WorldWideScience

Sample records for high-resolution optical recording

  1. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  2. Optical diffraction tomography for high resolution live cell imaging

    Science.gov (United States)

    Sung, Yongjin; Choi, Wonshik; Fang-Yen, Christopher; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2009-01-01

    We report the experimental implementation of optical diffraction tomography for quantitative 3D mapping of refractive index in live biological cells. Using a heterodyne Mach-Zehnder interferometer, we record complex field images of light transmitted through a sample with varying directions of illumination. To quantitatively reconstruct the 3D map of complex refractive index in live cells, we apply optical diffraction tomography based on the Rytov approximation. In this way, the effect of diffraction is taken into account in the reconstruction process and diffraction-free high resolution 3D images are obtained throughout the entire sample volume. The quantitative refractive index map can potentially serve as an intrinsic assay to provide the molecular concentrations without the addition of exogenous agents and also to provide a method for studying the light scattering properties of single cells. PMID:19129896

  3. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  4. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  5. Adaptive optics high resolution spectroscopy: present status and future direction

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  6. Adaptive optics with pupil tracking for high resolution retinal imaging.

    Science.gov (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  7. Optical Histology: High-Resolution Visualization of Tissue Microvasculature

    Science.gov (United States)

    Moy, Austin Jing-Ming

    Mammalian tissue requires the delivery of nutrients, growth factors, and the exchange of oxygen and carbon dioxide gases to maintain normal function. These elements are delivered by the blood, which travels through the connected network of blood vessels, known as the vascular system. The vascular system consists of large feeder blood vessels (arteries and veins) that are connected to the small blood vessels (arterioles and venules), which in turn are connected to the capillaries that are directly connected to the tissue and facilitate gas exchange and nutrient delivery. These small blood vessels and capillaries make up an intricate but organized network of blood vessels that exist in all mammalian tissues known as the microvasculature and are very important in maintaining the health and proper function of mammalian tissue. Due to the importance of the microvasculature in tissue survival, disruption of the microvasculature typically leads to tissue dysfunction and tissue death. The most prevalent method to study the microvasculature is visualization. Immunohistochemistry (IHC) is the gold-standard method to visualize tissue microvasculature. IHC is very well-suited for highly detailed interrogation of the tissue microvasculature at the cellular level but is unwieldy and impractical for wide-field visualization of the tissue microvasculature. The objective my dissertation research was to develop a method to enable wide-field visualization of the microvasculature, while still retaining the high-resolution afforded by optical microscopy. My efforts led to the development of a technique dubbed "optical histology" that combines chemical and optical methods to enable high-resolution visualization of the microvasculature. The development of the technique first involved preliminary studies to quantify optical property changes in optically cleared tissues, followed by development and demonstration of the methodology. Using optical histology, I successfully obtained high

  8. High-Resolution Mammography Detector Employing Optical Switching Readout

    Science.gov (United States)

    Irisawa, Kaku; Kaneko, Yasuhisa; Yamane, Katsutoshi; Sendai, Tomonari; Hosoi, Yuichi

    Conceiving a new detector structure, FUJIFILM Corporation has successfully put its invention of an X-ray detector employing "Optical Switching" into practical use. Since Optical Switching Technology allows an electrode structure to be easily designed, both high resolution of pixel pitch and low electrical noise readout have been achieved, which have consequently realized the world's smallest pixel size of 50×50 μm2 from a Direct-conversion FPD system as well as high DQE. The digital mammography system equipped with this detector enables to acquire high definition images while maintaining granularity. Its outstanding feature is to be able to acquire high-precision images of microcalcifications which is an important index in breast examination.

  9. A New, Adaptable, Optical High-Resolution 3-Axis Sensor

    Directory of Open Access Journals (Sweden)

    Niels Buchhold

    2017-01-01

    Full Text Available This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD. The downstream microcontroller’s software identifies the geometric shape’s center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels, the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user’s range of motion (stroke and force. This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability.

  10. Improved automatic optic nerve radius estimation from high resolution MRI

    Science.gov (United States)

    Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2017-02-01

    The optic nerve (ON) is a vital structure in the human visual system and transports all visual information from the retina to the cortex for higher order processing. Due to the lack of redundancy in the visual pathway, measures of ON damage have been shown to correlate well with visual deficits. These measures are typically taken at an arbitrary anatomically defined point along the nerve and do not characterize changes along the length of the ON. We propose a fully automated, three-dimensionally consistent technique building upon a previous independent slice-wise technique to estimate the radius of the ON and surrounding cerebrospinal fluid (CSF) on high-resolution heavily T2-weighted isotropic MRI. We show that by constraining results to be three-dimensionally consistent this technique produces more anatomically viable results. We compare this technique with the previously published slice-wise technique using a short-term reproducibility data set, 10 subjects, follow-up <1 month, and show that the new method is more reproducible in the center of the ON. The center of the ON contains the most accurate imaging because it lacks confounders such as motion and frontal lobe interference. Long-term reproducibility, 5 subjects, follow-up of approximately 11 months, is also investigated with this new technique and shown to be similar to short-term reproducibility, indicating that the ON does not change substantially within 11 months. The increased accuracy of this new technique provides increased power when searching for anatomical changes in ON size amongst patient populations.

  11. Special issue on high-resolution optical imaging

    Science.gov (United States)

    Smith, Peter J. S.; Davis, Ilan; Galbraith, Catherine G.; Stemmer, Andreas

    2013-09-01

    The pace of development in the field of advanced microscopy is truly breath-taking, and is leading to major breakthroughs in our understanding of molecular machines and cell function. This special issue of Journal of Optics draws attention to a number of interesting approaches, ranging from fluorescence and imaging of unlabelled cells, to computational methods, all of which are describing the ever increasing detail of the dynamic behaviour of molecules in the living cell. This is a field which traditionally, and currently, demonstrates a marvellous interplay between the disciplines of physics, chemistry and biology, where apparent boundaries to resolution dissolve and living cells are viewed in ever more clarity. It is fertile ground for those interested in optics and non-conventional imaging to contribute high-impact outputs in the fields of cell biology and biomedicine. The series of articles presented here has been selected to demonstrate this interdisciplinarity and to encourage all those with a background in the physical sciences to 'dip their toes' into the exciting and dynamic discoveries surrounding cell function. Although single molecule super-resolution microscopy is commercially available, specimen preparation and interpretation of single molecule data remain a major challenge for scientists wanting to adopt the techniques. The paper by Allen and Davidson [1] provides a much needed detailed introduction to the practical aspects of stochastic optical reconstruction microscopy, including sample preparation, image acquisition and image analysis, as well as a brief description of the different variants of single molecule localization microscopy. Since super-resolution microscopy is no longer restricted to three-dimensional imaging of fixed samples, the review by Fiolka [2] is a timely introduction to techniques that have been successfully applied to four-dimensional live cell super-resolution microscopy. The combination of multiple high-resolution techniques

  12. A high resolution powder diffractometer using focusing optics

    Indian Academy of Sciences (India)

    Research Centre, Mumbai 400 085, India. *Corresponding author. E-mail: siruguri@csr.ernet.in. Abstract. In this paper, we describe the design, construction and performance of a new high resolution neutron powder diffractometer that has been installed at the Dhruva reactor, Trombay, India. The instrument employs novel ...

  13. Spectral domain optical coherence tomography - Ultra-high speed, ultra-high resolution ophthalmic imaging

    NARCIS (Netherlands)

    Chen, T.; Cense, B.; Pierce, M. C.; Nassif, N. A.; Park, B. H.; Yun, S. H.; White, B.; Bouma, B. E.; Tearney, G. J.; de Boer, J.F.

    2005-01-01

    Objective: To introduce a new ophthalmic optical coherence tomography technology that allows unprecedented simultaneous ultra-high speed and ultra-high resolution. Methods: Using a superluminescent diode source, a clinically viable ultra-high speed, ultra-high resolution spectral domain optical

  14. The OPFOS Microscopy Family: High-Resolution Optical Sectioning of Biomedical Specimens

    Directory of Open Access Journals (Sweden)

    Jan A. N. Buytaert

    2012-01-01

    Full Text Available We report on the recently emerging (laser light-sheet-based fluorescence microscopy field (LSFM. The techniques used in this field allow to study and visualize biomedical objects nondestructively in high resolution through virtual optical sectioning with sheets of laser light. Fluorescence originating in the cross-section of the sheet and sample is recorded orthogonally with a camera. In this paper, the first implementation of LSFM to image biomedical tissue in three dimensions—orthogonal-plane fluorescence optical sectioning microscopy (OPFOS—is discussed. Since then many similar and derived methods have surfaced, (SPIM, ultramicroscopy, HR-OPFOS, mSPIM, DSLM, TSLIM, etc. which we all briefly discuss. All these optical sectioning methods create images showing histological detail. We illustrate the applicability of LSFM on several specimen types with application in biomedical and life sciences.

  15. The OPFOS Microscopy Family: High-Resolution Optical Sectioning of Biomedical Specimens.

    Science.gov (United States)

    Buytaert, Jan A N; Descamps, Emilie; Adriaens, Dominique; Dirckx, Joris J J

    2012-01-01

    We report on the recently emerging (laser) light-sheet-based fluorescence microscopy field (LSFM). The techniques used in this field allow to study and visualize biomedical objects nondestructively in high resolution through virtual optical sectioning with sheets of laser light. Fluorescence originating in the cross-section of the sheet and sample is recorded orthogonally with a camera. In this paper, the first implementation of LSFM to image biomedical tissue in three dimensions-orthogonal-plane fluorescence optical sectioning microscopy (OPFOS)-is discussed. Since then many similar and derived methods have surfaced, (SPIM, ultramicroscopy, HR-OPFOS, mSPIM, DSLM, TSLIM, etc.) which we all briefly discuss. All these optical sectioning methods create images showing histological detail. We illustrate the applicability of LSFM on several specimen types with application in biomedical and life sciences.

  16. Adaptive Optics Technology for High-Resolution Retinal Imaging

    Science.gov (United States)

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  17. Bendable X-ray Optics for High Resolution Imaging

    Science.gov (United States)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  18. Reconstruction of a continuous high-resolution CO2 record over the past 20 million years

    NARCIS (Netherlands)

    van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556; de Boer, B.|info:eu-repo/dai/nl/304023183; Lourens, L.|info:eu-repo/dai/nl/125023103; Köhler, P.; Bintanja, R.|info:eu-repo/dai/nl/127306757

    2011-01-01

    The gradual cooling of the climate during the Cenozoic has generally been attributed to a decrease in CO2 concentration in the atmosphere. The lack of transient climate models and, in particular, the lack of high-resolution proxy records of CO2, beyond the ice-core record prohibit, however, a full

  19. High-resolution full-field spatial coherence gated optical tomography using monochromatic light source

    Science.gov (United States)

    Srivastava, Vishal; Nandy, Sreyankar; Singh Mehta, Dalip

    2013-09-01

    We demonstrate dispersion free, high-resolution full-field spatial coherence gated optical tomography using spatially incoherent monochromatic light source. Spatial coherence properties of light source were synthesized by means of combining a static diffuser and vibrating multi mode fiber bundle. Due to low spatial coherence of light source, the axial resolution of the system was achieved similar to that of conventional optical coherence tomography which utilizes low temporal coherence. Experimental results of fringe visibility versus optical path difference are presented for varying numerical apertures objective lenses. High resolution optically sectioned images of multilayer onion skin, and red blood cells are presented.

  20. High resolution observations using adaptive optics: Achievements and future needs

    Science.gov (United States)

    Sankarasubramanian, K.; Rimmele, T.

    2008-06-01

    Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solar AO are enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5 m expected during the next decade, there is a need to develop the existing AO technologies for large aperture telescopes. Some aspects of this development are highlighted. Finally, the recent AO developments in India are also presented.

  1. High resolution hybrid optical and acoustic sea floor maps (Invited)

    Science.gov (United States)

    Roman, C.; Inglis, G.

    2013-12-01

    This abstract presents a method for creating hybrid optical and acoustic sea floor reconstructions at centimeter scale grid resolutions with robotic vehicles. Multibeam sonar and stereo vision are two common sensing modalities with complementary strengths that are well suited for data fusion. We have recently developed an automated two stage pipeline to create such maps. The steps can be broken down as navigation refinement and map construction. During navigation refinement a graph-based optimization algorithm is used to align 3D point clouds created with both the multibeam sonar and stereo cameras. The process combats the typical growth in navigation error that has a detrimental affect on map fidelity and typically introduces artifacts at small grid sizes. During this process we are able to automatically register local point clouds created by each sensor to themselves and to each other where they overlap in a survey pattern. The process also estimates the sensor offsets, such as heading, pitch and roll, that describe how each sensor is mounted to the vehicle. The end results of the navigation step is a refined vehicle trajectory that ensures the points clouds from each sensor are consistently aligned, and the individual sensor offsets. In the mapping step, grid cells in the map are selectively populated by choosing data points from each sensor in an automated manner. The selection process is designed to pick points that preserve the best characteristics of each sensor and honor some specific map quality criteria to reduce outliers and ghosting. In general, the algorithm selects dense 3D stereo points in areas of high texture and point density. In areas where the stereo vision is poor, such as in a scene with low contrast or texture, multibeam sonar points are inserted in the map. This process is automated and results in a hybrid map populated with data from both sensors. Additional cross modality checks are made to reject outliers in a robust manner. The final

  2. High resolution Holocene paleomagnetic secular variation records from Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Usapkar, A.; Dewangan, P.; Badesab, F.K.; Mazumdar, A.; Ramprasad, T.; Krishna, K.S.; Basavaiah, N.

    We present high resolution paleosecular variation (PSV) records up to 8 cal. kyr BP from three piston cores, MD161/8, MD161/11 and MD161/13 acquired in the Krishna-Godavari (KG) basin, Bay of Bengal. During the Holocene period, high sedimentation...

  3. Inter- and intrarater reliability of the Chicago Classification in pediatric high-resolution esophageal manometry recordings

    NARCIS (Netherlands)

    Singendonk, M. M. J.; Smits, M. J.; Heijting, I. E.; van Wijk, M. P.; Nurko, S.; Rosen, R.; Weijenborg, P. W.; Abu-Assi, R.; Hoekman, D. R.; Kuizenga-Wessel, S.; Seiboth, G.; Benninga, M. A.; Omari, T. I.; Kritas, S.

    2015-01-01

    The Chicago Classification (CC) facilitates interpretation of high-resolution manometry (HRM) recordings. Application of this adult based algorithm to the pediatric population is unknown. We therefore assessed intra and interrater reliability of software-based CC diagnosis in a pediatric cohort.

  4. High-resolution handheld rigid endomicroscope based on full-field optical coherence tomography

    Science.gov (United States)

    Benoit a la Guillaume, Emilie; Martins, Franck; Boccara, Claude; Harms, Fabrice

    2016-02-01

    Full-field optical coherence tomography (FF-OCT) is a powerful tool for nondestructive assessment of biological tissue, i.e., for the structural examination of tissue in depth at a cellular resolution. Mostly known as a microscopy device for ex vivo analysis, FF-OCT has also been adapted to endoscopy setups since it shows good potential for in situ cancer diagnosis and biopsy guidance. Nevertheless, all the attempts to perform endoscopic FF-OCT imaging did not go beyond lab setups. We describe here, to the best of our knowledge, the first handheld FF-OCT endoscope based on a tandem interferometry assembly using incoherent illumination. A common-path passive imaging interferometer at the tip of an optical probe makes it robust and insensitive to environmental perturbations, and a low finesse Fabry-Perot processing interferometer guarantees a compact system. A good resolution (2.7 μm transverse and 6 μm axial) is maintained through the long distance, small diameter relay optics of the probe, and a good signal-to-noise ratio is achieved in a limited 100 ms acquisition time. High-resolution images and a movie of a rat brain slice have been recorded by moving the contact endoscope over the surface of the sample, allowing for tissue microscopic exploration at 20 μm under the surface. These promising ex vivo results open new perspectives for in vivo imaging of biological tissue, in particular, in the field of cancer and surgical margin assessment.

  5. An interferometer for high-resolution optical surveillance from geostationary orbit

    Science.gov (United States)

    Bonino, L.; Bresciani, F.; Piasini, G.; Flebus, C.; Lecat, J.-H.; Roose, S.; Pisani, M.; Cabral, A.; Rebordão, J.; Proença, C.; Costal, J.; Lima, P. U.; Loix, N.; Musso, F.

    2017-11-01

    The activities described in this paper have been developed in the frame of the EUCLID CEPA 9 RTP 9.9 "High Resolution Optical Satellite Sensor" project of the WEAO Research Cell. They have been focused on the definition of an interferometric instrument optimised for the high-resolution optical surveillance from geostationary orbit (GEO) by means of the synthetic aperture technique, and on the definition and development of the related enabling technologies. In this paper we describe the industrial team, the selected mission specifications and overview of the whole design and manufacturing activities performed.

  6. High resolution optically stimulated luminescence dating of a sediment core from the southwestern Sea of Okhotsk

    DEFF Research Database (Denmark)

    Sugisaki, S.; Buylaert, J. P.; Murray, A. S.

    2012-01-01

    Optically stimulated luminescence (OSL) dating is now widely accepted as a chronometer for terrestrial sediment. More recently, it has been suggested that OSL may also be useful in the dating of deep-sea marine sediments. In this paper, we test the usefulness of high resolution quartz OSL dating ...

  7. High resolution imaging of dielectric surfaces with an evanescent field optical microscope

    NARCIS (Netherlands)

    van Hulst, N.F.; Segerink, Franciscus B.; Bölger, B.

    1992-01-01

    An evanescent field optical microscope (EFOM) is presented which employs frustrated total internal reflection o­n a localized scale by scanning a dielectric tip in close proximity to a sample surface. High resolution images of dielectric gratings and spheres containing both topographic and

  8. High-Resolution Adaptive Optics Test-Bed for Vision Science

    Energy Technology Data Exchange (ETDEWEB)

    Wilks, S C; Thomspon, C A; Olivier, S S; Bauman, B J; Barnes, T; Werner, J S

    2001-09-27

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed.

  9. Design of the high resolution optical instrument for the Pleiades HR Earth observation satellites

    Science.gov (United States)

    Lamard, Jean-Luc; Gaudin-Delrieu, Catherine; Valentini, David; Renard, Christophe; Tournier, Thierry; Laherrere, Jean-Marc

    2017-11-01

    As part of its contribution to Earth observation from space, ALCATEL SPACE designed, built and tested the High Resolution cameras for the European intelligence satellites HELIOS I and II. Through these programmes, ALCATEL SPACE enjoys an international reputation. Its capability and experience in High Resolution instrumentation is recognised by the most customers. Coming after the SPOT program, it was decided to go ahead with the PLEIADES HR program. PLEIADES HR is the optical high resolution component of a larger optical and radar multi-sensors system : ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. ALCATEL SPACE has been entrusted by CNES with the development of the high resolution camera of the Earth observation satellites PLEIADES HR. The first optical satellite of the PLEIADES HR constellation will be launched in mid-2008, the second will follow in 2009. To minimize the development costs, a mini satellite approach has been selected, leading to a compact concept for the camera design. The paper describes the design and performance budgets of this novel high resolution and large field of view optical instrument with emphasis on the technological features. This new generation of camera represents a breakthrough in comparison with the previous SPOT cameras owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. Recent advances in detector technology, optical fabrication and electronics make it possible for the PLEIADES HR camera to achieve their image quality performance goals while staying within weight and size restrictions normally considered suitable only for much lower performance systems. This camera design delivers superior performance using an innovative low power, low mass, scalable architecture, which provides a versatile approach for a variety of imaging requirements and allows for a wide number of possibilities of accommodation with a mini

  10. Reconstructing a 1000 Year High Resolution Flood Record Using a Combined Sedimentary and Modelling Approach

    Science.gov (United States)

    Leyland, J.; Langdon, P. G.; Sear, D. A.; Langdon, C.

    2016-12-01

    Long term flood records provide essential context for contemporary river flows and flood events, especially given the relatively short period of direct observation for most systems. The sediment deposits in lacustrine deltas offer a potential record of the upstream catchment palaeo-hydrological conditions and associated environmental controls. Herein we collected a 1000 year high resolution ( 0.004 m per year) flood record from a lake (Loch Insh) in the Scottish Highlands, draining a watershed of 750 km2 through the River Spey. Particle size characteristics of flood laminations were correlated with recent (1950 onwards) recorded river flows from the Spey to link the sediment palaeoflood series to river discharges, providing a high resolution proxy record for 1000 years. Additional analyses (ITRAX geochemical, pollen and chironomids) were also undertaken to help constrain the environmental responses and key climatological variations affecting the catchment. We use the HydroTrend model to explore formative river discharges which result in plausible scenarios of sediment delivery to retrodict catchment scale palaeoehydrological change, showing how the approach can be used to establish a long term record of flood frequency and magnitude.

  11. Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics

    Science.gov (United States)

    Chang, Chieh; Sakdinawat, Anne

    2014-06-01

    Although diffractive optics have played a major role in nanoscale soft X-ray imaging, high-resolution and high-efficiency diffractive optics have largely been unavailable for hard X-rays where many scientific, technological and biomedical applications exist. This is owing to the long-standing challenge of fabricating ultra-high aspect ratio high-resolution dense nanostructures. Here we report significant progress in ultra-high aspect ratio nanofabrication of high-resolution, dense silicon nanostructures using vertical directionality controlled metal-assisted chemical etching. The resulting structures have very smooth sidewalls and can be used to pattern arbitrary features, not limited to linear or circular. We focus on the application of X-ray zone plate fabrication for high-efficiency, high-resolution diffractive optics, and demonstrate the process with linear, circular, and spiral zone plates. X-ray measurements demonstrate high efficiency in the critical outer layers. This method has broad applications including patterning for thermoelectric materials, battery anodes and sensors among others.

  12. Fiber optic cable-based high-resolution, long-distance VGA extenders

    Science.gov (United States)

    Rhee, Jin-Geun; Lee, Iksoo; Kim, Heejoon; Kim, Sungjoon; Koh, Yeon-Wan; Kim, Hoik; Lim, Jiseok; Kim, Chur; Kim, Jungwon

    2013-02-01

    Remote transfer of high-resolution video information finds more applications in detached display applications for large facilities such as theaters, sports complex, airports, and security facilities. Active optical cables (AOCs) provide a promising approach for enhancing both the transmittable resolution and distance that standard copper-based cables cannot reach. In addition to the standard digital formats such as HDMI, the high-resolution, long-distance transfer of VGA format signals is important for applications where high-resolution analog video ports should be also supported, such as military/defense applications and high-resolution video camera links. In this presentation we present the development of a compressionless, high-resolution (up to WUXGA, 1920x1200), long-distance (up to 2 km) VGA extenders based on serialized technique. We employed asynchronous serial transmission and clock regeneration techniques, which enables lower cost implementation of VGA extenders by removing the necessity for clock transmission and large memory at the receiver. Two 3.125-Gbps transceivers are used in parallel to meet the required maximum video data rate of 6.25 Gbps. As the data are transmitted asynchronously, 24-bit pixel clock time stamp is employed to regenerate video pixel clock accurately at the receiver side. In parallel to the video information, stereo audio and RS-232 control signals are transmitted as well.

  13. On the optical stability of high-resolution transmission electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, J., E-mail: ju.barthel@fz-juelich.de [Central Facility for Electron Microscopy (GFE), Aachen University (RWTH), Ahornstr. 55, 52074 Aachen (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Thust, A., E-mail: a.thust@fz-juelich.de [Peter Grünberg Institute (PGI), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)

    2013-11-15

    In the recent two decades the technique of high-resolution transmission electron microscopy experienced an unprecedented progress through the introduction of hardware aberration correctors and by the improvement of the achievable resolution to the sub-Ångström level. The important aspect that aberration correction at a given resolution requires also a well defined amount of optical stability has received little attention so far. Therefore we investigate the qualification of a variety of high-resolution electron microscopes to maintain an aberration corrected optical state in terms of an optical lifetime. We develop a comprehensive statistical framework for the estimation of the optical lifetime and find remarkably low values between tens of seconds and a couple of minutes. Probability curves are introduced, which inform the operator about the chance to work still in the fully aberration corrected state. - Highlights: • We investigate the temporal stability of optical aberrations in HRTEM. • We develop a statistical framework for the estimation of optical lifetimes. • We introduce plots showing the success probability for aberration-free work. • Optical lifetimes in sub-Ångström electron microscopy are surprisingly low. • The success of aberration correction depends strongly on the optical stability.

  14. Study on High Resolution Membrane-Based Diffractive Optical Imaging on Geostationary Orbit

    Science.gov (United States)

    Jiao, J.; Wang, B.; Wang, C.; Zhang, Y.; Jin, J.; Liu, Z.; Su, Y.; Ruan, N.

    2017-05-01

    Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the "6+1" petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.

  15. High-resolution transbulbar ultrasonography helping differentiate intracranial hypertension in bilateral optic disc oedema patients.

    Science.gov (United States)

    Chen, Qian; Chen, Weimin; Wang, Min; Sun, Xinghuai; Sha, Yan; Li, Zhenxin; Tian, Guohong

    2017-09-01

    The enlargement of optic nerve sheath diameter (ONSD) has been proven to be related with raised intracranial pressure (ICP). No prospective study has been focused on utilizing retrobulbar ultrasonography in optic disc oedema patient presented to ophthalmologist. High-resolution transbulbar ultrasonography was performed in a cohort of patient presented with bilateral optic disc oedema. The subarachnoid space of optic nerve (SAS), ONSD and optic nerve diameter (OND) was measured prior to other ancillaries including lumbar puncture. Subjects were classified into increased intracranial pressure (IIP) and normal intracranial pressure (NIP) group according to the open cerebrospinal fluid pressure more than 200 mm H2 0. The SAS, ONSD and OND were compared between groups and with normal control. The sensitivity of SAS or ONSD change for predicating intracranial hypertension was assessed. A total of 20 IIP, 25 NIP patients and 25 normal controls were evaluated. The mean SAS and ONSD measured in idiopathic intracranial hypertension group was significantly increased than that of NIP and controls (p < 0.001), whereas the OND showed no statistic difference between each group. The sensitivities using the SAS and ONSD for differentiating increased ICP in optic disc oedema patients were 0.99 and 0.97, respectively. The enlarged SAS and ONSD measured by high-resolution transbulbar sonography are very sensitive parameters to predicate increased ICP in bilateral optic disc oedema patients. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  16. Construction of a high resolution microscope with conventional and holographic optical trapping capabilities.

    Science.gov (United States)

    Butterfield, Jacqualine; Hong, Weili; Mershon, Leslie; Vershinin, Michael

    2013-04-22

    High resolution microscope systems with optical traps allow for precise manipulation of various refractive objects, such as dielectric beads (1) or cellular organelles (2,3), as well as for high spatial and temporal resolution readout of their position relative to the center of the trap. The system described herein has one such "traditional" trap operating at 980 nm. It additionally provides a second optical trapping system that uses a commercially available holographic package to simultaneously create and manipulate complex trapping patterns in the field of view of the microscope (4,5) at a wavelength of 1,064 nm. The combination of the two systems allows for the manipulation of multiple refractive objects at the same time while simultaneously conducting high speed and high resolution measurements of motion and force production at nanometer and piconewton scale.

  17. Optical design of a versatile FIRST high-resolution near-IR spectrograph

    Science.gov (United States)

    Zhao, Bo; Ge, Jian

    2012-09-01

    We report the update optical design of a versatile FIRST high resolution near IR spectrograph, which is called Florida IR Silicon immersion grating spectromeTer (FIRST). This spectrograph uses cross-dispersed echelle design with white pupils and also takes advantage of the image slicing to increase the spectra resolution, while maintaining the instrument throughput. It is an extremely high dispersion R1.4 (blazed angle of 54.74°) silicon immersion grating with a 49 mm diameter pupil is used as the main disperser at 1.4μm -1.8μm to produce R=72,000 while an R4 echelle with the same pupil diameter produces R=60,000 at 0.8μm -1.35μm. Two cryogenic Volume Phase Holographic (VPH) gratings are used as cross-dispersers to allow simultaneous wavelength coverage of 0.8μm -1.8μm. The butterfly mirrors and dichroic beamsplitters make a compact folding system to record these two wavelength bands with a 2kx2k H2RG array in a single exposure. By inserting a mirror before the grating disperser (the SIG and the echelle), this spectrograph becomes a very efficient integral field 3-D imaging spectrograph with R=2,000-4,000 at 0.8μm-1.8μm by coupling a 10x10 telescope fiber bundle with the spectrograph. Details about the optical design and performance are reported.

  18. A High-resolution Detrital and Oxygen Isotope Record from Flemish Pass, Labrador Sea

    Science.gov (United States)

    deJesus, E.; Hoffman, J. S.; Clark, P. U.; Mix, A. C.

    2014-12-01

    High-resolution records of deglacial paleoceanographic change along the Labrador shelf are scarce. However, they are required in order to characterize and understand possible ice-ocean interactions involving the eastern sector of the Laurentide Ice Sheet (LIS). We have generated a high-resolution stable isotope and detrital stratigraphic record for core HU2001043-008 (990m, 48° N, 45° W) from Flemish Pass, Labrador Sea, to better understand the role of LIS ice-rafting events in abrupt climate changes during the last glaciation. Samples at two-centimeter resolution were disaggregated, washed, and picked for Neogloboquandrina pachyderma (sinistral) for stable isotope and radiocarbon analysis. The δ18O signal in foraminiferal calcite allows us to examine surface-ocean changes that may indicate an influx of freshwater, which may or may not be related to an LIS ice-rafting event. Our results will help in developing a better understanding of the source of LIS ice-rafting events, precursory indicators of the events, and how these events are associated with changes in deep-water formation in the Labrador Sea.

  19. Optimal site selection for a high-resolution ice core record in East Antarctica

    Science.gov (United States)

    Vance, Tessa R.; Roberts, Jason L.; Moy, Andrew D.; Curran, Mark A. J.; Tozer, Carly R.; Gallant, Ailie J. E.; Abram, Nerilie J.; van Ommen, Tas D.; Young, Duncan A.; Grima, Cyril; Blankenship, Don D.; Siegert, Martin J.

    2016-03-01

    Ice cores provide some of the best-dated and most comprehensive proxy records, as they yield a vast and growing array of proxy indicators. Selecting a site for ice core drilling is nonetheless challenging, as the assessment of potential new sites needs to consider a variety of factors. Here, we demonstrate a systematic approach to site selection for a new East Antarctic high-resolution ice core record. Specifically, seven criteria are considered: (1) 2000-year-old ice at 300 m depth; (2) above 1000 m elevation; (3) a minimum accumulation rate of 250 mm years-1 IE (ice equivalent); (4) minimal surface reworking to preserve the deposited climate signal; (5) a site with minimal displacement or elevation change in ice at 300 m depth; (6) a strong teleconnection to midlatitude climate; and (7) an appropriately complementary relationship to the existing Law Dome record (a high-resolution record in East Antarctica). Once assessment of these physical characteristics identified promising regions, logistical considerations (for site access and ice core retrieval) were briefly considered. We use Antarctic surface mass balance syntheses, along with ground-truthing of satellite data by airborne radar surveys to produce all-of-Antarctica maps of surface roughness, age at specified depth, elevation and displacement change, and surface air temperature correlations to pinpoint promising locations. We also use the European Centre for Medium-Range Weather Forecast ERA 20th Century reanalysis (ERA-20C) to ensure that a site complementary to the Law Dome record is selected. We find three promising sites in the Indian Ocean sector of East Antarctica in the coastal zone from Enderby Land to the Ingrid Christensen Coast (50-100° E). Although we focus on East Antarctica for a new ice core site, the methodology is more generally applicable, and we include key parameters for all of Antarctica which may be useful for ice core site selection elsewhere and/or for other purposes.

  20. Optimal site selection for a high resolution ice core record in East Antarctica

    Science.gov (United States)

    Vance, T.; Roberts, J.; Moy, A.; Curran, M.; Tozer, C.; Gallant, A.; Abram, N.; van Ommen, T.; Young, D.; Grima, C.; Blankenship, D.; Siegert, M.

    2015-11-01

    Ice cores provide some of the best dated and most comprehensive proxy records, as they yield a vast and growing array of proxy indicators. Selecting a site for ice core drilling is nonetheless challenging, as the assessment of potential new sites needs to consider a variety of factors. Here, we demonstrate a systematic approach to site selection for a new East Antarctic high resolution ice core record. Specifically, seven criteria are considered: (1) 2000 year old ice at 300 m depth, (2) above 1000 m elevation, (3) a minimum accumulation rate of 250 mm yr-1 IE, (4) minimal surface re-working to preserve the deposited climate signal, (5) a site with minimal displacement or elevation change of ice at 300 m depth, (6) a strong teleconnection to mid-latitude climate and (7) an appropriately complementary relationship to the existing Law Dome record (a high resolution record in East Antarctica). Once assessment of these physical characteristics identified promising regions, logistical considerations (for site access and ice core retrieval) were briefly considered. We use Antarctic surface mass balance syntheses, along with ground-truthing of satellite data by airborne radar surveys to produce all-of-Antarctica maps of surface roughness, age at specified depth, elevation and displacement change and surface air temperature correlations to pinpoint promising locations. We also use the European Centre for Medium-Range Weather Forecast ERA 20th Century reanalysis (ERA-20C) to ensure a site complementary to the Law Dome record is selected. We find three promising sites in the Indian Ocean sector of East Antarctica in the coastal zone from Enderby Land to the Ingrid Christensen Coast (50-100° E). Although we focus on East Antarctica for a new ice core site, the methodology is more generally applicable and we include key parameters for all of Antarctica which may be useful for ice core site selection elsewhere and/or for other purposes.

  1. Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography.

    Science.gov (United States)

    Shousha, Mohamed Abou; Karp, Carol L; Canto, Ana Paula; Hodson, Kelly; Oellers, Patrick; Kao, Andrew A; Bielory, Brett; Matthews, Jared; Dubovy, Sander R; Perez, Victor L; Wang, Jianhua

    2013-05-01

    To assess the use of ultra-high-resolution (UHR) optical coherence tomography (OCT) in the diagnosis of ocular surface lesions. Prospective, noncomparative, interventional case series. Fifty-four eyes of 53 consecutive patients with biopsy-proven ocular surface lesions: 8 primary acquired melanosis lesions, 5 amelanotic melanoma lesions, 2 nevi, 19 ocular surface squamous neoplasia lesions, 1 histiocytosis lesion, 6 conjunctival lymphoma lesions, 2 conjunctival amyloidosis lesions, and 11 pterygia lesions. Ultra-high-resolution OCT imaging of the ocular surface lesions. Clinical course and photographs, UHR OCT image, and histopathologic findings. Ultra-high-resolution OCT images of all examined ocular surface lesions showed close correlation with the obtained histopathologic specimens. When clinical differential diagnosis of ocular surface lesions was broad, UHR OCT images provided optical signs indicating a more specific diagnosis and management. In cases of amelanotic melanoma, conjunctival amyloidosis, and primary histiocytosis and in 1 case of ocular surface squamous neoplasia, UHR OCT was instrumental in guiding the diagnosis. In those cases, UHR OCT suggested that the presumed clinical diagnosis was incorrect and favored a diagnosis that later was confirmed by histopathologic examination. Correlations between UHR OCT and histopathologic findings confirm that UHR OCT is an adjunctive diagnostic method that can provide a noninvasive means to help guide diagnosis and management of ocular surface lesions. The author(s) have no proprietary or commercial interest in any materials discussed in this article. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  2. In situ visualization of tears on contact lens using ultra high resolution optical coherence tomography.

    Science.gov (United States)

    Wang, Jianhua; Jiao, Shuliang; Ruggeri, Marco; Shousha, Mohamed Abou; Shousha, Mohammed Abou; Chen, Qi

    2009-03-01

    To demonstrate the capability of directly visualizing the tear film on contact lenses using optical coherence tomography (OCT). Six eyes of three healthy subjects wearing PureVision and ACUVUE Advance soft and Boston RGP hard contact lenses were imaged with a custom built, high speed, ultra-high resolution spectral domain optical coherence tomograph. Refresh Liquigel was used to demonstrate the effect of artificial tears on the tear film. Ultra high resolution images of the pre- and post-lens films were directly visualized when each lens was inserted onto the eye. After the instillation of artificial tears during lens wear, the tear film was thicker. The post-lens tear film underneath the lens edge was clearly shown. Interactions between the lens edges and the ocular surface were obtained for each of the lens types and base curves. With a contrast enhancement agent, tear menisci on the contact lenses around the upper and lower eyelids were highlighted. With hard contact lenses, the tear film was visualized clearly and changed after a blink when the lens was pulled up by the lid. Ultra-high resolution OCT is a potentially promising technique for imaging tears around contact lenses. This successful demonstration of in situ post-lens tear film imaging suggests that OCT could open a new era in studying tear dynamics during contact lens wear. The novel method may lead to new ways of evaluating contact lens fitting.

  3. Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics

    Science.gov (United States)

    Ji, XueBin; Zang, XiaoFei; Li, Zhou; Shi, Cheng; Chen, Lin; Cai, Bin; Zhu, YiMing

    2015-05-01

    Based on the transformation optics (TO) and the effective medium theory (EMT), a new illusion media with homogeneous and isotropic materials is proposed to realize the far-field high resolution effects. When two point sources with the separation distance of λ0 / 4 are covered with the illusion media (λ0 is the free-space wavelength), the corresponding far-field pattern is equivalent to the case of two point sources with the separation distance larger than λ0 / 2 in free space, leading to the far-field high resolution effects (in free space, the separation distance of λ0 / 4 is less than half-wavelength, and thus the two point sources cannot be distinguished from each other). Furthermore, such illusion media can be applied to design tunable high-directivity antenna and an angle-dependent floating carpet cloak. Full wave simulations are carried out to verify the performance of our device.

  4. A new high-resolution record of Holocene geomagnetic secular variation from New Zealand

    Science.gov (United States)

    Turner, G. M.; Howarth, J. D.; de Gelder, G. I. N. O.; Fitzsimons, S. J.

    2015-11-01

    We present the first full Holocene palaeomagnetic secular variation record from New Zealand. The 11 500 year-long record, from the sediments of Mavora Lakes, comprises composite declination, inclination and relative palaeointensity logs, compiled from two six-metre long cores and the uppermost 1.5 m of another. An age model has been developed from 28 AMS radiocarbon age determinations on fragments of southern beech (Lophozonia menziesii and Fuscospora cliffortioides) leaves. The excellent between-core correlation in all three components of the field results in a high-resolution palaeosecular variation record, with precise and accurate age control. The variations change in character from high amplitude in-phase declination and inclination swings in the earliest part of the record to low amplitude variations in the middle part and declination and inclination swings that are 90° out of phase, leading to broad looping of the vector in the upper part of the record, that is consistent with westward drifting sources in the outer core. The present-day field at the site (Dec = 24.2°E, Inc = - 70.7 °, F = 59 μT) represents a rare steep and easterly extreme direction, but close to average intensity. The palaeointensity is inferred to have varied between about 40 and 90 μT, with variations that, to some extent, mirror variations in the virtual axial geomagnetic dipole moment seen from global data, but also show some notable differences, particularly in the past few thousand years.

  5. Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies.

    Science.gov (United States)

    Adler, Desmond C; Stenger, Jens; Gorczynska, Iwona; Lie, Henry; Hensick, Teri; Spronk, Ron; Wolohojian, Stephan; Khandekar, Narayan; Jiang, James Y; Barry, Scott; Cable, Alex E; Huber, Robert; Fujimoto, James G

    2007-11-26

    Gold punchwork and underdrawing in Renaissance panel paintings are analyzed using both three-dimensional swept source / Fourier domain optical coherence tomography (3D-OCT) and high resolution digital photography. 3D-OCT can generate en face images with micrometer-scale resolutions at arbitrary sectioning depths, rejecting out-of-plane light by coherence gating. Therefore 3D-OCT is well suited for analyzing artwork where a surface layer obscures details of interest. 3D-OCT also enables cross-sectional imaging and quantitative measurement of 3D features such as punch depth, which is beneficial for analyzing the tools and techniques used to create works of art. High volumetric imaging speeds are enabled by the use of a Fourier domain mode locked (FDML) laser as the 3D-OCT light source. High resolution infrared (IR) digital photography is shown to be particularly useful for the analysis of underdrawing, where the materials used for the underdrawing and paint layers have significantly different IR absrption properties. In general, 3D-OCT provides a more flexible and comprehensive analysis of artwork than high resolution photography, but also requires more complex instrumentation and data analysis.

  6. High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection.

    Science.gov (United States)

    Whitley, Kevin D; Comstock, Matthew J; Chemla, Yann R

    2017-01-01

    Recent advances in optical tweezers have greatly expanded their measurement capabilities. A new generation of hybrid instrument that combines nanomechanical manipulation with fluorescence detection-fluorescence optical tweezers, or "fleezers"-is providing a powerful approach to study complex macromolecular dynamics. Here, we describe a combined high-resolution optical trap/confocal fluorescence microscope that can simultaneously detect sub-nanometer displacements, sub-piconewton forces, and single-molecule fluorescence signals. The primary technical challenge to these hybrid instruments is how to combine both measurement modalities without sacrificing the sensitivity of either one. We present general design principles to overcome this challenge and provide detailed, step-by-step instructions to implement them in the construction and alignment of the instrument. Lastly, we present a set of protocols to perform a simple, proof-of-principle experiment that highlights the instrument capabilities.

  7. Optimal design of an earth observation optical system with dual spectral and high resolution

    Science.gov (United States)

    Yan, Pei-pei; Jiang, Kai; Liu, Kai; Duan, Jing; Shan, Qiusha

    2017-02-01

    With the increasing demand of the high-resolution remote sensing images by military and civilians, Countries around the world are optimistic about the prospect of higher resolution remote sensing images. Moreover, design a visible/infrared integrative optic system has important value in earth observation. Because visible system can't identify camouflage and recon at night, so we should associate visible camera with infrared camera. An earth observation optical system with dual spectral and high resolution is designed. The paper mainly researches on the integrative design of visible and infrared optic system, which makes the system lighter and smaller, and achieves one satellite with two uses. The working waveband of the system covers visible, middle infrared (3-5um). Dual waveband clear imaging is achieved with dispersive RC system. The focal length of visible system is 3056mm, F/# is 10.91. And the focal length of middle infrared system is 1120mm, F/# is 4. In order to suppress the middle infrared thermal radiation and stray light, the second imaging system is achieved and the narcissus phenomenon is analyzed. The system characteristic is that the structure is simple. And the especial requirements of the Modulation Transfer Function (MTF), spot, energy concentration, and distortion etc. are all satisfied.

  8. Progress on the Gemini High-Resolution Optical SpecTrograph (GHOST) design

    Science.gov (United States)

    Ireland, Michael; Anthony, Andre; Burley, Greg; Chisholm, Eric; Churilov, Vladimir; Dunn, Jennifer; Frost, Gabriella; Lawrence, Jon; Loop, David; McGregor, Peter; Martell, Sarah; McConnachie, Alan; McDermid, Richard M.; Pazder, John; Reshetov, Vlad; Robertson, J. G.; Sheinis, Andrew; Tims, Julia; Young, Peter; Zhelem, Ross

    2014-07-01

    The Gemini High-Resolution Optical SpecTrograph (GHOST) is the newest instrument being developed for the Gemini telescopes, in a collaboration between the Australian Astronomical Observatory (AAO), the NRC - Herzberg in Canada and the Australian National University (ANU). We describe the process of design optimisation that utilizes the unique strengths of the new partner, NRC - Herzberg, the design and need for the slit viewing camera system, and we describe a simplification for the lenslet-based slit reformatting. Finally, we out- line the updated project plan, and describe the unique scientific role this instrument will have in an international context, from exoplanets through to the distant Universe.

  9. Reconstruction of a continuous high-resolution CO2 record over the past 20 million years

    Directory of Open Access Journals (Sweden)

    P. Köhler

    2011-12-01

    Full Text Available The gradual cooling of the climate during the Cenozoic has generally been attributed to a decrease in CO2 concentration in the atmosphere. The lack of transient climate models and, in particular, the lack of high-resolution proxy records of CO2, beyond the ice-core record prohibit, however, a full understanding of, for example, the inception of the Northern Hemisphere glaciation and mid-Pleistocene transition. Here we elaborate on an inverse modelling technique to reconstruct a continuous CO2 series over the past 20 million year (Myr, by decomposing the global deep-sea benthic δ18O record into a mutually consistent temperature and sea level record, using a set of 1-D models of the major Northern and Southern Hemisphere ice sheets. We subsequently compared the modelled temperature record with ice core and proxy-derived CO2 data to create a continuous CO2 reconstruction over the past 20 Myr. Results show a gradual decline from 450 ppmv around 15 Myr ago to 225 ppmv for mean conditions of the glacial-interglacial cycles of the last 1 Myr, coinciding with a gradual cooling of the global surface temperature of 10 K. Between 13 to 3 Myr ago there is no long-term sea level variation caused by ice-volume changes. We find no evidence of change in the long-term relation between temperature change and CO2, other than the effect following the saturation of the absorption bands for CO2. The reconstructed CO2 record shows that the Northern Hemisphere glaciation starts once the long-term average CO2 concentration drops below 265 ppmv after a period of strong decrease in CO2. Finally, only a small long-term decline of 23 ppmv is found during the mid-Pleistocene transition, constraining theories on this major transition in the climate system. The approach is not accurate enough to revise current ideas about climate sensitivity.

  10. High resolution macroscopy (HRMac) of the eye using nonlinear optical imaging

    Science.gov (United States)

    Winkler, Moritz; Jester, Bryan E.; Nien-Shy, Chyong; Chai, Dongyul; Brown, Donald J.; Jester, James V.

    2010-02-01

    Non-linear optical (NLO) imaging using femtosecond lasers provides a non-invasive means of imaging the structural organization of the eye through the generation of second harmonic signals (SHG). While NLO imaging is able to detect collagen, the small field of view (FoV) limits the ability to study how collagen is structurally organized throughout the larger tissue. To address this issue we have used computed tomography on optical and mechanical sectioned tissue to greatly expand the FoV and provide high resolution macroscopic (HRMac) images that cover the entire tissue (cornea and optic nerve head). Whole, fixed cornea (13 mm diameter) or optic nerve (3 mm diameter) were excised and either 1) embedded in agar and sectioned using a vibratome (200-300 um), or 2) embedded in LR White plastic resin and serially sectioned (2 um). Vibratome and plastic sections were then imaged using a Zeiss LSM 510 Meta and Chameleon femtosecond laser to generate NLO signals and assemble large macroscopic 3-dimensional tomographs with high resolution that varied in size from 9 to 90 Meg pixels per plane having a resolution of 0.88 um lateral and 2.0 um axial. 3-D reconstructions allowed for regional measurements within the cornea and optic nerve to quantify collagen content, orientation and organization over the entire tissue. We conclude that NLO based tomography to generate HRMac images provides a powerful new tool to assess collagen structural organization. Biomechanical testing combined with NLO tomography may provide new insights into the relationship between the extracellular matrix and tissue mechanics.

  11. High-resolution approaches to understanding short- and long-term trends in speleothem geochemical records

    Science.gov (United States)

    Fairchild, I. J.; Baker, A.; Mattey, D.; Spötl, C.; McDermott, F.; Baldini, L.; McMillan, E. A.; Frisia, S.; Andreo, B.; Borsato, A.

    2005-12-01

    Speleothem geochemical records can display and allow accurate dating of large-scale reorganizations of the climate system. Whilst large shifts in oxygen isotope composition in climatically sensitive (e.g. monsoonal) areas can be confidently interpreted in terms of the nature and sense of change, most more subtle variations cannot be unambiguously interpreted from low-resolution records. The use of high-resolution (sub-annual) records allows the processes involved in change to be more confidently interpreted and examples are given from work in several current European projects. Whilst some cave drip sites are well-mixed through the year, others reveal the seasonality of dripwater composition, and sub-annual oxygen isotope records can record the varying contributions of different seasons. When coupled with improved understanding of meteorological controls on rainfall composition, both the nature and mechanisms of climatic change can be tackled. Carbon isotopic patterns can be strongly influenced by seasonal patterns of cave ventilation that could reveal, e.g. intensity of winter cold. These are superimposed on the better-known vegetation effects. Trace element patterns depend strongly on cave physiology and both seasonal dryness and seasonally varying cave ventilation are key controls in different cases. Caves dominated by seasonal dryness lend themselves to parallel interpretation of longer-term aridity through Sr and Mg trends. In contrast, Alpine caves show interlinked hydrological and cave ventilation controls that can be distinguished by annual patterns of different trace species such as Pb, Y and P (hydrological control) and S (ventilation control). The multi-proxy approach calibrated with reference to modern dripwater behaviour and speleothems forming during the instrumental climatic period provides a sound basis for the interpretation of long-term trends.

  12. High-resolution measurement of internal interface of optically transparent materials

    Science.gov (United States)

    Chang, Chun-Wei; Hsu, I.-Jen

    2009-08-01

    The measurement of surface morphology of a material with high resolution is important in both the industrial and biomedical applications. Furthermore, a precise measurement of the morphology of the internal interface is usually needed for materials with multilayered structures. Although some optical techniques can provide subsurface imaging of materials, their resolutions are difficult to achieve nanometer scale. In our research, an optical system based on a composite interferometer which can image the internal interface of a material with nanometer resolution is proposed and demonstrated. The system consists of a Michelson interferometer and a Mach-Zehnder interferometer. The Michelson interferometer with a broadband light source is used for three-dimensional imaging of the sample. In the Mach-Zehnder interferometer, a prism and a retro-reflector are arranged for an optical delay line with adjustable length. The two interferometers share common light source and a rapid scanning optical delay system used for axial scanning. In the experiment, the adjustable optical delay line in the second interferometer is adjusted for the optical path lengths to match that relative to the interface under investigation. With a phase compensation mechanism, the interface can be imaged with an axial accuracy at nanometer scale.

  13. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    Science.gov (United States)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  14. High-resolution fiber optic temperature sensors using nonlinear spectral curve fitting technique.

    Science.gov (United States)

    Su, Z H; Gan, J; Yu, Q K; Zhang, Q H; Liu, Z H; Bao, J M

    2013-04-01

    A generic new data processing method is developed to accurately calculate the absolute optical path difference of a low-finesse Fabry-Perot cavity from its broadband interference fringes. The method combines Fast Fourier Transformation with nonlinear curve fitting of the entire spectrum. Modular functions of LabVIEW are employed for fast implementation of the data processing algorithm. The advantages of this technique are demonstrated through high performance fiber optic temperature sensors consisting of an infrared superluminescent diode and an infrared spectrometer. A high resolution of 0.01 °C is achieved over a large dynamic range from room temperature to 800 °C, limited only by the silica fiber used for the sensor.

  15. Application of Radar and Optical Images to Create Copernicus High Resolution Layers: Case Studies in Hungary

    Science.gov (United States)

    Surek, Gyorgy; Nador, Gizella; Friedl, Zoltan; Gyimesi, Balint; Rada, Matyas; Akos Gera, David; Hubik, Iren; Rotterne Kulesar, Aniko; Totok, Cecilia

    2016-08-01

    Injection of SAR imagery based information in the production of Copernicus High Resolution Layers can help to refine information served by optical satellite imagery, together with a-priori knowledge it may overcome the gaps caused by the cloud cover issue. However, this requires a methodological adaptation, given the different nature of SAR as compared to optical data. The methodological adaptation shall allow for an operational implementation, and shall help reducing the elapsed time between available satellite imagery. This requires the analysis of the potential use of SAR based imagery in the COPERNICUS land context, supported with case studies. In this paper the contribution of radar polarimetry for distinguishing land cover categories is evaluated.

  16. KiwiSpec - an advanced spectrograph for high resolution spectroscopy: optical design and variations

    Science.gov (United States)

    Barnes, Stuart I.; Gibson, Steve; Nield, Kathryn; Cochrane, Dave

    2012-09-01

    The KiwiSpec R4-100 is an advanced high resolution spectrograph developed by KiwiStar Optics, Industrial Research Ltd, New Zealand. The instrument is based around an R4 echelle grating and a 100mm collimated beam diameter. The optical design employs a highly asymmetric white pupil design, whereby the transfer collimator has a focal length only 1/3 that of the primary collimator. This allows the cross-dispersers (VPH gratings) and camera optics to be small and low cost while also ensuring a very compact instrument. The KiwiSpec instrument will be bre-fed and is designed to be contained in both thermal and/or vacuum enclosures. The instrument concept is highly exible in order to ensure that the same basic design can be used for a wide variety of science cases. Options include the possibility of splitting the wavelength coverage into 2 to 4 separate channels allowing each channel to be highly optimized for maximum eciency. CCDs ranging from smaller than 2K2K to larger than 4K4K can be accommodated. This allows good (3-4 pixel) sampling of resolving powers ranging from below 50,000 to greater than 100,000. Among the specic design options presented here will be a two-channel concept optimized for precision radial velocities, and a four-channel concept developed for the Gemini High- Resolution Optical Spectrograph (GHOST). The design and performance of a single-channel prototype will be presented elsewhere in these proceedings.

  17. A Feasibility Study of Sea Ice Motion and Deformation Measurements Using Multi-Sensor High-Resolution Optical Satellite Images

    Directory of Open Access Journals (Sweden)

    Chang-Uk Hyun

    2017-09-01

    Full Text Available Sea ice motion and deformation have generally been measured using low-resolution passive microwave or mid-resolution radar remote sensing datasets of daily (or few days intervals to monitor long-term trends over a wide polar area. This feasibility study presents an application of high-resolution optical images from operational satellites, which have become more available in polar regions, for sea ice motion and deformation measurements. The sea ice motion, i.e., Lagrangian vector, is measured by using a maximum cross-correlation (MCC technique and multi-temporal high-resolution images acquired on 14–15 August 2014 from multiple spaceborne sensors on board Korea Multi-Purpose Satellites (KOMPSATs with short acquisition time intervals. The sea ice motion extracted from the six image pairs of the spatial resolutions were resampled to 4 m and 15 m yields with vector length measurements of 57.7 m root mean square error (RMSE and −11.4 m bias and 60.7 m RMSE and −13.5 m bias, respectively, compared with buoy location records. The errors from both resolutions indicate more accurate measurements than from conventional sea ice motion datasets from passive microwave and radar data in ice and water mixed surface conditions. In the results of sea ice deformation caused by interaction of individual ice floes, while free drift patterns of ice floes were delineated from the 4 m spatial resolution images, the deformation was less revealing in the 15 m spatial resolution image pairs due to emphasized discretization uncertainty from coarser pixel sizes. The results demonstrate that using multi-temporal high-resolution optical satellite images enabled precise image block matching in the melting season, thus this approach could be used for expanding sea ice motion and deformation dataset, with an advantage of frequent image acquisition capability in multiple areas by means of many operational satellites.

  18. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM

    Science.gov (United States)

    Masson, Aurore; Escande, Paul; Frongia, Céline; Clouvel, Grégory; Ducommun, Bernard; Lorenzo, Corinne

    2015-11-01

    Today, Light Sheet Fluorescence Microscopy (LSFM) makes it possible to image fluorescent samples through depths of several hundreds of microns. However, LSFM also suffers from scattering, absorption and optical aberrations. Spatial variations in the refractive index inside the samples cause major changes to the light path resulting in loss of signal and contrast in the deepest regions, thus impairing in-depth imaging capability. These effects are particularly marked when inhomogeneous, complex biological samples are under study. Recently, chemical treatments have been developed to render a sample transparent by homogenizing its refractive index (RI), consequently enabling a reduction of scattering phenomena and a simplification of optical aberration patterns. One drawback of these methods is that the resulting RI of cleared samples does not match the working RI medium generally used for LSFM lenses. This RI mismatch leads to the presence of low-order aberrations and therefore to a significant degradation of image quality. In this paper, we introduce an original optical-chemical combined method based on an adaptive SPIM and a water-based clearing protocol enabling compensation for aberrations arising from RI mismatches induced by optical clearing methods and acquisition of high-resolution in-depth images of optically cleared complex thick samples such as Multi-Cellular Tumour Spheroids.

  19. Ultra-high resolution Fourier domain optical coherence tomography for old master paintings.

    Science.gov (United States)

    Cheung, C S; Spring, M; Liang, H

    2015-04-20

    In the last 10 years, Optical Coherence Tomography (OCT) has been successfully applied to art conservation, history and archaeology. OCT has the potential to become a routine non-invasive tool in museums allowing cross-section imaging anywhere on an intact object where there are no other methods of obtaining subsurface information. While current commercial OCTs have shown potential in this field, they are still limited in depth resolution (> 4 μm in paint and varnish) compared to conventional microscopic examination of sampled paint cross-sections (~1 μm). An ultra-high resolution fiber-based Fourier domain optical coherence tomography system with a constant axial resolution of 1.2 μm in varnish or paint throughout a depth range of 1.5 mm has been developed. While Fourier domain OCT of similar resolution has been demonstrated recently, the sensitivity roll-off of some of these systems are still significant. In contrast, this current system achieved a sensitivity roll-off that is less than 2 dB over a 1.2 mm depth range with an incident power of ~1 mW on the sample. The high resolution and sensitivity of the system makes it convenient to image thin varnish and glaze layers with unprecedented contrast. The non-invasive 'virtual' cross-section images obtained with the system show the thin varnish layers with similar resolution in the depth direction but superior clarity in the layer interfaces when compared with conventional optical microscope images of actual paint sample cross-sections obtained micro-destructively.

  20. High-resolution adaptive optics retinal imaging of cellular structure in choroideremia.

    Science.gov (United States)

    Morgan, Jessica I W; Han, Grace; Klinman, Eva; Maguire, William M; Chung, Daniel C; Maguire, Albert M; Bennett, Jean

    2014-09-04

    We characterized retinal structure in patients and carriers of choroideremia using adaptive optics and other high resolution modalities. A total of 57 patients and 18 carriers of choroideremia were imaged using adaptive optics scanning light ophthalmoscopy (AOSLO), optical coherence tomography (OCT), autofluorescence (AF), and scanning light ophthalmoscopy (SLO). Cone density was measured in 59 eyes of 34 patients where the full cone mosaic was observed. The SLO imaging revealed scalloped edges of RPE atrophy and large choroidal vessels. The AF imaging showed hypo-AF in areas of degeneration, while central AF remained present. OCT images showed outer retinal tubulations and thinned RPE/interdigitation layers. The AOSLO imaging revealed the cone mosaic in central relatively intact retina, and cone density was either reduced or normal at 0.5 mm eccentricity. The border of RPE atrophy showed abrupt loss of the cone mosaic at the same location. The AF imaging in comparison with AOSLO showed RPE health may be compromised before cone degeneration. Other disease features, including visualization of choroidal vessels, hyper-reflective clumps of cones, and unique retinal findings, were tabulated to show the frequency of occurrence and model disease progression. The data support the RPE being one primary site of degeneration in patients with choroideremia. Photoreceptors also may degenerate independently. High resolution imaging, particularly AOSLO in combination with OCT, allows single cell analysis of disease in choroideremia. These modalities promise to be useful in monitoring disease progression, and in documenting the efficacy of gene and cell-based therapies for choroideremia and other diseases as these therapies emerge. (ClinicalTrials.gov number, NCT01866371.). Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  1. A high-resolution optical rangefinder using tunable focus optics and spatial photonic signal processing

    Science.gov (United States)

    Khwaja, Tariq S.; Mazhar, Mohsin Ali; Niazi, Haris Khan; Reza, Syed Azer

    2017-06-01

    In this paper, we present the design of a proposed optical rangefinder to determine the distance of a semi-reflective target from the sensor module. The sensor module deploys a simple Tunable Focus Lens (TFL), a Laser Source (LS) with a Gaussian Beam profile and a digital beam profiler/imager to achieve its desired operation. We show that, owing to the nature of existing measurement methodologies, previous attempts to use a simple TFL in prior art to estimate target distance mostly deliver "one-shot" distance measurement estimates instead of obtaining and using a larger dataset which can significantly reduce the effect of some largely incorrect individual data points on the final distance estimate. Using a measurement dataset and calculating averages also helps smooth out measurement errors in individual data points through effectively low-pass filtering unexpectedly odd measurement offsets in individual data points. In this paper, we show that a simple setup deploying an LS, a TFL and a beam profiler or imager is capable of delivering an entire measurement dataset thus effectively mitigating the effects on measurement accuracy which are associated with "one-shot" measurement techniques. The technique we propose allows a Gaussian Beam from an LS to pass through the TFL. Tuning the focal length of the TFL results in altering the spot size of the beam at the beam imager plane. Recording these different spot radii at the plane of the beam profiler for each unique setting of the TFL provides us with a means to use this measurement dataset to obtain a significantly improved estimate of the target distance as opposed to relying on a single measurement. We show that an iterative least-squares curve-fit on the recorded data allows us to estimate distances of remote objects very precisely. We also show that using some basic ray-optics-based approximations, we also obtain an initial seed value for distance estimate and subsequently use this value to obtain a more precise

  2. High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy.

    Directory of Open Access Journals (Sweden)

    Kohei Takayama

    Full Text Available PURPOSE: To conduct high-resolution imaging of the retinal nerve fiber layer (RNFL in normal eyes using adaptive optics scanning laser ophthalmoscopy (AO-SLO. METHODS: AO-SLO images were obtained in 20 normal eyes at multiple locations in the posterior polar area and a circular path with a 3-4-mm diameter around the optic disc. For each eye, images focused on the RNFL were recorded and a montage of AO-SLO images was created. RESULTS: AO-SLO images for all eyes showed many hyperreflective bundles in the RNFL. Hyperreflective bundles above or below the fovea were seen in an arch from the temporal periphery on either side of a horizontal dividing line to the optic disc. The dark lines among the hyperreflective bundles were narrower around the optic disc compared with those in the temporal raphe. The hyperreflective bundles corresponded with the direction of the striations on SLO red-free images. The resolution and contrast of the bundles were much higher in AO-SLO images than in red-free fundus photography or SLO red-free images. The mean hyperreflective bundle width around the optic disc had a double-humped shape; the bundles at the temporal and nasal sides of the optic disc were narrower than those above and below the optic disc (P<0.001. RNFL thickness obtained by optical coherence tomography correlated with the hyperreflective bundle widths on AO-SLO (P<0.001 CONCLUSIONS: AO-SLO revealed hyperreflective bundles and dark lines in the RNFL, believed to be retinal nerve fiber bundles and Müller cell septa. The widths of the nerve fiber bundles appear to be proportional to the RNFL thickness at equivalent distances from the optic disc.

  3. Flood monitoring in a semi-arid environment using spatially high resolution radar and optical data.

    Science.gov (United States)

    Seiler, Ralf; Schmidt, Jana; Diallo, Ousmane; Csaplovics, Elmar

    2009-05-01

    The geographic term "Niger Inland Delta" stands for a vast plain of approximately 40,000 km(2), which is situated in the western Sahel (Republic of Mali). The Inland Delta is affected by yearly inundation through the variable water levels of the Niger-Bani river system. Due to a good availability of (surface) water, the ecosystem at the Niger Inland Delta serves as resting place stop-over for many migrating birds and other wildlife species as well as economic base for farmers and pastoral people. To foster the sustainable usage of its natural resources and to protect this natural heritage, the entire Niger Inland Delta became RAMSAR site in 2004. This paper aims to test to which extent texture analysis can improve the quality of flood monitoring in a semi-arid environment using spatially high resolution ASAR imaging mode data. We found the Gray Level Dependence Method (GLDM) was most suitable proceeding for our data. Several statistical parameters were calculated via co-occurrence matrices and were used to classify the images in different gradation of soil moisture classes. In a second step we used additional information from spatially high resolution optical data (ASTER) to improve the separability of open water areas from moisture/vegetated areas.

  4. Studies of X-pinch Plasma Fine Structure Using High Resolution Optical and Imaging Spectroscopy Methods

    Science.gov (United States)

    Pikuz, S. A.; Shelkovenko, T. A.; Romanova, V. M.; Sarkisov, G. S.; Hammer, D. A.; Acton, D. F.; Kalantar, D. H.

