory perception in musicians is likely to result from auditory perceptual learning during several years of training and practice. Many studies have focused on biological processing of auditory stimuli among musicians. However, there is a lack of literature on temporal resolution and active auditory discrimination skills in vocal musicians. Objective The aim of the present study is to assess temporal resolution and active auditory discrimination skill in vocal musicians. Method The study participants included 15 vocal musicians with a minimum professional experience of 5 years of music exposure, within the age range of 20 to 30 years old, as the experimental group, while 15 age-matched non-musicians served as the control group. We used duration discrimination using pure-tones, pulse-train duration discrimination, and gap detection threshold tasks to assess temporal processing skills in both groups. Similarly, we assessed active auditory discrimination skill in both groups using Differential Limen of Frequency (DLF. All tasks were done using MATLab software installed in a personal computer at 40dBSL with maximum likelihood procedure. The collected data were analyzed using SPSS (version 17.0. Result Descriptive statistics showed better threshold for vocal musicians compared with non-musicians for all tasks. Further, independent t-test showed that vocal musicians performed significantly better compared with non-musicians on duration discrimination using pure tone, pulse train duration discrimination, gap detection threshold, and differential limen of frequency. Conclusion The present study showed enhanced temporal resolution ability and better (lower active discrimination threshold in vocal musicians in comparison to non-musicians.

  9. Radiation injury to the temporal bone

    International Nuclear Information System (INIS)

    Guida, R.A.; Finn, D.G.; Buchalter, I.H.; Brookler, K.H.; Kimmelman, C.P.

    1990-01-01

    Osteoradionecrosis of the temporal bone is an unusual sequela of radiation therapy to the head and neck. Symptoms occur many years after the radiation is administered, and progression of the disease is insidious. Hearing loss (sensorineural, conductive, or mixed), otalgia, otorrhea, and even gross tissue extrusion herald this condition. Later, intracranial complications such as meningitis, temporal lobe or cerebellar abscess, and cranial neuropathies may occur. Reported here are five cases of this rare malady representing varying degrees of the disease process. They include a case of radiation-induced necrosis of the tympanic ring with persistent squamous debris in the external auditory canal and middle ear. Another case demonstrates the progression of radiation otitis media to mastoiditis with bony sequestration. Further progression of the disease process is seen in a third case that evolved into multiple cranial neuropathies from skull base destruction. Treatment includes systemic antibiotics, local wound care, and debridement in cases of localized tissue involvement. More extensive debridement with removal of sequestrations, abscess drainage, reconstruction with vascularized tissue from regional flaps, and mastoid obliteration may be warranted for severe cases. Hyperbaric oxygen therapy has provided limited benefit

  10. The temporal bones from Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain). A phylogenetic approach.

    Science.gov (United States)

    Martínez, I; Arsuaga, J L

    1997-01-01

    Three well-preserved crania and 22 temporal bones were recovered from the Sima de los Huesos Middle Pleistocene site up to and including the 1994 field season. This is the largest sample of hominid temporal bones known from a single Middle Pleistocene site and it offers the chance to characterize the temporal bone morphology of an European Middle Pleistocene population and to study the phylogenetic relationships of the SH sample with other Upper and Middle Pleistocene hominids. We have carried out a cladistic analysis based on nine traits commonly used in phylogenetic analysis of Middle and Late Pleistocene hominids: shape of the temporal squama superior border, articular eminence morphology, contribution of the sphenoid bone to the median glenoid wall, postglenoid process projection, tympanic plate orientation, presence of the styloid process, mastoid process projection, digastric groove morphology and anterior mastoid tubercle. We have found two autapomorphies on the Home erectus temporal bone: strong reduction of the postglenoid process and absence of the styloid process. Modern humans, Neandertals and the Middle Pleistocene fossils from Europe and Africa constitute a clade characterized by a convex superior border of the temporal squama. The European Middle Pleistocene fossils from Sima de los Huesos, Petralona, Steinheim, Bilzingsleben and Castel di Guido share a Neandertal apomorphy: a relatively flat articular eminence. The fossils from Ehringsdorf, La Chaise Suardi and Biache-Saint-Vaast also display another Neandertal derived trait: an anteriorly obliterated digastric groove. Modern humans and the African Middle Pleistocene fossils share a synapomorphy: a sagittally orientated tympanic plate.

  11. Tactile feedback display with spatial and temporal resolutions.

    Science.gov (United States)

    Vishniakou, Siarhei; Lewis, Brian W; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-01-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  12. Tactile Feedback Display with Spatial and Temporal Resolutions

    Science.gov (United States)

    Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-08-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  13. Primary giant myxoma of the temporal bone with major intracranial extension: presenting with hearing impairment and ear polyp

    Directory of Open Access Journals (Sweden)

    Satyarthee Guru Dutta

    2016-12-01

    Full Text Available Myxomas are mesenchymal origin, benign tumor, constituting approximately half of the benign cardiac tumors. Occasionally, it may also occurs at other locations, though the intracranial location of a myxoma is considered exceptionally rare. Only isolated few cases of intracranial myxoma are reported in the literature, almost all were locally confined within the originating bone. The extensive Pubmed and Medline search yielded only eight cases of primary myxoma arising in the temporal bone with extension into intracranial compartment. However intracranial extension is limited as early detection, however, Osterdock et al reported a case also arising from temporal bone with extensive intracranial extension. Author report an interesting case of intracranial myxoma in 27- year- old- male, involving the temporal bone associated with extensive bony erosion and also extending into infratemporal fossa, mastoid, and frontoparietal region and a polypoidal mass protruding into external ear. To the best of knowledge of authors, temporal myxoma presenting with external ear polypoidal mass, which underwent successful surgical excision is not reported and represent first case in the world literature.

  14. Microsurgical and Endoscopic Anatomy for Intradural Temporal Bone Drilling and Applications of the Electromagnetic Navigation System: Various Extensions of the Retrosigmoid Approach.

    Science.gov (United States)

    Matsushima, Ken; Komune, Noritaka; Matsuo, Satoshi; Kohno, Michihiro

    2017-07-01

    The use of the retrosigmoid approach has recently been expanded by several modifications, including the suprameatal, transmeatal, suprajugular, and inframeatal extensions. Intradural temporal bone drilling without damaging vital structures inside or beside the bone, such as the internal carotid artery and jugular bulb, is a key step for these extensions. This study aimed to examine the microsurgical and endoscopic anatomy of the extensions of the retrosigmoid approach and to evaluate the clinical feasibility of an electromagnetic navigation system during intradural temporal bone drilling. Five temporal bones and 8 cadaveric cerebellopontine angles were examined to clarify the anatomy of retrosigmoid intradural temporal bone drilling. Twenty additional cerebellopontine angles were dissected in a clinical setting with an electromagnetic navigation system while measuring the target registration errors at 8 surgical landmarks on and inside the temporal bone. Retrosigmoid intradural temporal bone drilling expanded the surgical exposure to allow access to the petroclival and parasellar regions (suprameatal), internal acoustic meatus (transmeatal), upper jugular foramen (suprajugular), and petrous apex (inframeatal). The electromagnetic navigation continuously guided the drilling without line of sight limitation, and its small devices were easily manipulated in the deep and narrow surgical field in the posterior fossa. Mean target registration error was less than 0.50 mm during these procedures. The combination of endoscopic and microsurgical techniques aids in achieving optimal exposure for retrosigmoid intradural temporal bone drilling. The electromagnetic navigation system had clear advantages with acceptable accuracy including the usability of small devices without line of sight limitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. High resolution and simultaneous monitoring of airborne radionuclides

    International Nuclear Information System (INIS)

    Abe, T.; Yamaguchi, Y.; Muguntha Manikandan, N.; Komura, K.

    2005-01-01

    By using 11 extremely low background Ge detectors at Ogoya Underground Laboratory, it became possible to investigate temporal variations of airborne 212 Pb (T 1/2 =10.6 h) along with 210 Pb and 7 Be with order of magnitude higher time resolution. Then, we have measured airborne nuclides at three monitoring points, (1) roof of our laboratory (LLRL; 40 m ASL), (2) Shinshiku Plateau (640 m ASL) located about 8 km from LLRL as a comparison of vertical distribution, and (3) Hegura Island (10 m ASL) at about 50 km from Wajima located north of Noto Peninsula facing on the Sea of Japan (about 180 km to the north-northeast of LLRL), to investigate influence of Asian continent. Airborne nuclides were collected by high volume air samplers at intervals of a few hours at either two or three points simultaneously. In the same manner, high resolution monitoring was carried out also at the time of passage of typhoon and cold front. In this study, we observed drastic temporal variations of airborne radionuclides and correlations of multiple monitoring points. The results indicate that high resolution and simultaneous monitoring is very useful to understand dynamic state of variations of airborne nuclides due to short and long-term air-mass movement. (author)

  16. Bilateral Facial Paralysis Caused by Bilateral Temporal Bone Fracture: A Case Report and a Literature Review

    Directory of Open Access Journals (Sweden)

    Sultan Şevik Eliçora

    2015-01-01

    Full Text Available Bilateral facial paralysis caused by bilateral temporal bone fracture is a rare clinical entity, with seven cases reported in the literature to date. In this paper, we describe a 40-year-old male patient with bilateral facial paralysis and hearing loss that developed after an occupational accident. On physical examination, House-Brackmann (HB facial paralysis of grade 6 was observed on the right side and HB grade 5 paralysis on the left. Upon temporal bone computed tomography (CT examination, a fracture line exhibiting transverse progression was observed in both petrous temporal bones. Our patient underwent transmastoid facial decompression surgery of the right ear. The patient refused a left-side operation. Such patients require extensive monitoring in intensive care units because the presence of multiple injuries means that facial functions are often very difficult to evaluate. Therefore, delays may ensue in both diagnosis and treatment of bilateral facial paralysis.

  17. The high-resolution regional reanalysis COSMO-REA6

    Science.gov (United States)

    Ohlwein, C.

    2016-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  18. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center During Hurricane Irma

    Science.gov (United States)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy

    2018-01-01

    The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. Over the past two Atlantic Hurricane seasons the TDRWP has made high temporal resolution wind profile observations of Hurricane Irma in 2017 and Hurricane Matthew in 2016. Hurricane Irma was responsible for power outages to approximately 2/3 of Florida's population during its movement over the state(Stein,2017). An overview of the TDRWP system configuration, brief summary of Hurricanes Irma and Matthew storm track in proximity to KSC, characteristics of the tropospheric wind observations from the TDRWP during both events, and discussion of the dissemination of TDRWP data during the event will be presented.

  19. Pneumatization of the Temporal Bones in a Greenlandic Inuit Anthropological Material

    DEFF Research Database (Denmark)

    Homøe, P; Lynnerup, N

    1991-01-01

    The degree of pneumatization of the temporal bones correlates with exposure during childhood and adolescence to infectious middle ear diseases (IMED), both acute and chronic. The pneumatized area as seen on cranial X-rays can be measured. This was applied to an anthropological material in order...

  20. Morphometrical Study of the Temporal Bone and Auditory Ossicles in Guinea Pig

    Directory of Open Access Journals (Sweden)

    Ahmadali Mohammadpour

    2011-03-01

    Full Text Available In this research, anatomical descriptions of the structure of the temporal bone and auditory ossicles have been performed based on dissection of ten guinea pigs. The results showed that, in guinea pig temporal bone was similar to other animals and had three parts; squamous, tympanic and petrous .The tympanic part was much better developed and consisted of oval shaped tympanic bulla with many recesses in tympanic cavity. The auditory ossicles of guinea pig concluded of three small bones; malleus, incus and stapes but the head of the malleus and the body of incus were fused and forming a malleoincudal complex. The average of morphometric parameters showed that the malleus was 3.53 ± 0.22 mm in total length. In addition to head and handle, the malleus had two distinct process; lateral and muscular. The incus had a total length 1.23 ± 0.02mm. It had long and short crus although the long crus was developed better than short crus. The lenticular bone was a round bone that articulated with the long crus of incus. The stapes had a total length 1.38 ± 0.04mm. The anterior crus(0.86 ± 0.08mm was larger than posterior crus (0.76 ± 0.08mm. It is concluded that, in the guinea pig, the malleus and the incus are fused, forming a junction called incus-malleus, while in the other animals these are separate bones. The stapes is larger and has a triangular shape and the anterior and posterior crus are thicker than other rodents. Therefore, for otological studies, the guinea pig is a good lab animal.

  1. Large capillary hemangioma of the temporal bone with a dural tail sign: A case report

    KAUST Repository

    YANG, GUANG

    2014-05-13

    The present study reports a rare case of large capillary hemangioma of the temporal bone with a dural tail sign. A 57-year-old female presented with pulsatile tinnitus and episodic vertigo associated with a ten-year history of an intermittent faint headache. Magnetic resonance imaging revealed a mass in the right petrous bone, which was hypointense on T1-weighted images and heterogeneously hyperintense on T2-weighted images, and showed a dural tail sign following gadolinium administration. Pre-operatively, this tumor was believed to be a meningioma. During surgery, the vascular tumor was removed by a modified pterional approach. A histopathological examination indicated that the tumor was a capillary hemangioma. Although intraosseous capillary hemangiomas are rare, they most frequently affect the temporal bone. Hemangiomas of the temporal bone may mimic other more common basal tumors. The diagnosis is most often made during surgical resection. The dural tail sign is not specific for meningioma, as it also occurs in other intracranial or extracranial tumors. The treatment of intratemporal hemangiomas is complete surgical excision, with radiotherapy used for unresectable lesions. To the best of our knowledge, the present study is the fourth case of intraosseous intracranial capillary hemangioma, but the largest intratemporal hemangioma to be reported in the literature to date.

  2. Large capillary hemangioma of the temporal bone with a dural tail sign: A case report

    KAUST Repository

    YANG, GUANG; LI, CHENGUANG; CHEN, XIN; LIU, YAOHUA; HAN, DAYONG; Gao, Xin; KAWAMOTO, KEIJI; ZHAO, SHIGUANG

    2014-01-01

    The present study reports a rare case of large capillary hemangioma of the temporal bone with a dural tail sign. A 57-year-old female presented with pulsatile tinnitus and episodic vertigo associated with a ten-year history of an intermittent faint headache. Magnetic resonance imaging revealed a mass in the right petrous bone, which was hypointense on T1-weighted images and heterogeneously hyperintense on T2-weighted images, and showed a dural tail sign following gadolinium administration. Pre-operatively, this tumor was believed to be a meningioma. During surgery, the vascular tumor was removed by a modified pterional approach. A histopathological examination indicated that the tumor was a capillary hemangioma. Although intraosseous capillary hemangiomas are rare, they most frequently affect the temporal bone. Hemangiomas of the temporal bone may mimic other more common basal tumors. The diagnosis is most often made during surgical resection. The dural tail sign is not specific for meningioma, as it also occurs in other intracranial or extracranial tumors. The treatment of intratemporal hemangiomas is complete surgical excision, with radiotherapy used for unresectable lesions. To the best of our knowledge, the present study is the fourth case of intraosseous intracranial capillary hemangioma, but the largest intratemporal hemangioma to be reported in the literature to date.

  3. Estimating Gross Primary Production in Cropland with High Spatial and Temporal Scale Remote Sensing Data

    Science.gov (United States)

    Lin, S.; Li, J.; Liu, Q.

    2018-04-01

    Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  4. Chemodectomas arising in temporal bone structures

    International Nuclear Information System (INIS)

    Dickens, W.J.; Million, R.R.; Cassisi, N.J.; Singleton, G.T.

    1982-01-01

    Eighteen patients with chemodectomas arising in temporal bone structures were evaluated and treated at the University of Florida. Seventeen patients have each been followed a minimum of 3 years. Patients were retrospectively staged as having ''local'' or ''advanced'' disease, depending on the presence or absence of bone destruction and/or cranial nerve involvement. Fourteen of the patients received radiation therapy as all or part of their therapy; 6 patients were treated with radiation therapy alone, 3 patients were irradiated immediately postoperatively for residual disease, and 5 patients had radiation therapy for recurrence after operation. They were treated with cobalt-60 radiation with doses ranging from 3760 to 5640 rad. All irradiated patients demonstrated evidence of tumor regression, and none have had tumor recurrence with followup of 3-12 years. Of the 8 patients with cranial nerve paralysis prior to therapy, 5 had return of function of 1 or more cranial nerves. One of 6 patients treated initially with radiation therapy had a complication, while 6 of 8 patients irradiated postoperatively had complications. None of the complications were fatal. Three patients treated by operation for early disease limited to the hypotympanum had the disease controlled for 11-12 years. Guidelines for the selection of initial therapy are discussed

  5. Harmful Algal Bloom Characterization at Ultra-High Spatial and Temporal Resolution Using Small Unmanned Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Deon Van der Merwe

    2015-03-01

    Full Text Available Harmful algal blooms (HABs degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV. Correlations between BNDVI and BPCV follow a logarithmic model, with r2-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level.

  6. An Improved STARFM with Help of an Unmixing-Based Method to Generate High Spatial and Temporal Resolution Remote Sensing Data in Complex Heterogeneous Regions.

    Science.gov (United States)

    Xie, Dengfeng; Zhang, Jinshui; Zhu, Xiufang; Pan, Yaozhong; Liu, Hongli; Yuan, Zhoumiqi; Yun, Ya

    2016-02-05

    Remote sensing technology plays an important role in monitoring rapid changes of the Earth's surface. However, sensors that can simultaneously provide satellite images with both high temporal and spatial resolution haven't been designed yet. This paper proposes an improved spatial and temporal adaptive reflectance fusion model (STARFM) with the help of an Unmixing-based method (USTARFM) to generate the high spatial and temporal data needed for the study of heterogeneous areas. The results showed that the USTARFM had higher accuracy than STARFM methods in two aspects of analysis: individual bands and of heterogeneity analysis. Taking the predicted NIR band as an example, the correlation coefficients (r) for the USTARFM, STARFM and unmixing methods were 0.96, 0.95, 0.90, respectively (p-value data fusion problems faced when using STARFM. Additionally, the USTARFM method could help researchers achieve better performance than STARFM at a smaller window size from its heterogeneous land surface quantitative representation.

  7. Congenital external auditory canal atresia and stenosis: temporal bone CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hoon; Kim, Bum Soo; Jung, So Lyung; Kim, Young Joo; Chun, Ho Jong; Choi, Kyu Ho; Park, Shi Nae [College of Medicine, Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2002-04-01

    To determine the computed tomographic (CT) findings of atresia and stenosis of the external auditory canal (EAC), and to describe associated abnormalities in surrounding structures. We retrospectively reviewed the axial and coronal CT images of the temporal bone in 15 patients (M:F=8:7;mean age, 15.8 years) with 16 cases of EAC atresia (unilateral n=11, bilateral n=1) and EAC stenosis (unilateral n=3). Associated abnormalities of the EAC, tympanic cavity, ossicles, mastoid air cells, eustachian tube, facial nerve course, mandibular condyle and condylar fossa, sigmoid sinus and jugular bulb, and the base of the middle cranial fossa were evaluated. Thirteen cases of bony EAC atresia (one bilateral), with an atretic bony plate, were noted, and one case of unilateral membranous atresia, in which a soft tissue the EAC. A unilateral lesion occurred more frequently on the right temporal bone (n=8, 73%). Associated abnormalities included a small tympanic cavity (n=8, 62%), decreased mastoid pneumatization (n=8, 62%), displacement of the mandibular condyle and the posterior wall of the condylar fossa (n=7, 54%), dilatation of the Eustachian tube (n=7, 54%), and inferior displacement of the temporal fossa base (n=8, 62%). Abnormalities of ossicles were noted in the malleolus (n=12, 92%), incus (n=10, 77%) and stapes (n=6, 46%). The course of the facial nerve was abnormal in four cases, and abnormality of the auditory canal was noted in one. Among three cases of EAC stenosis, ossicular aplasia was observed in one, and in another the location of the mandibular condyle and condylar fossa was abnormal. In the remaining case there was no associated abnormality. Atresia of the EAC is frequently accompanied by abnormalities of the middle ear cavity, ossicles, and adjacent structures other than the inner ear. For patients with atresia and stenosis of this canal, CT of the temporal bone is essentially helpful in evaluating these associated abnormalities.

  8. Transmastoid approach to temporal bone cerebrospinal fluid leaks.

    Science.gov (United States)

    Oliaei, Sepehr; Mahboubi, Hossein; Djalilian, Hamid R

    2012-01-01

    The aim of the study was to evaluate various presentations and treatment options for spontaneous cerebrospinal fluid (CSF) leakage originating in the temporal bone. Clinical data and imaging results for 18 ears (15 patients) presenting with spontaneous CSF leakage originating in the temporal bone were reviewed. Average follow-up period was 13.5 months. The main outcome measure was presence of persistent CSF leak postoperatively. A standard postauricular mastoidectomy was performed. Fifteen patients diagnosed with spontaneous CSF leakage over an 8-year period including 3 treated for bilateral disease were included in the study. The age ranged between 33 and 83 years. Presenting symptoms included serous otitis media (44%), persistent otorrhea after tympanostomy tube placement (28%), and meningitis (28%). Preoperative diagnosis was made using imaging studies and was substantiated by observation of CSF leakage and dural herniation intraoperatively. Treatment was eustachian tube plugging (5%), mastoidectomy with fat obliteration (61%), middle fossa approach with extradural (17%), intradural repair (5%), or combined middle fossa and transmastoid (TM) approach (11%). Successful treatment was obtained in 17 of the 18 cases. The last 9 patients in the series underwent TM approach alone for repair with no treatment failures. Repair of defects in tegmen mastoideum and posterior fossa can be successfully achieved on an outpatient basis without regard to size and multitude of defects via TM approach. This approach obviates the need for a craniotomy or lumbar drain. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Development of High Resolution Data for Irrigated Area and Cropping Patterns in India

    Science.gov (United States)

    K a, A.; Mishra, V.

    2015-12-01

    Information of crop phenology and its individual effect on irrigation is essential to improve the simulation of land surface states and fluxes. We use moderate resolution imaging spectroradiometer (MODIS) - Normalized difference vegetation index (NDVI) at 250 m resolution for monitoring temporal changes in irrigation and cropping patterns in India. We used the obtained dataset of cropping pattern for quantifying the effect of irrigation on land surface states and fluxes by using an uncoupled land surface model. The cropping patterns are derived by using the planting, heading, harvesting, and growing dates for each agro-ecological zone separately. Moreover, we developed a high resolution irrigated area maps for the period of 1999-2014 for India. The high resolution irrigated area was compared with relatively coarse resolution (~ 10km) irrigated area from the Food and Agricultural Organization. To identify the seasonal effects we analyzed the spatial and temporal change of irrigation and cropping pattern for different temporal seasons. The new irrigation area information along with cropping pattern was used to study the water budget in India using the Noah Land surface Model (Noah LSM) for the period of 1999-2014.

  10. A time-domain binaural detection model and its predictions temporal-resolution data

    NARCIS (Netherlands)

    Breebaart, D.J.; Par, van de S.L.J.D.E.; Kohlrausch, A.G.

    2002-01-01

    This paper discusses the application of a time-domain binaural signal-detection model in the context of estimates of the temporal resolution of the binaural auditory system. It is demonstrated that the optimal detector which is present in the model is crucial to account for specific temporal

  11. Determination of a facial nerve safety zone for navigated temporal bone surgery

    NARCIS (Netherlands)

    Voormolen, E.H.J.; Stralen, van M.; Woerdeman, P.A.; Pluim, J.P.W.; Noordmans, H.J.; Viergever, M.A.; Regli, L.; Berkelbach van der Sprenkel, J.W.

    2012-01-01

    Transtemporal approaches require surgeons to drill the temporal bone to expose target lesions while avoiding the critical structures within it, such as the facial nerve and other neurovascular structures. We envision a novel protective neuronavigation system that continuously calculates the drill

  12. Assessing the importance of spatio-temporal RCM resolution when estimating sub-daily extreme precipitation under current and future climate conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Luchner, J.; Onof, C.

    2017-01-01

    extreme precipitation over Denmark generated by the regional climate model (RCM) HIRHAM-ECEARTH at different spatial resolutions (8, 12, 25 and 50km), three RCM from the RiskChange project at 8km resolution and three RCMs from ENSEMBLES at 25km resolution at temporal aggregations from 1 to 48h...... are more skewed than the observational dataset, which leads to an overestimation by the higher spatial resolution simulations. Nevertheless, in general, under current conditions RCM simulations at high spatial resolution represent extreme events and high-order moments better. The changes projected...

  13. Development of a robot for surgery of temporal bone

    International Nuclear Information System (INIS)

    Komune, Shizuo

    2011-01-01

    Described was development of a robot for drill-outing the mastoid process, the first essential step purposing such otologic surgery of temporal bone as tympanoplasty, cochlear implantation and tumor resection of auditory nerve, etc. A model of the bone prototyped by CT 3D data (Ono and Co., Ltd., Tokyo) was used for getting the trace of the drill-outing procedure by an expert, and information of the trace and bone position was registered by STAMP (surface template-assisted marker positioning), which was then integrated with a navigation system 3D slicer (a free, open source software) with use of data from position sensors of optical Polaris (NDI, Canada) and magnetic Aurora (NDI) on the drill tip. The sensors were also usable for recording the trace after the surgery as a log by MRI. The robot system was made to have thus 3 parts of drill-outing, operative navigation and control unit based on anatomical information. The drill-outing mechanic was made to have 6 degrees of freedom. Comparison of logs of the procedure conducted in the phantom bone by the robot and by an otologic operator gave agreement within error of 0.9 mm. More mechanical preciseness was thought desirable for reproducible operation. (author)

  14. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    Science.gov (United States)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  15. Successful Function-Preserving Therapy for Chondroblastoma of the Temporal Bone Involving the Temporomandibular Joint

    Directory of Open Access Journals (Sweden)

    Junkichi Yokoyama

    2011-02-01

    Full Text Available We present a case involving a late diagnosis of chondroblastoma of the temporal skull base involving the temporomandibular joint (TMJ. Following an initial misdiagnosis and unsuccessful treatment over a period of 5 years, the patient was referred to our department for further evaluation and possible surgical intervention for occlusal abnormalities, trismus, clicking of the TMJ, and hearing impairment. Based on preoperative immunochemical studies showing positive reaction of multinucleated giant cells for S-100 protein, the final diagnosis was chondroblastoma. The surgical approach – postauricular incision and total parotidectomy, with complete removal of the temporal bone, including the TMJ via the extended middle fossa – was successful in preserving facial nerves and diminishing clinical manifestations. This study highlights a misdiagnosed case in an effort to underline the importance of medical examinations and accurate differential diagnosis in cases involving any tumor mass in the temporal bone.

  16. The temporal resolution factor with and without background noise

    NARCIS (Netherlands)

    Dreschler, W. A.; Leeuw, A. R.