    1996-11-01

    An X-pinch is formed by placing two or more fine wires between the output electrodes of a high current pulser so that the wires cross and touch in mid-gap. The predictable position of a neck in the resulting plasma at the wire cross point enables the use of high resolution optical systems for studies of the neck-forming plasma dynamics(D.H. Kalantar and D.A. Hammer, Phys. Rev. Lett 71), 3806 (1993); S.A. Pikuz et al., JQSRT 51, 291 (1994)., as well as high resolution imaging x-ray spectroscopy(A.Ya. Faenov et al., X-ray Sci. & Tech. 5), 323 (1995). for studying the internal structure of the neck. The position of the neck in the relation to the cross-point of the X-pinch wires, the neck structure during pinching, plasma parameters in the vicinity of the neck and in the plasma around of the wires cores were investigating using pulsed lasers. The internal structure of the bright spot near the cross point was studied with spatial resolution better than 10 microns using a time integrated pin-hole camera and the radiation of individual spectral lines of highly charged ions such as He-like Ni and Al. Work supported by Sandia Contact AJ-6400.

  5. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

    Science.gov (United States)

    Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon

    2017-01-01

    Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10-9 fs2/Hz (equivalent to -174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources.

  6. High-resolution speleothem record of precipitation from the Yucatan Peninsula spanning the Maya Preclassic Period

    Science.gov (United States)

    Medina-Elizalde, Martín; Burns, Stephen J.; Polanco-Martínez, Josué M.; Beach, Timothy; Lases-Hernández, Fernanda; Shen, Chuan-Chou; Wang, Hao-Cheng

    2016-03-01

    We produced a new high-resolution absolute U-Th dated stalagmite oxygen isotope record (δ18O) from Río Secreto, Playa del Carmen, Yucatan Peninsula (YP). This new 1434-year stalagmite record (named Itzamna after the Maya god of creation) spans the time interval between BCE 1037 and CE 397 with an average resolution of 8 ± 2 years. It provides a novel view of climate evolution over the Preclassic and early Classic periods in Maya history. To understand the controls of regional precipitation δ18O on seasonal time scales, we characterized the amount effect between precipitation amount (P) and precipitation δ18O (δP). We found that precipitation δ18O in the Yucatan Peninsula is controlled by the amount effect on seasonal scales (δP/ΔP = - 0.0137 ± 0.0031‰ per mm, r = 0.9), as suspected but never before demonstrated. Cave drip δ18O is consistent with the annual amount-weighted δ18O composition of precipitation. Multiple lines of evidence suggest that stalagmite δ18O reflects isotopic equilibrium conditions and thus stalagmite δ18O changes are interpreted to reflect precipitation amount. We determined quantitative precipitation changes from the stalagmite δ18O record following previous methods (Medina-Elizalde and Rohling, 2012). The stalagmite precipitation record suggests twelve periods of anomalous precipitation reductions ranging between about 30 and 70% below mean conditions at the time and with durations from 6 years to 31 years. Between BCE 520 and 166, the speleothem precipitation record suggests that the YP experienced an interval of high precipitation labeled the Late Preclassic Humid Period (LPHP) with precipitation maxima of up to + 86 ± 20%. Preclassic Maya cultural expansion in El Mirador Basin, located in northern Guatemala, took place while the peninsula transitioned from the LPHP to an interval with below average precipitation. We find that the Preclassic abandonment of major centers in the Mirador Basin and others around the Maya

  7. Ultra-high resolution optical coherence tomography for encapsulation quality inspection

    KAUST Repository

    Czajkowski, Jakub

    2011-08-28

    We present the application of ultra-high resolution optical coherence tomography (UHR-OCT) in evaluation of thin, protective films used in printed electronics. Two types of sample were investigated: microscopy glass and organic field effect transistor (OFET) structure. Samples were coated with thin (1-3 μm) layer of parylene C polymer. Measurements were done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti: sapphire femtosecond laser, photonic crystal fibre and modified, free-space Michelson interferometer. Submicron resolution offered by the UHR-OCT system applied in the study enables registration of both interfaces of the thin encapsulation layer. Complete, volumetric characterisation of protective layers is presented, demonstrating possibility to use OCT for encapsulation quality inspection. © Springer-Verlag 2011.

  8. Kinematic Alignment and Bonding of Silicon Mirrors for High-Resolution Astronomical X-Ray Optics

    Science.gov (United States)

    Chan, Kai-Wing; Mazzarella, James R.; Saha, Timo T.; Zhang, William W.; Mcclelland, Ryan S.; Biskack, Michael P.; Riveros, Raul E.; Allgood, Kim D.; Kearney, John D.; Sharpe, Marton V.; hide

    2017-01-01

    Optics for the next generation's high-resolution, high throughput x-ray telescope requires fabrication of well-formed lightweight mirror segments and their integration at arc-second precision. Recent advances in the fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror alignment and integration. In this method, stiff silicon mirrors are aligned quasi-kinematically and are bonded in an interlocking fashion to produce a "meta-shell" with large collective area. We address issues of aligning and bonding mirrors with this method and show a recent result of 4 seconds-of-arc for a single pair of mirrors tested at soft x-rays.

  9. Speckle variance full-field optical coherence microscopy for high-resolution microvasculature mapping

    Science.gov (United States)

    Ogien, Jonas; Dubois, Arnaud

    2017-02-01

    This work reports on the feasibility of dynamic imaging using conventional reflectivity-based tomographic images obtained with full-field optical coherence microscopy (FF-OCM). Implementation of speckle variance for flow mapping with an imaging rate of 180 Hz is demonstrated by mapping 20% intralipid flowing into 100-μm-diameter microcapillary tubes at speeds up to 50 mm/s. This constitutes a significant advance in high-resolution, real-time microvasculature mapping, using FF-OCM. The acquisition scheme in FF-OCM is particularly appropriate for en face visualization of the microvasculature, as FF-OCM directly acquires en face tomographic images unlike conventional OCT which usually requires reslicing of a three-dimensional data set to get en face images.

  10. Evaluating Corneal Collagen Organization Using High Resolution Non Linear Optical (NLO) Macroscopy*

    Science.gov (United States)

    Jester, James V.; Winkler, Moritz; Jester, Bryan E.; Nien, Chyong; Chai, Dongyul; Brown, Donald J.

    2010-01-01

    Purpose Recent developments in non-linear optical (NLO) imaging using femtosecond lasers provides a non-invasive method for detecting collagen fibers by imaging second harmonic generated (SHG) signals. However, this technique is limited by the small field of view (FoV) necessary to generate SHG signals. The purpose of this report is to review our efforts to greatly extend the FoV in order to assess the entire collagen structure using high resolution macroscopic (HRMac) imaging. Methods Intact human eyes were fixed under pressure and the whole cornea (13 mm diameter) excised and embedded in low melting point agar for vibratome sectioning (200–300 μm). Sections were then optically scanned using a Zeiss LSM 510 Meta and Chameleon femtosecond laser to generate SHG images. For each vibratome section, an overlapping series of 3-D data sets (466 × 466 × 150 μm) were taken covering the entire tissue (15 mm × 6 mm area) using a motorized, mechanical stage. The 3-D data sets were then concatenated to generate an NLO based tomograph. Results HRMac of the cornea yielded large macroscopic (80 Meg Pixels per plane), 3-dimensional tomographs with high resolution (0.81 μm later, 2.0 μm axial) in which individual collagen fibers (stromal lamellae) could be traced, segmented and extracted. 3-D reconstructions suggested that the anterior cornea is comprised of highly intertwined lamellae that insert into the anterior limiting lamina (Bowman’s Layer). Conclusion We conclude that HRMac using NLO based tomography provides a powerful new tool to assess collagen structural organization within the cornea. PMID:20724856

  11. Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging.

    Science.gov (United States)

    Vila-Comamala, Joan; Diaz, Ana; Guizar-Sicairos, Manuel; Mantion, Alexandre; Kewish, Cameron M; Menzel, Andreas; Bunk, Oliver; David, Christian

    2011-10-24

    We have employed ptychographic coherent diffractive imaging to completely characterize the focal spot wavefield and wavefront aberrations of a high-resolution diffractive X-ray lens. The ptychographic data from a strongly scattering object was acquired using the radiation cone emanating from a coherently illuminated Fresnel zone plate at a photon energy of 6.2 keV. Reconstructed images of the object were retrieved with a spatial resolution of 8 nm by combining the difference-map phase retrieval algorithm with a non-linear optimization refinement. By numerically propagating the reconstructed illumination function, we have obtained the X-ray wavefield profile of the 23 nm round focus of the Fresnel zone plate (outermost zone width, Δr = 20 nm) as well as the X-ray wavefront at the exit pupil of the lens. The measurements of the wavefront aberrations were repeatable to within a root mean square error of 0.006 waves, and we demonstrate that they can be related to manufacturing aspects of the diffractive optical element and to errors on the incident X-ray wavefront introduced by the upstream beamline optics. © 2011 Optical Society of America

  12. Towards high-resolution retinal prostheses with direct optical addressing and inductive telemetry

    Science.gov (United States)

    Ha, Sohmyung; Khraiche, Massoud L.; Akinin, Abraham; Jing, Yi; Damle, Samir; Kuang, Yanjin; Bauchner, Sue; Lo, Yu-Hwa; Freeman, William R.; Silva, Gabriel A.; Cauwenberghs, Gert

    2016-10-01

    Objective. Despite considerable advances in retinal prostheses over the last two decades, the resolution of restored vision has remained severely limited, well below the 20/200 acuity threshold of blindness. Towards drastic improvements in spatial resolution, we present a scalable architecture for retinal prostheses in which each stimulation electrode is directly activated by incident light and powered by a common voltage pulse transferred over a single wireless inductive link. Approach. The hybrid optical addressability and electronic powering scheme provides separate spatial and temporal control over stimulation, and further provides optoelectronic gain for substantially lower light intensity thresholds than other optically addressed retinal prostheses using passive microphotodiode arrays. The architecture permits the use of high-density electrode arrays with ultra-high photosensitive silicon nanowires, obviating the need for excessive wiring and high-throughput data telemetry. Instead, the single inductive link drives the entire array of electrodes through two wires and provides external control over waveform parameters for common voltage stimulation. Main results. A complete system comprising inductive telemetry link, stimulation pulse demodulator, charge-balancing series capacitor, and nanowire-based electrode device is integrated and validated ex vivo on rat retina tissue. Significance. Measurements demonstrate control over retinal neural activity both by light and electrical bias, validating the feasibility of the proposed architecture and its system components as an important first step towards a high-resolution optically addressed retinal prosthesis.

  13. Results in coastal waters with high resolution in situ spectral radiometry: The Marine Optical System ROV

    Science.gov (United States)

    Yarbrough, Mark; Feinholz, Michael; Flora, Stephanie; Houlihan, Terrance; Johnson, B. Carol; Kim, Yong S.; Murphy, Marilyn Y.; Ondrusek, Michael; Clark, Dennis

    2007-09-01

    The water-leaving spectral radiance is a basic ocean color remote sensing parameters required for the vicarious calibration. Determination of water-leaving spectral radiance using in-water radiometry requires measurements of the upwelling spectral radiance at several depths. The Marine Optical System (MOS) Remotely Operated Vehicle (ROV) is a portable, fiber-coupled, high-resolution spectroradiometer system with spectral coverage from 340 nm to 960 nm. MOS was developed at the same time as the Marine Optical Buoy (MOBY) spectrometer system and is optically identical except that it is configured as a profiling instrument. Concerns with instrument self-shadowing because of the large exterior dimensions of the MOS underwater housing led to adapting MOS and ROV technology. This system provides for measurement of the near-surface upwelled spectral radiance while minimizing the effects of shadowing. A major advantage of this configuration is that the ROV provides the capability to acquire measurements 5 cm to 10 cm below the water surface and is capable of very accurate depth control (1 cm) allowing for high vertical resolution observations within the very near-surface. We describe the integrated system and its characterization and calibration. Initial measurements and results from observations of coral reefs in Kaneohe Bay, Oahu, extremely turbid waters in the Chesapeake Bay, Maryland, and in Case 1 waters off Southern Oahu, Hawaii are presented.

  14. A Microscopic Optically Tracking Navigation System That Uses High-resolution 3D Computer Graphics.

    Science.gov (United States)

    Yoshino, Masanori; Saito, Toki; Kin, Taichi; Nakagawa, Daichi; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2015-01-01

    Three-dimensional (3D) computer graphics (CG) are useful for preoperative planning of neurosurgical operations. However, application of 3D CG to intraoperative navigation is not widespread because existing commercial operative navigation systems do not show 3D CG in sufficient detail. We have developed a microscopic optically tracking navigation system that uses high-resolution 3D CG. This article presents the technical details of our microscopic optically tracking navigation system. Our navigation system consists of three components: the operative microscope, registration, and the image display system. An optical tracker was attached to the microscope to monitor the position and attitude of the microscope in real time; point-pair registration was used to register the operation room coordinate system, and the image coordinate system; and the image display system showed the 3D CG image in the field-of-view of the microscope. Ten neurosurgeons (seven males, two females; mean age 32.9 years) participated in an experiment to assess the accuracy of this system using a phantom model. Accuracy of our system was compared with the commercial system. The 3D CG provided by the navigation system coincided well with the operative scene under the microscope. Target registration error for our system was 2.9 ± 1.9 mm. Our navigation system provides a clear image of the operation position and the surrounding structures. Systems like this may reduce intraoperative complications.

  15. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    Directory of Open Access Journals (Sweden)

    Victor Lawrence

    2012-07-01

    Full Text Available Electro-optic (EO image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF of a uniform detector array and the incoherent optical transfer function (OTF of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1 inverse filter-based IR image transformation; (2 EO image edge detection; (3 registration; and (4 blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  16. High-resolution conodont oxygen isotope record of Ordovician climate change

    Science.gov (United States)

    Chen, J.; Chen, Z.; Algeo, T. J.

    2013-12-01

    The Ordovician Period was characterized by several major events, including a prolonged 'super greenhouse' during the Early Ordovician, the 'Great Ordovician Biodiversification Event (GOBE)' of the Middle and early Late Ordovician, and the Hirnantian ice age and mass extinction of the latest Ordovician (Webby et al., 2004, The Great Ordovician Biodiversification Event, Columbia University Press). The cause of the rapid diversification of marine invertebrates during the GOBE is not clear, however, and several scenarios have been proposed including widespread development of shallow cratonic seas, strong magmatic and tectonic activity, and climate moderation. In order to investigate relationships between climate change and marine ecosystem evolution during the Ordovician, we measured the oxygen isotopic composition of single coniform conodonts using a Cameca secondary ion mass spectrometer. Our δ18O profile shows a shift at the Early/Middle Ordovician transition that is indicative of a rapid 6 to 8 °C cooling. This cooling event marks the termination of the Early Ordovician 'super greenhouse' and may have established cooler tropical seawater temperatures that were more favorable for invertebrate animals, setting the stage for the GOBE. Additional cooling episodes occurred during the early Sandbian, early Katian, and Hirnantian, the last culminating in a short-lived (extinction. Our results differ from those of Trotter et al. (2008, 'Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry,' Science 321:550-554). Instead of a slow, protracted cooling through the Early and Middle Ordovician, our high-resolution record shows that cooling occurred in several discrete steps, with the largest step being at the Early/Middle Ordovician transition.

  17. Direct Push Optical Screening Tool for High Resolution, Real-Time Mapping of Chlorinated Solvent DNAPL Architecture

    Science.gov (United States)

    2016-07-01

    is historically used in subsurface environmental assessments it i the natural fluorescence of polycyclic aromatic hydrocarbons (PAHs) found in the...sites impacted by petroleum hydrocarbon fuels, creosotes, and MGP tars. The rapid, high-resolution, real-time nature of LIF technologies described...ER-201121) Direct Push Optical Screening Tool for High- Resolution, Real-Time Mapping of Chlorinated Solvent DNAPL Architecture July 2016 This

  18. Meta-shell Approach for Constructing Lightweight and High Resolution X-Ray Optics

    Science.gov (United States)

    McClelland, Ryan S.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low thermal distortion. Recent results are discussed including Structural Thermal Optical Performance (STOP) analysis as well as vibration and shock testing of prototype meta-shells.

  19. High resolution record of the Last Glacial Maximum in eastern Australia

    Science.gov (United States)

    Petherick, Lynda; Moss, Patrick; McGowan, Hamish

    2010-05-01

    A continuous, high resolution (average ca. 22 year) record encompassing the Last Glacial Maximum (LGM) has been developed using multiple proxies (aeolian sediment flux, grain size, pollen and charcoal) in lake sediment from Tortoise Lagoon (TOR), North Stradbroke Island, Queensland, Australia. The presence of Asteraceae tubilifloreae and spineless Asteraceae (common indicators of glacial conditions in Australia) at TOR indicates significantly cooler temperatures (mean annual temperature up to 6oC lower than today). In addition to the palaeoclimatic reconstruction, a record of palaeodust transport pathways for eastern Australia was developed using ICP-MS trace element analysis and geochemical "fingerprinting" of TOR aeolian sediment to continental dust source areas. Vectors between dominant dust source areas and North Stradbroke Island allowed the reconstruction of the position and intensity of LGM dust transport pathways. Furthermore, changes in likely synpotic scale conditions can be postulated based on the position of the dust transport corridors. Similarities between the vegetation at TOR during the LGM and that at temperate sites e.g. Caledonia Fen, Victoria (Kershaw et al. 2007), Redhead Lagoon, New South Wales (Williams et al. 2006) and Barrington Tops, New South Wales (Sweller and Martin 2001) suggests that this record reflects regional conditions across southeastern Australia. The TOR record also correlates well with that from nearby Native Companion Lagoon which suggests that the LGM was actually an extended period of ca. 8 - 10 kyr, characterised by 2 periods of increased aridity (ca. 30 - 26.5 kyr and 21 - 19.5 kyr) (Petherick et al. 2008). A growing number of records from across the Southern Hemisphere e.g. New Zealand (Suggate and Almond 2003; Alloway et al. 2007; Newnham et al. 2007), Chile (Denton et al. 1999), Antarctica (Röthlisberger et al. 2002; EPICA 2006) and Australia (Smith 2009) also show evidence that the LGM encompassed a longer period of

  20. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Science.gov (United States)

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  1. Fiber Optic Distributed Sensors for High-resolution Temperature Field Mapping.

    Science.gov (United States)

    Lomperski, Stephen; Gerardi, Craig; Lisowski, Darius

    2016-11-07

    The reliability of computational fluid dynamics (CFD) codes is checked by comparing simulations with experimental data. A typical data set consists chiefly of velocity and temperature readings, both ideally having high spatial and temporal resolution to facilitate rigorous code validation. While high resolution velocity data is readily obtained through optical measurement techniques such as particle image velocimetry, it has proven difficult to obtain temperature data with similar resolution. Traditional sensors such as thermocouples cannot fill this role, but the recent development of distributed sensing based on Rayleigh scattering and swept-wave interferometry offers resolution suitable for CFD code validation work. Thousands of temperature measurements can be generated along a single thin optical fiber at hundreds of Hertz. Sensors function over large temperature ranges and within opaque fluids where optical techniques are unsuitable. But this type of sensor is sensitive to strain and humidity as well as temperature and so accuracy is affected by handling, vibration, and shifts in relative humidity. Such behavior is quite unlike traditional sensors and so unconventional installation and operating procedures are necessary to ensure accurate measurements. This paper demonstrates implementation of a Rayleigh scattering-type distributed temperature sensor in a thermal mixing experiment involving two air jets at 25 and 45 °C. We present criteria to guide selection of optical fiber for the sensor and describe installation setup for a jet mixing experiment. We illustrate sensor baselining, which links readings to an absolute temperature standard, and discuss practical issues such as errors due to flow-induced vibration. This material can aid those interested in temperature measurements having high data density and bandwidth for fluid dynamics experiments and similar applications. We highlight pitfalls specific to these sensors for consideration in experiment design

  2. Diagnosis of Ocular Surface Lesions Using Ultra-High Resolution Optical Coherence Tomography

    Science.gov (United States)

    Shousha, Mohamed Abou; Karp, Carol L.; Canto, Ana Paula; Hodson, Kelly; Oellers, Patrick; Kao, Andrew A.; Bielory, Brett; Matthews, Jared; Dubovy, Sander R.; Perez, Victor L.; Wang, Jianhua

    2012-01-01

    Purpose To assess the use of ultra high resolution optical coherence tomography (UHR-OCT) in the diagnosis of ocular surface lesions. Design Prospective, non-comparative, interventional case series. Participants Fifty four eyes of 53 consecutive patients with biopsy proven ocular surface lesions; 8 primary acquired melanosis, 5 amelanotic melanoma, 2 nevi, 19 ocular surface squamous neoplasia, 1 histiocytosis, 6 conjunctival lymphoma, 2 conjunctival amyloidosis, and 11 pterygia. Intervention UHR-OCT imaging of the ocular surface lesions. Main Outcome Measures Clinical course and photographs, UHR-OCT image and histopathological findings. Results UHR-OCT images of all examined ocular surface lesions showed close correlation with the obtained histopathological specimens. When clinical differential diagnosis of ocular surface lesions was broad, UHR-OCT images provided optical signs that guided towards a more specific diagnosis and management. In cases of amelanotic melanoma, conjunctival amyloidosis, and primary histiocytosis and in one case of ocular surface squamous neoplasia, UHR-OCT was instrumental in guiding the diagnosis. In those cases, UHR-OCT suggested that the presumed clinical diagnosis was incorrect and favored a diagnosis which was later confirmed by histopathological examination. Conclusions Correlations between UHR-OCT and histopathology confirm that UHR-OCT is an adjunctive diagnostic modality that can provide a non-invasive means to help and guide diagnosis and management of ocular surface lesions. PMID:23347984

  3. Ultra-high Resolution Optics for EUV and Soft X-ray Inelastic Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Voronov, Dmitry L.; Cambie, Rossana; Ahn, Minseung; Anderson, Erik H.; Chang, Chih-Hao; Gullikson, Eric M.; Heilmann, Ralf K.; Salmassi, Farhad; Schattenburg, Mark L.; Yashchuk, Valeriy V.; Padmore, Howard A.

    2009-09-16

    We describe a revolutionary new approach to high spectral resolution soft x-ray optics. Conventionally in the soft x-ray energy range, high spectral resolution is obtained by use of a relatively low line density grating operated in 1st order with small slits. This severely limits throughput. This limitation can be removed by use of a grating either in very high order, or with very high line density, if one can maintain high diffraction efficiency. We have developed a new technology for achieving both of these goals which should allow high throughput spectroscopy, at resolving powers of up to 106 at 1 keV. Such optics should provide a revolutionary advance for high resolution lifetime free spectroscopy, such as RIXS, and for pulse compression of chirped beams. We report recent developmental fabrication and characterization of a prototype grating optimized for 14.2 nm EUV light. The prototype grating with a 200 nm period of the blazed grating substrate coated with 20 Mo/Si bilayers with a period of 7.1 nm demonstrates good dispersion in the third order (effective groove density of 15,000 lines per mm) with a diffraction efficiency of more than 33percent.

  4. EUV high resolution imager on-board solar orbiter: optical design and detector performances

    Science.gov (United States)

    Halain, J. P.; Mazzoli, A.; Rochus, P.; Renotte, E.; Stockman, Y.; Berghmans, D.; BenMoussa, A.; Auchère, F.

    2017-11-01

    The EUV high resolution imager (HRI) channel of the Extreme Ultraviolet Imager (EUI) on-board Solar Orbiter will observe the solar atmospheric layers at 17.4 nm wavelength with a 200 km resolution. The HRI channel is based on a compact two mirrors off-axis design. The spectral selection is obtained by a multilayer coating deposited on the mirrors and by redundant Aluminum filters rejecting the visible and infrared light. The detector is a 2k x 2k array back-thinned silicon CMOS-APS with 10 μm pixel pitch, sensitive in the EUV wavelength range. Due to the instrument compactness and the constraints on the optical design, the channel performance is very sensitive to the manufacturing, alignments and settling errors. A trade-off between two optical layouts was therefore performed to select the final optical design and to improve the mirror mounts. The effect of diffraction by the filter mesh support and by the mirror diffusion has been included in the overall error budget. Manufacturing of mirror and mounts has started and will result in thermo-mechanical validation on the EUI instrument structural and thermal model (STM). Because of the limited channel entrance aperture and consequently the low input flux, the channel performance also relies on the detector EUV sensitivity, readout noise and dynamic range. Based on the characterization of a CMOS-APS back-side detector prototype, showing promising results, the EUI detector has been specified and is under development. These detectors will undergo a qualification program before being tested and integrated on the EUI instrument.

  5. High Resolution Optical Spectroscopy of the Classical Nova V5668 Sgr Showing the Presence of Lithium

    Science.gov (United States)

    Wagner, R. Mark; Woodward, Charles E.; Starrfield, Sumner; Ilyin, Ilya; Strassmeier, Klaus

    2018-01-01

    The classical nova (CN) V5668 Sgr was discovered on 2015 March 15.634 and initial optical spectra implied it was an Fe II-class CN. We obtained high resolution optical spectroscopy on 30 nights between 2015 April 3 and 2016 June 5 with the 2 x 8.4 m Large Binocular Telescope (LBT) and the 1.8 m Vatican Advanced Technology Telescope (VATT) using the Potsdam Echelle Polarimetric Spectroscopic Instrument (PEPSI). The spectra cover all or part of the 3830-9065 Å spectral region at a spectral resolution of up to 270,000 (1 km/s); the highest resolution currently available on any 8-10 m class telescope. The early spectra are dominated by emission lines of the Balmer and Paschen series of hydrogen, Fe II, Ca II, and Na I with P Cyg-type line profiles as well as emission lines of [O I]. Numerous interstellar lines and bands are readily apparent at high spectral resolution. The permitted line profiles show complex and dramatic variations in the multi-component P Cyg-type line profiles with time. We detect a weak blue-shifted absorption line at a velocity consistent with Li I 6708 Å when compared with the line profiles of Hβ, Fe II 5169 Å, and Na I D. This line is present in spectra obtained on 7 of 8 consecutive nights up to day 21 of the outburst; but absent on day 42 when it is evident that the ionization of the ejecta has significantly increased. The equivalent width of the line converted to a column density, and the resulting mass fraction, imply a significant enrichment of 7Li in the ejecta. 7Li is produced by the decay of unstable 7Be created during the thermonuclear runaway. The discovery of the resonance lines of 7Be II in the optical spectra of the recent CNe V339 Del, V2944 Oph, and V5668 Sgr by Tajitsu et al. (2016) and its subsequent decay to 7Li (half life of 53 days) suggests a significant enrichment of 7Li in the Galaxy from CNe is possible. Our observations of the Li I 6708 Å line in the early optical spectra of V5668 Sgr mark the second direct

  6. Probing Protein Folding Kinetics with High-resolution, Stabilized Optical Tweezers

    Science.gov (United States)

    Wong, Wesley; Halvorsen, Ken

    2009-03-01

    Single-molecule techniques provide a powerful means of exploring molecular transitions such as the unfolding and refolding of a protein. However, the quantification of bi-directional transitions and near-equilibrium phenomena poses unique challenges, and is often limited by the detection resolution and long-term stability of the instrument. We have developed unique optical tweezers methods that address these problems, including an interference-based method for high-resolution 3D bead tracking (˜1 nm laterally, ˜0.3 nm vertically, at > 100 Hz), and a continuous autofocus system that stabilizes the trap height to within 1-2 nm longterm [1,2]. We have used our instruments to quantify the force-dependent unfolding and refolding kinetics of single protein domains (e.g. spectrin in collaboration with E. Evans). These single-molecule studies are presented, together with the accompanying probabilistic analysis that we have developed. References: 1. W.P. Wong, V. Heinrich, E. Evans, Mat. Res. Soc. Symp. Proc., 790, P5.1-P5.10 (2004). 2. V. Heinrich, W.P. Wong, K. Halvorsen, E. Evans, Langmuir, 24, 1194-1203 (2008).

  7. Optimization of linear-wavenumber spectrometer for high-resolution spectral domain optical coherence tomography

    Science.gov (United States)

    Wu, Tong; Sun, Shuaishuai; Wang, Xuhui; Zhang, Haiyan; He, Chongjun; Wang, Jiming; Gu, Xiaorong; Liu, Youwen

    2017-12-01

    Nonlinear detection of the spectral interferograms in wavenumber (k) space degrades the depth-dependent signal sensitivity in conventional linear-in- λ spectrometer based spectral domain optical coherence tomography (SDOCT). Linear- k spectrometer enables high sensitivity SDOCT imaging without the need of resampling the digitized non-linear-in- k data. Here we report an effective optimization method for linear- k spectrometer used in a high-resolution SDOCT system. The design parameters of the linear- k spectrometer, including the material of the dispersive prism, the prism vertex angle, and the rotation angle between the grating and prism, are optimized through the numerical simulation of the spectral interference signal. As guided by the optimization results, we constructed the linear- k spectrometer based SDOCT system and evaluated its imaging performances. The axial resolution of the system can be maintained to be higher than 9 . 1 μm throughout the imaging depth range of 2.42 mm. The sensitivity was experimentally measured to be 91 dB with - 6 dB roll-off within the depth range of 1.2 mm.

  8. Microarchitecture of the Vitreous Body: A High-Resolution Optical Coherence Tomography Study.

    Science.gov (United States)

    Uji, Akihito; Yoshimura, Nagahisa

    2016-08-01

    To report novel vitreous body microarchitecture findings using high-resolution spectral-domain optical coherence tomography (HR-SD-OCT). Prospective, cross-sectional study. Horizontal and vertical retinal cross-sectional images that were 10 mm long were acquired from 17 eyes of 17 young healthy volunteers using HR-SD-OCT with enhanced vitreous imaging (EVI). Images were acquired through the fovea, upper vessel arcade, and lower vessel arcade. Three new findings on vitreous body microarchitecture were found. First, material located between the retina and posterior vitreous cortex was easily detected in 90% of upper and lower vessel arcade scans. Most scans contained hyperreflective dots and multilayered hyperreflective lines around the detached vitreous cortex. Second, a lamellar structure was observed in the vitreous body in 70%-80% of all scans, excluding vertical scans of the upper arcade vessel area. Third, tubular zones of hypodensity were detected in >80% of scans, excluding horizontal scans of the macula. Interestingly, the location of tubular zones of hypodensity seemed to correspond with the location of retinal vessels. Subject age, refractive error, and axial length were not significantly different in scans with and without material between the retina and vitreous, lamellar structures, and tubular zones of hypodensity. The microarchitecture of the vitreous body can be visualized using HR-SD-OCT and EVI. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Wide-field and high-resolution optical imaging for early detection of oral neoplasia

    Science.gov (United States)

    Pierce, Mark C.; Schwarz, Richard A.; Rosbach, Kelsey; Roblyer, Darren; Muldoon, Tim; Williams, Michelle D.; El-Naggar, Adel K.; Gillenwater, Ann M.; Richards-Kortum, Rebecca

    2010-02-01

    Current procedures for oral cancer screening typically involve visual inspection of the entire tissue surface at risk under white light illumination. However, pre-cancerous lesions can be difficult to distinguish from many benign conditions when viewed under these conditions. We have developed wide-field (macroscopic) imaging system which additionally images in cross-polarized white light, narrowband reflectance, and fluorescence imaging modes to reduce specular glare, enhance vascular contrast, and detect disease-related alterations in tissue autofluorescence. We have also developed a portable system to enable high-resolution (microscopic) evaluation of cellular features within the oral mucosa in situ. This system is a wide-field epi-fluorescence microscope coupled to a 1 mm diameter, flexible fiber-optic imaging bundle. Proflavine solution was used to specifically label cell nuclei, enabling the characteristic differences in N/C ratio and nuclear distribution between normal, dysplastic, and cancerous oral mucosa to be quantified. This paper discusses the technical design and performance characteristics of these complementary imaging systems. We will also present data from ongoing clinical studies aimed at evaluating diagnostic performance of these systems for detection of oral neoplasia.

  10. Ultra high resolution optical coherence tomography in Boston type I keratoprosthesis.

    Science.gov (United States)

    Zarei-Ghanavati, Siamak; Betancurt, Carolina; Mas, Alma Michelle; Wang, Jianhua; Perez, Victor L

    2015-01-01

    To evaluate the anterior keratoprosthesis-cornea interface in eyes with Boston type I keratoprosthesis (Kpro). In a prospective non-interventional study, patients with Boston type I Kpro underwent ultra-high resolution optical coherence tomography (UHR-OCT) evaluation. The images were used to measure and describe characteristics of the anterior keratoprosthesis-cornea interface, epithelial interaction at the keratoprosthesis edge and the keratoprosthesis-cornea interface gap. Ten patients including 4 male and 6 female subjects with different preoperative diagnoses, i.e. 8 multiple corneal graft failures and 2 immunological ocular surface diseases, were studied. Mean age was 62.1 ± 20.0 (range, 33.0-83.0) years and mean interval between surgery and UHR-OCT evaluation was 15.2 ± 11.09 months. In eight patients, 360° epithelial growth over the peripheral edge of the Kpro was documented. We detected keratoprosthesis-cornea interface gap in three patients. One subject had developed postoperative endophthalmitis 8 months after surgery and the other two cases were among the high risk group according to the preoperative diagnosis. In one patient with severe ocular hypotony, the Kpro edge was inserted into the anterior stroma and covered with epithelium. UHR-OCT showed that corneal epithelium covers the Kpro edge and seals the potential space between the Kpro and cornea in 80% of cases. The presence of a gap in the interface and lack of epithelial sealing around the Kpro edge might be associated with endophthalmitis.

  11. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  12. Ultra-high resolution water window x ray microscope optics design and analysis

    Science.gov (United States)

    Shealy, David L.; Wang, C.

    1993-01-01

    This project has been focused on the design and analysis of an ultra-high resolution water window soft-x-ray microscope. These activities have been accomplished by completing two tasks contained in the statement of work of this contract. The new results from this work confirm: (1) that in order to achieve resolutions greater than three times the wavelength of the incident radiation, it will be necessary to use spherical mirror surfaces and to use graded multilayer coatings on the secondary in order to accommodate the large variations of the angle of incidence over the secondary when operating the microscope at numerical apertures of 0.35 or greater; (2) that surface contour errors will have a significant effect on the optical performance of the microscope and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror; and (3) that tolerance analysis of the spherical Schwarzschild microscope has been shown that the water window operations will require 2-3 times tighter tolerances to achieve a similar performance of operations with 130 A radiation. These results have been included in a manuscript included in the appendix.

  13. Measurement of ciliary beat frequency using ultra-high resolution optical coherence tomography

    Science.gov (United States)

    Chen, Jason J.; Jing, Joseph C.; Su, Erica; Badger, Christopher; Coughlan, Carolyn A.; Chen, Zhongping; Wong, Brian J. F.

    2016-02-01

    Ciliated epithelial cells populate up to 80% of the surface area of the human airway and are responsible for mucociliary transport, which is the key protective mechanism that provides the first line of defense in the respiratory tract. Cilia beat in a rhythmic pattern and may be easily affected by allergens, pollutants, and pathogens, altering ciliary beat frequency (CBF) subsequently. Diseases including cystic fibrosis, chronic obstructive pulmonary disease, and primary ciliary dyskinesia may also decrease CBF. CBF is therefore a critical component of respiratory health. The current clinical method of measuring CBF is phase-contrast microscopy, which involves a tissue biopsy obtained via brushing of the nasal cavity. While this method is minimally invasive, the tissue sample must be oriented to display its profile view, making the visualization of a single layer of cilia challenging. In addition, the conventional method requires subjective analysis of CBF, e.g., manually counting by visual inspection. On the contrary, optical coherence tomography (OCT) has been used to study the retina in ophthalmology as well as vasculature in cardiology, and offers higher resolution than conventional computed tomography and magnetic resonance imaging. Based on this technology, our lab specifically developed an ultra-high resolution OCT system to image the microstructure of the ciliated epithelial cells. Doppler analysis was also performed to determine CBF. Lastly, we also developed a program that utilizes fast Fourier transform to determine CBF under phase-contrast microscopy, providing a more objective method compared to the current method.

  14. A NEW HIGH RESOLUTION OPTICAL METHOD FOR OBTAINING THE TOPOGRAPHY OF FRACTURE SURFACES IN ROCKS

    Directory of Open Access Journals (Sweden)

    Steven Ogilvie

    2011-05-01

    Full Text Available Surface roughness plays a major role in the movement of fluids through fracture systems. Fracture surface profiling is necessary to tune the properties of numerical fractures required in fluid flow modelling to those of real rock fractures. This is achieved using a variety of (i mechanical and (ii optical techniques. Stylus profilometry is a popularly used mechanical method and can measure surface heights with high precision, but only gives a good horizontal resolution in one direction on the fracture plane. This method is also expensive and simultaneous coverage of the surface is not possible. Here, we describe the development of an optical method which images cast copies of rough rock fractures using in-house developed hardware and image analysis software (OptiProf™ that incorporates image improvement and noise suppression features. This technique images at high resolutions, 15-200 μm for imaged areas of 10 × 7.5 mm and 100 × 133 mm, respectively and a similar vertical resolution (15 μm for a maximum topography of 4 mm. It uses in-house developed hardware and image analysis (OptiProf™ software and is cheap and non-destructive, providing continuous coverage of the fracture surface. The fracture models are covered with dye and fluid thicknesses above the rough surfaces converted into topographies using the Lambert-Beer Law. The dye is calibrated using 2 devices with accurately known thickness; (i a polycarbonate tile with wells of different depths and (ii a wedge-shaped vial made from silica glass. The data from each of the two surfaces can be combined to provide an aperture map of the fracture for the scenario where the surfaces touch at a single point or any greater mean aperture. The topography and aperture maps are used to provide data for the generation of synthetic fractures, tuned to the original fracture and used in numerical flow modelling.

  15. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity

    National Research Council Canada - National Science Library

    Liu, Guigen; Han, Ming; Hou, Weilin

    2015-01-01

    We report a fiber-optic sensor based on a silicon Fabry-Pérot cavity, fabricated by attaching a silicon pillar on the tip of a single-mode fiber, for high-resolution and high-speed temperature measurement...

  16. Development of a High-performance Optical System and Fluorescent Converters for High-resolution Neutron Imaging

    Science.gov (United States)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.

    Two novel devices for use in neutron imaging technique are introduced. The first one is a high-performance optical lens for video camera systems. The lens system has a magnification of 1:1 and an F value of 3. The optical resolution is less than 5 μm. The second device is a high-resolution fluorescent plate that converts neutrons into visible light. The fluorescent converter material consists of a mixture of 6LiF and ZnS(Ag) fine powder, and the thickness of the converter is material is as little as 15 μm. The surface of the plate is coated with a 1 μm-thick gadolinium oxide layer. This layer is optically transparent and acts as an electron emitter for neutron detection. Our preliminary results show that the developed optical lens and fluorescent converter plates are very promising for high-resolution neutron imaging.

  17. A high-resolution multi-proxy record of late Cenozoic environment change from central Taklimakan Desert, China

    OpenAIRE

    X Wang; Sun, D. H.; Wang, F; Li, B F; Wu, S.; Guo, F.; Li, Z. J.; Zhang, Y. B.; F. H. Chen

    2013-01-01

    The Taklimakan Desert in the Tarim Basin is the largest desert in Central Asia, and is regarded as one of the main dust sources to the Northern Hemisphere. Late Cenozoic sedimentary sequences with intercalated in-situ aeolian dune sands in this area preserve direct evidence for the Asian desertification. Herein, we report a high-resolution multi-proxy climatic record from the precise magnetostratigraphic dated Hongbaishan section in the central Taklimakan Desert. Our results...

  18. A high-resolution multi-proxy record of late Cenozoic environment change from central Taklimakan Desert, China

    OpenAIRE

    X Wang; Sun, D. H.; Wang, F; Li, B F; Wu, S.; Guo, F.; Li, Z. J.; Zhang, Y. B.; F. H. Chen

    2013-01-01

    The Taklimakan Desert in the Tarim Basin is the largest desert in Central Asia, and is regarded as one of the main dust sources to the Northern Hemisphere. Late Cenozoic sedimentary sequences with intercalated in-situ aeolian dune sands in this area preserve direct evidence for the Asian desertification. Herein, we report a high-resolution multi-proxy climatic record from the precise magnetostratigraphic dated Hongbaishan section in the central Taklimakan Desert. Our results show that ...

  19. Ultra high resolution optical coherence tomography in Boston type I keratoprosthesis

    Directory of Open Access Journals (Sweden)

    Siamak Zarei-Ghanavati

    2015-01-01

    Full Text Available Purpose: To evaluate the anterior keratoprosthesis-cornea interface in eyes with Boston type I keratoprosthesis (Kpro. Methods: In a prospective non-interventional study, patients with Boston type I Kpro underwent ultra-high resolution optical coherence tomography (UHR-OCT evaluation. The images were used to measure and describe characteristics of the anterior keratoprosthesis-cornea interface, epithelial interaction at the keratoprosthesis edge and the keratoprosthesis-cornea interface gap. Results: Ten patients including 4 male and 6 female subjects with different preoperative diagnoses, i.e. 8 multiple corneal graft failures and 2 immunological ocular surface diseases, were studied. Mean age was 62.1 ± 20.0 (range, 33.0-83.0 years and mean interval between surgery and UHR-OCT evaluation was 15.2 ± 11.09 months. In eight patients, 360° epithelial growth over the peripheral edge of the Kpro was documented. We detected keratoprosthesis-cornea interface gap in three patients. One subject had developed postoperative endophthalmitis 8 months after surgery and the other two cases were among the high risk group according to the preoperative diagnosis. In one patient with severe ocular hypotony, the Kpro edge was inserted into the anterior stroma and covered with epithelium. Conclusion: UHR-OCT showed that corneal epithelium covers the Kpro edge and seals the potential space between the Kpro and cornea in 80% of cases. The presence of a gap in the interface and lack of epithelial sealing around the Kpro edge might be associated with endophthalmitis.

  20. Abundance Analysis of 17 Planetary Nebulae from High-Resolution Optical Spectroscopy

    Science.gov (United States)

    Sherrard, Cameroun G.; Sterling, Nicholas C.; Dinerstein, Harriet L.; Madonna, Simone; Mashburn, Amanda

    2017-06-01

    We present an abundance analysis of 17 planetary nebulae (PNe) observed with the 2D-coudé echelle spectrograph on the 2.7-m Harlan J. Smith telescope at McDonald Observatory. The spectra cover the wavelength range 3600--10,400 Å at a resolution R = 36,700, and are the first high-resolution optical spectra for many objects in our sample. The number of emission lines detected in individual nebulae range from ~125 to over 600. We derive temperatures, densities, and abundances from collisionally-excited lines using the PyNeb package (Luridiana et al. 2015, A&A, 573, A42) and the ionization correction factor scheme of Delgado-Inglada et al. (2014, MNRAS, 440, 536). The abundances of light elements agree with previous estimates for most of the PNe. Several objects exhibit emission lines of refractory elements such as K and Fe, and neutron-capture elements that can be enriched by the s-process. We find that K and Fe are depleted relative to solar by ~0.3--0.7~dex and 1-2 dex, respectively, and find evidence for s-process enrichments in 10 objects. Several objects in our sample exhibit C, N, and O recombination lines that are useful for abundance determinations. These transitions are used to compute abundance discrepancy factors (ADFs), the ratio of ionic abundances derived from permitted lines to those from collisionally-excited transitions. We explore relations among depletion factors, ADFs, s-process enrichment factors, and other nebular stellar and nebular properties. We acknowledge support from NSF awards AST-901432 and AST-0708429.

  1. Windthrow Detection in European Forests with Very High-Resolution Optical Data

    Directory of Open Access Journals (Sweden)

    Kathrin Einzmann

    2017-01-01

    Full Text Available With climate change, extreme storms are expected to occur more frequently. These storms can cause severe forest damage, provoking direct and indirect economic losses for forestry. To minimize economic losses, the windthrow areas need to be detected fast to prevent subsequent biotic damage, for example, related to beetle infestations. Remote sensing is an efficient tool with high potential to cost-efficiently map large storm affected regions. Storm Niklas hit South Germany in March 2015 and caused widespread forest cover loss. We present a two-step change detection approach applying commercial very high-resolution optical Earth Observation data to spot forest damage. First, an object-based bi-temporal change analysis is carried out to identify windthrow areas larger than 0.5 ha. For this purpose, a supervised Random Forest classifier is used, including a semi-automatic feature selection procedure; for image segmentation, the large-scale mean shift algorithm was chosen. Input features include spectral characteristics, texture, vegetation indices, layer combinations and spectral transformations. A hybrid-change detection approach at pixel-level subsequently identifies small groups of fallen trees, combining the most important features of the previous processing step with Spectral Angle Mapper and Multivariate Alteration Detection. The methodology was evaluated on two test sites in Bavaria with RapidEye data at 5 m pixel resolution. The results regarding windthrow areas larger than 0.5 ha were validated with reference data from field visits and acquired through orthophoto interpretation. For the two test sites, the novel object-based change detection approach identified over 90% of the windthrow areas (≥0.5 ha. The red edge channel was the most important for windthrow identification. Accuracy levels of the change detection at tree level could not be calculated, as it was not possible to collect field data for single trees, nor was it possible to

  2. Diagnosis and management of conjunctival and corneal intraepithelial neoplasia using ultra high-resolution optical coherence tomography.

    Science.gov (United States)

    Shousha, Mohamed Abou; Karp, Carol L; Perez, Victor L; Hoffmann, Rodrigo; Ventura, Roberta; Chang, Victoria; Dubovy, Sander R; Wang, Jianhua

    2011-08-01

    To report a novel diagnostic technique and a case series of conjunctival and corneal intraepithelial neoplasia (CCIN) diagnosed and followed up using prototype ultra high-resolution (UHR) optical coherence tomography (OCT). Prospective, noncomparative, interventional case series. Seven eyes of 7 consecutive patients with CCIN treated using topical interferon alfa-2b or 5-fluorouracil and 7 eyes of 6 consecutive patients with history of surgically excised pterygia. Ultra high-resolution OCT imaging of the ocular surface at primary diagnosis of CCIN and during the follow-up period until resolution of the lesion. Ultra high-resolution OCT images of sites of excised pterygia also were captured and compared with images from resolved CCIN patients. Clinical course and photographs, UHR OCT images, and histopathologic findings. Ultra high-resolution OCT was capable of providing a noninvasive optical biopsy of all examined CCIN lesions. Ultra high-resolution OCT images of the lesions disclosed a thickened hyperreflective epithelium and abrupt transition from normal to hyperreflective epithelium in all 7 cases. Ultra high-resolution OCT images showed excellent correlation with histopathologic specimens obtained at primary diagnosis of the cases that had incisional biopsies before treatment. All patients were treated medically and were followed up for clinical resolution. In 4 patients, at clinical resolution, UHR OCT images also showed normal epithelial configuration at the site of the treated lesions. In 3 patients, despite apparent clinical resolution, the UHR OCT was able to detect residual disease that was clinically invisible. Continuation of treatment resulted in complete resolution of the residual lesions on the UHR OCT images in all cases. Ultra high-resolution OCT images of patients with surgically excised pterygia demonstrated similar findings to resolved CCIN cases. Ultra high-resolution OCT is a novel noninvasive technique to diagnose and manage medically treated

  3. Update on the Gemini High-Resolution Optical SpecTrograph (GHOST)

    Science.gov (United States)

    Margheim, Steven J.; Ghost Instrument Team

    2015-01-01

    The Gemini High-Resolution Opitcal SpecTrograph (GHOST) is under development for the Gemini telescopes in collaboration with the Austrailian Astronomical Observatory (AAO), the NRC-Herzberg in Canada, and the Australian National University (ANU). The latest design and project plan will be presented and the scientific role of the instrument will be discussed.

  4. ALOHA project: how nonlinear optics can boost interferometry to propose a new generation of instrument for high-resolution imaging

    Science.gov (United States)

    Reynaud, François; Darré, Pascaline; Szemendera, Ludovic; Gomes, Jean-Thomas; Grossard, Ludovic; Delage, Laurent

    2016-07-01

    The ALOHA research program aims to propose a breakthrough generation of instrument for high resolution imaging in astronomy. This fully innovative concept results from our unique skills with a simultaneous competence in nonlinear optics and high resolution imaging with telescope arrays. Acting like a mixer in a radio receiver, the nonlinear process (sum frequency generation) shifts the infrared radiations emitted by the observed astrophysical source to a visible spectral domain. This way, the light beam is more easily processed by mature optical devices and detectors. The compatibility of the nonlinear process with the spatial coherence analysis has been successfully tested through preliminary in lab experiments. Now it's time to apply this technique in a real astronomical environment. First on-sky results have been observed during the last missions at the CHARA Array.

  5. ROI-ORIENTATED SENSOR CORRECTION BASED ON VIRTUAL STEADY REIMAGING MODEL FOR WIDE SWATH HIGH RESOLUTION OPTICAL SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    Y. Zhu

    2017-09-01

    Full Text Available To meet the requirement of high accuracy and high speed processing for wide swath high resolution optical satellite imagery under emergency situation in both ground processing system and on-board processing system. This paper proposed a ROI-orientated sensor correction algorithm based on virtual steady reimaging model for wide swath high resolution optical satellite imagery. Firstly, the imaging time and spatial window of the ROI is determined by a dynamic search method. Then, the dynamic ROI sensor correction model based on virtual steady reimaging model is constructed. Finally, the corrected image corresponding to the ROI is generated based on the coordinates mapping relationship which is established by the dynamic sensor correction model for corrected image and rigours imaging model for original image. Two experimental results show that the image registration between panchromatic and multispectral images can be well achieved and the image distortion caused by satellite jitter can be also corrected efficiently.

  6. High-resolution, high-frequency wavelength shift detection of optical signals with low-cost, compact readouts

    Science.gov (United States)

    Schuh, A.; Hegyi, A.; Raghavan, A.; Lochbaum, A.; Schwartz, J.,; Kiesel, P.

    2015-05-01

    Fiber-optics (FO) have great potential for distributed sensing in various harsh environment applications. Their advantages include high resolution and multiplexing capabilities, inherent immunity to electromagnetic interference, and low weight/volume. However, their widespread adoption in commercial applications has been considerably limited by the high cost, size, weight, and lack of capabilities of the readout unit used to interpret the FO signals. PARC has developed a breakthrough wavelength shift detection (WSD) technology that is capable of reading out signals from wavelength-encoded FO and other optical sensors with high sensitivity using a compact, high-speed and low-cost unit. In this paper, its calibration and noise performance is demonstrated for high-resolution (up to 1,45 fm/√Hz) acoustic emission (AE) detection of fast (up to 1 MHz) dynamic strain signals.

  7. High resolution magnetic force microscopy: instrumentation and application for recording media

    NARCIS (Netherlands)

    Porthun, Steffen; Porthun, S.

    This thesis describes aspects of the use of magnetic force microscopy for the study of magnetic recording media. The maximum achievable storage density in magnetic recording is limited by the magnetic reversal behaviour of the medium and by the stability of the written information. The shape and

  8. High-resolution 900 year volcanic and climatic record from the Vostok area, East Antarctica

    Science.gov (United States)

    Osipov, E. Y.; Khodzher, T. V.; Golobokova, L. P.; Onischuk, N. A.; Lipenkov, V. Y.; Ekaykin, A. A.; Shibaev, Y. A.; Osipova, O. P.

    2014-05-01

    Ion chromatography measurements of 1730 snow and firn samples obtained from three short cores and one pit in the Vostok station area, East Antarctica, allowed for the production of the combined volcanic record of the last 900 years (AD 1093-2010). The resolution of the record is 2-3 samples per accumulation year. In total, 24 volcanic events have been identified, including seven well-known low-latitude eruptions (Pinatubo 1991, Agung 1963, Krakatoa 1883, Tambora 1815, Huanaputina 1600, Kuwae 1452, El Chichon 1259) found in most of the polar ice cores. In comparison with three other East Antarctic volcanic records (South Pole, Plateau Remote and Dome C), the Vostok record contains more events within the last 900 years. The differences between the records may be explained by local glaciological conditions, volcanic detection methodology, and, probably, differences in atmospheric circulation patterns. The strongest volcanic signal (both in sulfate concentration and flux) was attributed to the AD 1452 Kuwae eruption, similar to the Plateau Remote and Talos Dome records. The average snow accumulation rate calculated between volcanic stratigraphic horizons for the period AD 1260-2010 is 20.9 mm H2O. Positive (+13%) anomalies of snow accumulation were found for AD 1661-1815 and AD 1992-2010, and negative (-12%) for AD 1260-1601. We hypothesized that the changes in snow accumulation are associated with regional peculiarities in atmospheric transport.

  9. High-resolution Holocene South American monsoon history recorded by a speleothem from Botuverá Cave, Brazil

    Science.gov (United States)

    Bernal, J. P.; Cruz, Francisco W.; Stríkis, Nicolás M.; Wang, Xianfeng; Deininger, Michael; Catunda, Maria Carolina A.; Ortega-Obregón, C.; Cheng, Hai; Edwards, R. Lawrence; Auler, Augusto S.

    2016-09-01

    A Holocene stalagmite from Botuverá Cave, southeastern Brazil was analyzed by LA-ICPMS for Mg/Ca, Sr/Ca, Ba/Ca. The observed variability in the record was demonstrated to be modulated by prior calcite precipitation, and, thus, is interpreted to reflect monsoon intensity. We find that the calcite δ18O is strongly correlated with Sr/Ca, indicating that atmospheric circulation over South America and monsoon intensity have been tightly correlated throughout most of the Holocene, both directly responding to solar precession. Comparison with other contemporaneous high-resolution hydroclimate records reveals that SAMS has shown a degree of complexity during the Holocene not previously detected, with periods where the South American Convergence Zone (SACZ) expanded to cover most of the South American sub-continent, and coincident with periods of low-SST in the north Atlantic. We also detect periods where rainfall amount in northeastern and southeastern Brazil are markedly anti-phased, suggesting a north-south migration of SACZ, which it appears to be mediated by solar irradiance. The high-resolution nature of our record allow us to examine the effect that Holocene climate anomalies had upon SAMS dynamics and hydroclimate in southeastern Brazil, in particular the 8.2 ka event and the Little Ice Age. In addition to confirm the internal structure of the events, we also detect the possible consequences of the climatic anomalies upon ocean-atmosphere interactions through its effects upon SAMS.

  10. High-resolution carbon dioxide concentration record 650,000-800,000 years before present

    DEFF Research Database (Denmark)

    Lüthi, Dieter; Le Floch, Martine; Bereiter, Bernhard

    2008-01-01

    Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650......,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide...

  11. High resolution climate reconstructions of recent warming using instrumental and ice core records from coastal Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Thamban, M.; Naik, S.S.; Laluraj, C.M.; Ravindra, R.

    . These ice records provided insights on the influence of solar forcing on Antarctic climate system as well as its linkages with the tropical and mid-latitude climatic modes like the Southern Annular Mode (SAM) and El Niño Southern Oscillation (ENSO...

  12. European Impacts on coastal eastern Tasmania: Insight from a high-resolution palynological record of a salt-marsh core

    Directory of Open Access Journals (Sweden)

    Patrick Tobias Moss

    2016-08-01

    Full Text Available A high-resolution pollen and micro-charcoal (>5 μm record has been produced from a short sediment (50 cm core recovered from a salt marsh in the Little Swanport Estuary, eastern Tasmania. This record suggests that there are four phases associated with the European settlement of the region. An initial phase from around 1830 to 1858 AD, which is similar to the previous Aboriginal period; a relatively low impact transitional phase from 1859 to 1898 AD; a rapid and marked deforestation period from 1899 to 1932 AD; and establishment of the contemporary landscape, with reforestation occurring, but with marked differences in species composition (i.e. greater representation of exotic taxa and altered understorey composition from 1933 to 2006 AD. Key similarities are seen across Australia with the European settlement phase (i.e. addition of exotic taxa, deforestation and/or changes in vegetation composition, alterations in fire regimes and increased sedimentation rates, but high-resolution analysis suggests that these impacts may manifest in different ways depending on the local environmental setting and/or historical context of the settlement location. Furthermore, Amaranthaceae pollen representation appears to be impacted by changes in sea level. However, other factors such as human modifications, particularly grazing, and climate variability may play additional roles and further research is required to disentangle the relative effects of these factors.

  13. Verlorenvlei - The first continuous Holocene high-resolution lake sediment record from the Winter Rainfall Zone of South Africa

    Science.gov (United States)

    Haberzettl, T.; Kasper, T.; Lederer, M.; Wündsch, M.; Frenzel, P.; Zabel, M.; Kirsten, K. L.; Meadows, M. E.; Quick, L. J.; St-Onge, G.; Maeusbacher, R.

    2015-12-01

    Verlorenvlei is a coastal lake in the Winter Rainfall Zone of the Western Cape Province of South Africa. Up to now several attempts have been made to recover sediment cores from this lake. However, no continuous high-resolution record covering large parts of the Holocene has been available so far. Within the project RAIN (Regional Archives for Integrated iNvestigations) it was possible to recover a 14.2 m paired parallel core from the central part of Verlorenvlei. Investigations on recent surface sediment distributions (elemental composition and grain sizes) indicate that this sediment core is very well suited for paleoenvironmental reconstructions. Using a set of 23 radiocarbon ages, a chronology for the past 9,000 cal BP was established which suggests continuous sedimentation over this period. Preliminary lithological and geochemical investigations show that this record can be used for sea level reconstructions as the lake was periodically inundated by the ocean during the past 9,000 cal BP. This is recorded in distinctly elevated Ca and Sr contents as well as the occurrence of marine indicator species (snail and mussel shells) in parts of the sediment core. Thin, pale grey layers of fine sediment occurring at various sediment depths seem to reflect event related deposits. In terms of lithology, geochemical and magnetic composition, the upper 50 cm clearly differ from the rest of the record and indicate increased sediment supply from the catchment, which is likely linked to anthropogenic farming activities. In conclusion, the newly recovered sediment record from Verlorenvlei offers excellent potential for a detailed, high-resolution reconstruction of sea level changes, climate variations and anthropogenic impact during the past 9,000 cal BP in an area in which natural archives are very scarce or poorly dated.

  14. High-resolution record of Northern Hemisphere climate extending into the last interglacial period

    DEFF Research Database (Denmark)

    North Greenland Ice Core Project members; Andersen, Katrine K.; Azuma, N.

    2004-01-01

    Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from......-saw between the hemispheres (which dominated the last glacial period) was not operating at this time....

  15. A high-resolution multi-proxy record of late Cenozoic environment change from central Taklimakan Desert, China

    Science.gov (United States)

    Wang, X.; Sun, D. H.; Wang, F.; Li, B. F.; Wu, S.; Guo, F.; Li, Z. J.; Zhang, Y. B.; Chen, F. H.

    2013-12-01

    The Taklimakan Desert in the Tarim Basin is the largest desert in Central Asia, and is regarded as one of the main dust sources to the Northern Hemisphere. Late Cenozoic sedimentary sequences with intercalated in-situ aeolian dune sands in this area preserve direct evidence for the Asian desertification. Herein, we report a high-resolution multi-proxy climatic record from the precise magnetostratigraphic dated Hongbaishan section in the central Taklimakan Desert. Our results show that a fundamental climate change, characterised by significant cooling, enhanced aridity, and intensified atmospheric circulation, occurred at 2.8 Ma. Good correlations between paleo-environmental records in the dust sources and downwind areas suggest a broadly consistent climate evolution of northwestern China during the late Cenozoic, which is probably driven by the uplift of the Tibet Plateau and the Northern Hemisphere glaciation.

  16. Brain Source Imaging in Preclinical Rat Models of Focal Epilepsy using High-Resolution EEG Recordings.

    Science.gov (United States)

    Bae, Jihye; Deshmukh, Abhay; Song, Yinchen; Riera, Jorge

    2015-06-06

    Electroencephalogram (EEG) has been traditionally used to determine which brain regions are the most likely candidates for resection in patients with focal epilepsy. This methodology relies on the assumption that seizures originate from the same regions of the brain from which interictal epileptiform discharges (IEDs) emerge. Preclinical models are very useful to find correlates between IED locations and the actual regions underlying seizure initiation in focal epilepsy. Rats have been commonly used in preclinical studies of epilepsy; hence, there exist a large variety of models for focal epilepsy in this particular species. However, it is challenging to record multichannel EEG and to perform brain source imaging in such a small animal. To overcome this issue, we combine a patented-technology to obtain 32-channel EEG recordings from rodents and an MRI probabilistic atlas for brain anatomical structures in Wistar rats to perform brain source imaging. In this video, we introduce the procedures to acquire multichannel EEG from Wistar rats with focal cortical dysplasia, and describe the steps both to define the volume conductor model from the MRI atlas and to uniquely determine the IEDs. Finally, we validate the whole methodology by obtaining brain source images of IEDs and compare them with those obtained at different time frames during the seizure onset.

  17. A Complete Holocene High-resolution Multiproxy Climate Record from the Northern Great Plains

    Science.gov (United States)

    Grimm, E. C.; Donovan, J. J.; Brown, K. J.

    2010-12-01

    The decadal-resolution multiproxy (mineralogy, pollen, charcoal) record from Kettle Lake, North Dakota encompasses the entire Holocene, with a chronology established by over 50 AMS radiocarbon dates. This record exhibits millennial scale trends evident in other lower-resolution studies, but with substantially greater detail on the rapidity and timing of major climatic shifts and on short-term climate variability. This record utilizes the rate of endogenic carbonate sedimentation, which depends on the rate of groundwater flow into the lake, as a sensitive proxy for precipitation, especially suitable for lakes supported by water from highly permeable carbonate-rich aquifers. Independent cluster analyses of mineral and pollen data reveal major Holocene mode shifts at 10.73 ka (ka = cal yr BP), 9.25 ka, and 4.44 ka. The early Holocene, 11.7-9.25 ka, is generally wet, with perhaps a trend to higher evaporation associated with warming temperatures. A switch from calcite to aragonite deposition is associated with a severe, but brief, drought at 10.73 ka. From 10.73 ka to 9.25 ka, a generally humid climate is punctuated at 100-300 yr intervals by brief droughts, including the most severe drought of the entire Holocene at 9.25 ka. The number of droughts during this period, including the bracketing droughts at 10.73 ka and 9.25 ka, is comparable to the number of Lake Agassiz recessions and outbursts during this period. Furthermore, the bracketing droughts correspond in age to the largest draw downs (30 and 58 m). Based on this evidence, we propose that droughts evident in the aragonite record at Kettle Lake were induced by either (a) local climate effects related to decreased size of or increased distance from Lake Agassiz, or (b) teleconnections with North Atlantic thermohaline changes associated with Agassiz outbursts. With the retreat of Lake Agassiz far to the north from the Stonewall beach at 9.25 ka, the “Agassiz lake effect” on NGP humidity was removed, and NGP

  18. LOW FREQUENCY ERROR ANALYSIS AND CALIBRATION FOR HIGH-RESOLUTION OPTICAL SATELLITE’S UNCONTROLLED GEOMETRIC POSITIONING

    Directory of Open Access Journals (Sweden)

    M. Wang

    2016-06-01

    Full Text Available The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite’s real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.

  19. A high resolution record of chlorine-36 nuclear-weapons-tests fallout from Central Asia

    Science.gov (United States)

    Green, J.R.; Cecil, L.D.; Synal, H.-A.; Santos, J.; Kreutz, K.J.; Wake, C.P.

    2004-01-01

    The Inilchek Glacier, located in the Tien Shan Mountains, central Asia, is unique among mid-latitude glaciers because of its relatively large average annual accumulation. In July 2000, two ice cores of 162 and 167 meters (m) in length were collected from the Inilchek Glacier for (chlorine-36) 36Cl analysis a part of a collaborative international effort to study the environmental changes archived in mid-latitude glaciers worldwide. The average annual precipitation at the collection site was calculated to be 1.6 m. In contrast, the reported average annual accumulations at the high-latitude Dye-3 glacial site, Greenland, the mid-latitude Guliya Ice Cap, China, and the mid-latitude Upper Fremont Glacier, Wyoming, USA, were 0.52, 0.16 and 0.76 m, respectively. The resolution of the 36Cl record in one of the Inilchek ice cores was from 2 to 10 times higher than the resolution of the records at these other sites and could provide an opportunity for detailed study of environmental changes that have occurred over the past 150 years. Despite the differences in accumulation among these various glacial sites, the 36Cl profile and peak concentrations for the Inilchek ice core were remarkably similar in shape and magnitude to those for ice cores from these other sites. The 36Cl peak concentration from 1958, the year during the mid-1900s nuclear-weapons-tests period when 36Cl fallout was largest, was preserved in the Inilchek core at a depth of 90.56 m below the surface of the glacier (74.14-m-depth water equivalent) at a concentration of 7.7 ?? 105 atoms of 36Cl/gram (g) of ice. Peak 36Cl concentrations from Dye-3, Guliya and the Upper Fremont glacial sites were 7.1 ?? 105, 5.4 ?? 105 and 0.7 ?? 105 atoms of 36Cl/g of ice, respectively. Measurements of 36Cl preserved in ice cores improve estimates of historical worldwide atmospheric deposition of this isotope and allow the sources of 36Cl in ground water to be better identified. ?? 2004 Published by Elsevier B.V.

  20. A high resolution record of chlorine-36 nuclear-weapons-tests fallout from Central Asia

    Science.gov (United States)

    Green, J. R.; Cecil, L. D.; Synal, H.-A.; Santos, J.; Kreutz, K. J.; Wake, C. P.

    2004-08-01

    The Inilchek Glacier, located in the Tien Shan Mountains, central Asia, is unique among mid-latitude glaciers because of its relatively large average annual accumulation. In July 2000, two ice cores of 162 and 167 meters (m) in length were collected from the Inilchek Glacier for (chlorine-36) 36Cl analysis a part of a collaborative international effort to study the environmental changes archived in mid-latitude glaciers worldwide. The average annual precipitation at the collection site was calculated to be 1.6 m. In contrast, the reported average annual accumulations at the high-latitude Dye-3 glacial site, Greenland, the mid-latitude Guliya Ice Cap, China, and the mid-latitude Upper Fremont Glacier, Wyoming, USA, were 0.52, 0.16 and 0.76 m, respectively. The resolution of the 36Cl record in one of the Inilchek ice cores was from 2 to 10 times higher than the resolution of the records at these other sites and could provide an opportunity for detailed study of environmental changes that have occurred over the past 150 years. Despite the differences in accumulation among these various glacial sites, the 36Cl profile and peak concentrations for the Inilchek ice core were remarkably similar in shape and magnitude to those for ice cores from these other sites. The 36Cl peak concentration from 1958, the year during the mid-1900s nuclear-weapons-tests period when 36Cl fallout was largest, was preserved in the Inilchek core at a depth of 90.56 m below the surface of the glacier (74.14-m-depth water equivalent) at a concentration of 7.7 × 105 atoms of 36Cl/gram (g) of ice. Peak 36Cl concentrations from Dye-3, Guliya and the Upper Fremont glacial sites were 7.1 × 105, 5.4 × 105 and 0.7 × 105 atoms of 36Cl/g of ice, respectively. Measurements of 36Cl preserved in ice cores improve estimates of historical worldwide atmospheric deposition of this isotope and allow the sources of 36Cl in ground water to be better identified.

  1. High-Resolution Pollen Record of Deglacial Climate Variability in Central Florida

    Science.gov (United States)

    Willard, D. A.; Bernhardt, C. E.; Edgar, T.

    2004-12-01

    Pollen evidence from lacustrine sediments in Tampa Bay, Florida document considerable climatic variability superimposed on deglacial warming in the subtropics. Nine radiocarbon dates on well-preserved mollusk shells provide a reliable chronology of continuous sedimentation from 20 ka to 11.5 ka; examination of pollen assemblages from 2 cm increments within the lacustrine unit provide temporal resolution averaging one sample every 45 years. During the glacial maximum, much drier and cooler than modern conditions are indicated by pollen assemblages enriched in Chenopodiaceae, Carya, Poaceae and Ambrosia. Increased abundance of Pinus pollen between 17.4 ka and 15 ka indicates the existence of warmer, wetter conditions in the interval including Heinrich Event 1. After a reversion to drier, cooler conditions at about 15 ka, Pinus pollen abundance increased again at 14 ka. Combined with the near loss of Carya pollen, these data suggest attainment of nearly modern climatic conditions during the Bolling-Allerod (14-13 ka). However, variability within the Bolling-Allerod is documented by shifts to deglacial-equivalent vegetation during the Older Dryas (13.4-13.6 ka). The Younger Dryas (12.9-11.6 ka) is characterized by two distinct phases: from 12.9-11.9 ka, the increased abundance of Chenopodiaceae and Quercus mark drier, possibly cooler conditions comparable to those of the deglacial (17.4 - 14 ka). From 11.9-11.5 ka, strong dominance of herbaceous Chenopodiaceae is similar to full-glacial conditions, indicating much drier, possibly cooler conditions. Comparison of these paleoclimatic patterns with marine records from Orca Basin in the Gulf of Mexico indicate close temporal correspondence in warming of atmospheric and sea-surface temperatures. Pollen evidence also suggests that significant warming began around 17.4 ka, before the onset of Heinrich Event 1, as has been documented at other sites in the North Atlantic Ocean and Europe. This record of deglacial atmospheric

  2. Development and Performance Verification of the GANDALF High-Resolution Transient Recorder System

    CERN Document Server

    Bartknecht, Stefan; Herrmann, Florian; Königsmann, Kay; Lauser, Louis; Schill, Christian; Schopferer, Sebastian; Wollny, Heiner

    2011-01-01

    With present-day detectors in high energy physics one often faces fast analog pulses of a few nanoseconds length which cover large dynamic ranges. In many experiments both amplitude and timing information have to be measured with high accuracy. Additionally, the data rate per readout channel can reach several MHz, which leads to high demands on the separation of pile-up pulses. For an upgrade of the COMPASS experiment at CERN we have designed the GANDALF transient recorder with a resolution of 12bit@1GS/s and an analog bandwidth of 500\\:MHz. Signals are digitized with high precision and processed by fast algorithms to extract pulse arrival times and amplitudes in real-time and to generate trigger signals for the experiment. With up to 16 analog channels, deep memories and a high data rate interface, this 6U-VME64x/VXS module is not only a dead-time free digitization unit but also has huge numerical capabilities provided by the implementation of a Virtex5-SXT FPGA. Fast algorithms implemented in the FPGA may b...

  3. Development of a 1 GS/s high-resolution transient recorder

    CERN Document Server

    Bartknecht, S; Herrmann, F; Königsmann, K; Lauser, L; Schill, C; Schopferer, S; Wollny, H

    2009-01-01

    With present-day detectors in high energy physics one is often faced with short analog pulses of a few nanoseconds length which may cover large dynamic ranges. In many experiments both amplitude and timing information have to be measured with high accuracy. Additionally, the data rate per readout channel can reach several MHz, which makes high demands on the separation of pile-up pulses. For such applications we have built the GANDALF transient recorder with a resolution of 12bit@1GS/s and an analog bandwidth of 500 MHz. Signals are digitized and processed by fast algorithms to extract pulse arrival times and amplitudes in real-time and to generate experiment trigger signals. With up to 16 analog channels, deep memories and a high data rate interface, this 6U-VME64x/VXS module is not only a dead-time free digitization unit but also has huge numerical capabilities provided by the implementation of a Virtex5-SXT FPGA. Fast algorithms implemented in the FPGA may be used to disentangle possible pile-up pulses and...

  4. A high-resolution record of carbon accumulation rates during boreal peatland initiation

    Directory of Open Access Journals (Sweden)

    I. F. Pendea

    2012-07-01

    Full Text Available Boreal peatlands are a major global C sink, thus having important feedbacks to climate. A decreased concentration in atmospheric CO2 7000–10 000 yr ago has been linked to variations in peatland C accumulation rates attributed to a warm climate and increased productivity. Yet, this period also corresponds to early stages of peatland development (as peatland was expanding following retreat of ice sheets and increases in C storage could be associated with wetland evolution via lake filling or following marine shoreline emergence. Unravelling past links amongst peatland dynamics, C storage, and climate will help us assess potential feedbacks from future changes in these systems, but most studies are hampered by low temporal resolution. Here we provide a decadal scale C accumulation record for a fen that has begun transformation from salt marsh within the last 70 yr on the isostatically rebounding coast of James Bay, Québec. We determined time frames for wetland stages using palynological analyses to reconstruct ecological change and 210Pb and 137Cs to date the deposit. The average short-term C accumulation rates during the low and high tidal marsh and incipient fen stage (42, 87 and 182 g C m−2 yr−1, respectively were as much as six times higher than the global long-term (millennial average for northern peatlands. We suggest that the atmospheric CO2 flux during the early Holocene could be attributed, in part, to wetland evolution associated with isostatic rebound, which makes land for new wetland formation. Future climate warming will increase eustatic sea level, decrease rates of land emergence and formation of new coastal wetlands, ultimately decreasing rates of C storage of wetlands on rebounding coastlines.

  5. A high-resolution angiosperm pollen reference record covering Albian mid-latitude coastal deposits (Lusitanian Basin, Portugal)

    Science.gov (United States)

    Horikx, Maurits; Dinis, Jorge L.; Heimhofer, Ulrich

    2013-04-01

    The Lusitanian Basin in Portugal is one of the most important areas to investigate the rise and radiation of early angiosperms. Here, important micro-, macro- and mesofossil remains including pollen, reproductive organs, fruits and seeds have been found. In this study, a high-resolution Early to Late Albian pollen record from a thick (~160m) coastal succession in the Lusitanian Basin containing mixed carbonate-siliciclastic near-shore deposits is generated. The outcrop is located near the town of Ericeira (São Julião) and exhibits some important new features compared to existing records from the Lusitanian basin. The comparatively proximal depositional setting and high sedimentation rate of the São Julião outcrop is well suited for high-resolution palynological sampling compared to previously studied, more distal outcrops. In addition, the succession covers almost the entire Albian including a thick interval representing Late Albian strata. Dating of the succession was obtained using dinoflagellate cyst biostratigraphy, bulk C-isotope analysis and strontium isotope analysis of low-Mg oysters and rudist shells. The high-resolution pollen record shows a distinct radiation pattern of early angiosperm pollen as well as significant changes in the accompanying palynoflora. During most of the section gymnosperm pollen types such as Classopollis spp., Inaperturopollenites spp. and Exesipollenites spp. are dominant. Angiosperm pollen abundances do not exceed 20%, although angiosperms increase slightly from the Early Albian onwards. Monoaperturate grains of magnoliid or monocot affinity remain the most dominant angiosperm pollen type, both in abundances and diversity. Tricolpate and zonoaperturate pollen grains are also present. In addition, the occurrence of several odd-shaped Dichastopollenites-type pollen types is intriguing. The palynological results indicate a warm and dry climate during most of the Albian, although a rise in the spores over pollen ratio in the

  6. Late Permian-earliest Triassic high-resolution organic carbon isotope and palynofacies records from Kap Stosch (East Greenland)

    Science.gov (United States)

    Sanson-Barrera, Anna; Hochuli, Peter A.; Bucher, Hugo; Schneebeli-Hermann, Elke; Weissert, Helmut; Adatte, Thierry; Bernasconi, Stefano M.

    2015-10-01

    During and after the end Permian mass extinction terrestrial and marine biota underwent major changes and reorganizations. The latest Permian and earliest Triassic is also characterized by major negative carbon isotope shifts reflecting fundamental changes in the carbon cycle. The present study documents a high-resolution bulk organic carbon isotope record and palynofacies analysis spanning the latest Permian-earliest Triassic of East Greenland. An almost 700 meter thick composite section from Kap Stosch allowed discriminating 6 chemostratigraphic intervals that provide the basis for the correlation with other coeval records across the world, and for the recognition of basin wide transgressive-regressive events documenting tectonic activity during the opening of the Greenland-Norway Basin. The identification of the main factors that influenced the organic carbon isotope signal during the earliest Triassic (Griesbachian to Dienerian) was possible due to the combination of bulk organic carbon isotope, palynofacies and Rock-Eval data. Two negative carbon isotopic shifts in the Kap Stosch record can be correlated with negative shifts recorded in coeval sections across the globe. A first negative shift precedes the base of the Triassic as defined by the first occurrence of the conodont Hindeodus parvus in the Meishan reference section, and the second one coincides with the suggested Griesbachian-Dienerian boundary. This new organic carbon isotope record from the extended Kap Stosch section from the Boreal Realm documents regional and global carbon cycle signals of the interval between the latest Palaeozoic and the onset of the Mesozoic.

  7. Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography.

    Science.gov (United States)

    Ruggeri, Marco; Major, James C; McKeown, Craig; Knighton, Robert W; Puliafito, Carmen A; Jiao, Shuliang

    2010-11-01

    To reveal three-dimensional (3-D) information about the retinal structures of birds of prey in vivo. An ultra-high resolution spectral-domain optical coherence tomography (SD-OCT) system was built for in vivo imaging of retinas of birds of prey. The calibrated imaging depth and axial resolution of the system were 3.1 mm and 2.8 μm (in tissue), respectively. 3-D segmentation was performed for calculation of the retinal nerve fiber layer (RNFL) map. High-resolution OCT images were obtained of the retinas of four species of birds of prey: two diurnal hawks (Buteo platypterus and Buteo brachyurus) and two nocturnal owls (Bubo virginianus and Strix varia). These images showed the detailed retinal anatomy, including the retinal layers and the structure of the deep and shallow foveae. The calculated thickness map showed the RNFL distribution. Traumatic injury to one bird's retina was also successfully imaged. Ultra-high resolution SD-OCT provides unprecedented high-quality 2-D and 3-D in vivo visualization of the retinal structures of birds of prey. SD-OCT is a powerful imaging tool for vision research in birds of prey.

  8. High-resolution CCD imagers using area-array CCD's for sensing spectral components of an optical line image

    Science.gov (United States)

    Elabd, Hammam (Inventor); Kosonocky, Walter F. (Inventor)

    1987-01-01

    CCD imagers with a novel replicated-line-imager architecture are abutted to form an extended line sensor. The sensor is preceded by optics having a slit aperture and having an optical beam splitter or astigmatic lens for projecting multiple line images through an optical color-discriminating stripe filter to the CCD imagers. A very high resolution camera suitable for use in a satellite, for example, is thus provided. The replicated-line architecture of the imager comprises an area-array CCD, successive rows of which are illuminated by replications of the same line segment, as transmitted by respective color filter stripes. The charge packets formed by accumulation of photoresponsive charge in the area-array CCD are read out row by row. Each successive row of charge packets is then converted from parallel to serial format in a CCD line register and its amplitude sensed to generate a line of output signal.

  9. A Search for Water in a Super-Earth Atmosphere: High-resolution Optical Spectroscopy of 55Cancri e

    Science.gov (United States)

    Esteves, Lisa J.; de Mooij, Ernst J. W.; Jayawardhana, Ray; Watson, Chris; de Kok, Remco

    2017-06-01

    We present the analysis of high-resolution optical spectra of four transits of 55Cnc e, a low-density super-Earth that orbits a nearby Sun-like star in under 18 hr. The inferred bulk density of the planet implies a substantial envelope, which, according to mass-radius relationships, could be either a low-mass extended or a high-mass compact atmosphere. Our observations investigate the latter scenario, with water as the dominant species. We take advantage of the Doppler cross-correlation technique, high-spectral resolution, and the large wavelength coverage of our observations to search for the signature of thousands of optical water absorption lines. Using our observations with HDS on the Subaru telescope and ESPaDOnS on the Canada-France-Hawaii Telescope, we are able to place a 3σ lower limit of 10 g mol-1 on the mean-molecular weight of 55Cnc e’s water-rich (volume mixing ratio >10%), optically thin atmosphere, which corresponds to an atmospheric scale-height of ˜80 km. Our study marks the first high-spectral resolution search for water in a super-Earth atmosphere, and demonstrates that it is possible to recover known water-vapor absorption signals in a nearby super-Earth atmosphere, using high-resolution transit spectroscopy with current ground-based instruments.

  10. Easy and versatile adaptive optics setup with deformable lens for high-resolution microscopy

    Science.gov (United States)

    Pozzi, P.; Quintavalla, M.; Verstraete, H.; Bijlsma, H.; Bonora, S.; Verhaegen, M.

    2017-06-01

    It has been widely proven in literature that most optical microscopy techniques can greatly benefit from the application of adaptive optics correction of phase aberrations through an adaptive optical element, such as a deformable mirror or a spatial light modulator. However, adaptive optics is not yet widely adopted in the life sciences community, mostly due to the lack of adaptive commercial microscopy systems, and the inherent technical difficulty in modifying an existing microscopy setup to integrate an adaptive element, both on the software and hardware sides. We present a plug-and-play adaptive optics module for generic optical microscopes, based on a prototype refractive 18 actuators adaptive optical element, which can be inserted in any microscope between the objective and the microscope body. Correction is performed in a sensorless fashion, optimizing image quality metrics of the image presented to the user on screen. The results presented show how an end-user oriented commercial confocal laser scanning microscope (Leica SP5) can be upgraded with adaptive optics with minor hardware modifications, and no changes to the microscope control software.

  11. Very high resolution optical transition radiation imaging system: Comparison between simulation and experiment

    CERN Document Server

    Bolzon, B; Aumeyr, Thomas; Boogert, Stewart Takashi; Karataev, Pavel; Kruchinin, Konstantin; Lefevre, Thibaut; Mazzoni, Stefano; Nevay, Laurence James; Shevelev, M; Terunuma, N; Urakawa, J; Welsch, Carsten

    2015-01-01

    Optical transition radiation (OTR) has become a commonly used method for 2D beam imaging measurements. In the Accelerator Test Facility 2 (ATF2) at KEK, beam sizes smaller than the OTR point spread function have been measured. Simulations of the OTR imaging system have been performed using the ZEMAX software to study the effects of optical errors such as aberrations, diffraction, and misalignments of optical components. This paper presents a comparison of simulations of the OTR point spread function with experimental data obtained at ATF2. It shows how the quantification and control of optical errors impacts on optimizing the resolution of the system. We also show that the OTR point spread function needs to be predicted accurately to optimize any optical system and to predict the error made on measurement.

  12. High-resolution optical functional mapping of the human somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Stefan P Koch

    2010-06-01

    Full Text Available Non-invasive optical imaging of brain function has been promoted in a number of fields in which functional magnetic resonance imaging (fMRI is limited due to constraints induced by the scanning environment. Beyond physiological and psychological research, bedside monitoring and neurorehabilitation may be relevant clinical applications that are yet little explored. A major obstacle to advocate the tool in clinical research is insufficient spatial resolution. Based on a multi-distance high-density optical imaging setup, we here demonstrate a dramatic increase in sensitivity of the method. We show that optical imaging allows for the differentiation between activations of single finger representations in the primary somatosensory cortex (SI. Methodologically our findings confirm results in a pioneering study by Zeff et al. (2007 and extend them to the homuncular organization of SI. After performing a motor task, 8 subjects underwent vibrotactile stimulation of the little finger and the thumb. We used a high-density diffuse-optical sensing array in conjunction with optical tomographic reconstruction. Optical imaging disclosed three discrete activation foci one for motor and 2 discrete foci for vibrotactile stimulation of the 1st and 5th finger respectively. The results were co-registered to the individual anatomical brain anatomy (MRI which confirmed the localization in the expected cortical gyri in 4 subjects. This advance in spatial resolution opens new perspectives to apply optical imaging in the research on plasticity notably in patients undergoing neurorehabilitation.

  13. Electron beam excitation assisted optical microscope with ultra-high resolution.

    Science.gov (United States)

    Inami, Wataru; Nakajima, Kentaro; Miyakawa, Atsuo; Kawata, Yoshimasa

    2010-06-07

    We propose electron beam excitation assisted optical microscope, and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.

  14. Light intensity and SNR improvement for high-resolution optical imaging via time multiplexed pinhole arrays.

    Science.gov (United States)

    Schwarz, Ariel; Shemer, Amir; Zalevsky, Zeev

    2014-07-10

    In this paper, we present a novel method for pinhole optics with variable pinhole arrays. The imaging system is based on a time multiplexing method using variable and moving pinhole arrays. The improved resolution and signal-to-noise ratio are achieved with improved light intensity in the same exposure time, compared with that of a one-pinhole system. This new configuration preserves the advantages of pinhole optics while solving the resolution limitation problem and the long exposure time of such systems. The system also can be used as an addition to several existing optical systems, which use visible and invisible light and x-ray systems.

  15. High-Resolution Detector for At-Wavelength Metrology of X-Ray Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Since the launch of the first X-ray focusing telescope in 1963, the development of grazing incidence X-ray optics has been crucial to the development of the field of...

  16. Heterogeneous pattern of retinal nerve fiber layer in multiple sclerosis. High resolution optical coherence tomography: potential and limitations.

    Science.gov (United States)

    Serbecic, Nermin; Aboul-Enein, Fahmy; Beutelspacher, Sven C; Graf, Martin; Kircher, Karl; Geitzenauer, Wolfgang; Brannath, Werner; Lang, Priska; Kristoferitsch, Wolfgang; Lassmann, Hans; Reitner, Andreas; Schmidt-Erfurth, Ursula

    2010-11-08

    Recently the reduction of the retinal nerve fibre layer (RNFL) was suggested to be associated with diffuse axonal damage in the whole CNS of multiple sclerosis (MS) patients. However, several points are still under discussion. (1) Is high resolution optical coherence tomography (OCT) required to detect the partly very subtle RNFL changes seen in MS patients? (2) Can a reduction of RNFL be detected in all MS patients, even in early disease courses and in all MS subtypes? (3) Does an optic neuritis (ON) or focal lesions along the visual pathways, which are both very common in MS, limit the predication of diffuse axonal degeneration in the whole CNS? The purpose of our study was to determine the baseline characteristics of clinical definite relapsing-remitting (RRMS) and secondary progressive (SPMS) MS patients with high resolution OCT technique. Forty-two RRMS and 17 SPMS patients with and without history of uni- or bilateral ON, and 59 age- and sex-matched healthy controls were analysed prospectively with the high resolution spectral-domain OCT device (SD-OCT) using the Spectralis 3.5mm circle scan protocol with locked reference images and eye tracking mode. Furthermore we performed tests for visual and contrast acuity and sensitivity (ETDRS, Sloan and Pelli-Robson-charts), for color vision (Lanthony D-15), the Humphrey visual field and visual evoked potential testing (VEP). All 4 groups (RRMS and SPMS with or without ON) showed significantly reduced RNFL globally, or at least in one of the peripapillary sectors compared to age-/sex-matched healthy controls. In patients with previous ON additional RNFL reduction was found. However, in many RRMS patients the RNFL was found within normal range. We found no correlation between RNFL reduction and disease duration (range 9-540 months). RNFL baseline characteristics of RRMS and SPMS are heterogeneous (range from normal to markedly reduced levels).

  17. Heterogeneous pattern of retinal nerve fiber layer in multiple sclerosis. High resolution optical coherence tomography: potential and limitations.

    Directory of Open Access Journals (Sweden)

    Nermin Serbecic

    Full Text Available BACKGROUND: Recently the reduction of the retinal nerve fibre layer (RNFL was suggested to be associated with diffuse axonal damage in the whole CNS of multiple sclerosis (MS patients. However, several points are still under discussion. (1 Is high resolution optical coherence tomography (OCT required to detect the partly very subtle RNFL changes seen in MS patients? (2 Can a reduction of RNFL be detected in all MS patients, even in early disease courses and in all MS subtypes? (3 Does an optic neuritis (ON or focal lesions along the visual pathways, which are both very common in MS, limit the predication of diffuse axonal degeneration in the whole CNS? The purpose of our study was to determine the baseline characteristics of clinical definite relapsing-remitting (RRMS and secondary progressive (SPMS MS patients with high resolution OCT technique. METHODOLOGY: Forty-two RRMS and 17 SPMS patients with and without history of uni- or bilateral ON, and 59 age- and sex-matched healthy controls were analysed prospectively with the high resolution spectral-domain OCT device (SD-OCT using the Spectralis 3.5mm circle scan protocol with locked reference images and eye tracking mode. Furthermore we performed tests for visual and contrast acuity and sensitivity (ETDRS, Sloan and Pelli-Robson-charts, for color vision (Lanthony D-15, the Humphrey visual field and visual evoked potential testing (VEP. PRINCIPAL FINDINGS: All 4 groups (RRMS and SPMS with or without ON showed significantly reduced RNFL globally, or at least in one of the peripapillary sectors compared to age-/sex-matched healthy controls. In patients with previous ON additional RNFL reduction was found. However, in many RRMS patients the RNFL was found within normal range. We found no correlation between RNFL reduction and disease duration (range 9-540 months. CONCLUSIONS: RNFL baseline characteristics of RRMS and SPMS are heterogeneous (range from normal to markedly reduced levels.

  18. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner

    Directory of Open Access Journals (Sweden)

    Ivan Pelivanov

    2016-06-01

    Full Text Available Damage induced in polymer composites by various impacts must be evaluated to predict a component’s post-impact strength and residual lifetime, especially when impacts occur in structures related to human safety (in aircraft, for example. X-ray tomography is the conventional standard to study an internal structure with high resolution. However, it is of little use when the impacted area cannot be extracted from a structure. In addition, X-ray tomography is expensive and time-consuming. Recently, we have demonstrated that a kHz-rate laser-ultrasound (LU scanner is very efficient both for locating large defects and evaluating the material structure. Here, we show that high-quality images of damage produced by the LU scanner in impacted carbon-fiber reinforced polymer (CFRP composites are similar to those produced by X-ray tomograms; but they can be obtained with only single-sided access to the object under study. Potentially, the LU method can be applied to large components in-situ.

  19. High-resolution mobile optical 3D scanner with color mapping

    Science.gov (United States)

    Ramm, Roland; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Notni, Gunther

    2017-07-01

    A high-resolution mobile handheld scanning device suitable for 3D data acquisition and analysis for forensic investigations, rapid prototyping, design, quality management, and archaeology with a measurement volume of approximately 325 mm x 200 mm x 100mm and a lateral object resolution of 170 µm developed at our institute is introduced. The scanners weight is 4.4 kg with an optional color DLSR camera. The PC for measurement control and point calculation is included inside the housing. Power supply is realized by rechargeable batteries. Possible operation time is between 30 and 60 minutes. The object distance is between 400 and 500 mm, and the scan time for one 3D shot may vary between 0.1 and 0.5 seconds. The complete 3D result is obtained a few seconds after starting the scan. For higher quality 3D and color images the scanner is attachable to tripod use. Measurement objects larger than the measurement volume must be acquired partly. The different resulting datasets are merged using a suitable software module. The scanner has been successfully used in various applications.

  20. High-Resolution Monsoon Records Since Last Glacial Maximum: A Comparison of Marine and Terrestrial Paleoarchives from South Asia

    Directory of Open Access Journals (Sweden)

    Manish Tiwari

    2011-01-01

    Full Text Available Agricultural production and the availability of fresh water in Indian subcontinent critically depend on the monsoon rains. Therefore it is vital to understand the causal mechanisms underlying the observed changes in the Indian monsoon in the past. Paleomonsoon reconstructions show that the water discharge from the Ganges-Brahmaputra River system to the Bay of Bengal was maximum in the early to mid-Holocene; data from the Western Arabian Sea and Omanian speleothems indicate declining monsoon winds during the Holocene, whereas records from the South West Monsoon (SWM precipitation dominated eastern Arabian Sea show higher runoff from the Western Ghats indicating gradually increasing monsoon precipitation during the Holocene. Thus there exists considerable spatial variability in the monsoon in addition to the temporal variability that needs to be assessed systematically. Here we discuss the available high resolution marine and terrestrial paleomonsoon records such as speleothems and pollen records of the SWM from important climatic regimes such as Western Arabian Sea, Eastern Arabian Sea, Bay of Bengal to assess what we have learnt from the past and what can be said about the future of water resources of the subcontinent in the context of the observed changes.

  1. High-Resolution Imaging and Optical Control of Bose-Einstein Condensates in an Atom Chip Magnetic Trap

    CERN Document Server

    Salim, Evan A; Pfeiffer, Jonathan B; Anderson, Dana Z

    2012-01-01

    A high-resolution projection and imaging system for ultracold atoms is implemented using a compound silicon and glass atom chip. The atom chip is metalized to enable magnetic trapping while glass regions enable high numerical aperture optical access to atoms residing in the magnetic trap about 100 microns below the chip surface. The atom chip serves as a wall of the vacuum system, which enables the use of commercial microscope components for projection and imaging. Holographically generated light patterns are used to optically slice a cigar-shaped magnetic trap into separate regions; this has been used to simultaneously generate up to four Bose-condensates. Using fluorescence techniques we have demonstrated in-trap imaging resolution down to 2.5 microns

  2. Novel ultra-lightweight and high-resolution MEMS x-ray optics

    Science.gov (United States)

    Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Takagi, Utako; Mita, Makoto; Riveros, Raul; Yamaguchi, Hitomi; Kato, Fumiki; Sugiyama, Susumu; Fujiwara, Kouzou; Morishita, Kohei; Nakajima, Kazuo; Fujihira, Shinya; Kanamori, Yoshiaki; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Maeda, Ryutaro

    2009-05-01

    We have been developing ultra light-weight X-ray optics using MEMS (Micro Electro Mechanical Systems) technologies.We utilized crystal planes after anisotropic wet etching of silicon (110) wafers as X-ray mirrors and succeeded in X-ray reflection and imaging. Since we can etch tiny pores in thin wafers, this type of optics can be the lightest X-ray telescope. However, because the crystal planes are alinged in certain directions, we must approximate ideal optical surfaces with flat planes, which limits angular resolution of the optics on the order of arcmin. In order to overcome this issue, we propose novel X-ray optics based on a combination of five recently developed MEMS technologies, namely silicon dry etching, X-ray LIGA, silicon hydrogen anneal, magnetic fluid assisted polishing and hot plastic deformation of silicon. In this paper, we describe this new method and report on our development of X-ray mirrors fabricated by these technologies and X-ray reflection experiments of two types of MEMS X-ray mirrors made of silicon and nickel. For the first time, X-ray reflections on these mirrors were detected in the angular response measurements. Compared to model calculations, surface roughness of the silicon and nickel mirrors were estimated to be 5 nm and 3 nm, respectively.

  3. An Optoelectronic Equivalent Narrowband Filter for High Resolution Optical Spectrum Analysis

    Directory of Open Access Journals (Sweden)

    Kunpeng Feng

    2017-02-01

    Full Text Available To achieve a narrow bandwidth optical filter with a wide swept range for new generation optical spectrum analysis (OSA of high performance optical sensors, an optoelectronic equivalent narrowband filter (OENF was investigated and a swept optical filter with bandwidth of several MHz and sweep range of several tens of nanometers was built using electric filters and a sweep laser as local oscillator (LO. The principle of OENF is introduced and analysis of the OENF system is presented. Two electric filters are optimized to be RBW filters for high and medium spectral resolution applications. Both simulations and experiments are conducted to verify the OENF principle and the results show that the power uncertainty is less than 1.2% and the spectral resolution can reach 6 MHz. Then, a real-time wavelength calibration system consisting of a HCN gas cell and Fabry–Pérot etalon is proposed to guarantee a wavelength accuracy of ±0.4 pm in the C-band and to reduce the influence of phase noise and nonlinear velocity of the LO sweep. Finally, OSA experiments on actual spectra of various optical sensors are conducted using the OENF system. These experimental results indicate that OENF system has an excellent capacity for the analysis of fine spectrum structures.

  4. High resolution earth observation from geostationary orbit by optical aperture synthesys

    Science.gov (United States)

    Mesrine, M.; Thomas, E.; Garin, S.; Blanc, P.; Alis, C.; Cassaing, F.; Laubier, D.

    2017-11-01

    In this paper, we describe Optical Aperture Synthesis (OAS) imaging instrument concepts studied by Alcatel Alenia Space under a CNES R&T contract in term of technical feasibility. First, the methodology to select the aperture configuration is proposed, based on the definition and quantification of image quality criteria adapted to an OAS instrument for direct imaging of extended objects. The following section presents, for each interferometer type (Michelson and Fizeau), the corresponding optical configurations compatible with a large field of view from GEO orbit. These optical concepts take into account the constraints imposed by the foreseen resolution and the implementation of the co-phasing functions. The fourth section is dedicated to the analysis of the co-phasing methodologies, from the configuration deployment to the fine stabilization during observation. Finally, we present a trade-off analysis allowing to select the concept wrt mission specification and constraints related to instrument accommodation under launcher shroud and in-orbit deployment.

  5. River pollution remediation monitored by optical and infrared high-resolution satellite images.

    Science.gov (United States)

    Trivero, Paolo; Borasi, Maria; Biamino, Walter; Cavagnero, Marco; Rinaudo, Caterina; Bonansea, Matias; Lanfri, Sofia

    2013-09-01

    The Bormida River Basin, located in the northwestern region of Italy, has been strongly contaminated by the ACNA chemical factory. This factory was in operation from 1892 to 1998, and contamination from the factory has had deleterious consequences on the water quality, agriculture, natural ecosystems and human health. Attempts have been made to remediate the site. The aims of this study were to use high-resolution satellite images combined with a classical remote sensing methodology to monitor vegetation conditions along the Bormida River, both upstream and downstream of the ACNA chemical factory site, and to compare the results obtained at different times before and after the remediation process. The trends of the Normalised Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) along the riverbanks are used to assess the effect of water pollution on vegetation. NDVI and EVI values show that the contamination produced by the ACNA factory had less severe effects in the year 2007, when most of the remediation activities were concluded, than in 2006 and 2003. In 2007, the contamination effects were noticeable up to 6 km downstream of the factory, whereas in 2003 and 2006 the influence range was up to about 12 km downstream of the factory. The results of this study show the effectiveness of remediation activities that have been taking place in this area. In addition, the comparison between NDVI and EVI shows that the EVI is more suitable to characterise the vegetation health and can be considered an additional tool to assess vegetation health and to monitor restoration activities.

  6. Optical sedimentation recorder

    Science.gov (United States)

    Bishop, James K.B.

    2014-05-06

    A robotic optical sedimentation recorder is described for the recordation of carbon flux in the oceans wherein both POC and PIC particles are captured at the open end of a submersible sampling platform, the captured particles allowed to drift down onto a collection plate where they can be imaged over time. The particles are imaged using three separate light sources, activated in sequence, one source being a back light, a second source being a side light to provide dark field illumination, and a third source comprising a cross polarized light source to illuminate birefringent particles. The recorder in one embodiment is attached to a buoyancy unit which is capable upon command for bringing the sedimentation recorder to a programmed depth below the ocean surface during recordation mode, and on command returning the unit to the ocean surface for transmission of recorded data and receipt of new instructions. The combined unit is provided with its own power source and is designed to operate autonomously in the ocean for extended periods of time.

  7. Optical Demonstration of a Medical Imaging System with an EMCCD-Sensor Array for Use in a High Resolution Dynamic X-ray Imager.

    Science.gov (United States)

    Qu, Bin; Huang, Ying; Wang, Weiyuan; Sharma, Prateek; Kuhls-Gilcrist, Andrew T; Cartwright, Alexander N; Titus, Albert H; Bednarek, Daniel R; Rudin, Stephen

    2010-10-30

    Use of an extensible array of Electron Multiplying CCDs (EMCCDs) in medical x-ray imager applications was demonstrated for the first time. The large variable electronic-gain (up to 2000) and small pixel size of EMCCDs provide effective suppression of readout noise compared to signal, as well as high resolution, enabling the development of an x-ray detector with far superior performance compared to conventional x-ray image intensifiers and flat panel detectors. We are developing arrays of EMCCDs to overcome their limited field of view (FOV). In this work we report on an array of two EMCCD sensors running simultaneously at a high frame rate and optically focused on a mammogram film showing calcified ducts. The work was conducted on an optical table with a pulsed LED bar used to provide a uniform diffuse light onto the film to simulate x-ray projection images. The system can be selected to run at up to 17.5 frames per second or even higher frame rate with binning. Integration time for the sensors can be adjusted from 1 ms to 1000 ms. Twelve-bit correlated double sampling AD converters were used to digitize the images, which were acquired by a National Instruments dual-channel Camera Link PC board in real time. A user-friendly interface was programmed using LabVIEW to save and display 2K × 1K pixel matrix digital images. The demonstration tiles a 2 × 1 array to acquire increased-FOV stationary images taken at different gains and fluoroscopic-like videos recorded by scanning the mammogram simultaneously with both sensors. The results show high resolution and high dynamic range images stitched together with minimal adjustments needed. The EMCCD array design allows for expansion to an M×N array for arbitrarily larger FOV, yet with high resolution and large dynamic range maintained.

  8. A simple fiber-optic microprobe for high resolution light measurements: application in marine sediment

    Science.gov (United States)

    Jorgensen, B. B.; Des Marais, D. J.

    1986-01-01

    A fiber-optic microphobe is described which is inexpensive and simple to build and use. It consists of an 80-micrometers optical fiber which at the end is tapered down to a rounded sensing tip of 20-30-micrometers diameter. The detector is a hybrid photodiode/amplifier. The probe has a sensitivity of 0.01 microEinst m-2 s-1 and a spectral range of 300-1,100 nm. Spectral light gradients were measured in fine-grained San Francisco Bay sediment that had an undisturbed diatom coating on the surface. The photic zone of the mud was only 0.4 mm deep. Measured in situ spectra showed extinction maxima at 430-520, 620-630, 670, and 825-850 nm due to absorption by chlorophyll a, carotenoids, phycocyanin, and bacterio-chlorophyll a. Maximum light penetration in the visible range was found in both the violet and the red or = 700 nm.

  9. High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins

    Directory of Open Access Journals (Sweden)

    M. Salewski

    2017-08-01

    Full Text Available Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using microwaves and radio waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses still remains a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra, which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated steplike Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground-state doublet which can be retrieved only optically because of selective excitation of the same subensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon-echo measurements in an n-type CdTe/(Cd,MgTe quantum-well structure detected by a heterodyne technique. The difference in the sub-μeV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by 2 orders of magnitude.

  10. Ultra-high, resolution, modular optical angle encoder for space-based opto-mechanical applications

    Science.gov (United States)

    Luther, Holger; Beard, Paul; Mitchell, Donald; Thorburn, William

    1995-01-01

    A 27-bit optical encoder using a novel patent pending technology has been developed by the MicroE Development Center of BEI Sensors & Systems Company and tested by the Sensor Systems Group (SSG) Inc., in a positioning and stabilization mirror assembly (PSMA) designed and constructed under a grant from the Marshall Space Flight Center. Test results verified performance within the specifications of the PSMA.

  11. Development of compact and ultra-high-resolution spectrograph with multi-GHz optical frequency comb

    Science.gov (United States)

    Endo, Mamoru; Sukegawa, Takashi; Silva, Alissa; Kobayashi, Yohei

    2014-08-01

    In recent years, a calibration method for an astronomical spectrograph using an optical frequency comb (OFC) with a repetition rate of more than ten GHz has been developed successfully [1-5]. But controlling filtering cavities that are used for thinning out longitudinal modes precludes long term stability. The super-mode noise coming from the fundamental repetition rate is an additional problem. We developed a laser-diode pumped Yb:Y2O3 ceramic oscillator, which enabled the generation of 4-GHz (maximum repetition rate of 6.7 GHz) pulse trains directly with a spectrum width of 7 nm (full-width half-maximum, FWHM), and controlled its optical frequency within a MHz level of accuracy using a beat note between the 4-GHz laser and a 246-MHz Yb-fiber OFC. The optical frequency of the Yb-fiber OFC was phase locked to a Rb clock frequency standard. Furthermore we also built a table-top multi-pass spectrograph with a maximum frequency resolution of 600 MHz and a bandwidth of 1 nm using a large-size high-efficiency transmission grating. The resolution could be changed by selecting the number of passes through the grating. This spectrograph could resolve each longitudinal mode of our 4-GHz OFC clearly, and more than 10% throughput was obtained when the resolution was set to 600 MHz. We believe that small and middle scale astronomical observatories could easily implement such an OFC-calibrated spectrograph.

  12. Anti-biofouling conducting polymer nanoparticles as a label-free optical contrast agent for high resolution subsurface biomedical imaging.

    Science.gov (United States)

    Au, Kin Man; Lu, Zenghai; Matcher, Stephen J; Armes, Steven P

    2013-11-01

    Optical coherence tomography (OCT) is a modern high resolution subsurface medical imaging technique. Herein we describe: (i) the synthesis of a thiophene-functionalized oligo(ethylene glycol) methacrylate (OEGMA)-based statistical copolymer, denoted poly(2TMOI-OEGMA); (ii) the preparation of sterically-stabilized polypyrrole (PPy) nanoparticles of approximately 60 nm diameter; (iii) the evaluation of these nanoparticles as a NIR-absorbing optical contrast agent for high-resolution OCT imaging. We show that poly(2TMOI-OEGMA)-stabilized PPy nanoparticles exhibit similar optical properties to poly(vinyl alcohol) (PVA)-stabilized PPy nanoparticles of comparable size prepared using commercially available PVA. Spectroscopic measurements and Mie calculations indicate that both types of PPy nanoparticles strongly absorb NIR radiation above 1000 nm, suggesting their potential use as OCT contrast agents. In vitro OCT studies indicate that both types of PPy nanoparticles reduce NIR backscattering within homogeneous intralipid tissue phantoms, offering almost identical contrast performance in this medium. However, PVA-stabilized PPy nanoparticles became colloidally unstable when dispersed in physiological buffer and immersed in a solid biotissue phantom and hence failed to generate a strong contrast effect. In contrast, the poly(2TMOI-OEGMA)-stabilized PPy nanoparticles remained well-dispersed and hence exhibited a strong rapid onset contrast effect within the biotissue phantom under identical physiological conditions. Ex vivo studies performed on excised chicken and porcine skin tissue demonstrated that topical administration of a low concentration of poly(2TMOI-OEGMA)-stabilized PPy nanoparticles rapidly enhances OCT image contrast in both cases, allowing key tissue features to be readily identified. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, Joffray; García-Márquez, Jorge; Truong, Daniel; Wallerand, Jean-Pierre [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Šmíd, Radek [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Institute of Scientific Instruments of the CAS, Kralovopolska 147, 612 64 Brno (Czech Republic); Alexandre, Christophe [Centre d’Études et de Recherche en Informatique et Communications (CEDRIC), Cnam, 292 rue St-Martin, 75003 Paris (France)

    2016-07-15

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  14. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    Science.gov (United States)

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  15. Two phases of the Holocene East African Humid Period: Inferred from a high-resolution geochemical record off Tanzania

    Science.gov (United States)

    Liu, Xiting; Rendle-Bühring, Rebecca; Kuhlmann, Holger; Li, Anchun

    2017-02-01

    During the Holocene, the most notably climatic change across the African continent is the African Humid Period (AHP), however the pace and primary forcing for this pluvial condition is still ambiguous, particularly in East Africa. We present a high-resolution marine sediment record off Tanzania to provide insights into the climatic conditions of inland East Africa during the Holocene. Major element ratios (i.e., log-ratios of Fe/Ca and Ti/Ca), derived from X-Ray Fluorescence scanning, have been employed to document variations in humidity in East Africa. Our results show that the AHP is represented by two humid phases: an intense humid period from the beginning of the Holocene to 8 ka (AHP I); and a moderate humid period spanning from 8 to 5.5 ka (AHP II). On the basis of our geochemical record and regime detection, the termination of the AHP initiated at 5.5 ka and ceased around 3.5 ka. Combined with other paleoclimatic records around East Africa, we suggest that the humid conditions in this region responded to Northern Hemisphere (NH) summer insolation. The AHP I and II might have been related to an eastward shift of the Congo Air Boundary and warmer conditions in the western Indian Ocean, which resulted in additional moisture being delivered from the Atlantic and Indian Oceans during the NH summer and autumn, respectively. We further note a drought event throughout East Africa north of 10°S around 8.2 ka, which may have been related to the southward migration of the Intertropical Convergence Zone in response to the NH cooling event.

  16. Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850–2000 AD

    Directory of Open Access Journals (Sweden)

    M. M. Bisiaux

    2012-05-01

    Full Text Available Refractory black carbon aerosols (rBC emitted by biomass burning (fires and fossil fuel combustion, affect global climate and atmospheric chemistry. In the Southern Hemisphere (SH, rBC is transported in the atmosphere from low- and mid-latitudes to Antarctica and deposited to the polar ice sheet preserving a history of emissions and atmospheric transport. Here, we present two high-resolution Antarctic rBC ice core records drilled from the West Antarctic Ice Sheet divide and Law Dome on the periphery of the East Antarctic ice sheet. Separated by ~3500 km, the records span calendar years 1850–2001 and reflect the rBC distribution over the Indian and Pacific ocean sectors of the Southern Ocean. Concentrations of rBC in the ice cores displayed significant variability at annual to decadal time scales, notably in ENSO-QBO and AAO frequency bands. The delay observed between rBC and ENSO variability suggested that ENSO does not directly affect rBC transport, but rather continental hydrology, subsequent fire regimes, and aerosol emissions. From 1850 to 1950, the two ice core records were uncorrelated but were highly correlated from 1950 to 2002 (cross-correlation coefficient at annual resolution: r = 0.54, p < 0.01 due to a common decrease in rBC variability. The decrease in ice-core rBC from the 1950s to late 1980s displays similarities with inventories of SH rBC grass fires and biofuel emissions, which show reduced emission estimates over that period.

  17. Century-scale high-resolution black carbon records in sediment cores from the South Yellow Sea, China

    Science.gov (United States)

    Xu, Xiaoming; Hong, Yuehui; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Lirong; Wang, Jianghai

    2017-04-01

    Black carbon (BC) has received increasing attention in the last 20 years because it is not only an absorbent of toxic pollutants but also a greenhouse substance, preserving fire-history records, and more importantly, acting as an indicator of biogeochemical cycles and global changes. By adopting an improved chemothermal oxidation method (WXY), this study reconstructed the century-scale high-resolution records of BC deposition from two fine-grained sediment cores collected from the Yellow Sea Cold Water Mass in the South Yellow Sea. The BC records were divided into five stages, which exhibited specific sequences with three BC peaks at approximately 1891, 1921, and 2007 AD, representing times at which the first heavy storms appeared just after the termination of long-term droughts. The significant correlation between the times of the BC peaks in the cores and heavy storms in the area of the Huanghe (Yellow) River demonstrated that BC peaks could result from markedly strengthened sedimentation due to surface runoff, which augmented the atmospheric deposition. Stable carbon isotope analysis indicated that the evident increase in carbon isotope ratios of BC in Stage 5 might have resulted from the input of weathered rock-derived graphitic carbon cardinally induced by the annual anthropogenic modulation of water-borne sediment in the Huanghe River since 2005 AD. Numerical calculations demonstrated that the input fraction of graphitic carbon was 22.97% for Stage 5, whereas no graphitic carbon entered during Stages 1 and 3. The obtained data provide new and important understanding of the source-sink history of BC in the Yellow Sea.

  18. Coastal and Inland Water Applications of High Resolution Optical Satellite Data from Landsat-8 and Sentinel-2

    Science.gov (United States)

    Vanhellemont, Q.

    2016-02-01

    Since the launch of Landsat-8 (L8) in 2013, a joint NASA/USGS programme, new applications of high resolution imagery for coastal and inland waters have become apparent. The optical imaging instrument on L8, the Operational Land Imager (OLI), is much improved compared to its predecessors on L5 and L7, especially with regards to SNR and digitization, and is therefore well suited for retrieving water reflectances and derived parameters such as turbidity and suspended sediment concentration. In June 2015, the European Space Agency (ESA) successfully launched a similar instrument, the MultiSpectral Imager (MSI), on board of Sentinel-2A (S2A). Imagery from both L8 and S2A are free of charge and publicly available (S2A starting at the end of 2015). Atmospheric correction schemes and processing software is under development in the EC-FP7 HIGHROC project. The spatial resolution of these instruments (10-60 m) is a great improvement over typical moderate resolution ocean colour sensors such as MODIS and MERIS (0.25 - 1 km). At higher resolution, many more lakes, rivers, ports and estuaries are spatially resolved, and can thus now be studied using satellite data, unlocking potential for mandatory monitoring e.g. under European Directives such as the Marine Strategy Framework Directive and the Water Framework Directive. We present new applications of these high resolution data, such as monitoring of offshore constructions, wind farms, sediment transport, dredging and dumping, shipping and fishing activities. The spatial variability at sub moderate resolution (0.25 - 1 km) scales can be assessed, as well as the impact of sub grid scale variability (including ships and platforms used for validation) on the moderate pixel retrieval. While the daily revisit time of the moderate resolution sensors is vastly superior to those of the high resolution satellites, at the equator respectively 16 and 10 days for L8 and S2A, the low revisit times can be partially mitigated by combining data

  19. High-resolution all-optical photoacoustic imaging system for remote interrogation of biological specimens

    Science.gov (United States)

    Sampathkumar, Ashwin

    2014-05-01

    Conventional photoacoustic imaging (PAI) employs light pulses to produce a photoacoustic (PA) effect and detects the resulting acoustic waves using an ultrasound transducer acoustically coupled to the target tissue. The resolution of conventional PAI is limited by the sensitivity and bandwidth of the ultrasound transducer. We have developed an all-optical versatile PAI system for characterizing ex vivo and in vivo biological specimens. The system employs noncontact interferometric detection of the acoustic signals that overcomes limitations of conventional PAI. A 532-nm pump laser with a pulse duration of 5 ns excited the PA effect in tissue. Resulting acoustic waves produced surface displacements that were sensed using a 532-nm continuous-wave (CW) probe laser in a Michelson interferometer with a GHz bandwidth. The pump and probe beams were coaxially focused using a 50X objective giving a diffraction-limited spot size of 0.48 μm. The phase-encoded probe beam was demodulated using a homodyne interferometer. The detected time-domain signal was time reversed using k-space wave-propagation methods to produce a spatial distribution of PA sources in the target tissue. Performance was assessed using PA images of ex vivo rabbit lymph node specimens and human tooth samples. A minimum peak surface displacement sensitivity of 0.19 pm was measured. The all-optical PAI (AOPAI) system is well suited for assessment of retinal diseases, caries lesion detection, skin burns, section less histology and pressure or friction ulcers.

  20. High-Resolution Adaptive Optics Scanning Laser Ophthalmoscope with Dual Deformable Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D C; Jones, S M; Silva, D A; Olivier, S S

    2006-08-11

    Adaptive optics scanning laser ophthalmoscope (AO SLO) has demonstrated superior optical quality of non-invasive view of the living retina, but with limited capability of aberration compensation. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina. We used a bimorph mirror to correct large-stroke, low-order aberrations and a MEMS mirror to correct low-stroke, high-order aberration. The measured ocular RMS wavefront error of a test subject was 240 nm without AO compensation. We were able to reduce the RMS wavefront error to 90 nm in clinical settings using one deformable mirror for the phase compensation and further reduced the wavefront error to 48 nm using two deformable mirrors. Compared with that of a single-deformable-mirror SLO system, dual AO SLO offers much improved dynamic range and better correction of the wavefront aberrations. The use of large-stroke deformable mirrors provided the system with the capability of axial sectioning different layers of the retina. We have achieved diffraction-limited in-vivo retinal images of targeted retinal layers such as photoreceptor layer, blood vessel layer and nerve fiber layers with the combined phase compensation of the two deformable mirrors in the AO SLO.

  1. Ultra-high resolution optical coherence tomography analysis of bull's eye maculopathy in chloroquine users

    Directory of Open Access Journals (Sweden)

    Celso Morita

    2014-06-01

    Full Text Available Purpose: Register and compare anatomical changes, structural and quantitative found in optical coherence tomography Stratus and Topcon 3D in chronic users of chloroquine. Methods: Five patients were diagnosed with toxic "bull's eye" maculopathy was submitted to macular optical coherence tomography examination (Stratus and Topcon 3D. Results: Both tools demonstrated an increase reflectivity of choriocapillaris unit just foveal retinal pigment epithelium atrophy. However, Topcon 3D provided to all patients better description of the line corresponding to the transition between inner and outer segments of photoreceptors. Using the possibility of assembling threedimensional images and subtraction selective retinal layers, we found a lesion with a target that reflects the greater thickness of retinal pigment epithelium in central and parafoveal region that is matched to preserve macular photoreceptors. Conclusion: it was observed better resolution and faster image capture by Topcon 3D than Stratus OCT, that provided more detailed analysis of the line corresponding to transition between outer and inner segment of photoreceptors in macular region. With Topcon 3D, it was possible to evaluate soundly the thickness of retinal pigment epithelium in central and parafoveal region that caused an increase reflectivity of choriocapillaris creating a image with a target unpublished before.

  2. High-resolution depositional records of polycyclic aromatic hydrocarbons in the central continental shelf mud of the East China Sea

    Energy Technology Data Exchange (ETDEWEB)

    Zhigang Guo; Tian Lin; Gan Zhang; Zuosheng Yang; Ming Fang [Ocean University of China, Qingdao (China). College of Marine Geosciences

    2006-09-01

    A well-placed {sup 210}Pb-dated sediment core extracted from the distal mud in the central continental shelf of the East China Sea is used to reconstruct the high-resolution atmospheric depositional record of polycyclic aromatic hydrocarbons (PAHs), believed to be transported mainly from China in the past 200 years due to the East Asian Monsoon. Total PAHs (TPAHs), based on the 16 USEPA priority PAHs, range from 27 in 1788 to 132 ng g{sup -1} in 2001. TPAH variation in the core reflects energy usage changes and follows closely the historical economic development in China. PAHs in the core are dominantly pyrogenic in source, i.e., they are mainly from the incomplete combustion of coal and biomass burning. Several individual PAHs suggest that contribution from incomplete petroleum combustion has increased during recent years. Analysis of the 2 + 3 ring and the 5 + 6 ring PAHs and principle component analysis provide more evidence in the change in the energy structure, especially after 1978 when China embarked on the 'Reform and Open' Policy, indicating the transformation from an agricultural to an industrial economy of China. The historical profile of PAH distribution in the study area is obviously different from the United States and Europe due to their difference in energy structure and economic development stages. 39 refs., 5 figs.

  3. Low frequency Raman scattering for high resolution low temperature optical fiber sensors

    Science.gov (United States)

    Rabia, M. K.; Jurdyc, A.-M.; Le Brusq, J.; Champagnon, B.; Vouagner, D.

    2017-09-01

    Raman distributed optical fiber temperature sensors are based on the intensity ratio of the anti-Stokes to the Stokes Raman band at 440 cm-1 of silica. In this paper we predict that the sensitivity of the Raman measurements for low temperatures can be improved by considering the Boson peak in the low frequency Raman scattering domain at 60 cm-1. In this way Raman temperature sensors can be performed down to cryogenic temperatures. It is further shown that the Boson peak is less dependent than the 440 cm-1 band to the polarization of light. For the usual excitation at 1550 nm the anti-Stokes Boson peak at 1536 nm is in the low loss transmission window of the silica fibers.

  4. Mirrors for High Resolution X-Ray Optics---Figure Preserving IR/PT Coating

    Science.gov (United States)

    Chan, Kai-Wing; Olsen, Lawrence; Sharpe, Marton; Numata, Ai; McClelland, Ryan; Saha, Timo; Zhang, Will

    2016-01-01

    Coating stress of 10 - 20 nm of Ir is sufficiently high to distort the figure of arc-second thin lightweight mirrors. For iridium: --Stress sigma 4 GPa for 15 nm film implies 60 Nm integrated stress-- Need less than 3 N/m (or stress less than 200 MPa) for sub-arcsecond optics. Basic Approaches for Mitigation. A. Annealing the film-- Glass can be heat up to 400 C without distortion. Silicon is even more resistant.-- It was found that recovery is limited by residual thermal stress from taking the mirror down from high T. B. Coating bi-layer films with compressive stress with tensile stress. C. Front-and-back coating with magnetron sputtering or atomic layer deposition-- Sputtering involve spanning of substrates. Geometric difference in setup (convexness/concaveness of curved mirrors) does not permit precise front-and-back matching-- Atomic layer deposition can provide a uniform deposition front and back simultaneously.

  5. Affordable and lightweight high-resolution x-ray optics for astronomical missions

    Science.gov (United States)

    Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; McKeon, K. P.; Miller, T. M.; O'Dell, S. L.; Riveros, R. E.; Saha, T. T.; Schofield, M. J.; Sharpe, M. V.; Smith, H. C.

    2014-07-01

    Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.

  6. Affordable and Lightweight High-Resolution X-ray Optics for Astronomical Missions

    Science.gov (United States)

    Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.

    2014-01-01

    Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.

  7. Ultra-high resolution polarization-sensitive optical coherence tomography for imaging of the retinal nerve fiber layer

    Science.gov (United States)

    Cense, Barry; Reddikumar, Maddipatla; Cervantes, Joel

    2017-04-01

    A spectrometer design with a multiple line line-scan camera and beam displacer is presented for ultra-high resolution optical coherence tomography measurements of the human retina at 840 nm. The beam displacer offsets the two orthogonal polarization states on the same line-scan camera, which reduces k-space mapping complexity, as data in both polarization channels can be mapped with the same procedure. Its coherence length is 2.8 μm in tissue (n = 1.38). Birefringence values of 1°/μm and higher were found in a circle with a radius of 2.5° eccentricity centered on the fovea, and in the raphe, pointing at a higher packing density of microtubules and a lower concentration of glia. Birefringence measurements may be more helpful in the modeling of individual structure-function maps than thickness measurements, as they are not affected by glial content.

  8. High-resolution fibre-optic sensor for angular displacement measurements

    Science.gov (United States)

    Khiat, A.; Lamarque, F.; Prelle, C.; Bencheikh, N.; Dupont, E.

    2010-02-01

    The design of a fibre-optic sensor able to measure high-precision angular displacements is presented. The sensor has a small size which allows easy integration in miniature mechanical systems. Two configurations are designed: lens-free configuration and GRIN micro-lens configuration for which the micro-lens is fixed on the tip of the probe. The experimental results obtained by the angular displacement sensor based on the lens-free configuration are compared with the simulation results based on the modelling of the system and a good agreement is found. Then, a long-range measurement technique is described. In the 'lens-free and long-range configuration', the limit of resolution is measured (2 × 10-3°) or calculated (4.8 × 10-4°) over a range of [-23.4°, +23.4°]. In the 'GRIN lens and long-range configuration', the best limit of resolution is decreased to 2.2 × 10-4° but over a smaller range of [-14.5°, +14.5°]. Finally, the sensor in its 'lens-free configuration' design is integrated into a miniature electromagnetic actuator to determine its stroke by a comparison of the output signal obtained between this unknown-stroke actuator and a rotating stage for which the stroke was precisely known.

  9. In vivo imaging of raptor retina with ultra high resolution spectral domain optical coherence tomography

    Science.gov (United States)

    Ruggeri, Marco; Major, James C., Jr.; McKeown, Craig; Wehbe, Hassan; Jiao, Shuliang; Puliafito, Carmen A.

    2008-02-01

    Among birds, raptors are well known for their exceptional eyesight, which is partly due to the unique structure of their retina. Because the raptor retina is the most advanced of any animal species, in vivo examination of its structure would be remarkable. Furthermore, a noticeable percentage of traumatic ocular injuries are identified in birds of prey presented to rehabilitation facilities. Injuries affecting the posterior segment have been considered as a major impact on raptor vision. Hence, in vivo examination of the structure of the posterior segment of the raptors would be helpful for the diagnosis of traumatized birds. The purpose of this study is to demonstrate the application of ultrahigh-resolution Spectral Domain Optical Coherence Tomography (SD-OCT) for non contact in vivo imaging of the retina of birds of prey, which to the best of our knowledge has never been attempted. For the first time we present high quality OCT images of the retina of two species of bird of prey, one diurnal hawk and one nocturnal owl.

  10. An Alternative Approach for Registration of High-Resolution Satellite Optical Imagery and ICESat Laser Altimetry Data.

    Science.gov (United States)

    Liu, Shijie; Lv, Yi; Tong, Xiaohua; Xie, Huan; Liu, Jun; Chen, Lei

    2016-11-27

    Satellite optical images and altimetry data are two major data sources used in Antarctic research. The integration use of these two datasets is expected to provide more accurate and higher quality products, during which data registration is the first issue that needs to be solved. This paper presents an alternative approach for the registration of high-resolution satellite optical images and ICESat (Ice, Cloud, and land Elevation Satellite) laser altimetry data. Due to the sparse distribution characteristic of the ICESat laser point data, it is difficult and even impossible to find same-type conjugate features between ICESat data and satellite optical images. The method is implemented in a direct way to correct the point-to-line inconsistency in image space through 2D transformation between the projected terrain feature points and the corresponding 2D image lines, which is simpler than discrepancy correction in object space that requires stereo images for 3D model construction, and easier than the indirect way of image orientation correction via photogrammetric bundle adjustment. The correction parameters are further incorporated into imaging model through RPCs (Rational Polynomial Coefficients) generation/regeneration for the convenience of photogrammetric applications. The experimental results by using the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) images and ZY-3 (Ziyuan-3 satellite) images for registration with ICESat data showed that sub-pixel level registration accuracies were achieved after registration, which have validated the feasibility and effectiveness of the presented approach.

  11. High-resolution optical coherence tomography, autofluorescence, and infrared reflectance imaging in Sjögren reticular dystrophy.

    Science.gov (United States)

    Schauwvlieghe, Pieter-Paul; Torre, Kara Della; Coppieters, Frauke; Van Hoey, Anneleen; De Baere, Elfride; De Zaeytijd, Julie; Leroy, Bart P; Brodie, Scott E

    2013-01-01

    To describe the phenotype of three cases of Sjögren reticular dystrophy in detail, including high-resolution optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. Two unrelated teenagers were independently referred for ophthalmologic evaluation. Both underwent a full ophthalmologic workup, including electrophysiologic and extensive imaging with spectral-domain optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. In addition, mutation screening of ABCA4, PRPH2, and the mitochondrial tRNA gene was performed in Patient 1. Subsequently, the teenage sister of Patient 2 was examined. Strikingly similar phenotypes were present in these three patients. Fundoscopy showed bilateral foveal pigment alterations, and a lobular network of deep retinal, pigmented deposits throughout the posterior pole, tapering toward the midperiphery, with relative sparing of the immediate perifoveal macula and peripapillary area. This network is mildly to moderately hyperautofluorescent on autofluorescence and bright on near-infrared reflectance imaging. Optical coherence tomography showed abnormalities of the retinal pigment epithelium-Bruch membrane complex, photoreceptor outer segments, and photoreceptor inner/outer segment interface. The results of retinal function test were entirely normal. No molecular cause was detected in Patient 1. Imaging suggested that the lobular network of deep retinal deposits in Sjögren reticular dystrophy is the result of accumulation of both pigment and lipofuscin between photoreceptors and retinal pigment epithelium, as well as within the retinal pigment epithelium.

  12. Dual-modal three-dimensional imaging of single cells with isometric high resolution using an optical projection tomography microscope.

    Science.gov (United States)

    Miao, Qin; Rahn, J Richard; Tourovskaia, Anna; Meyer, Michael G; Neumann, Thomas; Nelson, Alan C; Seibel, Eric J

    2009-01-01

    The practice of clinical cytology relies on bright-field microscopy using absorption dyes like hematoxylin and eosin in the transmission mode, while the practice of research microscopy relies on fluorescence microscopy in the epi-illumination mode. The optical projection tomography microscope is an optical microscope that can generate 3-D images of single cells with isometric high resolution both in absorption and fluorescence mode. Although the depth of field of the microscope objective is in the submicron range, it can be extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. Cells suspended in optical gel flow through a custom-designed microcapillary. Multiple pseudoprojection images are taken by rotating the microcapillary. After these pseudoprojection images are further aligned, computed tomography methods are applied to create 3-D reconstruction. 3-D reconstructed images of single cells are shown in both absorption and fluorescence mode. Fluorescence spatial resolution is measured at 0.35 microm in both axial and lateral dimensions. Since fluorescence and absorption images are taken in two different rotations, mechanical error may cause misalignment of 3-D images. This mechanical error is estimated to be within the resolution of the system.

  13. Beam collimation with polycapillary x-ray optics for high contrast high resolution monochromatic imaging.

    Science.gov (United States)

    Sugiro, Francisca R; Li, Danhong; MacDonald, C A

    2004-12-01

    Monochromatic imaging can provide better contrast and resolution than conventional broadband radiography. In broadband systems, low energy photons do not contribute to the image, but are merely absorbed, while high energy photons produce scattering that degrades the image. By tuning to the optimal energy, one can eliminate undesirable lower and higher energies. Monochromatization is achieved by diffraction from a single crystal. A crystal oriented to diffract at a particular energy, in this case the characteristic line energy, diffracts only those photons within a narrow range of angles. The resultant beam from a divergent source is nearly parallel, but not very intense. To increase the intensity, collimation was performed with polycapillary x-ray optics, which can collect radiation from a divergent source and redirect it into a quasi parallel beam. Contrast and resolution measurements were performed with diffracting crystals with both high and low angular acceptance. Testing was first done at 8 keV with an intense copper rotating anode x-ray source, then 17.5 keV measurements were made with a low power molybdenum source. At 8 keV, subject contrast was a factor of five higher than for the polychromatic case. At 17.5 keV, monochromatic contrast was two times greater than the conventional polychromatic contrast. The subject contrasts measured at both energies were in good agreement with theory. An additional factor of two increase in contrast, for a total gain of four, is expected at 17.5 keV from the removal of scatter. Scatter might be simply removed using an air gap, which does not degrade resolution with a parallel beam.