    1990-01-01

    In this paper we discuss the measurement of the temporal resolution factor (TRF). The major merits of this measurement are that it is simple enough to be used clinically and that the results are, within certain limits, independent of presentation level. Addition of a continuous background noise has

  17. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  18. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  19. Using high resolution satellite multi-temporal interferometry for landslide hazard detection in tropical environments: the case of Haiti

    Science.gov (United States)

    Wasowski, Janusz; Nutricato, Raffaele; Nitti, Davide Oscar; Bovenga, Fabio; Chiaradia, Maria Teresa; Piard, Boby Emmanuel; Mondesir, Philemon

    2015-04-01

    Synthetic aperture radar (SAR) multi-temporal interferometry (MTI) is one of the most promising satellite-based remote sensing techniques for fostering new opportunities in landslide hazard detection and assessment. MTI is attractive because it can provide very precise quantitative information on slow slope displacements of the ground surface over huge areas with limited vegetation cover. Although MTI is a mature technique, we are only beginning to realize the benefits of the high-resolution imagery that is currently acquired by the new generation radar satellites (e.g., COSMO-SkyMed, TerraSAR-X). In this work we demonstrate the potential of high resolution X-band MTI for wide-area detection of slope instability hazards even in tropical environments that are typically very harsh (eg. coherence loss) for differential interferometry applications. This is done by presenting an example from the island of Haiti, a tropical region characterized by dense and rapidly growing vegetation, as well as by significant climatic variability (two rainy seasons) with intense precipitation events. Despite the unfavorable setting, MTI processing of nearly 100 COSMO-SkyMed (CSK) mages (2011-2013) resulted in the identification of numerous radar targets even in some rural (inhabited) areas thanks to the high resolution (3 m) of CSK radar imagery, the adoption of a patch wise processing SPINUA approach and the presence of many man-made structures dispersed in heavily vegetated terrain. In particular, the density of the targets resulted suitable for the detection of some deep-seated and shallower landslides, as well as localized, very slow slope deformations. The interpretation and widespread exploitation of high resolution MTI data was facilitated by Google EarthTM tools with the associated high resolution optical imagery. Furthermore, our reconnaissance in situ checks confirmed that MTI results provided useful information on landslides and marginally stable slopes that can represent a

  20. Estimation of Diurnal Cycle of Land Surface Temperature at High Temporal and Spatial Resolution from Clear-Sky MODIS Data

    Directory of Open Access Journals (Sweden)

    Si-Bo Duan

    2014-04-01

    Full Text Available The diurnal cycle of land surface temperature (LST is an important element of the climate system. Geostationary satellites can provide the diurnal cycle of LST with low spatial resolution and incomplete global coverage, which limits its applications in some studies. In this study, we propose a method to estimate the diurnal cycle of LST at high temporal and spatial resolution from clear-sky MODIS data. This method was evaluated using the MSG-SEVIRI-derived LSTs. The results indicate that this method fits the diurnal cycle of LST well, with root mean square error (RMSE values less than 1 K for most pixels. Because MODIS provides at most four observations per day at a given location, this method was further evaluated using only four MSG-SEVIRI-derived LSTs corresponding to the MODIS overpass times (10:30, 13:30, 22:30, and 01:30 local solar time. The results show that the RMSE values using only four MSG-SEVIRI-derived LSTs are approximately two times larger than those using all LSTs. The spatial distribution of the modeled LSTs at the MODIS pixel scale is presented from 07:00 to 05:00 local solar time of the next day with an increment of 2 hours. The diurnal cycle of the modeled LSTs describes the temporal evolution of the LSTs at the MODIS pixel scale.

  1. Temporal Variability in Vertical Groundwater Fluxes and the Effect of Solar Radiation on Streambed Temperatures Based on Vertical High Resolution Distributed Temperature Sensing

    Science.gov (United States)

    Sebok, E.; Karan, S.; Engesgaard, P. K.; Duque, C.

    2013-12-01

    Due to its large spatial and temporal variability, groundwater discharge to streams is difficult to quantify. Methods using vertical streambed temperature profiles to estimate vertical fluxes are often of coarse vertical spatial resolution and neglect to account for the natural heterogeneity in thermal conductivity of streambed sediments. Here we report on a field investigation in a stream, where air, stream water and streambed sediment temperatures were measured by Distributed Temperature Sensing (DTS) with high spatial resolution to; (i) detect spatial and temporal variability in groundwater discharge based on vertical streambed temperature profiles, (ii) study the thermal regime of streambed sediments exposed to different solar radiation influence, (iii) describe the effect of solar radiation on the measured streambed temperatures. The study was carried out at a field site located along Holtum stream, in Western Denmark. The 3 m wide stream has a sandy streambed with a cobbled armour layer, a mean discharge of 200 l/s and a mean depth of 0.3 m. Streambed temperatures were measured with a high-resolution DTS system (HR-DTS). By helically wrapping the fiber optic cable around two PVC pipes of 0.05 m and 0.075 m outer diameter over 1.5 m length, temperature measurements were recorded with 5.7 mm and 3.8 mm vertical spacing, respectively. The HR-DTS systems were installed 0.7 m deep in the streambed sediments, crossing both the sediment-water and the water-air interface, thus yielding high resolution water and air temperature data as well. One of the HR-DTS systems was installed in the open stream channel with only topographical shading, while the other HR-DTS system was placed 7 m upstream, under the canopy of a tree, thus representing the shaded conditions with reduced influence of solar radiation. Temperature measurements were taken with 30 min intervals between 16 April and 25 June 2013. The thermal conductivity of streambed sediments was calibrated in a 1D flow

  2. Accelerator-based Single-shot Ultrafast Transmission Electron Microscope with Picosecond Temporal Resolution and Nanometer Spatial Resolution

    OpenAIRE

    Xiang, D.; Fu, F.; Zhang, J.; Huang, X.; Wang, L.; Wang, X.; Wan, W.

    2014-01-01

    We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs, and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. W...

  3. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France); Hasboun, D. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France)]|[Dept. of Neurology, Paris VI Univ. (France); Bazin, B.; Samson, S.; Baulac, M. [Dept. of Neurology, Paris VI Univ. (France)

    1999-07-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  4. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    International Nuclear Information System (INIS)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C.; Hasboun, D.; Bazin, B.; Samson, S.; Baulac, M.

    1999-01-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  5. DSM GENERATION FROM HIGH RESOLUTION COSMO-SKYMED IMAGERY WITH RADARGRAMMETRIC MODEL

    OpenAIRE

    P. Capaldo; M. Crespi; F. Fratarcangeli; A. Nascetti; F. Pieralice

    2012-01-01

    The availability of new high resolution radar spaceborne sensors offers new interesting potentialities for the geomatics application: spatial and temporal change detection, features extraction, generation of Digital Surface (DSMs). As regards the DSMs generation from new high resolution data (as SpotLight imagery), the development and the accuracy assessment of method based on radargrammetric approach are topics of great interest and relevance. The aim of this investigation is the DSM generat...

  6. High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers

    Science.gov (United States)

    Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.

    2017-12-01

    The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and

  7. Evaluation of the utility of temporal subtraction images in successive whole-body bone scans: a prospective clinical study

    International Nuclear Information System (INIS)

    Shiraishi, J.; Appelbaum, D.; Pu, Y.; Engelmann, R.; Li Qiang; Doi, K.

    2007-01-01

    We have begun a prospective clinical study for evaluating the clinical utility of temporal subtraction images in successive whole-body bone scans. The computerized temporal subtraction technique has been developed in order to highlight interval changes of abnormal lesions due to skeletal metastases, primary bone tumors, osteomyelitis, and fractures. In our initial preliminary results of the prospective study which was started on November 22, 2006 in our hospital, radiologists reported some interval changes which were not recognized in the initial standard readings, but were obvious when temporal subtraction images were viewed. The usefulness of the temporal subtraction images will be investigated in terms of its clinical utility by the prospective clinical study. (orig.)

  8. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Science.gov (United States)

    Nishihara, Makoto; Inui, Koji; Morita, Tomoyo; Kodaira, Minori; Mochizuki, Hideki; Otsuru, Naofumi; Motomura, Eishi; Ushida, Takahiro; Kakigi, Ryusuke

    2014-01-01

    Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  9. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Directory of Open Access Journals (Sweden)

    Makoto Nishihara

    Full Text Available Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG. The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m. The latency of Off-P50m depended on the inter-stimulus interval (ISI of the click train, which was the longest at 40 ms (25 Hz and became shorter with shorter ISIs (2.5∼20 ms. The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  10. Spine Trabecular Bone Score as an Indicator of Bone Microarchitecture at the Peripheral Skeleton in Kidney Transplant Recipients.

    Science.gov (United States)

    Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X; McMahon, Donald J; Shane, Elizabeth; Nickolas, Thomas L

    2017-04-03

    Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid-withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography

  11. Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems

    International Nuclear Information System (INIS)

    Beck, T.; Kondziella, H.; Huard, G.; Bruckner, T.

    2016-01-01

    Highlights: • MILP optimization model for operation and investment of PV-battery systems. • Use of high resolution (10 s) electrical household load and PV generation profiles. • Analysis of influence of temporal resolution on self-consumption and optimal sizing. • Electrical load profile characteristics influence required temporal resolution. - Abstract: The interest in self-consumption of electricity generated by rooftop photovoltaic systems has grown in recent years, fueled by decreasing levelized costs of electricity and feed-in tariffs as well as increasing end customer electricity prices in the residential sector. This also fostered research on grid-connected PV-battery storage systems, which are a promising technology to increase self-consumption. In this paper a mixed-integer linear optimization model of a PV-battery system that minimizes the total discounted operating and investment costs is developed. The model is employed to study the effect of the temporal resolution of electrical load and PV generation profiles on the rate of self-consumption and the optimal sizing of PV and PV-battery systems. In contrast to previous studies high resolution (10 s) measured input data for both PV generation and electrical load profiles is used for the analysis. The data was obtained by smart meter measurements in 25 different households in Germany. It is shown that the temporal resolution of load profiles is more critical for the accuracy of the determination of self-consumption rates than the resolution of the PV generation. For PV-systems without additional storage accurate results can be obtained by using 15 min solar irradiation data. The required accuracy for the electrical load profiles depends strongly on the load profile characteristics. While good results can be obtained with 60 s for all electrical load profiles, 15 min data can still be sufficient for load profiles that do not exhibit most of their electricity consumption at power levels above 2 k

  12. Constraints on the geomorphological evolution of the nested summit craters of Láscar volcano from high spatio-temporal resolution TerraSAR-X interferometry

    Science.gov (United States)

    Richter, Nicole; Salzer, Jacqueline Tema; de Zeeuw-van Dalfsen, Elske; Perissin, Daniele; Walter, Thomas R.

    2018-03-01

    Small-scale geomorphological changes that are associated with the formation, development, and activity of volcanic craters and eruptive vents are often challenging to characterize, as they may occur slowly over time, can be spatially localized, and difficult, or dangerous, to access. Using high-spatial and high-temporal resolution synthetic aperture radar (SAR) imagery collected by the German TerraSAR-X (TSX) satellite in SpotLight mode in combination with precise topographic data as derived from Pléiades-1A satellite data, we investigate the surface deformation within the nested summit crater system of Láscar volcano, Chile, the most active volcano of the central Andes. Our aim is to better understand the structural evolution of the three craters that comprise this system, to assess their physical state and dynamic behavior, and to link this to eruptive activity and associated hazards. Using multi-temporal SAR interferometry (MT-InSAR) from ascending and descending orbital geometries, we retrieve the vertical and east-west components of the displacement field. This time series indicates constant rates of subsidence and asymmetric horizontal displacements of all summit craters between June 2012 and July 2014, as well as between January 2015 and March 2017. The vertical and horizontal movements that we observe in the central crater are particularly complex and cannot be explained by any single crater formation mechanism; rather, we suggest that short-term activities superimposed on a combination of ongoing crater evolution processes, including gravitational slumping, cooling and compaction of eruption products, as well as possible piston-like subsidence, are responsible for the small-scale geomorphological changes apparent in our data. Our results demonstrate how high-temporal resolution synthetic aperture radar interferometry (InSAR) time series can add constraints on the geomorphological evolution and structural dynamics of active crater and vent systems at

  13. Deriving temporally continuous soil moisture estimations at fine resolution by downscaling remotely sensed product

    Science.gov (United States)

    Jin, Yan; Ge, Yong; Wang, Jianghao; Heuvelink, Gerard B. M.

    2018-06-01

    Land surface soil moisture (SSM) has important roles in the energy balance of the land surface and in the water cycle. Downscaling of coarse-resolution SSM remote sensing products is an efficient way for producing fine-resolution data. However, the downscaling methods used most widely require full-coverage visible/infrared satellite data as ancillary information. These methods are restricted to cloud-free days, making them unsuitable for continuous monitoring. The purpose of this study is to overcome this limitation to obtain temporally continuous fine-resolution SSM estimations. The local spatial heterogeneities of SSM and multiscale ancillary variables were considered in the downscaling process both to solve the problem of the strong variability of SSM and to benefit from the fusion of ancillary information. The generation of continuous downscaled remote sensing data was achieved via two principal steps. For cloud-free days, a stepwise hybrid geostatistical downscaling approach, based on geographically weighted area-to-area regression kriging (GWATARK), was employed by combining multiscale ancillary variables with passive microwave remote sensing data. Then, the GWATARK-estimated SSM and China Soil Moisture Dataset from Microwave Data Assimilation SSM data were combined to estimate fine-resolution data for cloudy days. The developed methodology was validated by application to the 25-km resolution daily AMSR-E SSM product to produce continuous SSM estimations at 1-km resolution over the Tibetan Plateau. In comparison with ground-based observations, the downscaled estimations showed correlation (R ≥ 0.7) for both ascending and descending overpasses. The analysis indicated the high potential of the proposed approach for producing a temporally continuous SSM product at fine spatial resolution.

  14. 3D high resolution tracking of ice flow using mutli-temporal stereo satellite imagery, Franz Josef Glacier, New Zealand

    Science.gov (United States)

    Leprince, S.; Lin, J.; Ayoub, F.; Herman, F.; Avouac, J.

    2013-12-01

    We present the latest capabilities added to the Co-Registration of Optically Sensed Images and Correlation (COSI-Corr) software, which aim at analyzing time-series of stereoscopic imagery to document 3D variations of the ground surface. We review the processing chain and present the new and improved modules for satellite pushbroom imagery, in particular the N-image bundle block adjustment to jointly optimize the viewing geometry of multiple acquisitions, the improved multi-scale image matching based on Semi-Global Matching (SGM) to extract high resolution topography, and the triangulation of multi-temporal disparity maps to derive 3D ground motion. In particular, processes are optimized to run on a cluster computing environment. This new suite of algorithms is applied to the study of Worldview stereo imagery above the Franz Josef, Fox, and Tasman Glaciers, New Zealand, acquired on 01/30/2013, 02/09/2013, and 02/28/2013. We derive high resolution (1m post-spacing) maps of ice flow in three dimensions, where ice velocities of up to 4 m/day are recorded. Images were collected in early summer during a dry and sunny period, which followed two weeks of unsettled weather with several heavy rainfall events across the Southern Alps. The 3D tracking of ice flow highlights the surface response of the glaciers to changes in effective pressure at the ice-bedrock interface due to heavy rainfall, at an unprecedented spatial resolution.

  15. High-resolution CT with histopathological correlates of the classic metaphyseal lesion of infant abuse

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Andy; Kleinman, Paul K. [Boston Children' s Hospital, Department of Radiology, Boston, MA (United States); McDonald, Anna G. [Office of the Chief Medical Examiner, Boston, MA (United States); Rosenberg, Andrew E. [University of Miami Hospital, Department of Pathology, Miami, FL (United States); Gupta, Rajiv [Massachusetts General Hospital, Department of Radiology, Boston, MA (United States)

    2014-02-15

    The classic metaphyseal lesion (CML) is a common high specificity indicator of infant abuse and its imaging features have been correlated histopathologically in infant fatalities. High-resolution CT imaging and histologic correlates were employed to (1) characterize the normal infant anatomy surrounding the chondro-osseous junction, and (2) confirm the 3-D model of the CML previously inferred from planar radiography and histopathology. Long bone specimens from 5 fatally abused infants, whose skeletal survey showed definite or suspected CMLs, were studied postmortem. After skeletal survey, selected specimens were resected and imaged with high-resolution digital radiography. They were then scanned with micro-CT (isotropic resolution of 45 μm{sup 3}) or with high-resolution flat-panel CT (isotropic resolutions of 200 μm{sup 3}). Visualization of the bony structures was carried out using image enhancement, segmentation and isosurface extraction, together with volume rendering and multiplanar reformatting. These findings were then correlated with histopathology. Study of normal infant bone clarifies the 3-D morphology of the subperiosteal bone collar (SPBC) and the radiographic zone of provisional calcification (ZPC). Studies on specimens with CML confirm that this lesion is a fracture extending in a planar fashion through the metaphysis, separating a mineralized fragment. This disk-like mineralized fragment has two components: (1) a thick peripheral component encompassing the SPBC; and (2) a thin central component comprised predominantly of the radiologic ZPC. By manipulating the 3-D model, the varying appearances of the CML are displayed. High-resolution CT coupled with histopathology provides elucidation of the morphology of the CML, a strong indicator of infant abuse. This new information may prove useful in assessing the biomechanical factors that produce this strong indicator of abusive assaults in infants. (orig.)

  16. High-resolution CT with histopathological correlates of the classic metaphyseal lesion of infant abuse

    International Nuclear Information System (INIS)

    Tsai, Andy; Kleinman, Paul K.; McDonald, Anna G.; Rosenberg, Andrew E.; Gupta, Rajiv

    2014-01-01

    The classic metaphyseal lesion (CML) is a common high specificity indicator of infant abuse and its imaging features have been correlated histopathologically in infant fatalities. High-resolution CT imaging and histologic correlates were employed to (1) characterize the normal infant anatomy surrounding the chondro-osseous junction, and (2) confirm the 3-D model of the CML previously inferred from planar radiography and histopathology. Long bone specimens from 5 fatally abused infants, whose skeletal survey showed definite or suspected CMLs, were studied postmortem. After skeletal survey, selected specimens were resected and imaged with high-resolution digital radiography. They were then scanned with micro-CT (isotropic resolution of 45 μm 3 ) or with high-resolution flat-panel CT (isotropic resolutions of 200 μm 3 ). Visualization of the bony structures was carried out using image enhancement, segmentation and isosurface extraction, together with volume rendering and multiplanar reformatting. These findings were then correlated with histopathology. Study of normal infant bone clarifies the 3-D morphology of the subperiosteal bone collar (SPBC) and the radiographic zone of provisional calcification (ZPC). Studies on specimens with CML confirm that this lesion is a fracture extending in a planar fashion through the metaphysis, separating a mineralized fragment. This disk-like mineralized fragment has two components: (1) a thick peripheral component encompassing the SPBC; and (2) a thin central component comprised predominantly of the radiologic ZPC. By manipulating the 3-D model, the varying appearances of the CML are displayed. High-resolution CT coupled with histopathology provides elucidation of the morphology of the CML, a strong indicator of infant abuse. This new information may prove useful in assessing the biomechanical factors that produce this strong indicator of abusive assaults in infants. (orig.)

  17. Evaluation of a High-Resolution Regional Reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.; Wahl, S.; Keller, J. D.; Bollmeyer, C.

    2014-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers 6 years (2007-2012) and is currently extended to 16 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  18. High temporal resolution magnetic resonance imaging: development of a parallel three dimensional acquisition method for functional neuroimaging; Imagerie par resonance magnetique a haute resolution temporelle: developpement d'une methode d'acquisition parallele tridimensionnelle pour l'imagerie fonctionnelle cerebrale

    Energy Technology Data Exchange (ETDEWEB)

    Rabrait, C

    2007-11-15

    Echo Planar Imaging is widely used to perform data acquisition in functional neuroimaging. This sequence allows the acquisition of a set of about 30 slices, covering the whole brain, at a spatial resolution ranging from 2 to 4 mm, and a temporal resolution ranging from 1 to 2 s. It is thus well adapted to the mapping of activated brain areas but does not allow precise study of the brain dynamics. Moreover, temporal interpolation is needed in order to correct for inter-slices delays and 2-dimensional acquisition is subject to vascular in flow artifacts. To improve the estimation of the hemodynamic response functions associated with activation, this thesis aimed at developing a 3-dimensional high temporal resolution acquisition method. To do so, Echo Volume Imaging was combined with reduced field-of-view acquisition and parallel imaging. Indeed, E.V.I. allows the acquisition of a whole volume in Fourier space following a single excitation, but it requires very long echo trains. Parallel imaging and field-of-view reduction are used to reduce the echo train durations by a factor of 4, which allows the acquisition of a 3-dimensional brain volume with limited susceptibility-induced distortions and signal losses, in 200 ms. All imaging parameters have been optimized in order to reduce echo train durations and to maximize S.N.R., so that cerebral activation can be detected with a high level of confidence. Robust detection of brain activation was demonstrated with both visual and auditory paradigms. High temporal resolution hemodynamic response functions could be estimated through selective averaging of the response to the different trials of the stimulation. To further improve S.N.R., the matrix inversions required in parallel reconstruction were regularized, and the impact of the level of regularization on activation detection was investigated. Eventually, potential applications of parallel E.V.I. such as the study of non-stationary effects in the B.O.L.D. response

  19. ESTIMATING GROSS PRIMARY PRODUCTION IN CROPLAND WITH HIGH SPATIAL AND TEMPORAL SCALE REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    S. Lin

    2018-04-01

    Full Text Available Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km. The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012 Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1 the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR is about 50 % (R2 = 0.52 and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64; 2 estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day, which has better performance than using MODIS 1-km NDVI/EVI product import; 3 using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  20. Flat-Panel Computed Tomography (DYNA-CT) in Neuroradiology. From High-Resolution Imaging of Implants to One-Stop-Shopping for Acute Stroke.

    Science.gov (United States)

    Doerfler, A; Gölitz, P; Engelhorn, T; Kloska, S; Struffert, T

    2015-10-01

    Originally aimed at improving standard radiography by providing higher absorption efficiency and a wider dynamic range, flat-panel detector technology has meanwhile got widely accepted in the neuroradiological community. Especially flat-panel detector computed tomography (FD-CT) using rotational C-arm mounted flat-panel detector technology is capable of volumetric imaging with a high spatial resolution. By providing CT-like images of the brain within the angio suite, FD-CT is able to rapidly visualize hemorrhage and may thus improve complication management without the need of patient transfer. As "Angiographic CT" FD-CT may be helpful during many diagnostic and neurointerventional procedures and for noninvasive monitoring and follow-up. In addition, spinal interventions and high-resolution imaging of the temporal bone might also benefit from FD-CT. Finally, using novel dynamic perfusion and angiographic protocols, FD-CT may provide functional information on brain perfusion and vasculature with the potential to replace standard imaging in selected acute stroke patients.

  1. Evaluating Climate Causation of Conflict in Darfur Using Multi-temporal, Multi-resolution Satellite Image Datasets With Novel Analyses

    Science.gov (United States)

    Brown, I.; Wennbom, M.

    2013-12-01

    Climate change, population growth and changes in traditional lifestyles have led to instabilities in traditional demarcations between neighboring ethic and religious groups in the Sahel region. This has resulted in a number of conflicts as groups resort to arms to settle disputes. Such disputes often centre on or are justified by competition for resources. The conflict in Darfur has been controversially explained by resource scarcity resulting from climate change. Here we analyse established methods of using satellite imagery to assess vegetation health in Darfur. Multi-decadal time series of observations are available using low spatial resolution visible-near infrared imagery. Typically normalized difference vegetation index (NDVI) analyses are produced to describe changes in vegetation ';greenness' or ';health'. Such approaches have been widely used to evaluate the long term development of vegetation in relation to climate variations across a wide range of environments from the Arctic to the Sahel. These datasets typically measure peak NDVI observed over a given interval and may introduce bias. It is furthermore unclear how the spatial organization of sparse vegetation may affect low resolution NDVI products. We develop and assess alternative measures of vegetation including descriptors of the growing season, wetness and resource availability. Expanding the range of parameters used in the analysis reduces our dependence on peak NDVI. Furthermore, these descriptors provide a better characterization of the growing season than the single NDVI measure. Using multi-sensor data we combine high temporal/moderate spatial resolution data with low temporal/high spatial resolution data to improve the spatial representativity of the observations and to provide improved spatial analysis of vegetation patterns. The approach places the high resolution observations in the NDVI context space using a longer time series of lower resolution imagery. The vegetation descriptors

  2. Development of a parallel zoomed EVI sequence for high temporal resolution analysis of the BOLD response

    International Nuclear Information System (INIS)

    Rabrait, C.

    2006-01-01

    The hemodynamic impulse response to any short stimulus typically lasts around 20 seconds. Thus, the detection of the Blood Oxygenation Level Dependent (BOLD) effect is usually performed using a 2D Echo Planar Imaging (EPI) sequence, with repetition times on the order of 1 or 2 seconds. This temporal resolution is generally enough for detection purposes. Nevertheless, when trying to accurately estimate the hemodynamic response functions (HRF), higher scanning rates represent a real advantage. Thus, in order to reach a temporal resolution around 200 ms, we developed a new acquisition method, based on Echo Volumar Imaging and 2D parallel acquisition (1). Echo Volumar Imaging (EVI) has been proposed in 1977 by Mansfield (2). EVI intrinsically possesses a lot of advantages for functional neuroimaging, as a 3 D single shot acquisition method. Nevertheless, to date, only a few applications have been reported (3, 4). Actually, very restricting hardware requirements make EVI difficult to perform in satisfactory experimental conditions, even today. The critical point in EVI is the echo train duration, which is longer than in EPI, due to 3D acquisition. Indeed, at equal field of view and spatial resolutions, EVI echo train duration must be approximately equal to EPI echo train duration multiplied by the number of slices acquired in EPI. Consequently, EVI is much more sensitive than EPI to geometric distortions, which are related to phase errors, and also to signal losses, which are due to long echo times (TE). Thus, a first improvement has been brought by 'zoomed' or 'localized' EVI (5), which allows to focus on a small volume of interest and thus limit echo train durations compared to full FOV acquisitions.To reduce echo train durations, we chose to apply parallel acquisition. Moreover, since EVI is a 3D acquisition method, we are able to perform parallel acquisition and SENSE reconstruction along the two phase directions (6). The R = 4 under-sampling consists in the

  3. WE-AB-207A-01: BEST IN PHYSICS (IMAGING): High-Resolution Cone-Beam CT of the Extremities and Cancellous Bone Architecture with a CMOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Q; Brehler, M; Sisniega, A; Marinetto, E; Stayman, J; Siewerdsen, J; Zbijewski, W [Johns Hopkins University, Baltimore, MD (United States); Zyazin, A; Peters, I [Teledyne DALSA, Eindhoven (Netherlands); Yorkston, J [Carestream Health, Inc, Penfield, NY (United States)

    2016-06-15

    Purpose: Extremity cone-beam CT (CBCT) with an amorphous silicon (aSi) flat-panel detector (FPD) provides low-dose volumetric imaging with high spatial resolution. We investigate the performance of the newer complementary metal-oxide semiconductor (CMOS) detectors to enhance resolution of extremities CBCT to ∼0.1 mm, enabling morphological analysis of trabecular bone. Quantitative in-vivo imaging of bone microarchitecture could present an important advance for osteoporosis and osteoarthritis diagnosis and therapy assessment. Methods: Cascaded systems models of CMOS- and FPD-based extremities CBCT were implemented. Performance was compared for a range of pixel sizes (0.05–0.4 mm), focal spot sizes (0.3–0.6 FS), and x-ray techniques (0.05–0.8 mAs/projection) using detectability of high-, low-, and all-frequency tasks for a nonprewhitening observer. Test-bench implementation of CMOS-based extremity CBCT involved a Teledyne DALSA Xineos3030HR detector with 0.099 mm pixels and a compact rotating anode x-ray source with 0.3 FS (IMD RTM37). Metrics of bone morphology obtained using CMOS-based CBCT were compared in cadaveric specimens to FPD-based system using a Varian PaxScan4030 (0.194 mm pixels). Results: Finer pixel size and reduced electronic noise for CMOS (136 e compared to 2000 e for FPD) resulted in ∼1.9× increase in detectability for high-frequency tasks and ∼1.1× increase for all-frequency tasks. Incorporation of the new x-ray source with reduced focal spot size (0.3 FS vs. 0.5 FS used on current extremities CBCT) improved detectability for CMOS-based CBCT by ∼1.7× for high-frequency tasks. Compared to FPD CBCT, the CMOS detector yielded improved agreement with micro-CT in measurements of trabecular thickness (∼1.7× reduction in relative error), bone volume (∼1.5× reduction), and trabecular spacing (∼3.5× reduction). Conclusion: Imaging performance modelling and experimentation indicate substantial improvements for high

  4. WE-AB-207A-01: BEST IN PHYSICS (IMAGING): High-Resolution Cone-Beam CT of the Extremities and Cancellous Bone Architecture with a CMOS Detector

    International Nuclear Information System (INIS)

    Cao, Q; Brehler, M; Sisniega, A; Marinetto, E; Stayman, J; Siewerdsen, J; Zbijewski, W; Zyazin, A; Peters, I; Yorkston, J

    2016-01-01

    Purpose: Extremity cone-beam CT (CBCT) with an amorphous silicon (aSi) flat-panel detector (FPD) provides low-dose volumetric imaging with high spatial resolution. We investigate the performance of the newer complementary metal-oxide semiconductor (CMOS) detectors to enhance resolution of extremities CBCT to ∼0.1 mm, enabling morphological analysis of trabecular bone. Quantitative in-vivo imaging of bone microarchitecture could present an important advance for osteoporosis and osteoarthritis diagnosis and therapy assessment. Methods: Cascaded systems models of CMOS- and FPD-based extremities CBCT were implemented. Performance was compared for a range of pixel sizes (0.05–0.4 mm), focal spot sizes (0.3–0.6 FS), and x-ray techniques (0.05–0.8 mAs/projection) using detectability of high-, low-, and all-frequency tasks for a nonprewhitening observer. Test-bench implementation of CMOS-based extremity CBCT involved a Teledyne DALSA Xineos3030HR detector with 0.099 mm pixels and a compact rotating anode x-ray source with 0.3 FS (IMD RTM37). Metrics of bone morphology obtained using CMOS-based CBCT were compared in cadaveric specimens to FPD-based system using a Varian PaxScan4030 (0.194 mm pixels). Results: Finer pixel size and reduced electronic noise for CMOS (136 e compared to 2000 e for FPD) resulted in ∼1.9× increase in detectability for high-frequency tasks and ∼1.1× increase for all-frequency tasks. Incorporation of the new x-ray source with reduced focal spot size (0.3 FS vs. 0.5 FS used on current extremities CBCT) improved detectability for CMOS-based CBCT by ∼1.7× for high-frequency tasks. Compared to FPD CBCT, the CMOS detector yielded improved agreement with micro-CT in measurements of trabecular thickness (∼1.7× reduction in relative error), bone volume (∼1.5× reduction), and trabecular spacing (∼3.5× reduction). Conclusion: Imaging performance modelling and experimentation indicate substantial improvements for high

  5. Integrating real-time and manual monitored data to predict hillslope soil moisture dynamics with high spatio-temporal resolution using linear and non-linear models

    Science.gov (United States)

    Spatio-temporal variability of soil moisture (') is a challenge that remains to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time ' monitoring methods. This restricted the comprehensive and intensive examination of ' dynamic...