  14. Holocene water mass history off NE Greenland - A first high-resolution sediment record from the western Fram Strait

    Science.gov (United States)

    Zehnich, Marc; Palme, Tina; Spielhagen, Robert F.; Hass, H. Christian; Bauch, Henning A.

    2017-04-01

    While the Holocene history of the eastern Fram Strait seems well investigated, no high-resolution paleoenvironmental records were available from the western Fram Strait so far. A new sedimentary record, obtained during expedition PS93.1 (2015) of RV Polarstern on the outermost NE Greenland shelf, allows for the first time to reconstruct Holocene changes in near-surface salinities, temperature, stratification and water masses (polar waters vs. Atlantic Water), potentially related to variations of the freshwater and sea ice export from the Arctic Ocean. The 260 cm long sedimentary record from site PS93/025 (80.5°N, 8.5°W) was investigated for sediment composition, foraminifer contents, grain size variations (sortable silt) and the isotopic composition of planktic foraminifers. Radiocarbon datings reveal an age of 10.2 cal-ka for the core base and continuous sedimentation throughout most of the Holocene. The sediments are generally very fine-grained (upwards trend and sediments from <6.5 cal-ka consist of <0.5% coarse fraction. A comparison of foraminifer and coarse fraction abundances shows strong similarities. Apparently the contribution of coarse terrestrial material from iceberg transport was extremely low throughout the last 10.2 cal-ka. Foraminifer abundances (both planktic and benthic) are high in Early Holocene sediments until ca. 7 cal-ka and decrease rapidly thereafter. This is interpreted to reflect a relatively strong advection of Atlantic Water to the NW Fram Strait, which correlates well with similar findings on the eastern side of the Arctic Gateway. Sortable silt grain sizes are high (27-32 µm) in the older part of the record and gradually decrease between 7 cal-ka and 4 cal-ka. After ca. 4 cal-ka, sortable silt shows values of 20-22 µm and little variation. Considering also the grain-size distribution curves, we propose a decline of bottom current velocities on the outer NE Greenland shelf after 7 cal-ka, related to a decrease of Atlantic Water

  15. A high-resolution temporal record of environmental changes in the Eastern Caribbean (Guadeloupe) from 40 to 10 ka BP

    Science.gov (United States)

    Royer, Aurélien; Malaizé, Bruno; Lécuyer, Christophe; Queffelec, Alain; Charlier, Karine; Caley, Thibaut; Lenoble, Arnaud

    2017-01-01

    In neotropical regions, fossil bat guano accumulated over time as laminated layers in caves, hence providing a high-resolution temporal record of terrestrial environmental changes. Additionally, cave settings have the property to preserve such organic sediments from processes triggered by winds (deflation, abrasion and sandblasting) and intense rainfall (leaching away). This study reports both stable carbon and nitrogen isotope compositions of frugivorous bat guano deposited in a well-preserved stratigraphic succession of Blanchard Cave on Marie-Galante, Guadeloupe. These isotopic data are discussed with regard to climate changes and its specific impact on Eastern Caribbean vegetation during the Late Pleistocene from 40 to 10 ka cal. BP. Guano δ13C values are higher than modern ones, suggesting noticeable vegetation changes. This provides also evidence for overall drier environmental conditions during the Pleistocene compared to today. Meanwhile, within this generally drier climate, shifts between wetter and drier conditions can be observed. Large temporal amplitudes in both δ13C and δ15N variations reaching up to 5.9‰ and 16.8‰, respectively, also indicate these oceanic tropical environments have been highly sensitive to regional or global climatic forcing. Stable isotope compositions of bat guano deposited from 40 to 35 ka BP, the Last Glacial Maximum and the Younger-Dryas reveal relatively wet environmental conditions whereas, at least from the end of the Heinrich event 1 and the Bølling period the region experienced drier environmental conditions. Nevertheless, when considering uncertainties in the model age, the isotopic record of Blanchard Cave show relatively similar variations with known proxy records from the northern South America and Central America, suggesting thus that the Blanchard Cave record is a robust proxy of past ITCZ migration. Teleconnections through global atmospheric pattern suggest that islands of the eastern Caribbean Basin could

  16. High-Resolution Optical Imaging of Benign and Malignant Mucosa in the Upper Aerodigestive Tract: An Atlas for Image-Guided Surgery

    OpenAIRE

    Levy, Lauren L; Vila, Peter M.; Park, Richard W.; Richard Schwarz; Polydorides, Alexandros D.; Teng, Marita S.; Gurudutt, Vivek V.; Genden, Eric M.; Brett Miles; Sharmila Anandasabapathy; Gillenwater, Ann M.; Rebecca Richards-Kortum; Sikora, Andrew G.

    2012-01-01

    Background. High-resolution optical imaging provides real-time visualization of mucosa in the upper aerodigestive tract (UADT) which allows non-invasive discrimination of benign and neoplastic epithelium. The high-resolution microendoscope (HRME) utilizes a fiberoptic probe in conjunction with a tissue contrast agent to display nuclei and cellular architecture. This technology has broad potential applications to intraoperative margin detection and early cancer detection. Methods. Our group ha...

  17. Next Generation X-Ray Optics: High-Resolution, Light-Weight, and Low-Cost

    Science.gov (United States)

    Zhang, William W.

    2012-01-01

    mirror segments is the continued development and perfection of alignment and integration techniques, for incorporating individual mirror segments into a precision mirror assembly. Recently, we have been developing a technique called edge-bonding, which has achieved an accuracy to enable 10-arcsecond x-ray telescopes. Currently, we are investigating and improving the long-term alignment stability of so-bonded mirrors. Next, we shall refine this process to enable 5-arsecond x-ray telescopes. This technology development program includes all elements to demonstrate progress toward TRL-6: metrology; x-ray performance tests; coupled structural, thermal, and optical performance analysis, and environmental testing.

  18. High-Resolution Profiling of Richardson Number Across the Surface Boundary Layer Using Heated Fiber Optics

    Science.gov (United States)

    Sayde, C.; Higgins, C. W.; Perdosa, R.; Mahaffee, W.; Selker, J. S.

    2016-12-01

    Most critical atmospheric processes are a balance between buoyancy and shear, typically measured with the Richardson number. The fine scale motions associated with critical or near critical valued of Richardson number are understudied because the location and timing of these events are not known a-priori. To study these motions and quantify their importance for transport of heat momentum and water vapor in the atmospheric boundary layer, a distributed measurement approach for temperature and wind speed is required. Here we present the results of 12.5 cm resolution distributed profiling of wind speed and temperature for the first 37 m of the surface boundary layer. Distributed Temperature Sensing (DTS) technology was employed to measure temperature every 5 s and 12.5 cm along two Fiber Optics (FO) cables suspended from 37 m elevation to ground by a blimp anchored above a vineyard in the Willamette Valley, Oregon. 3D printed FO holders installed every 3 m along the suspended FO cables insured constant spacing of 7.5 cm between the two cables. The first FO cable was 0.9mm in diameter and reported ambient air temperature. The second FO cable was embedded in a thin stainless steel tube (1.3 mm OD) continuously heated by an electrical current to provide continuous wind speed measurements every 12.5 cm along the heated cable. Analogous to a hot-wire anemometer, this approach is based on the principal of velocity-dependent heat transfer from a heated surface. The co-located wind speed and ambient temperature measurements are used to calculate Richardson number with a spatial and temporal resolution of 12.5 cm and 5 s respectively for the first 37 m of the surface boundary layer. The equipment employed, including the heating system, which is available to all US scientists, was provided by CTEMPs.org thanks to the generous grant support from the National Science Foundation under Grant Number EAR 0930061. Any opinions, findings, and conclusions or recommendations expressed in

  19. Revealing past environmental changes on the Antarctic Peninsula by analyzing high resolution sedimentary records from Lake Esmeralda, Vega Island

    Science.gov (United States)

    Píšková, Anna; Nývlt, Daniel; Roman, Matěj; Lirio, Juan Manuel; Kopalová, Kateřina

    2017-04-01

    Topographically and climatically, the environment of the Antarctic Peninsula (AP) differs significantly from Continental Antarctica. The AP forms an unbroken chain of rugged, alpine topography, which forms a climatic barrier separating the warmer Bellingshausen Sea on the western coast from the colder Weddell Sea on the east. The AP has experienced one of the highest temperature increases on Earth in the second half of the 20th century as a response to the ongoing global warming (Turner et al., 2005). However, the last decade was colder and a significant decrease in air temperature was detected especially in the north-eastern part of the AP (Turner et al., 2016; Oliva et al., 2017). The extreme sensitivity of the area to climate change represents exceptional potential for AP palaeoclimatic records either from marine, lacustrine, or ice cores. We have analysed several sedimentary cores from yet unstudied Lake Esmeralda, which was formed as a result of the last deglaciation during the Pleistocene/Holocene transition. We here focus on the longest (177 cm) core that could record environmental changes of the past millennia. In order to describe both inorganic and organic components of the sediment we used a combination of the following methods: XRF, XRD, magnetic susceptibility measurement, chemical analysis for determination of cation exchange capacity, grain size analysis, geochemical analysis (TIC, TOC, TS), high pressure liquid chromatography (HPLC) and diatom community analysis. This combination of methods gave us an insight in the past environmental changes in the lake catchment as well as in the lake body. More specifically it enabled us to define periods of enhanced weathering and to distinguish colder and warmer phases. The preliminary results will be completed with age-depth model resulting in a high resolution multi-proxy record that will contribute to a better, more detailed picture of the past climatic and environmental changes in the north-eastern AP

  20. Holocene vegetation and climate changes in the central Mediterranean inferred from a high-resolution marine pollen record (Adriatic Sea

    Directory of Open Access Journals (Sweden)

    N. Combourieu-Nebout

    2013-09-01

    Full Text Available The high-resolution multiproxy study of the Adriatic marine core MD 90-917 provides new insights to reconstruct vegetation and regional climate changes over the southcentral Mediterranean during the Younger Dryas (YD and Holocene. Pollen records show the rapid forest colonization of the Italian and Balkan borderlands and the gradual installation of the Mediterranean association during the Holocene. Quantitative estimates based on pollen data provide Holocene precipitations and temperatures in the Adriatic Sea using a multi-method approach. Clay mineral ratios from the same core reflect the relative contributions of riverine (illite and smectite and eolian (kaolinite contributions to the site, and thus act as an additional proxy with which to evaluate precipitation changes in the Holocene. Vegetation climate reconstructions show the response to the Preboreal oscillation (PBO, most likely driven by changes in temperature and seasonal precipitation, which is linked to increasing river inputs from Adriatic rivers recorded by increase in clay mineral contribution to marine sediments. Pollen-inferred temperature declines during the early–mid Holocene, then increases during the mid–late Holocene, similar to southwestern Mediterranean climatic patterns during the Holocene. Several short vegetation and climatic events appear in the record, indicating the sensitivity of vegetation in the region to millennial-scale variability. Reconstructed summer precipitation shows a regional maximum (170–200 mm between 8000 and 7000 similar to the general pattern across southern Europe. Two important shifts in vegetation occur at 7700 cal yr BP (calendar years before present and between 7500 and 7000 cal yr BP and are correlated with increased river inputs around the Adriatic Basin respectively from the northern (7700 event and from the central Adriatic borderlands (7500–7000 event. During the mid-Holocene, the wet summers lead to permanent moisture all year

  1. High Resolution, Multi-Proxy Records of Holocene Biomass Burning, Environmental Change, and Human Occupation in the Southern Maya Lowlands

    Science.gov (United States)

    Anderson, L.; Wahl, D.

    2011-12-01

    Understanding the relationship between the prehistoric Maya and their environment continues to be a primary research focus, particularly with respect to discerning the role of humans versus climate in driving environmental change. Fire was fundamental to prehistoric Maya architectural and agricultural land use practices. Burning was used to open forest for cultivation as well as for the construction of site centers and settlements. The production of lime plaster, and important building material, was dependent on significant amounts of green wood for kiln fuel. Large populations employing land use strategies dependent on burning would have put tremendous demands on forest resources. Despite the significance of fire in Maya pre-history, there has been no focused effort to produce records of biomass burning and its impacts. Here we present preliminary high-resolution fossil charcoal data that span the Holocene from a network of lacustrine and paludal sites across Peten, Guatemala. Charcoal influx data from the early to mid Holocene, prior to the arrival of sedentary agriculturalists, provides a baseline to infer natural fire regimes under specific climatic conditions, increasing our understanding of tropical fire ecology. Charcoal deposition that co-varies with evidence of agriculture and human activity can be attributed to anthropogenic burning. Results are synthesized with existing data (pollen, δ18O and δ13C, magnetic susceptibility, and physical properties) in an effort to understand the processes driving the location, timing, and extent of fires across the region. Placed in the context of changes in vegetation, sedimentation regime, and hydrology, these data provide new insight into topical fire ecology before the period of human occupation, as well as the dynamic relationship between the prehistoric Maya and their environment.

  2. A miniature fiber-optic sensor for high-resolution and high-speed temperature sensing in ocean environment

    Science.gov (United States)

    Liu, Guigen; Han, Ming; Hou, Weilin; Matt, Silvia; Goode, Wesley

    2015-05-01

    Temperature measurement is one of the key quantifies in ocean research. Temperature variations on small and large scales are key to air-sea interactions and climate change, and also regulate circulation patterns, and heat exchange. The influence from rapid temperature changes within microstructures are can have strong impacts to optical and acoustical sensor performance. In this paper, we present an optical fiber sensor for the high-resolution and high-speed temperature profiling. The developed sensor consists of a thin piece of silicon wafer which forms a Fabry-Pérot interferometer (FPI) on the end of fiber. Due to the unique properties of silicon, such as large thermal diffusivity, notable thermo-optic effects and thermal expansion coefficients of silicon, the proposed sensor exhibits excellent sensitivity and fast response to temperature variation. The small mass of the tiny probe also contributes to a fast response due to the large surface-tovolume ratio. The high reflective index at infrared wavelength range and surface flatness of silicon endow the FPI a spectrum with high visibilities, leading to a superior temperature resolution along with a new data processing method developed by us. Experimental results indicate that the fiber-optic temperature sensor can achieve a temperature resolution better than 0.001°C with a sampling frequency as high as 2 kHz. In addition, the miniature footprint of the senor provide high spatial resolutions. Using this high performance thermometer, excellent characterization of the realtime temperature profile within the flow of water turbulence has been realized.

  3. An Enhanced Algorithm for Automatic Radiometric Harmonization of High-Resolution Optical Satellite Imagery Using Pseudoinvariant Features and Linear Regression

    Science.gov (United States)

    Langheinrich, M.; Fischer, P.; Probeck, M.; Ramminger, G.; Wagner, T.; Krauß, T.

    2017-05-01

    The growing number of available optical remote sensing data providing large spatial and temporal coverage enables the coherent and gapless observation of the earth's surface on the scale of whole countries or continents. To produce datasets of that size, individual satellite scenes have to be stitched together forming so-called mosaics. Here the problem arises that the different images feature varying radiometric properties depending on the momentary acquisition conditions. The interpretation of optical remote sensing data is to a great extent based on the analysis of the spectral composition of an observed surface reflection. Therefore the normalization of all images included in a large image mosaic is necessary to ensure consistent results concerning the application of procedures to the whole dataset. In this work an algorithm is described which enables the automated spectral harmonization of satellite images to a reference scene. As the stable and satisfying functionality of the proposed algorithm was already put to operational use to process a high number of SPOT-4/-5, IRS LISS-III and Landsat-5 scenes in the frame of the European Environment Agency's Copernicus/GMES Initial Operations (GIO) High-Resolution Layer (HRL) mapping of the HRL Forest for 20 Western, Central and (South)Eastern European countries, it is further evaluated on its reliability concerning the application to newer Sentinel-2 multispectral imaging products. The results show that the algorithm is comparably efficient for the processing of satellite image data from sources other than the sensor configurations it was originally designed for.

  4. High-resolution light-sheet microscopy: a simulation of an optical illumination system for oil immersion

    Science.gov (United States)

    Lu, Xiang; Heintzmann, Rainer; Leischner, Ulrich

    2015-09-01

    Light sheet microscopy is a microscopy technique characterized by an illumination from the side, perpendicular to the direction of observation. While this is often used and easy to implement for imaging samples with water-immersion, the application in combination with oil-immersion is less often used and requires a specific optimization. In this paper we present our design of a light-sheet illumination optical system with a ~1μm illumination thickness, a long working distance through the immersion oil, and including a focusing system allowing for moving the focus-spot of the lightsheet laterally through the field of view. This optical design allows for the acquisition of fluorescence images in 3D with isotropic resolution of below 1 micrometer of whole-mount samples with a size of ~1mm diameter. This technique enables high-resolution insights in the 3D structure of biological samples, e.g. for research of insect anatomy or for imaging of biopsies in medical diagnostics.

  5. Interpretation of RNFLT values in multiple sclerosis-associated acute optic neuritis using high-resolution SD-OCT device.

    Science.gov (United States)

    Serbecic, Nermin; Beutelspacher, Sven C; Kircher, Karl; Reitner, Andreas; Schmidt-Erfurth, Ursula

    2012-09-01

    Optical coherence tomography (OCT) has emerged as the technique of choice in measuring the retinal nerve fibre layer (RNFL) quantitatively. It is suggested that RNFL reduction may correlate with lesion burden and diffuse axonal degeneration in the whole CNS of patients with multiple sclerosis (MS). However, RNFL changes because of optic neuritis (ON) must be taken into account. Twenty-three patients with acute ON (46 eyes) associated with clinical definite MS (23 ON eyes, 23 fellow eyes) and 23 sex- and age-matched healthy controls were studied. Retinal nerve fibre layer thickness (RNFLT) was measured at baseline, using a high-resolution spectral domain OCT (SD-OCT) applying circular, peripapillary OCT scans with a novel eye-tracking mechanism. The internal OCT software was able to identify RNFL atrophy in three out of five of the acute ON eyes and one out of four of the fellow eyes with previous ON episodes. Retinal nerve fibre layer thickness of two ON (8.7%) and five fellow eyes (21.7%) was overestimated, thus located within the 95% and 5% confidence interval of the company standard values (not marked pathologic). In contrast, our comparison with age- and sex-matched controls revealed RNFL atrophy suggestive of prior, clinically silent RNFL loss in ON and fellow eyes (30.4%). Retinal nerve fibre layer thickness measurements at a single time-point seem to have a limited role in detecting prior clinically silent optic nerve injury. Our data suggest that affected eyes should be compared with the fellow eyes and a sufficient number of age- and sex-matched controls to allow the detection of even subtle RNFL changes at baseline. The role of OCT for disease monitoring of MS must be evaluated in detail, as ON is often the initial symptom of MS. © 2010 The Authors. Acta Ophthalmologica © 2010 Acta Ophthalmologica Scandinavica Foundation.

  6. Using fire regimes to delineate zones in a high-resolution lake sediment record from the western United States

    Science.gov (United States)

    Jesse L. Morris; Andrea Brunelle; R. Justin DeRose; Heikki Seppa; Mitchell J. Power; Vachel Carter; Ryan Bares

    2013-01-01

    Paleoenvironmental reconstructions are important for understanding the influence of long-term climate variability on ecosystems and landscape disturbance dynamics. In this paper we explore the linkages among past climate, vegetation, and fire regimes using a high-resolution pollen and charcoal reconstruction from Morris Pond located on the Markagunt Plateau in...

  7. High-Resolution Geochemical and Paleoecological Records of Climate Change Since the Late Glacial at Lake Tanganyika, East Africa

    Science.gov (United States)

    Alin, S. R.; Cohen, A. S.

    2002-12-01

    We used high-resolution geochemical and paleoecological records from shallow-water sediment cores to refine previous descriptions of climatic conditions at Lake Tanganyika, East Africa, for the period from the Late Glacial to the present. Radiocarbon and 210Pb dating were used to establish chronologies for the cores. Sedimentological changes indicate that lake level has risen approximately 50-70 m since the Late Glacial. A depositional hiatus occurred between 6.4 and 11.4 ka BP (all dates in calendar years) in several of the shallow-water cores. Elemental abundance (%C, %N) and stable isotopic (δ15N, δ13C) data for one core suggest that substantial changes in primary productivity and nutrient recycling regimes have occurred since 6.4 ka BP. Carbonate and ostracode crustacean preservation were low and nil, respectively, prior to 2.4 ka BP. Generally, these data support previous interpretations of regional paleoclimate and lake conditions, with wet and warm conditions during the interval from 6.4 to 4.0 ka, and increasingly arid conditions since 2.4 ka. However, for the interval from 4.0 to 2.4 ka, paleoenvironmental indicators (δ15N, reduced carbonate and ostracode preservation) suggest that the central part of Lake Tanganyika was stably stratified at a shallower depth than present as a result of diminished southerly trade winds. After 2.4 ka BP, sedimentary carbonate concentrations increase, and δ13C values become enriched, suggesting that lacustrine productivity increased with the resumption of deeper wind-driven mixing, lasting until 1 ka BP. For post-2.4 ka samples, species abundance data for ostracodes were used to generate an ostracode water depth index (OWDI). OWDI indicated that severe drought conditions were persistent or recurred at Lake Tanganyika between 1550 and 1850 A.D. Droughts resulted in marked lowstands at Lake Tanganyika at 1580+/-15 A.D., 1730+/-35 A.D., and 1800+/-30 A.D. These data contribute new information on the timing of Little Ice Age

  8. High-resolution Record of Holocene Climate, Vegetation, and Fire from a Raised Peat Bog, Prince Edward Island, Canadian Maritimes

    Science.gov (United States)

    Peros, M. C.; Chan, K.; Ponsford, L.; Carroll, J.; Magnan, G.

    2014-12-01

    Raised peat bogs receive all precipitation and nutrients from the atmosphere and are thus widely used archives for information on past environments and climates. In this paper we provide high-resolution multi-proxy data from a raised bog from northeastern Prince Edward Island, located in the Gulf of St. Lawrence, Canada. We studied testate amoeba (a proxy for water table depth), macrocharcoal (a proxy for local-scale fire), peat humification (a proxy for decomposition), plant macrofossils (indicative of local-scale vegetation), and organic matter content (yielding carbon accumulation rates) from a 5.5 m long core lifted from the center of Baltic Bog. Eleven AMS radiocarbon dates show that peat accumulation began before 9000 cal yr BP and continued almost uninterrupted until the present. The macrofossil data show that a transition from a sedge-dominated fen to a sphagnum-dominated bog occurred around 8000 cal yr BP, and sphagnum remained dominant in the bog throughout most of the Holocene. A testate amoeba-based reconstruction of water table depth indicates that conditions were drier during the early Holocene (~8000 to 5000 cal yr BP) and became gradually wetter into the late Holocene. In addition, a number of higher frequency shifts in precipitation are inferred throughout the Holocene on the basis of the testate amoeba and humification results. The macrocharcoal evidence indicates fire—probably in the surrounding forest—was relatively more common during the early Holocene, perhaps due to drier climate conditions. A large influx of charcoal at around 2000 cal yr BP suggests the presence of one or more major fires at this time, and a concurrent decrease in the rate of peat accumulation indicates the fire may have affected the bog itself. The data from Baltic Bog is broadly comparable to other proxy data (in particular pollen studies) from the Canadian Maritimes. This work is important because it: 1) helps us better understand the role of hydroclimatic

  9. A high-resolution record of climate variability and landscape response from Kettle Lake, northern Great Plains, North America

    Science.gov (United States)

    Grimm, Eric C.; Donovan, Joseph J.; Brown, Kendrick J.

    2011-09-01

    A decadal-scale multiproxy record of minerals, pollen, and charcoal from Kettle Lake, North Dakota provides a high-resolution record of climate and vegetation change spanning the entire Holocene from the northern Great Plains (NGP) in North America. The chronology is established by over 50 AMS radiocarbon dates. This record exhibits millennial-scale trends evident in other lower-resolution studies, but with much more detail on short-term climate variability and on the rapidity and timing of major climatic shifts. As a proxy for precipitation, we utilize the rate of endogenic carbonate sedimentation, which depends on groundwater inflow, which in turn depends on precipitation. Independent cluster analyses of mineral and pollen data reveal major Holocene mode shifts at 10.73 ka (ka = cal yr BP), 9.25 ka, and 4.44 ka. The early Holocene, 11.7-9.25 ka, was generally wet, with perhaps a trend to higher evaporation associated with warming temperatures. A switch from calcite to aragonite deposition associated with a severe, but brief drought occurred at 10.73 ka. From 10.73 ka to 9.25 ka, climate was generally humid but punctuated at 100-300 yr intervals by brief droughts, including the most severe drought of the entire Holocene at 9.25 ka. This event was coeval with the 9.3-9.2 ka event in the Greenland ice cores and observed at a number of sites worldwide. In contrast, the prominent 8.2 ka event in Greenland is not remarkable at Kettle Lake. The prominence of the 9.25 event locally in the NGP may be due to a major drawdown and northward retreat of Lake Agassiz at this time, reducing its mesoclimatic effect on the NGP and thrusting the region into an insolation controlled regime. The mid-Holocene, 9.25-4.44 ka, was characterized by great variability in moisture on a multi-decadal scale, with severe droughts alternating with more humid periods. The high abundance of the weedy but drought intolerant Ambrosia generally during the mid-Holocene and specifically during the

  10. Nonlinear Shifts in Arctic Climate since the Holocene Thermal Maximum Recorded in a New High-Resolution Proxy Record from Otter Lake, South-Central Alaska

    Science.gov (United States)

    Bochicchio, C. J.; Yu, Z.

    2011-12-01

    Many paleoclimatic records show a gradual, near-linear cooling trend across the northern hemisphere since the Holocene Thermal Maximum, in response to an orbitally-driven gradual decline in summer insolation during the Holocene. Contrary to insolation trends, a few high-resolution records from high northern latitudes appear to indicate abrupt shifts in climate mean states. This suggests that Earth's climate system is capable of "step-like" transitions initiated when insolation thresholds are crossed and strong climatic feedbacks are triggered. In order to better understand the extent of possible nonlinear responses and forcing mechanisms, more high-resolution climate records are needed. In particular, records from Arctic regions are especially useful because Arctic climate feedbacks are stronger than in lower latitude regions and are well-documented. Here we present a multi-proxy record from a 4.8-m-long sediment core collected from Otter Lake, a small perched, precipitation- and groundwater-fed marl (carbonate-rich) lake (~300 m2 surface area, ~7 m depth), in south-central Alaska. The lake was formed more than 14,000 years ago after ice retreat. We combined a modern calibration study utilizing the relationship between lake depth and sediment composition along water-depth transects with down-core analysis of sedimentary proxies to reconstruct Holocene lake-level. We found three distinct periods of sedimentation: (1) the early Holocene: predominately carbonate-rich sediments (~70%) with low variability in sediment composition; (2) mid-Holocene: organic-rich sediments with low carbonate content (~20%) and very low variability; and (3) late Holocene: high average carbonate content (~50%) with the greatest variability in sediment composition (between 10% and 66% carbonate). We interpret the change in sediment composition to reflect lake-level change, with high carbonate content corresponding to shallow water, as observed from analysis of modern sediments. Therefore

  11. Compact LED-based full-field optical coherence microscopy for high-resolution high-speed in vivo imaging

    Science.gov (United States)

    Ogien, Jonas; Dubois, Arnaud

    2017-02-01

    This work reports on a compact full-field optical coherence microscopy (FF-OCM) setup specifically designed to meet the needs for in vivo imaging, illuminated by a high-brightness broadband light emitting diode (LED). Broadband LEDs have spectra potentially large enough to provide imaging spatial resolutions similar to those reached using conventional halogen lamps, but their radiance can be much higher, which leads to high speed acquisition and makes in vivo imaging possible. We introduce a FF-OCM setup using a 2.3 W broadband LED, with an interferometer designed to be as compact as possible in order to provide the basis for a portable system that will make it possible to fully benefit from the capacity for in vivo imaging by providing the ability to image any region of interest in real-time. The interferometer part of the compact FF-OCM setup weighs 210 g for a size of 11x11x5 cm3. Using this setup, a sub-micron axial resolution was reached, with a detection sensitivity of 68 dB at an imaging rate of 250 Hz. Due to the high imaging rate, the sensitivity could be improved by accumulation while maintaining an acquisition time short enough for in vivo imaging. It was possible to reach a sensitivity of 75 dB at a 50 Hz imaging rate. High resolution in vivo human skin images were obtained with this setup and compared with images of excised human skin, showing high similarity.

  12. Topographic thickness of Bowman's layer determined by ultra-high resolution spectral domain-optical coherence tomography.

    Science.gov (United States)

    Tao, Aizhu; Wang, Jianhua; Chen, Qi; Shen, Meixiao; Lu, Fan; Dubovy, Sander R; Shousha, Mohamed Abou

    2011-06-01

    To characterize the thickness profile of the corneal epithelium and the Bowman's layer across the horizontal meridian. Forty-four eyes of 22 healthy subjects were investigated in this study. Ultra-high resolution anterior segment spectral domain-optical coherence tomography (SD-OCT) was used to assess the topographic thickness of the epithelium and the Bowman's layer across the cornea. Thicknesses at five locations, including the center, midperiphery, and periphery close to the limbus, on both the nasal and the temporal sides along the horizontal meridian, were analyzed. Mean epithelial thickness at the central cornea was 52.5 ± 2.4 μm. It increased gradually from the center to the periphery (P 0.05). However, thicknesses at the nasal and temporal periphery, 20.0 ± 1.9 μm and 19.8 ± 2.2 μm, respectively, were significantly greater than the central and midperipheral thicknesses (P < 0.001). Nasal and temporal thicknesses were similar on either side of the center. The epithelium and the Bowman's layer were not evenly distributed across the horizontal meridian of the cornea. SD-OCT provided useful information about topographic thickness of the different corneal layers in vivo.

  13. Topographic Thickness of Bowman's Layer Determined by Ultra-High Resolution Spectral Domain–Optical Coherence Tomography

    Science.gov (United States)

    Tao, Aizhu; Chen, Qi; Shen, Meixiao; Lu, Fan; Dubovy, Sander R.; Shousha, Mohamed Abou

    2011-01-01

    Purpose. To characterize the thickness profile of the corneal epithelium and the Bowman's layer across the horizontal meridian. Methods. Forty-four eyes of 22 healthy subjects were investigated in this study. Ultra-high resolution anterior segment spectral domain–optical coherence tomography (SD-OCT) was used to assess the topographic thickness of the epithelium and the Bowman's layer across the cornea. Thicknesses at five locations, including the center, midperiphery, and periphery close to the limbus, on both the nasal and the temporal sides along the horizontal meridian, were analyzed. Results. Mean epithelial thickness at the central cornea was 52.5 ± 2.4 μm. It increased gradually from the center to the periphery (P 0.05). However, thicknesses at the nasal and temporal periphery, 20.0 ± 1.9 μm and 19.8 ± 2.2 μm, respectively, were significantly greater than the central and midperipheral thicknesses (P < 0.001). Nasal and temporal thicknesses were similar on either side of the center. Conclusions. The epithelium and the Bowman's layer were not evenly distributed across the horizontal meridian of the cornea. SD-OCT provided useful information about topographic thickness of the different corneal layers in vivo. PMID:21460260

  14. Functional optical coherence tomography for high-resolution mapping of cilia beat frequency in the mouse oviduct in vivo

    Science.gov (United States)

    Wang, Shang; Burton, Jason C.; Behringer, Richard R.; Larina, Irina V.

    2016-02-01

    Since mouse is a superior model for genetic analysis of human disorders, reproductive studies in mice have significant implications on further understanding of fertility and infertility in humans. Fertilized oocytes are transported through the reproductive tract by motile cilia lining the lumen of the oviduct as well as by oviduct contractions. While the role of cilia is well recognized, ciliary dynamics in the oviduct is not well understood, largely owing to the lack of live imaging approaches. Here, we report in vivo micro-scale mapping of cilia and cilia beat frequency (CBF) in the mouse oviduct using optical coherence tomography (OCT). This functional imaging method is based on spectral analysis of the OCT speckle variations produced by the beat of cilia in the oviduct, which does not require exogenous contrast agents. Animal procedures similar to the ones used for production of transgenic mice are utilized to expose the reproductive organs for imaging in anesthetized females. In this paper, we first present in vivo structural imaging of the mouse oviduct capturing the oocyte and the preimplantation embryo and then show the result of depth-resolved high-resolution CBF mapping in the ampulla of the live mouse. These data indicate that this structural and functional OCT imaging approach can be a useful tool for a variety of live investigations of mammalian reproduction and infertility.

  15. High-resolution spectral domain optical coherence tomography technology for the visualization of contact lens to cornea relationships.

    Science.gov (United States)

    Gonzalez-Meijome, Jose M; Cerviño, Alejandro; Carracedo, Gonzalo; Queiros, Antonio; Garcia-Lázaro, Santiago; Ferrer-Blasco, Teresa

    2010-12-01

    To study the utility of high-resolution spectral domain optical coherence tomography (HR SOCT) in imaging the contact lens (CL) to cornea relationships with advanced CL designs for ecstatic corneas and corneal refractive therapy. Copernicus HR SOCT (Optopol Technology SA, Zawiercie, Poland) was used to evaluate different lens materials and designs in situ and for the preliminary assessment of the materials and corneal response to hypoxic situations. SOCT is capable of highlighting very subtle and interesting features of the CL-cornea relationships in a wide range of applications such as in rigid gas-permeable corneal and semiscleral lenses, in corneal refractive therapy and application of CLs in ocular pathology, and in the evaluation of the physiological response of the cornea. HR SOCT is a powerful tool capable of providing sharp images of the anterior ocular surface highlighting the relationship between lens and cornea with great detail. This methodology has several applications to enhance fitting modeling with modern designs for advanced CL treatments.

  16. Possibilities of High Resolution Inductively Coupled Plasma Optical Emission Spectrometry in the Determination of Trace Elements in Environmental Materials

    Directory of Open Access Journals (Sweden)

    Nikolaya Velitchkova

    2013-01-01

    Full Text Available This paper presents new quantitative data for the spectral interferences obtained by high resolution 40.68 MHz radial viewing inductively coupled plasma optical emission spectrometry (HR-ICP-OES in the determination of Zn, Cd, Sb, Cu, Mn, Pb, Sn, Cr, U, and Ba in environmental materials in the presence of a complex matrix, containing Al, Ca, Fe, Mg, and Ti. The -concept for quantification of spectral interferences was used. The optimum line selection for trace analysis of a variety of multicomponent matrices requires the choice of prominent lines, which are free or negligibly influenced by line interference problems. The versatility of -concept as basic methodology was experimentally demonstrated in the determination of trace of elements in soil and drinking water. The detection limits are lower in comparison with corresponding threshold concentration levels for soil and drinking water in accordance with environmental regulations. This paper shows the possibilities of present day ICP-OES equipment in the direct determination of trace elements (without preconcentration of impurities in environmental samples.

  17. AN ENHANCED ALGORITHM FOR AUTOMATIC RADIOMETRIC HARMONIZATION OF HIGH-RESOLUTION OPTICAL SATELLITE IMAGERY USING PSEUDOINVARIANT FEATURES AND LINEAR REGRESSION

    Directory of Open Access Journals (Sweden)

    M. Langheinrich

    2017-05-01

    Full Text Available The growing number of available optical remote sensing data providing large spatial and temporal coverage enables the coherent and gapless observation of the earth’s surface on the scale of whole countries or continents. To produce datasets of that size, individual satellite scenes have to be stitched together forming so-called mosaics. Here the problem arises that the different images feature varying radiometric properties depending on the momentary acquisition conditions. The interpretation of optical remote sensing data is to a great extent based on the analysis of the spectral composition of an observed surface reflection. Therefore the normalization of all images included in a large image mosaic is necessary to ensure consistent results concerning the application of procedures to the whole dataset. In this work an algorithm is described which enables the automated spectral harmonization of satellite images to a reference scene. As the stable and satisfying functionality of the proposed algorithm was already put to operational use to process a high number of SPOT-4/-5, IRS LISS-III and Landsat-5 scenes in the frame of the European Environment Agency's Copernicus/GMES Initial Operations (GIO High-Resolution Layer (HRL mapping of the HRL Forest for 20 Western, Central and (SouthEastern European countries, it is further evaluated on its reliability concerning the application to newer Sentinel-2 multispectral imaging products. The results show that the algorithm is comparably efficient for the processing of satellite image data from sources other than the sensor configurations it was originally designed for.

  18. Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet's membrane in Fuchs' dystrophy.

    Science.gov (United States)

    Shousha, Mohamed Abou; Perez, Victor L; Wang, Jianhua; Ide, Takeshi; Jiao, Shuliang; Chen, Qi; Chang, Victoria; Buchser, Nancy; Dubovy, Sander R; Feuer, William; Yoo, Sonia H

    2010-06-01

    To demonstrate the capability of ultra-high-resolution (UHR) anterior segment optical coherence tomography (OCT) to image Descemet's membrane (DM) and measure its thickness in vivo. (2) To evaluate the use of DM characteristics and thickness in the diagnosis of Fuchs' dystrophy. Case-control study. Twenty eyes of 12 Fuchs' dystrophy patients, 20 eyes of 13 young normal, and 20 eyes of 15 elderly normal subjects. Subjects were imaged using novel, custom-built UHR-OCT. Images were used to describe the characteristics of DM. Custom-made software was used to measure DM thickness and central corneal thickness (CCT). Specimens of DM obtained from Fuchs' dystrophy patients who underwent endothelial keratoplasty (EK) were histopathologically examined. Regression analyses were used to assess the correlation of DM thickness measured by UHR-OCT in vivo and by light microscopy and to determine the intergroup correlations between age, CCT, and DM thickness. We assessed DM characteristics and thickness, CCT, and age. Using UHR-OCT, the DM seemed in normal young subjects as a single, opaque, smooth line and in normal elderly subjects as a band of 2 smooth opaque lines with a translucent space in between. In Fuchs' dystrophy, DM appeared as a thickened band of 2 opaque lines; the anterior line was smooth whereas the posterior line had a wavy and irregular appearance with areas of localized thickenings. The DM thickness measured in vivo by UHR-OCT correlated significantly with that measured by light microscopy in 5 Fuchs' dystrophy eyes that underwent EK. The average central thicknesses of DM in normal young, in normal elderly and in Fuchs' dystrophy eyes were 10+/-3, 16+/-2, and 34+/-11 microm, respectively (P<0.001). There was a significant correlation between age and DM thickness only in normal groups. In Fuchs' dystrophy patients, there was a significant correlation between CCT and DM thickness that was not significant for normal groups. Ultra-high-resolution OCT is an

  19. Role of coronal high-resolution diffusion-weighted imaging in acute optic neuritis: a comparison with axial orientation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ping [Zhongshan Hospital, Fudan University, Shanghai Institution of Medical Imaging, Shanghai (China); Eye and ENT Hospital of Fudan University, Department of Radiology, Shanghai (China); Sha, Yan; Wan, Hailin; Wang, Feng [Eye and ENT Hospital of Fudan University, Department of Radiology, Shanghai (China); Tian, Guohong [Eye and ENT Hospital of Fudan University, Department of Ophthalmology, Shanghai (China)

    2017-08-15

    Through a comparison with the axial orientation, we aimed to evaluate the role of coronal high-resolution diffusion-weighted imaging (DWI) in acute optic neuritis based on diagnostic accuracy and the reproducibility of apparent diffusion coefficient (ADC) measurements. Orbital DWI, using readout-segmented, parallel imaging, and 2D navigator-based reacquisition (RESOLVE-DWI), was performed on 49 patients with acute vision loss. The coronal (thickness = 3 mm) and axial (thickness = 2 mm) diffusion images were evaluated by two neuroradiologists retrospectively. The sensitivity, specificity, and accuracy were calculated through diagnostic test; the inter- and intra-observer reliabilities were assessed with a weighted Cohen's kappa test. In addition, the agreement of ADC measurement among observers was evaluated by the intra-class correlation coefficient (ICC), coefficient of variation (CV), and Bland-Altman plots. Comparison of ADC values was also performed by unpaired t test. Among the 49 patients, 47 clinically positive optic nerves and 51 clinically negative optic nerves were found. The sensitivity, specificity, and accuracy were 85.1/87.2%, 90.2/94.12%, and 87.8/90.8%, respectively, for coronal RESOLVE-DWI and 83.0/85.1%, 66.7/76.5%, and 75.5/79.6%, respectively, for axial RESOLVE-DWI. The inter-observer kappa values were 0.710 and 0.806 for axial and coronal RESOLVE-DWI, respectively, and the intra-observer kappa values were 0.822 and 0.909, respectively (each P < 0.0001). Regarding the reproducibility of ADC measurements on axial and coronal RESOLVE-DWI, the ICCs among observers were 0.846 and 0.941, respectively, and the CV values were 7.046 and 4.810%, respectively. Bland-Altman plots revealed smaller inter-observer variability on coronal RESOLVE-DWI. ADC values were significantly lower in positive group (each P < 0.0001). Higher specificity and better reproducibility of ADC measurements were found for coronal RESOLVE-DWI, which demonstrated the

  20. High-resolution Fourier-Domain Optical Coherence Tomography and Microperimetric Findings After Macula-off Retinal Detachment Repair

    Science.gov (United States)

    Smith, Allison J.; Telander, David G.; Zawadzki, Robert J.; Choi, Stacey S.; Morse, Lawrence S.; Werner, John S.; Park, Susanna S.

    2009-01-01

    Objective To evaluate the morphologic changes in the macula of subjects with repaired macula-off retinal detachment (RD) using high-resolution Fourier-domain optical coherence tomography (FD OCT) and to perform functional correlation in a subset of patients using microperimetry (MP-1). Design Prospective observational case series. Participants Seventeen eyes from 17 subjects who had undergone anatomically successful repair for macula-off, rhegmatogenous RD at least 3 months earlier and without visually significant maculopathy on funduscopy. Methods FD OCT with axial and transverse resolution of 4.5 μm and 10 to 15 μm, respectively, was used to obtain rapid serial B-scans of the macula, which were compared with that from Stratus OCT. The FD OCT B-scans were used to create a 3-dimensional volume, from which en face C-scans were created. Among 11 patients, MP-1 was performed to correlate morphologic changes with visual function. Main Outcome Measures Stratus OCT scans, FD OCT scans, and MP-1 data. Results Stratus OCT and FD OCT images of the macula were obtained 3 to 30 months (mean 7 months) postoperatively in all eyes. Although Stratus OCT revealed photoreceptor disruption in 2 eyes (12%), FD OCT showed photoreceptor disruption in 13 eyes (76%). This difference was statistically significant (Pmacula-off RD repair is a common abnormality in the macula that is detected better with FD OCT than Stratus OCT. A good correlation between MP-1 abnormality and presence of photoreceptor disruption or subretinal fluid on FD OCT demonstrates that these anatomic abnormalities contribute to decreased visual function after successful repair. PMID:18672289

  1. Role of high resolution optical coherence tomography in diagnosing ocular surface squamous neoplasia with coexisting ocular surface diseases.

    Science.gov (United States)

    Atallah, Marwan; Joag, Madhura; Galor, Anat; Amescua, Guillermo; Nanji, Afshan; Wang, Jianhua; Perez, Victor L; Dubovy, Sander; Karp, Carol L

    2017-10-01

    Coexistence of an ocular surface disease can mask the typical features of ocular surface squamous neoplasia (OSSN). The purpose of this study was to evaluate high resolution optical coherence tomography (HR-OCT) as an adjunct in the detection and differentiation of OSSN within coexisting ocular surface pathologies. Retrospective study of 16 patients with ocular surface disease and lesions suspicious for OSSN that were evaluated with HR-OCT. HR-OCT images of the lesions were taken to look for evidence of OSSN. Biopsies were performed in all cases, and the HR-OCT findings were compared to the histological results. Of the 16 patients with OSSN and a coexisting ocular surface disease, 12 were found to have OSSN by HR-OCT and all were subsequently confirmed by biopsy. Two patients had OSSN with rosacea, one with pingueculum, two within pterygia, one with Salzmann' nodular degeneration, six with limbal stem cell deficiency (LSCD)/scarring. In all 12 cases HR-OCT images revealed classical findings of hyper-reflective, thickened epithelium and an abrupt transition from normal to abnormal epithelium. OSSN was ruled out by HR-OCT in four cases (2 Salzmann's, 1 mucous membrane pemphigoid, and 1 LSCD). Negative findings were confirmed by biopsy. HR-OCT was used to follow resolution of the OSSN in positive cases, and it detected recurrence in 1 case. While histopathology is the gold standard in the diagnosis of OSSN, HR-OCT can be used to noninvasively detect the presence of OSSN in patients with coexisting ocular conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. High-resolution recording of particle tracks with in-line holography in a large cryogenic bubble chamber

    CERN Document Server

    Harigel, G G

    2000-01-01

    Holography has been used successfully in combination with conventional optics for the first time in a large cryogenic bubble chamber, the 15-Foot Bubble Chamber at the Fermi National Accelerator Laboratory (FNAL), during a physics run in a high-energy neutrino beam. The innovative system combined the reference beam with the object beam, irradiating a conical volume of ~1.5 m/sup 3/. Bubble tracks from neutrino interactions with a width of ~120 mu m have been recorded with good contrast. The ratio of intensities of the object light to the reference light striking the film is called the beam branching ratio (BBR). We obtained in our experiment an exceedingly small minimum-observable ratio of BBR=(0.54/0.21)*10/sup -7/. The technology has the potential for a wide range of applications. This paper describes the various difficulties in achieving the success. It required the development of laser pulse stretching via enhanced closed loop control with slow Q-switching, to overcome excessive heating of the cryogenic l...

  3. High resolution in situ magneto-optic Kerr effect and scanning tunneling microscopy setup with all optical components in UHV.

    Science.gov (United States)

    Lehnert, A; Buluschek, P; Weiss, N; Giesecke, J; Treier, M; Rusponi, S; Brune, H

    2009-02-01

    A surface magneto-optic Kerr effect (MOKE) setup fully integrated in an ultrahigh vacuum chamber is presented. The system has been designed to combine in situ MOKE and scanning tunneling microscopy. Magnetic fields up to 0.3 T can be applied at any angle in the transverse plane allowing the study of in-plane and out-of-plane magnetization. The setup performance is demonstrated for a continuous film of 0.9 monolayers (ML) Co/Rh(111) with in-plane easy axis and for a superlattice of nanometric double layer Co islands on Au(11,12,12) with out-of-plane easy axis. For Co/Au(11,12,12) we demonstrate that the magnetic anisotropy energies deduced from thermally induced magnetization reversal and from applying a torque onto the magnetization by turning the field are the same. For the presented setup we establish a coverage detection limit of 0.5 ML for transverse and 0.1 ML for polar MOKE. For island superlattices with the density of Co/Au(11,12,12), the latter limit corresponds to islands composed of about 50 atoms. The detection limit can be further reduced when optimizing the MOKE setup for either one of the two Kerr configurations.

  4. High-resolution onshore-offshore morpho-bathymetric records of modern chalk and granitic shore platforms in NW France

    Science.gov (United States)

    Duperret, Anne; Raimbault, Céline; Le Gall, Bernard; Authemayou, Christine; van Vliet-Lanoë, Brigitte; Regard, Vincent; Dromelet, Elsa; Vandycke, Sara

    2016-07-01

    Modern shore platforms developed on rocky coasts are key areas for understanding coastal erosion processes during the Holocene. This contribution offers a detailed picture of two contrasted shore-platform systems, based on new high-resolution shallow-water bathymetry, further coupled with aerial LiDAR topography. Merged land-sea digital elevation models were achieved on two distinct types of rocky coasts along the eastern English Channel in France (Picardy and Upper-Normandy: PUN) and in a NE Atlantic area (SW Brittany: SWB) in NW France. About the PUN case, submarine steps, identified as paleo-shorelines, parallel the actual coastline. Coastal erosive processes appear to be continuous and regular through time, since mid-Holocene at least. In SWB, there is a discrepancy between contemporary coastline orientation and a continuous step extending from inland to offshore, identified as a paleo-shoreline. This illustrates a polyphased and inherited shore platform edification, mainly controlled by tectonic processes.

  5. High resolution magnetic field energy imaging of the magnetic recording head by A-MFM with Co-GdOx super-paramagnetic tip

    Science.gov (United States)

    Kumar, Pawan; Suzuki, Yudai; Cao, Yongze; Yoshimura, Satoru; Saito, Hitoshi

    2017-10-01

    In this letter, the concept of a high-resolution magnetic field energy imaging technique is demonstrated by a high susceptibility superparamagnetic Co-GdOx magnetic force microscopy (MFM) tip for a perpendicular magnetic recording head with alternating magnetic force microscopy (A-MFM). The distribution of the magnetic energy gradient from the perpendicular recording head is imaged by the Co-GdOx superparamagnetic tip and compared with magnetic field imaging by the FePt-MgO hard magnetic tip. The Fourier analysis of the A-MFM amplitude images revealed enhancement in a spatial resolution of 13 nm by the Co-GdOx superparamagnetic tip as compared to 17 nm by the state-of-the-art FePt-MgO hard magnetic tip. The magnetic dipolar nature and short range force character of magnetic energy imaging by the Co-GdOx superparamagnetic tip showed high performance, confirmed by the tip transfer function analysis as compared to the monopole type FePt-MgO hard magnetic tip. The proposed technique opens an opportunity for the development of advanced high-resolution magnetic energy based imaging methods and development of the high-resolution MFM tips.

  6. A high-resolution palaeoenvironmental record from carbonate deposits in the Roman aqueduct of Patara, SW Turkey, from the time of Nero

    Science.gov (United States)

    Passchier, Cornelis; Sürmelihindi, Gül; Spötl, Christoph

    2016-06-01

    An inscription on the supporting wall of the inverted siphon of the aqueduct of the ancient Roman city of Patara, SW Turkey, explains how the wall collapsed during an earthquake and was subsequently restored. Carbonate deposits formed inside the aqueduct channel show cyclic stable isotope changes representing 17 years of deposition. This sequence, together with the text of the inscription, allows dating the earthquake to 68 AD and the original inauguration of the aqueduct to the winter of 51/52 AD. Thus, the carbonate deposits represent a high-resolution record of palaeotemperature and precipitation for SW Turkey covering the complete reign of the Emperor Nero. The period shows a cooling and drying trend after an initial warm and more humid period, interrupted by a few anomalous years. These 2 cm of calcite highlight the significance of carbonate deposits in ancient water supply systems as a high-resolution archive for palaeoclimate, palaeoseismology and archaeology.

  7. The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail.

    Science.gov (United States)

    Yassi, Rita; O'Grady, Gregory; Paskaranandavadivel, Nira; Du, Peng; Angeli, Timothy R; Pullan, Andrew J; Cheng, Leo K; Erickson, Jonathan C

    2012-06-06

    Gastrointestinal contractions are controlled by an underlying bioelectrical activity. High-resolution spatiotemporal electrical mapping has become an important advance for investigating gastrointestinal electrical behaviors in health and motility disorders. However, research progress has been constrained by the low efficiency of the data analysis tasks. This work introduces a new efficient software package: GEMS (Gastrointestinal Electrical Mapping Suite), for analyzing and visualizing high-resolution multi-electrode gastrointestinal mapping data in spatiotemporal detail. GEMS incorporates a number of new and previously validated automated analytical and visualization methods into a coherent framework coupled to an intuitive and user-friendly graphical user interface. GEMS is implemented using MATLAB®, which combines sophisticated mathematical operations and GUI compatibility. Recorded slow wave data can be filtered via a range of inbuilt techniques, efficiently analyzed via automated event-detection and cycle clustering algorithms, and high quality isochronal activation maps, velocity field maps, amplitude maps, frequency (time interval) maps and data animations can be rapidly generated. Normal and dysrhythmic activities can be analyzed, including initiation and conduction abnormalities. The software is distributed free to academics via a community user website and forum (http://sites.google.com/site/gimappingsuite). This software allows for the rapid analysis and generation of critical results from gastrointestinal high-resolution electrical mapping data, including quantitative analysis and graphical outputs for qualitative analysis. The software is designed to be used by non-experts in data and signal processing, and is intended to be used by clinical researchers as well as physiologists and bioengineers. The use and distribution of this software package will greatly accelerate efforts to improve the understanding of the causes and clinical consequences of

  8. The gastrointestinal electrical mapping suite (GEMS: software for analyzing and visualizing high-resolution (multi-electrode recordings in spatiotemporal detail

    Directory of Open Access Journals (Sweden)

    Yassi Rita

    2012-06-01

    Full Text Available Abstract Background Gastrointestinal contractions are controlled by an underlying bioelectrical activity. High-resolution spatiotemporal electrical mapping has become an important advance for investigating gastrointestinal electrical behaviors in health and motility disorders. However, research progress has been constrained by the low efficiency of the data analysis tasks. This work introduces a new efficient software package: GEMS (Gastrointestinal Electrical Mapping Suite, for analyzing and visualizing high-resolution multi-electrode gastrointestinal mapping data in spatiotemporal detail. Results GEMS incorporates a number of new and previously validated automated analytical and visualization methods into a coherent framework coupled to an intuitive and user-friendly graphical user interface. GEMS is implemented using MATLAB®, which combines sophisticated mathematical operations and GUI compatibility. Recorded slow wave data can be filtered via a range of inbuilt techniques, efficiently analyzed via automated event-detection and cycle clustering algorithms, and high quality isochronal activation maps, velocity field maps, amplitude maps, frequency (time interval maps and data animations can be rapidly generated. Normal and dysrhythmic activities can be analyzed, including initiation and conduction abnormalities. The software is distributed free to academics via a community user website and forum (http://sites.google.com/site/gimappingsuite. Conclusions This software allows for the rapid analysis and generation of critical results from gastrointestinal high-resolution electrical mapping data, including quantitative analysis and graphical outputs for qualitative analysis. The software is designed to be used by non-experts in data and signal processing, and is intended to be used by clinical researchers as well as physiologists and bioengineers. The use and distribution of this software package will greatly accelerate efforts to improve the

  9. Optical parametric evaluation model for a broadband high resolution spectrograph at E-ELT (E-ELT HIRES)

    Science.gov (United States)

    Genoni, M.; Riva, M.; Pariani, G.; Aliverti, M.; Moschetti, M.

    2016-08-01

    We present the details of a paraxial parametric model of a high resolution spectrograph which can be used as a tool, characterized by good approximation and reliability, at a system engineering level. This model can be exploited to perform a preliminary evaluation of the different parameters as long as different possible architectures of high resolution spectrograph like the one under design for the E-ELT (for the moment called E-ELT HIRES in order to avoid wrong association with the HIRES spectrograph at Keck telescope). The detailed equations flow concerning the first order effects of all the spectrograph components is described; in addition a comparison with the data of a complete physical ESPRESSO spectrograph model is presented as a model proof.

  10. A New Alignment Method Based on The Wavelet Multi-Scale Cross-Correlation for Noisy High Resolution ECG Records

    National Research Council Canada - National Science Library

    Laciar, E

    2001-01-01

    ... between the wavelet transforms of the template and the detected beat, respectively. The wavelet and temporal methods were tested for several simulated records corrupted with white noise and electromyographic (EMG...

  11. The Hominin Sites And Paleolakes Drilling Project: Using High Resolution Paleoclimate Records From African Lake Deposits To Interpret Human Evolution

    Science.gov (United States)

    Cohen, A. S.; Arrowsmith, R.; Behrensmeyer, K.; Campisano, C. J.; Feibel, C. S.; Fisseha, S.; Johnson, R. A.; Kingston, J.; Kubsa, Z.; Lamb, H.; Mbua, E.; Olago, D.; Potts, R.; Renaut, R.; Schaebitz, F.; Tiercelin, J.; Trauth, M. H.; Woldegabriel, G. W.; Umer, M.

    2009-12-01

    For many years paleoanthropologists and earth scientists have explored and debated the potential role of climate and environmental forcing in human evolution. Although no consensus has emerged as to the importance of climate history in understanding human origins, there is broad agreement that obtaining high quality records of paleoclimate is critical for evaluating any proposed relationships. Recent workshops on the subject have converged on the central role that scientific drilling could play in obtaining such records. Records with high continuity and resolution with implications for human evolution can be retrieved from marine or lacustrine sediments, and the latter can be obtained from both extant (ancient) lakes or by drilling lake beds now exposed on land. We report here on a new initiative to obtain drill core records from on-land sites in the East African Rift Valley region. Our objective is to recover continuous cores both directly from the paleolake deposits in the depocenters of basins where important hominin fossils or artifacts have been recovered, and from basins in close proximity to fossil and artifact sites. An initial on-land drilling campaign, using off-the-shelf technology will target five of the most important basins for hominin fossil and archaeological records in East Africa, collectively spanning the last ~4Ma (N. Awash R. and the Chew Bahir Basin in Ethiopia, and W. Turkana, Tugen Hills and the Olorgesailie/L. Magadi areas in Kenya). HSPDP work to date has involved collecting subsurface geophysical data, and combining this with outcrop, prior coring and basin geometry information to identify optimal drilling targets at each area. The overall project objective is to provide detailed paleoenvironmental records across a spatial and temporal range of sites that can address hypotheses of climate/human evolution relationships at local to regional scales, through a combination of core data collection and modeling efforts. In the long term, such

  12. Optical scanner system for high resolution measurement of lubricant distributions on metal strips based on laser induced fluorescence

    Science.gov (United States)

    Holz, Philipp; Lutz, Christian; Brandenburg, Albrecht

    2017-06-01

    We present a new optical setup, which uses scanning mirrors in combination with laser induced fluorescence to monitor the spatial distribution of lubricant on metal sheets. Current trends in metal processing industry require forming procedures with increasing deformations. Thus a welldefined amount of lubricant is necessary to prevent the material from rupture, to reduce the wearing of the manufacturing tool as well as to prevent problems in post-deforming procedures. Therefore spatial resolved analysis of the thickness of lubricant layers is required. Current systems capture the lubricant distribution by moving sensor heads over the object along a linear axis. However the spatial resolution of these systems is insufficient at high strip speeds, e.g. at press plants. The presented technology uses fast rotating scanner mirrors to deflect a laser beam on the surface. This 405 nm laser light excites the autofluorescence of the investigated lubricants. A coaxial optic collects the fluorescence signal which is then spectrally filtered and recorded using a photomultiplier. From the acquired signal a two dimensional image is reconstructed in real time. This paper presents the sensor setup as well as its characterization. For the calibration of the system reference targets were prepared using an ink jet printer. The presented technology for the first time allows a spatial resolution in the millimetre range at production speed. The presented test system analyses an area of 300 x 300 mm² at a spatial resolution of 1.1 mm in less than 20 seconds. Despite this high speed of the measurement the limit of detection of the system described in this paper is better than 0.05 g/m² for the certified lubricant BAM K-009.

  13. High-Resolution Optical Imaging of Benign and Malignant Mucosa in the Upper Aerodigestive Tract: An Atlas for Image-Guided Surgery.

    Science.gov (United States)

    Levy, Lauren L; Vila, Peter M; Park, Richard W; Schwarz, Richard; Polydorides, Alexandros D; Teng, Marita S; Gurudutt, Vivek V; Genden, Eric M; Miles, Brett; Anandasabapathy, Sharmila; Gillenwater, Ann M; Richards-Kortum, Rebecca; Sikora, Andrew G

    2012-01-01

    High-resolution optical imaging provides real-time visualization of mucosa in the upper aerodigestive tract (UADT) which allows non-invasive discrimination of benign and neoplastic epithelium. The high-resolution microendoscope (HRME) utilizes a fiberoptic probe in conjunction with a tissue contrast agent to display nuclei and cellular architecture. This technology has broad potential applications to intraoperative margin detection and early cancer detection. Our group has created an extensive image collection of both neoplastic and normal epithelium of the UADT. Here, we present and describe imaging characteristics of benign, dysplastic, and malignant mucosa in the oral cavity, oropharynx, larynx, and esophagus. There are differences in the nuclear organization and overall tissue architecture of benign and malignant mucosa which correlate with histopathologic diagnosis. Different anatomic subsites also display unique imaging characteristics. HRME allows discrimination between benign and neoplastic mucosa, and familiarity with the characteristics of each subsite facilitates correct diagnosis.

  14. High-resolution record of cyclic climatic change during the past 4 ka from Lake Turkana, Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Halfman, J.D.; Johnson, T.C.

    1988-06-01

    Profiles of carbonate content and lamination thickness in an 11.3 m core from Lake Turkana are interpreted as a record of climatic change for the past 4 ka. On a time scale of millennia, the data agree with other paleohydrologic records from sub-Saharan east Africa. Time-series analysis of both data sets reveal periods of about 270, 200, 165, and 100 yr. The thickness data suggest additional periods of about 78, 44, 31, 25, and possibly 20 yr. The sediments consist of laminated light and dark couplets, which are interpreted as a response to an average 4-yr variability in the hydrology of the Ethiopian Plateau. The authors suggest that this may be a feedback from the El Nino-Southern Oscillation.

  15. Vegetation and climatic changes during the Middle Miocene in the Wushan Basin, northeastern Tibetan Plateau: Evidence from a high-resolution palynological record

    Science.gov (United States)

    Hui, Zhengchuang; Li, Jijun; Song, Chunhui; Chang, Jing; Zhang, Jun; Liu, Jia; Liu, Shanpin; Peng, Tingjiang

    2017-10-01

    There remains no detailed record of the Middle Miocene vegetation and climatic changes which occurred in central Asia and their possible driving mechanisms. This is because there is still a lack of high resolution records. Here, we present a sporopollen record from the Wushan Basin on the northeastern Tibetan Plateau, central Asia, spanning the period ∼16.1-13.6 Ma. The sporopollen record shows that a dense mixed forest growing in rather warm and humid climatic conditions was affected by a general drying trend during the period ∼16.1-15 Ma. It demonstrates that although the climate was generally warm and humid during the Middle Miocene Climate Optimum (MMCO), it was also a time of climatic instability. The dense forest gave way to an open forest in response to a less humid climate between ∼15 and 14.4 Ma. Dense mixed forest made a return with an increasingly humid climate during ∼14.4-13.8 Ma. This vegetation and climatic succession could be associated with global cooling, or more particularly, a higher temperature rebound set against the background of a long-term cooling trend. A more open forest appearing in response to drier and colder climatic conditions dominated the study area during the ∼13.8-13.6 Ma period. This could be compared to the rapid global cooling event Mi-3b. This significant global cooling event exerted a major impact on terrestrial vegetation, climate and biota. Our high resolution sporopollen record demonstrates that global climate changes could have been the first order driving force for the Middle Miocene vegetation and climate changes seen in the Wushan Basin in central continental Asia, with the tectonic uplift of the Tibetan Plateau probably playing a subordinate role.

  16. RECORDING APPROACH OF HERITAGE SITES BASED ON MERGING POINT CLOUDS FROM HIGH RESOLUTION PHOTOGRAMMETRY AND TERRESTRIAL LASER SCANNING

    Directory of Open Access Journals (Sweden)

    P. Grussenmeyer

    2012-07-01

    Full Text Available Different approaches and tools are required in Cultural Heritage Documentation to deal with the complexity of monuments and sites. The documentation process has strongly changed in the last few years, always driven by technology. Accurate documentation is closely relied to advances of technology (imaging sensors, high speed scanning, automation in recording and processing data for the purposes of conservation works, management, appraisal, assessment of the structural condition, archiving, publication and research (Patias et al., 2008. We want to focus in this paper on the recording aspects of cultural heritage documentation, especially the generation of geometric and photorealistic 3D models for accurate reconstruction and visualization purposes. The selected approaches are based on the combination of photogrammetric dense matching and Terrestrial Laser Scanning (TLS techniques. Both techniques have pros and cons and recent advances have changed the way of the recording approach. The choice of the best workflow relies on the site configuration, the performances of the sensors, and criteria as geometry, accuracy, resolution, georeferencing, texture, and of course processing time. TLS techniques (time of flight or phase shift systems are widely used for recording large and complex objects and sites. Point cloud generation from images by dense stereo or multi-view matching can be used as an alternative or as a complementary method to TLS. Compared to TLS, the photogrammetric solution is a low cost one, as the acquisition system is limited to a high-performance digital camera and a few accessories only. Indeed, the stereo or multi-view matching process offers a cheap, flexible and accurate solution to get 3D point clouds. Moreover, the captured images might also be used for models texturing. Several software packages are available, whether web-based, open source or commercial. The main advantage of this photogrammetric or computer vision based

  17. High resolution climate records from modern and last interglacial period derived from giant clam shells (Tridacnidae) from Sulawesi, Indonesia.