  6. High-Spatial- and High-Temporal-Resolution Dynamic Contrast-enhanced MR Breast Imaging with Sweep Imaging with Fourier Transformation: A Pilot Study

    Science.gov (United States)

    Benson, John C.; Idiyatullin, Djaudat; Snyder, Angela L.; Snyder, Carl J.; Hutter, Diane; Everson, Lenore I.; Eberly, Lynn E.; Nelson, Michael T.; Garwood, Michael

    2015-01-01

    Purpose To report the results of sweep imaging with Fourier transformation (SWIFT) magnetic resonance (MR) imaging for diagnostic breast imaging. Materials and Methods Informed consent was obtained from all participants under one of two institutional review board–approved, HIPAA-compliant protocols. Twelve female patients (age range, 19–54 years; mean age, 41.2 years) and eight normal control subjects (age range, 22–56 years; mean age, 43.2 years) enrolled and completed the study from January 28, 2011, to March 5, 2013. Patients had previous lesions that were Breast Imaging Reporting and Data System 4 and 5 based on mammography and/or ultrasonographic imaging. Contrast-enhanced SWIFT imaging was completed by using a 4-T research MR imaging system. Noncontrast studies were completed in the normal control subjects. One of two sized single-breast SWIFT-compatible transceiver coils was used for nine patients and five controls. Three patients and five control subjects used a SWIFT-compatible dual breast coil. Temporal resolution was 5.9–7.5 seconds. Spatial resolution was 1.00 mm isotropic, with later examinations at 0.67 mm isotropic, and dual breast at 1.00 mm or 0.75 mm isotropic resolution. Results Two nonblinded breast radiologists reported SWIFT image findings of normal breast tissue, benign fibroadenomas (six of six lesions), and malignant lesions (10 of 12 lesions) concordant with other imaging modalities and pathologic reports. Two lesions in two patients were not visualized because of coil field of view. The images yielded by SWIFT showed the presence and extent of known breast lesions. Conclusion The SWIFT technique could become an important addition to breast imaging modalities because it provides high spatial resolution at all points during the dynamic contrast-enhanced examination. © RSNA, 2014 PMID:25247405

  7. Case analysis of temporal bone lesions with facial paralysis as main manifestation and literature review.

    Science.gov (United States)

    Chen, Wen-Jing; Ye, Jing-Ying; Li, Xin; Xu, Jia; Yi, Hai-Jin

    2017-08-23

    This study aims to discuss clinical characteristics, image manifestation and treatment methods of temporal bone lesions with facial paralysis as the main manifestation for deepening the understanding of such type of lesions and reducing erroneous and missed diagnosis. The clinical data of 16 patients with temporal bone lesions and facial paralysis as main manifestation, who were diagnosed and treated from 2009 to 2016, were retrospectively analyzed. Among these patients, six patients had congenital petrous bone cholesteatoma (PBC), nine patients had facial nerve schwannoma, and one patient had facial nerve hemangioma. All the patients had an experience of long-term erroneous diagnosis. The lesions were completely excised by surgery. PBC and primary facial nerve tumors were pathologically confirmed. Facial-hypoglossal nerve anastomosis was performed on two patients. HB grade VI was recovered to HB grade V in one patient. The anastomosis failed due to severe facial nerve fibrosis in one patient. Hence, HB remained at grade VI. Postoperative recovery was good for all patients. No lesion recurrence was observed after 1-6 years of follow-up. For the patients with progressive or complete facial paralysis, imaging examination should be perfected in a timely manner. Furthermore, PBC, primary facial nerve tumors and other temporal bone space-occupying lesions should be eliminated. Lesions should be timely detected and proper intervention should be conducted, in order to reduce operation difficulty and complications, and increase the opportunity of facial nerve function reconstruction.

  8. Effects of high spatial and temporal resolution Earth observations on simulated hydrometeorological variables in a cropland (southwestern France

    Directory of Open Access Journals (Sweden)

    J. Etchanchu

    2017-11-01

    Full Text Available Agricultural landscapes are often constituted by a patchwork of crop fields whose seasonal evolution is dependent on specific crop rotation patterns and phenologies. This temporal and spatial heterogeneity affects surface hydrometeorological processes and must be taken into account in simulations of land surface and distributed hydrological models. The Sentinel-2 mission allows for the monitoring of land cover and vegetation dynamics at unprecedented spatial resolutions and revisit frequencies (20 m and 5 days, respectively that are fully compatible with such heterogeneous agricultural landscapes. Here, we evaluate the impact of Sentinel-2-like remote sensing data on the simulation of surface water and energy fluxes via the Interactions between the Surface Biosphere Atmosphere (ISBA land surface model included in the EXternalized SURface (SURFEX modeling platform. The study focuses on the effect of the leaf area index (LAI spatial and temporal variability on these fluxes. We compare the use of the LAI climatology from ECOCLIMAP-II, used by default in SURFEX-ISBA, and time series of LAI derived from the high-resolution Formosat-2 satellite data (8 m. The study area is an agricultural zone in southwestern France covering 576 km2 (24 km  ×  24 km. An innovative plot-scale approach is used, in which each computational unit has a homogeneous vegetation type. Evaluation of the simulations quality is done by comparing model outputs with in situ eddy covariance measurements of latent heat flux (LE. Our results show that the use of LAI derived from high-resolution remote sensing significantly improves simulated evapotranspiration with respect to ECOCLIMAP-II, especially when the surface is covered with summer crops. The comparison with in situ measurements shows an improvement of roughly 0.3 in the correlation coefficient and a decrease of around 30 % of the root mean square error (RMSE in the simulated evapotranspiration. This

  9. A New Hybrid Spatio-temporal Model for Estimating Daily Multi-year PM2.5 Concentrations Across Northeastern USA Using High Resolution Aerosol Optical Depth Data

    Science.gov (United States)

    Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel

    2014-01-01

    The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter PM(sub 2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data.We developed and cross validated models to predict daily PM(sub 2.5) at a 1X 1 km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1 X 1 km grid predictions. We used mixed models regressing PM(sub 2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R(sup 2) = 0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R(sup 2) = 0.87, R(sup)2 = 0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions

  10. A Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI), International Journal of Applied Earth Observation and Geoinformation

    KAUST Repository

    Houborg, Rasmus

    2015-12-12

    Satellite remote sensing has been used successfully to map leaf area index (LAI) across landscapes, but advances are still needed to exploit multi-scale data streams for producing LAI at both high spatial and temporal resolution. A multi-scale Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) has been developed to generate 4-day time-series of Landsat-scale LAI from existing medium resolution LAI products. STEM-LAI has been designed to meet the demands of applications requiring frequent and spatially explicit information, such as effectively resolving rapidly evolving vegetation dynamics at sub-field (30 m) scales. In this study, STEM-LAI is applied to Moderate Resolution Imaging Spectroradiometer (MODIS) based LAI data and utilizes a reference-based regression tree approach for producing MODIS-consistent, but Landsat-based, LAI. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is used to interpolate the downscaled LAI between Landsat acquisition dates, providing a high spatial and temporal resolution improvement over existing LAI products. STARFM predicts high resolution LAI by blending MODIS and Landsat based information from a common acquisition date, with MODIS data from a prediction date. To demonstrate its capacity to reproduce fine-scale spatial features observed in actual Landsat LAI, the STEM-LAI approach is tested over an agricultural region in Nebraska. The implementation of a 250 m resolution LAI product, derived from MODIS 1 km data and using a scale consistent approach based on the Normalized Difference Vegetation Index (NDVI), is found to significantly improve accuracies of spatial pattern prediction, with the coefficient of efficiency (E) ranging from 0.77–0.94 compared to 0.01–0.85 when using 1 km LAI inputs alone. Comparisons against an 11-year record of in-situ measured LAI over maize and soybean highlight the utility of STEM-LAI in reproducing observed LAI dynamics (both characterized by r2 = 0

  11. Neutrophil Extracellular Traps and Fibrin in Otitis Media: Analysis of Human and Chinchilla Temporal Bones.

    Science.gov (United States)

    Schachern, Patricia A; Kwon, Geeyoun; Briles, David E; Ferrieri, Patricia; Juhn, Steven; Cureoglu, Sebahattin; Paparella, Michael M; Tsuprun, Vladimir

    2017-10-01

    Bacterial resistance in acute otitis can result in bacterial persistence and biofilm formation, triggering chronic and recurrent infections. To investigate the middle ear inflammatory response to bacterial infection in human and chinchilla temporal bones. Six chinchillas underwent intrabullar inoculations with 0.5 mL of 106 colony-forming units (CFUs) of Streptococcus pneumoniae, serotype 2. Two days later, we counted bacteria in middle ear effusions postmortem. One ear from each chinchilla was processed in paraffin and sectioned at 5 µm. The opposite ear was embedded in epoxy resin, sectioned at a thickness of 1 µm, and stained with toluidine blue. In addition, we examined human temporal bones from 2 deceased donors with clinical histories of otitis media (1 with acute onset otitis media, 1 with recurrent infection). Temporal bones had been previously removed at autopsy, processed, embedded in celloidin, and cut at a thickness of 20 µm. Sections of temporal bones from both chinchillas and humans were stained with hematoxylin-eosin and immunolabeled with antifibrin and antihistone H4 antibodies. Histopatological and imminohistochemical changes owing to otitis media. Bacterial counts in chinchilla middle ear effusions 2 days after inoculation were approximately 2 logs above initial inoculum counts. Both human and chinchilla middle ear effusions contained bacteria embedded in a fibrous matrix. Some fibers in the matrix showed positive staining with antifibrin antibody, others with antihistone H4 antibody. In acute and recurrent otitis media, fibrin and neutrophil extracellular traps (NETs) are part of the host inflammatory response to bacterial infection. In the early stages of otitis media the host defense system uses fibrin to entrap bacteria, and NETs function to eliminate bacteria. In chronic otitis media, fibrin and NETs appear to persist.

  12. Comparison of auditory temporal resolution between monolingual Persian and bilingual Turkish-Persian individuals.

    Science.gov (United States)

    Omidvar, Shaghayegh; Jafari, Zahra; Tahaei, Ali Akbar; Salehi, Masoud

    2013-04-01

    The aims of this study were to prepare a Persian version of the temporal resolution test using the method of Phillips et al (1994) and Stuart and Phillips (1996), and to compare the word-recognition performance in the presence of continuous and interrupted noise as well as the temporal resolution abilities between monolingual (ML) Persian and bilingual (BL) Turkish-Persian young adults. Word-recognition scores (WRSs) were obtained in quiet and in the presence of background competing continuous and interrupted noise at signal-to-noise ratios (SNRs) of -20, -10, 0, and 10 dB. Two groups of 33 ML Persian and 36 BL Turkish-Persian volunteers participated. WRSs significantly differed between ML and BL subjects at four sensation levels in the presence of continuous and interrupted noise. However, the difference in the release from masking between ML and BL subjects was not significant at the studied SNRs. BL Turkish-Persian listeners seem to show poorer performance when responding to Persian words in continuous and interrupted noise. However, bilingualism may not affect auditory temporal resolution ability.

  13. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.

    OpenAIRE

    Quodbach, J.; Moussavi, A.; Tammer, R.; Frahm, J.; Kleinebudde, P.

    2014-01-01

    The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 x 80 m with a section thickness of only 600 m were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the i...

  14. Human multipotent mesenchymal stromal cells in the treatment of postoperative temporal bone defect: an animal model

    Czech Academy of Sciences Publication Activity Database

    Školoudík, L.; Chrobok, V.; Kalfert, D.; Kočí, Zuzana; Syková, Eva; Chumak, Tetyana; Popelář, Jiří; Syka, Josef; Laco, J.; Dědková, J.; Dayanithi, Govindan; Filip, S.

    2016-01-01

    Roč. 25, č. 7 (2016), s. 1405-1414 ISSN 0963-6897 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : Human bone marrow * Human mesenchymal stromal cells (hMSCs) * Middle ear surgery * Temporal bone Subject RIV: FP - Other Medical Disciplines Impact factor: 3.006, year: 2016

  15. Studies directed toward improving the spatial resolution of the distribution of plutonium in bone

    International Nuclear Information System (INIS)

    Auxier, J.A.; Beach, J.L.; Becker, K.; Gammage, R.D.; Henley, L.C.; Parkinson, W.W.

    1975-01-01

    Of several methods which have been discussed for the improvement of resolution in fission fragment track detectors for neutron-induced autoradiography, emphasis had been on the use of absorber layers inserted between the sample and the detector. Scanning electron microscopy was shown to be beneficial for viewing only the entrance holes of fission fragment tracks in the detector foil. The primary disadvantage of using thick absorbers lies in the factor of 50 to 100 percent loss in sensitivity over bare detectors. One promising solution to this problem is the use of glass detectors with high critical angles, no absorbers, and short etching times. Such detectors gave the best resolution of any system tested (+-2 μ), though they suffered at fluences greater than 10 16 n/sub th/ cm 2 from high backgrounds as a result of their natural uranium content. Two samples of bone, each of 1 mg were dissolved in HNO 3 spiked with 244 Pu, and analyzed for total 239 Pu content in an isotopic abundance mass spectrometer. The 239 Pu concentration was 1 ppm by weight; bones with 10 ppm of 239 Pu are required, therefore, for neutron-induced autoradiography. Bones in suitable form for IMMA required only to be coated with a thin conductive coating of gold. In a fast scan mode, all elements were searched in 200 x 200 areas. Good quality micrographs were obtained showing Na, K, Ca, and P as major constituents with minor elements present, such as Cr and Fe

  16. A high-resolution regional reanalysis for the European CORDEX region

    Science.gov (United States)

    Bollmeyer, Christoph; Keller, Jan; Ohlwein, Christian; Wahl, Sabrina

    2015-04-01

    Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Weather Service), a high-resolution reanalysis system based on the COSMO model has been developed. Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations, renewable energy applications). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. The work presented here focuses on two regional reanalyses for Europe and Germany. The European reanalysis COSMO-REA6 matches the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km). Nested into COSMO-REA6 is COSMO-REA2, a convective-scale reanalysis with 2km resolution for Germany. COSMO-REA6 comprises the assimilation of observational data using the existing nudging scheme of COSMO and is complemented by a special soil moisture analysis and boundary conditions given by ERA-Interim data. COSMO-REA2 also uses the nudging scheme complemented by a latent heat nudging of radar information. The reanalysis data set currently covers 17 years (1997-2013) for COSMO-REA6 and 4 years (2010-2013) for COSMO-REA2 with a very large set of output variables and a high temporal output step of hourly 3D-fields and quarter-hourly 2D-fields. The evaluation

  17. High resolution CT in the investigation of bone destruction in the outer ear

    International Nuclear Information System (INIS)

    Koester, O.; Straehler-Pohl, H.J.; Bonn Univ.

    1986-01-01

    Eleven patients with known malignant tumours of the outer ear and three patients with otitis externa maligna were examined by high resolution CT. CT provided accurate information concerning soft tissue infiltration into the parotid or subtemporal tissues, and of the bony destruction in the mastoid, meatus and tympanic cavity. Absolute differentiation between a malignant tumour and otitis cisterna maligna is not possible, not even by high resolution CT. (orig.) [de

  18. High resolution measurements of Cyg X-1 from rockets

    International Nuclear Information System (INIS)

    Rothschild, R.E.; Boldt, E.A.; Holt, S.S.; Serlemitsos, P.J.

    1976-01-01

    Cyg X-1 was observed on two occasions (Oct. 4, 1973 and Oct. 3, 1974) by the Goddard x-ray rocket payload. This payload consisted of two gas proportional counters (xenon--methane with 710 cm 2 and argon--methane with 610 cm 2 ) using the same 128 channel pulse height analyzer and having 320 μs temporal resolution on the 1973 flight and 160 μs resolution on the 1974 flight. During both flights bursts of 1 ms duration were observed with very high statistical certainty. To date all 13 of these bursts have been analyzed for spectral and temporal character, and the results of this analysis are presented. The spectra of overall x-ray emission from both flights are also presented. In a source known for its variability it is remarkable that the spectra taken one year apart are virtually identical

  19. MSCT versus CBCT: evaluation of high-resolution acquisition modes for dento-maxillary and skull-base imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dillenseger, Jean-Philippe; Goetz, Christian [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Universite de Strasbourg, Icube, equipe MMB, CNRS, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Matern, Jean-Francois [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Gros, Catherine-Isabelle; Bornert, Fabien [Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Universite de Strasbourg, Faculte de Chirurgie Dentaire, Strasbourg (France); Le Minor, Jean-Marie [Universite de Strasbourg, Icube, equipe MMB, CNRS, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Universite de Strasbourg, Institut d' Anatomie Normale, Strasbourg (France); Constantinesco, Andre [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Choquet, Philippe [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Universite de Strasbourg, Icube, equipe MMB, CNRS, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Hopital de Hautepierre, Imagerie Preclinique, Biophysique et Medecine Nucleaire, Strasbourg Cedex (France)

    2014-09-24

    Our aim was to conduct a quantitative and qualitative evaluation of high-resolution skull-bone imaging for dentistry and otolaryngology using different architectures of recent X-ray computed tomography systems. Three multi-slice computed tomography (MSCT) systems and one Cone-beam computed tomography (CBCT) system were used in this study. All apparatuses were tested with installed acquisition modes and proprietary reconstruction software enabling high-resolution bone imaging. Quantitative analyses were performed with small fields of view with the preclinical vmCT phantom, which permits to measure spatial resolution, geometrical accuracy, linearity and homogeneity. Ten operators performed visual qualitative analyses on the vmCT phantom images, and on dry human skull images. Quantitative analysis showed no significant differences between protocols in terms of linearity and geometric accuracy. All MSCT systems present a better homogeneity than the CBCT. Both quantitative and visual analyses demonstrate that CBCT acquisitions are not better than the collimated helical MSCT mode. Our results demonstrate that current high-resolution MSCT protocols could exceed the performance of a previous generation CBCT system for spatial resolution and image homogeneity. (orig.)

  20. MSCT versus CBCT: evaluation of high-resolution acquisition modes for dento-maxillary and skull-base imaging

    International Nuclear Information System (INIS)

    Dillenseger, Jean-Philippe; Goetz, Christian; Matern, Jean-Francois; Gros, Catherine-Isabelle; Bornert, Fabien; Le Minor, Jean-Marie; Constantinesco, Andre; Choquet, Philippe

    2015-01-01

    Our aim was to conduct a quantitative and qualitative evaluation of high-resolution skull-bone imaging for dentistry and otolaryngology using different architectures of recent X-ray computed tomography systems. Three multi-slice computed tomography (MSCT) systems and one Cone-beam computed tomography (CBCT) system were used in this study. All apparatuses were tested with installed acquisition modes and proprietary reconstruction software enabling high-resolution bone imaging. Quantitative analyses were performed with small fields of view with the preclinical vmCT phantom, which permits to measure spatial resolution, geometrical accuracy, linearity and homogeneity. Ten operators performed visual qualitative analyses on the vmCT phantom images, and on dry human skull images. Quantitative analysis showed no significant differences between protocols in terms of linearity and geometric accuracy. All MSCT systems present a better homogeneity than the CBCT. Both quantitative and visual analyses demonstrate that CBCT acquisitions are not better than the collimated helical MSCT mode. Our results demonstrate that current high-resolution MSCT protocols could exceed the performance of a previous generation CBCT system for spatial resolution and image homogeneity. (orig.)

  1. MAP-MRF-Based Super-Resolution Reconstruction Approach for Coded Aperture Compressive Temporal Imaging

    Directory of Open Access Journals (Sweden)

    Tinghua Zhang

    2018-02-01

    Full Text Available Coded Aperture Compressive Temporal Imaging (CACTI can afford low-cost temporal super-resolution (SR, but limits are imposed by noise and compression ratio on reconstruction quality. To utilize inter-frame redundant information from multiple observations and sparsity in multi-transform domains, a robust reconstruction approach based on maximum a posteriori probability and Markov random field (MAP-MRF model for CACTI is proposed. The proposed approach adopts a weighted 3D neighbor system (WNS and the coordinate descent method to perform joint estimation of model parameters, to achieve the robust super-resolution reconstruction. The proposed multi-reconstruction algorithm considers both total variation (TV and ℓ 2 , 1 norm in wavelet domain to address the minimization problem for compressive sensing, and solves it using an accelerated generalized alternating projection algorithm. The weighting coefficient for different regularizations and frames is resolved by the motion characteristics of pixels. The proposed approach can provide high visual quality in the foreground and background of a scene simultaneously and enhance the fidelity of the reconstruction results. Simulation results have verified the efficacy of our new optimization framework and the proposed reconstruction approach.

  2. Single Photon Counting Large Format Imaging Sensors with High Spatial and Temporal Resolution

    Science.gov (United States)

    Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Cremer, T.; Craven, C. A.; Lyashenko, A.; Minot, M. J.

    High time resolution astronomical and remote sensing applications have been addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. These are being realized with the advent of cross strip readout techniques with high performance encoding electronics and atomic layer deposited (ALD) microchannel plate technologies. Sealed tube devices up to 20 cm square have now been successfully implemented with sub nanosecond timing and imaging. The objective is to provide sensors with large areas (25 cm2 to 400 cm2) with spatial resolutions of 5 MHz and event timing accuracy of 100 ps. High-performance ASIC versions of these electronics are in development with better event rate, power and mass suitable for spaceflight instruments.

  3. Pneumatization of the zygomatic process of temporal bone on computed tomograms

    Directory of Open Access Journals (Sweden)

    Friedrich, Reinhard E.

    2016-06-01

    Full Text Available Purpose: Zygomatic air cells (ZAC are a variant of temporal bone pneumatization that needs no treatment. However, ZAC can have an impact on surgical procedures in the temporo-mandibular joint region. Recent reports suggest that computed tomography will disclose more ZAC than can be diagnosed on panoramic radiography. The aim of this study was to analyze ZAC prevalence on CT in a population that was not pre-selected by admission to a dental clinic. Furthermore, an extensive literature review was performed to assess the prevalence of ZAC and to address the impact of imaging technique on the definition of the item.Material and methods: Digitalized cranial CTs of 2007 patients were retrospectively analyzed. The Frankfort horizontal was used to define a ZAC on sagittal CTs. Results: In this study group, 806 were female (40.16% and 1,201 were male (59.84%. Mean age was 49.96 years in the whole group (female: 55.83 years, male: 46.01 years. A ZAC was diagnosed in 152 patients (female: 66, male: 86. Unilateral ZAC surpasses bilateral findings (115 vs. 37 patients. ZAC were diagnosed in children 5 years of age and older. Sectional imaging techniques show a better visualization of the region of interest. However, presently an increase of ZAC prevalence attributable to imaging technique cannot conclusively be derived from the current literature. The normal finding of a ZAC on radiograms is a sharply defined homogenous transparent lesion restricted to the zygomatic process of the temporal bone that has no volume effect on the shape of the process.Conclusion: ZAC is an anatomical variant of the temporal bone that has come into focus of maxillofacial radiology due to its noticeable aspect on panoramic radiograms. The harmless variant can be expected in about one in thirteen individuals undergoing facial radiology. Panoramic radiograms appear to be sufficient to present ZAC of relevant size. However, in preparation for surgical procedures affecting the

  4. Linear and nonlinear optical spectroscopy: Spectral, temporal and spatial resolution

    DEFF Research Database (Denmark)

    Hvam, Jørn Marcher

    1997-01-01

    Selected linear and nonlinear optical spectroscopies are being described with special emphasis on the possibility of obtaining simultaneous spectral, temporal and spatial resolution. The potential of various experimental techniques is being demonstrated by specific examples mostly taken from inve...... investigations of the electronic, and opto-electronic, properties of semiconductor nanostructures....

  5. High resolution extremity CT for biomechanics modeling

    International Nuclear Information System (INIS)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-01-01

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling

  6. High resolution extremity CT for biomechanics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  7. Statistical analysis of corn yields responding to climate variability at various spatio-temporal resolutions

    Science.gov (United States)

    Jiang, H.; Lin, T.

    2017-12-01

    Rain-fed corn production systems are subject to sub-seasonal variations of precipitation and temperature during the growing season. As each growth phase has varied inherent physiological process, plants necessitate different optimal environmental conditions during each phase. However, this temporal heterogeneity towards climate variability alongside the lifecycle of crops is often simplified and fixed as constant responses in large scale statistical modeling analysis. To capture the time-variant growing requirements in large scale statistical analysis, we develop and compare statistical models at various spatial and temporal resolutions to quantify the relationship between corn yield and weather factors for 12 corn belt states from 1981 to 2016. The study compares three spatial resolutions (county, agricultural district, and state scale) and three temporal resolutions (crop growth phase, monthly, and growing season) to characterize the effects of spatial and temporal variability. Our results show that the agricultural district model together with growth phase resolution can explain 52% variations of corn yield caused by temperature and precipitation variability. It provides a practical model structure balancing the overfitting problem in county specific model and weak explanation power in state specific model. In US corn belt, precipitation has positive impact on corn yield in growing season except for vegetative stage while extreme heat attains highest sensitivity from silking to dough phase. The results show the northern counties in corn belt area are less interfered by extreme heat but are more vulnerable to water deficiency.

  8. High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula)

    Science.gov (United States)

    González-Hidalgo, J. C.; Vicente-Serrano, S. M.; Peña-Angulo, D.; Salinas, C.; Tomas-Burguera, M.; Beguería, S.

    2018-04-01

    The purpose of this research was to identify major drought events on the Spanish mainland between 1961 and 2014 by means of two drought indices, and analyze the spatial propagation of drought conditions. The indices applied were the standardized precipitation index (SPI) and the standardized evaporation precipitation index (SPEI). The first was calculated as standardized anomalies of precipitation at various temporal intervals, while the second examined the climatic balance normalized at monthly scale, incorporating the relationship between precipitation and the atmospheric water demand. The daily meteorological data from Spanish Meteorological Archives (AEMet) were used in performing the analyses. Within the framework of the DESEMON project, original data were converted into a high spatial resolution grid (1.1 km2) following exhaustive quality control. Values of both indices were calculated on a weekly scale and different timescales (12, 24 and 36 months). The results show that during the first half of the study period, the SPI usually returned a higher identification of drought areas, while the reverse was true from the 1990s, suggesting that the effect from atmospheric evaporative demand could have increased. The temporal propagation from 12- to 24-month and 36-month timescales analyzed in the paper seems to be a far from straightforward phenomenon that does not follow a simple rule of time lag, because events at different temporal scales can overlap in time and space. Spatially, the propagation of drought events affecting more than 25% of the total land indicates the existence of various spatial gradients of drought propagation, mostly east-west or west-east, but also north-south have been found. No generalized episodes were found with a radial pattern, i.e., from inland to the coast.