    Science.gov (United States)

    Arias Ruiz, Camilo; Elliot, Mary; Bezos, Antoine; Padoja, Kevin; Husson, Laurent; Michel, Elisabeth; La, Carole

    2017-04-01

    We studied Tridacnidae giant clams as environmental archives to reconstruct climate evolution in a region characterized by major ocean-atmosphere exchange on seasonal and inter-annual timescales: the Sulawesi archipelago. Using environmental proxies (18O and trace elements) we present reconstructions of inter-annual climate change derived from modern and past interglacial period (MIS 5). For fossil archive, U-Th ages were obtained from fossil coral samples from the same paleo-reef of Tridacna samples, because these bivalves exhibit an open system behavior in U-Th series. Comparison of a 18O profile derived from a 6 year old modern T. squamosa (2006-2012) and a predicted 18O profile derived from local temperature and salinity records confirms the isotopic equilibrium in shell deposition. The strong sea surface temperature (SST) anomaly of 2010 related to a strong La Niña was also recorded in the shell 18O signal. The modern 18O record presents a mean seasonal range of 0.5 ± 0.1 ‰. Additional trace element analyses show that Mg/Ca and Sr/Ca are also temperature dependent in this species and appear less affected by changes in salinity/rainfall. Finally, Ba/Ca ratio appears to reflect both primary production related to coastal up-welling during the dry season, and continental run-off during the wet season. Trace element profiles also exhibit strong anomalies reflecting changes in local hydrography related to the 2010 La Niña. The ages of the Tridacna fossils derived from U-Th dating are around last interglacial MIS-5 period. 18O records derived from a fossil Tridacna gigas specimen provide a time-window of 14 years. The record shows a reduced mean seasonal range of 18O of around 0.4±0.2 ‰. Absence of Ba/Ca peaks during the wet season suggest a weakened monsoon rainfall activity, but the presence during the dry season suggests a persistent seasonal up-welling at this time. Our study illustrates the usefulness of Tridacnidae fossils in

  18. Recording Approach of Heritage Sites Based on Merging Point Clouds from High Resolution Photogrammetry and Terrestrial Laser Scanning

    Science.gov (United States)

    Grussenmeyer, P.; Alby, E.; Landes, T.; Koehl, M.; Guillemin, S.; Hullo, J. F.; Assali, P.; Smigiel, E.

    2012-07-01

    Different approaches and tools are required in Cultural Heritage Documentation to deal with the complexity of monuments and sites. The documentation process has strongly changed in the last few years, always driven by technology. Accurate documentation is closely relied to advances of technology (imaging sensors, high speed scanning, automation in recording and processing data) for the purposes of conservation works, management, appraisal, assessment of the structural condition, archiving, publication and research (Patias et al., 2008). We want to focus in this paper on the recording aspects of cultural heritage documentation, especially the generation of geometric and photorealistic 3D models for accurate reconstruction and visualization purposes. The selected approaches are based on the combination of photogrammetric dense matching and Terrestrial Laser Scanning (TLS) techniques. Both techniques have pros and cons and recent advances have changed the way of the recording approach. The choice of the best workflow relies on the site configuration, the performances of the sensors, and criteria as geometry, accuracy, resolution, georeferencing, texture, and of course processing time. TLS techniques (time of flight or phase shift systems) are widely used for recording large and complex objects and sites. Point cloud generation from images by dense stereo or multi-view matching can be used as an alternative or as a complementary method to TLS. Compared to TLS, the photogrammetric solution is a low cost one, as the acquisition system is limited to a high-performance digital camera and a few accessories only. Indeed, the stereo or multi-view matching process offers a cheap, flexible and accurate solution to get 3D point clouds. Moreover, the captured images might also be used for models texturing. Several software packages are available, whether web-based, open source or commercial. The main advantage of this photogrammetric or computer vision based technology is to get

  19. Formation of ZnO luminescent films on SiN films for light source of high-resolution optical microscope

    Science.gov (United States)

    Miyake, Aki; Kanamori, Satoshi; Nawa, Yasunori; Inami, Wataru; Kominami, Hiroko; Kawata, Yoshimasa; Nakanishi, Yoichiro

    2014-01-01

    We fabricated ZnO/SiN films for use as a light source of a high-resolution optical microscope and characterized the properties of the films, and demonstrated images obtained with the microscope using the fabricated ZnO/SiN films. A 100-nm-thick ZnO film deposited on a SiN film showed a much higher CL intensity than the SiN film, and it was enhanced by high-temperature annealing of the ZnO film. Electron beam excitation assisted optical microscope images of gold particles of 200 nm diameter taken using the ZnO/SiN film and SiN indicated that the ZnO/SiN films can provide a higher signal-to-noise (S/N) ratio and a higher frame rate than the SiN film. It was shown that the dynamic observation of living cells becomes possible using the high-resolution optical microscope with a bright light source. Moreover, this fact promises that such optical microscope can contribute to progress in the medical and biological fields.

  20. Surface water processes in the Indonesian Throughflow as documented by a high-resolution coral (Delta)14C record

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, S J; Guilderson, T P

    2008-04-23

    To explore the seasonal to decadal variability in surface water masses that contribute to the Indonesian Throughflow we have generated a 115-year bi-monthly coral-based radiocarbon time-series from a coral in the Makassar Straits. In the pre-bomb (pre-1955) era from 1890 to 1954, the radiocarbon time series occasionally displays a small seasonal signal (10-15{per_thousand}). After 1954 the radiocarbon record increases rapidly, in response to the increased atmospheric {sup 14}C content caused by nuclear weapons testing. From 1957 to 1986 the record displays clear seasonal variability from 15 to 60{per_thousand} and the post-bomb peak (163 per mil) occurred in 1974. The seasonal cycle of radiocarbon can be attributed to variations of surface waters passing through South Makassar Strait. Southern Makassar is under the influence of the Northwest Monsoon, which is responsible for the high Austral summer radiocarbon (North Pacific waters) and the Southeast Monsoon that flushes back a mixture of low (South Pacific and upwelling altered) radiocarbon water from the Banda Sea. The coral record also shows a significant {sup 14}C peak in 1955 due to bomb {sup 14}C water advected into this region in the form of CaCO{sub 3} particles (this implies that the particles were advected intact and then become entrapped in the coral skeleton--is this what we really mean? Wouldn't even fine particles settle out over the inferred transit time from Bikini to MAK?) or water particles with dissolved labeled CO{sub 2} produced during fallout from the Castle tests in 1954.

  1. Estuarine Alkenones: A High-Resolution Record of Sea-Surface Temperature from Narragansett Bay over the Past Millennia

    Science.gov (United States)

    Salacup, J.; Farmer, J. R.; Herbert, T.; Prell, W. L.

    2009-12-01

    Here we present a Uk’37 sea-surface temperature (SST) reconstruction from Narragansett Bay, RI. We analyzed sediments from three geographically separated cores for Uk’37, the concentration of C37 alkenones (C37-total), widely accepted as a paleo-productivity proxy, and elemental carbon and nitrogen concentrations. Our age model suggests our archives cover at least the past 600 years with a sampling resolution of 6-8 years. In contrast to alkenone profiles reported from the much lower salinity Chesapeake Bay, the alkenone fingerprint in Narragansett Bay lacks significant contributions from the C37:4 ketone and is consistent with production by open-ocean haptophytes (in all likelihood, E. huxleyi). Comparison of the results from each of the three cores yields temperature offsets consistent with instrumental SST gradients within Narragansett Bay suggesting sedimentary alkenones were produced locally, rather than being produced in, and advected from, the nearby Atlantic Ocean. Absolute SSTs vary by up to 1°C on decadal timescales and by up to 3.5°C over the entire record. On centennial timescales, SSTs increase by ~0.5°C between ~1450 and 1600 before declining by 1-1.5°C between 1600 and the mid-1800s perhaps recording the local expression of the Little Ice Age. Productivity, inferred from C37-total, is steady throughout the Bay from ~1450 to ~1725. However, after 1725 concentrations increase in the upper Bay but not in the lower, suggesting changes in land-use and runoff may have influenced alkenone production. Sedimentary alkenones, synthesized by a limited number of coccolithophorids, are the basis of the Uk’37 SST proxy, traditionally employed in climate reconstructions from open-ocean sediments. This work suggests that alkenones preserved in shallow-water sediments, like those of Narragansett Bay, may provide a new opportunity for reconstructing estuarine and coastal temperatures in other muddy high-deposition-rate settings.

  2. High-resolution records detect human-caused changes to the boreal forest wildfire regime in interior Alaska

    Science.gov (United States)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Wooller, Matthew J.; Finney, Bruce P.

    2016-01-01

    Stand-replacing wildfires are a keystone disturbance in the boreal forest, and they are becoming more common as the climate warms. Paleo-fire archives from the wildland–urban interface can quantify the prehistoric fire regime and assess how both human land-use and climate change impact ecosystem dynamics. Here, we use a combination of a sedimentary charcoal record preserved in varved lake sediments (annually layered) and fire scars in living trees to document changes in local fire return intervals (FRIs) and regional fire activity over the last 500 years. Ace Lake is within the boreal forest, located near the town of Fairbanks in interior Alaska, which was settled by gold miners in AD 1902. In the 400 years before settlement, fires occurred near the lake on average every 58 years. After settlement, fires became much more frequent (average every 18  years), and background charcoal flux rates rose to four times their preindustrial levels, indicating a region-wide increase in burning. Despite this surge in burning, the preindustrial boreal forest ecosystem and permafrost in the watershed have remained intact. Although fire suppression has reduced charcoal influx since the 1950s, an aging fuel load experiencing increasingly warm summers may pose management problems for this and other boreal sites that have similar land-use and fire histories. The large human-caused fire events that we identify can be used to test how increasingly common megafires may alter ecosystem dynamics in the future.

  3. Persistent patterns of interconnection in time-varying cortical networks estimated from high-resolution EEG recordings in humans during a simple motor act

    Science.gov (United States)

    DeVico Fallani, F.; Latora, V.; Astolfi, L.; Cincotti, F.; Mattia, D.; Marciani, M. G.; Salinari, S.; Colosimo, A.; Babiloni, F.

    2008-06-01

    In this work, a novel approach based on the estimate of time-varying graph indices is proposed in order to capture the basic schemes of communication within the functional brain networks during a simple motor act. To achieve this, we used a cascade of computational tools able to estimate first the electrical activity of the cortical surface by using high-resolution EEG techniques. From the cortical signals of different regions of interests we estimated the time-varying functional connectivity patterns by means of the adaptive partial directed coherence. The time-varying connectivity estimation returns a series of networks evolving during the examined task which can be summarized and interpreted with the aid of mathematical indices based on graph theory. The combination of all these methods is demonstrated on a set of high-resolution EEG data recorded from a group of healthy subjects performing a simple foot movement. It can be anticipated that the combination of the time-varying connectivity with the theoretical graph analysis is able to reveal precious information about the interconnections of the cerebral network as the significant persistence of mutual links and three-node motifs.

  4. Persistent patterns of interconnection in time-varying cortical networks estimated from high-resolution EEG recordings in humans during a simple motor act

    Energy Technology Data Exchange (ETDEWEB)

    De Vico Fallani, F; Colosimo, A [Interdepartmental Research Centre for Models and Information Analysis in Biomedical Systems, University ' La Sapienza' , Corso V. Emanuele, 244, 00186, Rome (Italy); Latora, V [Department of Physics and Astronomy, University of Catania, Via S.Sofia, 64, Catania (Italy); Astolfi, L; Cincotti, F; Mattia, D; Marciani, M G; Babiloni, F [IRCCS ' Fondazione Santa Lucia' , Via Ardeatina, 306, Rome (Italy); Salinari, S [Department of ' Informatica e Sistemistica' , University ' Sapienza' , Via Ariosto, 25, Rome (Italy)], E-mail: fabrizio.devicofallani@uniroma1.it, E-mail: latora@ct.infn.it

    2008-06-06

    In this work, a novel approach based on the estimate of time-varying graph indices is proposed in order to capture the basic schemes of communication within the functional brain networks during a simple motor act. To achieve this, we used a cascade of computational tools able to estimate first the electrical activity of the cortical surface by using high-resolution EEG techniques. From the cortical signals of different regions of interests we estimated the time-varying functional connectivity patterns by means of the adaptive partial directed coherence. The time-varying connectivity estimation returns a series of networks evolving during the examined task which can be summarized and interpreted with the aid of mathematical indices based on graph theory. The combination of all these methods is demonstrated on a set of high-resolution EEG data recorded from a group of healthy subjects performing a simple foot movement. It can be anticipated that the combination of the time-varying connectivity with the theoretical graph analysis is able to reveal precious information about the interconnections of the cerebral network as the significant persistence of mutual links and three-node motifs.

  5. High resolution time-intensity recording with synchronized solution delivery system for the human dynamic taste perception.

    Science.gov (United States)

    Goto, Tazuko K; Yeung, Andy Wai Kan; Suen, Justin Long Kiu; Fong, Barry Siu Keung; Ninomiya, Yuzo

    2015-04-30

    Time-intensity sensory evaluation of human taste perception is useful to know the feedback of a taste stimulus from tongue. However, it has not been profiled together with reaction time under the constant stimulating tongue in high time resolution. We first made intra-oral device to deliver taste solution to anterior, lateral and posterior tongue in standardized condition. Second, we developed a time-intensity sensory evaluation meter linked to synchronized taste solution delivery system. Time-intensity profiles were recorded in higher temporal resolution than our past study. Third, we analyzed the corrected taste quality reaction time from raw sensory perception data, and following sensory evaluation profile. The new method acquired taste sensory evaluation data with 1 ms temporal resolution and found the reaction timing was 908 ms, the corrected taste quality reaction time was 712 ms, maximum intensity was 3.47, and corrected time to reach maximum intensity was 1312 ms. The coefficient of variation ranged from 0.007 to 0.236 indicating low variance. Time-intensity sensory evaluation in this study did not sacrifice the feature of raw data. The relative comparison of time-intensity sensory profile among subjects will be available in this system in future study, while it was still difficult to define the absolute value of reaction time. Our method could gather real-time feedback for the time-intensity sensory evaluation of a taste stimulus under the standardized stimulating tongue. This could be useful for establishing database of time-intensity sensory profiles for comparison of delicate taste perceptions. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A Fossil DNA Based High Resolution Record of Holocene Planktonic Taxa and Environmental Change in the Black Sea

    Science.gov (United States)

    Coolen, M. J.; Saenz, J. P.; Trowbridge, N.; Eglinton, T.

    2007-12-01

    A standard approach to study past planktonic taxa which carry information about past environments and climate variability is the microscopic determination and enumeration of microfossils. However, most planktonic taxa are soft-bodied and in cases where microfossils are absent or difficult to identify, chemical fossils (lipid biomarkers) can be used as paleoecological tools. Nevertheless, most lipids are not very specific, multiple sources are possible, or their biological source remains unknown. Recently, we and others have shown that under excellent preservation conditions, the analysis of preserved genetic signatures (fossil DNA) offers great potential to study past planktonic communities, including soft-bodied species, at the unprecedented species- and even strain-level (this work). Given the dramatic shifts in hydrography and the present anoxia that permeates most of the water column which promotes preservation of cellular materials, the Black Sea is an excellent setting to study the ancient species composition based on fossil DNA. We developed a high temporal resolution (50-100 yr) fossil DNA and lipid biomarker based stratigraphic record of planktonic community structure in the Black Sea spanning the complete Holocene development from the first post-glacial input of Mediterranean waters in the paleo-lacustrine Black Sea to the present. Preserved genetic markers for microbial communities dwelling at the surface (algal primary producers and zooplankton), the suboxic layer (marine Crenarchaeota), and the sulfidic chemocline (green sulfur bacteria) were targeted to provide information on past environmental change in the Black Sea. Specifically, we targeted markers that contributed to our understanding of past surface water temperature, salinity and stratification. Where possible, a side-by-side phylogenetic and lipid biomarker analyses was performed in order to carefully assess the validity of utilizing the former as proxies of a given biological input. As the

  7. High-resolution 14C dating of a 25,000-year lake-sediment record from equatorial East Africa

    Science.gov (United States)

    Blaauw, Maarten; van Geel, Bas; Kristen, Iris; Plessen, Birgit; Lyaruu, Anna; Engstrom, Daniel R.; van der Plicht, Johannes; Verschuren, Dirk

    2011-10-01

    We dated a continuous, ˜22-m long sediment sequence from Lake Challa (Mt. Kilimanjaro area, Kenya/Tanzania) to produce a solid chronological framework for multi-proxy reconstructions of climate and environmental change in equatorial East Africa over the past 25,000 years. The age model is based on a total of 168 AMS 14C dates on bulk-organic matter, combined with a 210Pb chronology for recent sediments and corrected for a variable old-carbon age offset. This offset was estimated by i) pairing bulk-organic 14C dates with either 210Pb-derived time markers or 14C dates on grass charcoal, and ii) wiggle-matching high-density series of bulk-organic 14C dates. Variation in the old-carbon age offset through time is relatively modest, ranging from ˜450 yr during glacial and late glacial time to ˜200 yr during the early and mid-Holocene, and increasing again to ˜250 yr today. The screened and corrected 14C dates were calibrated sequentially, statistically constrained by their stratigraphical order. As a result their constrained calendar-age distributions are much narrower, and the calibrated dates more precise, than if each 14C date had been calibrated on its own. The smooth-spline age-depth model has 95% age uncertainty ranges of ˜50-230 yr during the Holocene and ˜250-550 yr in the glacial section of the record. The δ 13C values of paired bulk-organic and grass-charcoal samples, and additional 14C dating on selected turbidite horizons, indicates that the old-carbon age offset in Lake Challa is caused by a variable contribution of old terrestrial organic matter eroded from soils, and controlled mainly by changes in vegetation cover within the crater basin.

  8. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  9. Understanding Abrupt, Natural Climate Variability Post-Industrial Revolution from the Subtropical Eastern Pacific: A Novel High Resolution Alkenone-derived Sea Surface Temperature Record

    Science.gov (United States)

    Kelly, C. S.; O'Mara, N. A.; Herbert, T.; Abella-Gutiérrez, J. L.; Herguera, J. C.

    2015-12-01

    Despite the ocean's importance in global biogeochemical feedbacks and heat storage, there is still a paucity of decadally-resolved sea surface temperature (SST) records to complement lacustrine and dendrological records of recent paleoclimate. Natural climate variability on multidecadal timescales is dominated by internal ocean circulation dynamics and feedbacks, and it is therefore imperative to employ marine proxies to reconstruct high resolution climate change. The timescales of this ocean-induced natural climate variability can be broken down into a few characteristic climate modes. Pressing questions about these modes include their stationarity in frequency and amplitude over time, in addition to the hypothesis that anthropogenic climate change has altered their behavior in comparison to natural variability. To pursue these questions, we must discern and analyze suitable climate archives in regions where modes of interest dominate modern climate variability. The region of Baja California, Mexico exhibits exceptional teleconnection to the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Local, dramatic effects of ENSO and PDO on the marine biology and economy underline the importance of regional paleoclimate records from the Baja peninsula. Here, we present a high-resolution alkenone-derived SST reconstruction from the Industrial Revolution through the year 2000 by analysis of laminated box and Kasten sediment cores at Site PCM 00-78 (25.18°N, 112.66°W) in the subtropical eastern Pacific at a depth of 540 meters. Our SST record corresponds with NOAA extended reconstructed sea surface temperature, providing a robust basis for organic geochemical marine climatic reconstructions on timescales usually accessible only through speleothems, coral density bands, tree rings, and the like. Accordingly, based on this comparison to the historical data we expect our SST record may provide a more robust record of inter and multidecadal

  10. Ice sheet features identification, glacier velocity estimation, and glacier zones classification using high-resolution optical and SAR data

    Science.gov (United States)

    Thakur, Praveen K.; Dixit, Ankur; Chouksey, Arpit; Aggarwal, S. P.; Kumar, A. Senthil

    2016-05-01

    Ice sheet features, glacier velocity estimation and glacier zones or facies classification are important research activities highlighting the dynamics of ice sheets and glaciers in Polar Regions and in inland glaciers. The Cband inSAR data is of ERS 1/2 tandem pairs with one day interval for spring of 1996 and L-band PolinSAR data of ALOS-PALSAR-2 for spring of 2015 is used in glacier velocity estimation. Glacier classification is done using multi-temporal C-and L-band SAR data and also with single date full polarization and hybrid polarization data. In first part, a mean displacement of 9 cm day-1 was recorded using SAR interferometric technique using ERS 1/2 tandem data of 25-26 March 1996. Previous studies using optical data based methods has shown that Gangotri glacier moves with an average displacement of 4 cm and 6 cm day-1. As present results using ERS 1/2 data were obtained for one day interval, i.e., 25th March 05:00pm to 26th March 05:00 pm, 1996, variation in displacement may be due to presence of snow or wet snow melting over the glacier, since during this time snow melt season is in progress in Gangotri glacier area. Similarly the results of glacier velocity derived using ALOSPALSAR- 2 during 22 March - 19 April 2015 shows the mean velocity of 5.4 to 7.4 cm day-1 during 28 day time interval for full glacier and main trunk glacier respectively. This L-band data is already corrected for Faraday's rotation effects by JAXA, and tropospheric correction are also being applied to refine the results. These results are significant as it is after gap of 20 years that DInSAR methods has given glacier velocity for fast moving Himalayan glacier. RISAT-1 FRS-1 hybrid data is used to create Raney's decompositions parameters, which are further used for glacier zones classification using support vector machine based classification method. The Radarsat-2 and ALOS-PALSAR-2 fully polarized data of year 2010 and 2015 are also used for glacier classification. The identified

  11. A Fully Automated Method of Locating Building Shadows for Aerosol Optical Depth Calculations in High-Resolution Satellite Imagery

    Science.gov (United States)

    2010-09-01

    119 x THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF FIGURES Figure 1. Aerosol optical depth at 0.55 mμ using the MODIS sensor (from IPCC...MISR Multi-angle Imaging Spectro-Radiometer MODIS MODerate resolution Imaging Spectrometer MROD Molecular Rayleigh Optical Depth NIR Near-Infrared...reflectance F0 Spectral solar irradiance Ld Radiance difference ω Single scatter albedo P Scattering phase function Θ Scattering angle g Asymmetry

  12. Detection and monitoring of early airway injury effects of half-mustard (2-chloroethylethylsulfide) exposure using high-resolution optical coherence tomography

    Science.gov (United States)

    Kreuter, Kelly A.; Mahon, Sari B.; Mukai, David S.; Su, Jianping; Jung, Woong-Gyu; Narula, Navneet; Guo, Shuguang; Wakida, Nicole; Raub, Chris; Berns, Michael W.; George, Steven C.; Chen, Zhongping; Brenner, Matthew

    2009-07-01

    Optical coherence tomography (OCT) is a noninvasive, high-resolution imaging technology capable of delivering real-time, near-histologic images of tissues. Mustard gas is a vesicant-blistering agent that can cause severe and lethal damage to airway and lungs. The ability to detect and assess airway injury in the clinical setting of mustard exposure is currently limited. The purpose of this study is to assess the ability to detect and monitor progression of half-mustard [2-chloroethylethylsulfide (CEES)] airway injuries with OCT techniques. A ventilated rabbit mustard exposure airway injury model is developed. A flexible fiber optic OCT probe is introduced into the distal trachea to image airway epithelium and mucosa in vivo. Progression of airway injury is observed over eight hours with OCT using a prototype time-domain superluminescent diode OCT system. OCT tracheal images from CEES exposed animals are compared to control rabbits for airway mucosal thickening and other changes. OCT detects the early occurrence and progression of dramatic changes in the experimental group after exposure to CEES. Histology and immunofluorescence staining confirms this finding. OCT has the potential to be a high resolution imaging modality capable of detecting, assessing, and monitoring treatment for airway injury following mustard vesicant agent exposures.

  13. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    Science.gov (United States)

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun

    2014-01-01

    We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.

  14. A high-resolution geochemical record from Lake Edward, Uganda Congo and the timing and causes of tropical African drought during the late Holocene

    Science.gov (United States)

    Russell, James M.; Johnson, Thomas C.

    2005-07-01

    High-resolution analyses of the elemental composition of calcite and biogenic silica (BSi) content in piston cores from Lake Edward, equatorial Africa, document complex interactions between climate variability and lacustrine geochemistry over the past 5400 years. Correlation of these records from Lake Edward to other climatically-forced geochemical and lake level records from Lakes Naivasha, Tanganyika, and Turkana allows us to develop a chronology of drought events in equatorial East Africa during the late Holocene. Major drought events of at least century-scale duration are recorded in lacustrine records at about 850, 1500, ˜2000, and 4100 cal year BP. Of these, the most severe event occurred between about 2050 and 1850 cal year BP, during which time Lake Edward stood about 15 m below its present level. Numerous additional droughts of less intensity and/or duration are present in the Lake Edward record, some of which may be correlated to other lacustrine climate records from equatorial East Africa. These events are superimposed on a long-term trend of increasingly arid conditions from 5400 to about 2000 cal year BP, followed by a shift toward wetter climates that may have resulted from an intensification of the winter Indian monsoon. Although the causes of decade- to century-scale climate variability in the East African tropics remain obscure, time-series spectral analysis suggests no direct linkage between solar output and regional rainfall. Rather, significant periods of ˜725, ˜125, 63-72, 31-25, and 19-16 years suggest a tight linkage between the Indian Ocean and African rainfall, and could result from coupled ocean-atmosphere variability inherent to the tropical monsoon system.

  15. Integrating a High Resolution Optically Pumped Magnetometer with a Multi-Rotor UAV towards 3-D Magnetic Gradiometry

    Science.gov (United States)

    Braun, A.; Walter, C. A.; Parvar, K.

    2016-12-01

    The current platforms for collecting magnetic data include dense coverage, but low resolution traditional airborne surveys, and high resolution, but low coverage terrestrial surveys. Both platforms leave a critical observation gap between the ground surface and approximately 100m above ground elevation, which can be navigated efficiently by new technologies, such as Unmanned Aerial Vehicles (UAVs). Specifically, multi rotor UAV platforms provide the ability to sense the magnetic field in a full 3-D tensor, which increases the quality of data collected over other current platform types. Payload requirements and target requirements must be balanced to fully exploit the 3-D magnetic tensor. This study outlines the integration of a GEM Systems Cesium Vapour UAV Magnetometer, a Lightware SF-11 Laser Altimeter and a uBlox EVK-7P GPS module with a DJI s900 Multi Rotor UAV. The Cesium Magnetometer is suspended beneath the UAV platform by a cable of varying length. A set of surveys was carried out to optimize the sensor orientation, sensor cable length beneath the UAV and data collection methods of the GEM Systems Cesium Vapour UAV Magnetometer when mounted on the DJI s900. The target for these surveys is a 12 inch steam pipeline located approximately 2 feet below the ground surface. A systematic variation of cable length, sensor orientation and inclination was conducted. The data collected from the UAV magnetometer was compared to a terrestrial survey conducted with the GEM GST-19 Proton Procession Magnetometer at the same elevation, which also served a reference station. This allowed for a cross examination between the UAV system and a proven industry standard for magnetic field data collection. The surveys resulted in optimizing the above parameters based on minimizing instrument error and ensuring reliable data acquisition. The results demonstrate that optimizing the UAV magnetometer survey can yield to industry standard measurements.

  16. CLASSIFIER FUSION OF HIGH-RESOLUTION OPTICAL AND SYNTHETIC APERTURE RADAR (SAR SATELLITE IMAGERY FOR CLASSIFICATION IN URBAN AREA

    Directory of Open Access Journals (Sweden)

    T. Alipour Fard

    2014-10-01

    Full Text Available This study concerned with fusion of synthetic aperture radar and optical satellite imagery. Due to the difference in the underlying sensor technology, data from synthetic aperture radar (SAR and optical sensors refer to different properties of the observed scene and it is believed that when they are fused together, they complement each other to improve the performance of a particular application. In this paper, two category of features are generate and six classifier fusion operators implemented and evaluated. Implementation results show significant improvement in the classification accuracy.

  17. A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography

    DEFF Research Database (Denmark)

    Maria J., Sanjuan-Ferrer,; Bravo Gonzalo, Ivan; Bondu, Magalie

    2017-01-01

    Supercontinuum (SC) light is a well-established technology, which finds applications in several domains ranging from chemistry to material science and imaging systems [1-2]. More specifically, its ultra-wide optical bandwidth and high average power make it an ideal tool for Optical Coherence...... illustrate the different noise measurements and their impact on a state of the art UHR-OCT system producing images of skin. The sensitivity of the system was higher than 95 dB, with an axial resolution below 4μm....

  18. A Miniature Fiber-Optic Sensor for High-Resolution and High-Speed Temperature Sensing in Ocean Environment

    Science.gov (United States)

    2015-11-05

    Nebra>.a-Lhcoln, •t s p<Jp(H wrll be pre~rontod at tile _?SA Im aging and Applfed Optics Me~~g (ll.ame o! C<lr ’erunco) 07-JUN · 𔃻-JUN-15 Arlinqon. V...patterns, and heat exchange. The influence from rapid temperature changes within microstructures are can have strong impacts to optical and acoustical ...also affect acoustical signal propagation [4]. While salinity variations could sometimes lead to severe turbulence [5], temperature gradient is the

  19. A heterodyne interferometer for high resolution translation and tilt measurement as optical readout for the LISA inertial sensor

    Science.gov (United States)

    Schuldt, Thilo; Kraus, Hans-Jürgen; Weise, Dennis; Braxmaier, Claus; Peters, Achim; Johann, Ulrich

    2017-11-01

    The space-based gravitational wave detector LISA (Laser Interferometer Space Antenna) requires a high performance position sensor in order to measure the translation and tilt of the free flying test mass with respect to the LISA optical bench. Here, we present a mechanically highly stable and compact setup of a heterodyne interferometer combined with differential wavefront sensing for the tilt measurement which serves as a demonstrator for an optical readout of the LISA test mass position. First results show noise levels below 1 nm/√Hz and 1 μrad/√Hz, respectively, for frequencies < 10-3 Hz.

  20. SU-E-T-296: Dosimetric Analysis of Small Animal Image-Guided Irradiator Using High Resolution Optical CT Imaging of 3D Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Na, Y; Qian, X; Wuu, C [Columbia University, New York, NY (United States); Adamovics, J [John Adamovics, Skillman, NJ (United States)

    2015-06-15

    Purpose: To verify the dosimetric characteristics of a small animal image-guided irradiator using a high-resolution of optical CT imaging of 3D dosimeters. Methods: PRESAEGE 3D dosimeters were used to determine dosimetric characteristics of a small animal image-guided irradiator and compared with EBT2 films. Cylindrical PRESAGE dosimeters with 7cm height and 6cm diameter were placed along the central axis of the beam. The films were positioned between 6×6cm{sup 2} cubed plastic water phantoms perpendicular to the beam direction with multiple depths. PRESAGE dosimeters and EBT2 films were then irradiated with the irradiator beams at 220kVp and 13mA. Each of irradiated PRESAGE dosimeters named PA1, PA2, PB1, and PB2, was independently scanned using a high-resolution single laser beam optical CT scanner. The transverse images were reconstructed with a 0.1mm high-resolution pixel. A commercial Epson Expression 10000XL flatbed scanner was used for readout of irradiated EBT2 films at a 0.4mm pixel resolution. PDD curves and beam profiles were measured for the irradiated PRESAGE dosimeters and EBT2 films. Results: The PDD agreements between the irradiated PRESAGE dosimeter PA1, PA2, PB1, PB2 and the EB2 films were 1.7, 2.3, 1.9, and 1.9% for the multiple depths at 1, 5, 10, 15, 20, 30, 40 and 50mm, respectively. The FWHM measurements for each PRESAEGE dosimeter and film agreed with 0.5, 1.1, 0.4, and 1.7%, respectively, at 30mm depth. Both PDD and FWHM measurements for the PRESAGE dosimeters and the films agreed overall within 2%. The 20%–80% penumbral widths of each PRESAGE dosimeter and the film at a given depth were respectively found to be 0.97, 0.91, 0.79, 0.88, and 0.37mm. Conclusion: Dosimetric characteristics of a small animal image-guided irradiator have been demonstrated with the measurements of PRESAGE dosimeter and EB2 film. With the high resolution and accuracy obtained from this 3D dosimetry system, precise targeting small animal irradiation can be

  1. Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ

    Science.gov (United States)

    Muñoz, Paula; Gorin, Georges; Parra, Norberto; Velásquez, Cesar; Lemus, Diego; Monsalve-M., Carlos; Jojoa, Marcela

    2017-01-01

    The Páramo de Frontino (3460 m elevation) in Colombia is located approximately halfway between the Pacific and Atlantic oceans. It contains a 17 kyr long, stratigraphically continuous sedimentary sequence dated by 30 AMS 14C ages. Our study covers the last 11,500 cal yr and focuses on the biotic (pollen) and abiotic (microfluorescence-X or μXRF) components of this high mountain ecosystem. The pollen record provides a proxy for temperature and humidity with a resolution of 20-35 yr, and μXRF of Ti and Fe is a proxy for rainfall with a sub-annual (ca. 6-month) resolution. Temperature and humidity display rapid and significant changes over the Holocene. The rapid transition from a cold (mean annual temperature (MAT) 3.5 °C lower than today) and wet Younger Dryas to a warm and dry early Holocene is dated at 11,410 cal yr BP. During the Holocene, MAT varied from ca. 2.5 °C below to 3.5° above present-day temperature. Warm periods (11,410-10,700, 9700-6900, 4000-2400 cal yr BP) were separated by colder intervals. The last 2.4 kyr of the record is affected by human impact. The Holocene remained dry until 7500 cal yr BP. Then, precipitations increased to reach a maximum between 5000 and 4500 cal yr BP. A rapid decrease occurred until 3500 cal yr BP and the late Holocene was dry. Spectral analysis of μXRF data show rainfall cyclicity at millennial scale throughout the Holocene, and at centennial down to ENSO scale in more specific time intervals. The highest rainfall intervals correlate with the highest activity of ENSO. Variability in solar output is possibly the main cause for this millennial to decadal cyclicity. We interpret ENSO and ITCZ as the main climate change-driving mechanisms in Frontino. Comparison with high-resolution XRF data from the Caribbean Cariaco Basin (a proxy for rainfall in the coastal Venezuelian cordilleras) demonstrates that climate in Frontino was Pacific-driven (ENSO-dominated) during the YD and early Holocene, whereas it was Atlantic

  2. Optical coherence tomography. A new high-resolution imaging technology to study cardiac development in chick embryos

    DEFF Research Database (Denmark)

    Yelbuz, T.M.; Choma, M.A.; Thrane, L.

    2002-01-01

    volumetric reconstructions and short video clips. The OCT-scanned embryos (2 in each group) were photographed after histological sectioning in comparable planes to those visualized by OCT. The optical and histological results showing cardiovascular microstructures such as myocardium, the cardiac jelly...

  3. Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection

    NARCIS (Netherlands)

    Ngai, A.K.Y.; Persijn, S.T.; Basum, G. von; Harren, F.J.M.

    2006-01-01

    We present a high-power (2.75 W), broadly tunable (2.75-3.83 mu m) continuous-wave optical parametric oscillator based on MgO-doped periodically poled lithium niobate. Automated tuning of the pump laser, etalon and crystal temperature results in a continuous wavelength coverage up to 450 cm(-1) per

  4. Efficient Hardware Implementation of the Horn-Schunck Algorithm for High-Resolution Real-Time Dense Optical Flow Sensor

    Science.gov (United States)

    Komorkiewicz, Mateusz; Kryjak, Tomasz; Gorgon, Marek

    2014-01-01

    This article presents an efficient hardware implementation of the Horn-Schunck algorithm that can be used in an embedded optical flow sensor. An architecture is proposed, that realises the iterative Horn-Schunck algorithm in a pipelined manner. This modification allows to achieve data throughput of 175 MPixels/s and makes processing of Full HD video stream (1, 920 × 1, 080 @ 60 fps) possible. The structure of the optical flow module as well as pre- and post-filtering blocks and a flow reliability computation unit is described in details. Three versions of optical flow modules, with different numerical precision, working frequency and obtained results accuracy are proposed. The errors caused by switching from floating- to fixed-point computations are also evaluated. The described architecture was tested on popular sequences from an optical flow dataset of the Middlebury University. It achieves state-of-the-art results among hardware implementations of single scale methods. The designed fixed-point architecture achieves performance of 418 GOPS with power efficiency of 34 GOPS/W. The proposed floating-point module achieves 103 GFLOPS, with power efficiency of 24 GFLOPS/W. Moreover, a 100 times speedup compared to a modern CPU with SIMD support is reported. A complete, working vision system realized on Xilinx VC707 evaluation board is also presented. It is able to compute optical flow for Full HD video stream received from an HDMI camera in real-time. The obtained results prove that FPGA devices are an ideal platform for embedded vision systems. PMID:24526303

  5. Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging.

    Science.gov (United States)

    Arvanitis, C D; Bohndiek, S E; Royle, G; Blue, A; Liang, H X; Clark, A; Prydderch, M; Turchetta, R; Speller, R

    2007-12-01

    Monolithic complementary metal oxide semiconductor (CMOS) active pixel sensors with high performance have gained attention in the last few years in many scientific and space applications. In order to evaluate the increasing capabilities of this technology, in particular where low dose high resolution x-ray medical imaging is required, critical electro-optical and physical x-ray performance evaluation was determined. The electro-optical performance includes read noise, full well capacity, interacting quantum efficiency, and pixels cross talk. The x-ray performance, including x-ray sensitivity, modulation transfer function, noise power spectrum, and detection quantum efficiency, has been evaluated in the mammographic energy range. The sensor is a 525 x 525 standard three transistor CMOS active pixel sensor array with more than 75% fill factor and 25 x 25 microm pixel pitch. Reading at 10 f/s, it is found that the sensor has 114 electrons total additive noise, 10(5) electrons full well capacity with shot noise limited operation, and 34% interacting quantum efficiency at 530 nm. Two different structured CsI:Tl phosphors with thickness 95 and 115 microm, respectively, have been optically coupled via a fiber optic plate to the array resulting in two different system configurations. The sensitivity of the two different system configurations was 43 and 47 electrons per x-ray incident on the sensor. The MTF at 10% of the two different system configurations was 9.5 and 9 cycles/mm with detective quantum efficiency of 0.45 and 0.48, respectively, close to zero frequency at approximately 0.44 microC/kg (1.72 mR) detector entrance exposure. The detector was quantum limited at low spatial frequencies and its performance was comparable with high resolution a: Si and charge coupled device based x-ray imagers. The detector also demonstrates almost an order of magnitude lower noise than active matrix flat panel imagers. The results suggest that CMOS active pixel sensors when coupled

  6. UV-laser microdissection system - A novel approach for the preparation of high-resolution stable isotope records (δ13C/δ18O) from tree rings

    Science.gov (United States)

    Schollaen, Karina; Helle, Gerhard

    2013-04-01

    Intra-annual stable isotope (δ13C and δ18O) studies of tree rings at various incremental resolutions have been attempting to extract valuable seasonal climatic and environmental information or assessing plant ecophysiological processes. For preparing high-resolution isotope samples normally wood segments or cores are mechanically divided in radial direction or cut in tangential direction. After mechanical dissection, wood samples are ground to a fine powder and either cellulose is extracted or bulk wood samples are analyzed. Here, we present a novel approach for the preparation of high-resolution stable isotope records from tree rings using an UV-laser microdissection system. Firstly, tree-ring cellulose is directly extracted from wholewood cross-sections largely leaving the wood anatomical structure intact and saving time as compared to the classical procedure. Secondly, micro-samples from cellulose cross-sections are dissected with an UV-Laser dissection microscope. Tissues of interest from cellulose cross-sections are identified and marked precisely with a screen-pen and dissected via an UV-laser beam. Dissected cellulose segments were automatically collected in capsules and are prepared for stable isotope (δ13C and δ18O) analysis. The new techniques facilitate inter- and intra-annual isotope analysis on tree-ring and open various possibilities for comparisons with wood anatomy in plant eco-physiological studies. We describe the design and the handling of this novel methodology and discuss advantages and constraints given by the example of intra-annual oxygen isotope analysis on tropical trees.

  7. High-Resolution (0.5m) Optical Imagery and InSAR for Constraining Earthquake Slip: The 2010-2011 Canterbury, New Zealand Earthquakes

    Science.gov (United States)

    Barnhart, W. D.; Willis, M. J.; Lohman, R. B.; Melkonian, A. K.

    2011-12-01

    We present a successful example of sub-pixel tracking applied to high-resolution (~0.5 meter) optical imagery to image earthquake surface deformation. We examine the 2010-Sept-4 Mw 7.1 Darfield and 2011-Feb-22 Mw 6.3 Christchurch, New Zealand earthquakes using space-based interferometric synthetic aperture radar (InSAR) and high-resolution optical imagery from the Worldview-1 and Geoeye-1 commercial satellites made available through the U.S. National Geospatial Agency. The Darfield event created nearly 30 kilometers of E-W surface rupture and generated mappable offsets of roads, hedgerows, tree stands, and train tracks, among other features. The low relief of the Canterbury Plains and available short InSAR repeat intervals resulted in excellent coherence of interferograms. In addition, rapid acquisition of high-resolution optical imagery following the Darfield and Christchurch earthquakes allowed us to select pre- and post-seismic scenes with minimal cloud cover and good spatial coverage of the earthquakes, although the pairs of scenes that span the full Darfield rupture have a long temporal baseline. We perform normalized cross-correlation on optical imagery pairs, using AMPCOR from the ROI_PAC software package, to derive surface offsets. We find that orthorectification and terrain correction are the most difficult tasks because of the lower resolution of publicly available DEMs (90 m SRTM, 15 m NZDEM_SoS_v1.0) compared to the high resolution of the imagery. Coregistration and orthorectification though are greatly enhanced by using information in the imagery .ntf wrapper. For the Darfield scenes, orthorectification is not as critical due to the flat topography and near-nadir look angle of the scenes. However, precise orthorectification and terrain correction is required over Christchurch because of the steep relief of the Banks Peninsula. The long temporal baseline between the Darfield pre- and post-seismic scenes prevents us from obtaining offsets within

  8. Endoscopic high-resolution auto fluorescence imaging and optical coherence tomography of airways in vivo (Conference Presentation)

    Science.gov (United States)

    Pahlevaninezhad, Hamid; Lee, Anthony; Hohert, Geoffrey; Schwartz, Carley; Shaipanich, Tawimas; Ritchie, Alexander J.; Zhang, Wei; MacAulay, Calum E.; Lam, Stephen; Lane, Pierre M.

    2016-03-01

    In this work, we present multimodal imaging of peripheral airways in vivo using an endoscopic imaging system capable of co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI). This system employs a 0.9 mm diameter double-clad fiber optic-based catheter for endoscopic imaging of small peripheral airways. Optical coherence tomography (OCT) can visualize detailed airway morphology in the lung periphery and autofluorescence imaging (AFI) can visualize fluorescent tissue components such as collagen and elastin, improving the detection of airway lesions. Results from in vivo imaging of 40 patients indicate that OCT and AFI offer complementary information that may increase the ability to identify pulmonary nodules in the lung periphery and improve the safety of biopsy collection by identifying large blood vessels. AFI can rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. By providing complementary information about structure and function of tissue, OCT-AFI may improve site selection during biopsy collection in the lung periphery.

  9. High-Resolution En Face Images of Microcystic Macular Edema in Patients with Autosomal Dominant Optic Atrophy

    Directory of Open Access Journals (Sweden)

    Kiyoko Gocho

    2013-01-01

    Full Text Available The purpose of this study was to investigate the characteristics of microcystic macular edema (MME determined from the en face images obtained by an adaptive optics (AO fundus camera in patients with autosomal dominant optic atrophy (ADOA and to try to determine the mechanisms underlying the degeneration of the inner retinal cells and RNFL by using the advantage of AO. Six patients from 4 families with ADOA underwent detailed ophthalmic examinations including spectral domain optical coherence tomography (SD-OCT. Mutational screening of all coding and flanking intron sequences of the OPA1 gene was performed by DNA sequencing. SD-OCT showed a severe reduction in the retinal nerve fiber layer (RNFL thickness in all patients. A new splicing defect and two new frameshift mutations with premature termination of the Opa1 protein were identified in three families. A reported nonsense mutation was identified in one family. SD-OCT of one patient showed MME in the inner nuclear layer (INL of the retina. AO images showed microcysts in the en face images of the INL. Our data indicate that AO is a useful method to identify MME in neurodegenerative diseases and may also help determine the mechanisms underlying the degeneration of the inner retinal cells and RNFL.

  10. Retinal damage in chloroquine maculopathy, revealed by high resolution imaging: a case report utilizing adaptive optics scanning laser ophthalmoscopy.

    Science.gov (United States)

    Bae, Eun Jin; Kim, Kyoung Rae; Tsang, Stephen H; Park, Sung Pyo; Chang, Stanley

    2014-02-01

    A 53-year-old Asian woman was treated with hydroxychloroquine and chloroquine for lupus erythematosus. Within a few years, she noticed circle-shaped shadows in her central vision. Upon examination, the patient's visual acuity was 20 / 25 in both eyes. Humphrey visual field (HVF) testing revealed a central visual defect, and fundoscopy showed a ring-shaped area of parafoveal retinal pigment epithelium depigmentation. Fundus autofluorescence imaging showed a hypofluorescent lesion consistent with bull's eye retinopathy. Adaptive optics scanning laser ophthalmoscope (AO-SLO) revealed patch cone mosaic lesions, in which cones were missing or lost. In addition, the remaining cones consisted of asymmetrical shapes and sizes that varied in brightness. Unlike previous studies employing deformable mirrors for wavefront aberration correction, our AO-SLO approach utilized dual liquid crystal on silicon spatial light modulators. Thus, by using AO-SLO, we were able to create a photographic montage consisting of high quality images. Disrupted cone AO-SLO images were matched with visual field test results and functional deficits were associated with a precise location on the montage, which allowed correlation of histological findings with functional changes determined by HVF. We also investigated whether adaptive optics imaging was more sensitive to anatomical changes compared with spectral-domain optical coherence tomography.

  11. The Olorgesailie Drilling Project (ODP): a high-resolution drill core record from a hominin site in the East African Rift Valley

    Science.gov (United States)

    Dommain, R.; Potts, R.; Behrensmeyer, A. K.; Deino, A. L.

    2014-12-01

    The East African rift valley contains an outstanding record of hominin fossils that document human evolution over the Plio-Pleistocene when the global and regional climate and the rift valley itself changed markedly. The sediments of fossil localities typically provide, however, only short time windows into past climatic and environmental conditions. Continuous, long-term terrestrial records are now becoming available through core drilling to help elucidate the paleoenvironmental context of human evolution. Here we present a 500,000 year long high-resolution drill core record obtained from a key fossil and archeological site - the Olorgesailie Basin in the southern Kenya Rift Valley, well known for its sequence of archeological and faunal sites for the past 1.2 million years. In 2012 two drill cores (54 and 166 m long) were collected in the Koora Plain just south of Mt. Olorgesailie as part of the Olorgesailie Drilling Project (ODP) to establish a detailed climate and ecological record associated with the last evidence of Homo erectus in Africa, the oldest transition of Acheulean to Middle Stone Age technology, and large mammal species turnover, all of which are documented in the Olorgesailie excavations. The cores were sampled at the National Lacustrine Core Facility. More than 140 samples of tephra and trachytic basement lavas have led to high-precision 40Ar/39Ar dating. The cores are being analyzed for a suite of paleoclimatic and paleoecological proxies such as diatoms, pollen, fungal spores, phytoliths, ostracodes, carbonate isotopes, leaf wax biomarkers, charcoal, and clay mineralogy. Sedimentological analyses, including lithological descriptions, microscopic smear slide analysis (242 samples), and grain-size analysis, reveal a highly variable sedimentary sequence of deep lake phases with laminated sediments, diatomites, shallow lake and near shore phases, fluvial deposits, paleosols, interspersed carbonate layers, and abundant volcanic ash deposits. Magnetic

  12. Low drift and high resolution miniature optical fiber combined pressure- and temperature sensor for cardio-vascular and urodynamic applications

    Science.gov (United States)

    Poeggel, Sven; Tosi, Daniele; Duraibabu, Dineshbabu; Sannino, Simone; Lupoli, Laura; Ippolito, Juliet; Fusco, Fernando; Mirone, Vincenzo; Leen, Gabriel; Lewis, Elfed

    2014-05-01

    The all-glass optical fibre pressure and temperature sensor (OFPTS), present here is a combination of an extrinsic Fabry Perot Interferometer (EFPI) and an fiber Bragg gratings (FBG), which allows a simultaneously measurement of both pressure and temperature. Thermal effects experienced by the EFPI can be compensated by using the FBG. The sensor achieved a pressure measurement resolution of 0.1mmHg with a frame-rate of 100Hz and a low drift rate of < 1 mmHg/hour drift. The sensor has been evaluated using a cardiovascular simulator and additionally has been evaluated in-vivo in a urodynamics application under medical supervision.

  13. Active X-ray Optics for Generation-X, the Next High Resolution X-ray Observatory

    OpenAIRE

    Elvis, Martin; Brissenden, R. J.; Fabbiano, G.; Schwartz, D. A.; Reid, P.; Podgorski, W.; Eisenhower, M.; Juda, M.; Phillips, J.; Cohen, L.; Wolk, S.

    2006-01-01

    X-rays provide one of the few bands through which we can study the epoch of reionization, when the first galaxies, black holes and stars were born. To reach the sensitivity required to image these first discrete objects in the universe needs a major advance in X-ray optics. Generation-X (Gen-X) is currently the only X-ray astronomy mission concept that addresses this goal. Gen-X aims to improve substantially on the Chandra angular resolution and to do so with substantially larger effective ar...

  14. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device.

    Science.gov (United States)

    Hahn, Paul; Migacz, Justin; O'Donnell, Rachelle; Day, Shelley; Lee, Annie; Lin, Phoebe; Vann, Robin; Kuo, Anthony; Fekrat, Sharon; Mruthyunjaya, Prithvi; Postel, Eric A; Izatt, Joseph A; Toth, Cynthia A

    2013-01-01

    The authors have recently developed a high-resolution microscope-integrated spectral domain optical coherence tomography (MIOCT) device designed to enable OCT acquisition simultaneous with surgical maneuvers. The purpose of this report is to describe translation of this device from preclinical testing into human intraoperative imaging. Before human imaging, surgical conditions were fully simulated for extensive preclinical MIOCT evaluation in a custom model eye system. Microscope-integrated spectral domain OCT images were then acquired in normal human volunteers and during vitreoretinal surgery in patients who consented to participate in a prospective institutional review board-approved study. Microscope-integrated spectral domain OCT images were obtained before and at pauses in surgical maneuvers and were compared based on predetermined diagnostic criteria to images obtained with a high-resolution spectral domain research handheld OCT system (HHOCT; Bioptigen, Inc) at the same time point. Cohorts of five consecutive patients were imaged. Successful end points were predefined, including ≥80% correlation in identification of pathology between MIOCT and HHOCT in ≥80% of the patients. Microscope-integrated spectral domain OCT was favorably evaluated by study surgeons and scrub nurses, all of whom responded that they would consider participating in human intraoperative imaging trials. The preclinical evaluation identified significant improvements that were made before MIOCT use during human surgery. The MIOCT transition into clinical human research was smooth. Microscope-integrated spectral domain OCT imaging in normal human volunteers demonstrated high resolution comparable to tabletop scanners. In the operating room, after an initial learning curve, surgeons successfully acquired human macular MIOCT images before and after surgical maneuvers. Microscope-integrated spectral domain OCT imaging confirmed preoperative diagnoses, such as full-thickness macular hole

  15. Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering.

    Science.gov (United States)

    Jian, Yifan; Wong, Kevin; Sarunic, Marinko V

    2013-02-01

    In this report, we describe how to highly optimize a computer unified device architecture based platform to perform real-time processing of optical coherence tomography interferometric data and three-dimensional (3-D) volumetric rendering using a commercially available, cost-effective, graphics processing unit (GPU). The maximum complete attainable axial scan processing rate, including memory transfer and displaying B-scan frame, was 2.24 MHz for 16 bits pixel depth and 2048 fast Fourier transform size; the maximum 3-D volumetric rendering rate, including B-scan, en face view display, and 3-D rendering, was ~23 volumes/second (volume size: 1024×256×200). To the best of our knowledge, this is the fastest processing rate reported to date with a single-chip GPU and the first implementation of real-time video-rate volumetric optical coherence tomography (OCT) processing and rendering that is capable of matching the acquisition rates of ultrahigh-speed OCT.

  16. Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering

    Science.gov (United States)

    Jian, Yifan; Wong, Kevin; Sarunic, Marinko V.

    2013-02-01

    In this report, we describe how to highly optimize a computer unified device architecture based platform to perform real-time processing of optical coherence tomography interferometric data and three-dimensional (3-D) volumetric rendering using a commercially available, cost-effective, graphics processing unit (GPU). The maximum complete attainable axial scan processing rate, including memory transfer and displaying B-scan frame, was 2.24 MHz for 16 bits pixel depth and 2048 fast Fourier transform size; the maximum 3-D volumetric rendering rate, including B-scan, en face view display, and 3-D rendering, was ˜23 volumes/second (volume size: 1024×256×200). To the best of our knowledge, this is the fastest processing rate reported to date with a single-chip GPU and the first implementation of real-time video-rate volumetric optical coherence tomography (OCT) processing and rendering that is capable of matching the acquisition rates of ultrahigh-speed OCT.

  17. High-resolution record of last post-glacial variations of sea-ice cover and river discharge in the western Laptev Sea (Arctic Ocean)

    Science.gov (United States)

    Stein, R. H.; Hörner, T.; Fahl, K.

    2014-12-01

    Here, we provide a high-resolution reconstruction of sea-ice cover variations in the western Laptev Sea, a crucial area in terms of sea-ice production in the Arctic Ocean and a region characterized by huge river discharge. Furthermore, the shallow Laptev Sea was strongly influenced by the post-glacial sea-level rise that should also be reflected in the sedimentary records. The sea Ice Proxy IP25 (Highly-branched mono-isoprenoid produced by sea-ice algae; Belt et al., 2007) was measured in two sediment cores from the western Laptev Sea (PS51/154, PS51/159) that offer a high-resolution composite record over the last 18 ka. In addition, sterols are applied as indicator for marine productivity (brassicasterol, dinosterol) and input of terrigenous organic matter by river discharge into the ocean (campesterol, ß-sitosterol). The sea-ice cover varies distinctly during the whole time period and shows a general increase in the Late Holocene. A maximum in IP25 concentration can be found during the Younger Dryas. This sharp increase can be observed in the whole circumarctic realm (Chukchi Sea, Bering Sea, Fram Strait and Laptev Sea). Interestingly, there is no correlation between elevated numbers of ice-rafted debris (IRD) interpreted as local ice-cap expansions (Taldenkova et al. 2010), and sea ice cover distribution. The transgression and flooding of the shelf sea that occurred over the last 16 ka in this region, is reflected by decreasing terrigenous (riverine) input, reflected in the strong decrease in sterol (ß-sitosterol and campesterol) concentrations. ReferencesBelt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry 38 (1), 16e27. Taldenkova, E., Bauch, H.A., Gottschalk, J., Nikolaev, S., Rostovtseva, Yu., Pogodina, I., Ya, Ovsepyan, Kandiano, E., 2010. History of ice-rafting and water mass evolution at the northern Siberian continental margin (Laptev Sea) during Late

  18. High-resolution spectrally-resolved fiber optic sensor interrogation system based on a standard DWDM laser module.

    Science.gov (United States)

    Njegovec, Matej; Donlagic, Denis

    2010-11-08

    This paper presents a spectrally-resolved integration system suitable for the reading of Bragg grating, all-fiber Fabry-Perot, and similar spectrally-resolved fiber-optic sensors. This system is based on a standard telecommunication dense wavelength division multiplexing transmission module that contains a distributed feedback laser diode and a wavelength locker. Besides the transmission module, only a few additional opto-electronic components were needed to build an experimental interrogation system that demonstrated over a 2 nm wide wavelength interrogation range, and a 1 pm wavelength resolution. When the system was combined with a typical Bragg grating sensor, a strain resolution of 1 με and temperature resolution of 0.1 °C were demonstrated experimentally. The proposed interrogation system relies entirely on Telecordia standard compliant photonic components and can thus be straightforwardly qualified for use within the range of demanding applications.

  19. In-situ ER-doped GaN optical storage devices using high-resolution focused ion beam milling

    Science.gov (United States)

    Lee, Boon K.; Chi, Chih-Jen; Chyr, Irving; Lee, Dong-Seon; Beyette, Fred R.; Steckl, Andrew J.

    2002-04-01

    High-density GaN:Er optical storage devices were fabricated with focused ion beam (FIB) milling techniques. In-situ Er-doped GaN films (1 - 1.5 micrometers thick) were grown on Si substrates. To `write' a bit, the GaN:Er film was selectively milled with a 30-keV Ga+ FIB. Data retrieval is accomplished by upconversion emission at 535/556 nm upon 1-micrometers IR laser stimulation. Regions where the Er-doped GaN layer is completely removed (and do not emit) are defined as logic `0,' while regions that are not milled (and do emit) are defined as logic `1.' Data patterns with submicron bit size (or 100 Mb/cm2 density) have been fabricated by FIB milling. Data written by this approach has a theoretical storage capacity approaching 10 Gbits/cm2.

  20. Fiber-based optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering (CARS) microscopy.

    Science.gov (United States)

    Gottschall, Thomas; Meyer, Tobias; Baumgartl, Martin; Dietzek, Benjamin; Popp, Jürgen; Limpert, Jens; Tünnermann, Andreas

    2014-09-08

    Imaging based on coherent anti-Stokes Raman scattering (CARS) relies on the interaction of high peak-power, synchronized picosecond pulses with narrow bandwidths and a well-defined frequency difference. Recently a new type of fiber-based CARS laser source based on four-wave-mixing (FWM) has been developed. In order to enhance its spectral resolution and efficiency, a FWM based fiber optical parametric oscillator (FOPO) is proposed in this work. The source delivers 180 mW with 5.6 kW peak power for the CARS pump and 130 mW with 2.9 kW peak power for the Stokes signal. CARS resonances around 2850 and 2930 cm(-1) can be resolved with a resolution of 1 cm(-1) enabling high-contrast, spectrally resolved CARS imaging of biological tissue.

  1. Alignment and Distortion-Free Integration of Lightweight Mirrors into Meta-Shells for High-Resolution Astronomical X-Ray Optics

    Science.gov (United States)

    Chan, Kai-Wing; Zhang, William W.; Schofield, Mark J.; Numata, Ai; Mazzarella, James R.; Saha, Timo T.; Biskach, Michael P.; McCelland, Ryan S.; Niemeyer, Jason; Sharpe, Marton V.; hide

    2016-01-01

    High-resolution, high throughput optics for x-ray astronomy requires fabrication of well-formed mirror segments and their integration with arc-second level precision. Recently, advances of fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror integration. The new integration scheme takes advantage of the stiffer, more thermally conductive, and lower-CTE silicon, compared to glass, to build a telescope of much lighter weight. In this paper, we address issues of aligning and bonding mirrors with this method. In this preliminary work, we demonstrated the basic viability of such scheme. Using glass mirrors, we demonstrated that alignment error of 1" and bonding error 2" can be achieved for mirrors in a single shell. We will address the immediate plan to demonstrate the bonding reliability and to develop technology to build up a mirror stack and a whole "meta-shell".

  2. A High-Resolution Multi-Proxy Lake Sediment Record from Torfdalsvatn Suggests an Enhanced Temperature Gradient Between North and South Iceland During the Early Holocene

    Science.gov (United States)

    Florian, Christopher; Geirsdóttir, Áslaug; Miller, Gifford; Axford, Yarrow

    2015-04-01

    enhanced climate gradient between south and north Iceland during much of the Holocene. A comparison of the data from this core with other high-resolution regional climate records can lead to a better understanding of the relationship between marine and terrestrial climate, as well as the differences in climate histories between north and south Iceland.

  3. Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography.

    Science.gov (United States)

    Michaely, Roland; Bachmann, Adrian H; Villiger, Martin L; Blatter, Cédric; Lasser, Theo; Leitgeb, Rainer A

    2007-01-01

    Resonant Doppler Fourier domain optical coherence tomography (FDOCT) is a functional imaging tool for extracting tissue flow. The method is based on the effect of interference fringe blurring in spectrometer-based FDOCT, where the path difference between structure and reference changes during camera integration. If the reference path length is changed in resonance with the Doppler frequency of the sample flow, the signals of resting structures will be suppressed, whereas the signals of blood flow are enhanced. This allows for an easy extraction of vascularization structure. Conventional flow velocity analysis extracts only the axial flow component, which strongly depends on the orientation of the vessel with respect to the incident light. We introduce an algorithm to extract the vessel geometry within the 3-D data volume. The algorithm calculates the angular correction according to the local gradients of the vessel orientations. We apply the algorithm on a measured 3-D resonant Doppler dataset. For validation of the reproducibility, we compare two independently obtained 3-D flow maps of the same volunteer and region.

  4. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  5. New data on the Lateglacial period of SW Europe: a high resolution multiproxy record from Laguna de la Roya (NW Iberia)

    Science.gov (United States)

    Muñoz Sobrino, C.; Heiri, O.; Hazekamp, M.; van der Velden, D.; Kirilova, E. P.; García-Moreiras, I.; Lotter, A. F.

    2013-11-01

    High-resolution multiproxy analyses were performed on a 128 cm section of organic sediments accumulated in a small mountain lake in NW Iberia (Laguna de la Roya, 1608 m asl). The pollen stratigraphy together with radiocarbon dating provided the basis for a chronology ranging from 15,600 to 10,500 cal yr BP. Chironomid-inferred July air temperatures suggest a temperature range from 7 to 13 °C, also evidencing two well-established cold periods which may be equivalent to the INTIMATE stages GS-2a and GS-1. Furthermore, a number of short cold events (with summer temperatures dropping about 0.5-1 °C) appear intercalated within the Lateglacial Interstadial (possibly equivalent to the INTIMATE cold events GI-1d, GI-1c2 and GI-1b) and the early Holocene (possibly equivalent to the 11.2 k event). The temperature variations predicted by our reconstruction allow explaining the changes in local conditions and productivity of the lake inferred from the biological record of the same sediment core. Furthermore, they also agree with the local and regional vegetation dynamics, and the main oscillations deduced for the vegetation belts. Based on its chronology our multiproxy record indicates a similar temperature development in NW Iberia as inferred by the Greenland δ18O record, the marine deep-sea records off the Atlantic Iberian Margin, and other chironomid-based Lateglacial temperature reconstructions from Europe. Nevertheless, the impact of most of the less intense Lateglacial/early Holocene cold events in NW Iberia was most probably limited to very sensitive sites that were very close to ecotonal situations. Particularly, our new pollen record indicates that they were represented as three minor environmental crises occurring during the Lateglacial Interestadial in this area. The Older Dryas event (in our usage corresponding to the Aegelsee Oscillation in Central Europe and event GI-1d in central Greenland) has previously been described in this region, but its age and

  6. Ultra-High Resolution Late Pleistocene Paleomagnetic Secular Variation Records From the Gulf of Alaska (IODP Exp. 341 Sites U1418 and U1419)

    Science.gov (United States)

    Velle, J. H.; St-Onge, G.; Stoner, J. S.; Mix, A. C.; Walczak, M.; Asahi, H.; Forwick, M.

    2016-12-01

    IODP Expedition 341 in the Gulf of Alaska drilled the upper Surveyor Fan on the continental rise at Site U1418 (58°46.6'N 144°29.6'W; 3667 m water depth) and the continental slope at Site U1419 (59°319'N 144°8'W; 684 m water depth). U-channel paleomagnetic data has so far been collected to depths of 65 m (CCSF-A) at Site U1418 and 112 m (CCSF-A) at Site U1419. The preliminary oxygen isotope (U1418 and U1419) and radiocarbon-based age models (U1419) constrain the studied sequences to approximately 30,000 and 50,000 years, respectively. Sedimentation rates > 300 cm/kyr were resolved in some intervals, and these exceptionally expanded records allow paleomagnetic secular variation (PSV) from the northeastern Pacific to be studied in high-resolution. Alternating field (AF) demagnetization of u-channel samples and hysteresis data from Site U1418 reveal a low coercivity magnetization consistent with pseudo-single domain (PSD) magnetite with only slight down-core variations, resulting in a strong, well-defined (MAD <5°), single component magnetization being preserved. U-channel measurements of Site U1419 display a weaker, but still stable, low coercivity magnetization, also consistent with PSD magnetite as the primary remanence carrier. Inclination patterns can be correlated between Site U1418 and U1419, as well as to other regional records, suggesting that these features are geomagnetic in origin, and that the Gulf of Alaska sedimentary sequences have captured regional scale paleomagnetic secular variations. Normalization of the natural remanent magnetization (NRM) at Site U1418 with anhysteretic remanent magnetization (ARM) over 7 AF demagnetization steps are consistent with relative paleointensity, suggesting the potential for a NE Pacific regional template for stratigraphic correlation through the Late Pleistocene.