  9. Anatomic variations of the cochlea and relations to other temporal bone structures

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, P.; Muren, C. (Akademiska Sjukhuset, Uppsala (Sweden). Dept. of Diagnostic Radiology Sabbatsberg' s Sjukhus, Stockholm (Sweden). Dept. of Diagnostic Radiology)

    1990-09-01

    The size and shape of the human cochlea and the normal ranges of variation of its dimensions were evaluated in 95 plastic casts, prepared from temporal bone specimens. The normal range of variation is fairly small, and is not age-dependent. Obvious digression from this range, associated with pertinent clinical symptoms, indicates an abnormality. (orig./MG).

  10. A High-resolution Reanalysis for the European CORDEX Region

    Science.gov (United States)

    Bentzien, Sabrina; Bollmeyer, Christoph; Crewell, Susanne; Friederichs, Petra; Hense, Andreas; Keller, Jan; Keune, Jessica; Kneifel, Stefan; Ohlwein, Christian; Pscheidt, Ieda; Redl, Stephanie; Steinke, Sandra

    2014-05-01

    A High-resolution Reanalysis for the European CORDEX Region Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. The work presented here focuses on the regional reanalysis for Europe with a domain matching the CORDEX-EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km). The COSMO reanalysis system comprises the assimilation of observational data using the existing nudging scheme of COSMO and is complemented by a special soil moisture analysis and boundary conditions given by ERA-interim data. The reanalysis data set currently covers 6 years (2007-2012). The evaluation of the reanalyses is done using independent observations with special emphasis on precipitation and high-impact weather situations. The development and evaluation of the COSMO-based reanalysis for the CORDEX-Euro domain can be seen as a preparation for joint European activities on the development of an ensemble system of regional reanalyses for Europe.

  11. High spatio-temporal resolution observations of crater-lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    Science.gov (United States)

    Lewicki, Jennifer L.; Corentin Caudron,; Vincent van Hinsberg,; George Hilley,

    2016-01-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to-date have not resolved how the lake’s thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater-lake apparent surface (“skin”) temperatures at high spatial (~32 cm) and temporal (every two minutes) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ~21 to 33oC. At two locations, apparent skin temperatures were ~ 4 and 7 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in-situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater-lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  12. High Temporal and Spatial Resolution Coverage of Earth from Commercial AVSTAR Systems in Geostationary Orbit

    Science.gov (United States)

    Lecompte, M. A.; Heaps, J. F.; Williams, F. H.

    Imaging the earth from Geostationary Earth Orbit (GEO) allows frequent updates of environmental conditions within an observable hemisphere at time and spatial scales appropriate to the most transient observable terrestrial phenomena. Coverage provided by current GEO Meteorological Satellites (METSATS) fails to fully exploit this advantage due primarily to obsolescent technology and also institutional inertia. With the full benefit of GEO based imaging unrealized, rapidly evolving phenomena, occurring at the smallest spatial and temporal scales that frequently have significant environmental impact remain unobserved. These phenomena may be precursors for the most destructive natural processes that adversely effect society. Timely distribution of information derived from "real-time" observations thus may provide opportunities to mitigate much of the damage to life and property that would otherwise occur. AstroVision International's AVStar Earth monitoring system is designed to overcome the current limitations if GEO Earth coverage and to provide real time monitoring of changes to the Earth's complete atmospheric, land and marine surface environments including fires, volcanic events, lightning and meteoritic events on a "live," true color, and multispectral basis. The understanding of severe storm dynamics and its coupling to the earth's electro-sphere will be greatly enhanced by observations at unprecedented sampling frequencies and spatial resolution. Better understanding of these natural phenomena and AVStar operational real-time coverage may also benefit society through improvements in severe weather prediction and warning. AstroVision's AVStar system, designed to provide this capability with the first of a constellation of GEO- based commercial environmental monitoring satellites to be launched in late 2003 will be discussed, including spatial and temporal resolution, spectral coverage with applications and an inventory of the potential benefits to society

  13. Repair of Temporal Bone Encephalocele following Canal Wall Down Mastoidectomy

    Directory of Open Access Journals (Sweden)

    Sarantis Blioskas

    2014-01-01

    Full Text Available We report a rare case of a temporal bone encephalocele after a canal wall down mastoidectomy performed to treat chronic otitis media with cholesteatoma. The patient was treated successfully via an intracranial approach. An enhanced layer-by-layer repair of the encephalocele and skull base deficit was achieved from intradurally to extradurally, using temporalis fascia, nasal septum cartilage, and artificial dural graft. After a 22-month follow-up period the patient remains symptom free and no recurrence is noted.

  14. Structure analysis of tabecular bone in the diagnosis of osteoporosis

    International Nuclear Information System (INIS)

    Link, T.M.; Meier, N.; Waldt, S.; Lin, J.C.; Newitt, D.; Majumdar, S.

    1998-01-01

    Osteoporosis is characteried by reduced bone mass and a deterioration of bone structure which results in an increased fracture risk. The purpose of this review is to evaluate structure analysis techniques in the diagnosis of osteoporosis. Several imaging techniques were applied to analyze trabecular bone, such as conventional radiography, high-resolution computed tomography (HR-CT) and high-resolution magnetic resonance imaging (HR-MRI). The best results were obtained using high-resolution tomographic techniques. The highest spatial resolutions in vivo were achieved using HR-MRI. These studies show that texture parameters and bone mineral density predict bone strength and osteoporotic fractures in a complementary fashion. Combining both techniques yields the best results in the diagnosis of osteoporosis. (orig.) [de

  15. Discrimination of acoustic communication signals by grasshoppers (Chorthippus biguttulus): temporal resolution, temporal integration, and the impact of intrinsic noise.

    Science.gov (United States)

    Ronacher, Bernhard; Wohlgemuth, Sandra; Vogel, Astrid; Krahe, Rüdiger

    2008-08-01

    A characteristic feature of hearing systems is their ability to resolve both fast and subtle amplitude modulations of acoustic signals. This applies also to grasshoppers, which for mate identification rely mainly on the characteristic temporal patterns of their communication signals. Usually the signals arriving at a receiver are contaminated by various kinds of noise. In addition to extrinsic noise, intrinsic noise caused by stochastic processes within the nervous system contributes to making signal recognition a difficult task. The authors asked to what degree intrinsic noise affects temporal resolution and, particularly, the discrimination of similar acoustic signals. This study aims at exploring the neuronal basis for sexual selection, which depends on exploiting subtle differences between basically similar signals. Applying a metric, by which the similarities of spike trains can be assessed, the authors investigated how well the communication signals of different individuals of the same species could be discriminated and correctly classified based on the responses of auditory neurons. This spike train metric yields clues to the optimal temporal resolution with which spike trains should be evaluated. (c) 2008 APA, all rights reserved

  16. Does microtia predict severity of temporal bone CT abnormalities in children with persistent conductive hearing loss?

    Science.gov (United States)

    Tekes, Aylin; Ishman, Stacey L; Baugher, Katherine M; Brown, David J; Lin, Sandra Y; Tunkel, David E; Unalp-Arida, Aynur; Huisman, Thierry A G M

    2013-07-01

    This study aimed to determine the spectrum of temporal bone computed tomography (CT) abnormalities in children with conductive hearing loss (CHL) with and without microtia. From 1993 to 2008, a total of 3396 pediatric records including CHL were reviewed at our institution and revealed 180 cases of persistent CHL, 46 of whom had diagnostic temporal bone CT examinations. All of these examinations were systematically reviewed by two pediatric neuroradiologists, working in consensus, who had 5 and 18 years, respectively, of dedicated pediatric neuroradiology experience. Of the 46 children, 16 were boys and 30 were girls (age: 0.2-16 years; mean: 5 years). Also, 21 (46%) children had microtia and 25 (54%) children did not, as determined by clinical evaluation. External auditory canal atresia/stenosis (EAC-A/S) was the most common anomaly in both microtia and non-microtia groups. Two or more anomalies were observed in 18/21 children with microtia. The frequency of EAC-A/S was greater in children with microtia versus those without it (86% versus 32%, respectively; P = 0.0003). Syndromic diagnoses were also significantly more frequently made in children with microtia versus those without microtia (76% versus 20%, respectively; P = 0.0001). Temporal bone CT scans were normal in 10 children (22%) with persistent CHL. Microtia is an important finding in children with CHL. EAC and middle ear/ossicle anomalies were significantly more frequently seen in children with microtia, and multiple anomalies and bilateral microtia were more common in children with syndromic associations. These findings highlight the importance of understanding the embryological development of the temporal bone. The presence of one anomaly should raise suspicion of the possibility of other anomalies, especially in the setting of microtia. Bilateral microtia and multiple anomalies should also raise suspicion of genetic syndromes. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Temporal resolution criterion for correctly simulating relativistic electron motion in a high-intensity laser field

    Energy Technology Data Exchange (ETDEWEB)

    Arefiev, Alexey V. [Institute for Fusion Studies, The University of Texas, Austin, Texas 78712 (United States); Cochran, Ginevra E.; Schumacher, Douglass W. [Physics Department, The Ohio State University, Columbus, Ohio 43210 (United States); Robinson, Alexander P. L. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Chen, Guangye [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-01-15

    Particle-in-cell codes are now standard tools for studying ultra-intense laser-plasma interactions. Motivated by direct laser acceleration of electrons in sub-critical plasmas, we examine temporal resolution requirements that must be satisfied to accurately calculate electron dynamics in strong laser fields. Using the motion of a single electron in a perfect plane electromagnetic wave as a test problem, we show surprising deterioration of the numerical accuracy with increasing wave amplitude a{sub 0} for a given time-step. We go on to show analytically that the time-step must be significantly less than λ/ca{sub 0} to achieve good accuracy. We thus propose adaptive electron sub-cycling as an efficient remedy.

  18. Temporal Resolution Ability in Students with Dyslexia and Reading and Writing Disorders

    Directory of Open Access Journals (Sweden)

    Chaubet, Juliana

    2014-01-01

    Full Text Available Introduction The Gaps-in-Noise (GIN test assesses the hearing ability of temporal resolution. The development of this ability can be considered essential for learning how to read. Objective Identify temporal resolution in individuals diagnosed with reading and writing disorders compared with subjects with dyslexia. Methods A sample of 26 subjects of both genders, age 10 to 15 years, included 11 diagnosed with dyslexia and 15 diagnosed with reading and writing disorders. Subjects did not display otologic, neurologic, and/or cognitive diseases. A control group of 30 normal-hearing subjects was formed to compare thresholds and percentages obtained from the GIN test. The responses were obtained considering two measures of analysis: the threshold gap and the percentage of correct gap. Results The threshold was lower in the GIN for the typical group than for the other groups. There was no difference between groups with dyslexia and with reading and writing disorders. The GIN results of the typical group revealed a higher percentage of correct answer than in the other groups. No difference was obtained between the groups with dyslexia and with reading and writing disorders. Conclusion The GIN test identified a difficulty in auditory ability of temporal resolution in individuals with reading and writing disorders and in individuals with dyslexia in a similar way.

  19. A high spatio-temporal resolution optical pyrometer at the ORION laser facility.

    Science.gov (United States)

    Floyd, Emma; Gumbrell, Edward T; Fyrth, Jim; Luis, James D; Skidmore, Jonathan W; Patankar, Siddharth; Giltrap, Samuel; Smith, Roland

    2016-11-01

    A streaked pyrometer has been designed to measure the temperature of ≈100 μm diameter heated targets in the warm dense matter region. The diagnostic has picosecond time resolution. Spatial resolution is limited by the streak camera to 4 μm in one dimension; the imaging system has superior resolution of 1 μm. High light collection efficiency means that the diagnostic can transmit a measurable quantity of thermal emission at temperatures as low as 1 eV to the detector. This is achieved through the use of an f/1.4 objective, and a minimum number of reflecting and refracting surfaces to relay the image over 8 m with no vignetting over a 0.4 mm field of view with 12.5× magnification. All the system optics are highly corrected, to allow imaging with minimal aberrations over a broad spectral range. The detector is a highly sensitive Axis Photonique streak camera with a P820PSU streak tube. For the first time, two of these cameras have been absolutely calibrated at 1 ns and 2 ns sweep speeds under full operational conditions and over 8 spectral bands between 425 nm and 650 nm using a high-stability picosecond white light source. Over this range the cameras had a response which varied between 47 ± 8 and 14 ± 4 photons/count. The calibration of the optical imaging system makes absolute temperature measurements possible. Color temperature measurements are also possible due to the wide spectral range over which the system is calibrated; two different spectral bands can be imaged onto different parts of the photocathode of the same streak camera.

  20. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue.

    Science.gov (United States)

    Sakadzić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A; Mandeville, Emiri T; Srinivasan, Vivek J; Arai, Ken; Ruvinskaya, Svetlana; Devor, Anna; Lo, Eng H; Vinogradov, Sergei A; Boas, David A

    2010-09-01

    Measurements of oxygen partial pressure (pO(2)) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO(2) measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here we report to our knowledge the first practical in vivo two-photon high-resolution pO(2) measurements in small rodents' cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 microm, sub-second temporal resolution and requires low probe concentration. The properties of the probe allowed for direct high-resolution measurement of cortical extravascular (tissue) pO(2), opening many possibilities for functional metabolic brain studies.

  1. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue

    Science.gov (United States)

    Sakadžić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A.; Mandeville, Emiri T.; Srinivasan, Vivek J.; Arai, Ken; Ruvinskaya, Svetlana; Devor, Anna; Lo, Eng H.; Vinogradov, Sergei A.; Boas, David A.

    2010-01-01

    The ability to measure oxygen partial pressure (pO2) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO2 measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here, we report the first practical in vivo two-photon high-resolution pO2 measurements in small rodents’ cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 µm, sub-second temporal resolution and requires low probe concentration. Most importantly, the properties of the probe allowed for the first direct high-resolution measurement of cortical extravascular (tissue) pO2, opening numerous possibilities for functional metabolic brain studies. PMID:20693997

  2. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    Science.gov (United States)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums

  3. Modifications to a 3D-printed temporal bone model for augmented stapes fixation surgery teaching.

    Science.gov (United States)

    Nguyen, Yann; Mamelle, Elisabeth; De Seta, Daniele; Sterkers, Olivier; Bernardeschi, Daniele; Torres, Renato

    2017-07-01

    Functional outcomes and complications in otosclerosis surgery are governed by the surgeon's experience. Thus, teaching the procedure to residents to guide them through the learning process as quickly as possible is challenging. Artificial 3D-printed temporal bones are replacing cadaver specimens in many institutions to learn mastoidectomy, but these are not suitable for middle ear surgery training. The goal of this work was to adapt such an artificial temporal bone to aid the teaching of otosclerosis surgery and to evaluate this tool. We have modified a commercially available 3D-printed temporal bone by replacing the incus and stapes of the model with in-house 3D-printed ossicles. The incus could be attached to a 6-axis force sensor. The stapes footplate was fenestrated and attached to a 1-axis force sensor. Six junior surgeons (residents) and seven senior surgeons (fellows or consultants) were enrolled to perform piston prosthesis placement and crimping as performed during otosclerosis surgery. The time required to perform the tasks and the forces applied to the incus and stapes were collected and analyzed. No statistically significant differences were observed between the junior and senior groups for time taken to perform the tasks and the forces applied to the incus during crimping and placement of the prosthesis. However, significantly lower forces were applied to the stapes by the senior surgeons in comparison with the junior surgeons during prosthesis placement (junior vs senior group, 328 ± 202.9 vs 80 ± 99.6 mN, p = 0.008) and during prosthesis crimping (junior vs senior group, 565 ± 233 vs 66 ± 48.6 mN, p = 0.02). We have described a new teaching tool for otosclerosis surgery based on the modification of a 3D-printed temporal bone to implement force sensors on the incus and stapes. This tool could be used as a training tool to help the residents to self-evaluate their progress with recording of objective measurements.

  4. An Inexpensive High-Temporal Resolution Electronic Sun Journal for Monitoring Personal Day to Day Sun Exposure Patterns

    Directory of Open Access Journals (Sweden)

    Nathan J. Downs

    2017-11-01

    Full Text Available Exposure to natural sunlight, specifically solar ultraviolet (UV radiation contributes to lifetime risks of skin cancer, eye disease, and diseases associated with vitamin D insufficiency. Improved knowledge of personal sun exposure patterns can inform public health policy; and help target high-risk population groups. Subsequently, an extensive number of studies have been conducted to measure personal solar UV exposure in a variety of settings. Many of these studies, however, use digital or paper-based journals (self-reported volunteer recall, or employ cost prohibitive electronic UV dosimeters (that limit the size of sample populations, to estimate periods of exposure. A cost effective personal electronic sun journal (ESJ built from readily available infrared photodiodes is presented in this research. The ESJ can be used to complement traditional UV dosimeters that measure total biologically effective exposure by providing a time-stamped sun exposure record. The ESJ can be easily attached to clothing and data logged to personal devices (including fitness monitors or smartphones. The ESJ improves upon self-reported exposure recording and is a cost effective high-temporal resolution option for monitoring personal sun exposure behavior in large population studies.

  5. A comparison of high resolution CT scan of temporal bone and operative findings in middle ear cholesteatoma

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Tae Beom; Seong, Hun; Cheon, Mal Soon; Kim, Hack Jin; Jang, Keung Jae; Chun, Byung Hee [Dae Dong General Hospital, Busan (Korea, Republic of)

    1993-09-15

    To evaluate the value of HRCT imaging in middle ear cholesteatoma, we prospectively analysed the CT images in 28 surgically proven cases with cholesteatomas regarding main site of lesion, ossicular change, facial nerve exposure and fistula formation. The most common main site of lesion was the epitympanum (92.8%). The results of sensitivity, positive predictability, and accuracy by CT imagings were as follows: for ossicular involvement, 94.1%, 88.8%, and 86.2% in malleus, 96.0%, 88.8%, and 85.7% in incus, 81.2%, 81.2%, and 78.5% in stapes; for facial nerve exposure, 66.6%, 57.1%, and 81.2%: for fistula formation, 100%, 75.0%, and 96.4%, respectively. In conclusion, the temoral bone HRCT imaging is an accurate preoperative method in detecting main lesion site, ossicular involvement, fistula formation. Because of the low sensitivity and positive predictability in detecting facial nerve exposure, it is necessary to correlate the HRCT images with the clinical status.

  6. THE IMPACT OF SPATIAL AND TEMPORAL RESOLUTIONS IN TROPICAL SUMMER RAINFALL DISTRIBUTION: PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2017-10-01

    Full Text Available The abundance or lack of rainfall affects peoples’ life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007, accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG. However, the models’ resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days and monthly resolutions. The probability distributions (PDF and cumulative distribution functions(CDF of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  7. The Impact of Spatial and Temporal Resolutions in Tropical Summer Rainfall Distribution: Preliminary Results

    Science.gov (United States)

    Liu, Q.; Chiu, L. S.; Hao, X.

    2017-10-01

    The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  8. Magnetogenetic control of protein gradients inside living cells with high spatial and temporal resolution.

    Science.gov (United States)

    Etoc, Fred; Vicario, Chiara; Lisse, Domenik; Siaugue, Jean-Michel; Piehler, Jacob; Coppey, Mathieu; Dahan, Maxime

    2015-05-13

    Tools for controlling the spatial organization of proteins are a major prerequisite for deciphering mechanisms governing the dynamic architecture of living cells. Here, we have developed a generic approach for inducing and maintaining protein gradients inside living cells by means of biofunctionalized magnetic nanoparticles (MNPs). For this purpose, we tailored the size and surface properties of MNPs in order to ensure unhindered mobility in the cytosol. These MNPs with a core diameter below 50 nm could be rapidly relocalized in living cells by exploiting biased diffusion at weak magnetic forces in the femto-Newton range. In combination with MNP surface functionalization for specific in situ capturing of target proteins as well as efficient delivery into the cytosplasm, we here present a comprehensive technology for controlling intracellular protein gradients with a temporal resolution of a few tens of seconds.

  9. High spatial and temporal resolution visible spectroscopy of the plasma edge in DIII-D

    International Nuclear Information System (INIS)

    Gohil, P.; Burrell, K.H.; Groebner, R.J.; Seraydarian, R.P.

    1990-10-01

    In DIII-D, visible spectroscopic measurements of the He II 468.6 nm and C VI 529.2 nm Doppler broadened spectral lines, resulting from charge exchange recombination interactions between beam neutral atoms and plasma ions, are performed to determine ion temperatures, and toroidal and poloidal rotation velocities. The diagnostics system comprises 32 viewing chords spanning a typical minor radius of 63 cm across the midplane, of which 16 spatial chords span 11 cm of the plasma edge just within the separatrix. A temporal resolution of 260 μs per time slice can be obtained as a result of using MCP phosphors with short decay times and fast camera readout electronics. Results from this system will be used in radial electric field comparisons with theory at the L-H transition and ion transport analysis. 6 refs., 3 figs

  10. Tuberculous otitis media: findings on high-resolution CT

    International Nuclear Information System (INIS)

    Lungenschmid, D.; Buchberger, W.; Schoen, G.; Schoepf, R.; Mihatsch, T.; Birbamer, G.; Wicke, K.

    1993-01-01

    We describe two cases of tuberculous otitis media studied with high-resolution computed tomography (CT). Findings included extensive soft tissue densities with fluid levels in the tympanic cavity, the antrum, the mastoid and petrous air cells. Multifocal bony erosions and reactive bone sclerosis were seen as well. CT proved valuable for planning therapy by accurately displaying the involvement of the various structures of the middle and inner ear. However, the specific nature of the disease could only be presumed. (orig.)

  11. Max CAPR: high-resolution 3D contrast-enhanced MR angiography with acquisition times under 5 seconds.

    Science.gov (United States)

    Haider, Clifton R; Borisch, Eric A; Glockner, James F; Mostardi, Petrice M; Rossman, Phillip J; Young, Phillip M; Riederer, Stephen J

    2010-10-01

    High temporal and spatial resolution is desired in imaging of vascular abnormalities having short arterial-to-venous transit times. Methods that exploit temporal correlation to reduce the observed frame time demonstrate temporal blurring, obfuscating bolus dynamics. Previously, a Cartesian acquisition with projection reconstruction-like (CAPR) sampling method has been demonstrated for three-dimensional contrast-enhanced angiographic imaging of the lower legs using two-dimensional sensitivity-encoding acceleration and partial Fourier acceleration, providing 1mm isotropic resolution of the calves, with 4.9-sec frame time and 17.6-sec temporal footprint. In this work, the CAPR acquisition is further undersampled to provide a net acceleration approaching 40 by eliminating all view sharing. The tradeoff of frame time and temporal footprint in view sharing is presented and characterized in phantom experiments. It is shown that the resultant 4.9-sec acquisition time, three-dimensional images sets have sufficient spatial and temporal resolution to clearly portray arterial and venous phases of contrast passage. It is further hypothesized that these short temporal footprint sequences provide diagnostic quality images. This is tested and shown in a series of nine contrast-enhanced MR angiography patient studies performed with the new method.

  12. Design and evaluation of an innovative MRI-compatible Braille stimulator with high spatial and temporal resolution.

    Science.gov (United States)

    Debowska, Weronika; Wolak, Tomasz; Soluch, Pawel; Orzechowski, Mateusz; Kossut, Malgorzata

    2013-02-15

    Neural correlates of Braille reading have been widely studied with different neuroimaging techniques. Nevertheless, the exact brain processes underlying this unique activity are still unknown, due to suboptimal accuracy of imaging and/or stimuli delivery methods. To study somatosensory perception effectively, the stimulation must reflect parameters of the natural stimulus and must be applied with precise timing. In functional magnetic resonance imaging (fMRI) providing these characteristics requires technologically advanced solutions and there have been several successful direct tactile stimulation devices designed that allow investigation of somatotopic organization of brain sensory areas. They may, however, be of limited applicability in studying brain mechanisms related to such distinctive tactile activity as Braille reading. In this paper we describe the design and experimental evaluation of an innovative MRI-compatible Braille Character Stimulator (BCS) enabling precise and stable delivery of standardized Braille characters with high temporal resolution. Our device is fully programmable, flexible in stimuli delivery and can be easily implemented in any research unit. The Braille Character Stimulator was tested with a same-different discrimination task on Braille characters during an event-related fMRI experiment in eleven right-handed sighted adult subjects. The results show significant activations in several cortical areas, including bilateral primary (SI) and secondary somatosensory (SII) cortices, bilateral premotor and supplementary motor areas, inferior frontal gyri, inferior temporal gyri and precuneus, as well as contralateral (to the stimulated hand) thalamus. The results validate the use of the BCS as a method of effective stimuli application in fMRI studies, in both sighted and visually impaired subjects. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Descriptive and predictive evaluation of high resolution Markov chain precipitation models

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Madsen, Henrik; Arnbjerg-Nielsen, Karsten

    2012-01-01

    A time series of tipping bucket recordings of very high temporal and volumetric resolution precipitation is modelled using Markov chain models. Both first and second‐order Markov models as well as seasonal and diurnal models are investigated and evaluated using likelihood based techniques. The fi...

  14. Decoding Overlapping Memories in the Medial Temporal Lobes Using High-Resolution fMRI

    Science.gov (United States)

    Chadwick, Martin J.; Hassabis, Demis; Maguire, Eleanor A.

    2011-01-01

    The hippocampus is proposed to process overlapping episodes as discrete memory traces, although direct evidence for this in human episodic memory is scarce. Using green-screen technology we created four highly overlapping movies of everyday events. Participants were scanned using high-resolution fMRI while recalling the movies. Multivariate…

  15. Angioinvasive pulmonary aspergillosis after allogeneic bone marrow transplantation: clinical and high-resolution computed tomography findings in 12 cases

    Directory of Open Access Journals (Sweden)

    Emerson L. Gasparetto

    Full Text Available The aim of this study was to present the clinical and high-resolution CT scan findings of angioinvasive pulmonary aspergillosis (APA in 12 patients who underwent allogeneic bone marrow transplantation (BMT. The CT scans were reviewed by three chest radiologists who assessed the pattern and distribution of findings by consent. There were 7 (58% female and 5 (42% male patients, with aging between 5 and 50 years (average of 26 years. All patients were submitted to BMT for the treatment of hematological conditions. The diagnosis of APA was defined between 5 and 373 days after BMT, with average of 111 days. Three cases (25% were diagnosed in the neutropenic phase after the BMT, five (42% in the early phase and four patients in the late phase post-BMT. Regarding high-resolution CT (HRCT scan findings, nodules were found in 75% of the cases (9/12, most of the cases with more than 10 lesions (7/9 and of centrilobular localization (6/9. Consolidations were identified in seven patients (58%, being single in six, and commonly presenting ill defined borders (n=3 and subsegmental localization (n=5. Ground glass attenuation was found in six patients (50%. The halo sign was observed in nine cases (75%. Cavitations were seen in two air-space consolidations and one large nodule (2.5 cm. Patients submitted to BMT presenting respiratory symptoms and nodules or consolidations with halo sign at HRCT scan need to have the diagnosis of angioinvasive pulmonary aspergillosis included in all the post BMT phases.

  16. Angioinvasive pulmonary aspergillosis after allogeneic bone marrow transplantation: clinical and high-resolution computed tomography findings in 12 cases.

    Science.gov (United States)

    Gasparetto, Emerson L; Souza, Carolina A; Tazoniero, Priscilla; Davaus, Taisa; Escuissato, Dante L; Marchiori, Edson

    2007-02-01

    The aim of this study was to present the clinical and high-resolution CT scan findings of angioinvasive pulmonary aspergillosis (APA) in 12 patients who underwent allogeneic bone marrow transplantation (BMT). The CT scans were reviewed by three chest radiologists who assessed the pattern and distribution of findings by consent. There were 7 (58%) female and 5 (42%) male patients, with aging between 5 and 50 years (average of 26 years). All patients were submitted to BMT for the treatment of hematological conditions. The diagnosis of APA was defined between 5 and 373 days after BMT, with average of 111 days. Three cases (25%) were diagnosed in the neutropenic phase after the BMT, five (42%) in the early phase and four patients in the late phase post-BMT. Regarding high-resolution CT (HRCT) scan findings, nodules were found in 75% of the cases (9/12), most of the cases with more than 10 lesions (7/9) and of centrilobular localization (6/9). Consolidations were identified in seven patients (58%), being single in six, and commonly presenting ill defined borders (n=3) and subsegmental localization (n=5). Ground glass attenuation was found in six patients (50%). The halo sign was observed in nine cases (75%). Cavitations were seen in two air-space consolidations and one large nodule (2.5 cm). Patients submitted to BMT presenting respiratory symptoms and nodules or consolidations with halo sign at HRCT scan need to have the diagnosis of angioinvasive pulmonary aspergillosis included in all the post BMT phases.

  17. Improved accuracy of quantitative parameter estimates in dynamic contrast-enhanced CT study with low temporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Mo, E-mail: Sunmo.Kim@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Haider, Masoom A. [Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Medical Imaging, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Yeung, Ivan W. T. [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

    2016-01-15

    Purpose: A previously proposed method to reduce radiation dose to patient in dynamic contrast-enhanced (DCE) CT is enhanced by principal component analysis (PCA) filtering which improves the signal-to-noise ratio (SNR) of time-concentration curves in the DCE-CT study. The efficacy of the combined method to maintain the accuracy of kinetic parameter estimates at low temporal resolution is investigated with pixel-by-pixel kinetic analysis of DCE-CT data. Methods: The method is based on DCE-CT scanning performed with low temporal resolution to reduce the radiation dose to the patient. The arterial input function (AIF) with high temporal resolution can be generated with a coarsely sampled AIF through a previously published method of AIF estimation. To increase the SNR of time-concentration curves (tissue curves), first, a region-of-interest is segmented into squares composed of 3 × 3 pixels in size. Subsequently, the PCA filtering combined with a fraction of residual information criterion is applied to all the segmented squares for further improvement of their SNRs. The proposed method was applied to each DCE-CT data set of a cohort of 14 patients at varying levels of down-sampling. The kinetic analyses using the modified Tofts’ model and singular value decomposition method, then, were carried out for each of the down-sampling schemes between the intervals from 2 to 15 s. The results were compared with analyses done with the measured data in high temporal resolution (i.e., original scanning frequency) as the reference. Results: The patients’ AIFs were estimated to high accuracy based on the 11 orthonormal bases of arterial impulse responses established in the previous paper. In addition, noise in the images was effectively reduced by using five principal components of the tissue curves for filtering. Kinetic analyses using the proposed method showed superior results compared to those with down-sampling alone; they were able to maintain the accuracy in the

  18. High-resolution stochastic generation of extreme rainfall intensity for urban drainage modelling applications

    Science.gov (United States)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2016-04-01

    Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.

  19. High-Resolution X-Ray Tomography: A 3D Exploration Into the Skeletal Architecture in Mouse Models Submitted to Microgravity Constraints

    Directory of Open Access Journals (Sweden)

    Alessandra Giuliani

    2018-03-01

    Full Text Available Bone remodeling process consists in a slow building phase and in faster resorption with the objective to maintain a functional skeleton locomotion to counteract the Earth gravity. Thus, during spaceflights, the skeleton does not act against gravity, with a rapid decrease of bone mass and density, favoring bone fracture. Several studies approached the problem by imaging the bone architecture and density of cosmonauts returned by the different spaceflights. However, the weaknesses of the previously reported studies was two-fold: on the one hand the research suffered the small statistical sample size of almost all human spaceflight studies, on the other the results were not fully reliable, mainly due to the fact that the observed bone structures were small compared with the spatial resolution of the available imaging devices. The recent advances in high-resolution X-ray tomography have stimulated the study of weight-bearing skeletal sites by novel approaches, mainly based on the use of the mouse and its various strains as an animal model, and sometimes taking advantage of the synchrotron radiation support to approach studies of 3D bone architecture and mineralization degree mapping at different hierarchical levels. Here we report the first, to our knowledge, systematic review of the recent advances in studying the skeletal bone architecture by high-resolution X-ray tomography after submission of mice models to microgravity constrains.

  20. Construction of a High Temporal-spectral Resolution Spectrometer for Detection of Fast Transients from Observations of the Sun at 1.4 GHz.

    Science.gov (United States)

    Casillas-Perez, G. A.; Jeyakumar, S.; Perez-Enriquez, R.

    2014-12-01

    Transients explosive events with time durations from nanoseconds to several hours, are observed in the Sun at high energy bands such as gamma ray and xray. In the radio band, several types of radio bursts are commonly detected from the ground. A few observations of the Sun in the past have also detected a new class of fast transients which are known to have short-live electromagnetic emissions with durations less than 100 ms. The mechanisms that produce such fast transiets remain unclear. Observations of such fast transients over a wide bandwidth is necessary to uderstand the underlying physical process that produce such fast transients. Due to their very large flux densities, fast radio transients can be observed at high time resolution using small antennas in combination with digital signal processing techniques. In this work we report the progress of an spectrometer that is currently in construction at the Observatorio de la Luz of the Universidad de Guanajuato. The instrument which will have the purpose of detecting solar fast radio transients, involves the use of digital devices such as FPGA and ADC cards, in addition with a receiver with high temporal-spectral resolution centered at 1.4 GHz and a pair of 2.3 m satellite dish.

  1. Time lens for high-resolution neutron time-of-flight spectrometers

    International Nuclear Information System (INIS)

    Baumann, K.; Gaehler, R.; Grigoriev, P.; Kats, E.I.

    2005-01-01

    We examine in analytic and numeric ways the imaging effects of temporal neutron lenses created by traveling magnetic fields. For fields of parabolic shape we derive the imaging equations, investigate the time magnification, the evolution of the phase-space element, the gain factor, and the effect of finite beam size. The main aberration effects are calculated numerically. The system is technologically feasible and should convert neutron time-of-flight instruments from pinhole to imaging configuration in time, thus enhancing intensity and/or time resolution. Further fields of application for high-resolution spectrometry may be opened

  2. Detecting Single-Nucleotides by Tunneling Current Measurements at Sub-MHz Temporal Resolution.

    Science.gov (United States)

    Morikawa, Takanori; Yokota, Kazumichi; Tanimoto, Sachie; Tsutsui, Makusu; Taniguchi, Masateru

    2017-04-18

    Label-free detection of single-nucleotides was performed by fast tunneling current measurements in a polar solvent at 1 MHz sampling rate using SiO₂-protected Au nanoprobes. Short current spikes were observed, suggestive of trapping/detrapping of individual nucleotides between the nanoelectrodes. The fall and rise features of the electrical signatures indicated signal retardation by capacitance effects with a time constant of about 10 microseconds. The high temporal resolution revealed current fluctuations, reflecting the molecular conformation degrees of freedom in the electrode gap. The method presented in this work may enable direct characterizations of dynamic changes in single-molecule conformations in an electrode gap in liquid.

  3. An approach for generating synthetic fine temporal resolution solar radiation time series from hourly gridded datasets

    Directory of Open Access Journals (Sweden)

    Matthew Perry

    2017-06-01

    Full Text Available A tool has been developed to statistically increase the temporal resolution of solar irradiance time series. Fine temporal resolution time series are an important input into the planning process for solar power plants, and lead to increased understanding of the likely short-term variability of solar energy. The approach makes use of the spatial variability of hourly gridded datasets around a location of interest to make inferences about the temporal variability within the hour. The unique characteristics of solar irradiance data are modelled by classifying each hour into a typical weather situation. Low variability situations are modelled using an autoregressive process which is applied to ramps of clear-sky index. High variability situations are modelled as a transition between states of clear sky conditions and different levels of cloud opacity. The methods have been calibrated to Australian conditions using 1 min data from four ground stations for a 10 year period. These stations, together with an independent dataset, have also been used to verify the quality of the results using a number of relevant metrics. The results show that the method generates realistic fine resolution synthetic time series. The synthetic time series correlate well with observed data on monthly and annual timescales as they are constrained to the nearest grid-point value on each hour. The probability distributions of the synthetic and observed global irradiance data are similar, with Kolmogorov-Smirnov test statistic less than 0.04 at each station. The tool could be useful for the estimation of solar power output for integration studies.

  4. Enhanced Visual Temporal Resolution in Autism Spectrum Disorders

    NARCIS (Netherlands)

    Falter, Christine M.; Elliott, Mark A.; Bailey, Anthony J.

    2012-01-01

    Cognitive functions that rely on accurate sequencing of events, such as action planning and execution, verbal and nonverbal communication, and social interaction rely on well-tuned coding of temporal event-structure. Visual temporal event-structure coding was tested in 17 high-functioning

  5. Parameters affecting temporal resolution of Time Resolved Integrative Optical Neutron Detector (TRION)

    International Nuclear Information System (INIS)

    Mor, I; Vartsky, D; Bar, D; Feldman, G; Goldberg, M B; Brandis, M; Dangendorf, V; Tittelmeier, K; Bromberger, B; Weierganz, M

    2013-01-01

    The Time-Resolved Integrative Optical Neutron (TRION) detector was developed for Fast Neutron Resonance Radiography (FNRR), a fast-neutron transmission imaging method that exploits characteristic energy-variations of the total scattering cross-section in the E n = 1–10 MeV range to detect specific elements within a radiographed object. As opposed to classical event-counting time of flight (ECTOF), it integrates the detector signal during a well-defined neutron Time of Flight window corresponding to a pre-selected energy bin, e.g., the energy-interval spanning a cross-section resonance of an element such as C, O and N. The integrative characteristic of the detector permits loss-free operation at very intense, pulsed neutron fluxes, at a cost however, of recorded temporal resolution degradation This work presents a theoretical and experimental evaluation of detector related parameters which affect temporal resolution of the TRION system

  6. Development and application of methods and models for the calculation of spatially and temporally highly resolved emissions in Europe

    International Nuclear Information System (INIS)

    Thiruchittampalam, Balendra

    2014-01-01

    High spatial and temporal resolution models are essential for answering many questions of air quality management and climate modeling. High-resolution emission models are required to determine the concentration of pollutants using chemical transport models, and to quantify the impacts on health and environment and in particular to develop adequate countermeasures. The aim of this work is to develop methods for the calculation of spatially and temporally high-resolved emissions and to apply these exemplarily on a 1 km x 1 km and hourly resolution for the year 2008 in the EU-27 and EFTA countries. The derivation of methods for the spatial and temporal resolution of emissions with corresponding detailed equations is one of the major improvements that have been carried out in the course of this work. The improvement of the spatial distribution of emissions from the point source relevant sectors like energy supply, industry and waste management is achieved by considering sector specific diffuse emission shares. The progress of the spatial distribution of emissions from households is in particular the development of a fuel type weighted distribution over Europe. Another main focus is the development of the spatial distribution of road transport emissions. Due to the restricted access to traffic count data at the European level, methods have been established to provide reliable emissions on grid level for Europe. The progress in the spatial distribution of agricultural emissions is achieved by the consideration of diffuse shares similar to the other point source relevant sectors like energy supply or industry. In addition to the spatial distribution of the emissions the temporal resolution is a main focus of this work, since the state of knowledge of the temporal resolution of emissions in Europe is still rudimentary. Therefore, it was necessary to develop in particular time curves for the hourly resolution of emissions for the main sectors, namely electricity and heat

  7. Partial resolution of bone lesions. A child with severe combined immunodeficiency disease and adenosine deaminase deficiency after enzyme-replacement therapy

    International Nuclear Information System (INIS)

    Yulish, B.S.; Stern, R.C.; Polmar, S.H.

    1980-01-01

    A child with severe combined immunodeficiency disease and adenosine deaminase deficiency, with characteristic bone dysplasia, was treated with transfusions of frozen irradiated RBCs as a means of enzyme replacement. This therapy resulted in restoration of immunologic competence and partial resolution of the bone lesions. Although the natural history of these lesions without therapy is not known, enzyme-replacement therapy may have played a role in the resolution of this patient's bone lesions

  8. SAGA GIS based processing of spatial high resolution temperature data

    International Nuclear Information System (INIS)

    Gerlitz, Lars; Bechtel, Benjamin; Kawohl, Tobias; Boehner, Juergen; Zaksek, Klemen

    2013-01-01

    Many climate change impact studies require surface and near surface temperature data with high spatial and temporal resolution. The resolution of state of the art climate models and remote sensing data is often by far to coarse to represent the meso- and microscale distinctions of temperatures. This is particularly the case for regions with a huge variability of topoclimates, such as mountainous or urban areas. Statistical downscaling techniques are promising methods to refine gridded temperature data with limited spatial resolution, particularly due to their low demand for computer capacity. This paper presents two downscaling approaches - one for climate model output and one for remote sensing data. Both are methodically based on the FOSS-GIS platform SAGA. (orig.)

  9. Pleural pressure swing and lung expansion after malignant pleural effusion drainage: the benefits of high-temporal resolution pleural manometry.

    Science.gov (United States)

    Boshuizen, Rogier C; Sinaasappel, Michiel; Vincent, Andrew D; Goldfinger, Vicky; Farag, Sheima; van den Heuvel, Michel M

    2013-07-01

    Malignant pleural effusion is a common complication in end-stage cancer patients and can cause severe dyspnea. Therapeutic thoracentesis is often limited to 1 to 1.5 L. Pleural manometry can be used to recognize a not-expanded lung. Interval pleural pressure measurements with a high temporal resolution were performed after each removal of 200 mL of fluid to observe pleural pressure swings. Pleural elastance was defined as the difference in pleural pressure divided by the change in volume. Chest x-rays were performed to evaluate lung expansion, reexpansion pulmonary edema, and fluid residue. Thirty-four procedures in 30 patients were eligible for analysis. Four patients had incomplete lung expansion after drainage. No reexpansion pulmonary edema was observed. Pleural pressure swing after 200 mL drainage was higher when the lung did not expand. Pleural elastance after removal of 500 mL was higher in the not-expanded subgroup. We demonstrated that a high pleural pressure swing after removal of only 200 mL was related to incomplete lung expansion. We confirmed the association between pleural elastance and lung expansion.

  10. Creating an Optimal 3D Printed Model for Temporal Bone Dissection Training.

    Science.gov (United States)

    Takahashi, Kuniyuki; Morita, Yuka; Ohshima, Shinsuke; Izumi, Shuji; Kubota, Yamato; Yamamoto, Yutaka; Takahashi, Sugata; Horii, Arata

    2017-07-01

    Making a 3-dimensional (3D) temporal bone model is simple using a plaster powder bed and an inkjet printer. However, it is difficult to reproduce air-containing spaces and precise middle ear structures. The objective of this study was to overcome these problems and create a temporal bone model that would be useful both as a training tool and for preoperative simulation. Drainage holes were made to remove excess materials from air-containing spaces, ossicle ligaments were manually changed to bony structures, and small and/or soft tissue structures were colored differently while designing the 3D models. The outcomes were evaluated by 3 procedures: macroscopic and endoscopic inspection of the model, comparison of computed tomography (CT) images of the model to the original CT, and assessment of tactile sensation and reproducibility by 20 surgeons performing surgery on the model. Macroscopic and endoscopic inspection, CT images, and assessment by surgeons were in agreement in terms of reproducibility of model structures. Most structures could be reproduced, but the stapes, tympanic sinus, and mastoid air cells were unsatisfactory. Perioperative tactile sensation of the model was excellent. Although this model still does not embody perfect reproducibility, it proved sufficiently practical for use in surgical training.

  11. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    Science.gov (United States)

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  12. Diffuse back-illumination setup for high temporally resolved extinction imaging

    DEFF Research Database (Denmark)

    Westlye, Fredrik Ree; Penney, Keith; Ivarsson, Anders

    2017-01-01

    -steering suppression. Methods for complete characterization of the optical system are detailed. Measurements of the liquid-vapor boundary and the soot volume fraction in an automotive spray are presented to demonstrate the resulting improved contrast and reduced uncertainty. The current optical setup reduces......This work presents the development of an optical setup for quantitative, high-temporal resolution line-of-sight extinction imaging in harsh optical environments. The application specifically targets measurements of automotive fuel sprays at high ambient temperature and pressure conditions where...

  13. MO-FG-204-09: High Spatial Resolution and Artifact-Free CT Bone Imaging at Off-Centered Positions: An Application of Model-Based Iterative Reconstruction

    International Nuclear Information System (INIS)

    Chen, G; Li, K; Gomez-Cardona, D; Budde, A; Hsieh, J

    2015-01-01

    Purpose: Although the anatomy of interest should be positioned as close as possible to the isocenter of CT scanners, off-centering may be inevitable during certain exams in clinical practice such as lumbar spine and elbow imaging. Off-centering degrades image sharpness, generates streak artifacts, and sometimes creates blooming artifacts due to truncation. The purpose of this work was to investigate whether the use of model-based image reconstruction (MBIR) can alleviate the negative impacts of off-centering to achieve high quality CT bone imaging. Methods: Both an anthropomorphic phantom and an ex vivo swine elbow sample were scanned at centered and off-centered positions using clinical CT bone scan protocols. The magnitude of off-centering was determined from localizer radiographs. Both FBP and MBIR reconstructions were performed. For FBP, both standard and Bone Plus kernels commonly used in bone imaging were used. Objective assessment of image sharpness, noise standard deviation, and noise nonuniformity were performed. Additionally, we retrospectively analyzed human subject data acquired under off-centered conditions as a validation study. Results: In FBP images of the phantom, off-centering by 10 cm led to a 14% increase in noise (p<1e-3) and a 68% increase in noise nonuniformity (p<0.02). A visible drop in bone sharpness was observed. In contrast, no significant difference in the noise magnitude or the noise nonuniformity between the centered and off-centered MBIR images was found. The image sharpness of off-centered MBIR images outperformed that of FBP images reconstructed with the Bone Plus kernel. In images of the swine elbow off-centered by 20 cm, not only was the noise and spatial resolution performance improved by MBIR, truncation artifacts were also elliminated. The human subject study generated similar results, in which the visibility of the off-centered lumbar spine was significantly improved. Conclusion: High quality CT bone imaging at off

  14. TH-EF-207A-06: High-Resolution Optical-CT/ECT Imaging of Unstained Mice Femur, Brain, Spleen, and Tumor

    International Nuclear Information System (INIS)

    Yoon, S; Dewhirst, M; Oldham, M; Boss, M; Birer, S

    2016-01-01

    Purpose: Optical transmission and emission computed tomography (optical-CT/ECT) provides high-resolution 3D attenuation and emission maps in unsectioned large (∼1cm 3 ) ex vivo tissue samples at a resolution of 12.9µm 3 per voxel. Here we apply optical-CT/ECT to investigate high-resolution structure and auto-fluorescence in a range of optically cleared mice organs, including, for the first time, mouse bone (femur), opening the potential for study of bone metastasis and bone-mediated immune response. Methods: Three BALBc mice containing 4T1 flank tumors were sacrificed to obtain spleen, brain, tumor, and femur. Tissues were washed in 4% PFA, fixed in EtOH solution (for 5, 10, 10, and 2 days respectively), and then optically cleared for 3 days in BABBs. The femur was also placed in 0.25M aqueous EDTA for 15–30 days to remove calcium. Optical-CT/ECT attenuation and emission maps at 633nm (the latter using 530nm excitation light) were obtained for all samples. Bi-telecentric optical-CT was compared side-by-side with conventional optical projection tomography (OPT) imaging to evaluate imaging capability of these two rival techniques. Results: Auto-fluorescence mapping of femurs reveals vasculatures and fluorescence heterogeneity. High signals (A.U.=10) are reported in the medullary cavity but not in the cortical bone (A.U.=1). The brain strongly and uniform auto-fluoresces (A.U.=5). Thick, optically dense organs such as the spleen and the tumor (0.12, 0.46OD/mm) are reconstructed at depth without significant loss of resolution, which we attribute to the bi-telecentric optics of optical-CT. The attenuation map of tumor reveals vasculature, attenuation heterogeneity, and possibly necrotic tissue. Conclusion: We demonstrate the feasibility of optical-CT/ECT imaging of un-sectioned mice bones (femurs) and spleen with high resolution. This result, and the characterization of unstained organs, are important steps enabling future studies involving optical-CT/ECT applied

  15. Increasing the temporal resolution of direct normal solar irradiance forecasted series

    Science.gov (United States)

    Fernández-Peruchena, Carlos M.; Gastón, Martin; Schroedter-Homscheidt, Marion; Marco, Isabel Martínez; Casado-Rubio, José L.; García-Moya, José Antonio

    2017-06-01

    A detailed knowledge of the solar resource is a critical point in the design and control of Concentrating Solar Power (CSP) plants. In particular, accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal power plants, the management of energy markets, and the widespread implementation of this technology. Numerical weather prediction (NWP) models are commonly used for solar radiation forecasting. In the ECMWF deterministic forecasting system, all forecast parameters are commercially available worldwide at 3-hourly intervals. Unfortunately, as Direct Normal solar Irradiance (DNI) exhibits a great variability due to the dynamic effects of passing clouds, 3-h time resolution is insufficient for accurate simulations of CSP plants due to their nonlinear response to DNI, governed by various thermal inertias due to their complex response characteristics. DNI series of hourly or sub-hourly frequency resolution are normally used for an accurate modeling and analysis of transient processes in CSP technologies. In this context, the objective of this study is to propose a methodology for generating synthetic DNI time series at 1-h (or higher) temporal resolution from 3-h DNI series. The methodology is based upon patterns as being defined with help of the clear-sky envelope approach together with a forecast of maximum DNI value, and it has been validated with high quality measured DNI data.

  16. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, Budhendra L [ORNL; Bright, Eddie A [ORNL; Rose, Amy N [ORNL; Liu, Cheng [ORNL; Urban, Marie L [ORNL; Stewart, Robert N [ORNL

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  17. Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations

    Science.gov (United States)

    Christensen, H. M.; Dawson, A.; Palmer, T.

    2017-12-01

    Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.

  18. A fast, noniterative approach for accelerated high-temporal resolution cine-CMR using dynamically interleaved streak removal in the power-spectral encoded domain with low-pass filtering (DISPEL) and modulo-prime spokes (MoPS).

    Science.gov (United States)

    Kawaji, Keigo; Patel, Mita B; Cantrell, Charles G; Tanaka, Akiko; Marino, Marco; Tamura, Satoshi; Wang, Hui; Wang, Yi; Carroll, Timothy J; Ota, Takeyoshi; Patel, Amit R

    2017-07-01

    To introduce a pair of accelerated non-Cartesian acquisition principles that when combined, exploit the periodicity of k-space acquisition, and thereby enable acquisition of high-temporal cine Cardiac Magnetic Resonance (CMR). The mathematical formulation of a noniterative, undersampled non-Cartesian cine acquisition and reconstruction is presented. First, a low-pass filtering step that exploits streaking artifact redundancy is provided (i.e., Dynamically Interleaved Streak removal in the Power-spectrum Encoded domain with Low-pass filtering [DISPEL]). Next, an effective radial acquisition for the DISPEL approach that exploits the property of prime numbers is described (i.e., Modulo-Prime Spoke [MoPS]). Both DISPEL and MoPS are examined using numerical simulation of a digital heart phantom to show that high-temporal cine-CMR is feasible without removing physiologic motion vs aperiodic interleaving using Golden Angles. The combined high-temporal cine approach is next examined in 11 healthy subjects for a time-volume curve assessment of left ventricular systolic and diastolic performance vs conventional Cartesian cine-CMR reference. The DISPEL method was first shown using simulation under different streak cycles to allow separation of undersampled radial streaking artifacts from physiologic motion with a sufficiently frequent streak-cycle interval. Radial interleaving with MoPS is next shown to allow interleaves with pseudo-Golden-Angle variants, and be more compatible with DISPEL against irrational and nonperiodic rotation angles, including the Golden-Angle-derived rotations. In the in vivo data, the proposed method showed no statistical difference in the systolic performance, while diastolic parameters sensitive to the cine's temporal resolution were statistically significant (P cine). We demonstrate a high-temporal resolution cine-CMR using DISPEL and MoPS, whose streaking artifact was separated from physiologic motion. © 2017 American Association of Physicists

  19. Mapping Entomological Dengue Risk Levels in Martinique Using High-Resolution Remote-Sensing Environmental Data

    Directory of Open Access Journals (Sweden)

    Vanessa Machault

    2014-12-01

    Full Text Available Controlling dengue virus transmission mainly involves integrated vector management. Risk maps at appropriate scales can provide valuable information for assessing entomological risk levels. Here, results from a spatio-temporal model of dwellings potentially harboring Aedes aegypti larvae from 2009 to 2011 in Tartane (Martinique, French Antilles using high spatial resolution remote-sensing environmental data and field entomological and meteorological information are presented. This tele-epidemiology methodology allows monitoring the dynamics of diseases closely related to weather/climate and environment variability. A Geoeye-1 image was processed to extract landscape elements that could surrogate societal or biological information related to the life cycle of Aedes vectors. These elements were subsequently included into statistical models with random effect. Various environmental and meteorological conditions have indeed been identified as risk/protective factors for the presence of Aedes aegypti immature stages in dwellings at a given date. These conditions were used to produce dynamic high spatio-temporal resolution maps from the presence of most containers harboring larvae. The produced risk maps are examples of modeled entomological maps at the housing level with daily temporal resolution. This finding is an important contribution to the development of targeted operational control systems for dengue and other vector-borne diseases, such as chikungunya, which is also present in Martinique.

  20. An original acquisition chain for the TOHR High Resolution Tomograph

    International Nuclear Information System (INIS)

    Pinot, Laurent

    1999-01-01

    The framework of this work is part of a new approach of emission tomography adapted to small animals. The principle of our tomographic system TOHR (French acronym for High Resolution Tomograph) is based on the use of large solid angle and high resolution focusing collimators each mounted in front of a detection module of high efficiency. With a first-generation acquisition chain we were able to characterize TOHR, however, to take fully advantage of the TOHR possibilities, a completely new acquisition scheme had to be designed. This system, being the main topic of this work, makes use of temporal information. The detection of a particle that entered the detector is translated into temporal logical signals. These signals pass into a time coding circuitry and the coded results are transferred in a digital processor. According to the initial terms of delivery, the developed acquisition chain steers the detection of events dependent on the deposited energy and time of arrival. The latter is done by coincidence measurements. All elements are mounted on a special board included into a PC unit and a dedicated program controls the whole system. First experiments showed up the interest of the new acquisition unit for other application in physics or medical imaging

  1. High-resolution computed tomography of the toothed jaw compared with histologic microsections

    International Nuclear Information System (INIS)

    Klein, H.M.; Fuhrmann, R.; Diedrich, P.; Guenther, R.W.

    1993-01-01

    Human bone segments of the toothed jaw were scanned using high-resolution CT with axial and coronal contiguous 1 and 2 mm slices. The bone segments were sliced analogous to the performed CT image positions. Contact films and micro-sections were made from the cuttings. Length and width of the teeth, the thickness of the alveolar bone and the distance between bone and dental surface were measured. Comparison of the CT measurements with contact films and histological specimen yielded best results for axial slices with 1 mm slice thickness (mean error 0.3-0.5 mm). Coronary oriented slices showed an error of 0.3-1.6 mm. 3D-reformatting can improve spatial orientation for axially produced image series. For CT imaging of the toothed jaw concerning the dento-alveolar structures, contiguous axial scanning with 1 mm slice thickness appears to be the concept of choice. (orig.) [de

  2. Temporal measurement and analysis of high-resolution spectral signatures of plants and relationships to biophysical characteristics

    Science.gov (United States)

    Bostater, Charles R., Jr.; Rebbman, Jan; Hall, Carlton; Provancha, Mark; Vieglais, David

    1995-11-01

    Measurements of temporal reflectance signatures as a function of growing season for sand live oak (Quercus geminata), myrtle oak (Q. myrtifolia, and saw palmetto (Serenoa repens) were collected during a two year study period. Canopy level spectral reflectance signatures, as a function of 252 channels between 368 and 1115 nm, were collected using near nadir viewing geometry and a consistent sun illumination angle. Leaf level reflectance measurements were made in the laboratory using a halogen light source and an environmental optics chamber with a barium sulfate reflectance coating. Spectral measurements were related to several biophysical measurements utilizing optimal passive ambient correlation spectroscopy (OPACS) technique. Biophysical parameters included percent moisture, water potential (MPa), total chlorophyll, and total Kjeldahl nitrogen. Quantitative data processing techniques were used to determine optimal bands based on the utilization of a second order derivative or inflection estimator. An optical cleanup procedure was then employed that computes the double inflection ratio (DIR) spectra for all possible three band combinations normalized to the previously computed optimal bands. These results demonstrate a unique approach to the analysis of high spectral resolution reflectance signatures for estimation of several biophysical measures of plants at the leaf and canopy level from optimally selected bands or bandwidths.