  7. NOAA Climate Data Record (CDR) of Intersatellite Calibrated Clear-Sky High Resolution Infrared Radiation Sounder (HIRS) Channel 12 Brightness Temperature Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The High-Resolution Infrared Radiation Sounder (HIRS) of intersatellite calibrated channel 12 brightness temperature (TB) product is a gridded global monthly time...

  8. High resolution spectral domain optical coherence tomography (SD-OCT in multiple sclerosis: the first follow up study over two years.

    Directory of Open Access Journals (Sweden)

    Nermin Serbecic

    Full Text Available BACKGROUND: "Non-invasive, faster and less expensive than MRI" and "the eye is a window to the brain" are recent slogans promoting optical coherence tomography (OCT as a new surrogate marker in multiple sclerosis (MS. Indeed, OCT allows for the first time a non-invasive visualization of axons of the central nervous system (CNS. Reduction of retina nerve fibre layer (RNFL thickness was suggested to correlate with disease activity and duration. However, several issues are unclear: Do a few million axons, which build up both optic nerves, really resemble billions of CNS neurons? Does global CNS damage really result in global RNFL reduction? And if so, does global RNFL reduction really exist in all MS patients, and follow a slowly but steadily ongoing pattern? How can these (hypothesized subtle global RNFL changes be reliably measured and separated from the rather gross RNFL changes caused by optic neuritis? Before generally being accepted, this interpretation needs further critical and objective validation. METHODOLOGY: We prospectively studied 37 MS patients with relapsing remitting (n = 27 and secondary progressive (n = 10 course on two occasions with a median interval of 22.4±0.5 months [range 19-27]. We used the high resolution spectral domain (SD-OCT with the Spectralis 3.5 mm circle scan protocol with locked reference images and eye tracking mode. Patients with an attack of optic neuritis within 12 months prior to the onset of the study were excluded. PRINCIPAL FINDINGS: Although the disease was highly active over the observation period in more than half of the included relapsing remitting MS patients (19 patients/32 relapses and the initial RNFL pattern showed a broad range, from normal to markedly reduced thickness, no significant changes between baseline and follow-up examinations could be detected. CONCLUSIONS: These results show that caution is required when using OCT for monitoring disease activity and global axonal injury in

  9. Multiple oscillations during the Lateglacial as recorded in a multi-proxy, high-resolution record of the Moervaart palaeolake (NW Belgium)

    Science.gov (United States)

    Bos, Johanna A. A.; De Smedt, Philippe; Demiddele, Hendrik; Hoek, Wim Z.; Langohr, Roger; Marcelino, Vera; Van Asch, Nelleke; Van Damme, Dirk; Van der Meeren, Thijs; Verniers, Jacques; Boeckx, Pascal; Boudin, Mathieu; Court-Picon, Mona; Finke, Peter; Gelorini, Vanessa; Gobert, Stefan; Heiri, Oliver; Martens, Koen; Mostaert, Frank; Serbruyns, Lynn; Van Strydonck, Mark; Crombé, Philippe

    2017-04-01

    This paper presents the results of multi-disciplinary research carried out on the deposits of Moervaart depression, NW Belgium, one of the largest palaeolakes (∼25 km2) that existed during the Lateglacial interstadial in NW Europe. The multi-proxy study, including physical (organic matter and calcium carbonate, magnetic susceptibility, micromorphological), botanical (pollen, macrofossils, diatoms), zoological (ostracods, molluscs, chironomids) and chemical analyses (stable carbon and oxygen isotopes) has resulted in a detailed reconstruction of the Lateglacial landscape as well of the local conditions that prevailed in the lake itself. A chronology of the record was provided by radiocarbon dating and comparison with radiocarbon dates of the nearby Rieme site. These yielded a good match with the regional biostratigraphy. During the Lateglacial, vegetation and geomorphology of the landscape in general changed from a tundra landscape to a boreal forest. The vegetation development, however, was interrupted by a number of cold reversals. Three centennial-scale cold oscillations are present in the record: 1) the so-called Older Dryas corresponding to GI-1d in the Greenland ice-cores, 2) a short and pronounced cold event during the early Allerød, which could be correlated to GI-1c2 and 3) a cooling event during the late Allerød probably corresponding to the Intra Allerød Cold Period (IACP) or GI-1b. The latter most likely was responsible for the disappearance of the Moervaart palaeolake.

  10. Late Quaternary climate change from δ18O records of multiple species of planktonic foraminifera: High-resolution records from the Anoxic Cariaco Basin, Venezuela

    Science.gov (United States)

    Lin, Hui-Ling; Peterson, Larry C.; Overpeck, Jonathan T.; Trumbore, Susan E.; Murray, David W.

    1997-06-01

    Seasonal trade wind-induced upwelling along the southern margin of the Caribbean Sea occurs in response to the annual migration of the Intertropical Convergence Zone. Laminated, high deposition rate sediments of the Cariaco Basin, a small anoxic basin on the Venezuelan continental shelf, clearly record large changes in the past intensity of this upwelling. Because sediments of the Cariaco Basin are largely unbioturbated, they offer a natural opportunity to study the stable isotopic records of multiple planktonic foraminiferal taxa and to evaluate their sensitivity to both the modern hydrography and temporal changes in upwelling intensity and climate. Oxygen isotope data (δ18O) from four dominant foraminiferal taxa are presented for the time period covering the last 28 kyr. The δ18O data from Globigerina bulloides, after correction for nonequilibrium precipitation, are used as a monitor of sea surface conditions during the winter-spring upwelling season. The δ18O data from white Globigerinoides ruber are used as a measure of annual-average conditions in the near surface, while pink G. ruber data are consistent with use as an index of endmember conditions during the summer-fall nonupwelling season. Data from the deeper dwelling Neogloboquadrina dutertrei yield information on conditions near the base of the local thermocline. During the last glacial, δ18O data from G. ruber and generally reduced interspecific differences indicate cooling of surface waters over the Cariaco Basin by up to 4°C. This longer-term cooling does not appear to be related to changes in upwelling intensity along the coast but may instead reflect more regional cooling of the larger Caribbean. Superimposed on this pattern, between 12.6 and ˜10 ka, is a convergence of δ18O data between G. bulloides and N. dutertrei, implying much stronger upwelling during the last deglaciation. This scenario is consistent with other evidence for high productivity at this time. At ˜14 ka, a sharp δ18O

  11. High-resolution isotopic records ( δ 18O and δ 13C) and cathodoluminescence study of lucinid shells from methane seeps of the Eastern Mediterranean

    Science.gov (United States)

    Lietard, Cécile; Pierre, Catherine

    2008-08-01

    We present high-resolution isotopic records and cathodoluminescence studies of recently dead and live bivalve specimens from cold seeps, in an attempt to reconstruct environmental conditions during organism growth, and thereby the possible variability of fluid-venting activity at the seafloor. Shells of the burrowing lucinid Myrtea aff. amorpha were collected at three localities near actively venting methane seeps in the Eastern Mediterranean deep sea, using the Nautile submersible during two French oceanographic cruises: from the Kazan mud volcano, in the vicinity of the Anaximander mounts (MEDINAUT cruise, 1998), and from the central pockmark province and the Amon mud volcano of the Nile deep-sea fan (NAUTINIL cruise, 2003). The oxygen and carbon isotope compositions of 18 shells from the various localities, and also from different sites at the same locality show a rather strong scatter (1.8 < δ 18O‰ < 3.4; -10.2 < δ 13C‰ < 2.2), and values lower than those expected for carbonate precipitated at equilibrium with present-day bottom waters. This means that warm methane-rich fluids were mixed with bottom seawater during precipitation of shell carbonates. We have tried to determine ontogenetic age of two shells by using cathodoluminescence as a sclerochronological proxy, because the direct counting of carbonate increments was not possible in these specimens. There is a relatively good correspondence between cathodoluminescence trends and oxygen isotope profiles that might support the link between manganese incorporation during growth and temperature. Eight specimens of lucinid shells were selected for high-resolution isotopic profiling. A few shells exhibit decreasing δ 18O and δ 13C values from the umbo to the actively growing ventral shell margin, which can be attributed to the commonly observed physiologically controlled deceleration of growth with increasing organism age, this metabolic effect corresponding to the increase of incorporation of respiratory

  12. A high resolution Late Glacial to Holocene record of climatic and environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania)

    Science.gov (United States)

    Lacey, Jack; Francke, Alexander; Leng, Melanie; Vane, Chris; Wagner, Bernd

    2015-04-01

    Lake Ohrid (Macedonia/Albania) is one of the world's oldest lakes and is renowned for its high degree of biological diversity. It is the target site for the ICDP SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) project, an international research initiative to study the links between geology, environment and the evolution of endemic taxa. In 2011 a 10-meter core was recovered from the western shore of Lake Ohrid adjacent to the Lini Peninsula. Here we present high-resolution stable isotope and geochemical data from this core through the Late Glacial to Holocene to reconstruct past climate and hydrology (TIC, δ18Ocalcite, δ13Ccalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock-Eval pyrolysis). The data identify 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC, TOC and higher isotope values, (2) the early to mid-Holocene characterised by higher TOC, TOC/N and lower δ18Ocalcite, and (3) the late Holocene which shows a marked decrease in TIC and TOC. In general there is an overall trend of increasing δ18Ocalcite from 9 ka to present, suggesting progressive aridification through the Holocene, which is consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the SCOPSCO project cores recovered in spring-summer 2013 dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.

  13. A high-resolution Late Glacial to Holocene record of environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania)

    Science.gov (United States)

    Lacey, Jack H.; Francke, Alexander; Leng, Melanie J.; Vane, Christopher H.; Wagner, Bernd

    2015-09-01

    Lake Ohrid (Macedonia/Albania) is the oldest extant lake in Europe and exhibits an outstanding degree of endemic biodiversity. Here, we provide new high-resolution stable isotope and geochemical data from a 10 m core (Co1262) through the Late Glacial to Holocene and discuss past climate and lake hydrology (TIC, δ13Ccalcite, δ18Ocalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock Eval pyrolysis). The data identifies 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC and TOC contents, (2) the early to mid-Holocene characterised by high TOC and increasing TOC/N and (3) the Late Holocene-Present which shows a marked decrease in TIC and TOC. In general, an overall trend of increasing δ18Ocalcite from 9 ka to present suggests progressive aridification through the Holocene, consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of past Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the International Continental scientific Drilling Program Scientific Collaboration On Past Speciation Conditions in Lake Ohrid project cores recovered in spring-summer 2013, potentially dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.

  14. Environmental change at the southern Cape coast of South Africa as inferred from a high-resolution Holocene sediment record from Eilandvlei

    Science.gov (United States)

    Wündsch, Michael; Haberzettl, Torsten; Meadows, Michael E.; Kirsten, Kelly L.; Meschner, Stephanie; Frenzel, Peter; Baade, Jussi; Daut, Gerhard; Mäusbacher, Roland; Kasper, Thomas; Quick, Lynne J.; Cawthra, Hayley C.; Zabel, Matthias

    2016-04-01

    reservoir effects for the older deposits. This indicates a temporal variability on the degree of old marine carbon affecting Eilandvlei during the Holocene, which was possibly caused by changes in the connectivity between the lake system and the ocean as well as changes in the extent of upwelling along the coast. To solve this problem, variable past reservoir effects were determined based on the dating of sample pairs which were assumingly deposited contemporaneously and are composed of different source material (marine/terrestrial). This approach provides the most reliable chronology revealing a median basal age of 8880 +145/220 cal BP. Thus, the Eilandvlei core represents an ultra-high-resolution record of environmental change during the Holocene, which is a unique discovery for entire southern Africa. Palaeoenvironmental interpretations of the this record strongly suggest that sedimentation conditions at Eilandvlei were closely coupled to global sea level changes. Moreover, the multi-proxy approach provides great potential for palaeoclimatic interpretations of this record. For example, geochemical proxies reflecting the varying input of terrestrial material suggest changes in the discharge of inflowing rivers which, in turn, may be linked to variations in rainfall and hence climate within the year-round rainfall zone of South Africa.

  15. Correlation between cup-to-disc ratio and cup/retrobulbar optic nerve diameter proportion assessed by high-resolution ultrasound in glaucomatous eyes

    Directory of Open Access Journals (Sweden)

    Wilian Silva Queiroz

    2013-10-01

    Full Text Available PURPOSE: To investigate the correlation between the measurements of the cup/retrobulbar optic nerve diameter (C/OND proportion obtained by high-resolution 20-MHz B-mode ultrasound (US and those of the cup/disc ratio (C/D obtained by fundus biomicroscopy (BIO and optical coherence tomography (OCT. METHODS: Thirty eyes of 15 glaucomatous patients with any C/D proportion were studied. All patients underwent examination of the vertical C/D by BIO with a 78D lens and time-domain OCT analysis, as well as the vertical C/OND proportion using 20-MHz US measurements. All data were analyzed by correlation and agreement tests. RESULTS: The Spearman test showed a strong correlation between C/D results obtained by BIO and the measurements of C/OND (US (r=0.788, p<0.0001, and with C/D obtained by OCT (r=0.8529, p<0.0001. However, comparison of C/D results obtained with OCT to those obtained by with C/OND (US showed only a moderate correlation (r=0.6727, p<0.0001. Bland-Altman analysis did not show good agreement between C/D (BIO and C/OND (US. CONCLUSIONS: The results demonstrate that B-mode ultrasound examination with a 20 MHz probe can be a good additional method for the evaluation of the C/D ratio in glaucomatous patients, and may be considered as an alternative gross tool in glaucomatous patients with optic media opacities.

  16. Large Field, High Resolution Full Field Optical Coherence Tomography: A Pre-clinical study of human breast tissue and cancer assessment

    CERN Document Server

    Assayag, Osnath; Sigal-Zafrani, Brigitte; Riben, Michael; Harms, Fabrice; Burcheri, Adriano; de Poly, Bertrand Le Conte; Boccara, Claude

    2012-01-01

    We present a benchmark pilot study in which high-resolution Full-Field Optical Coherence Tomography (FF-OCT) is used to image human breast tissue and is evaluated to assess its ability to aid the pathologist's management of intra-operative diagnoses. Our aim included evaluating the safety of FF-OCT on human tissue and determining the concordance between the images obtained with routinely prepared histopathological material. The compact device used for this study provides a 2 {\\mu}m-lateral and a 1 {\\mu}m-axial resolution, and is able to scan a 1.5cm^2 specimen in about 7 minutes. 75 breast specimens obtained from 22 patients have been imaged. Because the contrast in the images is generated by endogenous tissue components, no biological, contrast agents or specimen preparation is required. We characterized the major architectural features and tissue structures of benign breast tissue, including adipocytes, fibrous stroma, lobules and ducts. We subsequently characterized features resulting from their pathologic...

  17. Retrieval of High-Resolution Atmospheric Particulate Matter Concentrations from Satellite-Based Aerosol Optical Thickness over the Pearl River Delta Area, China

    Directory of Open Access Journals (Sweden)

    Lili Li

    2015-06-01

    Full Text Available Satellite remote sensing offers an effective approach to estimate indicators of air quality on a large scale. It is critically significant for air quality monitoring in areas experiencing rapid urbanization and consequently severe air pollution, like the Pearl River Delta (PRD in China. This paper starts with examining ground observations of particulate matter (PM and the relationship between PM10 (particles smaller than 10 μm and aerosol optical thickness (AOT by analyzing observations on the sampling sites in the PRD. A linear regression (R2 = 0.51 is carried out using MODIS-derived 500 m-resolution AOT and PM10 concentration from monitoring stations. Data of atmospheric boundary layer (ABL height and relative humidity are used to make vertical and humidity corrections on AOT. Results after correction show higher correlations (R2 = 0.55 between extinction coefficient and PM10. However, coarse spatial resolution of meteorological data affects the smoothness of retrieved maps, which suggests high-resolution and accurate meteorological data are critical to increase retrieval accuracy of PM. Finally, the model provides the spatial distribution maps of instantaneous and yearly average PM10 over the PRD. It is proved that observed PM10 is more relevant to yearly mean AOT than instantaneous values.

  18. Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography

    Science.gov (United States)

    Fialová, Stanislava; Augustin, Marco; Glösmann, Martin; Himmel, Tanja; Rauscher, Sabine; Gröger, Marion; Pircher, Michael; Hitzenberger, Christoph K.; Baumann, Bernhard

    2016-01-01

    We present a high resolution polarization sensitive optical coherence tomography (PS-OCT) system for ocular imaging in rodents. The system operates at 840 nm and uses a broadband superluminescent diode providing an axial resolution of 5.1 µm in air. PS-OCT data was acquired at 83 kHz A-scan rate by two identical custom-made spectrometers for orthogonal polarization states. Pigmented (Brown Norway, Long Evans) and non-pigmented (Sprague Dawley) rats as well as pigmented mice (C57BL/6) were imaged. Melanin pigment related depolarization was analyzed in the retinal pigment epithelium (RPE) and choroid of these animals using the degree of polarization uniformity (DOPU). For all rat strains, significant differences between RPE and choroidal depolarization were observed. In contrast, DOPU characteristics of RPE and choroid were similar for C57BL/6 mice. Moreover, the depolarization within the same tissue type varied significantly between different rodent strains. Retinal nerve fiber layer thickness, phase retardation, and birefringence were mapped and quantitatively measured in Long Evans rats in vivo for the first time. In a circumpapillary annulus, retinal nerve fiber layer birefringence amounted to 0.16°/µm ± 0.02°/µm and 0.17°/µm ± 0.01°/µm for the left and right eyes, respectively. PMID:27446670

  19. New data on the Lateglacial period of SW Europe: a high resolution multiproxy record from Laguna de la Roya (NW Iberia)

    NARCIS (Netherlands)

    Muñoz Sobrino, C.; Heiri, O.M.|info:eu-repo/dai/nl/30484036X; Hazekamp, M.; Van der Velden, D.; Kirilova, E.P.|info:eu-repo/dai/nl/304838071; García-Moreiras, I.; Lotter, A.F.

    2013-01-01

    High-resolution multiproxy analyses were performed on a 128 cm section of organic sediments accumulated in a small mountain lake in NW Iberia (Laguna de la Roya, 1608 m asl). The pollen stratigraphy together with radiocarbon dating provided the basis for a chronology ranging from 15,600 to 10,500

  20. High-resolution multiphoton cryomicroscopy.

    Science.gov (United States)

    König, Karsten; Uchugonova, Aisada; Breunig, Hans Georg

    2014-03-15

    An ultracompact high-resolution multiphoton cryomicroscope with a femtosecond near infrared fiber laser has been utilized to study the cellular autofluorescence during freezing and thawing of cells. Cooling resulted in an increase of the intracellular fluorescence intensity followed by morphological modifications at temperatures below -10 °C, depending on the application of the cryoprotectant DMSO and the cooling rate. Furthermore, fluorescence lifetime imaging revealed an increase of the mean lifetime with a decrease in temperature. Non-destructive, label-free optical biopsies of biomaterial in ice can be obtained with sub-20 mW mean powers. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  2. Digital optical recorder-reproducer system

    Science.gov (United States)

    Reddersen, Brad R. (Inventor); Zech, Richard G. (Inventor); Roberts, Howard N. (Inventor)

    1980-01-01

    A mass archival optical recording and reproduction system includes a recording light source such as a laser beam focussed and directed upon an acousto-optic linear modulator array (or page composer) that receives parallel blocks of data converted from a serial stream of digital data to be stored. The page composer imparts to the laser beam modulation representative of a plurality of parallel channels of data and through focussing optics downstream of the page composer parallel arrays of optical spots are recorded upon a suitable recording medium such as a photographic film floppy disc. The recording medium may be substantially frictionlessly and stably positioned for recording at a record/read station by an air-bearing platen arrangement which is preferably thermodynamically non-throttling so that the recording film may be positioned in the path of the information-carrying light beam in a static or dynamic mode. During readout, the page composer is bypassed and a readout light beam is focussed directly upon the recording medium containing an array of previously recorded digital spots, a sync bit, data positioning bits, and a tracking band. The readout beam which has been directed through the recording medium is then imaged upon a photodetector array, the output of which may be coupled to suitable electronic processing circuitry, such as a digital multiplexer, whereby the parallel spot array is converted back into the original serial data stream.

  3. In vivo visualization of photoreceptor layer and lipofuscin accumulation in Stargardt’s disease and fundus flavimaculatus by high resolution spectral-domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Giuseppe Querques

    2009-12-01

    Full Text Available Giuseppe Querques, Rosy Prato, Gabriel Coscas, Gisèle Soubrane, Eric H SouiedDepartment of Ophthalmology, Hopital Intercommunal de Creteil, University Paris XII, FranceIntroduction: To assess photoreceptor (PR layer morphology in patients with Stargardt’s disease (STGD and fundus flavimaculatus (FFM using high resolution spectral domain optical coherence tomography (HD-OCT; OCT 4000 Cirrus, Humphrey-Zeiss, San Leandro, CA.Methods: This was a prospective observational case series. Sixteen consecutive patients with STGD and FFM underwent a complete ophthalmologic examination. Optical coherence tomography examination was performed with HD-OCT, a high-speed (27,000 axial scans per second OCT system using spectral/Fourier domain detection, with an axial image resolution of 5 µm.Results: A total of 31 eyes were included in the study. Transverse loss of the PR layer in the foveal region was shown by HD-OCT. Twenty eyes with clinically evident central atrophy had a disruption of either the Verhoeff‘s membrane (VM or the layer corresponding to the interface of inner segment (IS and outer segment (OS of PR in the foveal region. Among these eyes, 12/20 eyes had a loss of the PR layer (loss of both VM and IS-OS interface in the foveal region. Eleven eyes (11/31 without clinically evident central atrophy had an intact interface of IS and OS of PR centrally. Moreover, we observed hyperreflective deposits: type 1 lesions located within the retinal pigment epithelium (RPE layer and at the level of the outer segments of PR, and type 2 lesions located at the level of the outer nuclear layer and clearly separated from the RPE layer. Type 1 lesions alone were associated with absence of loss of the PR layer in the foveal region in all eyes; type 2 lesions were always associated with presence of type 1 lesions, and often (8/12 eyes associated with loss of the PR layer within the foveal region. Mean best-corrected visual acuity (BCVA was significantly

  4. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    Science.gov (United States)

    Briggs, Martin; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-01-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  5. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    Science.gov (United States)

    Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-07-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>-1.5 m d-1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ˜0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8-9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  6. Optical recording for investigating electrical defibrillation

    Science.gov (United States)

    Dillon, Stephen M.

    1994-05-01

    Optical recording uses a voltage-sensitive dye to transduce transmembrane cellular potential into a fluorescence, absorption or birefringence signal. Optical recording is useful for studying cardiac electrophysiology because it (1) is a non-contact method which spares fragile preparations mechanical damage, (2) can achieve sub-cellular spatial resolution, (3) allows acquisition of large numbers of simultaneous readings, and (4) is immune to artifacts produced by electrical shocks.

  7. Optical recording in copper–silica nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Dmitruk, Igor, E-mail: igor_dmitruk@univ.kiev.ua [Femtosecond Laser Complex, Institute of Physics, National Academy of Sciences of Ukraine, 46 Prospect Nauky, 03028 Kyiv (Ukraine); Faculty of Physics, Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv (Ukraine); Blonskiy, Ivan; Korenyuk, Petro; Kadan, Viktor; Zubrilin, Mykola; Dmytruk, Andriy [Femtosecond Laser Complex, Institute of Physics, National Academy of Sciences of Ukraine, 46 Prospect Nauky, 03028 Kyiv (Ukraine); Yeshchenko, Oleg [Faculty of Physics, Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv (Ukraine); Alexeenko, Alexandr [P. O. Sukhoi State Technical University of Gomel, 48, Pr.Octiabria, 246746 Gomel (Belarus); Kotko, Andriy [I. M. Frantsevich Institute for Problems of Materials Science, 3, Krzhizhanovsky Str., 03680 Kyiv (Ukraine)

    2014-05-01

    The application of field enhancement effect, which takes place when light, interacts with surface plasmon, for optical recording has been suggested. Copper–silica nanocomposite demonstrates possibility of optical writing and erasing under irradiation by second harmonic (400 nm) and fundamental wavelength (800 nm) of femtosecond titanium–sapphire laser, respectively.

  8. High-resolution sub-ice-shelf seafloor records of twentieth century ungrounding and retreat of Pine Island Glacier, West Antarctica

    Science.gov (United States)

    Davies, D.; Bingham, R. G.; Graham, A. G. C.; Spagnolo, M.; Dutrieux, P.; Vaughan, D. G.; Jenkins, A.; Nitsche, F. O.

    2017-09-01

    Pine Island Glacier Ice Shelf (PIGIS) has been thinning rapidly over recent decades, resulting in a progressive drawdown of the inland ice and an upstream migration of the grounding line. The resultant ice loss from Pine Island Glacier (PIG) and its neighboring ice streams presently contributes an estimated ˜10% to global sea level rise, motivating efforts to constrain better the rate of future ice retreat. One route toward gaining a better understanding of the processes required to underpin physically based projections is provided by examining assemblages of landforms and sediment exposed over recent decades by the ongoing ungrounding of PIG. Here we present high-resolution bathymetry and sub-bottom-profiler data acquired by autonomous underwater vehicle (AUV) surveys beneath PIGIS in 2009 and 2014, respectively. We identify landforms and sediments associated with grounded ice flow, proglacial and subglacial sediment transport, overprinting of lightly grounded ice-shelf keels, and stepwise grounding line retreat. The location of a submarine ridge (Jenkins Ridge) coincides with a transition from exposed crystalline bedrock to abundant sediment cover potentially linked to a thick sedimentary basin extending upstream of the modern grounding line. The capability of acquiring high-resolution data from AUV platforms enables observations of landforms and understanding of processes on a scale that is not possible in standard offshore geophysical surveys.

  9. A new high-resolution 3-D quantitative method for identifying bone surface modifications with implications for the Early Stone Age archaeological record.

    Science.gov (United States)

    Pante, Michael C; Muttart, Matthew V; Keevil, Trevor L; Blumenschine, Robert J; Njau, Jackson K; Merritt, Stephen R

    2017-01-01

    Bone surface modifications have become important indicators of hominin behavior and ecology at prehistoric archaeological sites. However, the method by which we identify and interpret these marks remains largely unchanged despite decades of research, relying on qualitative criteria and lacking standardization between analysts. Recently, zooarchaeologists have begun using new technologies capable of capturing 3-D data from bone surface modifications to advance our knowledge of these informative traces. However, an important step in this research has been overlooked and after years of work, we lack both a universal and replicable protocol and an understanding of the precision of these techniques. Here we propose a new standard for identifying bone surface modifications using high-resolution 3-D data and offer a systematic and replicable approach for researchers to follow. Data were collected with a white-light non-contact confocal profilometer and analyzed with Digital Surf's Mountains ® software. Our data show that when methods are standardized, results between researchers are statistically indistinguishable. Multivariate analyses using the measured parameters allow discrimination between stone tool cut marks and mammalian carnivore tooth marks with 97.5% accuracy. Application of this method to fossil specimens resulted in 100% correspondence with identifications made by an experienced analyst using macroscopic observations of qualitative features of bone surface modifications. High-resolution 3-D analyses of bone surface modifications have great potential to improve the reliability and accuracy of taphonomic research, but only if our methods are replicable and precise. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Using high-resolution fiber-optic distributed temperature sensing to measure spatially resolved speed and temperature of airflows in a shallow gully

    Science.gov (United States)

    Thomas, Christoph; Sayde, Chadi; Selker, John

    2015-04-01

    the cold-air pool was displaced from the gully by intermittently strong external wind forcing. Even gentle surface heterogeneity can have dramatic impacts on the structure of the near-surface flow, turbulence, and heat transport, which calls for spatial observations to quantify and compensate for the location bias of traditional single-point flow and flux measurements. The novel approach, which allows studying the spatial structure of the surface layer on scales spanning four orders of magnitude (0.1 - 1000m), opens up many important opportunities for testing fundamental assumptions and concepts in micrometeorology including, but not limited to turbulent length scales, the validity of Taylors hypothesis and ergodicity, surface heterogeneity, and internal boundary layers. References: Thomas, C.K., Kennedy, A.M., Selker, J.S., Moretti, A., Schroth, M.H., Smoot, A.R., Tufillaro, N.B., Zeeman, M.J., 2012. High-resolution fibre-optic temperature sensing: A new tool to study the two-dimensional structure of atmospheric surface layer flow. Boundary-Layer Meteorol. 142, 177-192. DOI: 10.1007/s10546-011-9672-7 Zeeman MJ, Selker JS, Thomas CK. Near-surface motion in the nocturnal, stable boundary layer observed with fibre-optic distributed temperature sensing. Boundary- Layer Meterology. 2014:online first. doi:10.1007/s10546-014-9972-9.

  11. High-resolution Optical Spectroscopic Observations of Four Symbiotic Stars: AS 255, MWC 960, RW Hya, and StHα 32

    Science.gov (United States)

    Pereira, C. B.; Baella, N. O.; Drake, N. A.; Miranda, L. F.; Roig, F.

    2017-05-01

    We report on the analysis of high-resolution optical spectra of four symbiotic stars: AS 255, MWC 960, RW Hya, and StHα32. We employ the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code moog to analyze the spectra. The abundance of barium and carbon was derived using the spectral synthesis technique. The chemical composition of the atmospheres of AS 255 and MWC 960 show that they are metal-poor K giants with metallicities of -1.2 and -1.7 respectively. StHα32 is a CH star and also a low-metallicity object (-1.4). AS 255 and MWC 960 are yellow symbiotic stars and, like other previously studied yellow symbiotics, are s-process enriched. StHα32, like other CH stars, is also an s-process and carbon-enriched object. RW Hya has a metallicity of -0.64, a value in accordance with previous determinations, and is not s-process enriched. Based on its position in the 2MASS diagram, we suggest that RW Hya is at an intermediate position between yellow symbiotics and classical S-type symbiotics. We also discuss whether the dilution effect was the mechanism responsible for the absence of the s-process elements overabundance in RW Hya. The luminosity obtained for StHα32 is below the luminosity of the asymptotic giant branch (AGB) stars that started helium burning (via thermal pulses) and became self-enriched in neutron-capture elements. Therefore, its abundance peculiarities are due to mass transfer from the previous thermally pulsing AGB star (now the white dwarf) that was overabundant in s-process elements. For the stars AS 255 and MWC 960, the determination of their luminosities was not possible due to uncertainties in their distance and interstellar absorption. AS 255 and MWC 960 have a low galactic latitude and could be bulge stars or members of the inner halo population. The heavy-element abundance distribution of AS 255 and MWC 960 is similar to that of the other yellow symbiotics previously analyzed. Their abundance patterns

  12. High-resolution Optical Spectroscopic Observations of Four Symbiotic Stars: AS 255, MWC 960, RW Hya, and StH α 32

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, C. B.; Drake, N. A.; Roig, F. [Observatório Nacional/MCTIC, Rua Gen. José Cristino 77, Rio de Janeiro, 20921-400 (Brazil); Baella, N. O. [Unidad de Astronomía, Instituto Geofísico del Perú, Lima, Per (Peru); Miranda, L. F., E-mail: claudio@on.br, E-mail: drake@on.br, E-mail: froig@on.br, E-mail: nobar.baella@gmail.com, E-mail: lfm@iaa.es [Instituto de Astrofísica de Andalucía - CSIC, C/Glorieta de la Astronomía s/n, E-18008 Granada (Spain)

    2017-05-20

    We report on the analysis of high-resolution optical spectra of four symbiotic stars: AS 255, MWC 960, RW Hya, and StH α 32. We employ the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code moog to analyze the spectra. The abundance of barium and carbon was derived using the spectral synthesis technique. The chemical composition of the atmospheres of AS 255 and MWC 960 show that they are metal-poor K giants with metallicities of −1.2 and −1.7 respectively. StH α 32 is a CH star and also a low-metallicity object (−1.4). AS 255 and MWC 960 are yellow symbiotic stars and, like other previously studied yellow symbiotics, are s -process enriched. StH α 32, like other CH stars, is also an s -process and carbon-enriched object. RW Hya has a metallicity of −0.64, a value in accordance with previous determinations, and is not s -process enriched. Based on its position in the 2MASS diagram, we suggest that RW Hya is at an intermediate position between yellow symbiotics and classical S-type symbiotics. We also discuss whether the dilution effect was the mechanism responsible for the absence of the s -process elements overabundance in RW Hya. The luminosity obtained for StH α 32 is below the luminosity of the asymptotic giant branch (AGB) stars that started helium burning (via thermal pulses) and became self-enriched in neutron-capture elements. Therefore, its abundance peculiarities are due to mass transfer from the previous thermally pulsing AGB star (now the white dwarf) that was overabundant in s -process elements. For the stars AS 255 and MWC 960, the determination of their luminosities was not possible due to uncertainties in their distance and interstellar absorption. AS 255 and MWC 960 have a low galactic latitude and could be bulge stars or members of the inner halo population. The heavy-element abundance distribution of AS 255 and MWC 960 is similar to that of the other yellow symbiotics previously analyzed. Their

  13. High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records

    Directory of Open Access Journals (Sweden)

    S. Kutuzov

    2013-09-01

    Full Text Available The first record of dust deposition events on Mt. Elbrus, Caucasus Mountains derived from a snow pit and a shallow firn core is presented for the 2009–2012 period. A combination of isotopic analysis, SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived using the HYSPLIT model and analyses of meteorological data enabled identification of dust source regions with high temporal (hours and spatial (ca. 20–100 km resolution. Seventeen dust deposition events were detected; fourteen occurred in March–June, one in February and two in October. Four events originated in the Sahara, predominantly in northeastern Libya and eastern Algeria. Thirteen events originated in the Middle East, in the Syrian Desert and northern Mesopotamia, from a mixture of natural and anthropogenic sources. Dust transportation from Sahara was associated with vigorous Saharan depressions, strong surface winds in the source region and mid-tropospheric southwesterly flow with daily winds speeds of 20–30 m s−1 at 700 hPa level. Although these events were less frequent than those originating in the Middle East, they resulted in higher dust concentrations in snow. Dust transportation from the Middle East was associated with weaker depressions forming over the source region, high pressure centred over or extending towards the Caspian Sea and a weaker southerly or southeasterly flow towards the Caucasus Mountains with daily wind speeds of 12–18 m s−1 at 700 hPa level. Higher concentrations of nitrates and ammonium characterised dust from the Middle East deposited on Mt. Elbrus in 2009 indicating contribution of anthropogenic sources. The modal values of particle size distributions ranged between 1.98 μm and 4.16 μm. Most samples were characterised by modal values of 2.0–2.8 μm with an average of 2.6 μm and there was no significant difference between dust from the Sahara and

  14. A high-resolution paleosecular variation record from Black Sea sediments indicating fast directional changes associated with low field intensities during marine isotope stage (MIS) 4

    Science.gov (United States)

    Nowaczyk, Norbert R.; Jiabo, Liu; Frank, Ute; Arz, Helge W.

    2018-02-01

    A total of nine sediment cores recovered from the Archangelsky Ridge in the SE Black Sea were systematically subjected to intense paleo- and mineral magnetic analyses. Besides 16 accelerator mass spectrometry (AMS) 14C ages available for another core from this area, dating was accomplished by correlation of short-term warming events during the last glacial monitored by high-resolution X-ray fluorescence (XRF) scanning as maxima in both Ca/Ti and K/Ti ratios in Black Sea sediments to the so-called 'Dansgaard-Oeschger events' recognized from Greenland ice cores. Thus, several hiatuses could be identified in the various cores during the last glacial/interglacial cycle. Finally, core sections documenting marine isotope stage (MIS) 4 at high resolution back to 69 ka were selected for detailed analyses. At 64.5 ka, according to obtained results from Black Sea sediments, the second deepest minimum in relative paleointensity during the past 69 ka occurred, with the Laschamp geomagnetic excursion at 41 ka being associated with the lowest field intensities. The field minimum during MIS 4 is associated with large declination swings beginning about 3 ka before the minimum. While a swing to 50°E is associated with steep inclinations (50-60°) according to the coring site at 42°N, the subsequent declination swing to 30°W is associated with shallow inclinations of down to 40°. Nevertheless, these large deviations from the direction of a geocentric axial dipole field (I = 61 °, D = 0 °) still can not yet be termed as 'excursional', since latitudes of corresponding virtual geomagnetic poles (VGP) only reach down to 51.5°N (120°E) and 61.5°N (75°W), respectively. However, these VGP positions at opposite sides of the globe are linked with VGP drift rates of up to 0.2° per year in between. These extreme secular variations might be the mid-latitude expression of a geomagnetic excursion with partly reversed inclinations found at several sites much further North in Arctic

  15. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  16. Unravelling Contaminants in the Anthropocene Using Statistical Analysis of Liquid Chromatography-High-Resolution Mass Spectrometry Nontarget Screening Data Recorded in Lake Sediments.

    Science.gov (United States)

    Chiaia-Hernández, Aurea C; Günthardt, Barbara F; Frey, Martin P; Hollender, Juliane

    2017-11-07

    The significant increase in traces of human activity in the environment worldwide provides evidence of the beginning of a new geological era, informally named the Anthropocene. The rate and variability of these human modifications at the local and global scale remain largely unknown, but new analytical methods such as high-resolution mass spectrometry (HRMS) can help to characterize chemical contamination. We therefore applied HRMS to investigate the contamination history of two lakes in Central Europe over the preceding 100 years. A hierarchical clustering analysis (HCA) of the collected time series data revealed more than 13 000 profiles of anthropogenic origin in both lakes, defining the beginning of large-scale human impacts during the 1950s. Our results show that the analysis of temporal patterns of nontarget contaminants is an effective method for characterizing the contamination pattern in the Anthropocene and an important step in prioritizing the identification of organic contaminants not yet successfully targeted by environmental regulation and pollution reduction initiatives. As proof of the concept, the success of the method was demonstrated with the identification of the pesticide imazalil, which probably originated from imported fruits. This new approach applicable to palaeoarchives can effectively be used to document the time and rate of change in contamination over time and provide additional information on the onset of the Anthropocene.

  17. 115 year ice-core data from Akademii Nauk ice cap, Severnaya Zemlya: high-resolution record of Eurasian Arctic climate change

    Science.gov (United States)

    Opel, Thomas; Fritzsche, Diedrich; Meyer, Hanno; Schütt, Rainer; Weiler, Karin; Ruth, Urs; Wilhelms, Frank; Fischer, Hubertus

    From 1999 to 2001 a 724 m deep ice core was drilled on Akademii Nauk ice cap, Severnaya Zemlya, to gain high-resolution proxy data from the central Russian Arctic. Despite strong summertime meltwater percolation, this ice core provides valuable information on the regional climate and environmental history. We present data of stable water isotopes, melt-layer content and major ions from the uppermost 57 m of this core, covering the period 1883-1998. Dating was achieved by counting seasonal isotopic cycles and using reference horizons. Multi-annual δ18O values reflect Eurasian sub-Arctic and Arctic surface air-temperature variations. We found strong correlations to instrumental temperature data from some stations (e.g. r = 0.62 for Vardø, northern Norway). The δ18O values show pronounced 20th-century temperature changes, with a strong rise about 1920 and the absolute temperature maximum in the 1930s. A recent decrease in the deuterium-excess time series indicates an increasing role of the Kara Sea as a regional moisture source. From the multi-annual ion variations we deduced decreasing sea-salt aerosol trends in the 20th century, as reflected by sodium and chloride, whereas sulphate and nitrate are strongly affected by anthropogenic pollution.

  18. Mark formation modeling in optical rewritable recording

    NARCIS (Netherlands)

    Brusche, J.H.; Segal, A.; Vuik, C.; Urbach, H.P.

    2006-01-01

    In optical rewritable recording media, such as the Blu-ray Disc, amorphous marks are formed on a crystalline background of a phase-change layer, by means of short, high power laser pulses. In order to improve this data storage concept, it is of great importance to understand the mark formation

  19. Monitoring Cloud-prone Complex Landscapes At Multiple Spatial Scales Using Medium And High Resolution Optical Data: A Case Study In Central Africa

    Science.gov (United States)

    Basnet, Bikash

    with overall accuracies of 90% and higher. Subsequent change analysis between these years found extensive conversions of the natural environment as a result of human related activities. The gross forest cover loss for 1988--2001 and 2001--2011 periods was 216.4 and 130.5 thousand hectares, respectively, signifying significant deforestation in the period of civil war and a relatively stable and lower deforestation rate later, possibly due to conservation and reforestation efforts in the region. The other dominant land cover changes in the region were aggressive subsistence farming and urban expansion displacing natural vegetation and arable lands. Despite limited data availability, this study fills the gap of much needed detailed and updated land cover change information for this biologically important region of Central Africa. While useful on a regional scale, Landsat data can be inadequate for more detailed studies of land cover change. Based on an increasing availability of high resolution imagery and light detection and ranging (LiDAR) data from manned and unmanned aerial platforms (performed leading to a novel generic framework for land cover monitoring at fine spatial scales. The approach fuses high spatial resolution aerial imagery and LiDAR data to produce land cover maps with high spatial detail using object-based image analysis techniques. The classification framework was tested for a scene with both natural and cultural features and was found to be more than 90 percent accurate, sufficient for detailed land cover change studies.

  20. Optical Demonstration of a Medical Imaging System with an EMCCD-Sensor Array for Use in a High Resolution Dynamic X-ray Imager

    OpenAIRE

    Qu, Bin; Huang, Ying; Wang, Weiyuan; Sharma, Prateek; Kuhls-Gilcrist, Andrew T.; Cartwright, Alexander N.; Titus, Albert H.; Bednarek, Daniel R.; Rudin, Stephen

    2010-01-01

    Use of an extensible array of Electron Multiplying CCDs (EMCCDs) in medical x-ray imager applications was demonstrated for the first time. The large variable electronic-gain (up to 2000) and small pixel size of EMCCDs provide effective suppression of readout noise compared to signal, as well as high resolution, enabling the development of an x-ray detector with far superior performance compared to conventional x-ray image intensifiers and flat panel detectors. We are developing arrays of EMCC...

  1. On the timing and forcing mechanisms of late Pleistocene glacial terminations : Insights from a new high-resolution benthic stable oxygen isotope record of the eastern Mediterranean

    NARCIS (Netherlands)

    Konijnendijk, T. Y M; Ziegler, M.; Lourens, L. J.

    2015-01-01

    Benthic oxygen isotope records of deep marine sedimentary archives have yielded a wealth of information regarding ice sheet dynamics and climate change during the Pleistocene. However, since they often lack independent age control, these records are generally bound by a fixed phase relationship

  2. High-resolution infrared imaging

    Science.gov (United States)

    Falco, Charles M.

    2010-08-01

    The hands and mind of an artist are intimately involved in the creative process of image formation, intrinsically making paintings significantly more complex than photographs to analyze. In spite of this difficulty, several years ago the artist David Hockney and I identified optical evidence within a number of paintings that demonstrated artists began using optical projections as early as c1425 - nearly 175 years before Galileo - as aids for producing portions of their images. In the course of our work, Hockney and I developed insights that I have been applying to a new approach to computerized image analysis. Recently I developed and characterized a portable high resolution infrared for capturing additional information from paintings. Because many pigments are semi-transparent in the IR, in a number of cases IR photographs ("reflectograms") have revealed marks made by the artists that had been hidden under paint ever since they were made. I have used this IR camera to capture photographs ("reflectograms") of hundreds of paintings in over a dozen museums on three continents and, in some cases, these reflectograms have provided new insights into decisions the artists made in creating the final images that we see in the visible.

  3. Millennial-scale climatic fluctuation in the fluvial record during MIS3: Very high-resolution seismic images from NE Hungary

    Science.gov (United States)

    Cserkész-Nagy, Ágnes; Sztanó, Orsolya

    2016-12-01

    Alluvial architectures of a meandering river existing in MIS3 were observed on very high-resolution (VHR) single-channel waterborne seismic profiles, 20-30 m below the Tisza River in the Pannonian Basin (Hungary). The study investigated the spatial and temporal variations of two, more than 2 km-long continuous series of inclined reflections interpreted as laterally accreted point bar complexes. The phases of natural meander migration were reconstructed in 3D based on the changes in the geometry and dip of the inclined reflections. A channel-forming discharge curve extending over approximately 2.5 ky was calculated by using paleo-width and depth data derived from the lateral accretion surfaces. Systematic analysis of the geometrical variations coupled with the discharge curve evaluation on each point bar complexes indicates millennial-scale discharge fluctuations 40-50 ky ago, to that the river responded principally by incision and infilling. The primary periodicity, comparable to the sub-Milankovitch cycles, is superimposed by shorter periods: ca. 500-year cycles reflect the phases of unidirectional meander development, while the smallest ones reflect the recurrence interval (150-200 years) of the highest floods. River-bed incisions happened step-by-step related to extreme floods, when the meander development also changed. The smaller-scale and more rapid fluctuations within a development unit were represented in variations of the channel width. Although the poor geochronology of the sandy fluvial deposits cannot allow any direct correlation to the climatostratigraphic events, the millennial-scale climate variations of MIS3 were pronouncedly characteristic in the discharge fluctuations.

  4. High-resolution records of the beryllium-10 solar activity proxy in ice from Law Dome, East Antarctica: measurement, reproducibility and principal trends

    Directory of Open Access Journals (Sweden)

    J. B. Pedro

    2011-07-01

    Full Text Available Three near-monthly resolution 10Be records are presented from the Dome Summit South (DSS ice core site, Law Dome, East Antarctica. The chemical preparation and Accelerator Mass Spectrometer (AMS measurement of these records is described. The reproducibility of 10Be records at DSS is assessed through intercomparison of the ice core data with data from two previously published and contemporaneous snow pits. We find generally good agreement between the five records, comparable to that observed between other trace chemical records from the site. This result allays concerns raised by a previous Antarctic study (Moraal et al., 2005 about poor reproducibility of ice core 10Be records. A single composite series is constructed from the three ice cores providing a monthly-resolved record of 10Be concentrations at DSS over the past decade (1999 to 2009. To our knowledge, this is the first published ice core data spanning the recent exceptional solar minimum of solar cycle 23. 10Be concentrations are significantly correlated to the cosmic ray flux recorded by the McMurdo neutron monitor (rxy = 0.64, with 95 % CI of 0.53 to 0.71, suggesting that solar modulation of the atmospheric production rate may explain up to ~40 % of the variance in 10Be concentrations at DSS. Sharp concentration peaks occur in most years during the summer-to-autumn, possibly caused by stratospheric incursions. Our results underscore the presence of both production and meteorological signals in ice core 10Be data.

  5. The Valle di Manche section (Calabria, Southern Italy): A high resolution record of the Early-Middle Pleistocene transition (MIS 21-MIS 19) in the Central Mediterranean

    Science.gov (United States)

    Capraro, Luca; Ferretti, Patrizia; Macrì, Patrizia; Scarponi, Daniele; Tateo, Fabio; Fornaciari, Eliana; Bellini, Giulia; Dalan, Giorgia

    2017-06-01

    The on-land marine Valle di Manche section (Crotone Basin, Calabria, Southern Italy), one of the candidates to host the GSSP of the Middle Pleistocene (;Ionian;) Stage, preserves a manifold record of independent chronological, paleoclimatic and stratigraphic proxies that permit a straightforward correlation with marine and terrestrial reference records at the global scale. In particular, the section holds an excellent record of the Matuyama-Brunhes magnetic reversal, which occurs in the midst of Marine Isotope Stage (MIS) 19. We report on a complete revision of the section that improves dramatically the available dataset, especially in the stratigraphic interval straddling the Lower-Middle Pleistocene boundary. Our benthic δ18O record provides evidence that the Matuyama-Brunhes transition, the stratigraphic position of which is marked by a prominent tephra (the ;Pitagora ash;), occurred during full MIS 19, in agreement with many records worldwide. We obtained an age of 786.9 ± 5 ka for the Matuyama-Brunhes magnetic reversal and pinpointed the paleomagnetic transition of to a 3 cm-thick interval, indicating that the event was very fast. Since the section fulfills all the requirements to host the GSSP of the Ionian Stage, we propose that the boundary should be placed at the base of the ;Pitagora ash;, ca. 12.5 cm below the midpoint of the Matuyama-Brunhes reversal.

  6. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers.

    Science.gov (United States)

    Chen, Jiageng; Liu, Qingwen; He, Zuyuan

    2017-09-04

    We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.

  7. Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles

    Directory of Open Access Journals (Sweden)

    M. H. M. Groot

    2011-03-01

    Full Text Available Here we developed a composite pollen-based record of altitudinal vegetation changes from Lake Fúquene (5° N in Colombia at 2540 m elevation. We quantitatively calibrated Arboreal Pollen percentages (AP% into mean annual temperature (MAT changes with an unprecedented ~60-year resolution over the past 284 000 years. An age model for the AP% record was constructed using frequency analysis in the depth domain and tuning of the distinct obliquity-related variations to the latest marine oxygen isotope stacked record. The reconstructed MAT record largely concurs with the ~100 and 41-kyr (obliquity paced glacial cycles and is superimposed by extreme changes of up to 7 to 10° Celsius within a few hundred years at the major glacial terminations and during marine isotope stage 3, suggesting an unprecedented North Atlantic – equatorial link. Using intermediate complexity transient climate modelling experiments, we demonstrate that ice volume and greenhouse gasses are the major forcing agents causing the orbital-related MAT changes, while direct precession-induced insolation changes had no significant impact on the high mountain vegetation during the last two glacial cycles.

  8. Experimental growth pattern calibration of Antarctic bivalves shells to provide a biogenic archive of long-term high-resolution records of environmental and climatic change.

    Science.gov (United States)

    Lartaud, F.; Toulot, A.; Paulet, Y. M.

    2009-04-01

    . elliptica. Shell size measurements show that A. colbecki have a high growth rate, at least throughout the juvenile state. The big L. elliptica bivalves exhibit a lower shell growth rate than the pectinids. The counting of growth increments additionally to the use of calcein markings helps us to establish a chronological time scale in those polar bivalves. This sclerochronologic approach can be now used for geochemistry analyses. A. colbecki shells seem more appropriate for high-resolution archive and L. elliptica will provide information on a longer time scale. Berkman P.A., Cattaneo-Vietti R., Chiantore M.,Howard-Williams C., 2004. Polar emergence ad the influence of increased sea-ice extent on the Cenozoic biogeography of pectinid molluscs in Antarctic coastal areas. Deep-Sea Research II 51, 1839-1855. Heilmayer O., Brey T., Chiantore M., Cattaneo-Vietti R. and Arntz W.E., 2003. Age and productivity of the Antarctic scallop, Adamussium colbecki, in Terra Nova Bay (Ross Sea, Antarctica).Journal of Experimental Marine Biology and Ecology 288, 239-256. Wanamaker A.D., Richardson C.A., Scourse J.D. and Butler P.G., 2008. Ashell based reconstruction of environmental change on the North Icelandic shelf. EGU General Assembly.

  9. On the timing and forcing mechanisms of late Pleistocene glacial terminations: Insights from a new high-resolution benthic stable oxygen isotope record of the eastern Mediterranean

    Science.gov (United States)

    Konijnendijk, T. Y. M.; Ziegler, M.; Lourens, L. J.

    2015-12-01

    Benthic oxygen isotope records of deep marine sedimentary archives have yielded a wealth of information regarding ice sheet dynamics and climate change during the Pleistocene. However, since they often lack independent age control, these records are generally bound by a fixed phase relationship between orbital forcing and the climate response, e.g. ice volume changes. We present the first long (∼1.2 Ma) benthic oxygen isotope record from the eastern Mediterranean, based on ODP Sites 967 and 968, which clearly reflects the behavior of global climate on a glacial-interglacial scale throughout the late Pleistocene time period. The age model for our record is based on tuning the elemental ratio of titanium versus aluminum (Ti/Al) against insolation. The Ti/Al record is dominated by the precession-related changes in northern African climate, i.e. monsoonal forcing, and hence largely independent of glacial-interglacial variability. We found the largest offset between our chronology and that of the widely applied, open ocean stacked record LR04 (Lisiecki and Raymo, 2005) for TVII (∼624 ka), which occurred ∼9 kyr earlier according to our estimates, though in agreement with the AICC2012 δDice chronology of EPICA Dome C (Bazin et al., 2013). Spectral cross-correlation analysis between our benthic δ18O record and 65°N summer insolation reveals significant amounts of power in the obliquity and precession range, with an average lag of 5.5 ± 0.8 kyr for obliquity, and 6.0 ± 1.0 kyr for precession. In addition, our results show that the obliquity-related time lag was smaller (3.0 ± 3.3 kyr) prior to ∼900 ka than after (5.7 ± 1.1 kyr), suggesting that on average the glacial response time to obliquity forcing increased during the mid-Pleistocene transition, much later than assumed by Lisiecki and Raymo (2005). Finally, we found that almost all glacial terminations have a consistent phase relationship of ∼45 ± 45° with respect to the precession and obliquity

  10. Community benthic paleoecology from high-resolution climate records: Mollusca and foraminifera in post-glacial environments of the California margin

    Science.gov (United States)

    Myhre, Sarah E.; Kroeker, Kristy J.; Hill, Tessa M.; Roopnarine, Peter; Kennett, James P.

    2017-01-01

    Paleoecological reconstructions of past climate are often based on a single taxonomic group with a consistent presence. Less is known about the relationship between multi-taxon community-wide change and climate variability. Here we reconstruct paleoecological change in a Late Quaternary (16.1-3.4 ka) sediment core from the California margin (418 m below sea level) of Santa Barbara Basin (SBB), USA, using Mollusca (Animalia) and Foraminifera (Rhizaria) microfossils. Building upon previous investigations, we use multivariate ordination and cluster analyses to interpret community-scale changes in these distinctly different taxonomic groups across discrete climate episodes. The strongest differences between seafloor biological communities occurred between glacial (prior to Termination IA, 14.7 ka) and interglacial climate episodes. Holocene communities were well partitioned, indicating that sub-millennial oceanographic variability was recorded by these microfossils. We document strong evidence of chemosynthetic trophic webs and sulfidic environments (from gastropod Alia permodesta and bivalve Lucinoma aequizonata), which characterized restricted intervals previously interpreted as well oxygenated (such as the Pre-Bølling Warming). Mollusc records indicate first-order trophic energetic shifts between detrital and chemosynthetically-fixed carbon. Molluscs associated with widely different physiological preferences occur here within single, decadal intervals of sediment, and as such mollusc assemblages may reflect significant inter-decadal oceanographic variability. Foraminifera assemblages provide exceptional records of the sequential, chronological progression of the deglacial climatic and oceanographic events, whereas mollusc assemblages reflect non-chronological similarities in reoccurring communities. Foraminifera taxa that drive community similarity here are also independently recognized as marker species for seafloor hypoxia regimes, which provides support for the

  11. Concurrent and opposed environmental trends during the last glacial cycle between the Carpathian Basin and the Black Sea coast: evidence from high resolution enviromagnetic loess records

    Science.gov (United States)

    Hambach, Ulrich; Zeeden, Christian; Veres, Daniel; Obreht, Igor; Bösken, Janina; Marković, Slobodan B.; Eckmeier, Eileen; Fischer, Peter; Lehmkuhl, Frank

    2015-04-01

    Aeolian dust sediments (loess) are beside marine/lacustrine sediments, speleothemes and arctic ice cores the key archives for the reconstruction of the Quaternary palaeoenvironment in the Eurasian continental mid-latitudes. The Eurasian loess-belt has its western end in the Middle (Carpathian) and the Lower Danube Basin where one can find true loess plateaus dating back more than one million years and comprising a semi-continuous record of Pleistocene environmental change. The loess-palaeosol sequences (LPSS) of the region allow inter-regional and trans-regional comparison and, even more importantly, the analysis of temporal and spatial trends in Pleistocene environments, even on a hemispheric scale. However, the general temporal resolution of the LPSS seems mostly limited to the orbital scale patterns, enabling the general comparision of their well documented palaeoclimate record to the marine isotope stages (MIS) and thus to the course of the global ice volume with time. Following the widespread conventional wisdom in loess research, cold and more importantly dry conditions are generally assumed to lead to relatively high accumulation rates of loess, whereas during warmer and more humid environmental conditions the vegetation cover prevents ablation and clastic silt production. Moreover, synsedimentary pedogenesis prevails and hence, (embryonic) soils are formed which are rapidly buried by loess as soon as the climate returns to drier conditions. In the last decades, mineral magnetic parameters became fundamental palaeoclimate proxies in loess research. The magnetic susceptibility (χ) and its dependence on the frequency of the applied field (χfd) turned out to be beside grain size and geochemical indices a highly sensitive proxy especially for soil humidity during loess accumulation. Here we present the first results of an ongoing study on two Late Pleistocene LPSS from the southern Carpathian Basin (Titel-Plateau, Vojvodina, Serbia) and the eastern Lower

  12. A 7600-year high-resolution record of hydroclimate variability from oxygen isotopes in authigenic carbonate lake sediment: Cleland Lake, southeastern British Columbia

    Science.gov (United States)

    Pompeani, D. P.; Steinman, B. A.; Abbott, M. B.; Ortiz, J. D.; Stansell, N.; Cwiklik, J. P.

    2013-12-01

    Cleland Lake (50.83° N, 116.39°W, 1126 m asl, 0.24 km2) is a small closed-basin lake located in semi-arid southeastern British Columbia. The lake-water is sensitive to regional hydroclimate conditions, because water losses through evaporation often exceed precipitation amounts in the summer, contributing to variations in lake-levels and δ18O. Over the last four years, Cleland Lake exhibited visible inter-annual lake-level changes, suggesting that the hydrologic balance of the lake is sensitive to short-term variability related to precipitation/evaporation (P/E) balance. Water from nearby streams and lakes were measured for δ18O and δD to estimate a local meteoric water line (LMWL) and local evaporation line. Cleland Lake water isotopes plot to the right of the LMWL at more positive δ18O and δD values than most regional lakes. This indicates that evaporation is an important pathway for water loss. Carbonate minerals precipitate in Cleland Lake, incorporating δ18O into mineral lattices that are preserved within fine (mm-scale) laminations in the lake. To provide a longer-term record of P/E balance, we retrieved a 2.5-m sediment core from the anoxic basin of Cleland Lake and dated the record using 210Pb, 137Cs, eleven 14C dates, and two tephra layers (i.e. Mt. St. Helens Wn and Mazama). We isolated and analyzed 2,246 sediment samples of authigenic carbonates (< 63 μm) every ~1 mm over the 7,600-year record for an average resolution of 3 years to document past changes in lake-water δ18O to make inferences regarding past lake-catchment hydrologic balance. The Cleland Lake sediments contain average δ18O values of -6.5‰ from 7600 to 2900 yr BP. Starting around 2900 yr BP, the δ18O exhibit a -8‰ excursion, followed by more negative (-8.2‰ on average) and variable δ18O, until a rapid shift to more positive values around 2200 yr BP. This is interpreted to be an exceptionally wet period when the lake sustained overflowing conditions. From ~2100 yr BP until

  13. Structure of the carbon isotope excursion in a high-resolution lacustrine Paleocene-Eocene Thermal Maximum record from central China

    Science.gov (United States)

    Chen, Zuoling; Wang, Xu; Hu, Jianfang; Yang, Shiling; Zhu, Min; Dong, Xinxin; Tang, Zihua; Peng, Ping'an; Ding, Zhongli

    2014-12-01

    The carbon isotope excursion (CIE) associated with the Paleocene-Eocene Thermal Maximum (PETM) has been recognized for the first time in the micritic carbonate, total organic carbon (TOC) and black carbon (BC) contained within the lacustrine sediments from the Nanyang Basin, central China. The remarkably large excursion (∼ - 6 ‰) in the δ13CTOC and δ13CBC values is possibly attributable to increased humidity and elevated pCO2 concentration. The ∼ - 4 ‰ CIE recorded in the δ13Ccalcite, reflecting the average isotope change of the watershed system, is consistent with that observed in planktonic foraminifera. This correspondence suggests that the true magnitude of the carbon isotope excursion in the ocean-atmosphere system is likely close to - 4 ‰. The ∼10 m excursion onset in our multi-proxy δ13C records demonstrates that the large input of 13C-depleted carbon into the ocean-atmosphere system was not geologically instantaneous. Despite difference and somewhat smoothness in detailed pattern of the CIE due to localized controls on different substrates, inorganic and organic δ13C data generally depict a gradual excursion onset at least over timescales of thousands of years. In addition, continental temperature reconstruction, based on the distribution of membrane lipids of bacteria, suggests a warming of ∼4 °C prior to the PETM and ∼7 °C increase in temperature during the PETM. The temperature data are overall similar in pattern and trend to the δ13C change across the PETM. These observations, combined with pre-CIE warming, are in line with the idea that 13C-depleted carbon release operated as a positive feedback to temperature, suggesting supply from one or more large organic carbon reservoirs on Earth's surface.

  14. High-resolution Deglacial to Holocene paleoceanographic records from the Sabrina Coast, East Antarctica: Preliminary foraminifer-based results from NBP14-02

    Science.gov (United States)

    Shevenell, A.; Snow, T.; Domack, E. W.; Leventer, A.; Gulick, S. P. S.; Huber, B. A.; Orsi, A. H.; Goddard, E.; Fernandez-Vasquez, R. A.

    2014-12-01

    Cruise 14-02 of the RV/IB N.B. Palmer conducted the first multidisciplinary oceanographic investigation of the continental shelf within the Dalton Iceberg Tongue polynya off the Sabrina Coast, East Antarctica. At >350 m in the northeastern polynya, hydrographic measurements confirmed that relatively warm (>0°C) oceanic thermocline water from near the shelf break has been imported to the shelf but likely within an interior recirculation associated with local mid-shelf bathymetry. CHIRP sub-bottom data revealed ~15 m of acoustically transparent sediment in a 550-m deep basin proximal to this feature. A suite of coring devices was used to recover a complete 13-m sequence of Late Pleistocene glacial diamict and Holocene laminated diatom oozes and muds (NBP14-02 MC 45, KC 27B, JPC 27, and JKC 53) with chronology constrained by 210Pb and foraminifer-based AMS 14C dates. Unlike many Antarctic margin sedimentary sequences, biogenic carbonate (CaCO3) is exceptionally well preserved throughout the sedimentary sequence, likely due to non-corrosive bottom waters and/or low sedimentary organic carbon content. Planktic foraminifer Neogloboquadrina pachyderma(s) is present throughout and abundant in the diatomaceous muds. Bulimina aculeata, which prefers calm, hemipelagic environments and bottom water temperatures >0°C, dominates the living benthic foraminifer assemblage. Fossil assemblages oscillate between B. aculeata and Trifarina angulosa-dominated assemblages. As T. angulosa is associated with oxygenated bottom waters and strong bottom currents, this assemblage may record past changes in the location of the Polar and Slope Fronts. This interpretation is supported by T. angulosa presence in Thalassiothrix diatom oozes, which are associated with oceanic frontal zones and rapid biosiliceous sedimentation. Preliminary foraminifer oxygen and carbon isotopes, N. pachyderma(s) presence, and the observed T. angulosa Mg/Ca-temperature (-1.8 to 0°C) relationship highlight the

  15. A High-resolution Paleoclimate Record in Tropical East Africa From the Carbon and Nitrogen Isotopic Ratios in Lacustrine Organic Matter.

    Science.gov (United States)

    Ng'ang'a, P. N.; Johnson, T. C.

    2001-12-01

    The modern organic matter in Lake Turkana including that formed during the last 5.4 ka is mainly autochthonous. The spatial distribution of \\delta 13C values in the organic matter of modern sediments seems to follow the isotopic values of river inputs. In the paleo-record however, the carbon isotopic values become heavier with increasing lake level and vice versa. Lighter \\delta 13C values of the organic matter during low lake levels might be due to enhanced exchange between lighter atmospheric CO2 and dissolved carbon species in the water. In alkaline lakes where pH may exceed 9 during algal blooms, direct hydroxylation of CO2 by OH- at the air-water interface, and the isotope fractionation associated with that reaction, might also be important. High rates of photosynthesis not only cause chemically enhanced invasion but also promote the predominant role of invading CO2 highly depleted in 13C. During high lake levels, the isotopically heavier bicarbonate ion in the water becomes the primary source of carbon. The climate history of Lake Turkana based on the carbon and nitrogen isotope signals in the organic matter are in agreement with other proxies. The precipitation to evaporation ratios in the lake's drainage basin increased between the intervals 5.4 ka to 4.0 ka, 2.3 ka to1.9 ka, and 1.3 ka to 1.2 ka. P/E ratios decreased between 4.0 ka and 2.3 ka, and between 1.9 ka and 1.3 ka.

  16. High resolution stable isotopes and elemental analysis on benthic foraminifera: a 4000 yr BP record from the ria de Muros (NW Spain)

    Science.gov (United States)

    Pena, L. D.; Francés, G.; Diz, P.; Nombela, M. A.; Alejo, I.

    2003-04-01

    Carbon and oxygen stable isotopes and ICP-OES elemental ratio concentrations (Mg/Ca, Sr/Ca, Ba/Ca) from core EUGC-3B (42 45.10'N; 9 02.23'W, at 38 m.b.s.l. and 410 cm length) were measured over monospecific benthic foraminiferal samples (Nonion fabum) ranging over the last 4500 yr BP. From the oldest analysed sample (289 cm) to the core top, stable isotopes signal shows that the whole record can be separated into 4 intervals lasting each of them about 1000 yr. The lowermost interval (4300-3000 yr BP) is characterized by relatively stable delta 18O values (mean 1.77 per mil). Delta 13C is relatively low except for a maximum around 3300 cal BP (-1.50 per mil). An abrupt decrease down to the minimum value in delta 13C (-4.41 per mil) is accomplished in approximately 200 yr. Mg/Ca and Ba/Ca match perfectly this event, both of them showing the respective maxima values. Sr/Ca has a very similar behaviour to that of delta 13C but with smoother fluctuations. We attribute high values of delta 13C, Sr/Ca and Ba/Ca to periods of enhanced coastal productivity, probably due to reinforced upwelling events in the region. According to Mg/Ca signal this reinforcement took place during a relatively warmer period. The most remarkable feature during the two next periods (3000-1900 yr BP and 1900-1000 yr BP) consists of a stepwise increase of delta 13C values punctuated by a sharp decrease at the end of each interval. All the remaining proxies exhibit a nearly constant trend over these intervals. Each period can be interpreted as a weak enhance of marine productivity that the system does not hold up and finally aborts. The most recent interval represents the establishment of current conditions in the coastal system. The most conspicuous event from this interval consists of an abrupt decrease of the delta 18O that lasted for 300 yr. This event could be correlated with the well recognized warm climatic event known as the Medieval Warm Period. However the Mg/Ca ratio does not show high

  17. Seasonally varying contributions to urban CO2 in the Chicago, Illinois, USA region: Insights from a high-resolution CO2 concentration and δ13C record

    Directory of Open Access Journals (Sweden)

    Joel Moore

    2015-06-01

    Full Text Available Abstract Understanding urban carbon cycling is essential given that cities sustain 54% of the global population and contribute 70% of anthropogenic CO2 emissions. When combined with CO2 concentration measurements ([CO2], stable carbon isotope analyses (δ13C can differentiate sources of CO2, including ecosystem respiration and combustion of fossil fuels, such as petroleum and natural gas. In this study, we used a wavelength scanned-cavity ringdown spectrometer to collect ∼2x106 paired measurements for [CO2] and δ13C values in Evanston, IL for August 2011 through February 2012. Evanston is located immediately north of Chicago, IL, the third largest city in the United States. The measurements represent one of the longest records of urban [CO2] and δ13C values thus far reported. We also compiled local meteorological information, as well as complementary [CO2] and δ13C data for background sites in Park Falls, WI and Mauna Loa, HI. We use the dataset to examine how ecosystem processes, fossil fuel usage, wind speed, and wind direction control local atmospheric [CO2] and δ13C in a midcontinent urban setting on a seasonal to daily basis. On average, [CO2] and δ13C values in Evanston were 16–23 ppm higher and 0.97–1.13‰ lower than the background sites. While seasonal [CO2] and δ13C values generally followed broader northern hemisphere trends, the difference between Evanston and the background sites was larger in winter versus summer. Mixing calculations suggest that ecosystem respiration and petroleum combustion equally contributed CO2 in excess of background during the summer and that natural gas combustion contributed 80%–94% of the excess CO2 in winter. Wind speed and direction strongly influenced [CO2] and δ13C values on an hourly time scale. The highest [CO2] and lowest δ13C values occurred at wind speeds <3 m s−1 and when winds blew from the northwest, west, and south over densely populated neighborhoods.

  18. Three-dimensional optical high-resolution profiler with a large observation field: foot arch behavior under low static charge studies

    Science.gov (United States)

    Meneses, Jaime; Gharbi, Tijani; Cornu, Jean Yves

    2002-09-01

    Our aim is to describe a method for detecting small deformations from a three-dimensional (3D) shape of large lateral dimensions. For this purpose the measurement method is based on the simultaneous utilization of several 3D optical systems and the phase-shifting technique. In this way, the following problems appear: optical distortion due to the large field observed, nonlinear phase-to-height conversion, conversion of image coordinates into object coordinates for each 3D optical system, and coordinate unification of all optical systems. The resolution is 50 mum with a field of view of 320 mm x 150 mm. We used this system to study the 3D human foot arch deformation under low loads in vivo. First results indicate the hysteresis behavior of the human foot under a low load (50 to 450 N).

  19. An optical microsystem for wireless neural recording.

    Science.gov (United States)

    Wei, P; Ziaie, B

    2009-01-01

    In this paper, we describe an optical microsystem for wireless neural recording. The system incorporated recording electrodes, integrated electronics, surface-mount LEDs, and a CCD camera. The components were mounted on a PCB platform having a total dimension of 2.2 x 2.2 cm(2), 4 integrated biopotential amplifiers (IBA) and 16 LEDs. The IBAs having a bandwidth of 0.1-93.5Hz with the midband gain of 38 dB were fabricated using AMI 1.6microm technology. The simulated local field potentials (LFP) were amplified and used to drive the LEDs. A CCD camera with a temporal resolution of 30FPS was used to capture the image and retrieve the signal.

  20. UAS-SfM for coastal research: Geomorphic feature extraction and land cover classification from high-resolution elevation and optical imagery

    Science.gov (United States)

    Sturdivant, Emily; Lentz, Erika; Thieler, E. Robert; Farris, Amy; Weber, Kathryn; Remsen, David P.; Miner, Simon; Henderson, Rachel

    2017-01-01

    The vulnerability of coastal systems to hazards such as storms and sea-level rise is typically characterized using a combination of ground and manned airborne systems that have limited spatial or temporal scales. Structure-from-motion (SfM) photogrammetry applied to imagery acquired by unmanned aerial systems (UAS) offers a rapid and inexpensive means to produce high-resolution topographic and visual reflectance datasets that rival existing lidar and imagery standards. Here, we use SfM to produce an elevation point cloud, an orthomosaic, and a digital elevation model (DEM) from data collected by UAS at a beach and wetland site in Massachusetts, USA. We apply existing methods to (a) determine the position of shorelines and foredunes using a feature extraction routine developed for lidar point clouds and (b) map land cover from the rasterized surfaces using a supervised classification routine. In both analyses, we experimentally vary the input datasets to understand the benefits and limitations of UAS-SfM for coastal vulnerability assessment. We find that (a) geomorphic features are extracted from the SfM point cloud with near-continuous coverage and sub-meter precision, better than was possible from a recent lidar dataset covering the same area; and (b) land cover classification is greatly improved by including topographic data with visual reflectance, but changes to resolution (when <50 cm) have little influence on the classification accuracy.

  1. UAS-SfM for Coastal Research: Geomorphic Feature Extraction and Land Cover Classification from High-Resolution Elevation and Optical Imagery

    Directory of Open Access Journals (Sweden)

    Emily J. Sturdivant

    2017-10-01

    Full Text Available The vulnerability of coastal systems to hazards such as storms and sea-level rise is typically characterized using a combination of ground and manned airborne systems that have limited spatial or temporal scales. Structure-from-motion (SfM photogrammetry applied to imagery acquired by unmanned aerial systems (UAS offers a rapid and inexpensive means to produce high-resolution topographic and visual reflectance datasets that rival existing lidar and imagery standards. Here, we use SfM to produce an elevation point cloud, an orthomosaic, and a digital elevation model (DEM from data collected by UAS at a beach and wetland site in Massachusetts, USA. We apply existing methods to (a determine the position of shorelines and foredunes using a feature extraction routine developed for lidar point clouds and (b map land cover from the rasterized surfaces using a supervised classification routine. In both analyses, we experimentally vary the input datasets to understand the benefits and limitations of UAS-SfM for coastal vulnerability assessment. We find that (a geomorphic features are extracted from the SfM point cloud with near-continuous coverage and sub-meter precision, better than was possible from a recent lidar dataset covering the same area; and (b land cover classification is greatly improved by including topographic data with visual reflectance, but changes to resolution (when <50 cm have little influence on the classification accuracy.

  2. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  3. MEASURING THE COSEISMIC DISPLACEMENTS OF 2010 Ms7.1 Yushu EARTHQUAKE BY USING SAR AND HIGH RESOLUTION OPTICAL SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2017-09-01

    Full Text Available After the 2010, Mw7.1, Yushu earthquake, many researchers have conducted detail investigations of the surface rupture zone by optical image interpretation, field surveying and inversion of seismic waves. However, how larger of the crustal deformation area caused by the earthquake and the quantitative co-seismic displacements are still not available. In this paper, we first take advantage of D-InSAR, MAI, and optical image matching methods to determine the whole co-seismic displacement fields. Two PALSAR images and two SPOT5 images before and after the earthquake are processed and the co-seismic displacements at the surface rupture zone and far field are obtained. The results are consistent with the field investigations, which illustrates the rationality of the application of optical image matching technology in the earthquake.

  4. Measuring the Coseismic Displacements of 2010 Ms7.1 Yushu Earthquake by Using SAR and High Resolution Optical Satellite Images

    Science.gov (United States)

    Zhang, L.; Wu, J.; Shi, F.

    2017-09-01

    After the 2010, Mw7.1, Yushu earthquake, many researchers have conducted detail investigations of the surface rupture zone by optical image interpretation, field surveying and inversion of seismic waves. However, how larger of the crustal deformation area caused by the earthquake and the quantitative co-seismic displacements are still not available. In this paper, we first take advantage of D-InSAR, MAI, and optical image matching methods to determine the whole co-seismic displacement fields. Two PALSAR images and two SPOT5 images before and after the earthquake are processed and the co-seismic displacements at the surface rupture zone and far field are obtained. The results are consistent with the field investigations, which illustrates the rationality of the application of optical image matching technology in the earthquake.

  5. A Portable, High Resolution, Surface Measurement Device

    Science.gov (United States)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  6. High resolution, high frame rate video technology development plan and the near-term system conceptual design

    Science.gov (United States)

    Ziemke, Robert A.

    1990-01-01

    The objective of the High Resolution, High Frame Rate Video Technology (HHVT) development effort is to provide technology advancements to remove constraints on the amount of high speed, detailed optical data recorded and transmitted for microgravity science and application experiments. These advancements will enable the development of video systems capable of high resolution, high frame rate video data recording, processing, and transmission. Techniques such as multichannel image scan, video parameter tradeoff, and the use of dual recording media were identified as methods of making the most efficient use of the near-term technology.

  7. Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-stokes Raman scattering spectroscopy and microscopy

    NARCIS (Netherlands)

    Jurna, M.; Korterik, Jeroen P.; Offerhaus, Herman L.; Otto, Cornelis

    2006-01-01

    An efficient, widely tunable, narrow-bandwidth, green-pumped, noncritical phase-matched lithium triborate based optical parametric oscillator (OPO) is applied to coherent anti-Stokes Raman scattering (CARS) spectroscopy and microscopy. The tunable signal beam (740–930 nm) of the OPO is combined with

  8. Optical Near-Field Recording Science and Technology

    CERN Document Server

    Tominaga, Junji

    2005-01-01

    This textbook is written for all those wishing to understand the concepts behind modern optical recording. It also paves the way towards the future science and technology beyond the optical diffraction limit. The important keyword here is "near-field optics," a regime whose promising characteristics will open the door to a new information optics. This unique book will be useful for all graduate students, scientists and engineers seeking to advance our understanding of optical near-field recording.

  9. Very High Resolution Optical Images for Detecting Co-seismic Surface Effects: the Cases of the 2005 Kashmir (Pakistan) and the 2003 Bam (Iran) Earthquakes

    Science.gov (United States)

    Chini, M.; Cinti, F. R.; Stramondo, S.

    2008-12-01

    Very High Resolution (VHR) satellite panchromatic image has revealed to be a reliable tool to detect surface effects of natural disasters. This is particularly true whereas the hit territory is a remote land and/or with logistic and security problems. Data from this kind of sensor have a potential for more exhaustive and accurate mapping of the environment with details of sub-meter ground resolution. We show two large earthquake case studies, the 2005 Mw 7.6 Kashmir and the 2003 Mw 6.6 Bam events, both producing significant surface effects as ruptures, landslides and building damages. In order to test the capability of VHR images to recognize and evaluate such features we used panchromatic QuickBird imagery (0.6 m spatial resolution) acquired before and after the events (kindly provided by DigitalGlobe). Concerning the Pakistan we focus on the Muzaffarabad and Balakot areas, both crossed by the earthquake fault and experiencing edifice collapses. Same sort of analysis is performed for the ancient town of Bam. We proceed with: 1. identification on the images of the main rupture trace and of major landslides; 2. generation of a detailed spatial distribution of damage and collapses through a single building automatic classification approach; 3. cross-comparison of the different surface effects. The QuickBird panchromatic images provide a view of the co-seismic features at large scale, revealing complex geometric pattern of the cracks and compressional deformation features. It is possible to detect the lateral sense of movement, and based on the sun shade projection in the images, we infer the facing of the scarp, thus the uplifted side. Regarding point two, if in one hand the use of QuickBird images leads to detect very small details, on the other hand buildings become rather complex structures. Furthermore they may be surrounded by scattering objects making less evident the contrast between the roofs and the ground, thus increasing the difficulties in the

  10. Intensified episodes of East Asian Winter Monsoon during the middle through late Holocene driven by North Atlantic cooling events: High-resolution lignin records from the South Yellow Sea, China

    Science.gov (United States)

    Hao, Ting; Liu, Xiaojie; Ogg, James; Liang, Zhen; Xiang, Rong; Zhang, Xiaodong; Zhang, Dahai; Zhang, Cai; Liu, Qiaoling; Li, Xianguo

    2017-12-01

    The varying intensity of the East Asian Winter Monsoon (EAWM) governs the strength of the counter-clockwise surface circulation of the South Yellow Sea and the redistribution of sediment and terrestrial organic material that had accumulated on the shallow shelf during the summer season into the central part of that basin. We compiled a time series spanning about 6.3 ka of terrestrial lignin proxies from sediment core N02 from Central Yellow Sea Mud that has well-preserved high-resolution sedimentary records (24 yr/cm average spacing). The ;hydrodynamic sorting effect; driven by century-scale climate variation in the strength of the EAWM exerts the main underlying control on the variation of lignin proxies in marginal sea sediments, rather than paleovegetation variability in provenance region driven by the East Asian Summer Monsoon (EASM). Our lignin proxies data imply that North Atlantic climate forcing recorded by ice-rafted debris (;Bond cycles;) played a critical role in generating EAWM variability on these centennial timescales during the Holocene. These variations of lignin records are superimposed on general multi-thousand-year trends that appear to mirror the relative frequency and intensity of the El Niño Southern Oscillation (ENSO). Our results indicate that lignin can be adopted as an additional reliable proxy for paleoclimate evolution, at least in South Yellow Sea area.

  11. Constraining the Volatile Composition and Coma Photochemistry in Jupiter Family Comet 41P/Tuttle-Giacobini-Kresak with High Resolution IR and Optical Spectroscopy

    Science.gov (United States)

    McKay, Adam; DiSanti, Michael; Cochran, Anita; Dello Russo, Neil; Bonev, Boncho; Vervack, Ronald; Gibb, Erika; Roth, Nathan; Kawakita, Hideyo

    2018-01-01

    Over the past 20 years optical and IR spectroscopy of cometary comae has expanded our understanding both of cometary volatile composition and coma photochemistry. However, these observations tend to be biased towards Nearly Isotropic Comets (NIC'S) from the Oort Cloud, rather than the generally fainter and less active Jupiter Family Comets (JFC's) that are thought to originate from the Scattered Disk. However, early 2017 provided a rare opportunity to study several JFC's. We present preliminary results from IR and optical spectroscopy of JFC 41P/Tuttle-Giacobini-Kresak obtained during its 2017 apparition. IR spectra were obtained with the NIRSPEC instrument on Keck II and the new iSHELL spectrograph on NASA IRTF. High spectral resolution optical spectra were obtained with the Tull Coude spectrograph on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory. We will discuss mixing ratios of HCN, NH3, C2H6, C2H2, H2CO, and CH3OH compared to H2O and compare these to previous observations of comets. Preliminary results from the NIRSPEC observations indicate that 41P has typical C2H2 and HCN abundances compared to other JFC's, while the C2H6 abundance is similar to that of NIC's, but is enriched compared to other JFC's. H2CO appears to be heavily depleted in 41P. Analysis of the iSHELL spectra is underway and we will include results from these observations, which complement those from NIRSPEC and extend the scope or our compositional study by measuring additional molecules. We will also present abundances for CN, C2, NH2, C3, and CH obtained from the optical spectra and discuss the implications for the coma photochemistry.This work is supported by the NASA Postdoctoral Program, administered by the Universities Space Research Association, with additional funding from the NSF and NASA PAST.

  12. Retrieval of High-Resolution Atmospheric Particulate Matter Concentrations from Satellite-Based Aerosol Optical Thickness over the Pearl River Delta Area, China

    OpenAIRE

    Lili Li; Jingxue Yang; Yunpeng Wang

    2015-01-01

    Satellite remote sensing offers an effective approach to estimate indicators of air quality on a large scale. It is critically significant for air quality monitoring in areas experiencing rapid urbanization and consequently severe air pollution, like the Pearl River Delta (PRD) in China. This paper starts with examining ground observations of particulate matter (PM) and the relationship between PM10 (particles smaller than 10 μm) and aerosol optical thickness (AOT) by analyzing observations o...

  13. Constraining the Volatile Composition and Coma Photochemistry in Jupiter Family Comet 41P/Tuttle-Giacobini-Kresak with High Resolution IR and Optical Spectroscopy

    Science.gov (United States)

    McKay, Adam; DiSanti, Michael A.; Cochran, Anita L.; Dello Russo, Neil; Bonev, Boncho P.; Vervack, Ronald J.; Gibb, Erika L.; Roth, Nathan X.; Kawakita, Hideyo

    2017-10-01

    Over the past 20 years optical and IR spectroscopy of cometary comae has expanded our understanding both of cometary volatile composition and coma photochemistry. However, these observations tend to be biased towards Nearly Isotropic Comets (NIC's) from the Oort Cloud, rather than the generally fainter and less active Jupiter Family Comets (JFC's) that are thought to originate from the Scattered Disk. However, early 2017 provided a rare opportunity to study several JFC's. We present preliminary results from IR and optical spectroscopy of JFC 41P/Tuttle-Giacobini-Kresak obtained during its 2017 apparition. IR spectra were obtained with the NIRSPEC instrument on Keck II and the new iSHELL spectrograph on NASA IRTF. High spectral resolution optical spectra were obtained with the Tull Coude spectrograph on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory. We will discuss mixing ratios of HCN, NH3, C2H6, C2H2, H2CO, and CH3OH compared to H2O and compare these to previous observations of comets. Preliminary results from the NIRSPEC observations indicate that 41P has typical C2H2 and HCN abundances compared to other JFC's, while the C2H6 abundance is similar to that of NIC's, but is enriched compared to other JFC's. H2CO appears to be heavily depleted in 41P. Analysis of the iSHELL spectra is underway and we will include results from these observations, which complement those from NIRSPEC and extend the scope or our compositional study by measuring additional molecules. We will also present abundances for CN, C2, NH2, C3, and CH obtained from the optical spectra and discuss the implications for the coma photochemistry.This work is supported by the NASA Postdoctoral Program, administered by the Universities Space Research Association, with additional funding from the NSF and NASA PAST.

  14. Dispersion-flattened supercontinuum light source design at 1.0 μm center wavelength for high resolution optical coherence tomography in ophthalmology

    Science.gov (United States)

    Hossain, M. A.; Namihira, Y.

    2013-06-01

    Optimal wavelength light sources are designed for medical imaging to overcome the effects of the dispersion of the sampling medium of biological tissues which contain about 60% water in normal tissues and 90% water in anatomic structures such as in the eye. Based on highly nonlinear photonic crystal fiber (HNL-PCF), two light sources are designed at 1.0 μm center wavelength as the influences of the dispersion of the main component of biological tissues on the resolution of optical coherence tomography (OCT) can be eliminated. Using finite element method with a circular perfectly matched boundary layer, it is shown through simulations that the proposed HNL-PCFs offer efficient SC generation for such applications at 1.0 μm. By propagating sech2 picoseconds optical pulses having 1.0 ps pulse width at a full width at half maximum through the proposed HNL-PCFs, output optical pulses are analyzed by the split-step Fourier method to obtain the spectral properties. Simulation results show that 270 m of the proposed HNL-PCF can produce highest 95 nm spectrum (10 dB bandwidth) or 62 nm spectrum (3 dB bandwidth). Therefore, the highest longitudinal resolutions in the depth direction for medical OCT imaging is found about 3.3 μm (using 10 dB bandwidth) or 5.1 μm (using 3 dB bandwidth), respectively, for biological tissues.

  15. High resolution technology for FPD lithography tools

    Science.gov (United States)

    Yabu, Nobuhiko; Nagai, Yoshiyuki; Tomura, Satoshi; Yoshikawa, Tomohiro

    2013-06-01

    As the resolution of LCD panels adapted for Smartphone and Tablet PC rapidly becomes higher, the performance needed for lithography tools to produce them also becomes higher than ever. To respond to such needs, we have developed new lithography tools for mass production of high resolution LCD panels. We have executed various exposure tests to evaluate their performance. In this paper, we present the results of these tests. By employing higher NA projection optics, high resolution (2.0μm and under) has been achieved. We also present the effect of special illumination and the difference in profile between kinds of photoresist. Furthermore, we also refer what will be needed for masks and blanks in the next generation. To achieve even higher resolution, it is necessary for masks and blanks to have high flatness, low level of defects and small linewidth error.

  16. Constellation-X to Generation-X: evolution of large collecting area moderate resolution grazing incidence x-ray telescopes to larger area high-resolution adjustable optics

    Science.gov (United States)

    Reid, Paul B.; Cameron, Robert A.; Cohen, Lester; Elvis, Martin; Gorenstein, Paul; Jerius, Diab; Petre, Robert; Podgorski, William A.; Schwartz, Daniel A.; Zhang, William W.

    2004-10-01

    Large collecting area x-ray telescopes are designed to study the early Universe, trace the evolution of black holes, stars and galaxies, study the chemical evolution of the Universe, and study matter in extreme environments. The Constellation-X mission (Con-X), planned for launch in 2016, will provide ~ 10^4 cm^2 collecting area with 15 arc-sec resolution, with a goal of 5 arc-sec. Future missions require larger collecting area and finer resolution. Generation-X (Gen-X), a NASA Visions Mission, will achieve 100 m^2 effective area at 1 keV and angular resolution of 0.1 arc-sec, half power diameter. We briefly describe the Con-X flowdown of imaging requirements to reflector figure error. To meet requirements beyond Con-X, Gen-X optics will be thinner and more accurately shaped than has ever been accomplished. To meet these challenging goals, we incorporate for the first time active figure control with grazing incidence optics. Piezoelectric material will be deposited in discrete cells directly on the back surface of the optical segments, with the strain directions oriented parallel to the surface. Differential strain between the two layers of the mirror causes localized bending in two directions, enabling local figure control. Adjusting figure on-orbit eases fabrication and metrology. The ability to make changes to mirror figure adds margin by mitigating risk due to launch-induced deformations and/or on-orbit degradation. We flowdown the Gen-X requirements to mirror figure and four telescope designs, and discuss various trades between the designs.

  17. High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region.

    Science.gov (United States)

    Puvanathasan, Prabakar; Forbes, Peter; Ren, Zhao; Malchow, Doug; Boyd, Shelley; Bizheva, Kostadinka

    2008-11-01

    A high-speed (47,000 A-scans/s), ultrahigh axial resolution Fourier domain optical coherence tomography (OCT) system for retinal imaging at approximately 1060 nm, based on a 1024 pixel linear array, 47 kHz readout rate InGaAs camera is presented. When interfaced with a custom superluminescent diode (lambda(c) = 1020 nm, Deltalambda = 108 nm, Pout = 9 mW), the system provides 3.3 microm axial OCT resolution at the surface of biological tissue, approximately 4.5 microm in vivo in rat retina, approximately 5.7 microm in vivo in human retina, and 110 dB sensitivity for 870 microW incident power and 21 mus integration time. Retinal tomograms acquired in vivo from a human volunteer and a rat animal model show clear visualization of all intraretinal layer and increased penetration into the choroid.

  18. High resolution multisensor fusion of SAR, optical and LiDAR data based on crisp vs. fuzzy and feature vs. decision ensemble systems

    Science.gov (United States)

    Bigdeli, Behnaz; Pahlavani, Parham

    2016-10-01

    Synthetic Aperture Radar (SAR) data are of high interest for different applications in remote sensing specially land cover classification. SAR imaging is independent of solar illumination and weather conditions. It can even penetrate some of the Earth's surface materials to return information about subsurface features. However, the response of radar is more a function of geometry and structure than a surface reflection occurs in optical images. In addition, the backscatter of objects in the microwave range depends on the frequency of the band used, and the grey values in SAR images are different from the usual assumption of the spectral reflectance of the Earth's surface. Consequently, SAR imaging is often used as a complementary technique to traditional optical remote sensing. This study presents different ensemble systems for multisensor fusion of SAR, multispectral and LiDAR data. First, in decision ensemble system, after extraction and selection of proper features from each data, crisp SVM (Support Vector Machine) and Fuzzy KNN (K Nearest Neighbor) are utilized on each feature space. Finally Bayesian Theory is applied to fuse SVMs when Decision Template (DT) and Dempster Shafer (DS) are applied as fuzzy decision fusion methods on KNNs. Second, in feature ensemble system, features from all data are applied on a cube. Then classifications were performed by SVM and FKNN as crisp and fuzzy decision making system respectively. A co-registered TerrraSAR-X, WorldView-2 and LiDAR data set form San Francisco of USA was available to examine the effectiveness of the proposed method. The results show that combinations of SAR data with different sensor improves classification results for most of the classes.

  19. Simulation of HyperSPECT: a high-resolution small-animal system with in-line x-ray optics.

    Science.gov (United States)

    Tibbelin, Sandra; Nillius, Peter; Danielsson, Mats

    2012-03-21

    SPECT has become an important tool in pre-clinical applications. Small-animal imaging systems based on the use of one or more pinhole collimators now reach sub-half-mm resolution but unfortunately suffer from a compromise between sensitivity and resolution due to the pinhole collimators. We propose a small-animal SPECT system based not on pinholes but on in-line x-ray optics, which is rare in medical imaging systems for nuclear medicine. The x-ray lenses are optimized for 27 keV for low-energy imaging with iodine-125. We believe that this new system, HyperSPECT, can simultaneously improve on sensitivity and resolution compared to today's state-of-the-art systems. A full three-dimensional simulation of the system has been performed including the prism-array lenses, pre- and post-collimators and scintillator-based detector. Images of capillary phantoms have been reconstructed using an iterative image reconstruction method. Sensitivity was uniformly 0.37% throughout the 1 cm diameter spherical field of view and rod sizes of around 100 μm diameter were distinguishable in the images of simulated capillary phantoms. These results indicate an increase in resolution by a factor of 5 during a simultaneous increase in sensitivity by a factor of 2 compared to the current state-of-the-art small-animal SPECT systems. © 2012 Institute of Physics and Engineering in Medicine

  20. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  1. High Resolution Observations using Adaptive Optics: Achievements ...

    Indian Academy of Sciences (India)

    AURA) under co-operative agreement with National Science Foundation (NSF). ... usually enhanced using post-processing techniques: speckle reconstruction, phase- diversity, or long-exposure point spread deconvolution with or without frame ...

  2. An application of OFDM method to optical disc recording

    Science.gov (United States)

    Saito, Kimihiro

    2017-08-01

    An application of Orthogonal Frequency Division Multiplexing (OFDM) method to optical disc recording/readout is presented. OFDM has been widely used in the field of telecommunication owing to its highly efficient frequency usage. However OFDM has not been applied to optical disc recording because it is a multiple data transfer method and needs to record analog signals. Partial Response Maximum Likelihood (PRML) used in the current optical disc systems requires a certain kind of analog recording. Although optical recording usually creates binary marks, it is possible to obtain arbitrary analog readout signals by using PWM method. Another technique to generate analog signals using the oversampled binary recording is described and applied to multiple level recording. In addition, it is found that the level adjustment of multiple carriers for OFDM leads to the advantage when it is applied to the optical disc system. Using the simple transfer function model of the optical disc system, two types of readout signals using PRML and OFDM are calculated and then their qualities are compared. Since Quadrature Amplitude Modulation (QAM) method can be combined with OFDM, it is possible to increase the recoding density of optical disc systems. A method employing OFDM with 64-QAM and the pre-enhance method to the high frequency carrier shows an ability of 1.5 times recording density of the conventional Bru-ray Disc (BD).

  3. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  4. High resolution multimodal clinical ophthalmic imaging system.

    Science.gov (United States)

    Mujat, Mircea; Ferguson, R Daniel; Patel, Ankit H; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X

    2010-05-24

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 microm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within approximately 0.5 deg (approximately 100-150 microm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes.

  5. Assessment of early-stage optic nerve invasion in retinoblastoma using high-resolution 1.5 Tesla MRI with surface coils: a multicentre, prospective accuracy study with histopathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Brisse, Herve J. [Institut Curie, Department of Radiology, Paris (France); Institut CURIE, Imaging Department, Paris (France); Graaf, Pim de; Rodjan, Firazia; Jong, Marcus C. de; Castelijns, Jonas A. [VU University Medical Center, Department of Radiology, Amsterdam (Netherlands); Galluzzi, Paolo [Neuroimaging and Neurointerventional Unit (NINT) Azienda Ospedaliera e Universitaria Senese, Siena (Italy); Cosker, Kristel; Savignoni, Alexia [Institut Curie, Department of Biostatistics, Paris (France); Maeder, Philippe [Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Department of Radiology, Lausanne (Switzerland); Goericke, Sophia [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Aerts, Isabelle [Institut Curie, Department of Pediatric Oncology, Paris (France); Desjardins, Laurence [Institut Curie, Department of Ophthalmology, Paris (France); Moll, Annette C. [VU University Medical Center, Department of Ophthalmology, Amsterdam (Netherlands); Hadjistilianou, Theodora [Azienda Ospedaliera Universitaria Senese, Department of Ophthalmology, Siena (Italy); Toti, Paolo [University of Siena, Department of Medical Biotechnologies, Pathology Unit, Siena (Italy); Valk, Paul van der [VU University Medical Center, Department of Pathology, Amsterdam (Netherlands); Sastre-Garau, Xavier [Institut Curie, Department of Biopathology, Paris (France); Collaboration: European Retinoblastoma Imaging Collaboration (ERIC)

    2015-05-01

    To assess the accuracy of high-resolution (HR) magnetic resonance imaging (MRI) in diagnosing early-stage optic nerve (ON) invasion in a retinoblastoma cohort. This IRB-approved, prospective multicenter study included 95 patients (55 boys, 40 girls; mean age, 29 months). 1.5-T MRI was performed using surface coils before enucleation, including spin-echo unenhanced and contrast-enhanced (CE) T1-weighted sequences (slice thickness, 2 mm; pixel size <0.3 x 0.3 mm{sup 2}). Images were read by five neuroradiologists blinded to histopathologic findings. ROC curves were constructed with AUC assessment using a bootstrap method. Histopathology identified 41 eyes without ON invasion and 25 with prelaminar, 18 with intralaminar and 12 with postlaminar invasion. All but one were postoperatively classified as stage I by the International Retinoblastoma Staging System. The accuracy of CE-T1 sequences in identifying ON invasion was limited (AUC = 0.64; 95 % CI, 0.55 - 0.72) and not confirmed for postlaminar invasion diagnosis (AUC = 0.64; 95 % CI, 0.47 - 0.82); high specificities (range, 0.64 - 1) and negative predictive values (range, 0.81 - 0.97) were confirmed. HR-MRI with surface coils is recommended to appropriately select retinoblastoma patients eligible for primary enucleation without the risk of IRSS stage II but cannot substitute for pathology in differentiating the first degrees of ON invasion. (orig.)

  6. Enhanced High Resolution RBS System

    Science.gov (United States)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  7. High-Resolution Movement EEG Classification

    Directory of Open Access Journals (Sweden)

    Jakub Štastný

    2007-01-01

    Full Text Available The aim of the contribution is to analyze possibilities of high-resolution movement classification using human EEG. For this purpose, a database of the EEG recorded during right-thumb and little-finger fast flexion movements of the experimental subjects was created. The statistical analysis of the EEG was done on the subject's basis instead of the commonly used grand averaging. Statistically significant differences between the EEG accompanying movements of both fingers were found, extending the results of other so far published works. The classifier based on hidden Markov models was able to distinguish between movement and resting states (classification score of 94–100%, but it was unable to recognize the type of the movement. This is caused by the large fraction of other (nonmovement related EEG activities in the recorded signals. A classification method based on advanced EEG signal denoising is being currently developed to overcome this problem.

  8. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  9. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  10. The Physical Principles of Magneto-optical Recording

    Science.gov (United States)

    Mansuripur, Masud

    1998-08-01

    This book covers the physics of magneto-optical recording, beginning with first principles, and working through to contemporary state-of-the-art topics. The first half of the book teaches the theory of diffraction using an original unified approach. It also covers the optics of multilayers, polarization optics, noise in photodetection, and thermal aspects. The second half of the book describes the basics of magnetism and magnetic materials, magneto-static field calculations, domains and domain walls, the mean-field theory, magnetization dynamics, the theory of coercivity, and the process of thermomagnetic recording. Numerous examples based on real-world problems encountered in the engineering design of magneto-optical media and systems will give the reader valuable insights into the science and technology of optical recording. Extensive problem sets are included.

  11. Laser optical information recording in photosensitive silver-containing glasses

    Science.gov (United States)

    Gorbyak, V. V.; Sidorov, A. I.

    2017-11-01

    It is shown experimentally that laser action on silver-containing photosensitive glasses can be used for optical information recording in octal code. The change of irradiation dose results in the change of luminescence or absorption intensity in irradiated zones.

  12. Polarization holographic optical recording of a new photochromic diarylethene

    Science.gov (United States)

    Pu, Shouzhi; Miao, Wenjuan; Chen, Anyin; Cui, Shiqiang

    2008-12-01

    A new symmetrical photochromic diarylethene, 1,2-bis[2-methyl-5-(3-methoxylphenyl)-3-thienyl]perfluorocyclopentene (1a), was synthesized, and its photochromic properties were investigated. The compound exhibited good photochromism both in solution and in PMMA film with alternating irradiation by UV/VIS light, and the maxima absorption of its closed-ring isomer 1b are 582 and 599 nm, respectively. Using diarylethene 1b/PMMA film as recording medium and a He-Ne laser (633 nm) for recording and readout, four types of polarization and angular multiplexing holographic optical recording were performed perfectly. For different types of polarization recording including parallel linear polarization recording, parallel circular polarization recording, orthogonal linear polarization recording and orthogonal circular polarization recording,have been accomplished successfully. The results demonstrated that the orthogonal circular polarization recording is the best method for polarization holographic optical recording when this compound was used as recording material. With angular multiplexing recording technology, two high contrast holograms were recorded in the same place on the film with the dimension of 0.78 μm2.

  13. Evaluation of Advanced Bionics high resolution mode.

    Science.gov (United States)

    Buechner, Andreas; Frohne-Buechner, Carolin; Gaertner, Lutz; Lesinski-Schiedat, Anke; Battmer, Rolf-Dieter; Lenarz, Thomas

    2006-07-01

    The objective of this paper is to evaluate the advantages of the Advanced Bionic high resolution mode for speech perception, through a retrospective analysis. Forty-five adult subjects were selected who had a minimum experience of three months' standard mode (mean of 10 months) before switching to high resolution mode. Speech perception was tested in standard mode immediately before fitting with high resolution mode, and again after a maximum of six months high resolution mode usage (mean of two months). A significant improvement was found, between 11 and 17%, depending on the test material. The standard mode preference does not give any indication about the improvement when switching to high resolution. Users who are converted within any study achieve a higher performance improvement than those converted in the clinical routine. This analysis proves the significant benefits of high resolution mode for users, and also indicates the need for guidelines for individual optimization of parameter settings in a high resolution mode program.

  14. Development of an Optical Disc Recorder

    Science.gov (United States)

    1977-07-01

    linear electric drive motor and a l in e a r velocity trans- ducer from Collins Corp. Recording tests with the new fixture are planned for the next...quarter. FOCUS MOTOR D I SC — - — — S L E D T U R NT A B L E F’ iq ~1 r - 2 : PC~c o rd 4 . 2 Focus Moto r An improved f o c u s moto r ....ss crm s

  15. High Resolution Digital Imaging of Paintings: The Vasari Project.

    Science.gov (United States)

    Martinez, Kirk

    1991-01-01

    Describes VASARI (the Visual Art System for Archiving and Retrieval of Images), a project funded by the European Community to show the feasibility of high resolution colormetric imaging directly from paintings. The hardware and software used in the system are explained, storage on optical disks is described, and initial results are reported. (five…

  16. [High-resolution patch-clamp technique based on feedback control of scanning ion conductance microscopy].

    Science.gov (United States)

    Yang, Xi; Liu, Xiao; Zhang, Xiao-Fan; Lu, Hu-Jie; Zhang, Yan-Jun

    2010-06-25

    The ion channels located on the cell fine structures play an important role in the physiological functions of cell membrane. However, it is impossible to achieve precise positioning on the nanometer scale cellular microstructures by conventional patch-clamp technique, due to the 200 nm resolution limit of optical microscope. To solve this problem, we have established a high-resolution patch-clamp technique, which combined commercial scanning ion conductance microscopy (SICM) and patch-clamp recording through a nanopipette probe, based on SICM feedback control. MDCK cells were used as observation object to test the capability of the technique. Firstly, a feedback controlled SICM nanopipette (approximately 150 MOmega) non-contactly scanned over a selected area of living MDCK cells monolayer to obtain high-resolution topographic images of microvilli and tight-junction microstructures on the MDCK cells monolayer. Secondly, the same nanopipette was non-contactly moved and precisely positioned over the microvilli or tight-junction microstructure under SICM feedback control. Finally, the SICM feedback control was switched off, the nanopipette slowly contacted with the cell membrane to get a patch-clamp giga-ohm sealing in the cell-attached patch-clamp configuration, and then performed ion channel recording as a normal patch-clamp electrode. The ion channel recordings showed that ion channels of microvilli microstructure opened at pipette holding potential of -100, -60, -40, 0, +40, +60, +100 mV (n=11). However, the opening of ion channels of tight-junction microstructure was not detected at pipette holding potential of -100, -40, 0, +40, +100 mV (n=9). These results suggest that our high-resolution patch-clamp technique can achieve accurate nanopipette positioning and nanometer scale high-resolution patch-clamp recording, which may provide a powerful tool to study the spatial distribution and functions of ion channel in the nanometer scale microstructures of living

  17. High-resolution low-dose scanning transmission electron microscopy.

    Science.gov (United States)

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  18. High Resolution Imaging with AEOS

    Energy Technology Data Exchange (ETDEWEB)

    Patience, J; Macintosh, B A; Max, C E

    2001-08-27

    The U. S. Air Force Advanced Electro-Optical System (AEOS) which includes a 941 actuator adaptive optics system on a 3.7m telescope has recently been made available for astronomical programs. Operating at a wavelength of 750 nm, the diffraction-limited angular resolution of the system is 0.04 inches; currently, the magnitude limit is V {approx} 7 mag. At the distances of nearby open clusters, diffraction-limited images should resolve companions with separations as small as 4-6 AU--comparable to the Sun-Jupiter distance. The ability to study such close separations is critical, since most companions are expected to have separations in the few AU to tens of AU range. With the exceptional angular resolution of the current AEOS setup, but restricted target magnitude range, we are conducting a companion search of a large, well-defined sample of bright early-type stars in nearby open clusters and in the field. Our data set will both characterize this relatively new adaptive optics system and answer questions in binary star formation and stellar X-ray activity. We will discuss our experience using AEOS, the data analysis involved, and our initial results.

  19. Solar corona at high resolution

    Science.gov (United States)

    Golub, L.; Rosner, R.; Zombeck, M. V. Z.; Vaiana, G. S.

    1982-01-01

    The earth's surface is shielded from solar X rays almost completely by the atmosphere. It is, therefore, necessary to place X-ray detectors on rockets or orbiting satellites. Solar rays were detected for the first time in the late 1940's, using V-2 rockets. In 1960, the first true X-ray images of the sun were obtained with the aid of a simple pinhole camera. The spatial resolution of the X-ray images could be considerably improved by making use of reflective optics, operating at grazing incidence. Aspects of X-ray mirror developments are discussed along with the results obtained in coronal studies utilizing the new devices for the observation of solar X-ray emission. It is pointed out that the major achievements of the Skylab missions were due primarily to the unique opportunity to obtain data over an extended period of time. Attention is given to normal incidence X-ray optics, achievements possible by making use of high spatial resolution optics, and details of improved mirror design.

  20. Superlattice-like structure for phase change optical recording

    Science.gov (United States)

    Chong, T. C.; Shi, L. P.; Qiang, W.; Tan, P. K.; Miao, X. S.; Hu, X.

    2002-04-01

    In order to increase the crystallization speed and data transfer rate (DTR), a superlattice-like structure (SLL) was applied to the recording layer of phase change optical disks. Unlike the conventional phase change layer, the recording layer with the SLL structure consisted of alternating thin layers of two different phase change materials, i.e., GeTe and Sb2Te3. Although neither GeTe nor Sb2Te3 could be used as a phase change layer material for practical applications, present experimental results revealed that the phase change optical disk with the SLL structure demonstrated an excellent recording property that could meet practical recording requirements. X-ray photoelectron spectroscopy was employed to confirm that the SLL structure could be preserved after many times of melting and quenching. Dynamic properties of the optical recording disk with the SLL structure were investigated with a 1 T pulse duration of 8 ns and a constant linear velocity of 19 m/s. A clear eye pattern was observed. The carrier-to-noise ratio was about 58 dB and a DTR of 47 Mbit/s was achieved. The DTR would be as high as 140 Mbit/s if the blue light is used. It has been proven that the SLL structure is a useful means to increase the DTR of phase change optical recording disks.

  1. Laser interstitial thermotherapy (LITT) monitoring using high-resolution digital mammography: theory and experimental studies

    Energy Technology Data Exchange (ETDEWEB)

    Minhaj, Ahmed M.; Manns, Fabrice; Salas, Nelson Jr.; Parel, Jean-Marie [Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami, FL (United States) and Biomedical Optics and Laser Laboratory, Department of Biomedical Engineering, University of Miami, FL (United States)]. E-mails: aminhaj@med.miami.edu; fmanns@miami.edu; nsalas@med.miami.edu; jmparel@med.miami.edu; Milne, Peter J.; Denham, David B.; Nose, Izuru [Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami, Miami, FL (United States)]. E-mails: pmilne@rsmas.miami.edu; ddenham@med.miami.edu; inose@med.miami.edu; Damgaard-Iversen, Karsten [Fischer Imaging Corporation, Denver, CO (United States)]. E-mail: kdi@fischerimaging.de; Robinson, David S. [Center for Breast Care, St. Luke' s Hospital of Kansas City, Kansas City, MO (United States)]. E-mail: drobinson@saint-lukes.org

    2002-08-21

    Laser interstitial thermotherapy (LITT) is a minimally-invasive laser hyperthermia procedure for the treatment of localized tumours. Real-time monitoring of LITT is essential to control the extent of tumour destruction and ensure safe and effective treatments. The feasibility of using high-resolution digital x-ray mammography to monitor LITT of breast cancer was evaluated. Tissue phantoms including polyacrylamide hydrogel and cadaver porcine tissue were heated using a 980 nm diode laser delivered through optical fibres with diffusing tips. Digital images of the tissue phantoms were recorded with a high-resolution digital stereotactic breast biopsy system during heating. The recorded images were processed and analysed to detect heat-induced changes. No changes were detected during heating of the hydrogel. Pixel-by-pixel subtraction of the initial image from images taken during laser heating shows observable thermally-induced changes around the fibre during laser irradiation that correlate with the thermal denaturation zone observed by gross anatomy. These experiments demonstrate that high-resolution digital x-ray mammography can be used to detect heat-induced tissue changes during experimental LITT in fibro-fatty tissue. (author)

  2. Quantum-dot based nanothermometry in optical plasmonic recording media

    Energy Technology Data Exchange (ETDEWEB)

    Maestro, Laura Martinez [Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Autónoma de Madrid, Madrid 28049 (Spain); Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Zhang, Qiming; Li, Xiangping; Gu, Min [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Jaque, Daniel [Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Autónoma de Madrid, Madrid 28049 (Spain)

    2014-11-03

    We report on the direct experimental determination of the temperature increment caused by laser irradiation in a optical recording media constituted by a polymeric film in which gold nanorods have been incorporated. The incorporation of CdSe quantum dots in the recording media allowed for single beam thermal reading of the on-focus temperature from a simple analysis of the two-photon excited fluorescence of quantum dots. Experimental results have been compared with numerical simulations revealing an excellent agreement and opening a promising avenue for further understanding and optimization of optical writing processes and media.

  3. Enumerative Encoding of TMTR Codes for Optical Recording Channel

    Directory of Open Access Journals (Sweden)

    Tsai Hui-Feng

    2010-01-01

    Full Text Available We propose a new time-varying maximum transition run (TMTR code for DVD recording systems, which has a rate higher than the EFMPlus code and a lower power spectral density (PSD at low frequencies. An enumeration method for constructing the new TMTR code is presented. Computer simulations indicate that the proposed TMTR code outperforms the EFMPlus code in error performance when applied to partial response optical recording channels.

  4. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  5. Linear laser diode arrays for improvement in optical disk recording

    Science.gov (United States)

    Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.

    1990-01-01

    The development of individually addressable laser diode arrays for multitrack magneto-optic recorders for space stations is discussed. Three multi-element channeled substrate planar (CSP) arrays with output power greater than 30 mW with linear light vs current characteristics and stable single mode spectra were delivered to NASA. These devices have been used to demonstrate for the first time the simultaneous recording of eight data tracks on a 14-inch magneto-optic erasable disk. The yield of these devices is low, mainly due to non-uniformities inherent to the LPE growth that was used to fabricate them. The authors have recently developed the inverted CSP, based on the much more uniform MOCVD growth techniques, and have made low threshold quantum well arrays requiring about three times less current than the CSP to deliver 30 mW CW in a single spatial mode. The inverted CSP is very promising for use in space flight recorder applications.

  6. VT Hydrography Dataset - High Resolution NHD

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Vermont Hydrography Dataset (VHD) is compliant with the local resolution (also known as High Resolution) National Hydrography Dataset (NHD)...

  7. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal we describe a plan to build a deformable mirror suitable for space-based operation in systems for high-resolution imaging. The prototype DM will be...

  8. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a plan to build a prototype small stroke, high precision deformable mirror suitable for space-based operation in systems for high-resolution...

  9. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  10. Accelerated optical holographic recording using bis-DNO

    DEFF Research Database (Denmark)

    Rasmussen, Palle H.; Ramanujam, P.S.; Hvilsted, Søren

    1999-01-01

    The design, synthesis and optical holographic recording properties of bis-DNO are reported. Bis-DNO is composed of two identical azobenzene oligoornithine segments (DNO) connected via a dipeptide linker. The two segments were assembled in a parallel fashion at the two amino groups of the dipeptide...... linker by Merrifield synthesis. Surprisingly, the response time of films of bis-DNOs was found to be much faster than that of their linear counterparts. (C) 1999 Elsevier Science Ltd. All rights reserved....

  11. Progress Toward Demonstrating a High Performance Optical Tape Recording Technology

    Science.gov (United States)

    Oakley, W. S.

    1996-01-01

    This paper discusses the technology developments achieved during the first year of a program to develop a high performance digital optical tape recording device using a solid state, diode pumped, frequency doubled green laser source. The goal is to demonstrate, within two years, useful read/write data transfer rates to at least 100 megabytes per second and a user capacity of up to one terabyte per cartridge implemented in a system using a '3480' style mono-reel tape cartridge.

  12. Extension and statistical analysis of the GACP aerosol optical thickness record

    Science.gov (United States)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.; Li, Jing; Rossow, William B.; Liu, Li; Cairns, Brian

    2015-10-01

    The primary product of the Global Aerosol Climatology Project (GACP) is a continuous record of the aerosol optical thickness (AOT) over the oceans. It is based on channel-1 and -2 radiance data from the Advanced Very High Resolution Radiometer (AVHRR) instruments flown on successive National Oceanic and Atmospheric Administration (NOAA) platforms. We extend the previous GACP dataset by four years through the end of 2009 using NOAA-17 and -18 AVHRR radiances recalibrated against MODerate resolution Imaging Spectroradiometer (MODIS) radiance data, thereby making the GACP record almost three decades long. The temporal overlap of over three years of the new NOAA-17 and the previous NOAA-16 record reveals an excellent agreement of the corresponding global monthly mean AOT values, thereby confirming the robustness of the vicarious radiance calibration used in the original GACP product. The temporal overlap of the NOAA-17 and -18 instruments is used to introduce a small additive adjustment to the channel-2 calibration of the latter resulting in a consistent record with increased data density. The Principal Component Analysis (PCA) of the newly extended GACP record shows that most of the volcanic AOT variability can be isolated into one mode responsible for ~ 12% of the total variance. This conclusion is confirmed by a combined PCA analysis of the GACP, MODIS, and Multi-angle Imaging SpectroRadiometer (MISR) AOTs during the volcano-free period from February 2000 to December 2009. We show that the modes responsible for the tropospheric AOT variability in the three datasets agree well in terms of correlation and spatial patterns. A previously identified negative AOT trend which started in the late 1980s and continued into the early 2000s is confirmed. Its magnitude and duration indicate that it was caused by changes in tropospheric aerosols. The latest multi-satellite segment of the GACP record shows that this trend tapered off, with no noticeable AOT change after 2002. This

  13. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  14. A high-resolution historical sediment record of nutrients, trace elements and organochlorines (DDT and PCB) deposition in a drinking water reservoir (Lake Brêt, Switzerland) points at local and regional pollutant sources.

    Science.gov (United States)

    Thevenon, Florian; de Alencastro, Luiz Felippe; Loizeau, Jean-Luc; Adatte, Thierry; Grandjean, Dominique; Wildi, Walter; Poté, John

    2013-03-01

    The (137)Cs and (210)Pb dating of a 61-cm long sediment core retrieved from a drinking water reservoir (Lake Brêt) located in Switzerland revealed a linear and relatively high sedimentation rate (~1 cm year(-1)) over the last decades. The continuous centimeter scale measurement of physical (porewater and granulometry), organic (C(org), P, N, HI and OI indexes) and mineral (C(min) and lithogenic trace elements) parameters therefore enables reconstructing the environmental history of the lake and anthropogenic pollutant input (trace metals, DDT and PCBs) at high resolution. A major change in the physical properties of the lowermost sediments occurred following the artificial rise of the dam in 1922. After ca. 1940, there was a long-term up-core increase in organic matter deposition attributed to enhance primary production and anoxic bottom water conditions due to excessive nutrient input from a watershed predominantly used for agriculture that also received domestic effluents of two wastewater-treatment plants. This pattern contrasts with the terrigenous element input (Eu, Sc, Mg, Ti, Al, and Fe) which doubled after the rising of the dam but continuously decreased during the last 60 years. By comparison, the trace metals (Cu, Pb and Hg) presented a slight enrichment factor (EF) only during the second part of the 20th century. Although maximum EF Pb (>2) occurred synchronously with the use of leaded gasoline in Switzerland (between ca. 1947 and 1985) the Hg and Cu profiles exhibited a relatively similar trend than Pb during the 20th century, therefore excluding the alkyl-lead added to petrol as the dominant (atmospheric) source of lead input to Lake Brêt. Conversely, the Cu profile that did not follow the decrease registered in Pb and Hg during the last 10 years, suggests an additional source of Cu probably linked to the impact of agricultural activities in the area. In absence of heavy industries in the catchment, the atmospheric deposition of DDT and PCBs via

  15. High Resolution Wavenumber Standards for the Infrared. (IUPAC Recommendations 1995)

    Science.gov (United States)

    Guelachvili, G.; Birk, M.; Bord, C.; Brault, J.; Brown, L.; Carli, B.; Cole, A.; Evenson, D.; Fayt, A.; Hausamann, D.; hide

    1995-01-01

    The calibration of high resolution infrared spectra is generally more precise than accurate even when they are recorded with Fourier interferometers. In order to improve the consistency of the spectral measurements, an IUPAC project has been undertaken. Its aim was to recommend a selection of spectral lines as wavenumber standards for absolute calibration in the infrared. This paper will report the final recommendations in the spectral range extending from about 4 to about 7000 cm(be).

  16. High-resolution x-ray photoemission spectra of silver

    DEFF Research Database (Denmark)

    Barrie, A.; Christensen, N. E.

    1976-01-01

    An electron spectrometer fitted with an x-ray monochromator for Al Kα1,2 radiation (1486.6 eV) has been used to record high-resolution x-ray photoelectron spectra for the 4d valence band as well as the 3d spin doublet in silver. The core-level spectrum has a line shape that can be described...

  17. The theory and practice of high resolution scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Joy, D.C. (Tennessee Univ., Knoxville, TN (USA) Oak Ridge National Lab., TN (USA))

    1990-01-01

    Recent advances in instrumentation have produced the first commercial examples of what can justifiably be called High Resolution Scanning Electron Microscopes. The key components of such instruments are a cold field emission gun, a small-gap immersion probe-forming lens, and a clean dry-pumped vacuum. The performance of these microscopes is characterized by several major features including a spatial resolution, in secondary electron mode on solid specimens, which can exceed 1nm on a routine basis; an incident probe current density of the order of 10{sup 6} amps/cm{sup 2}; and the ability to maintain these levels of performance over an accelerating voltage range of from 1 to 30keV. This combination of high resolution, high probe current, low contamination and flexible electron-optical conditions provides many new opportunitites for the application of the SEM to materials science, physics, and the life sciences. 27 refs., 14 figs.

  18. High-Resolution In Vivo Imaging of Regimes of Laser Damage to the Primate Retina

    Directory of Open Access Journals (Sweden)

    Ginger M. Pocock

    2014-01-01

    Full Text Available Purpose. To investigate fundamental mechanisms of regimes of laser induced damage to the retina and the morphological changes associated with the damage response. Methods. Varying grades of photothermal, photochemical, and photomechanical retinal laser damage were produced in eyes of eight cynomolgus monkeys. An adaptive optics confocal scanning laser ophthalmoscope and spectral domain optical coherence tomographer were combined to simultaneously collect complementary in vivo images of retinal laser damage during and following exposure. Baseline color fundus photography was performed to complement high-resolution imaging. Monkeys were perfused with 10% buffered formalin and eyes were enucleated for histological analysis. Results. Laser energies for visible retinal damage in this study were consistent with previously reported damage thresholds. Lesions were identified in OCT images that were not visible in direct ophthalmoscopic examination or fundus photos. Unique diagnostic characteristics, specific to each damage regime, were identified and associated with shape and localization of lesions to specific retinal layers. Previously undocumented retinal healing response to blue continuous wave laser exposure was recorded through a novel experimental methodology. Conclusion. This study revealed increased sensitivity of lesion detection and improved specificity to the laser of origin utilizing high-resolution imaging when compared to traditional ophthalmic imaging techniques in the retina.

  19. HIGH RESOLUTION AIRBORNE SHALLOW WATER MAPPING

    Directory of Open Access Journals (Sweden)

    F. Steinbacher

    2012-07-01

    Full Text Available In order to meet the requirements of the European Water Framework Directive (EU-WFD, authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river

  20. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  1. Performance of a write-once multilayer optical disk that uses transparent recording material with an optical switching layer.

    Science.gov (United States)

    Wu, Fung-Hsu; Shieh, Han-Ping D; Huang, Der-Ray; Milster, Tom D

    2004-10-10

    A volumetric optical disk that has multiple transparent films with optical switching layers is used as a recording medium to increase the number of recording layers. In the disk the optical switching layer is adapted to reduce decay of laser energy and increase reading and recording sensitivity. Well-defined marks of approximately 100-nm depth can be placed precisely on the transparent films by a focused laser beam. Writing and reading of a four-layer recordable disk, fabricated by molding and spin bonding, have been demonstrated experimentally. The volumetric disk can achieve a high recording capacity with conventional optical pickups.

  2. Qualitative interpretation of high resolution aeromagnetic (HRAM ...

    African Journals Online (AJOL)

    Qualitative interpretation of high resolution aeromagnetic (HRAM) data from some parts of offshore Niger delta, Nigeria. ... Open Access DOWNLOAD FULL TEXT ... The original raster map, obtained from the Nigeria Geological Survey Agency (NGSA) in half degree sheet, was subjected to qualitative data analysis using the ...

  3. A High-Resolution Stopwatch for Cents

    Science.gov (United States)

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  4. Compressive sensing for high resolution radar imaging

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Hoogeboom, P.

    2010-01-01

    In this paper we present some preliminary results on the application of Compressive Sensing (CS) to high resolution radar imaging. CS is a recently developed theory which allows reconstruction of sparse signals with a number of measurements much lower than what is required by the Shannon sampling

  5. Compact high-resolution spectral phase shaper

    NARCIS (Netherlands)

    Postma, S.; van der Walle, P.; Offerhaus, Herman L.; van Hulst, N.F.

    2005-01-01

    The design and operation of a high-resolution spectral phase shaper with a footprint of only 7×10 cm2 is presented. The liquid-crystal modulator has 4096 elements. More than 600 independent degrees of freedom can be positioned with a relative accuracy of 1 pixel. The spectral shaping of pulses from

  6. High resolution analysis of interphase chromosome domains

    NARCIS (Netherlands)

    Visser, A. E.; Jaunin, F.; Fakan, S.; Aten, J. A.

    2000-01-01

    Chromosome territories need to be well defined at high resolution before functional aspects of chromosome organization in interphase can be explored. To visualize chromosomes by electron microscopy (EM), the DNA of Chinese hamster fibroblasts was labeled in vivo with thymidine analogue BrdU. Labeled

  7. Clickstream data yields high-resolution maps of science

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Johan [Los Alamos National Laboratory; Van De Sompel, Herbert [Los Alamos National Laboratory; Hagberg, Aric [Los Alamos National Laboratory; Bettencourt, Luis [Los Alamos National Laboratory; Chute, Ryan [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Balakireva, Lyudmila [Los Alamos National Laboratory

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.

  8. Mid to late Holocene oceanographic changes offshore Adélie Land, Antarctica: Ultra-high resolution foraminiferal assemblage and isotopic records from IODP Expedition 318 Site U1357

    Science.gov (United States)

    Hendricks, E.; Salman, F. I.; Pekar, S. F.; Dunbar, R. B.; DeCesare, M.

    2014-12-01

    Foraminiferal biofacies as well as δ18O and δ13C records from IODP Site U1357 reveal significant changes in deep and surface water properties that include temperature, ventilation, and productivity during the mid to late Holocene. Site U1357 is located in the Adélie Trough, a glacially scoured valley on the continental shelf ~50km off the coast of East Antarctica. Sediment samples were taken at 10cm intervals resulting in an approximate time step for each sample of 7yr resolution based on extensive C14 dating and visible band counting exercises. As part of a collaborative effort between Queens College and Stanford University, samples from the upper part of the core were used in this study, which spanned from near Recent to 6kyr BP. Neogloboquadrina pachyderma make up nearly 50% of all foraminifers counted and was used to construct pelagic stable isotope records. From nearly 10,000 foraminifers counted, ~34 foraminiferal species were identified. The highest δ18O values occur from ~3.0 to ~6.1kyr and ~1kyr to Recent, with the lowest occurring from ~1.4 to ~3.8kyr. The highest δ13C values occur when δ18O are low. Total benthic foraminiferal abundances are highest during two intervals: Recent to ~1.4kyr and ~3.6 to ~6.1kyr. For ~2 to ~3.6kyr, the agglutinated species are the most dominant with calcareous benthic foraminifers being mainly absent. The higher δ18O values observed are consistent with lower surface water temperatures and decreased melt water from icebergs, with lower δ18O values ascribed to increased melt waters and possibly higher surface water temperatures. Previous studies indicate that cooler waters occurred when we observe lower foraminiferal δ18O values. This suggests that the N. pachyderma δ18O record was influenced primarily by the δ18O of seawater (e.g., iceberg melt waters), with temperature being a minor control. Higher δ13C values are associated with lower δ18O, which implies increased water column stratification coupled with high

  9. Glacial lake mapping with very high resolution satellite SAR data

    Science.gov (United States)

    Strozzi, T.; Wiesmann, A.; Kääb, A.; Joshi, S.; Mool, P.

    2012-08-01

    Floods resulting from the outbursts of glacial lakes are among the most far-reaching disasters in high mountain regions. Glacial lakes are typically located in remote areas and space-borne remote sensing data are an important source of information about the occurrence and development of such lakes. Here we show that very high resolution satellite Synthetic Aperture Radar (SAR) data can be employed for reliably mapping glacial lakes. Results in the Alps, Pamir and Himalaya using TerraSAR-X and Radarsat-2 data are discussed in comparison to in-situ information, and high-resolution satellite optical and radar imagery. The performance of the satellite SAR data is best during the snow- and ice-free season. In the broader perspective of hazard management, the detection of glacial lakes and the monitoring of their changes from very high-resolution satellite SAR intensity images contributes to the initial assessment of hazards related to glacial lakes, but a more integrated, multi-level approach needs also to include other relevant information such as glacier outlines and outline changes or the identification of unstable slopes above the lake and the surrounding area, information types to which SAR analysis techniques can also contribute.

  10. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  11. Tests of a High Resolution Beam Profile Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Norem, J.

    2004-10-28

    High energy linear colliders require very small beams at the interaction point to produce high luminosities, and these beams must be measured and monitored. We have developed and tested a technique where the profile can be obtained from an extension of pinhole camera optics using thick, single sided collimators and slits. Very high resolutions (a few nm) should be possible. Gamma beams can be obtained from bremsstrahlung, Compton or beamstrahlung radiation. We describe tests of the technique using bremsstrahlung from an 800 MeV electron beam at Bates/MIT, Compton scattered photons from 47 GeV Final Focus Test Beam (FFTB) at SLAC, and other applications, such as linear colliders.

  12. Radiation length imaging with high resolution telescopes

    OpenAIRE

    Stolzenberg, U.; Frey, A.; Schwenker, B; Wieduwilt, P.; Marinas, C; Lütticke, F.

    2016-01-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D imag...

  13. High Resolution Spectra of HE Detonations

    Science.gov (United States)

    1980-07-07

    region. We shall assume for present purposes that the emissivity of the detonation products of a 50 to 100 lb HE explosion is also in the viciity of... speed . Incorporated in the emulsion layers are dye forming coup- lers which react simultaneously during I , developmentto produce a separate dye S...Best Available Cop 1~EV~ AFTAC-TR-80-24 HIGH RESOLUTION SPECTRA OF HE DETONATIONS HSS Inc 2 Alfred Circle Bedford, MA 01730 7 JULY 1980 AUG 4 9D

  14. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  15. An early onset of ENSO influence in the extra-tropics of the southwest Pacific inferred from a 14, 600 year high resolution multi-proxy record from Paddy's Lake, northwest Tasmania

    Science.gov (United States)

    Beck, Kristen K.; Fletcher, Michael-Shawn; Gadd, Patricia S.; Heijnis, Henk; Jacobsen, Geraldine E.

    2017-02-01

    Tropical El Niño Southern Oscillation (ENSO) is an important influence on natural systems and cultural change across the Pacific Ocean basin. El Niño events result in negative moisture anomalies in the southwest Pacific and are implicated in droughts and catastrophic wildfires across eastern Australia. An amplification of tropical El Niño activity is reported in the east Pacific after ca. 6.7 ka; however, proxy data for ENSO-driven environmental change in Australia suggest an initial influence only after ca. 5 ka. Here, we reconstruct changes in vegetation, fire activity and catchment dynamics (e.g. erosion) over the last 14.6 ka from part of the southwest Pacific in which ENSO is the main control of interannual hydroclimatic variability: Paddy's Lake, in northwest Tasmania (1065 masl), Australia. Our multi-proxy approach includes analyses of charcoal, pollen, geochemistry and radioactive isotopes. Our results reveal a high sensitivity of the local and regional vegetation to climatic change, with an increase of non-arboreal pollen between ca. 14.6-13.3 ka synchronous with the Antarctic Cold Reversal, and a sensitivity of the local vegetation and fire activity to ENSO variability recorded in the tropical east Pacific through the Holocene. We detect local-scale shifts in vegetation, fire and sediment geochemistry at ca. 6.3, 4.8 and 3.4 ka, simultaneous with increases in El Niño activity in the tropical Pacific. Finally, we observe a fire-driven shift in vegetation from a pyrophobic association dominated by rainforest elements to a pyrogenic association dominated by sclerophyllous taxa following a prolonged (>1 ka) phase of tropical ENSO-amplification and a major local fire event at ca. 3.4 ka. Our results reveal the following key insights: (1) that ENSO has been a persistent modulator of southwest Pacific climate and fire activity through the Holocene; (2) that the climate of northwest Tasmania is sensitive to long-term shifts in tropical ENSO variability; and

  16. High resolution, MRI-based, segmented, computerized head phantom

    Energy Technology Data Exchange (ETDEWEB)

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.; Smith, A.L.; Krischlunas, P. [Yale Univ., New Haven, CT (United States). Dept. of Diagnostic Radiology

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 byte array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.

  17. Validation of AIRS high-resolution stratospheric temperature retrievals

    Science.gov (United States)

    Meyer, Catrin I.; Hoffmann, Lars

    2014-10-01

    This paper focuses on stratospheric temperature observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite. We validate a nine-year record (2003 - 2011) of data retrieved with a scientific retrieval processor independent from the operational processor operated by NASA. The retrieval discussed here provides stratospheric temperature profiles for each individual AIRS footprint and has nine times better horizontal sampling than the operational data provided by NASA. The high-resolution temperature data are considered optimal for for gravity wave studies. For validation the high-resolution retrieval data are compared with results from the AIRS operational Level-2 data and the ERA-Interim meteorological reanalysis. Due to the large amount of data we performed statistical comparisons of monthly zonal mean cross-sections and time series. The comparisons show that the high-resolution temperature data are in good agreement with the validation data sets. The bias in the zonal averages is mostly within ±2K. The bias reaches a maximum of 7K to ERA-Interim and 4K to the AIRS operational data at the stratopause, it is related to the different resolutions of the data sets. Variability is nearly the same in all three data sets, having maximum standard deviations around the polar vortex in the mid and upper stratosphere. The validation presented here indicates that the high-resolution temperature retrievals are well-suited for scientific studies. In particular, we expect that they will become a valuable asset for future studies of stratospheric gravity waves.

  18. High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene

    Science.gov (United States)

    Gruet, Sébastien; Goubet, Manuel; Pirali, Olivier

    2014-06-01

    Polycyclic Aromatic Hydrocarbons (PAHs) have long been suspected to be the carriers of so called Unidentified Infrared Bands (UIBs). Most of the results published in the literature report rotationally unresolved spectra of pure carbon as well as heteroatom-containing PAHs species. To date for this class of molecules, the principal source of rotational informations is ruled by microwave (MW) spectroscopy while high resolution measurements reporting rotational structure of the infrared (IR) vibrational bands are very scarce. Recently, some high resolution techniques provided interesting new results to rotationally resolve the IR and far-IR bands of these large carbonated molecules of astrophysical interest. One of them is to use the bright synchrotron radiation as IR continuum source of a high resolution Fourier transform (FTIR) spectrometer. We report the very complementary analysis of the [1,6] naphthyridine (a N-bearing PAH) for which we recorded the microwave spectrum at the PhLAM laboratory (Lille) and the high resolution far-infrared spectrum on the AILES beamline at synchrotron facility SOLEIL. MW spectroscopy provided highly accurate rotational constants in the ground state to perform Ground State Combinations Differences (GSCD) allowing the analysis of the two most intense FT-FIR bands in the 50-900 wn range. Moreover, during this presentation the negative value of the inertial defect in the GS of the molecule will be discussed. A. Leger, J. L. Puget, Astron. Astrophys. 137, L5-L8 (1984) L. J. Allamandola et al. Astrophys. J. 290, L25-L28 (1985). Z. Kisiel et al. J. Mol. Spectrosc. 217, 115 (2003) S. Thorwirth et al. Astrophys. J. 662, 1309 (2007) D. McNaughton et al. J. Chem. Phys. 124, 154305 (2011). S. Albert et al. Faraday Discuss. 150, 71-99 (2011) B. E. Brumfield et al. Phys. Chem. Lett. 3, 1985-1988 (2012) O. Pirali et al. Phys. Chem. Chem. Phys. 15, 10141 (2013).

  19. High-resolution diffraction grating interferometric transducer of linear displacements

    Science.gov (United States)

    Shang, Ping; Xia, Haojie; Fei, Yetai

    2016-01-01

    A high-resolution transducer of linear displacements is presented. The system is based on semiconductor laser illumination and a diffraction grating applied as a length master. The theory of the optical method is formulated using Doppler description. The relationship model among the interference strips, measurement errors, grating deflection around the X, Y and Z axes and translation along the Z axis is built. The grating interference strips' direction and space is not changed with movement along the X (direction of grating movement), Y (direction of grating line), Z axis, and the direction and space has a great effect when rotating around the X axis. Moreover the space is little affected by deflection around the Z axis however the direction is changed dramatically. In addition, the strips' position shifted rightward or downwards respectively for deflection around the X or Y axis. Because the emitted beams are separated on the grating plane, the tilt around the X axis error of the stage during motion will lead to the optical path difference of the two beams resulting in phase shift. This study investigates the influence of the tilt around the X axis error. Experiments show that after yaw error compensation, the high-resolution diffraction grating interferometric transducer readings can be significantly improved. The error can be reduced from +/-80 nm to +/-30 nm in maximum.

  20. High-resolution overtone spectra of molecular complexes

    Science.gov (United States)

    Didriche, K.; Földes, T.

    2013-02-01

    A high-resolution spectrum of the acetylene-water complex has been recorded in the overtone range. Two bands of C2H2-D2O were analysed, corresponding to the overtone excitations of either the acetylene or the water units. The vibrational shifts and the upper states rotational constants were retrieved, demonstrating that the geometry of the complex is only slightly modified by the excitation. A larger linewidth was observed for the 2CH band than for the 2OD + DOD band, probably due to the direct coupling of the 2CH excitation with the dissociation coordinate.

  1. High-resolution second-harmonic microscopy of poled silica waveguides

    DEFF Research Database (Denmark)

    Beermann, Jonas; Bozhevolnyi, Sergey I.; Pedersen, Kjeld

    2003-01-01

    A second-harmonic scanning optical microscopy (SHSOM) apparatus operating in reflection is used for high-resolution imaging of second-order optical non-linearities (SONs) in electric-field poled silica-based waveguides. SHSOM of domain walls in a periodically poled KTiOPO_4 crystal is performed...

  2. High-resolution second-harmonic microscopy of poled silica waveguides

    DEFF Research Database (Denmark)

    Beermann, Jonas; Bozhevolnyi, Sergey I.; Pedersen, Kjeld

    2003-01-01

    A second-harmonic scanning optical microscopy (SHSOM) apparatus operating in reflection is used for high-resolution imaging of second-order optical non-linearities (SONs) in electric-field poled silica-based waveguides. SHSOM of domain walls in a periodically poled KTiOPO4 crystal is performed...

  3. Pd grating obtained by direct micromolding for use in high resolution ...

    Indian Academy of Sciences (India)

    the pattern when used as an optical grating produced a diffraction pattern with a high resolution (>2000); the inten- sities of widely separated ... Keywords. Micromolding technique; Pd grating; Cu electroless deposition; diffraction efficiency; optical diffraction. 1. .... ethanol to remove any uncured polymer. The resulting stamp.

  4. High resolution extremity CT for biomechanics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  5. Detailed mitochondrial phenotyping by high resolution metabolomics.

    Directory of Open Access Journals (Sweden)

    James R Roede

    Full Text Available Mitochondrial phenotype is complex and difficult to define at the level of individual cell types. Newer metabolic profiling methods provide information on dozens of metabolic pathways from a relatively small sample. This pilot study used "top-down" metabolic profiling to determine the spectrum of metabolites present in liver mitochondria. High resolution mass spectral analyses and multivariate statistical tests provided global metabolic information about mitochondria and showed that liver mitochondria possess a significant phenotype based on gender and genotype. The data also show that mitochondria contain a large number of unidentified chemicals.

  6. A high-resolution record of Greenland mass balance

    NARCIS (Netherlands)

    McMillan, Malcolm; Leeson, Amber; Shepherd, Andrew; Briggs, Kate; Armitage, Thomas; Hogg, Anna; Kuipers Munneke, P.|info:eu-repo/dai/nl/304831891; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Noël, B.P.Y.|info:eu-repo/dai/nl/370612345; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; Ligtenberg, S.R.M.|info:eu-repo/dai/nl/32821177X; Horwath, M.; Groh, Andreas; Muir, A.; Gilbert, Lin

    2016-01-01

    We map recent Greenland Ice Sheet elevation change at high spatial (5 km) and temporal (monthly) resolution using CryoSat-2 altimetry. After correcting for the impact of changing snowpack properties associated with unprecedented surface melting in 2012, we find good agreement (3 cm/yr bias) with

  7. High-Resolution PET Detector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  8. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  9. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  10. High-Resolution Scintimammography: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  11. High resolution solar observations from first principles to applications

    Science.gov (United States)

    Verdoni, Angelo P.

    2009-10-01

    The expression "high-resolution observations" in Solar Physics refers to the spatial, temporal and spectral domains in their entirety. High-resolution observations of solar fine structure are a necessity to answer many of the intriguing questions related to solar activity. However, a researcher building instruments for high-resolution observations has to cope with the fact that these three domains often have diametrically opposed boundary conditions. Many factors have to be considered in the design of a successful instrument. Modern post-focus instruments are more closely linked with the solar telescopes that they serve than in past. In principle, the quest for high-resolution observations already starts with the selection of the observatory site. The site survey of the Advanced Technology Solar Telescope (ATST) under the stewardship of the National Solar Observatory (NSO) has identified Big Bear Solar Observatory (BBSO) as one of the best sites for solar observations. In a first step, the seeing characteristics at BBSO based on the data collected for the ATST site survey are described. The analysis will aid in the scheduling of high-resolution observations at BBSO as well as provide useful information concerning the design and implementation of a thermal control system for the New Solar Telescope (NST). NST is an off-axis open-structure Gregorian-style telescope with a 1.6 m aperture. NST will be housed in a newly constructed 5/8-sphere ventilated dome. With optics exposed to the surrounding air, NST's open-structure design makes it particularly vulnerable to the effects of enclosure-related seeing. In an effort to mitigate these effects, the initial design of a thermal control system for the NST dome is presented. The goal is to remediate thermal related seeing effects present within the dome interior. The THermal Control System (THCS) is an essential component for the open-telescope design of NST to work. Following these tasks, a calibration routine for the

  12. A high-resolution multimode digital microscope system.

    Science.gov (United States)

    Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry

    2013-01-01

    This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.

  13. High-Resolution Mars Camera Test Image of Moon (Infrared)

    Science.gov (United States)

    2005-01-01

    This crescent view of Earth's Moon in infrared wavelengths comes from a camera test by NASA's Mars Reconnaissance Orbiter spacecraft on its way to Mars. The mission's High Resolution Imaging Science Experiment camera took the image on Sept. 8, 2005, while at a distance of about 10 million kilometers (6 million miles) from the Moon. The dark feature on the right is Mare Crisium. From that distance, the Moon would appear as a star-like point of light to the unaided eye. The test verified the camera's focusing capability and provided an opportunity for calibration. The spacecraft's Context Camera and Optical Navigation Camera also performed as expected during the test. The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across.

  14. High-Resolution Broadband Spectral Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot size or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).

  15. Development of New High Resolution Neutron Detector

    Science.gov (United States)

    Mostella, L. D., III; Rajabali, M.; Loureiro, D. P.; Grzywacz, R.

    2017-09-01

    Beta-delayed neutron emission is a prevalent form of decay for neutron-rich nuclei. This occurs when an unstable nucleus undergoes beta decay, but produces a daughter nucleus in an excited state above the neutron separation energy. The daughter nucleus then de-excites by ejecting one or more neutrons. We wish to map the states from which these nuclei decay via neutron spectroscopy using NEXT, a new high resolution neutron detector. NEXT utilizes silicon photomultipliers and 6 mm thick pulse-shape discriminating plastic scintillators, allowing for smaller and more compact modular geometries in the NEXT array. Timing measurements for the detector were performed and a resolution of 893 ps (FWHM) has been achieved so far. Aspects of the detector that were investigated and will be presented here include scintillator geometry, wrapping materials, fitting functions for the digitized signals, and electronic components coupled to the silicon photomultipliers for signal shaping.

  16. High Resolution, High Frame Rate Video Technology

    Science.gov (United States)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  17. High Resolution Regional Climate Simulations over Alaska

    Science.gov (United States)

    Monaghan, A. J.; Clark, M. P.; Arnold, J.; Newman, A. J.; Musselman, K. N.; Barlage, M. J.; Xue, L.; Liu, C.; Gutmann, E. D.; Rasmussen, R.

    2016-12-01

    In order to appropriately plan future projects to build and maintain infrastructure (e.g., dams, dikes, highways, airports), a number of U.S. federal agencies seek to better understand how hydrologic regimes may shift across the country due to climate change. Building on the successful completion of a series of high-resolution WRF simulations over the Colorado River Headwaters and contiguous USA, our team is now extending these simulations over the challenging U.S. States of Alaska and Hawaii. In this presentation we summarize results from a newly completed 4-km resolution WRF simulation over Alaska spanning 2002-2016 at 4-km spatial resolution. Our aim is to gain insight into the thermodynamics that drive key precipitation processes, particularly the extremes that are most damaging to infrastructure.

  18. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  19. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  20. High-resolution transcriptome of human macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Beyer

    Full Text Available Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like and alternative (M2-like polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7 as well as M2-associated (CD1a, CD1b, CD93, CD226 cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.

  1. High-Resolution Transcriptome of Human Macrophages

    Science.gov (United States)

    Xue, Jia; Staratschek-Jox, Andrea; Vorholt, Daniela; Krebs, Wolfgang; Sommer, Daniel; Sander, Jil; Mertens, Christina; Nino-Castro, Andrea; Schmidt, Susanne V.; Schultze, Joachim L.

    2012-01-01

    Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq) of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like) and alternative (M2-like) polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7) as well as M2-associated (CD1a, CD1b, CD93, CD226) cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease. PMID:23029029

  2. High-resolution Brillouin analysis in a carbon-fiber-composite unmanned aerial vehicle model wing

    Science.gov (United States)

    Stern, Yonatan; London, Yosef; Preter, Eyal; Antman, Yair; Shlomi, Orel; Silbiger, Maayan; Adler, Gadi; Zadok, Avi

    2016-05-01

    Standard optical fibers are successfully embedded within a model wing of an unmanned aerial vehicle, constructed of carbon fiber and epoxy, during its production. Time-gated Brillouin optical correlation domain analysis along the embedded optical fibers is performed with a spatial resolution of 4 cm. Tests were carried out using a portable measurement setup prototype. The results represent an important step towards applications of high-resolution Brillouin analysis outside the research laboratory.

  3. AIRS high-resolution stratospheric temperature retrievals evaluated with operational Level-2 data and ERA-Interim

    Science.gov (United States)

    Meyer, Catrin I.; Hoffmann, Lars

    2015-04-01

    The Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite provides stratospheric temperature observations for a variety of scientific tasks. However, the horizontal resolution of the operational temperature retrievals is generally not sufficient for studies of gravity waves. The retrieval discussed here provides stratospheric temperature profiles for each individual AIRS footprint and therefore has nine times better horizontal sampling than the operational data. The retrieval configuration is optimized so that the results provide a trade-off between spatial resolution and retrieval noise which is considered optimal for gravity wave analysis. Here the quality of the high-resolution data is assessed by comparing a nine-year record (2003 - 2011) of stratospheric temperatures with results from the AIRS operational Level-2 data and the ERA-Interim meteorological reanalysis. Due to the large amount of data we performed a statistical comparison of the high-resolution retrieval and reference data sets based on zonal averages and time-series. The temperature data sets are split into day and night, because the AIRS high-resolution retrieval uses different configurations for day- and night-time conditions to cope with non-LTE effects. The temperature data are averaged on a latitudinal grid with a resolution of one degree. The zonal averages are calculated on a daily basis and show significant day-to-day variability. To further summarize the data we calculated monthly averages from the daily averaged data and also computed zonal means. Additionally, the standard deviation of the three data sets was computed. The comparisons show that the high-resolution temperature data are in good agreement with the reference data sets. The bias in the zonal averages is mostly within ± 2 K and reaches a maximum of 7 K to ERA-Interim and 4 K to the AIRS operational data at the stratopause, which is related to the different resolutions of the data sets. Variability is nearly the

  4. High-Resolution Dual-Comb Spectroscopy with Ultra-Low Noise Frequency Combs

    Science.gov (United States)

    Hänsel, Wolfgang; Giunta, Michele; Beha, Katja; Perry, Adam J.; Holzwarth, R.

    2017-06-01

    Dual-comb spectroscopy is a powerful tool for fast broad-band spectroscopy due to the parallel interrogation of thousands of spectral lines. Here we report on the spectroscopic analysis of acetylene vapor in a pressurized gas cell using two ultra-low noise frequency combs with a repetition rate around 250 MHz. Optical referencing to a high-finesse cavity yields a sub-Hertz stability of all individual comb lines (including the virtual comb lines between 0 Hz and the carrier) and permits one to pick a small difference of repetition rate for the two frequency combs on the order of 300 Hz, thus representing an optical spectrum of 100 THz (˜3300 \\wn) within half the free spectral range (125 MHz). The transmission signal is derived straight from a photodetector and recorded with a high-resolution spectrum analyzer or digitized with a computer-controlled AD converter. The figure to the right shows a schematic of the experimental setup which is all fiber-coupled with polarization-maintaining fiber except for the spectroscopic cell. The graph on the lower right reveals a portion of the recorded radio-frequency spectrum which has been scaled to the optical domain. The location of the measured absorption coincides well with data taken from the HITRAN data base. Due to the intrinsic linewidth of all contributing comb lines, each sampling point in the transmission graph corresponds to the probing at an optical frequency with sub-Hertz resolution. This resolution is maintained in coherent wavelength conversion processes such as difference-frequency generation (DFG), sum-frequency generation (SFG) or non-linear broadening (self-phase modulation), and is therefore easily transferred to a wide spectral range from the mid infrared up to the visible spectrum.

  5. Late Weichselian (fluvio-)aeolian sediments and Holocene drift-sands of the classic type locality in Twente (E Netherlands): a high-resolution dating study using optically stimulated luminescence

    Science.gov (United States)

    Vandenberghe, D. A. G.; Derese, C.; Kasse, C.; Van den haute, P.

    2013-05-01

    The Late Weichselian and Holocene (fluvio-)aeolian sands of the type locality Lutterzand in the E Netherlands have been the focus of many palaeoclimatic, palaeoenvironmental and geochronological studies. In the present study, an accurate and detailed chronological framework has been established using radiocarbon and optically stimulated luminescence dating. Additionally, the sedimentological characteristics of the fluvio-aeolian and aeolian sequences have been reinvestigated. Four main phases of (fluvio)aeolian sedimentation have been differentiated in the Lutterzand sections, consistent with the Late Pleniglacial, the pre-Allerød Lateglacial, the Late Dryas, and the Late Holocene. From at least 25.2 ± 1.9 ka up to 19.9 ± 1.6 ka, the area was marked by a transition from fluvial to aeolian deposition under continuous permafrost conditions (Older Coversand I). The Beuningen Gravel Bed is considered as the lithostratigraphic marker for permafrost degradation, shallow channelling and aeolian deflation associated with the formation of a desert pavement. Localised fluvial sedimentation in shallow channels took place in two phases, a first from ˜20 ka to ˜23 ka, and a second at around 16 ka; the desert pavement formed in between ˜16 ka and ˜14 ka, but probably shortly after 16 ka. The aeolian sediments overlying the Beuningen Gravel Bed were deposited as sand sheets and low dunes, and yielded ages between 15.8 ± 1.4 ka and 12.2 ± 0.9 ka. Although the OSL ages seem to point to fairly continuous coversand sedimentation during the Lateglacial, the intercalated Usselo Soil allows distinguishing a pre-Allerød phase (resulting in the Older Coversand II and the Younger Coversand I between 15.8 ± 1.4 ka and 12.3 ± 1.0 ka) from a post-Allerød phase (with deposition of the Younger Coversand II between 13.6 ± 1.1 ka and 12.2 ± 0.9 ka). During the major part of the Holocene, (podzol) soil formation occurred in the top of the aeolian sediments. Probably due to human

  6. DMD based digital speckle illumination for high resolution imaging

    Science.gov (United States)

    Shinde, Anant; Mishra, Ayush; Perinchery, Sandeep M.; Murukeshan, V. M.

    2017-06-01

    Spatially non-uniform illumination patterns have shown significant potential to improve the imaging. Recent developments in the patterned illumination microscopy have demonstrated that the use of an optical speckle as an illumination pattern significantly improves the imaging resolution at the same time reducing the computational overheads. We present a DMD based method for generation of digital speckle pattern. The generated digital speckle and uniform white light illumination are used as two illuminations to acquire images. The image reconstruction algorithm for blind structured illumination microscopy is used to get the high resolution image. Our approach does not require any calibration step or stringent control of the illumination, and dramatically simplifies the experimental set-up.

  7. High-resolution, single-molecule measurements of biomolecular motion.

    Science.gov (United States)

    Greenleaf, William J; Woodside, Michael T; Block, Steven M

    2007-01-01

    Many biologically important macromolecules undergo motions that are essential to their function. Biophysical techniques can now resolve the motions of single molecules down to the nanometer scale or even below, providing new insights into the mechanisms that drive molecular movements. This review outlines the principal approaches that have been used for high-resolution measurements of single-molecule motion, including centroid tracking, fluorescence resonance energy transfer, magnetic tweezers, atomic force microscopy, and optical traps. For each technique, the principles of operation are outlined, the capabilities and typical applications are examined, and various practical issues for implementation are considered. Extensions to these methods are also discussed, with an eye toward future application to outstanding biological problems.

  8. Controllable printing droplets for high-resolution patterns.

    Science.gov (United States)

    Kuang, Minxuan; Wang, Libin; Song, Yanlin

    2014-10-29

    Inkjet printing has attracted wide attention due to the important applications in fabricating biological, optical, and electrical devices. During the inkjet printing process, the solutes prefer to deposit along the droplet periphery and form an inhomogeneous morphology, known as the coffee-ring effect. Besides, the feature size of printed dots or lines of conventional inkjet printing is usually limited to tens or even hundreds of micrometers. The above two issues greatly restrict the extensive application of printed patterns in high-performance devices. This paper reviews the recent advances in precisely controlling the printing droplets for high-resolution patterns and three-dimensional structures, with a focus on the development to suppress the coffee-ring effect and minimize the feature size of printed dots or lines. A perspective on the remaining challenges of the research is also proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A compact high-resolution X-ray powder diffractometer.

    Science.gov (United States)

    Fewster, Paul F; Trout, David R D

    2013-12-01

    A new powder diffractometer operating in transmission mode is described. It can work as a rapid very compact instrument or as a high-resolution instrument, and the sample preparation is simplified. The incident beam optics create pure Cu K α 1 radiation, giving rise to peak widths of ∼0.1° in 2θ in compact form with a sample-to-detector minimum radius of 55 mm, reducing to peak widths of advantage of this geometry is that the resolution of the diffractometer can be calculated precisely and the instrumental artefacts can be analysed easily without a sample present. The performance is demonstrated with LaB 6 and paracetamol, and a critical appraisal of the uncertainties in the measurements is presented. The instantaneous data collection offers possibilities in dynamic experiments.

  10. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  11. High resolution remote sensing of water surface patterns

    Science.gov (United States)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.

    2012-12-01

    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  12. Superconducting High Resolution Fast-Neutron Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hau, Ionel Dragos [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  13. High resolution measurement of the glycolytic rate

    Directory of Open Access Journals (Sweden)

    Carla X Bittner

    2010-09-01

    Full Text Available The glycolytic rate is sensitive to physiological activity, hormones, stress, aging and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently-developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.

  14. High resolution quantum metrology via quantum interpolation

    Science.gov (United States)

    Ajoy, Ashok; Liu, Yixiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Cappellaro, Paola

    2016-05-01

    Nitrogen Vacancy (NV) centers in diamond are a promising platform for quantum metrology - in particular for nanoscale magnetic resonance imaging to determine high resolution structures of single molecules placed outside the diamond. The conventional technique for sensing of external nuclear spins involves monitoring the effects of the target nuclear spins on the NV center coherence under dynamical decoupling (the CPMG/XY8 pulse sequence). However, the nuclear spin affects the NV coherence only at precise free evolution times - and finite timing resolution set by hardware often severely limits the sensitivity and resolution of the method. In this work, we overcome this timing resolution barrier by developing a technique to supersample the metrology signal by effectively implementing a quantum interpolation of the spin system dynamics. This method will enable spin sensing at high magnetic fields and high repetition rate, allowing significant improvements in sensitivity and spectral resolution. We experimentally demonstrate a resolution boost by over a factor of 100 for spin sensing and AC magnetometry. The method is shown to be robust, versatile to sensing normal and spurious signal harmonics, and ultimately limited in resolution only by the number of pulses that can be applied.

  15. AIRBORNE HIGH-RESOLUTION DIGITAL IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Prado-Molina, J.

    2006-04-01

    Full Text Available A low-cost airborne digital imaging system capable to perform aerial surveys with small-format cameras isintroduced. The equipment is intended to obtain high-resolution multispectral digital photographs constituting so aviable alternative to conventional aerial photography and satellite imagery. Monitoring software handles all theprocedures involved in image acquisition, including flight planning, real-time graphics for aircraft position updatingin a mobile map, and supervises the main variables engaged in the imaging process. This software also creates fileswith the geographical position of the central point of every image, and the flight path followed by the aircraftduring the entire survey. The cameras are mounted on a three-axis stabilized platform. A set of inertial sensorsdetermines platform's deviations independently from the aircraft and an automatic control system keeps thecameras at a continuous nadir pointing and heading, with a precision better than ± 1 arc-degree in three-axis. Thecontrol system is also in charge of saving the platform’s orientation angles when the monitoring software triggersthe camera. These external orientation parameters, together with a procedure for camera calibration give theessential elements for image orthocorrection. Orthomosaics are constructed using commercial GIS software.This system demonstrates the feasibility of large area coverage in a practical and economical way using smallformatcameras. Monitoring and automatization reduce the work while increasing the quality and the amount ofuseful images.

  16. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging.

    Science.gov (United States)

    Zhang, Fangzheng; Guo, Qingshui; Wang, Ziqian; Zhou, Pei; Zhang, Guoqiang; Sun, Jun; Pan, Shilong

    2017-07-10

    A photonics-based radar with generation and de-chirp processing of broadband linear frequency modulated continuous-wave (LFMCW) signal in optical domain is proposed for high-resolution and real-time inverse synthetic aperture radar (ISAR) imaging. In the proposed system, a broadband LFMCW signal is generated by a photonic frequency quadrupler based on a single integrated electro-optical modulator, and the echoes reflected from the targets are de-chirped to a low frequency signal by a microwave photonic frequency mixer. The proposed radar can operate at a high frequency with a large bandwidth, and thus achieve an ultra-high range resolution for ISAR imaging. Thanks to the wideband photonic de-chirp technique, the radar receiver could apply low-speed analog-to-digital conversion and mature digital signal processing, which makes real-time ISAR imaging possible. A K-band photonics-based radar with an instantaneous bandwidth of 8 GHz (18-26 GHz) is established and its performance for ISAR imaging is experimentally investigated. Results show that a recorded two-dimensional imaging resolution of ~2 cm × ~2 cm is achieved with a sampling rate of 100 MSa/s in the receiver. Besides, fast ISAR imaging with 100 frames per second is verified. The proposed radar is an effective solution to overcome the limitations on operation bandwidth and processing speed of current radar imaging technologies, which may enable applications where high-resolution and real-time radar imaging is required.

  17. The X-ray high resolution Chandra spectra of Nova SMC 2016

    Science.gov (United States)

    Orio, Marina; Aydi, Elias; Behar, Ehud; Buckley, David; Dobrotka, Andrej; Ness, Jan-Uwe; Page, Kim L.; Rauch, Thomas; Zemko, Polina

    2017-08-01

    Nova SMC 2016 was discovered in the direction of the SMC by the MASTER Global Robotic Net on 2016 October 14. At peak optical magnitude B~9.55, if it is located in the SMC it is one of the intrinsically most luminous novae ever recorded. The X-ray to optical luminosity of the nova is around the average value, so it was also very X-ray luminous for a nova in the SMC. It was classified as a fast nova. It was monitored with Swift until the present day (2017 May), with close cadence whenever it was feasible, and we were able to observe it on the rise to maximum X-ray luminosity on 2016 November 17-18 and at maximum on 2017 January 4 with the Chandra Low Energy Transmission Grating (another high resolution X-ray spectrum was obtained with XMM-Newton on 2016 December 22). We report on the luminous supersoft spectrum of the central source observed with Chandra, a luminous stellar continuum with effective temperature of about 650,000 K in December and 750,000 K in January, with deep absorption features of carbon, nitrogen and sulphur, blue-shifted by about 1700 km/s in November and by 2100 km/s in January. We describe the results of our initial spectral and timing analysis.

  18. High-resolution structure of viruses from random diffraction snapshots

    CERN Document Server

    Hosseinizadeh, A; Dashti, A; Fung, R; D'Souza, R M; Ourmazd, A

    2014-01-01

    The advent of the X-ray Free Electron Laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date, and provides a potentially powerful alternative route for analysis of data from crystalline and nanocrystalline objects.

  19. High-resolution eye tracking using V1 neuron activity

    Science.gov (United States)

    McFarland, James M.; Bondy, Adrian G.; Cumming, Bruce G.; Butts, Daniel A.

    2014-01-01

    Studies of high-acuity visual cortical processing have been limited by the inability to track eye position with sufficient accuracy to precisely reconstruct the visual stimulus on the retina. As a result, studies on primary visual cortex (V1) have been performed almost entirely on neurons outside the high-resolution central portion of the visual field (the fovea). Here we describe a procedure for inferring eye position using multi-electrode array recordings from V1 coupled with nonlinear stimulus processing models. We show that this method can be used to infer eye position with one arc-minute accuracy – significantly better than conventional techniques. This allows for analysis of foveal stimulus processing, and provides a means to correct for eye-movement induced biases present even outside the fovea. This method could thus reveal critical insights into the role of eye movements in cortical coding, as well as their contribution to measures of cortical variability. PMID:25197783

  20. Fundamental constants and high-resolution spectroscopy

    Science.gov (United States)

    Bonifacio, P.; Rahmani, H.; Whitmore, J. B.; Wendt, M.; Centurion, M.; Molaro, P.; Srianand, R.; Murphy, M. T.; Petitjean, P.; Agafonova, I. I.; D'Odorico, S.; Evans, T. M.; Levshakov, S. A.; Lopez, S.; Martins, C. J. A. P.; Reimers, D.; Vladilo, G.

    2014-01-01

    Absorption-line systems detected in high resolution quasar spectra can be used to compare the value of dimensionless fundamental constants such as the fine-structure constant, α, and the proton-to-electron mass ratio, μ = m_p/m_e, as measured in remote regions of the Universe to their value today on Earth. In recent years, some evidence has emerged of small temporal and also spatial variations in α on cosmological scales which may reach a fractional level of ≈ 10 ppm (parts per million). We are conducting a Large Programme of observations with the Very Large Telescope's Ultraviolet and Visual Echelle Spectrograph (UVES), and are obtaining high-resolution ({R ≈ 60 000}) and high signal-to-noise ratio (S/N ≈ 100) spectra calibrated specifically to study the variations of the fundamental constants. We here provide a general overview of the Large Programme and report on the first results for these two constants, discussed in detail in Molaro et al. (2013) and Rahmani et al. (2013). A stringent bound for Δα/α is obtained for the absorber at z_abs = 1.6919 towards HE 2217-2818. The absorption profile is complex with several very narrow features, and is modeled with 32 velocity components. The relative variation in α in this system is +1.3± 2.4_stat ± 1.0_sys ppm if Al II λ 1670 Å and three Fe II transitions are used, and +1.1 ± 2.6_stat ppm in a slightly different analysis with only Fe II transitions used. This is one of the tightest bounds on α-variation from an individual absorber and reveals no evidence for variation in α at the 3-ppm precision level (1σ confidence). The expectation at this sky position of the recently-reported dipolar variation of α is (3.2-5.4)±1.7 ppm depending on dipole model used and this constraint of Δα/α at face value is not supporting this expectation but not inconsistent with it at the 3σ level. For the proton-to-electron mass ratio the analysis of the H_2 absorption lines of the z_abs ≈ 2.4018 damped Lyα system

  1. A prototype experiment to study charmed particle production and decay using a Holographic High Resolution Hydrogen Chamber (HOLEBC) and the European Hybrid Spectrometer

    CERN Multimedia

    2002-01-01

    The high resolution hydrogen bubble chamber LEBC has already been used in experiments at the SPS to detect particles with lifetime $\\geq 5 \\times 10^{-13}$s (NA13 & NA16). \\\\\\\\For this experiment, a new version of LEBC called HOLEBC, has been constructed. This chamber and the NA26 version of the spectrometer have been used with classical optics in the NA27 experiment. A significant improvement in resolution was achieved ($\\simeq$ 20 microns compared with $\\simeq$ 40 $\\mu$m in LEBC) and hence a good sensitivity to all (known) charmed particle decays. The development of holographic recording techniques with HOLEBC is in progress. \\\\\\\\The prototype NA26 experiment is designed to evaluate the feasibility of the high sensitivity, high resolution holographic hydrogen bubble chamber technique and evaluate various possible charm selective triggers using the information from the spectrometer.

  2. High resolution CT findings of pseudoalveolar sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Eun; Park, Jun Gyun; Choe, Kyu Ok; Kim, Sang Jin [Yonsei University College of Medicine, Seoul (Korea, Republic of); Ryu, Young Hoon; Im, Jung Gi [Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Kyoung Soo [Sungkunkwan University College of Medicine, Seoul (Korea, Republic of); Song, Koun Sik [University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Hyae Young [National Cancer Centar, Seoul (Korea, Republic of)

    2002-08-01

    To determine the specific high-resolution CT features of sarcoidosis in which the observed pattern is predominantly pseudoalveolar. We retrospectively reviewed the HRCT findings in 15 cases in which chest radiography demonstrated pseudoalveolar consolidation. In all 15, sarcoidosis was pathologically proven. The distribution and characterization of the following CT features was meticulously scrutinized: distribution and characterization of pseudoalveolar lesions, air-bronchograms, micronodules, thickening of bronchovascular bundles and interlobular septa, lung distortion, ground-glass opacities and combined hilar and mediastinal lymphadenopathy. Follow-up CT scans were available in three cases after corticosteroid administration. Between one and 12 (mean, 5.6) pseudoalveolar lesions appeared as dense homogeneous or inhomogeneous opacities 1-4.5 cm in diameter and with an irregular margin located either at the lung periphery adjacent to the pleural surface or along the bronchovascular bundles, with mainly bilateral distribution (n=14, 93%). An air-bronchogram was observed in ten cases. Micronodules were observed at the periphery of the lesion or surrounding lung, which along with a thickened bronchovascular bundle was a consistent feature in all cases. Additional CT features included hilar and mediastinal lymphadenopathy (n=14, 93%), thickened interlobular septa (n=12, 80%), and ground-glass opacity (n=10, 67%). Lung distortion was noted in only one case (7%). After steroid administration pseudoalveolar lesions decreased in number and size in all three cases in which follow-up CT was available. The consistent HRCT features of pseudoalveolar sarcoidosis are bilateral multifocal dense homogenous or inhomogenous opacity and an irregular margin located either at the lung periphery adjacent to the pleural surface or along the bronchovascular bundles. Micronodules are present at the periphery of the lesion or surrounding lung. The features are reversible administration.

  3. High-resolution downscaling for hydrological management

    Science.gov (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  4. High Resolution Global View of Io

    Science.gov (United States)

    1997-01-01

    Io, the most volcanic body in the solar system is seen in the highest resolution obtained to date by NASA's Galileo spacecraft. The smallest features that can be discerned are 2.5 kilometers in size. There are rugged mountains several kilometers high, layered materials forming plateaus, and many irregular depressions called volcanic calderas. Several of the dark, flow-like features correspond to hot spots, and may be active lava flows. There are no landforms resembling impact craters, as the volcanism covers the surface with new deposits much more rapidly than the flux of comets and asteroids can create large impact craters. The picture is centered on the side of Io that always faces away from Jupiter; north is to the top.Color images acquired on September 7, 1996 have been merged with higher resolution images acquired on November 6, 1996 by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The color is composed of data taken, at a range of 487,000 kilometers, in the near-infrared, green, and violet filters and has been enhanced to emphasize the extraordinary variations in color and brightness that characterize Io's face. The high resolution images were obtained at ranges which varied from 245,719 kilometers to 403,100 kilometers.Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  5. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging

    NARCIS (Netherlands)

    Amitonova, L. V.; Descloux, A.; Petschulat, J.; Frosz, M. H.; Ahmed, G.; Babic, F.; Jiang, X.; Mosk, A. P.; Russell, P. S. J.; Pinkse, P.W.H.

    2016-01-01

    We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled res- olution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze

  6. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging

    NARCIS (Netherlands)

    Amitonova, Lyubov; Descloux, Adrien; Petschulat, Joerg; Frosz, Michael H.; Ahmed, Goran; Babic, Fehim; Mosk, Allard; Russell, Philip St.J.; Pinkse, Pepijn Willemszoon Harry

    2016-01-01

    We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled resolution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze the

  7. A high resolution powder diffractometer using focusing optics

    Indian Academy of Sciences (India)

    Pramana – Journal of Physics. Current Issue : Vol. 89, Issue 6 · Current Issue Volume 89 | Issue 6. December 2017. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board · Information for Authors · Subscription ...

  8. High-resolution accelerator alignment using x-ray optics

    Directory of Open Access Journals (Sweden)

    Bingxin Yang

    2006-03-01

    Full Text Available We propose a novel alignment technique utilizing the x-ray beam of an undulator in conjunction with pinholes and position-sensitive detectors for positioning components of the accelerator, undulator, and beam line in an x-ray free-electron laser. Two retractable pinholes at each end of the undulator define a stable and reproducible x-ray beam axis (XBA. Targets are precisely positioned on the XBA using a pinhole camera technique. Position-sensitive detectors responding to both x-ray and electron beams enable direct transfer of the position setting from the XBA to the electron beam. This system has the potential to deliver superior alignment accuracy (1–3   μm for target pinholes in the transverse directions over a long distance (200 m or longer. It can be used to define the beam axis of the electron-beam–based alignment, enabling high reproducibility of the latter. This x-ray–based concept should complement the electron-beam–based alignment and the existing survey methods to raise the alignment accuracy of long accelerators to an unprecedented level. Further improvement of the transverse accuracy using x-ray zone plates will be discussed. We also propose a concurrent measurement scheme during accelerator operation to allow real-time feedback for transverse position correction.

  9. A high-resolution microchip optomechanical accelerometer

    Science.gov (United States)

    Krause, Alexander G.; Winger, Martin; Blasius, Tim D.; Lin, Qiang; Painter, Oskar

    2012-11-01

    The monitoring of acceleration is essential for a variety of applications ranging from inertial navigation to consumer electronics. Typical accelerometer operation involves the sensitive displacement measurement of a flexibly mounted test mass, which can be realized using capacitive, piezo-electric, tunnel-current or optical methods. Although optical detection provides superior displacement resolution, resilience to electromagnetic interference and long-range readout, current optical accelerometers either do not allow for chip-scale integration or utilize relatively bulky test mass sensors of low bandwidth. Here, we demonstrate an optomechanical accelerometer that makes use of ultrasensitive displacement readout using a photonic-crystal nanocavity monolithically integrated with a nanotethered test mass of high mechanical Q-factor. This device achieves an acceleration resolution of 10 µg Hz-1/2 with submilliwatt optical power, bandwidth greater than 20 kHz and a dynamic range of greater than 40 dB. Moreover, the nanogram test masses used here allow for strong optomechanical backaction, setting the stage for a new class of motional sensors.

  10. Development of a high resolution module for PET scanners

    Science.gov (United States)

    Stringhini, G.; Pizzichemi, M.; Ghezzi, A.; Stojkovic, A.; Tavernier, S.; Niknejad, T.; Varela, J.; Paganoni, M.; Auffray, E.

    2017-02-01

    Positron Emission Tomography (PET) scanners require high performances in term of spatial resolution and sensitivity to allow early detection of cancer masses. In small animal and organ dedicated PET scanners the Depth of Interaction (DOI) information has to be obtained to avoid parallax errors and to reconstruct high resolution images. In the whole body PET, the DOI information can be useful to correct for the time jitter of the optical photons along the main axis of the scintillator, improving the time performances. In this work we present the development of PET module designed to reach high performance as compared to the current scanners while keeping the complexity of the system reasonably low. The module presented is based on a 64 LYSO (Lutetium-yttrium oxyorthosilicate) crystals matrix and on a 4×4 MPPC (Multi Pixels Photon Counter) array as detector in a 4 to 1 coupling between the crystals and the detector and a single side readout. The lateral surfaces of the crystals are optically treated to be unpolished. The DOI and the energy resolution of the PET module are presented and a fast method to obtain the DOI calibration is discussed.

  11. CHIRON – A new high resolution spectrometer for CTIO

    Directory of Open Access Journals (Sweden)

    Marcy G.W.

    2011-07-01

    Full Text Available Small telescopes can play an important role in the search for exoplanets because they offer an opportunity for high cadence observations that are not possible with large aperture telescopes. However, there is a shortage of high resolution spectrometers for precision Doppler planet searches. We report on an innovative design for CHIRON, an inexpensive spectrometer that we are building for the 1.5-m telescope at CTIO in Chile. The resolution will be R >80.000, the spectral format spanning 410 to 880 nm. The total throughput of the telescope and spectrometer will be better than 12%, comparable with the efficiency of state-of-the-art spectrometers. The design is driven by the requirements for precision Doppler searches for exoplanets using an iodine cell. The optical layout is a classical echelle with 140 mm beam size. The bench-mounted spectrometer will be fibre-fed followed by an image slicer. An apochromatic refractor is used as the camera. Image quality and throughput of the design are excellent over the full spectral range. Extensive use of commercially available components and avoidance of complicated custom optics are key for quick and resource-efficient implementation.

  12. High resolution fluorescence bio-imaging upconversion nanoparticles in insects.

    Science.gov (United States)

    Alkahtani, Masfer; Chen, Yunyun; Pedraza, Julie J; González, Jorge M; Parkinson, Dilworth Y; Hemmer, Philip R; Liang, Hong

    2017-01-23

    Imaging fluorescent markers with brightness, photostability, and continuous emission with auto fluorescence background suppression in biological samples has always been challenging due to limitations of available and economical techniques. Here we report a new approach, to achieve high contrast imaging inside small and difficult biological systems with special geometry such as fire ants, an important agricultural pest, using a homemade cost-effective optical system. Unlike the commonly used rare-earth doped fluoride nanoparticles, we utilized nanoparticles with a high upconversion efficiency in water. Specifically Y2O3:Er+3,Yb+3 nanoparticles (40-50 nm diameter) were fed to fire ants as food and then a simple illuminating experiment was conducted at 980 nm wavelength at relatively low pump intensity8 kW.cm-2. The locations were further confirmed by X-ray tomography, where most particles aggregated inside the ant's mouth. High resolution, fast, and economical optical imaging system opens the door for studying more complex biological systems.

  13. Constrained droplets for high resolution microscopy of protein fibrillization

    Science.gov (United States)

    Posada, David; Tessier, Peter; Hirsa, Amir

    2011-11-01

    The use of constrained droplets (droplets with pinned contact lines on solid surfaces) is proposed here as a method for sample support in optical microscopy studies. Capillarity acts to contain the liquid sample, allowing access for observations in the bulk and at the gas/liquid interface. At the capillary length scale, surface tension forms stable interfaces, virtually immune to gravity and with curvatures that can be adjusted. This is particularly useful when studying the gas/liquid interface and its vicinity under high resolution optical microscopy. Such observations are normally performed using oil immersion objectives which must be positioned within distances only tens of microns from the region of interest. Constrained droplets can also be used at small scales, requiring minute volumes of analyte. The use of the constrained droplet method is demonstrated by studying the aggregation of insulin into amyloid fibrils in the solution and at the gas/liquid interface, where proteins are prone to denaturation and subsequent fibrillization. Such an aggregation process is associated with many neurodegenerative diseases, including Alzhemier's.

  14. High resolution color band pyrometer ratioing

    Science.gov (United States)

    Bickler, Donald B. (Inventor); Henry, Paul K. (Inventor); LoGiurato, D. Daniel (Inventor)

    1989-01-01

    The sensing head of a two-color band ratioing pyrometer of a known type using a fiber optic cable to couple radiation to dual detector photodiodes is improved to have high spatial resolution by focusing the radiation received through an objective lens (i.e., by focusing the image of a target area) onto an opaque sheet spaced in front of the input end of the fiber optic cable. A two-mil hole in that sheet then passes radiation to the input end of the cable. The detector has two channels, one for each color band, with an electronic-chopper stabilized current amplifier as the input stage followed by an electronic-chopper stabilized voltage amplifier.

  15. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, I.P.; Yuan, Scott Wu; Stefani, Alessio

    2011-01-01

    A report is presented on the inscription of a fibre Bragg grating into a microstructured polymer optical fibre fabricated from TOPAS cyclic olefin copolymer. This material offers two important advantages over poly (methyl methacrylate), which up to now has formed the basis for polymer fibre Bragg...

  16. High-resolution two-dimensional image upconversion of incoherent light

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2010-01-01

    We consider a technique for high-resolution image upconversion of thermal light. Experimentally, we demonstrate cw upconversion with a resolution of more than 200 × 1000 pixels of thermally illuminated objects. This is the first demonstration (to our knowledge) of high-resolution cw image...... upconversion. The upconversion method promises an alternative route to high-quantum-efficiency all-optical imaging in the mid-IR wavelength region and beyond using standard CCD cameras. A particular advantage of CCD cameras compared to state-of-the-art thermal cameras is the possibility to tailor and tune...... the spectral response leading to functional spectral imaging....

  17. Volume polarization holographic recording in thick photopolymer for optical memory.

    Science.gov (United States)

    Lin, Shiuan Huei; Cho, Sheng-Lung; Chou, Shin-Fu; Lin, June Hua; Lin, Chih Min; Chi, Sien; Hsu, Ken Yuh

    2014-06-16

    Based on a vector wave theory of volume holograms, dependence of holographic reconstruction on the polarization states of the writing and reading beams is discussed. It is found that under paraxial approximation the circular polarization holograms provide a better distinction of the reading beams. Characteristics of recording polarization holograms in thick phenanthrenequinone-doped poly(methyl methacrylate) (PQ/PMMA) photopolymer are experimentally investigated. It is found that the circular polarization holographic recording possesses better dynamic range and material sensitivity, and a uniform spatial frequency response over a wide range. The performance is comparable to that of the intensity holographic recording in PQ/PMMA. Based on theoretical analyses and the material properties, a polarization multiplexing holographic memory using circularly polarization recording configuration for increasing storage capacity has been designed and experimentally demonstrated.

  18. Enumerative Encoding of TMTR Codes for Optical Recording Channel

    National Research Council Canada - National Science Library

    Tsai, Hui-Feng

    2010-01-01

    We propose a new time-varying maximum transition run (TMTR) code for DVD recording systems, which has a rate higher than the EFMPlus code and a lower power spectral density (PSD) at low frequencies...

  19. SHARAQ spectrometer for high-resolution studies for RI-induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Michimasa, S., E-mail: mitimasa@cns.s.u-tokyo.ac.jp [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Takaki, M.; Sasamoto, Y. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Dozono, M. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Nishi, T. [Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Kawabata, T. [Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502 (Japan); Ota, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Baba, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Baba, T. [Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502 (Japan); Fujii, T.; Go, S.; Kawase, S.; Kikuchi, Y.; Kisamori, K.; Kobayashi, M.; Kubota, Y.; Lee, C.S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Matsubara, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Miki, K. [RCNP, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Miya, H. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); and others

    2013-12-15

    Highlights: • Report on recent achievement of the SHARAQ spectrometer. • Demonstration of two ion optics modes for high-resolution spectroscopy. • Discussion on measured transport matrix elements by comparison with designed values. • Demonstration of event-by-event momentum tagging by the achromatic transport. • Achievement of momentum resolution of 1/8100 by the dispersion-matching transport. -- Abstract: The SHARAQ spectrometer and High-Resolution Beamline, which began operation in March 2009, have been put into use for six experiments using charge exchange reactions with radioactive isotope beams. For experiments at SHARAQ, detector developments and ion optics studies continue to improve performance in high-resolution nuclear spectroscopy. We have introduced improved timing resolution with CVD diamond detectors, high count-rate beamline tracking detectors and development of multi-particle detection by cathode-readout drift chambers. Ion-optics studies for the high-resolution achromatic (HA) and dispersion-matching (DM) transport modes are also reported here. Momentum tagging in the HA mode demonstrated an improvement in spectroscopic resolution with respect to the momentum spread of the radioactive beam. For the DM transportation mode, a momentum resolution of 1/8100 (FWHM) was achieved by taking into account the positions and angles of the beam at the third focal plane of BigRIPS.

  20. Optical recording and information theoretic analysis of Aplysia gill-withdrawal reflex.

    Science.gov (United States)

    Shiono, S; Nakashima, M; Yamada, S; Matsumoto, K

    1993-01-01

    A new experimental setup has been devised to perform Aplysia optical recording, the firing of the siphon sensory neurons being precisely controlled. Significant crosscorrelations between the siphon sensory neurons and optically detected neurons were obtained by our information theory-based analysis, and we discussed possible roles of the detected neurons in the gill-withdrawal reflex.

  1. Magneto-optical recording media - CoNi/Pt and Co/Pt multilayers

    NARCIS (Netherlands)

    Meng, Q.; Meng, Q.

    1996-01-01

    Concluding Remarks 5.1. General Statement As described in Chapter 1, magneto-optical recording disks have been used in the audio (MiniDisc) and PC as removable disks with high data capacity. Recently, MO disks have been in the competition with the phase-change type of optical disks. Up to now, the

  2. Precision cosmology with time delay lenses: High resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  3. Wavefront coding for visual optics

    Science.gov (United States)

    Acosta, E.; Arines, J.; Almaguer, C.

    2017-08-01

    Wavefront coding (WFC) enables the depth of field of incoherent optical systems to be extended. This method involves a cubic-phase plate in the system yielding a blurred image nearly invariant to defocus. In visual optics there is a big interest in improving solutions for two different problems: Presbyopia correction and high resolution retinal images with low cost devices. In this work we will show how the use of cubic phases in contact lenses can be an alternative to multifocal lenses and how WFC technique can be applied to record high resolution retinal images reducing the complexity of the actual systems

  4. Recording digital holograms of optically transparent objects in arbitrary spectral intervals based on acousto-optic filtration of radiation

    Science.gov (United States)

    Machikhin, A. S.; Polschikova, O. V.; Ramazanova, A. G.; Pozhar, V. E.

    2015-10-01

    The problem of obtaining digital holographic images of optically transparent objects in arbitrary spectral intervals is considered. A Mach-Zehnder interferometer based optical scheme with acousto-optic spectral filtration of the broadband radiation is presented. The spectral selection allows one to increase the informativeness of digital holograms due to the choice of spectral channels in which elements with different physico-chemical properties have a sufficient contrast. Examples of recorded spectral holographic images of a test object and real objects are presented.

  5. Mach-Zehnder interference microscopy optically records electrically stimulated cellular activity in unstained nerve cells.

    Science.gov (United States)

    Kaul, R A; Mahlmann, D M; Loosen, P

    2010-10-01

    Dual-beam white light interference microscopy monitors changes in the optical density of the investigated object with high sensitivity. We report on the recording of dynamic changes in a neuron's optical density evoked by extracellular electrical stimulation. These recorded changes were analysed and unambiguously connected to the investigated object, an invertebrate neuron of the pond snail Lymnaea stagnalis. The results provide evidence for the method's applicability in visualizing cellular dynamics purely by evaluating changes in a cell's optical properties. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  6. Understanding reconstructed Dante spectra using high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    May, M. J., E-mail: may13@llnl.gov; Widmann, K.; Kemp, G. E.; Thorn, D.; Colvin, J. D.; Schneider, M. B.; Moore, A.; Blue, B. E. [L-170 Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94551 (United States); Weaver, J. [Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States)

    2016-11-15

    The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

  7. Understanding reconstructed Dante spectra using high resolution spectroscopy

    Science.gov (United States)

    May, M. J.; Weaver, J.; Widmann, K.; Kemp, G. E.; Thorn, D.; Colvin, J. D.; Schneider, M. B.; Moore, A.; Blue, B. E.

    2016-11-01

    The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

  8. High-resolution Doppler model of the human gait

    Science.gov (United States)

    Geisheimer, Jonathan L.; Greneker, Eugene F., III; Marshall, William S.

    2002-07-01

    A high resolution Doppler model of the walking human was developed for analyzing the continuous wave (CW) radar gait signature. Data for twenty subjects were collected simultaneously using an infrared motion capture system along with a two channel 10.525 GHz CW radar. The motion capture system recorded three-dimensional coordinates of infrared markers placed on the body. These body marker coordinates were used as inputs to create the theoretical Doppler output using a model constructed in MATLAB. The outputs of the model are the simulated Doppler signals due to each of the major limbs and the thorax. An estimated radar cross section for each part of the body was assigned using the Lund & Browder chart of estimated body surface area. The resultant Doppler model was then compared with the actual recorded Doppler gait signature in the frequency domain using the spectrogram. Comparison of the two sets of data has revealed several identifiable biomechanical features in the radar gait signature due to leg and body motion. The result of the research shows that a wealth of information can be unlocked from the radar gait signature, which may be useful in security and biometric applications.

  9. Ultrafast chirped optical waveform recorder using a time microscope

    Science.gov (United States)

    Bennett, Corey Vincent

    2015-04-21

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  10. Optical sound wave recording by digital holography with heterodyne technique

    Science.gov (United States)

    Quan, Xiangyu; Rajput, Sudheesh; Nitta, Kouichi; Matoba, Osamu; Awatsuji, Yasuhiro

    2017-06-01

    A visualization technique of sound wave propagation using digital holography with heterodyne technique is presented. In the proposed method, the frequency of the interference pattern in an off-axis digital holography is down converted into the detectable frequency in an image sensor operated at the video frame rate by using the heterodyne interferometer. We present the principle of the recording technique and experimental results are described.

  11. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator ... observed by high-resolution electron microscopy in both ..... 1988 Nucl. Instrum. Meth. B34 228. Kato N 1992 J. Acta Crystallogr. A48 834. Kaur B, Bhat M, Licci F, Kumar R, Kotru P N and Bamzai K K. 2004 Nucl. Instrum. Meth ...

  12. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, so...

  13. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  14. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  15. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  16. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Science.gov (United States)

    de Groote, R. P.; Lynch, K. M.; Wilkins, S. G.

    2017-11-01

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  17. On the Design of High Resolution Imaging Systems

    Science.gov (United States)

    Eckardt, A.; Reulke, R.

    2017-05-01

    The design of high-resolution systems is always a consideration of many parameters. Technological parameter of the imaging system, e.g. diameter of the imaging system, mass and power, as well as storage and data transfer, have an direct impact on spacecraft size and design. The paper describes the essential design parameters for the description of high-resolution systems.

  18. High-resolution analysis of the mechanical behavior of tissue

    Science.gov (United States)

    Hudnut, Alexa W.; Armani, Andrea M.

    2017-06-01

    The mechanical behavior and properties of biomaterials, such as tissue, have been directly and indirectly connected to numerous malignant physiological states. For example, an increase in the Young's Modulus of tissue can be indicative of cancer. Due to the heterogeneity of biomaterials, it is extremely important to perform these measurements using whole or unprocessed tissue because the tissue matrix contains important information about the intercellular interactions and the structure. Thus, developing high-resolution approaches that can accurately measure the elasticity of unprocessed tissue samples is of great interest. Unfortunately, conventional elastography methods such as atomic force microscopy, compression testing, and ultrasound elastography either require sample processing or have poor resolution. In the present work, we demonstrate the characterization of unprocessed salmon muscle using an optical polarimetric elastography system. We compare the results of compression testing within different samples of salmon skeletal muscle with different numbers of collagen membranes to characterize differences in heterogeneity. Using the intrinsic collagen membranes as markers, we determine the resolution of the system when testing biomaterials. The device reproducibly measures the stiffness of the tissues at variable strains. By analyzing the amount of energy lost by the sample during compression, collagen membranes that are 500 μm in size are detected.

  19. Bright Semiconductor Scintillator for High Resolution X-Ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nagarkar, Vivek V.; Gaysinskiy, Valeriy; Ovechkina, Olena E.; Miller, Stuart; Singh, Bipin; Guo, Liang; Irving, Thomas (IIT); (Rad. Monitoring)

    2011-08-16

    We report on a novel approach to produce oxygen-doped zinc telluride (ZnTe:O), a remarkable group II-VI semiconductor scintillator, fabricated in the columnar-structured or polycrystalline forms needed to fulfill the needs of many demanding X-ray and {gamma}-ray imaging applications. ZnTe:O has one of the highest conversion efficiencies among known scintillators, emission around 680 nm (which is ideally suited for CCD sensors), high density of 6.4 g/cm{sup 3}, fast decay time of {approx}1 {micro}s with negligible afterglow, and orders of magnitude higher radiation resistance compared to commonly used scintillators. These properties allow the use of ZnTe:O in numerous applications, including X-ray imaging, nuclear medicine (particularly SPECT), room temperature radioisotope identification, and homeland security. Additionally, ZnTe:O offers distinct advantages for synchrotron-based high resolution imaging due to the absence of atomic absorption edges in the low energy range, which otherwise reduce resolution due to secondary X-ray formations. We have fabricated films of ZnTe:O using a vapor deposition technique that allows large-area structured scintillator fabrication in a time- and cost-efficient manner, and evaluated its performance for small-angle X-ray scattering (SAXS) at an Argonne National Laboratory synchrotron beamline. Details of the fabrication and characterization of the optical, scintillation and imaging properties of the ZnTe:O films are presented in this paper.

  20. High resolution ultraviolet imaging spectrometer for latent image analysis.

    Science.gov (United States)

    Lyu, Hang; Liao, Ningfang; Li, Hongsong; Wu, Wenmin

    2016-03-21

    In this work, we present a close-range ultraviolet imaging spectrometer with high spatial resolution, and reasonably high spectral resolution. As the transmissive optical components cause chromatic aberration in the ultraviolet (UV) spectral range, an all-reflective imaging scheme is introduced to promote the image quality. The proposed instrument consists of an oscillating mirror, a Cassegrain objective, a Michelson structure, an Offner relay, and a UV enhanced CCD. The finished spectrometer has a spatial resolution of 29.30μm on the target plane; the spectral scope covers both near and middle UV band; and can obtain approximately 100 wavelength samples over the range of 240~370nm. The control computer coordinates all the components of the instrument and enables capturing a series of images, which can be reconstructed into an interferogram datacube. The datacube can be converted into a spectrum datacube, which contains spectral information of each pixel with many wavelength samples. A spectral calibration is carried out by using a high pressure mercury discharge lamp. A test run demonstrated that this interferometric configuration can obtain high resolution spectrum datacube. The pattern recognition algorithm is introduced to analyze the datacube and distinguish the latent traces from the base materials. This design is particularly good at identifying the latent traces in the application field of forensic imaging.

  1. Detecting single DNA molecule interactions with optical microcavities (Presentation Recording)

    Science.gov (United States)

    Vollmer, Frank

    2015-09-01

    Detecting molecules and their interactions lies at the heart of all biosensor devices, which have important applications in health, environmental monitoring and biomedicine. Achieving biosensing capability at the single molecule level is, moreover, a particularly important goal since single molecule biosensors would not only operate at the ultimate detection limit by resolving individual molecular interactions, but they could also monitor biomolecular properties which are otherwise obscured in ensemble measurements. For example, a single molecule biosensor could resolve the fleeting interaction kinetics between a molecule and its receptor, with immediate applications in clinical diagnostics. We have now developed a label-free biosensing platform that is capable of monitoring single DNA molecules and their interaction kinetics[1], hence achieving an unprecedented sensitivity in the optical domain, Figure 1. We resolve the specific contacts between complementary oligonucleotides, thereby detecting DNA strands with less than 2.4 kDa molecular weight. Furthermore we can discern strands with single nucleotide mismatches by monitoring their interaction kinetics. Our device utilizes small glass microspheres as optical transducers[1,2, 3], which are capable of increasing the number of interactions between a light beam and analyte molecules. A prism is used to couple the light beam into the microsphere. Ourr biosensing approach resolves the specific interaction kinetics between single DNA fragments. The optical transducer is assembled in a simple three-step protocol, and consists of a gold nanorod attached to a glass microsphere, where the surface of the nanorod is further modified with oligonucleotide receptors. The interaction kinetics of an oligonucleotide receptor with DNA fragments in the surrounding aqueous solution is monitored at the single molecule level[1]. The light remains confined inside the sphere where it is guided by total internal reflections along a

  2. High resolution surface scanning of Thick-GEM for single photo-electron detection

    Science.gov (United States)

    Hamar, G.; Varga, D.

    2012-12-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10-100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication.

  3. High resolution pollutant measurements in complex urban ...

    Science.gov (United States)

    Measuring air pollution in real-time using an instrumented vehicle platform has been an emerging strategy to resolve air pollution trends at a very fine spatial scale (10s of meters). Achieving second-by-second data representative of urban air quality trends requires advanced instrumentation, such as a quantum cascade laser utilized to resolve carbon monoxide and real-time optical detection of black carbon. An equally challenging area of development is processing and visualization of complex geospatial air monitoring data to decipher key trends of interest. EPA’s Office of Research and Development staff have applied air monitoring to evaluate community air quality in a variety of environments, including assessing air quality surrounding rail yards, evaluating noise wall or tree stand effects on roadside and on-road air quality, and surveying of traffic-related exposure zones for comparison with land-use regression estimates. ORD has ongoing efforts to improve mobile monitoring data collection and interpretation, including instrumentation testing, evaluating the effect of post-processing algorithms on derived trends, and developing a web-based tool called Real-Time Geospatial Data Viewer (RETIGO) allowing for a simple plug-and-play of mobile monitoring data. Example findings from mobile data sets include an estimated 50% in roadside ultrafine particle levels when immediately downwind of a noise barrier, increases in neighborhood-wide black carbon levels (3

  4. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  5. B stars seen at high resolution by XMM-Newton

    Science.gov (United States)

    Cazorla, Constantin; Nazé, Yaël

    2017-12-01

    We report on the properties of 11 early B stars observed with gratings on board XMM-Newton and Chandra, thereby doubling the number of B stars analysed at high resolution. The spectra typically appear soft, with temperatures of 0.2-0.6 keV, and moderately bright (log [LX/LBOL] -7) with lower values for later type stars. In line with previous studies, we also find an absence of circumstellar absorption, negligible line bro