  3. High Resolution Spatio Temporal Moments Analysis of Solute Migration Captured using Pre-clinical Medical Imaging Techniques

    Science.gov (United States)

    Dogan, M.; Moysey, S. M.; Powell, B. A.; DeVol, T. A.

    2016-12-01

    Advances in medical imaging technologies are continuously expanding the range of applications enabled within the earth sciences. While computed x-ray tomography (CT) scans have traditionally been used for investigating the structure of geologic materials, it is now possible to perform 3D time-lapse imaging of dynamic processes, such as monitoring the infiltration of water into a soil, with sub-millimeter resolution. Likewise, single photon emission computed tomography (SPECT) can provide information on the evolution of solute transport with spatial resolution on the order of a millimeter by tracking the migration of gamma-ray emitting isotopes like 99mTc and 111In. While these imaging techniques are revolutionizing our ability to look within porous media, techniques for the analysis of such rich and large data sets are limited. The spatial and temporal moments of a plume have long been used to provide quantitative measures to describe plume movement in a wide range of settings from the lab to field. Moment analysis can also be used to estimate the hydrologic properties of the porous media. In this research, we investigate the use of moments for analyzing a high resolution 4D SPECT data set collected during a 99mTc transport experiment performed in a heterogeneous column. The 4D nature of the data set makes it amenable to the use of data mining and pattern recognition methods, such as cluster analysis, to identify regions or zones within the data that exhibit abnormal or unexpected behaviors. We then compare anomalous features within the SPECT data to similar features identified within the CT image to relate the flow behavior to pore-scale structures, such as porosity differences and macropores. Such comparisons help to identify whether these features are good predictors of preferential transport. Likewise, we evaluate whether local analysis of moments can be used to infer apparent parameters governing non-conservative transport in a heterogeneous porous media, such

  4. Development and applications of coherent imaging with improved temporal and spatial resolution

    International Nuclear Information System (INIS)

    Mokso, Rajmund

    2006-01-01

    This work has 2 purposes: the improvement of both temporal and spatial resolution of X-ray tomography. The first part is devoted to the technical aspects of the tomographic technique, particularly at the ESRF (European Synchrotron Radiation Facility) beamline ID19, and the application of the new acquisition scheme to the imaging of liquid foams. We have improved the temporal resolution and field of view of the setup, which allowed to obtain for the first time experimental data with good statistics on three dimensional liquid foams. In the second part of the thesis we have described the Kirkpatrick-Baez focusing system and its first applications. In terms of stability and image quality the developments presented in this part of the thesis provide valuable evidence for the feasibility of phase contrast tomography in magnifying geometry. Since the ultimate goal of this research is to improve the spatial resolution in tomography for applications, four different contributions are important for the characterization of the imaging system: 1) the thermal stability and mechanical imperfections, 2) effects of distortion induced by mirror imperfections, 3) effects of refraction on sample borders, and 4) phase propagation effects with the influence of the magnification. Each of these factors has been studied

  5. Improvement of the temporal resolution of cardiac CT reconstruction algorithms using an optimized filtering step

    International Nuclear Information System (INIS)

    Roux, S.; Desbat, L.; Koenig, A.; Grangeat, P.

    2005-01-01

    In this paper we study a property of the filtering step of multi-cycle reconstruction algorithm used in the field of cardiac CT. We show that the common filtering step procedure is not optimal in the case of divergent geometry and decrease slightly the temporal resolution. We propose to use the filtering procedure related to the work of Noo at al ( F.Noo, M. Defrise, R. Clakdoyle, and H. Kudo. Image reconstruction from fan-beam projections on less than a short-scan. Phys. Med.Biol., 47:2525-2546, July 2002)and show that this alternative allows to reach the optimal temporal resolution with the same computational effort. (N.C.)

  6. Bilateral cochlear implantation in a patient with bilateral temporal bone fractures.

    Science.gov (United States)

    Chung, Jae Ho; Shin, Myung Chul; Min, Hyun Jung; Park, Chul Won; Lee, Seung Hwan

    2011-01-01

    With the emphasis on bilateral hearing nowadays, bilateral cochlear implantation has been tried out for bilateral aural rehabilitation. Bilateral sensorineural hearing loss caused by head trauma can get help from cochlear implantation. We present the case of a 44-year-old man with bilateral otic capsule violating temporal bone fractures due to head trauma. The patient demonstrated much improved audiometric and psychoacoustic performance after bilateral cochlear implantation. We believe bilateral cochlear implantation in such patient can be a very effective tool for rehabilitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Destructive, granulating lesion in the temporal bone after elevated plasma homocysteine

    DEFF Research Database (Denmark)

    Bonding, Per; Skriver, Elisabeth; Helin, Pekka

    2004-01-01

    lesion in the left temporal bone was discovered; repeated histologic examination only showed simple granulation tissue. After 6 months, a part of the bony cochlea was extruded. With approximately 8 months' delay and after the patient had had postoperative lung embolism, plasma homocysteine was found...... to be significantly elevated, a condition known as an independent risk factor for thromboembolic lesions. In the acquired form, it is most often caused by nutritional deficiency of vitamin B cofactors. Accordingly, the patient was treated with folic acid, which rapidly normalized plasma homocysteine. Subsequently...

  8. A high resolution ion microscope for cold atoms

    International Nuclear Information System (INIS)

    Stecker, Markus; Schefzyk, Hannah; Fortágh, József; Günther, Andreas

    2017-01-01

    We report on an ion-optical system that serves as a microscope for ultracold ground state and Rydberg atoms. The system is designed to achieve a magnification of up to 1000 and a spatial resolution in the 100 nm range, thereby surpassing many standard imaging techniques for cold atoms. The microscope consists of four electrostatic lenses and a microchannel plate in conjunction with a delay line detector in order to achieve single particle sensitivity with high temporal and spatial resolution. We describe the design process of the microscope including ion-optical simulations of the imaging system and characterize aberrations and the resolution limit. Furthermore, we present the experimental realization of the microscope in a cold atom setup and investigate its performance by patterned ionization with a structure size down to 2.7 μ m. The microscope meets the requirements for studying various many-body effects, ranging from correlations in cold quantum gases up to Rydberg molecule formation. (paper)

  9. Methods to assess high-resolution subsurface gas concentrations and gas fluxes in wetland ecosystems

    DEFF Research Database (Denmark)

    Elberling, Bo; Kühl, Michael; Glud, Ronnie Nøhr

    2013-01-01

    The need for measurements of soil gas concentrations and surface fluxes of greenhouse gases at high temporal and spatial resolution in wetland ecosystem has lead to the introduction of several new analytical techniques and methods. In addition to the automated flux chamber methodology for high-re...

  10. Sensitivity of modeled estuarine circulation to spatial and temporal resolution of input meteorological forcing of a cold frontal passage

    Science.gov (United States)

    Weaver, Robert J.; Taeb, Peyman; Lazarus, Steven; Splitt, Michael; Holman, Bryan P.; Colvin, Jeffrey

    2016-12-01

    In this study, a four member ensemble of meteorological forcing is generated using the Weather Research and Forecasting (WRF) model in order to simulate a frontal passage event that impacted the Indian River Lagoon (IRL) during March 2015. The WRF model is run to provide high and low, spatial (0.005° and 0.1°) and temporal (30 min and 6 h) input wind and pressure fields. The four member ensemble is used to force the Advanced Circulation model (ADCIRC) coupled with Simulating Waves Nearshore (SWAN) and compute the hydrodynamic and wave response. Results indicate that increasing the spatial resolution of the meteorological forcing has a greater impact on the results than increasing the temporal resolution in coastal systems like the IRL where the length scales are smaller than the resolution of the operational meteorological model being used to generate the forecast. Changes in predicted water elevations are due in part to the upwind and downwind behavior of the input wind forcing. The significant wave height is more sensitive to the meteorological forcing, exhibited by greater ensemble spread throughout the simulation. It is important that the land mask, seen by the meteorological model, is representative of the geography of the coastal estuary as resolved by the hydrodynamic model. As long as the temporal resolution of the wind field captures the bulk characteristics of the frontal passage, computational resources should be focused so as to ensure that the meteorological model resolves the spatial complexities, such as the land-water interface, that drive the land use responsible for dynamic downscaling of the winds.

  11. Construction of a high resolution microscope with conventional and holographic optical trapping capabilities.

    Science.gov (United States)

    Butterfield, Jacqualine; Hong, Weili; Mershon, Leslie; Vershinin, Michael

    2013-04-22

    High resolution microscope systems with optical traps allow for precise manipulation of various refractive objects, such as dielectric beads (1) or cellular organelles (2,3), as well as for high spatial and temporal resolution readout of their position relative to the center of the trap. The system described herein has one such "traditional" trap operating at 980 nm. It additionally provides a second optical trapping system that uses a commercially available holographic package to simultaneously create and manipulate complex trapping patterns in the field of view of the microscope (4,5) at a wavelength of 1,064 nm. The combination of the two systems allows for the manipulation of multiple refractive objects at the same time while simultaneously conducting high speed and high resolution measurements of motion and force production at nanometer and piconewton scale.

  12. Osteodistrofias do Osso Temporal: Revisão dos Conceitos Atuais, Manifestações Clínicas e Opções Terapêuticas Osteodysplasia of the Temporal Bone: Up-date Concepts, Clinical Presentations and Therapeutic Options

    Directory of Open Access Journals (Sweden)

    Oswaldo Laércio M. Cruz

    Full Text Available Sob a designação de osteodistrofias do osso temporal, podemos encontrar uma série de doenças que apresentam em comum a desorganização da arquitetura ou da composição do tecido ósseo. A otospongiose é, com larga margem, a osteodistrofia mais comum nessa localização e suas alterações, repercussões clínicas e tratamentos são amplamente discutidos na literatura. Entretanto, formas menos freqüentes, como a displasia fibrosa e a osteogênese imperfeita, não são entidades raras e merecem atenção. Este artigo tem como objetivo discutir essas formas menos comuns de osteodistrofia do temporal através de uma revisão sobre os conceitos atuais dessas entidades, da apresentação de três exemplos clínicos e a discussão sobre opções de tratamento.Osteodysplasia of the temporal bone included a significant amount of osseous diseases sharing bone matrix structural and composition damage. Otospongiosis is, by far, the most frequent form of this involvement in the temporal bone. Nevertheless, fibrous dysplasia and osteogenesis imperfecta are not rare and deserve attention. In this article, the authors present a discussion about the recent concepts of those less frequent forms of osteodysplasia of temporal bone, its options of treatment, illustrated with three clinical cases.

  13. Measuring large-scale social networks with high resolution.

    Directory of Open Access Journals (Sweden)

    Arkadiusz Stopczynski

    Full Text Available This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years-the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics for a densely connected population of 1000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.

  14. High-resolution functional MRI of the human amygdala at 7 T

    Energy Technology Data Exchange (ETDEWEB)

    Sladky, Ronald, E-mail: ronald.sladky@meduniwien.ac.at [MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna (Austria); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria); Baldinger, Pia; Kranz, Georg S. [Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria); Tröstl, Jasmin [MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna (Austria); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria); Höflich, Anna; Lanzenberger, Rupert [Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria); Moser, Ewald [MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna (Austria); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria); Windischberger, Christian, E-mail: christian.windischberger@meduniwien.ac.at [MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna (Austria); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria)

    2013-05-15

    Functional magnetic resonance imaging (fMRI) has become the primary non-invasive method for investigating the human brain function. With an increasing number of ultra-high field MR systems worldwide possibilities of higher spatial and temporal resolution in combination with increased sensitivity and specificity are expected to advance detailed imaging of distinct cortical brain areas and subcortical structures. One target region of particular importance to applications in psychiatry and psychology is the amygdala. However, ultra-high field magnetic resonance imaging of these ventral brain regions is a challenging endeavor that requires particular methodological considerations. Ventral brain areas are particularly prone to signal losses arising from strong magnetic field inhomogeneities along susceptibility borders. In addition, physiological artifacts from respiration and cardiac action cause considerable fluctuations in the MR signal. Here we show that, despite these challenges, fMRI data from the amygdala may be obtained with high temporal and spatial resolution combined with increased signal-to-noise ratio. Maps of neural activation during a facial emotion discrimination paradigm at 7 T are presented and clearly show the gain in percental signal change compared to 3 T results, demonstrating the potential benefits of ultra-high field functional MR imaging also in ventral brain areas.

  15. High-resolution functional MRI of the human amygdala at 7 T

    International Nuclear Information System (INIS)

    Sladky, Ronald; Baldinger, Pia; Kranz, Georg S.; Tröstl, Jasmin; Höflich, Anna; Lanzenberger, Rupert; Moser, Ewald; Windischberger, Christian

    2013-01-01

    Functional magnetic resonance imaging (fMRI) has become the primary non-invasive method for investigating the human brain function. With an increasing number of ultra-high field MR systems worldwide possibilities of higher spatial and temporal resolution in combination with increased sensitivity and specificity are expected to advance detailed imaging of distinct cortical brain areas and subcortical structures. One target region of particular importance to applications in psychiatry and psychology is the amygdala. However, ultra-high field magnetic resonance imaging of these ventral brain regions is a challenging endeavor that requires particular methodological considerations. Ventral brain areas are particularly prone to signal losses arising from strong magnetic field inhomogeneities along susceptibility borders. In addition, physiological artifacts from respiration and cardiac action cause considerable fluctuations in the MR signal. Here we show that, despite these challenges, fMRI data from the amygdala may be obtained with high temporal and spatial resolution combined with increased signal-to-noise ratio. Maps of neural activation during a facial emotion discrimination paradigm at 7 T are presented and clearly show the gain in percental signal change compared to 3 T results, demonstrating the potential benefits of ultra-high field functional MR imaging also in ventral brain areas

  16. Derivation of Land Surface Albedo at High Resolution by Combining HJ-1A/B Reflectance Observations with MODIS BRDF Products

    OpenAIRE

    Gao, Bo; Jia, Li; Wang, Tianxing

    2014-01-01

    Land surface albedo is an essential parameter for monitoring global/regional climate and land surface energy balance. Although many studies have been conducted on global or regional land surface albedo using various remote sensing data over the past few decades, land surface albedo product with a high spatio-temporal resolution is currently very scarce. This paper proposes a method for deriving land surface albedo with a high spatio-temporal resolution (space: 30 m and time: 2-4 days). The pr...

  17. Flow-Signature Analysis of Water Consumption in Nonresidential Building Water Networks Using High-Resolution and Medium-Resolution Smart Meter Data: Two Case Studies

    Science.gov (United States)

    Clifford, Eoghan; Mulligan, Sean; Comer, Joanne; Hannon, Louise

    2018-01-01

    Real-time monitoring of water consumption activities can be an effective mechanism to achieve efficient water network management. This approach, largely enabled by the advent of smart metering technologies, is gradually being practiced in domestic and industrial contexts. In particular, identifying water consumption habits from flow-signatures, i.e., the specific end-usage patterns, is being investigated as a means for conservation in both the residential and nonresidential context. However, the quality of meter data is bivariate (dependent on number of meters and data temporal resolution) and as a result, planning a smart metering scheme is relatively difficult with no generic design approach available. In this study, a comprehensive medium-resolution to high-resolution smart metering program was implemented at two nonresidential trial sites to evaluate the effect of spatial and temporal data aggregation. It was found that medium-resolution water meter data were capable of exposing regular, continuous, peak use, and diurnal patterns which reflect group wide end-usage characteristics. The high-resolution meter data permitted flow-signature at a personal end-use level. Through this unique opportunity to observe water usage characteristics via flow-signature patterns, newly defined hydraulic-based design coefficients determined from Poisson rectangular pulse were developed to intuitively aid in the process of pattern discovery with implications for automated activity recognition applications. A smart meter classification and siting index was introduced which categorizes meter resolution in terms of their suitable application.

  18. Automated Generation of the Alaska Coastline Using High-Resolution Satellite Imagery

    Science.gov (United States)

    Roth, G.; Porter, C. C.; Cloutier, M. D.; Clementz, M. E.; Reim, C.; Morin, P. J.

    2015-12-01

    Previous campaigns to map Alaska's coast at high resolution have relied on airborne, marine, or ground-based surveying and manual digitization. The coarse temporal resolution, inability to scale geographically, and high cost of field data acquisition in these campaigns is inadequate for the scale and speed of recent coastal change in Alaska. Here, we leverage the Polar Geospatial Center (PGC) archive of DigitalGlobe, Inc. satellite imagery to produce a state-wide coastline at 2 meter resolution. We first select multispectral imagery based on time and quality criteria. We then extract the near-infrared (NIR) band from each processed image, and classify each pixel as water or land with a pre-determined NIR threshold value. Processing continues with vectorizing the water-land boundary, removing extraneous data, and attaching metadata. Final coastline raster and vector products maintain the original accuracy of the orthorectified satellite data, which is often within the local tidal range. The repeat frequency of coastline production can range from 1 month to 3 years, depending on factors such as satellite capacity, cloud cover, and floating ice. Shadows from trees or structures complicate the output and merit further data cleaning. The PGC's imagery archive, unique expertise, and computing resources enabled us to map the Alaskan coastline in a few months. The DigitalGlobe archive allows us to update this coastline as new imagery is acquired, and facilitates baseline data for studies of coastal change and improvement of topographic datasets. Our results are not simply a one-time coastline, but rather a system for producing multi-temporal, automated coastlines. Workflows and tools produced with this project can be freely distributed and utilized globally. Researchers and government agencies must now consider how they can incorporate and quality-control this high-frequency, high-resolution data to meet their mapping standards and research objectives.

  19. Petrified ears in a patient with Keutel syndrome: temporal bone CT findings

    International Nuclear Information System (INIS)

    Parmar, Hemant; Blaser, Susan; Yoo, Shi-Joon; Unger, Sheila; Papsin, Blake

    2006-01-01

    We present unusual imaging findings of petrified ears in a 9-year-old girl with Keutel syndrome. The patient presented for a temporal bone study for hearing loss. CT scan showed middle and inner ear abnormalities along with extensive and unsuspected calcification of the external ears and ossicular ligaments. On further investigation, the patient was found to have diffuse cartilage calcification in the larynx and tracheobronchial tree, brachytelephalangism and peripheral pulmonary stenosis suggestive of Keutel syndrome. Confirmation was obtained by mutation analysis. (orig.)

  20. Single breath-hold real-time cine MR imaging: improved temporal resolution using generalized autocalibrating partially parallel acquisition (GRAPPA) algorithm

    International Nuclear Information System (INIS)

    Wintersperger, Bernd J.; Nikolaou, Konstantin; Dietrich, Olaf; Reiser, Maximilian F.; Schoenberg, Stefan O.; Rieber, Johannes; Nittka, Matthias

    2003-01-01

    The purpose of this study was to test parallel imaging techniques for improvement of temporal resolution in multislice single breath-hold real-time cine steady-state free precession (SSFP) in comparison with standard segmented single-slice SSFP techniques. Eighteen subjects were examined on a 1.5-T scanner using a multislice real-time cine SSFP technique using the GRAPPA algorithm. Global left ventricular parameters (EDV, ESV, SV, EF) were evaluated and results compared with a standard segmented single-slice SSFP technique. Results for EDV (r=0.93), ESV (r=0.99), SV (r=0.83), and EF (r=0.99) of real-time multislice SSFP imaging showed a high correlation with results of segmented SSFP acquisitions. Systematic differences between both techniques were statistically non-significant. Single breath-hold multislice techniques using GRAPPA allow for improvement of temporal resolution and for accurate assessment of global left ventricular functional parameters. (orig.)

  1. High-Resolution Climate Data Visualization through GIS- and Web-based Data Portals

    Science.gov (United States)

    WANG, X.; Huang, G.

    2017-12-01

    Sound decisions on climate change adaptation rely on an in-depth assessment of potential climate change impacts at regional and local scales, which usually requires finer resolution climate projections at both spatial and temporal scales. However, effective downscaling of global climate projections is practically difficult due to the lack of computational resources and/or long-term reference data. Although a large volume of downscaled climate data has been make available to the public, how to understand and interpret the large-volume climate data and how to make use of the data to drive impact assessment and adaptation studies are still challenging for both impact researchers and decision makers. Such difficulties have become major barriers preventing informed climate change adaptation planning at regional scales. Therefore, this research will explore new GIS- and web-based technologies to help visualize the large-volume regional climate data with high spatiotemporal resolutions. A user-friendly public data portal, named Climate Change Data Portal (CCDP, http://ccdp.network), will be established to allow intuitive and open access to high-resolution regional climate projections at local scales. The CCDP offers functions of visual representation through geospatial maps and data downloading for a variety of climate variables (e.g., temperature, precipitation, relative humidity, solar radiation, and wind) at multiple spatial resolutions (i.e., 25 - 50 km) and temporal resolutions (i.e., annual, seasonal, monthly, daily, and hourly). The vast amount of information the CCDP encompasses can provide a crucial basis for assessing impacts of climate change on local communities and ecosystems and for supporting better decision making under a changing climate.

  2. Improving temporal bone dissection using self-directed virtual reality simulation: results of a randomized blinded control trial.

    Science.gov (United States)

    Zhao, Yi Chen; Kennedy, Gregor; Yukawa, Kumiko; Pyman, Brian; O'Leary, Stephen

    2011-03-01

    A significant benefit of virtual reality (VR) simulation is the ability to provide self-direct learning for trainees. This study aims to determine whether there are any differences in performance of cadaver temporal bone dissections between novices who received traditional teaching methods and those who received unsupervised self-directed learning in a VR temporal bone simulator. Randomized blinded control trial. Royal Victorian Eye and Ear Hospital. Twenty novice trainees. After receiving an hour lecture, participants were randomized into 2 groups to receive an additional 2 hours of training via traditional teaching methods or self-directed learning using a VR simulator with automated guidance. The simulation environment presented participants with structured training tasks, which were accompanied by real-time computer-generated feedback as well as real operative videos and photos. After the training, trainees were asked to perform a cortical mastoidectomy on a cadaveric temporal bone. The dissection was videotaped and assessed by 3 otologists blinded to participants' teaching group. The overall performance scores of the simulator-based training group were significantly higher than those of the traditional training group (67% vs 29%; P < .001), with an intraclass correlation coefficient of 0.93, indicating excellent interrater reliability. Using other assessments of performance, such as injury size, the VR simulator-based training group also performed better than the traditional group. This study indicates that self-directed learning on VR simulators can be used to improve performance on cadaver dissection in novice trainees compared with traditional teaching methods alone.

  3. Comparison of spatio-temporal resolution of different flow measurement techniques for marine renewable energy applications

    Science.gov (United States)

    Lyon, Vincent; Wosnik, Martin

    2013-11-01

    Marine hydrokinetic (MHK) energy conversion devices are subject to a wide range of turbulent scales, either due to upstream bathymetry, obstacles and waves, or from wakes of upstream devices in array configurations. The commonly used, robust Acoustic Doppler Current Profilers (ADCP) are well suited for long term flow measurements in the marine environment, but are limited to low sampling rates due to their operational principle. The resulting temporal and spatial resolution is insufficient to measure all turbulence scales of interest to the device, e.g., ``blade-scale turbulence.'' The present study systematically characterizes the spatial and temporal resolution of ADCP, Acoustic Doppler Velocimetry (ADV), and Particle Image Velocimetry (PIV). Measurements were conducted in a large cross section tow tank (3.7m × 2.4m) for several benchmark cases, including low and high turbulence intensity uniform flow as well as in the wake of a cylinder, to quantitatively investigate the flow scales which each of the instruments can resolve. The purpose of the study is to supply data for mathematical modeling to improve predictions from ADCP measurements, which can help lead to higher-fidelity energy resource assessment and more accurate device evaluation, including wake measurements. Supported by NSF-CBET grant 1150797.

  4. Application of digital tomosynthesis to radiographic diagnosis of the temporal bone. Studies on visualization in normal subjects

    International Nuclear Information System (INIS)

    Kawai, Takashi

    1995-01-01

    To examine the usefulness of digital tomosynthesis for conducting radiographic diagnosis of the temporal bone, visualization of various aural structures such as the semicircular canals, cochlea, vestibular apparatus, ossicles of the ear and facial nerve canal was examined in 18 volunteers. The visualization of temporal bone specimens by digital tomosynthesis and CT images (slice thickness: 1.5 mm) was compared. The results showed that this system (Digital Tomosynthesis) produced clear images of bony labyrinthine structures such as the semicircular canals, cochlea, and vestibular apparatus. Visualization of the ossicles was also clear, and their continuity could be comprehended better than on CT images. This system also provided good visualization of the labyrinthine and tympanic parts of the facial nerve canal, although CT images had greater sharpness. Visualization of the lower half of the mastoid part was poor with this system. (author)

  5. Prediction of bone strength by μCT and MDCT-based finite-element-models: How much spatial resolution is needed?

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Jan S., E-mail: jsb@tum.de [Department of Radiology, Technische Universität München, Munich (Germany); Department of Radiology, University of California, San Francisco, CA (United States); Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Sidorenko, Irina [Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Mueller, Dirk [Department of Radiology, Universität Köln (Germany); Baum, Thomas [Department of Radiology, Technische Universität München, Munich (Germany); Department of Radiology, University of California, San Francisco, CA (United States); Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Issever, Ahi Sema [Department of Radiology, University of California, San Francisco, CA (United States); Department of Radiology, Charite, Berlin (Germany); Eckstein, Felix [Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg (Austria); Rummeny, Ernst J. [Department of Radiology, Technische Universität München, Munich (Germany); Link, Thomas M. [Department of Radiology, University of California, San Francisco, CA (United States); Raeth, Christoph W. [Max Planck Institute for Extraterrestrial Physics, Garching (Germany)

    2014-01-15

    Objectives: Finite-element-models (FEM) are a promising technology to predict bone strength and fracture risk. Usually, the highest spatial resolution technically available is used, but this requires excessive computation time and memory in numerical simulations of large volumes. Thus, FEM were compared at decreasing resolutions with respect to local strain distribution and prediction of failure load to (1) validate MDCT-based FEM and to (2) optimize spatial resolution to save computation time. Materials and methods: 20 cylindrical trabecular bone specimens (diameter 12 mm, length 15–20 mm) were harvested from elderly formalin-fixed human thoracic spines. All specimens were examined by micro-CT (isotropic resolution 30 μm) and whole-body multi-row-detector computed tomography (MDCT, 250 μm × 250 μm × 500 μm). The resolution of all datasets was lowered in eight steps to ∼2000 μm × 2000 μm × 500 μm and FEM were calculated at all resolutions. Failure load was determined by biomechanical testing. Probability density functions of local micro-strains were compared in all datasets and correlations between FEM-based and biomechanically measured failure loads were determined. Results: The distribution of local micro-strains was similar for micro-CT and MDCT at comparable resolutions and showed a shift toward higher average values with decreasing resolution, corresponding to the increasing apparent trabecular thickness. Small micro-strains (ε{sub eff} < 0.005) could be calculated down to 250 μm × 250 μm × 500 μm. Biomechanically determined failure load showed significant correlations with all FEM, up to r = 0.85 and did not significantly change with lower resolution but decreased with high thresholds, due to loss of trabecular connectivity. Conclusion: When choosing connectivity-preserving thresholds, both micro-CT- and MDCT-based finite-element-models well predicted failure load and still accurately revealed the distribution of local micro-strains in

  6. Prediction of bone strength by μCT and MDCT-based finite-element-models: How much spatial resolution is needed?

    International Nuclear Information System (INIS)

    Bauer, Jan S.; Sidorenko, Irina; Mueller, Dirk; Baum, Thomas; Issever, Ahi Sema; Eckstein, Felix; Rummeny, Ernst J.; Link, Thomas M.; Raeth, Christoph W.

    2014-01-01

    Objectives: Finite-element-models (FEM) are a promising technology to predict bone strength and fracture risk. Usually, the highest spatial resolution technically available is used, but this requires excessive computation time and memory in numerical simulations of large volumes. Thus, FEM were compared at decreasing resolutions with respect to local strain distribution and prediction of failure load to (1) validate MDCT-based FEM and to (2) optimize spatial resolution to save computation time. Materials and methods: 20 cylindrical trabecular bone specimens (diameter 12 mm, length 15–20 mm) were harvested from elderly formalin-fixed human thoracic spines. All specimens were examined by micro-CT (isotropic resolution 30 μm) and whole-body multi-row-detector computed tomography (MDCT, 250 μm × 250 μm × 500 μm). The resolution of all datasets was lowered in eight steps to ∼2000 μm × 2000 μm × 500 μm and FEM were calculated at all resolutions. Failure load was determined by biomechanical testing. Probability density functions of local micro-strains were compared in all datasets and correlations between FEM-based and biomechanically measured failure loads were determined. Results: The distribution of local micro-strains was similar for micro-CT and MDCT at comparable resolutions and showed a shift toward higher average values with decreasing resolution, corresponding to the increasing apparent trabecular thickness. Small micro-strains (ε eff < 0.005) could be calculated down to 250 μm × 250 μm × 500 μm. Biomechanically determined failure load showed significant correlations with all FEM, up to r = 0.85 and did not significantly change with lower resolution but decreased with high thresholds, due to loss of trabecular connectivity. Conclusion: When choosing connectivity-preserving thresholds, both micro-CT- and MDCT-based finite-element-models well predicted failure load and still accurately revealed the distribution of local micro-strains in spatial

  7. High spatio-temporal resolution pollutant measurements of on-board vehicle emissions using ultra-fast response gas analyzers

    Directory of Open Access Journals (Sweden)

    M. Irwin

    2018-06-01

    Full Text Available Existing ultra-fast response engine exhaust emissions analyzers have been adapted for on-board vehicle use combined with GPS data. We present, for the first time, how high spatio-temporal resolution data products allow transient features associated with internal combustion engines to be examined in detail during on-road driving. Such data are both useful to examine the circumstances leading to high emissions, and reveals the accurate position of urban air quality hot spots as deposited by the candidate vehicle, useful for source attribution and dispersion modelling. The fast response time of the analyzers, which results in 100 Hz data, makes accurate time-alignment with the vehicle's engine control unit (ECU signals possible. This enables correlation with transient air fuel ratio, engine speed, load, and other engine parameters, which helps to explain the causes of the emissions spikes that portable emissions measurement systems (PEMS and conventional slow response analyzers would miss or smooth out due to mixing within their sampling systems. The data presented is from NO and NOx analyzers, but other fast analyzers (e.g. total hydrocarbons (THC, CO and CO2 can be used similarly. The high levels of NOx pollution associated with accelerating on entry ramps to motorways, driving over speed bumps, accelerating away from traffic lights, are explored in detail. The time-aligned ultra-fast analyzers offer unique insight allowing more accurate quantification and better interpretation of engine and driver activity and the associated emissions impact on local air quality.

  8. Characterisation of PM2.5 concentrations and turbulent fluxes on a island of the Venice lagoon using high temporal resolution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Donateo, A.; Contini, D.; Cesari, D. [CNR-ISAC, Istituto di Scienze dell' Atmosfera e del Clima, Lecce (Italy); Belosi, F.; Santachiara, G.; Prodi, F. [CNR-ISAC, Istituto di Scienze dell' Atmosfera e del Clima, Bologna (Italy); Gambaro, A. [Venice Univ. (Italy). Environmental Sciences Dept.

    2012-08-15

    This work presents an analysis of PM2.5 concentrations and vertical turbulent fluxes on an island of the Venice lagoon. Data were collected during three measurement campaigns in spring, summer and winter periods. Measurements were taken with a high-resolution optical PM2.5 detector, coupled with a micrometeorological station that allowed the evaluation of the vertical turbulent fluxes of PM2.5 using the eddy-correlation technique. The main objective of this paper is to analyse the daily and seasonal pattern in PM2.5 concentrations and fluxes and to discuss their correlation with the main meteorological and micrometeorological parameters using high temporal resolution measurements. Observed data showed a seasonal pattern in turbulent fluxes with daytime average positive value during winter and negative during summer. Deposition velocities, ranged from -60 to 20 mm/s, appeared to be mainly influenced by atmospheric stability. There were larger emissions in cases of high wind velocities blowing from water sector indicating a significant potential contribution of sea spray to PM2.5 fluxes. The local atmospheric circulation, due to the orography of the area, was characterised by diurnal winds coming from the Adriatic Sea and nocturnal wind coming from the Alps. This circulation influenced deposition velocity creating an increase of negative fluxes in the morning at the starting of the sea breeze. A diurnal pattern in concentration has been observed and it is similar for all three measurement campaigns, with higher concentrations in nocturnal periods. The daily pattern was investigated in terms of its correlation with meteorological and micro-meteorological parameters, and was found highly correlated with the diurnal pattern of boundary layer height (BLH) and with relative humidity. (orig.)

  9. Initial results of high resolution L-H transition studies on DIII-D

    International Nuclear Information System (INIS)

    Wang, G; Rhodes, T L; Doyle, E J; Peebles, W A; Zeng, L; Burrell, K H; McKee, G R; Groebner, R J; Evans, T E

    2004-01-01

    Understanding the L-H transition in tokamaks has been an important area of research for more than two decades. High time resolution diagnostics on DIII-D allow detailed characterization of the L-H transition and, therefore, testing and benchmarking of theoretical models. An experiment was performed in DIII-D utilizing a novel, high temporal and spatial resolution reflectometer density profile system to measure densities from the SOL to the inside separatrix. Initial data analysis indicates different density profile evolution during L-H transitions in upper single-null and lower single-null divertor configuration plasmas. A detailed comparison of the density gradient and fluctuation changes is presented for these two cases

  10. Initial results of high resolution L-H transition studies on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G [Department of Electrical Engineering and PSTI, University of California, Los Angeles, CA 90095 (United States); Rhodes, T L [Department of Electrical Engineering and PSTI, University of California, Los Angeles, CA 90095 (United States); Doyle, E J [Department of Electrical Engineering and PSTI, University of California, Los Angeles, CA 90095 (United States); Peebles, W A [Department of Electrical Engineering and PSTI, University of California, Los Angeles, CA 90095 (United States); Zeng, L [Department of Electrical Engineering and PSTI, University of California, Los Angeles, CA 90095 (United States); Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186 (United States); McKee, G R [University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186 (United States); Evans, T E [General Atomics, PO Box 85608, San Diego, CA 92186 (United States)

    2004-05-01

    Understanding the L-H transition in tokamaks has been an important area of research for more than two decades. High time resolution diagnostics on DIII-D allow detailed characterization of the L-H transition and, therefore, testing and benchmarking of theoretical models. An experiment was performed in DIII-D utilizing a novel, high temporal and spatial resolution reflectometer density profile system to measure densities from the SOL to the inside separatrix. Initial data analysis indicates different density profile evolution during L-H transitions in upper single-null and lower single-null divertor configuration plasmas. A detailed comparison of the density gradient and fluctuation changes is presented for these two cases.

  11. The 'temporal effect' in hominids: Reinvestigating the nature of support for a chimp-human clade in bone morphology.

    Science.gov (United States)

    Pearson, Alannah; Groves, Colin; Cardini, Andrea

    2015-11-01

    In 2004, an analysis by Lockwood and colleagues of hard-tissue morphology, using geometric morphometrics on the temporal bone, succeeded in recovering the correct phylogeny of living hominids without resorting to potentially problematic methods for transforming continuous shape variables into meristic characters. That work has increased hope that by using modern analytical methods and phylogenetically informative anatomical data we might one day be able to accurately infer the relationships of hominins, including the closest extinct relatives of modern humans. In the present study, using 3D virtually generated models of the hominid temporal bone and a larger suite of geometric morphometric and comparative techniques, we have re-examined the evidence for a Pan-Homo clade. Despite differences in samples, as well as the type of raw data, the effect of measurement error (and especially landmark digitization by a different operator), but also a broader perspective brought in by our diverse set of approaches, our reanalysis largely supports Lockwood and colleagues' original results. However, by focusing not only mainly on shape (as in the original 2004 analysis) but also on size and 'size-corrected' (non-allometric) shape, we demonstrate that the strong phylogenetic signal in the temporal bone is largely related to similarities in size. Thus, with this study, we are not suggesting the use of a single 'character', such as size, for phylogenetic inference, but we do challenge the common view that shape, with its highly complex and multivariate nature, is necessarily more phylogenetically informative than size and that actually size and size-related shape variation (i.e., allometry) confound phylogenetic inference based on morphology. This perspective may in fact be less generalizable than often believed. Thus, while we confirm the original findings by Lockwood et al., we provide a deep reinterpretation of their nature and potential implications for hominid phylogenetics

  12. High resolution climate scenarios for snowmelt modelling in small alpine catchments

    Science.gov (United States)

    Schirmer, M.; Peleg, N.; Burlando, P.; Jonas, T.

    2017-12-01

    Snow in the Alps is affected by climate change with regard to duration, timing and amount. This has implications with respect to important societal issues as drinking water supply or hydropower generation. In Switzerland, the latter received a lot of attention following the political decision to phase out of nuclear electricity production. An increasing number of authorization requests for small hydropower plants located in small alpine catchments was observed in the recent years. This situation generates ecological conflicts, while the expected climate change poses a threat to water availability thus putting at risk investments in such hydropower plants. Reliable high-resolution climate scenarios are thus required, which account for small-scale processes to achieve realistic predictions of snowmelt runoff and its variability in small alpine catchments. We therefore used a novel model chain by coupling a stochastic 2-dimensional weather generator (AWE-GEN-2d) with a state-of-the-art energy balance snow cover model (FSM). AWE-GEN-2d was applied to generate ensembles of climate variables at very fine temporal and spatial resolution, thus providing all climatic input variables required for the energy balance modelling. The land-surface model FSM was used to describe spatially variable snow cover accumulation and melt processes. The FSM was refined to allow applications at very high spatial resolution by specifically accounting for small-scale processes, such as a subgrid-parametrization of snow covered area or an improved representation of forest-snow processes. For the present study, the model chain was tested for current climate conditions using extensive observational dataset of different spatial and temporal coverage. Small-scale spatial processes such as elevation gradients or aspect differences in the snow distribution were evaluated using airborne LiDAR data. 40-year of monitoring data for snow water equivalent, snowmelt and snow-covered area for entire

  13. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  14. Role of pharmacokinetic parameters derived with high temporal resolution DCE MRI using simultaneous PET/MRI system in breast cancer: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Amarnath, E-mail: drjena2002@gmail.com [Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India); Taneja, Sangeeta; Singh, Aru; Negi, Pradeep; Mehta, Shashi Bhushan [Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India); Sarin, Ramesh [Department of Surgical Oncology, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India)

    2017-01-15

    Highlights: • Simultaneous PET/MRI (with 3T MRI in the core) for quantitative pharmacokinetics. • Diagnostic accuracy of pharmacokinetic parameters like K{sup trans}, K{sub ep} and v{sub e} acquired through this system. • Incorporating high temporal resolution sequence with short acquisition time of 60 s within the routine DCE MRI in a simultaneous PET/MRI system. - Abstract: Purpose: To evaluate the reliability of pharmacokinetic parameters like K{sup trans}, Kep and v{sub e} derived through DCE MRI breast protocol using 3 T Simultaneous PET/MRI (3 Tesla Positron Emission Tomography/Magnetic Resonance Imaging) system in distinguishing benign and malignant lesions. Materials and methods: High temporal resolution DCE (Dynamic Contrast Enhancement) MRI performed as routine breast MRI for diagnosis or as a part of PET/MRI for cancer staging using a 3 T simultaneous PET/MRI system in 98 women having 109 breast lesions were analyzed for calculation of pharmacokinetic parameters (K{sup trans}, v{sub e}, and Kep) at 60 s time point using an in-house developed computation scheme. Results: Receiver operating characteristic (ROC) curve analysis revealed a cut off value for K{sup trans}, Kep, v{sub e} as 0.50, 2.59, 0.15 respectively which reliably distinguished benign and malignant breast lesions. Data analysis revealed an overall accuracy of 94.50%, 79.82% and 87.16% for K{sup trans}, Kep, v{sub e} respectively. Introduction of native T1 normalization with an externally placed phantom showed a higher accuracy (94.50%) than without native T1 normalization (93.50%) with an increase in specificity of 87% vs 84%. Conclusion: Overall the results indicate that reliable measurement of pharmacokinetic parameters with reduced acquisition time is feasible in a 3TMRI embedded PET/MRI system with reasonable accuracy and application may be extended to exploit the potential of simultaneous PET/MRI in further work on breast cancer.

  15. Dynamic perfusion CT: Optimizing the temporal resolution for the calculation of perfusion CT parameters in stroke patients

    Energy Technology Data Exchange (ETDEWEB)

    Kaemena, Andreas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)], E-mail: andreas.kaemena@charite.de; Streitparth, Florian; Grieser, Christian; Lehmkuhl, Lukas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Jamil, Basil [Department of Radiotherapy, Charite-Medical University Berlin, Schumannstr. 20/21, D-10117 Berlin (Germany); Wojtal, Katarzyna; Ricke, Jens; Pech, Maciej [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2007-10-15

    Purpose: To assess the influence of different temporal sampling rates on the accuracy of the results from cerebral perfusion CTs in patients with an acute ischemic stroke. Material and methods: Thirty consecutive patients with acute stroke symptoms received a dynamic perfusion CT (LightSpeed 16, GE). Forty millilitres of iomeprol (Imeron 400) were administered at an injection rate of 4 ml/s. After a scan delay of 7 s, two adjacent 10 mm slices at 80 kV and 190 mA were acquired in a cine mode technique with a cine duration of 49 s. Parametric maps for the blood flow (BF), blood volume (BV) and mean transit time (MTT) were calculated for temporal sampling intervals of 0.5, 1, 2, 3 and 4 s using GE's Perfusion 3 software package. In addition to the quantitative ROI data analysis, a visual perfusion map analysis was performed. Results: The perfusion analysis proved to be technically feasible with all patients. The calculated perfusion values revealed significant differences with regard to the BF, BV and MTT, depending on the employed temporal resolution. The perfusion contrast between ischemic lesions and healthy brain tissue decreased continuously at the lower temporal resolutions. The visual analysis revealed that ischemic lesions were best depicted with sampling intervals of 0.5 and 1 s. Conclusion: We recommend a temporal scan resolution of two images per second for the best detection and depiction of ischemic areas.

  16. Comparison of arthoroscopic findings and high-resolution MRI using a microscopy coil findings for triangle fibrocartilage complex injury

    International Nuclear Information System (INIS)

    Satomi, Yoshiaki; Shimizu, Hiroyuki; Arai, Takeshi; Izumiyama, Kou; Beppu, Moroe

    2008-01-01

    Triangle fibrocartilage complex (TFCC) is very small and can be visualized in MRI. We compared image findings acquired by high-resolution MRI using a 47-mm-diameter microscopy coil with arthroscopic findings and reviewed the availability and possibility of application of both these techniques. The subjects were 16 patients who underwent arthroscopy of the radiocarpal joint and MRI for the diagnosis of pain in the ulnar wrist joint. Based on image evaluation, the impaired site was categorized as follows radius attachment, disc proper, triangular ligament (upper lamina), triangular ligament (lower lamina), lunate bone cartilage face, and triquete bone cartilage face; the findings of both techniques for impaired site around part 6 were compared. Joint morphology was assessed by the gradient-recalled echo (GRE) method with T2-weighted images, and the cartilage side was analyzed the fast SE (FSE) method with proton density-weighted image. Three orthopedic surgeons and 1 radiologist interpreted the results. The impaired site was verified in all 16 patients by high-resolution MRI using a microscopy coil. The MRI findings were as follows radius attachment in 2 patients, disc proper in 4, upper lamina in 7, lower lamina in 5, lunate bone cartilage face in 3, and triquete bone cartilage face in 0. The frequency of injury according to arthroscopic findings was as follows: radius attachment in 2 patients, disc proper in 4, lunate bone cartilage face in 6, and triquete bone cartilage face in 0. The sensibility/specificity of arthroscopic findings in comparison with MRI findings was as follows: radius attachment 100%/100%, disc proper 75%/91.7%, lunate bone cartilage face 50%/100%, and triquete bone cartilage face 0%/100%. Eight of 16 patients had depression of TFCC tone, and the sensibility/specificity of arthroscopic findings in comparison with MRI findings for the depression of site and TFCC tone was as follows: upper lamina 75%/87.5% and lower lamina 50%/87.5%. High-resolution

  17. Evaluation on temporal bone CT findings of cholesteatoma

    International Nuclear Information System (INIS)

    Lee, Kun Won; Lee, Nam Joon; Kang, Eun Young; Chung, Kyoo Byung; Suh, Won Hyuck

    1989-01-01

    Cholesteatomas are thought to result from ingrowth of keratinizing squamous epithelium from external ear to middle ear. The cholesteatomas are usually diagnosed by clinical symptoms and signs, otoscopy, and plain radiograms. But various view points are emphasized radiologically before operation, leading to examine by computed tomography (CT), especially in complicated cases. We retrospectively reviewed the CT findings of cholesteatomas in 25 surgically proven cases during the period from May, 1983 to Aug, 1988. The results were as follows: 1. Most cholesteatomas showed soft tissue mass and bony erosion of ossicles (88%), attic wall and mastoid antrum (84%) on temporal bone CT scan. 2. The CT members of cholesteatomas ranged from 25 to 50 HU (avg. 33 HU). 3. Involved sites were attic (16%), antrum (28%), and both attic and antrum (56%). Other sites were middle ear cavity and external auditory canal. 4. Extra-tympanomastoid extension of cholesteatoma was intracranial abscess (8%), exposure of dural sinus (8%), and extension along with neck (4%)

  18. Analysis of Vibrant Soundbridge placement against the round window membrane in a human cadaveric temporal bone model.

    NARCIS (Netherlands)

    Pennings, R.J.E.; Ho, A.; Brown, J.; Wijhe, R.G. van; Bance, M.

    2010-01-01

    OBJECTIVE: To evaluate optimal placement of the Floating Mass Transducer of the Vibrant Soundbridge (Med-El, Innsbruck, Austria) against the round window membrane, particularly the impact of interposed coupling fascia and of covering materials. METHOD: : Six fresh human cadaveric temporal bones were

  19. Evaluation of high resolution spatio-temporal precipitation extremes from a stochastic weather generator

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Christensen, O. B.; Arnbjerg-Nielsen, Karsten

    gauges in the model area. The spatio-temporal performance of the model with respect to precipitation extremes is evaluated in the points of a 2x2 km regular grid covering the full model area. The model satisfactorily reproduces the extreme behaviour of the observed precipitation with respect to event...... intensity levels and unconditional spatial correlation when evaluated using an event based ranking approach at point scale and an advanced spatio-temporal coupling of extreme events. Prospectively the model can be used as a tool to evaluate the impact of climate change without relying onprecipitation output......Spatio-temporal rainfall is modelled for the North-Eastern part of Zealand (Denmark) using the Spatio-Temporal Neyman-Scott Rectangular Pulses model as implemented in the RainSim software. Hourly precipitation series for fitting the model are obtained from a dense network of tipping bucket rain...

  20. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  1. Computer tomography in children and adolescents with suspected malformation of the petrous portion of the temporal bone

    International Nuclear Information System (INIS)

    Koesling, S.; Schneider-Moebius, C.; Koenig, E.; Meister, E.F.

    1997-01-01

    Purpose: To demonstrate HRCT findings and their therapeutic relevance in suspected congenital hearing disorders. Material and Methods: It was checked in 96 young patients if HRCT findings of the temporal bone could explain functional findings. Furthermore, the therapeutic consequences were noted. Results: Normal CT and normal functional findings were obtained in 49 temporal bones (TB). In conductive hearing loss (41 TB), dysplasias of the conducting apparatus (37 TB) and inflammatory changes (3 TB) were found. Combined hearing loss (18 TB) was clarified completely or partially in half the cases. There were 22 dysplasias of the inner ear, 3 dysplasias of the middle ear, 1 adandoned examination (2 TB), and 55 normal CT findings in senorineural hearing disorders (82 TB). 1 retardate had a malformation of the inner ear and, contralaterally, inflammatory middle ear. In cases of vestibular disorders (24 TB), 14 malformations of the inner ear were detected. (orig./AJ) [de

  2. Ground-glass opacity: High-resolution computed tomography and 64-multi-slice computed tomography findings comparison

    International Nuclear Information System (INIS)

    Sergiacomi, Gianluigi; Ciccio, Carmelo; Boi, Luca; Velari, Luca; Crusco, Sonia; Orlacchio, Antonio; Simonetti, Giovanni

    2010-01-01

    Objective: Comparative evaluation of ground-glass opacity using conventional high-resolution computed tomography technique and volumetric computed tomography by 64-row multi-slice scanner, verifying advantage of volumetric acquisition and post-processing technique allowed by 64-row CT scanner. Methods: Thirty-four patients, in which was assessed ground-glass opacity pattern by previous high-resolution computed tomography during a clinical-radiological follow-up for their lung disease, were studied by means of 64-row multi-slice computed tomography. Comparative evaluation of image quality was done by both CT modalities. Results: It was reported good inter-observer agreement (k value 0.78-0.90) in detection of ground-glass opacity with high-resolution computed tomography technique and volumetric Computed Tomography acquisition with moderate increasing of intra-observer agreement (k value 0.46) using volumetric computed tomography than high-resolution computed tomography. Conclusions: In our experience, volumetric computed tomography with 64-row scanner shows good accuracy in detection of ground-glass opacity, providing a better spatial and temporal resolution and advanced post-processing technique than high-resolution computed tomography.

  3. Primary chondroid chordoma arising from the petrous temporal bone: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Uk; Youn, Eun Kyung [Koryo General Hospital, Seoul (Korea, Republic of)

    1991-01-15

    Chordomas are uncommon tumors which arise from remnants of the primitive notochord. They are situated chiefly in the anterior spinal axis with a predilection for the sacrococcygeal region and the basiocciput. About 50% of chordomas are sacrococcygeal, 35% are intracranial, and 15% arise from a vertebral body. As a histologic variant of chordoma, /chondroid chordoma' was first described by Heffelfinger et al. We present a rare case of primary chondroid chordoma arising from the petrous temporal bone. To our knowledge, only two other cases of this type have been reported earlier.

  4. Primary chondroid chordoma arising from the petrous temporal bone: a case report

    International Nuclear Information System (INIS)

    Lee, Young Uk; Youn, Eun Kyung

    1991-01-01

    Chordomas are uncommon tumors which arise from remnants of the primitive notochord. They are situated chiefly in the anterior spinal axis with a predilection for the sacrococcygeal region and the basiocciput. About 50% of chordomas are sacrococcygeal, 35% are intracranial, and 15% arise from a vertebral body. As a histologic variant of chordoma, /chondroid chordoma' was first described by Heffelfinger et al. We present a rare case of primary chondroid chordoma arising from the petrous temporal bone. To our knowledge, only two other cases of this type have been reported earlier

  5. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    Science.gov (United States)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal

  6. Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain

    Science.gov (United States)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields

  7. High resolution spatio-temporal mapping of NO2 pollution for estimating personal exposures of the Dutch population

    Science.gov (United States)

    Soenario, Ivan; Helbich, Marco; Schmitz, Oliver; Strak, Maciek; Hoek, Gerard; Karssenberg, Derek

    2017-04-01

    Air pollution has been associated with adverse health effects (e.g., cardiovascular and respiration diseases) in the urban environments. Therefore, the assessment of people's exposure to air pollution is central in epidemiological studies. The estimation of exposures on an individual level can be done by combining location information across space and over time with spatio-temporal data on air pollution concentrations. When detailed information on peoples' space-time paths (e.g. commuting patterns calculated by means of spatial routing algorithms or tracked through GPS) and peoples' major activity locations (e.g. home location, work location) are available, it is possible to calculate more precise personal exposure levels depending on peoples' individual space-time mobility patterns. This requires air pollution values not only at a high level of spatial accuracy and high temporal granularity but such data also needs to be available on a nation-wide scale. As current data is seriously limited in this respect, we introduce a novel data set of NO2 levels across the Netherlands. The provided NO2 concentrations are accessible on hourly timestamps on a 5 meter grid cell resolution for weekdays and weekends, and each month of the year. We modeled a single Land Use Regression model using a five year average of NO2 data from the Dutch NO2 measurement network consisting of N=46 sampling locations distributed over the country. Predictor variables for this model were selected in a data-driven manner using an Elastic Net and Best Subset Selection procedure from 70 candidate predictors including traffic, industry, infrastructure and population-based variables. Subsequently, to model NO2 for each time scale (hour, week, month), the LUR coefficients were fitted using the NO2 data, aggregated per time scale. Model validation was grounded on independent data collected in an ad hoc measurement campaign. Our results show a considerable difference in urban concentrations between

  8. Electron paramagnetic resonance imaging of tumor hypoxia: enhanced spatial and temporal resolution for in vivo pO2 determination.

    Science.gov (United States)

    Matsumoto, Ken-ichiro; Subramanian, Sankaran; Devasahayam, Nallathamby; Aravalluvan, Thirumaran; Murugesan, Ramachandran; Cook, John A; Mitchell, James B; Krishna, Murali C

    2006-05-01

    The time-domain (TD) mode of electron paramagnetic resonance (EPR) data collection offers a means of estimating the concentration of a paramagnetic probe and the oxygen-dependent linewidth (LW) to generate pO2 maps with minimal errors. A methodology for noninvasive pO2 imaging based on the application of TD-EPR using oxygen-induced LW broadening of a triarylmethyl (TAM)-based radical is presented. The decay of pixel intensities in an image is used to estimate T2*, which is inversely proportional to pO2. Factors affecting T2* in each pixel are critically analyzed to extract the contribution of dissolved oxygen to EPR line-broadening. Suitable experimental and image-processing parameters were obtained to produce pO2 maps with minimal artifacts. Image artifacts were also minimized with the use of a novel data collection strategy using multiple gradients. Results from a phantom and in vivo imaging of tumor-bearing mice validated this novel method of noninvasive oximetry. The current imaging protocols achieve a spatial resolution of approximately 1.0 mm and a temporal resolution of approximately 9 s for 2D pO2 mapping, with a reliable oxygen resolution of approximately 1 mmHg (0.12% oxygen in gas phase). This work demonstrates that in vivo oximetry can be performed with good sensitivity, accuracy, and high spatial and temporal resolution.

  9. Temporal bone trauma: correlative study between CT findings and clinical manifestations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hee; Kim, Hyung Jin; Kim, Jae Hyoung [College of Medicine, Gyeongsang National University, Jinju (Korea, Republic of)

    1994-11-15

    To assess how accurately computed tomography (CT) can demonstrate the abnormal findings which are believed to cause the clinical signs and symptoms of hearing loss (HL), vertigo and facial paralysis (FP) in patients with temporal bone trauma. The authors studied CT scans of 39 ears in 35 patients with temporal bone trauma. CT scans were performed with 1-1.5 mm slice thickness and table incrementation. Both axial and coronal scans were obtained in 32 patients and in three patients only axial scans were obtained. We analyzed CT with special reference to the structural abnormalities of the external auditory canal, middle ear cavity, bony labyrinth, and facial nerve canal, and correlated these findings with the actual clinical signs and symptoms. As to hearing loss, we evaluated 32 ears in which pure tone audiometry or brainstem evoked response audiometry had been performed. With respect to the specific types of HL, CT accurately showed the abnormalities in 84% (16/19) in conductive HL, 100% (2/2) in sensorineural HL, and 25% (2/8) for mixed HL. When we categorized HL simply as conductive and sensorineural, assuming that mixed be the result of combined conductive and sensorineural HL, CT demonstrated the abnormalities in 89% (24/27) for conductive HL and 50% (5/10) for sensorineural HL. Concerning vertigo and FP, CT demonstrated abnormalities in 67%(4/6), and 29% (4/14), respectively. Except for conductive HL, CT seems to have a variable degree of limitation for the demonstration of the structural abnormalities resulting sensorineural HL, vertigo or facial paralysis. It is imperative to correlate the CT findings with the signs and symptoms in those clinical settings.

  10. Temporal bone trauma: correlative study between CT findings and clinical manifestations

    International Nuclear Information System (INIS)

    Kim, Jung Hee; Kim, Hyung Jin; Kim, Jae Hyoung

    1994-01-01

    To assess how accurately computed tomography (CT) can demonstrate the abnormal findings which are believed to cause the clinical signs and symptoms of hearing loss (HL), vertigo and facial paralysis (FP) in patients with temporal bone trauma. The authors studied CT scans of 39 ears in 35 patients with temporal bone trauma. CT scans were performed with 1-1.5 mm slice thickness and table incrementation. Both axial and coronal scans were obtained in 32 patients and in three patients only axial scans were obtained. We analyzed CT with special reference to the structural abnormalities of the external auditory canal, middle ear cavity, bony labyrinth, and facial nerve canal, and correlated these findings with the actual clinical signs and symptoms. As to hearing loss, we evaluated 32 ears in which pure tone audiometry or brainstem evoked response audiometry had been performed. With respect to the specific types of HL, CT accurately showed the abnormalities in 84% (16/19) in conductive HL, 100% (2/2) in sensorineural HL, and 25% (2/8) for mixed HL. When we categorized HL simply as conductive and sensorineural, assuming that mixed be the result of combined conductive and sensorineural HL, CT demonstrated the abnormalities in 89% (24/27) for conductive HL and 50% (5/10) for sensorineural HL. Concerning vertigo and FP, CT demonstrated abnormalities in 67%(4/6), and 29% (4/14), respectively. Except for conductive HL, CT seems to have a variable degree of limitation for the demonstration of the structural abnormalities resulting sensorineural HL, vertigo or facial paralysis. It is imperative to correlate the CT findings with the signs and symptoms in those clinical settings

  11. The coupling of high-speed high resolution experimental data and LES through data assimilation techniques

    Science.gov (United States)

    Harris, S.; Labahn, J. W.; Frank, J. H.; Ihme, M.

    2017-11-01

    Data assimilation techniques can be integrated with time-resolved numerical simulations to improve predictions of transient phenomena. In this study, optimal interpolation and nudging are employed for assimilating high-speed high-resolution measurements obtained for an inert jet into high-fidelity large-eddy simulations. This experimental data set was chosen as it provides both high spacial and temporal resolution for the three-component velocity field in the shear layer of the jet. Our first objective is to investigate the impact that data assimilation has on the resulting flow field for this inert jet. This is accomplished by determining the region influenced by the data assimilation and corresponding effect on the instantaneous flow structures. The second objective is to determine optimal weightings for two data assimilation techniques. The third objective is to investigate how the frequency at which the data is assimilated affects the overall predictions. Graduate Research Assistant, Department of Mechanical Engineering.

  12. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    International Nuclear Information System (INIS)

    Stamov, Dimitar R; Stock, Erik; Franz, Clemens M; Jähnke, Torsten; Haschke, Heiko

    2015-01-01

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I

  13. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, Dimitar R, E-mail: stamov@jpk.com [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)

    2015-02-15

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  14. Modelling the effects of spatial and temporal resolution of rainfall and basin model on extreme river discharge

    NARCIS (Netherlands)

    Booij, Martijn J.

    2002-01-01

    Important characteristics of an appropriate river basin model, intended to study the effect of climate change on basin response, are the spatial and temporal resolution of the model and the rainfall input. The effects of input and model resolution on extreme discharge of a large river basin are

  15. Fibrous Dysplasia of the Temporal Bone with External Auditory Canal Stenosis and Secondary Cholesteatoma.

    Science.gov (United States)

    Liu, Yu-Hsi; Chang, Kuo-Ping

    2016-04-01

    Fibrous dysplasia is a slowly progressive benign fibro-osseous disease, rarely occurring in temporal bones. In these cases, most bony lesions developed from the bony part of the external auditory canals, causing otalgia, hearing impairment, otorrhea, and ear hygiene blockade and probably leading to secondary cholesteatoma. We presented the medical history of a 24-year-old woman with temporal monostotic fibrous dysplasia with secondary cholesteatoma. The initial presentation was unilateral conductive hearing loss. A hard external canal tumor contributing to canal stenosis and a near-absent tympanic membrane were found. Canaloplasty and type I tympanoplasty were performed, but the symptoms recurred after 5 years. She received canal wall down tympanomastoidectomy with ossciculoplasty at the second time, and secondary cholesteatoma in the middle ear was diagnosed. Fifteen years later, left otorrhea recurred again and transcanal endoscopic surgery was performed for middle ear clearance. Currently, revision surgeries provide a stable auditory condition, but her monostotic temporal fibrous dysplasia is still in place.

  16. Freely-available, true-color volume rendering software and cryohistology data sets for virtual exploration of the temporal bone anatomy.

    Science.gov (United States)

    Kahrs, Lüder Alexander; Labadie, Robert Frederick

    2013-01-01

    Cadaveric dissection of temporal bone anatomy is not always possible or feasible in certain educational environments. Volume rendering using CT and/or MRI helps understanding spatial relationships, but they suffer in nonrealistic depictions especially regarding color of anatomical structures. Freely available, nonstained histological data sets and software which are able to render such data sets in realistic color could overcome this limitation and be a very effective teaching tool. With recent availability of specialized public-domain software, volume rendering of true-color, histological data sets is now possible. We present both feasibility as well as step-by-step instructions to allow processing of publicly available data sets (Visible Female Human and Visible Ear) into easily navigable 3-dimensional models using free software. Example renderings are shown to demonstrate the utility of these free methods in virtual exploration of the complex anatomy of the temporal bone. After exploring the data sets, the Visible Ear appears more natural than the Visible Human. We provide directions for an easy-to-use, open-source software in conjunction with freely available histological data sets. This work facilitates self-education of spatial relationships of anatomical structures inside the human temporal bone as well as it allows exploration of surgical approaches prior to cadaveric testing and/or clinical implementation. Copyright © 2013 S. Karger AG, Basel.

  17. Rainfall Erosivity Database on the European Scale (REDES): A product of a high temporal resolution rainfall data collection in Europe

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the (R)USLE model. The R-factor is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minutes rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years) which are not readily available at European scale. The European Commission's Joint Research Centre(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland in order to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,541 rainfall stations in 2014 and has been updated with 134 additional stations in 2015. The interpolation of those point R-factor values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511, 801-815). The intra-annual variability of rainfall erosivity is crucial for modelling soil erosion on a monthly and seasonal basis. The monthly feature of rainfall erosivity has been added in 2015 as an advancement of REDES and the respective mean annual R-factor map. Almost 19,000 monthly R-factor values of REDES contributed to the seasonal and monthly assessments of rainfall erosivity in Europe. According to the first results, more than 50% of the total rainfall erosivity in Europe takes place in the period from June to September. The spatial patterns of rainfall erosivity have significant differences between Northern and Southern Europe as summer is the most erosive period in Central and Northern Europe and autumn in the

  18. Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution

    NARCIS (Netherlands)

    Kilibarda, M.; Hengl, T.; Heuvelink, G.B.M.; Graler, B.; Pebesma, E.; Tadic, M.P.; Bajat, B.

    2014-01-01

    Combined Global Surface Summary of Day and European Climate Assessment and Dataset daily meteorological data sets (around 9000 stations) were used to build spatio-temporal geostatistical models and predict daily air temperature at ground resolution of 1km for the global land mass. Predictions in

  19. X-ray micro-diffraction analysis of reconstructed bone at Zr prosthetic surface with sub-micrometre spatial resolution

    International Nuclear Information System (INIS)

    Cedola, A; Stanic, V; Burghammer, M; Lagomarsino, S; Rustichelli, F; Giardino, R; Aldini, N Nicoli; Fini, M; Komlev, V; Fonzo, S Di

    2003-01-01

    The purpose of the present investigation is to demonstrate the power of the x-ray micro-diffraction technique in biological studies. In particular the reported experiment concerns the study of the interface between a Zr prosthetic device implanted in a rat femur and the newly-formed bone, with a spatial resolution of 0.5 μm. The obtained results give interesting information on the Zr deformation and on the crystallographic phase, the grain size and the orientation of the new bone. Moreover the study reveals a marked difference in the structure of the reconstructed bone with respect to the native bone, which cannot be appreciated with other techniques. (note)

  20. Presbycusis: a human temporal bone study of individuals with downward sloping audiometric patterns of hearing loss and review of the literature.

    Science.gov (United States)

    Nelson, Erik G; Hinojosa, Raul

    2006-09-01

    The purpose of this retrospective case review was to identify patterns of cochlear element degeneration in individuals with presbycusis exhibiting downward sloping audiometric patterns of hearing loss and to correlate these findings with those reported in the literature to clarify conflicting concepts regarding the association between hearing loss and morphologic abnormalities. Archival human temporal bones from individuals with presbycusis were selected on the basis of strict audiometric criteria for downward-sloping audiometric thresholds. Twenty-one temporal bones that met these criteria were identified and compared with 10 temporal bones from individuals with normal hearing. The stria vascularis volumes, spiral ganglion cell populations, inner hair cells, and outer hair cells were quantitatively evaluated. The relationship between the severity of hearing loss and the degeneration of cochlear elements was analyzed using univariate linear regression models. Outer hair cell loss and ganglion cell loss was observed in all individuals with presbycusis. Inner hair cell loss was observed in 18 of the 21 individuals with presbycusis and stria vascularis loss was observed in 10 of the 21 individuals with presbycusis. The extent of degeneration of all four of the cochlear elements evaluated was highly associated with the severity of hearing loss based on audiometric thresholds at 8,000 Hz and the pure-tone average at 500, 1,000, and 2,000 Hz. The extent of ganglion cell degeneration was associated with the slope of the audiogram. Individuals with downward-sloping audiometric patterns of presbycusis exhibit degeneration of the stria vascularis, spiral ganglion cells, inner hair cells, and outer hair cells that is associated with the severity of hearing loss. This association has not been previously reported in studies that did not use quantitative methodologies for evaluating the cochlear elements and strict audiometric criteria for selecting cases.

  1. Distal radius plate of CFR-PEEK has minimal effect compared to titanium plates on bone parameters in high-resolution peripheral quantitative computed tomography: a pilot study.

    Science.gov (United States)

    de Jong, Joost J A; Lataster, Arno; van Rietbergen, Bert; Arts, Jacobus J; Geusens, Piet P; van den Bergh, Joop P W; Willems, Paul C

    2017-02-27

    Carbon-fiber-reinforced poly-ether-ether-ketone (CFR-PEEK) has superior radiolucency compared to other orthopedic implant materials, e.g. titanium or stainless steel, thus allowing metal-artifact-free postoperative monitoring by computed tomography (CT). Recently, high-resolution peripheral quantitative CT (HRpQCT) proved to be a promising technique to monitor the recovery of volumetric bone mineral density (vBMD), micro-architecture and biomechanical parameters in stable conservatively treated distal radius fractures. When using HRpQCT to monitor unstable distal radius fractures that require volar distal radius plating for fixation, radiolucent CFR-PEEK plates may be a better alternative to currently used titanium plates to allow for reliable assessment. In this pilot study, we assessed the effect of a volar distal radius plate made from CFR-PEEK on bone parameters obtained from HRpQCT in comparison to two titanium plates. Plates were instrumented in separate cadaveric human fore-arms (n = 3). After instrumentation and after removal of the plates duplicate HRpQCT scans were made of the region covered by the plate. HRpQCT images were visually checked for artifacts. vBMD, micro-architectural and biomechanical parameters were calculated, and compared between the uninstrumented and instrumented radii. No visible image artifacts were observed in the CFR-PEEK plate instrumented radius, and errors in bone parameters ranged from -3.2 to 2.6%. In the radii instrumented with the titanium plates, severe image artifacts were observed and errors in bone parameters ranged between -30.2 and 67.0%. We recommend using CFR-PEEK plates in longitudinal in vivo studies that monitor the healing process of unstable distal radius fractures treated operatively by plating or bone graft ingrowth.

  2. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: image reconstruction and assessment of image quality.

    Science.gov (United States)

    Flohr, Thomas G; Leng, Shuai; Yu, Lifeng; Aiimendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H

    2009-12-01

    To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. No significant differences in quantitative measures of image quality were found between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6 pitch 3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch = 3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving coronary artery phantom

  3. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality

    International Nuclear Information System (INIS)

    Flohr, Thomas G.; Leng Shuai; Yu Lifeng; Allmendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D.; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H.

    2009-01-01

    Purpose: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. Methods: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. Results: No significant differences in quantitative measures of image quality were found between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6≤pitch≤3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch=3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving

  4. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Flohr, Thomas G.; Leng Shuai; Yu Lifeng; Allmendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D.; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H. [Siemens Healthcare, Computed Tomography, 91301 Forchheim, Germany and Department of Diagnostic Radiology, Eberhard-Karls-Universitaet, 72076 Tuebingen (Germany); Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Siemens Healthcare, Computed Tomography, 91301 Forchheim (Germany); Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2009-12-15

    Purpose: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. Methods: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. Results: No significant differences in quantitative measures of image quality were found between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6{<=}pitch{<=}3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch=3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving

  5. Landuse change detection in a surface coal mine area using multi-temporal high resolution satellite images

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, N.; Duzgun, S.; Kemal Emil, M. [Middle East Technical Univ., Ankara (Turkey). Dept. of Mining Engineering

    2010-07-01

    Changes in the landcover and landuse of a mine area can be caused by surface mining activities, exploitation of ore and stripping and dumping overburden. In order to identify the long-term impacts of mining on the environment and land cover, these changes must be continuously monitored. A facility to regularly observe the progress of surface mining and reclamation is important for effective enforcement of mining and environmental regulations. Remote sensing provides a powerful tool to obtain rigorous data and reduce the need for time-consuming and expensive field measurements. The purpose of this study was to conduct post classification change detection for identifying, quantifying, and analyzing the spatial response of landscape due to surface lignite coal mining activities in Goynuk, Bolu, Turkey, from 2004 to 2008. The paper presented the research algorithm which involved acquiring multi temporal high resolution satellite data; preprocessing the data; performing image classification using maximum likelihood classification algorithm and performing accuracy assessment on the classification results; performing post classification change detection algorithm; and analyzing the results. Specifically, the paper discussed the study area, data and methodology, and image preprocessing using radiometric correction. Image classification and change detection were also discussed. It was concluded that the mine and dump area decreased by 192.5 ha from 2004 to 2008 and was caused by the diminishing reserves in the area and decline in the required production. 5 refs., 2 tabs., 4 figs.

  6. Using High Spatio-Temporal Optical Remote Sensing to Monitor Dissolved Organic Carbon in the Arctic River Yenisei

    Directory of Open Access Journals (Sweden)

    Pierre-Alexis Herrault

    2016-09-01

    Full Text Available In Arctic regions, a major concern is the release of carbon from melting permafrost that could greatly exceed current human carbon emissions. Arctic rivers drain these organic-rich watersheds (Ob, Lena, Yenisei, Mackenzie, Yukon but field measurements at the outlets of these great Arctic rivers are constrained by limited accessibility of sampling sites. In particular, the highest dissolved organic carbon (DOC fluxes are observed throughout the ice breakup period that occurs over a short two to three-week period in late May or early June during the snowmelt-generated peak flow. The colored fraction of dissolved organic carbon (DOC which absorbs UV and visible light is designed as chromophoric dissolved organic matter (CDOM. It is highly correlated to DOC in large arctic rivers and streams, allowing for remote sensing to monitor DOC concentrations from satellite imagery. High temporal and spatial resolutions remote sensing tools are highly relevant for the study of DOC fluxes in a large Arctic river. The high temporal resolution allows for correctly assessing this highly dynamic process, especially the spring freshet event (a few weeks in May. The high spatial resolution allows for assessing the spatial variability within the stream and quantifying DOC transfer during the ice break period when the access to the river is almost impossible. In this study, we develop a CDOM retrieval algorithm at a high spatial and a high temporal resolution in the Yenisei River. We used extensive DOC and DOM spectral absorbance datasets from 2014 and 2015. Twelve SPOT5 (Take5 and Landsat 8 (OLI images from 2014 and 2015 were examined for this investigation. Relationships between CDOM and spectral variables were explored using linear models (LM. Results demonstrated the capacity of a CDOM algorithm retrieval to monitor DOC fluxes in the Yenisei River during a whole open water season with a special focus on the peak flow period. Overall, future Sentinel2/Landsat8

  7. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation.

    Science.gov (United States)

    Dillon, Neal P; Balachandran, Ramya; Labadie, Robert F

    2016-03-01

    A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of [Formula: see text] and higher as well as longer cantilevered drill lengths. The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure.

  8. Study of the dependence of resolution temporal activity for a Philips gemini TF PET/CT scanner by applying a statistical analysis of time series

    International Nuclear Information System (INIS)

    Sanchez Merino, G.; Cortes Rpdicio, J.; Lope Lope, R.; Martin Gonzalez, T.; Garcia Fidalgo, M. A.

    2013-01-01

    The aim of the present work is to study the dependence of temporal resolution with the activity using statistical techniques applied to the series of values time series measurements of temporal resolution during daily equipment checks. (Author)

  9. High spatial resolution in laser-induced breakdown spectroscopy of expanding plasmas

    International Nuclear Information System (INIS)

    Siegel, J.; Epurescu, G.; Perea, A.; Gordillo-Vazquez, F.J.; Gonzalo, J.; Afonso, C.N.

    2005-01-01

    We report a technique that is able to achieve high spatial resolution in the measurement of the temporal and spectral emission characteristics of laser-induced expanding plasmas. The plasma is imaged directly onto the slit of an imaging spectrograph coupled to a time-gated intensified camera, with the plasma expansion direction being parallel to the slit extension. In this way, a single hybrid detection system is used to acquire the spatial, spectral and temporal characteristics of the laser induced plasma. The parallel acquisition approach of this technique ensures a much better spatial resolution in the expansion direction, reproducibility and data acquisition speed than commonly obtained by sequential measurements at different distances from the target. We have applied this technique to study the laser-induced plasma in LiNbO 3 and Bi 12 Ge 1 O 20 , revealing phenomena not seen in such detail with standard instruments. These include extreme line broadening up to a few nanometers accompanied by self-absorption near the target surface, as well as different ablation and expansion dynamics for the different species ejected. Overall, the high precision and wealth of quantitative information accessible with this technique open up new possibilities for the study of fundamental plasma expansion processes during pulsed laser ablation

  10. On the optical stability of high-resolution transmission electron microscopes

    International Nuclear Information System (INIS)

    Barthel, J.; Thust, A.

    2013-01-01

    In the recent two decades the technique of high-resolution transmission electron microscopy experienced an unprecedented progress through the introduction of hardware aberration correctors and by the improvement of the achievable resolution to the sub-Ångström level. The important aspect that aberration correction at a given resolution requires also a well defined amount of optical stability has received little attention so far. Therefore we investigate the qualification of a variety of high-resolution electron microscopes to maintain an aberration corrected optical state in terms of an optical lifetime. We develop a comprehensive statistical framework for the estimation of the optical lifetime and find remarkably low values between tens of seconds and a couple of minutes. Probability curves are introduced, which inform the operator about the chance to work still in the fully aberration corrected state. - Highlights: • We investigate the temporal stability of optical aberrations in HRTEM. • We develop a statistical framework for the estimation of optical lifetimes. • We introduce plots showing the success probability for aberration-free work. • Optical lifetimes in sub-Ångström electron microscopy are surprisingly low. • The success of aberration correction depends strongly on the optical stability

  11. Chondroblastoma of the sphenoid bone

    Directory of Open Access Journals (Sweden)

    Patrocíni, Tomas Gomes

    2008-12-01

    Full Text Available Introduction: Chondroblastoma is an uncommon cartilaginous benign neoplasm, highly destructive, which specifically appears in the epiphysis of long bones in young patients. Its occurrence is extremely rare in the cranial base, normally occurring in the temporal bone. Objective: To describe a rare case in a patient presenting with a sphenoid bone chondroblastoma that invaded the middle cranial cavity, submitted to a successful surgical resection, without recurrence after 2 years. Case Report: W.J.S, 37 years old, male, forwarded to the otorhinolaryngology service with persistent and strong otalgia for 3 months. He had normal otoscopy and without visible tumorations. The computerized tomography confirmed tumor mass in the left infra-temporal cavity, invading the middle cranial cavity. The biopsy suggested giant cells tumor. After wide resection by frontal approach via orbitozygomatic osteotomy. During the surgery, we confirmed tomographic statements and didn't find temporal bone involvement. The histopathological exam confirmed chondroblastoma. After 18 months after the surgery, he doesn't present with complaints, without motor, sensitive deficits or of cranial nerves and without recurrence tomographic signals. Conclusion: The importance of differential diagnosis of chondroblastoma is remarkable in the cranial base lesions and its therapeutic approach, whose objective must always be the major possible resection with the maximum function conservation.

  12. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    Science.gov (United States)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-07-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a

  13. Comparison of Two Grid Refinement Approaches for High Resolution Regional Climate Modeling: MPAS vs WRF

    Science.gov (United States)

    Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.

    2012-12-01

    This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.

  14. High-Resolution Hydrological Sub-Seasonal Forecasting for Water Resources Management Over Europe

    Science.gov (United States)

    Wood, E. F.; Wanders, N.; Pan, M.; Sheffield, J.; Samaniego, L. E.; Thober, S.; Kumar, R.; Prudhomme, C.; Houghton-Carr, H.

    2017-12-01

    For decision-making at the sub-seasonal and seasonal time scale, hydrological forecasts with a high temporal and spatial resolution are required by water managers. So far such forecasts have been unavailable due to 1) lack of availability of meteorological seasonal forecasts, 2) coarse temporal resolution of meteorological seasonal forecasts, requiring temporal downscaling, 3) lack of consistency between observations and seasonal forecasts, requiring bias-correction. The EDgE (End-to-end Demonstrator for improved decision making in the water sector in Europe) project commissioned by the ECMWF (C3S) created a unique dataset of hydrological seasonal forecasts derived from four global climate models (CanCM4, FLOR-B01, ECMF, LFPW) in combination with four global hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), resulting in 208 forecasts for any given day. The forecasts provide a daily temporal and 5-km spatial resolution, and are bias corrected against E-OBS meteorological observations. The forecasts are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs), created in collaboration with the end-user community of the EDgE project (e.g. the percentage of ensemble realizations above the 10th percentile of monthly river flow, or below the 90th). Results show skillful forecasts for discharge from 3 months to 6 months (latter for N Europe due to snow); for soil moisture up to three months due precipitation forecast skill and short initial condition memory; and for groundwater greater than 6 months (lowest skill in western Europe.) The SCIIs are effective in communicating both forecast skill and uncertainty. Overall the new system provides an unprecedented ensemble for seasonal forecasts with significant skill over Europe to support water management. The consistency in both the GCM forecasts and the LSM parameterization ensures a stable and reliable forecast framework and methodology, even if additional GCMs or LSMs are added in the future.

  15. Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones

    Science.gov (United States)

    Nakajima, Hideko Heidi; Dong, Wei; Olson, Elizabeth S.; Merchant, Saumil N.; Ravicz, Michael E.; Rosowski, John J.

    2009-02-01

    We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. Micro-scale fiberoptic pressure sensors enabled the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. Results showed that: pressure of scala vestibuli was much greater than scala tympani except at low and high frequencies where scala tympani pressure affects the input to the cochlea; the differential pressure proved to be an excellent measure of normal ossicular transduction of sound (shown to decrease 30-50 dB with ossicular disarticulation, whereas the individual scala pressures were significantly affected by non-ossicular conduction of sound at high frequencies); the middle-ear gain and differential pressure were generally bandpass in frequency dependence; and the middle-ear delay in the human was over twice that of the gerbil. Concurrent stapes velocity measurements allowed determination of the differential impedance across the partition and round-window impedance. The differential impedance was generally resistive, while the round-window impedance was consistent with a compliance in conjunction with distributed inertia and damping. Our techniques can be used to study inner-ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round-window stimulation) - situations that cannot be completely quantified by measurements of stapes velocity or scala-vestibuli pressure by themselves.

  16. Understanding reconstructed Dante spectra using high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    May, M. J., E-mail: may13@llnl.gov; Widmann, K.; Kemp, G. E.; Thorn, D.; Colvin, J. D.; Schneider, M. B.; Moore, A.; Blue, B. E. [L-170 Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94551 (United States); Weaver, J. [Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States)

    2016-11-15

    The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

  17. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound.

    Science.gov (United States)

    Ding, Ting; Zhang, Siyuan; Fu, Quanyou; Xu, Zhian; Wan, Mingxi

    2014-01-01

    This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Spatio Temporal Detection and Virtual Mapping of Landslide Using High-Resolution Airborne Laser Altimetry (lidar) in Densely Vegetated Areas of Tropics

    Science.gov (United States)

    Bibi, T.; Azahari Razak, K.; Rahman, A. Abdul; Latif, A.

    2017-10-01

    Landslides are an inescapable natural disaster, resulting in massive social, environmental and economic impacts all over the world. The tropical, mountainous landscape in generally all over Malaysia especially in eastern peninsula (Borneo) is highly susceptible to landslides because of heavy rainfall and tectonic disturbances. The purpose of the Landslide hazard mapping is to identify the hazardous regions for the execution of mitigation plans which can reduce the loss of life and property from future landslide incidences. Currently, the Malaysian research bodies e.g. academic institutions and government agencies are trying to develop a landslide hazard and risk database for susceptible areas to backing the prevention, mitigation, and evacuation plan. However, there is a lack of devotion towards landslide inventory mapping as an elementary input of landslide susceptibility, hazard and risk mapping. The developing techniques based on remote sensing technologies (satellite, terrestrial and airborne) are promising techniques to accelerate the production of landslide maps, shrinking the time and resources essential for their compilation and orderly updates. The aim of the study is to provide a better perception regarding the use of virtual mapping of landslides with the help of LiDAR technology. The focus of the study is spatio temporal detection and virtual mapping of landslide inventory via visualization and interpretation of very high-resolution data (VHR) in forested terrain of Mesilau river, Kundasang. However, to cope with the challenges of virtual inventory mapping on in forested terrain high resolution LiDAR derivatives are used. This study specifies that the airborne LiDAR technology can be an effective tool for mapping landslide inventories in a complex climatic and geological conditions, and a quick way of mapping regional hazards in the tropics.

  19. Derivation of Land Surface Albedo at High Resolution by Combining HJ-1A/B Reflectance Observations with MODIS BRDF Products

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2014-09-01

    Full Text Available Land surface albedo is an essential parameter for monitoring global/regional climate and land surface energy balance. Although many studies have been conducted on global or regional land surface albedo using various remote sensing data over the past few decades, land surface albedo product with a high spatio–temporal resolution is currently very scarce. This paper proposes a method for deriving land surface albedo with a high spatio–temporal resolution (space: 30 m and time: 2–4 days. The proposed method works by combining the land surface reflectance data at 30 m spatial resolution obtained from the charge-coupled devices in the Huanjing-1A and -1B (HJ-1A/B satellites with the Moderate Resolution Imaging Spectroradiometer (MODIS land surface bidirectional reflectance distribution function (BRDF parameters product (MCD43A1, which is at a spatial resolution of 500 m. First, the land surface BRDF parameters for HJ-1A/B land surface reflectance with a spatial–temporal resolutions of 30 m and 2–4 day are calculated on the basis of the prior knowledge from the MODIS BRDF product; then, the calculated high resolution BRDF parameters are integrated over the illuminating/viewing hemisphere to produce the white- and black-sky albedos at 30 m resolution. These results form the basis for the final land surface albedo derivation by accounting for the proportion of direct and diffuse solar radiation arriving at the ground. The albedo retrieved by this novel method is compared with MODIS land surface albedo products, as well as with ground measurements. The results show that the derived land surface albedo during the growing season of 2012 generally achieved a mean absolute accuracy of ±0.044, and a root mean square error of 0.039, confirming the effectiveness of the newly proposed method.

  20. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    Science.gov (United States)

    Song, Huihui

    -MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral