WorldWideScience

Sample records for high-resolution magnetic field

  1. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    International Nuclear Information System (INIS)

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin; Chen, Zhong; Chen, Youhe

    2015-01-01

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields

  2. High resolution NMR imaging using a high field yokeless permanent magnet.

    Science.gov (United States)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  3. High resolution NMR imaging using a high field yokeless permanent magnet

    International Nuclear Information System (INIS)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 μm] 2 ) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging. (author)

  4. High resolution studies of the effects of magnetic fields on chemical reactions

    OpenAIRE

    Hamilton, C. A.; Hewitt, J. P.; McLauchlan, Keith A.; Steiner, Ulrich

    1988-01-01

    A simple and inexpensive experiment is described which detects magnetic field effects on chemical reactions with high signal-to-noise ratio and high resolution. It consists in applying a small modulation field to the sample, whilst the main field it experiences is varied, with optical detection at the modulation frequency. It consequently measures the derivative of the normal MARY spectrum. It is shown by theoretical analysis that when using this method it is better to monitor reaction interm...

  5. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    International Nuclear Information System (INIS)

    Lima, E A; Weiss, B P; Bruno, A C; Carvalho, H R

    2014-01-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x–y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz 1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10 –14  A m 2 , a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays. (paper)

  6. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    Science.gov (United States)

    Lima, E. A.; Bruno, A. C.; Carvalho, H. R.; Weiss, B. P.

    2014-10-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x-y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10-14 A m2, a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays.

  7. High-resolution imaging of magnetic fields using scanning superconducting quantum interference device (SQUID) microscopy

    Science.gov (United States)

    Fong de Los Santos, Luis E.

    Development of a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with sub-millimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensor is mounted in the tip of a sapphire rod and thermally anchored to the cryostat helium reservoir. A 25 mum sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows adjusting the sample-to-sensor spacing from the top of the Dewar. I have achieved a sensor-to-sample spacing of 100 mum, which could be maintained for periods of up to 4 weeks. Different SQUID sensor configurations are necessary to achieve the best combination of spatial resolution and field sensitivity for a given magnetic source. For imaging thin sections of geological samples, I used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80 mum, and achieved a field sensitivity of 1.5 pT/Hz1/2 and a magnetic moment sensitivity of 5.4 x 10-18 Am2/Hz1/2 at a sensor-to-sample spacing of 100 mum in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires higher field sensitivity, which can only be achieved by compromising spatial resolution. I developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250 mum to 1 mm, and achieved sensitivities of 480 - 180 fT/Hz1/2 in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of

  8. High-resolution records of non-dipole variations in the intensity of the Earth's magnetic field

    NARCIS (Netherlands)

    de Groot, L.V.

    2013-01-01

    Our understanding of the short-term behavior of the Earth’s magnetic field is currently mainly hampered by a lack of high-resolution records of geomagnetic intensity variations that are well distributed over the globe and cover the same timespan. Over the past decades many efforts have been made to

  9. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  10. Development of high-resolution two-dimensional magnetic field measurement system by use of printed-circuit technology

    Science.gov (United States)

    Akimitsu, Moe; Qinghong, Cao; Sawada, Asuka; Hatano, Hironori; Tanabe, Hiroshi; Ono, Yasushi; TS-Group Team

    2017-10-01

    We have developed a new-types of high-resolution magnetic probe array for our new magnetic reconnection experiments: TS-3U (ST, FRC: R =0.2m, 2017-) and TS-4U (ST, FRC: R =0.5m, 2018-), using the advanced printed-circuit technology. They are equipped with all three-components of magnetic pick-up coils whose size is 1-5mm x 3mm. Each coil is composed of two-sided coil pattern with line width of 0.05mm. We can install two or three printed arrays in a single glass (ceramic) tube for two or three component measurements. Based on this new probe technique, we started high-resolution and high-accuracy measurement of the current sheet thickness and studied its plasma parameter dependence. We found that the thickness of current sheet increases inversely with the guide toroidal field. It is probably determined by the ion gyroradius in agreement with the particle simulation by Horiuchi etc. While the reconnection speed is steady under low guide field condition, it is observed to oscillate in the specific range of guide field, suggesting transition from the quasi-steady reconnection to the intermittent reconnection. Cause and mechanism for intermittent reconnection will be discussed using the current sheet dissipation and dynamic balance between plasma inflow and outflow. This work supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.

  11. High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field

    International Nuclear Information System (INIS)

    Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Lipton, Andrew S.; Berthold, Deborah A.; Rienstra, Chad M.

    2010-01-01

    Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly- 13 C, 15 N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla ( 1 H frequencies of 500, 750, and 900 MHz). For two protein systems-GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein-line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C-C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine Cδ1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies.

  12. High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner.

    Science.gov (United States)

    Miki, Kohei; Masamune, Ken

    2015-10-01

    Low-field open magnetic resonance imaging (MRI) is frequently used for performing image-guided neurosurgical procedures. Intraoperative magnetic resonance (MR) images are useful for tracking brain shifts and verifying residual tumors. However, it is difficult to precisely determine the boundary of the brain tumors and normal brain tissues because the MR image resolution is low, especially when using a low-field open MRI scanner. To overcome this problem, a high-resolution MR image acquisition system was developed and tested. An MR-compatible manipulator with pneumatic actuators containing an MR signal receiver with a small radiofrequency (RF) coil was developed. The manipulator had five degrees of freedom for position and orientation control of the RF coil. An 8-mm planar RF coil with resistance and inductance of 2.04 [Formula: see text] and 1.00 [Formula: see text] was attached to the MR signal receiver at the distal end of the probe. MR images of phantom test devices were acquired using the MR signal receiver and normal head coil for signal-to-noise ratio (SNR) testing. The SNR of MR images acquired using the MR signal receiver was 8.0 times greater than that of MR images acquired using the normal head coil. The RF coil was moved by the manipulator, and local MR images of a phantom with a 2-mm grid were acquired using the MR signal receiver. A wide field-of-view MR image was generated from a montage of local MR images. A small field-of-view RF system with a pneumatic manipulator was integrated in a low-field MRI scanner to allow acquisition of both wide field-of-view and high-resolution MR images. This system is promising for image-guided neurosurgery as it may allow brain tumors to be observed more clearly and removed precisely.

  13. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage

    Science.gov (United States)

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.

  14. Development of a metallic magnetic calorimeter for high resolution spectroscopy

    International Nuclear Information System (INIS)

    Linck, M.

    2007-01-01

    In this thesis the development of a metallic magnetic calorimeter for high resolution detection of single x-ray quanta is described. The detector consists of an X-ray absorber and a paramagnetic temperature sensor. The raise in temperature of the paramagnetic sensor due to the absorption of a single X-ray is measured by the change in magnetization of the sensor using a low-noise SQUID magnetometer. The thermodynamic properties of the detector can be described by a theoretical model based on a mean field approximation. This allows for an optimization of the detector design with respect to signal size. The maximal archivable energy resolution is limited by thermodynamic energy fluctuations between absorber, heat bath and thermometer. An interesting field of application for a metallic magnetic calorimeter is X-ray astronomy and the investigation of X-ray emitting objects. Through high-resolution X-ray spectroscopy it is possible to obtain information about physical processes of even far distant objects. The magnetic calorimeter that was developed in this thesis has a metallic absorber with a quantum efficiency of 98% at 6 keV. The energy resolution of the magnetic calorimeter is EFWHM=2.7 eV at 5.9 keV. The deviation of the detector response from a linear behavior of the detector is only 0.8% at 5.9 keV. (orig.)

  15. High-resolution magnetic measurements of HTSC

    Czech Academy of Sciences Publication Activity Database

    Janů, Zdeněk; Novák, Miloslav; Tsoi, G.

    272-276, - (2004), e1099-e1101 ISSN 0304-8853 R&D Projects: GA ČR GA102/02/0994; GA AV ČR IAA1010104 Institutional research plan: CEZ:AV0Z1010914 Keywords : superconductivity * low-dimensional systems * resonance scattering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.031, year: 2004

  16. High resolution spectroscopy in solids by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bonagamba, T.J.

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120 0 C to +160 0 C, and is fully controlled by a Macintosh IIci microcomputer. (author)

  17. High-resolution nuclear magnetic resonance studies of proteins.

    Science.gov (United States)

    Jonas, Jiri

    2002-03-25

    The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.

  18. Electron beam fabrication and characterization of high-resolution magnetic force microscopy tips

    Science.gov (United States)

    Rührig, M.; Porthun, S.; Lodder, J. C.; McVitie, S.; Heyderman, L. J.; Johnston, A. B.; Chapman, J. N.

    1996-03-01

    The stray field, magnetic microstructure, and switching behavior of high-resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a thermally evaporated magnetic thin film are transparent to the electron energies used in these TEMs it is possible to observe both the external stray field emanating from the tips as well as their internal domain structure. The experiments confirm the basic features of electron beam fabricated thin film tips concluded from various MFM observations using these tips. Only a weak but highly concentrated stray field is observed emanating from the immediate apex region of the tip, consistent with their capability for high resolution. It also supports the negligible perturbation of the magnetization sample due to the tip stray field observed in MFM experiments. Investigation of the magnetization distributions within the tips, as well as preliminary magnetizing experiments, confirm a preferred single domain state of the high aspect ratio tips. To exclude artefacts of the observation techniques both nonmagnetic tips and those supporting different magnetization states are used for comparison.

  19. Artificial terraced field extraction based on high resolution DEMs

    Science.gov (United States)

    Na, Jiaming; Yang, Xin; Xiong, Liyang; Tang, Guoan

    2017-04-01

    With the increase of human activities, artificial landforms become one of the main terrain features with special geographical and hydrological value. Terraced field, as the most important artificial landscapes of the loess plateau, plays an important role in conserving soil and water. With the development of digital terrain analysis (DTA), there is a current and future need in developing a robust, repeatable and cost-effective research methodology for terraced fields. In this paper, a novel method using bidirectional DEM shaded relief is proposed for terraced field identification based on high resolution DEM, taking Zhifanggou watershed, Shannxi province as the study area. Firstly, 1m DEM is obtained by low altitude aerial photogrammetry using Unmanned Aerial Vehicle (UAV), and 0.1m DOM is also obtained as the test data. Then, the positive and negative terrain segmentation is done to acquire the area of terraced field. Finally, a bidirectional DEM shaded relief is simulated to extract the ridges of each terraced field stages. The method in this paper can get not only polygon feature of the terraced field areas but also line feature of terraced field ridges. The accuracy is 89.7% compared with the artificial interpretation result from DOM. And additional experiment shows that this method has a strong robustness as well as high accuracy.

  20. Metallic magnetic calorimeters for high resolution X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, M.; Hengstler, D.; Geist, J.; Schoetz, C.; Hassel, K.; Hendricks, S.; Keller, M.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C. [Heidelberg Univ. (Germany). KIP

    2015-07-01

    We develop microfabricated, energy dispersive particle detector arrays based on metallic magnetic calorimeters (MMCs) for high resolution X-ray spectroscopy to challenge bound-state QED calculations. Our MMCs are operated at about T=30 mK and use a paramagnetic temperature sensor, read-out by a SQUID, to measure the energy deposited by single X-ray photons. We discuss the physics of MMCs, the detector performance and the cryogenic setups for two different detector arrays. We present their microfabrication layouts with focus on challenges like the heatsinking of each pixel of the detector and the overhanging absorbers. The maXs-20 detector is a linear 1x8-pixel array with excellent linearity in its designated energy range up to 20 keV and unsurpassed energy resolution of 1.6 eV for 6 keV x-rays. MaXs-20 operated in a highly portable pulse tube cooled ADR setup has already been used at the EBIT facilities of the MPI-K for new reference measurements of V-like and Ti-like tungsten. The maXs-30 detector currently in development is a 8x8-pixel 2d-array with an active detection area of 16 mm{sup 2} and is designed to detect X-rays up to 50 keV with a designated energy resolution below 5 eV. MaXs-30 will be operated in a cryogen free 3He/4He-dilution refrigerator at the tip of a 40 cm long cold finger at T=20 mK.

  1. High resolution detection and excitation of resonant magnetic perturbations in a wall-stabilized tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, David A. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Shiraki, Daisuke; Levesque, Jeffrey P.; Bialek, James; Angelini, Sarah; Byrne, Patrick; DeBono, Bryan; Hughes, Paul; Mauel, Michael E.; Navratil, Gerald A.; Peng Qian; Rhodes, Dov; Rath, Nickolaus; Stoafer, Christopher [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2012-05-15

    We report high-resolution detection of the 3D plasma magnetic response of wall-stabilized tokamak discharges in the High Beta Tokamak-Extended Pulse [T. H. Ivers et al., Phys. Plasmas 3, 1926 (1996)] device. A new adjustable conducting wall has been installed on HBT-EP made up of 20 independent, movable, wall segments instrumented with three distinct sets of 40 modular coils that can be independently driven to generate a wide variety of magnetic perturbations. High-resolution detection of the plasma response is made with 216 poloidal and radial magnetic sensors that have been located and calibrated with high-accuracy. Static and dynamic plasma responses to resonant and non-resonant magnetic perturbations are observed through measurement of the step-response following a rapid change in the toroidal phase of the applied perturbations. Biorthogonal decomposition of the full set of magnetic sensors clearly defines the structures of naturally occurring external kinks as being composed of independent m/n = 3/1 and 6/2 modes. Resonant magnetic perturbations were applied to discharges with pre-existing, saturated m/n = 3/1 external kink mode activity. This m/n = 3/1 kink mode was observed to lock to the applied perturbation field. During this kink mode locked period, the plasma resonant response is characterized by a linear, a saturated, and a disruptive plasma regime dependent on the magnitude of the applied field and value of the edge safety factor and plasma rotation.

  2. Magnetic lens apparatus for a low-voltage high-resolution electron microscope

    Science.gov (United States)

    Crewe, Albert V.

    1996-01-01

    A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.

  3. High-resolution field shaping utilizing a masked multileaf collimator.

    Science.gov (United States)

    Williams, P C; Cooper, P

    2000-08-01

    Multileaf collimators (MLCs) have become an important tool in the modern radiotherapy department. However, the current limit of resolution (1 cm at isocentre) can be too coarse for acceptable shielding of all fields. A number of mini- and micro-MLCs have been developed, with thinner leaves to achieve approved resolution. Currently however, such devices are limited to modest field sizes and stereotactic applications. This paper proposes a new method of high-resolution beam collimation by use of a tertiary grid collimator situated below the conventional MLC. The width of each slit in the grid is a submultiple of the MLC width. A composite shaped field is thus built up from a series of subfields, with the main MLC defining the length of each strip within each subfield. Presented here are initial findings using a prototype device. The beam uniformity achievable with such a device was examined by measuring transmission profiles through the grid using a diode. Profiles thus measured were then copied and superposed to generate composite beams, from which the uniformity achievable could be assessed. With the average dose across the profile normalized to 100%, hot spots up to 5.0% and troughs of 3% were identified for a composite beam of 2 x 5.0 mm grids, as measured at Dmax for a 6 MV beam. For a beam composed from 4 x 2.5 mm grids, the maximum across the profile was 3.0% above the average, and the minimum 2.5% below. Actual composite profiles were also formed using the integrating properties of film, with the subfield indexing performed using an engineering positioning stage. The beam uniformity for these fields compared well with that achieved in theory using the diode measurements. Finally sine wave patterns were generated to demonstrate the potential improvements in field shaping and conformity using this device as opposed to the conventional MLC alone. The scalloping effect on the field edge commonly seen on MLC fields was appreciably reduced by use of 2 x 5.0 mm

  4. First high-resolution near-seafloor survey of magnetic anomalies of the South China Sea

    Science.gov (United States)

    Lin, J.; Xu, X.; Li, C.; Sun, Z.; Zhu, J.; Zhou, Z.; Qiu, N.

    2013-12-01

    We successfully conducted the first high-resolution near-seafloor magnetic survey of the Central, Southwest, and Northern Central Basins of the South China Sea (SCS) during two cruises on board Chinese R/V HaiYangLiuHao in October-November 2012 and March-April 2013, respectively. Measurements of magnetic field were made along four long survey lines, including (1) a NW-SE across-isochron profile transecting the Southwest Basin and covering all ages of the oceanic crust (Line CD); (2) a N-S across-isochron profile transecting the Central Basin (Line AB); and (3) two sub-parallel NE-SW across-isochron profiles transecting the Northern Central Basin of the SCS (Lines D and E). A three-axis magnetometer was mounted on a deep-tow vehicle, flying within 0.6 km above the seafloor. The position of the tow vehicle was provided by an ultra-short baseline navigation system along Lines D and E, while was estimated using shipboard GPS along Lines AB and CD. To investigate crustal magnetization, we first removed the International Geomagnetic Reference Field (IGRF) of 2010 from the measured magnetic data, and then downward continued the resultant magnetic field data to a horizontal plane at a water depth of 4.5 km to correct for variation due to the fishing depth of the deep-tow vehicle. Finally, we calculated magnetic anomalies at various water depths after reduction-to-the-pole corrections. We also constructed polarity reversal block (PRB) models of crustal magnetization by matching peaks and troughs of the observed magnetic field anomaly. Our analysis yielded the following results: (1) The near-bottom magnetic anomaly showed peak-to-trough amplitudes of more than 2,500 nT, which are several times of the anomaly amplitudes at the sea surface, illustrating that deep-tow measurements acquired much higher spatial resolutions. (2) The deep-tow data revealed several distinctive magnetic anomalies with wavelengths of 5-15 km and amplitudes of several hundred nT. These short

  5. High resolution in-operando microimaging of solar cells with pulsed electrically-detected magnetic resonance

    Science.gov (United States)

    Katz, Itai; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon

    2015-02-01

    The in-operando detection and high resolution spatial imaging of paramagnetic defects, impurities, and states becomes increasingly important for understanding loss mechanisms in solid-state electronic devices. Electron spin resonance (ESR), commonly employed for observing these species, cannot meet this challenge since it suffers from limited sensitivity and spatial resolution. An alternative and much more sensitive method, called electrically-detected magnetic resonance (EDMR), detects the species through their magnetic fingerprint, which can be traced in the device's electrical current. However, until now it could not obtain high resolution images in operating electronic devices. In this work, the first spatially-resolved electrically-detected magnetic resonance images (EDMRI) of paramagnetic states in an operating real-world electronic device are provided. The presented method is based on a novel microwave pulse sequence allowing for the coherent electrical detection of spin echoes in combination with powerful pulsed magnetic-field gradients. The applicability of the method is demonstrated on a device-grade 1-μm-thick amorphous silicon (a-Si:H) solar cell and an identical device that was degraded locally by an electron beam. The degraded areas with increased concentrations of paramagnetic defects lead to a local increase in recombination that is mapped by EDMRI with ∼20-μm-scale pixel resolution. The novel approach presented here can be widely used in the nondestructive in-operando three-dimensional characterization of solid-state electronic devices with a resolution potential of less than 100 nm.

  6. High resolution imaging of tunnels by magnetic resonance neurography

    Energy Technology Data Exchange (ETDEWEB)

    Subhawong, Ty K.; Thawait, Shrey K.; Machado, Antonio J.; Carrino, John A.; Chhabra, Avneesh [Johns Hopkins Hospital, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Wang, Kenneth C. [Baltimore VA Medical Center, Department of Radiology, Baltimore, MD (United States); Williams, Eric H. [Dellon Institute for Peripheral Nerve Surgery, Towson, MD (United States); Hashemi, Shahreyar Shar [Johns Hopkins Hospital, Division of Plastic and Reconstructive Surgery, Baltimore, MD (United States)

    2012-01-15

    Peripheral nerves often traverse confined fibro-osseous and fibro-muscular tunnels in the extremities, where they are particularly vulnerable to entrapment and compressive neuropathy. This gives rise to various tunnel syndromes, characterized by distinct patterns of muscular weakness and sensory deficits. This article focuses on several upper and lower extremity tunnels, in which direct visualization of the normal and abnormal nerve in question is possible with high resolution 3T MR neurography (MRN). MRN can also serve as a useful adjunct to clinical and electrophysiologic exams by discriminating adhesive lesions (perineural scar) from compressive lesions (such as tumor, ganglion, hypertrophic callous, or anomalous muscles) responsible for symptoms, thereby guiding appropriate treatment. (orig.)

  7. High resolution imaging of tunnels by magnetic resonance neurography

    International Nuclear Information System (INIS)

    Subhawong, Ty K.; Thawait, Shrey K.; Machado, Antonio J.; Carrino, John A.; Chhabra, Avneesh; Wang, Kenneth C.; Williams, Eric H.; Hashemi, Shahreyar Shar

    2012-01-01

    Peripheral nerves often traverse confined fibro-osseous and fibro-muscular tunnels in the extremities, where they are particularly vulnerable to entrapment and compressive neuropathy. This gives rise to various tunnel syndromes, characterized by distinct patterns of muscular weakness and sensory deficits. This article focuses on several upper and lower extremity tunnels, in which direct visualization of the normal and abnormal nerve in question is possible with high resolution 3T MR neurography (MRN). MRN can also serve as a useful adjunct to clinical and electrophysiologic exams by discriminating adhesive lesions (perineural scar) from compressive lesions (such as tumor, ganglion, hypertrophic callous, or anomalous muscles) responsible for symptoms, thereby guiding appropriate treatment. (orig.)

  8. High resolution geomagnetic field observations at Terra Nova bay, Antarctica

    Directory of Open Access Journals (Sweden)

    P. Palangio

    1996-06-01

    Full Text Available he preliminary results obtained from the analysis in the micropulsation frequency range of high time resolution magnetic field data recorded at the Antarctic Italian geomagnetic observatory at Terra Nova Bay for 11 consecutive days in February 1994 are reported. The spectral index over the whole Pcl-Pc5 frequency range is of the order of 3.5 and its value significantly increases beyond about 50 mHz. Spectral peaks in the Pc3 frequency range are common, especially during the daytime hours, and are probably due to the direct penetration of upstream waves in the cusp region. From the local time distribution of the micro pulsation power, a signifi - cant activity enhancement around the local magnetic noon emerges, in agreement with previous observations. The analysis of the signal polarisation characteristics in the horizontal plane shows a predominant CW polarisation in the Pcl-Pc3 frequency ranges with the major axis of the polarisation ellipse in the first quadrant.

  9. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    OpenAIRE

    Jacob Sharvit; Nizan Salomonski; Roger Alimi; Hovav Zafrir; Tsuriel Ram Cohen; Boris Ginzburg; Eyal Weiss

    2007-01-01

    The purpose of this paper is to present a system developed for detection andaccurate mapping of ferro-metallic objects buried below the seabed in shallow waters. Thesystem comprises a precise magnetic gradiometer and navigation subsystem, both installedon a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition wepresent the results of a marine survey of a near-shore area in the vicinity of Atlit, a townsituated on the Mediterranean coast of Israel, about 15 km south of ...

  10. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    OpenAIRE

    Weiss, Eyal; Ginzburg, Boris; Cohen, Tsuriel Ram; Zafrir, Hovav; Alimi, Roger; Salomonski, Nizan; Sharvit, Jacob

    2007-01-01

    The purpose of this paper is to present a system developed for detection and accurate mapping of ferro-metallic objects buried below the seabed in shallow waters. The system comprises a precise magnetic gradiometer and navigation subsystem, both installed on a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition we present the results of a marine survey of a near-shore area in the vicinity of Atlit, a town situated on the Mediterranean coast of Israel, about 15 km sout...

  11. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    Science.gov (United States)

    Ginzburg, Boris; Cohen, Tsuriel Ram; Zafrir, Hovav; Alimi, Roger; Salomonski, Nizan; Sharvit, Jacob

    2007-01-01

    The purpose of this paper is to present a system developed for detection and accurate mapping of ferro-metallic objects buried below the seabed in shallow waters. The system comprises a precise magnetic gradiometer and navigation subsystem, both installed on a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition we present the results of a marine survey of a near-shore area in the vicinity of Atlit, a town situated on the Mediterranean coast of Israel, about 15 km south of Haifa. The primary purpose of the survey was to search for a Harvard airplane that crashed into the sea in 1960. A magnetic map of the survey area (3.5 km2 on a 0.5 m grid) was created revealing the anomalies at sub-meter accuracy. For each investigated target location a corresponding ferro-metallic item was dug out, one of which turned to be very similar to a part of the crashed airplane. The accuracy of location was confirmed by matching the position of the actual dug artifacts with the magnetic map within a range of ± 1 m, in a water depth of 9 m. PMID:28903191

  12. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    Directory of Open Access Journals (Sweden)

    Jacob Sharvit

    2007-09-01

    Full Text Available The purpose of this paper is to present a system developed for detection andaccurate mapping of ferro-metallic objects buried below the seabed in shallow waters. Thesystem comprises a precise magnetic gradiometer and navigation subsystem, both installedon a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition wepresent the results of a marine survey of a near-shore area in the vicinity of Atlit, a townsituated on the Mediterranean coast of Israel, about 15 km south of Haifa. The primarypurpose of the survey was to search for a Harvard airplane that crashed into the sea in 1960.A magnetic map of the survey area (3.5 km2 on a 0.5 m grid was created revealing theanomalies at sub-meter accuracy. For each investigated target location a correspondingferro-metallic item was dug out, one of which turned to be very similar to a part of thecrashed airplane. The accuracy of location was confirmed by matching the position of theactual dug artifacts with the magnetic map within a range of ± 1 m, in a water depth of 9 m.

  13. Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models

    Science.gov (United States)

    Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.

    2014-05-01

    Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.

  14. Project for a high resolution magnetic spectrometer for heavy ions

    International Nuclear Information System (INIS)

    Birien, P.; Valero, S.

    1981-05-01

    The energy loss spectrometer presented in this report has an energy resolution of 2x10 -4 with the full solid angle of 5 msr. The maximum magnetic rigidity of the particles analysed is 2.88 Tesla-meters on the optical axis and the total acceptance in energy is 14%. Experiments with reaction angles near 0 0 are possible. Kinematic compensation is adapted to heavy ion physics. In this report, we have paid special attention to the simplicity of the construction and of the use of this spectrometer by experimentalists. This report is addressed both to non-specialists and to future users as well [fr

  15. Accelerated high-resolution 3D magnetic resonance spectroscopic imaging in the brain At 7 T

    International Nuclear Information System (INIS)

    Hangel, G.

    2015-01-01

    With the announcement of the first series of magnetic resonance (MR) scanners with a field strength of 7 Tesla (T) intended for clinical practice, the development of high-performance sequences for higher field strengths has gained importance. Magnetic resonance spectroscopic imaging (MRSI) in the brain currently offers the unique ability to spatially resolve the distribution of multiple metabolites simultaneously. Its big diagnostic potential could be applied to many clinical protocols, for example the assessment of tumour treatment or progress of Multiple Sclerosis. Moving to ultra-high fields like 7 T has the main benefits of increased signal-to-noise ratio (SNR) and improved spectral quality, but brings its own challenges due to stronger field inhomogeneities. Necessary for a robust, flexible and useful MRSI sequence in the brain are high resolutions, shortened measurement times, the possibility for 3D-MRSI and the suppression of spectral contamination by trans-cranial lipids. This thesis addresses these limitations and proposes Hadamard spectroscopic imaging (HSI) as solution for multi-slice MRSI, the application of generalized autocalibrating partially parallel acquisition (GRAPPA) and spiral trajectories for measurement acceleration, non-selective inversion recovery (IR) lipid-suppression as well as combinations of these methods. Further, the optimisation of water suppression for 7 T systems and the acquisition of ultra-high resolution (UHR)-MRSI are discussed. In order to demonstrate the clinical feasibility of these approaches, MRSI measurement results of a glioma patient are presented. The discussion of the obtained results in the context of the state-of-art in 7 T MRSI in the brain, possible future applications as well as potential further improvements of the MRSI sequences conclude this thesis. (author) [de

  16. An extended magnetic quadrupole lens for a high-resolution nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Breese, M.B.H. E-mail: m.breese@surrey.ac.uk; Grime, G.W.; Linford, W.; Harold, M

    1999-09-02

    This paper describes the design requirements and initial performance of a new style of magnetic quadrupole lens for use in a high-resolution nuclear microprobe, which is presently being constructed in Oxford. Such a microprobe necessitates the use of a small image distance from the exit face of the final quadrupole lens to the image plane in order to produce a large demagnification. This means that the final lens should be as close to the sample chamber as possible. However, with conventional magnetic quadrupoles the current-carrying coils protrude by a typical distance of 10-20 mm beyond the pole face, thereby significantly limiting the minimum image distance. The approach taken here is to recess the coils into the body of the lens, so that they are almost flush with the pole pieces and lens yoke, enabling an image distance of 55 mm. Three-dimensional magnetic field calculations within this lens structure predict that the field in the extended pole piece 'nose' region is only slightly less than that in the main lens body. Experimental field profiles, measured using a Hall probe, are used to confirm these calculations.

  17. An extended magnetic quadrupole lens for a high-resolution nuclear microprobe

    International Nuclear Information System (INIS)

    Breese, M.B.H.; Grime, G.W.; Linford, W.; Harold, M.

    1999-01-01

    This paper describes the design requirements and initial performance of a new style of magnetic quadrupole lens for use in a high-resolution nuclear microprobe, which is presently being constructed in Oxford. Such a microprobe necessitates the use of a small image distance from the exit face of the final quadrupole lens to the image plane in order to produce a large demagnification. This means that the final lens should be as close to the sample chamber as possible. However, with conventional magnetic quadrupoles the current-carrying coils protrude by a typical distance of 10-20 mm beyond the pole face, thereby significantly limiting the minimum image distance. The approach taken here is to recess the coils into the body of the lens, so that they are almost flush with the pole pieces and lens yoke, enabling an image distance of 55 mm. Three-dimensional magnetic field calculations within this lens structure predict that the field in the extended pole piece 'nose' region is only slightly less than that in the main lens body. Experimental field profiles, measured using a Hall probe, are used to confirm these calculations

  18. Robust high-resolution quantification of time signals encoded by in vivo magnetic resonance spectroscopy

    Science.gov (United States)

    Belkić, Dževad; Belkić, Karen

    2018-01-01

    This paper on molecular imaging emphasizes improving specificity of magnetic resonance spectroscopy (MRS) for early cancer diagnostics by high-resolution data analysis. Sensitivity of magnetic resonance imaging (MRI) is excellent, but specificity is insufficient. Specificity is improved with MRS by going beyond morphology to assess the biochemical content of tissue. This is contingent upon accurate data quantification of diagnostically relevant biomolecules. Quantification is spectral analysis which reconstructs chemical shifts, amplitudes and relaxation times of metabolites. Chemical shifts inform on electronic shielding of resonating nuclei bound to different molecular compounds. Oscillation amplitudes in time signals retrieve the abundance of MR sensitive nuclei whose number is proportional to metabolite concentrations. Transverse relaxation times, the reciprocal of decay probabilities of resonances, arise from spin-spin coupling and reflect local field inhomogeneities. In MRS single voxels are used. For volumetric coverage, multi-voxels are employed within a hybrid of MRS and MRI called magnetic resonance spectroscopic imaging (MRSI). Common to MRS and MRSI is encoding of time signals and subsequent spectral analysis. Encoded data do not provide direct clinical information. Spectral analysis of time signals can yield the quantitative information, of which metabolite concentrations are the most clinically important. This information is equivocal with standard data analysis through the non-parametric, low-resolution fast Fourier transform and post-processing via fitting. By applying the fast Padé transform (FPT) with high-resolution, noise suppression and exact quantification via quantum mechanical signal processing, advances are made, presented herein, focusing on four areas of critical public health importance: brain, prostate, breast and ovarian cancers.

  19. A high-resolution full-field range imaging system

    Science.gov (United States)

    Carnegie, D. A.; Cree, M. J.; Dorrington, A. A.

    2005-08-01

    There exist a number of applications where the range to all objects in a field of view needs to be obtained. Specific examples include obstacle avoidance for autonomous mobile robots, process automation in assembly factories, surface profiling for shape analysis, and surveying. Ranging systems can be typically characterized as being either laser scanning systems where a laser point is sequentially scanned over a scene or a full-field acquisition where the range to every point in the image is simultaneously obtained. The former offers advantages in terms of range resolution, while the latter tend to be faster and involve no moving parts. We present a system for determining the range to any object within a camera's field of view, at the speed of a full-field system and the range resolution of some point laser scans. Initial results obtained have a centimeter range resolution for a 10 second acquisition time. Modifications to the existing system are discussed that should provide faster results with submillimeter resolution.

  20. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, Stephen; Stahl, Claudia; Weigand, Markus; Schuetz, Gisela [Max-Planck-Institut fuer Intelligente Systeme, Stuttgart (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University (Germany)

    2015-07-01

    The penetration of magnetic flux into the high-temperature superconductor YBCO has been observed using a new high-resolution technique based on X-ray magnetic circular dichroism (XMCD). Superconductors coated with thin soft magnetic layers of CoFeB are observed in a scanning x-ray microscope providing cooling of the sample down to 83 K under the influence of external magnetic fields. Resulting electrical currents create an inhomogeneous magnetic field distribution above the superconductor which leads to a local reorientation of the ferromagnetic layer. X-ray absorption measurements with circular polarized radiation allows the analysis of the magnetic flux distribution in the superconductor via the ferromagnetic layer. In this work we present first images taken at 83K with high spatial resolution in the nanoscale.

  1. High-field, high-resolution, susceptibility-weighted magnetic resonance imaging: improved image quality by addition of contrast agent and higher field strength in patients with brain tumors

    International Nuclear Information System (INIS)

    Pinker, K.; Noebauer-Huhmann, I.M.; Szomolanyi, P.; Weber, M.; Grabner, G.; Trattnig, S.; Stavrou, I.; Knosp, E.; Hoeftberger, R.; Stadlbauer, A.

    2008-01-01

    To demonstrate intratumoral susceptibility effects in malignant brain tumors and to assess visualization of susceptibility effects before and after administration of the paramagnetic contrast agent MultiHance (gadobenate dimeglumine; Bracco Imaging), an agent known to have high relaxivity, with respect to susceptibility effects, image quality, and reduction of scan time. Included in the study were 19 patients with malignant brain tumors who underwent high-resolution, susceptibility-weighted (SW) MR imaging at 3 T before and after administration of contrast agent. In all patients, Multihance was administered intravenously as a bolus (0.1 mmol/kg body weight). MR images were individually evaluated by two radiologists with previous experience in the evaluation of pre- and postcontrast 3-T SW MR images with respect to susceptibility effects, image quality, and reduction of scan time. In the 19 patients 21 tumors were diagnosed, of which 18 demonstrated intralesional susceptibility effects both in pre- and postcontrast SW images, and 19 demonstrated contrast enhancement in both SW images and T1-weighted spin-echo MR images. Conspicuity of susceptibility effects and image quality were improved in postcontrast images compared with precontrast images and the scan time was also reduced due to decreased TE values from 9 min (precontrast) to 7 min (postcontrast). The intravenous administration of MultiHance, an agent with high relaxivity, allowed a reduction of scan time from 9 min to 7 min while preserving excellent susceptibility effects and image quality in SW images obtained at 3 T. Contrast enhancement and intralesional susceptibility effects can be assessed in one sequence. (orig.)

  2. Longitudinal assessment of mouse renal injury using high-resolution anatomic and magnetization transfer MR imaging.

    Science.gov (United States)

    Wang, Feng; Jiang, Rosie; Takahashi, Keiko; Gore, John; Harris, Raymond C; Takahashi, Takamune; Quarles, C Chad

    2014-11-01

    The purpose of this study is to evaluate the utility of high-resolution non-invasive endogenous high-field MRI methods for the longitudinal structural and quantitative assessments of mouse kidney disease using the model of unilateral ureter obstruction (UUO). T1-weighted, T2-weighted and magnetization transfer (MT) imaging protocols were optimized to improve the regional contrast in mouse kidney. Conventional T1 and T2 weighted images were collected in UUO mice on day 0 (~3h), day 1, day 3 and day 6 after injury, on a 7 T small animal MRI system. Cortical and medullary thickness, corticomedullary contrast and Magnetization Transfer Ratio (MTR) were assessed longitudinally. Masson trichrome staining was used to histologically assess changes in tissue microstructure. Over the course of UUO progression there were significant (prenal cortical and medullary atrophy, cortical-medullary differentiation and MTR changes provide an endogenous, non-invasive and quantitative evaluation of renal morphology and tissue composition during UUO progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. High-resolution mechanical imaging of glioblastoma by multifrequency magnetic resonance elastography.

    Directory of Open Access Journals (Sweden)

    Kaspar-Josche Streitberger

    Full Text Available OBJECTIVE: To generate high-resolution maps of the viscoelastic properties of human brain parenchyma for presurgical quantitative assessment in glioblastoma (GB. METHODS: Twenty-two GB patients underwent routine presurgical work-up supplemented by additional multifrequency magnetic resonance elastography. Two three-dimensional viscoelastic parameter maps, magnitude |G*|, and phase angle φ of the complex shear modulus were reconstructed by inversion of full wave field data in 2-mm isotropic resolution at seven harmonic drive frequencies ranging from 30 to 60 Hz. RESULTS: Mechanical brain maps confirmed that GB are composed of stiff and soft compartments, resulting in high intratumor heterogeneity. GB could be easily differentiated from healthy reference tissue by their reduced viscous behavior quantified by φ (0.37±0.08 vs. 0.58±0.07. |G*|, which in solids more relates to the material's stiffness, was significantly reduced in GB with a mean value of 1.32±0.26 kPa compared to 1.54±0.27 kPa in healthy tissue (P = 0.001. However, some GB (5 of 22 showed increased stiffness. CONCLUSION: GB are generally less viscous and softer than healthy brain parenchyma. Unrelated to the morphology-based contrast of standard magnetic resonance imaging, elastography provides an entirely new neuroradiological marker and contrast related to the biomechanical properties of tumors.

  4. A flexible coil array for high resolution magnetic resonance imaging at 7 Tesla

    International Nuclear Information System (INIS)

    Kriegl, R.

    2015-01-01

    Magnetic resonance imaging (MRI), among other imaging techniques, has become a major backbone of modern medical diagnostics. MRI enables the non-invasive combined, identification of anatomical structures, functional and chemical properties, especially in soft tissues. Nonetheless, applications requiring very high spatial and/or temporal resolution are often limited by the available signal-to-noise ratio (SNR) in MR experiments. Since first clinical applications, image quality in MRI has been constantly improved by applying one or several of the following strategies: increasing the static magnetic field strength, improvement of the radiofrequency (RF) detection system, development of specialized acquisition sequences and optimization of image reconstruction techniques. This work is concerned with the development of highly sensitive RF detection systems for biomedical ultra-high field MRI. In particular, auto-resonant RF coils based on transmission line technology are investigated. These resonators may be fabricated on flexible substrate which enables form-fitting of the RF detector to the target anatomy, leading to a significant SNR gain. The main objective of this work is the development of a flexible RF coil array for high-resolution MRI on a human whole-body 7 T MR scanner. With coil arrays, the intrinsically high SNR of small surface coils may be exploited for an extended field of view. Further, parallel imaging techniques are accessible with RF array technology, allowing acceleration of the image acquisition. Secondly, in this PhD project a novel design for transmission line resonators is developed, that brings an additional degree of freedom in geometric design and enables the fabrication of large multi-turn resonators for high field MR applications. This thesis describes the development, successful implementation and evaluation of novel, mechanically flexible RF devices by analytical and 3D electromagnetic simulations, in bench measurements and in MRI

  5. High-resolution magnetic resonance imaging of diurnal variations in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Nicholas, R.S.

    2000-09-01

    This thesis describes work that uses high-resolution magnetic resonance imaging (MRI) to give an insight into the aetiology of rheumatoid arthritis (RA) with particular reference to characterising diurnal changes in joint stiffness in the metacarpophalangeal (MCP) joints. The study was performed on a targeted 1.1 T MRI scanner using specialised sequences, including 3-dimensional gradient-echo, magnetisation transfer (MT) and multiple gradient-echo. These enabled tissue-dependent parameters such as MT ratio, effective transverse relaxation time (T 2 *) and proton density (ρ) to be made. Preliminary reproducibility studies of the MRI measurements showed that MT ratio could be measured in vivo to an accuracy of better than 8%. This variation is due to repositioning errors and physiological changes. Equivalent variations in T 2 * and p were 23% and 16% respectively; these poorer figures were contributed to errors in fitting the data to an exponential curve. An MRI study monitoring the diurnal variation of stiffness in RA demonstrated better characterisation of the disease state using MT and T 2 * maps compared to standard gradient-echo imaging. Features associated with arthritis such as bone erosions and cysts were found in the control group and an MT age dependence was measured in the soft tissue on the superior margin of the joint. This region also exhibited a diurnal variation in MT ratio for the patient group. The interaction between this region of tissue and other structures (e.g. the sheath of extensor tendon) within the joint could be a possible cause of joint stiffness. An incidental finding of this study was that Ritchie joint score also showed a diurnal variation. This study has demonstrated that MRI can be used to make reproducible measurements of the diurnal variations in RA. The indication is that the soft tissues in the superior aspect of the joint may be responsible for the symptom of joint stiffness in the MCP joints and future studies should be

  6. Quantifying uncertainty in Transcranial Magnetic Stimulation - A high resolution simulation study in ICBM space.

    Science.gov (United States)

    Toschi, Nicola; Keck, Martin E; Welt, Tobias; Guerrisi, Maria

    2012-01-01

    Transcranial Magnetic Stimulation offers enormous potential for noninvasive brain stimulation. While it is known that brain tissue significantly "reshapes" induced field and charge distributions, most modeling investigations to-date have focused on single-subject data with limited generality. Further, the effects of the significant uncertainties which exist in the simulation (i.e. brain conductivity distributions) and stimulation (e.g. coil positioning and orientations) setup have not been quantified. In this study, we construct a high-resolution anisotropic head model in standard ICBM space, which can be used as a population-representative standard for bioelectromagnetic simulations. Further, we employ Monte-Carlo simulations in order to quantify how uncertainties in conductivity values propagate all the way to induced field and currents, demonstrating significant, regionally dependent dispersions in values which are commonly assumed "ground truth". This framework can be leveraged in order to quantify the effect of any type of uncertainty in noninvasive brain stimulation and bears relevance in all applications of TMS, both investigative and therapeutic.

  7. Simulation of high-resolution MFM tip using exchange-spring magnet

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H. [Faculty of Resource Science and Engineering, Akita University, Akita 010-8502 (Japan)]. E-mail: hsaito@ipc.akita-u.ac.jp; Yatsuyanagi, D. [Faculty of Resource Science and Engineering, Akita University, Akita 010-8502 (Japan); Ishio, S. [Faculty of Resource Science and Engineering, Akita University, Akita 010-8502 (Japan); Ito, A. [Nitto Optical Co. Ltd., Misato, Akita 019-1403 (Japan); Kawamura, H. [Nitto Optical Co. Ltd., Misato, Akita 019-1403 (Japan); Ise, K. [Research Institute of Advanced Technology Akita, Akita 010-1623 (Japan); Taguchi, K. [Research Institute of Advanced Technology Akita, Akita 010-1623 (Japan); Takahashi, S. [Research Institute of Advanced Technology Akita, Akita 010-1623 (Japan)

    2007-03-15

    The transfer function of magnetic force microscope (MFM) tips using an exchange-spring trilayer composed of a centered soft magnetic layer and two hard magnetic layers was calculated and the resolution was estimated by considering the thermodynamic noise limit of an MFM cantilever. It was found that reducing the thickness of the centered soft magnetic layer and the magnetization of hard magnetic layer are important to obtain high resolution. Tips using an exchange-spring trilayer with a very thin FeCo layer and isotropic hard magnetic layers, such as CoPt and FePt, are found to be suitable for obtaining a resolution less than 10 nm at room temperature.

  8. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    Science.gov (United States)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  9. Development of a metallic magnetic calorimeter for high resolution spectroscopy; Entwicklung eines metallischen magnetischen Kalorimeters fuer die hochaufloesende Roentgenspektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Linck, M.

    2007-05-02

    In this thesis the development of a metallic magnetic calorimeter for high resolution detection of single x-ray quanta is described. The detector consists of an X-ray absorber and a paramagnetic temperature sensor. The raise in temperature of the paramagnetic sensor due to the absorption of a single X-ray is measured by the change in magnetization of the sensor using a low-noise SQUID magnetometer. The thermodynamic properties of the detector can be described by a theoretical model based on a mean field approximation. This allows for an optimization of the detector design with respect to signal size. The maximal archivable energy resolution is limited by thermodynamic energy fluctuations between absorber, heat bath and thermometer. An interesting field of application for a metallic magnetic calorimeter is X-ray astronomy and the investigation of X-ray emitting objects. Through high-resolution X-ray spectroscopy it is possible to obtain information about physical processes of even far distant objects. The magnetic calorimeter that was developed in this thesis has a metallic absorber with a quantum efficiency of 98% at 6 keV. The energy resolution of the magnetic calorimeter is EFWHM=2.7 eV at 5.9 keV. The deviation of the detector response from a linear behavior of the detector is only 0.8% at 5.9 keV. (orig.)

  10. High-resolution ex vivo magnetic resonance angiography: a feasibility study on biological and medical tissues

    Directory of Open Access Journals (Sweden)

    Boel Lene WT

    2010-03-01

    Full Text Available Abstract Background In biomedical sciences, ex vivo angiography is a practical mean to elucidate vascular structures three-dimensionally with simultaneous estimation of intravascular volume. The objectives of this study were to develop a magnetic resonance (MR method for ex vivo angiography and to compare the findings with computed tomography (CT. To demonstrate the usefulness of this method, examples are provided from four different tissues and species: the human placenta, a rice field eel, a porcine heart and a turtle. Results The optimal solution for ex vivo MR angiography (MRA was a compound containing gelatine (0.05 g/mL, the CT contrast agent barium sulphate (0.43 mol/L and the MR contrast agent gadoteric acid (2.5 mmol/L. It was possible to perform angiography on all specimens. We found that ex vivo MRA could only be performed on fresh tissue because formalin fixation makes the blood vessels permeable to the MR contrast agent. Conclusions Ex vivo MRA provides high-resolution images of fresh tissue and delineates fine structures that we were unable to visualise by CT. We found that MRA provided detailed information similar to or better than conventional CTA in its ability to visualize vessel configuration while avoiding interfering signals from adjacent bones. Interestingly, we found that vascular tissue becomes leaky when formalin-fixed, leading to increased permeability and extravascular leakage of MR contrast agent.

  11. Los Alamos Meson Physics Facility high-resolution-spectrometer dipole magnets: a summary report

    International Nuclear Information System (INIS)

    Kozlowski, T.; Madland, D.G.; Rolfe, R.; Smith, W.E.; Spencer, J.E.; Tanaka, N.; Thiessen, H.A.; Varghese, P.; Wilkerson, L.C.

    1982-12-01

    This report explains the design, fabrication, measurement, optimization, and installation of two 122 metric ton electromagnets for the High Resolution Proton Spectrometer at the Los Alamos Meson Physics Facility. These two magnets are the principal components of the proton spectrometer, which has an energy resolution of less than or equal to 10 - 4 FWHM. Many technical problems occurred during fabrication, measurement, and optimization, and the majority have been successfully solved. We hope that this report will help others planning similar projects

  12. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.

    OpenAIRE

    Quodbach, J.; Moussavi, A.; Tammer, R.; Frahm, J.; Kleinebudde, P.

    2014-01-01

    The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 x 80 m with a section thickness of only 600 m were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the i...

  13. High resolution magnetic force microscopy using focussed ion beam modified tips

    NARCIS (Netherlands)

    Phillips, G.N.; Siekman, Martin Herman; Abelmann, Leon; Lodder, J.C.

    2002-01-01

    Summary form only given. Magnetic force microscopy (MFM) is well established for imaging surface magnetic stray fields. With commercial microscopes and magnetic tips, images with 50 nm resolution are quite routine; however, obtaining higher resolutions is experimentally more demanding. Higher

  14. Recent developments in high-resolution global altimetric gravity field modeling

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Berry, P. A .M.

    2010-01-01

    older gravity fields show accuracy improvement of the order of 20-40% due to a combination of retracking, enhanced processing, and the use of the new EGM2008 geoid model. In coastal and polar regions, accuracy improved in many places by 40-50% (or more) compared with older global marine gravity fields.......In recent years, dedicated effort has been made to improve high-resolution global marine gravity fields. One new global field is the Danish National Space Center (DNSC) 1-minute grid called DNSC08GRA, released in 2008. DNSC08GRA was derived from double-retracked satellite altimetry, mainly from...... the ERS-1 geodetic mission data, augmented with new retracked GEOSAT data which have significantly enhanced the range and hence the gravity field accuracy. DNSC08GRA is the first high-resolution global gravity field to cover the entire Arctic Ocean all the way to the North Pole. Comparisons with other...

  15. High resolution imaging of dielectric surfaces with an evanescent field optical microscope

    NARCIS (Netherlands)

    van Hulst, N.F.; Segerink, Franciscus B.; Bölger, B.

    1992-01-01

    An evanescent field optical microscope (EFOM) is presented which employs frustrated total internal reflection o­n a localized scale by scanning a dielectric tip in close proximity to a sample surface. High resolution images of dielectric gratings and spheres containing both topographic and

  16. A high-resolution, 60 kyr record of the relative geomagnetic field intensity from Lake Towuti, Indonesia

    Science.gov (United States)

    Kirana, Kartika Hajar; Bijaksana, Satria; King, John; Tamuntuan, Gerald Hendrik; Russell, James; Ngkoimani, La Ode; Dahrin, Darharta; Fajar, Silvia Jannatul

    2018-02-01

    Past changes in the Earth's magnetic field can be highlighted through reconstructions of magnetic paleointensity. Many magnetic field variation features are global, and can be used for the detailed correlation and dating of sedimentary records. On the other hand, sedimentary magnetic records also exhibit features on a regional, rather than a global scale. Therefore, the development of regional scale magnetic field reconstructions is necessary to optimize magnetic paleointensity dating. In this paper, a 60 thousand year (kyr) paleointensity record is presented, using the core TOW10-9B of Lake Towuti, located in the island of Sulawesi, Indonesia, as a part of the ongoing research towards understanding the Indonesian environmental history, and reconstructing a high-resolution regional magnetic record from dating the sediments. Located in the East Sulawesi Ophiolite Belt, the bedrock surrounding Lake Towuti consists of ultramafic rocks that render the lake sediments magnetically strong, creating challenges in the reconstruction of the paleointensity record. These sediment samples were subject to a series of magnetic measurements, followed by testing the obtained paleointensity records resulting from normalizing natural remanent magnetization (NRM) against different normalizing parameters. These paleointensity records were then compared to other regional, as well as global, records of magnetic paleointensity. The results show that for the magnetically strong Lake Towuti sediments, an anhysteretic remanent magnetization (ARM) is the best normalizer. A series of magnetic paleointensity excursions are observed during the last 60 kyr, including the Laschamp excursion at 40 kyr BP, that provide new information about the magnetic history and stratigraphy of the western tropical Pacific region. We conclude that the paleointensity record of Lake Towuti is reliable and in accordance with the high-quality regional and global trends.

  17. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR

    International Nuclear Information System (INIS)

    Takeuchi, Koh; Arthanari, Haribabu; Shimada, Ichio; Wagner, Gerhard

    2015-01-01

    Detection of 15 N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached 15 N nuclei (TROSY 15 N H ) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow 15 N transverse relaxation and compensating for the inherently low 15 N sensitivity. The 15 N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY 15 N H component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a 15 N-detected 2D 1 H– 15 N TROSY-HSQC ( 15 N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τ c  ∼ 40 ns). Unlike for 1 H detected TROSY, deuteration is not mandatory to benefit 15 N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording 15 N TROSY of proteins expressed in H 2 O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D 2 O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of 15 N H -detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz

  18. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Koh [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Arthanari, Haribabu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States); Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States)

    2015-12-15

    Detection of {sup 15}N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached {sup 15}N nuclei (TROSY {sup 15}N{sub H}) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow {sup 15}N transverse relaxation and compensating for the inherently low {sup 15}N sensitivity. The {sup 15}N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY {sup 15}N{sub H} component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a {sup 15}N-detected 2D {sup 1}H–{sup 15}N TROSY-HSQC ({sup 15}N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τ{sub c} ∼ 40 ns). Unlike for {sup 1}H detected TROSY, deuteration is not mandatory to benefit {sup 15}N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording {sup 15}N TROSY of proteins expressed in H{sub 2}O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D{sub 2}O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of {sup 15}N{sub H}-detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz.

  19. In vivo skin moisturizing measurement by high-resolution 3 Tesla magnetic resonance imaging.

    Science.gov (United States)

    Mesrar, J; Ognard, J; Garetier, M; Chechin, D; Misery, L; Ben Salem, D

    2017-08-01

    Magnetic resonance imaging (MRI) is rarely used for the exploration of skin, even if studies have validated both feasibility of skin MRI and its interest for anatomical, physiological, and biochemical study of the skin. The purpose of this study is to explore moisturizing of the different skin layers using 3-T scan. An MRI of the heel's skin was performed using a 23 mm coil diameter on a 3T scan with a FFE (Fast Field Echo) 3D T1-weighted sequence and a TSE (Turbo Spin Echo) calculation T2-weighted sequence (pixels size of respectively 60 and 70 μm). This study was conducted on 35 healthy volunteers, who were scanned before applying moisturizer topic and 1 h after applying it. Region of interest in the stratum corneum, the epidermis and the dermis were generated on the T2 mapping. The thickness of each layer was measured. The T1 sequence allowed accurate cross-examination repositioning to ensure the comparability of the measurements. Among the 35 cases, two were excluded from the analysis because of movement artifacts. Measurements before and after moisturizer topic application displayed a T2 increase of 48.94% (P < 0.0001) in the stratum corneum and of 5.45% (P < 0.0001) in the epidermis yet without significant difference in the dermis. There was no significant link between the thickness of the stratum corneum and the T2 increase. However, there was a strong correlation between the thickness of the stratum corneum and the thickness of the epidermis (P < 0.001; rhô=0.72). High-resolution MRI allows fine exploration of anatomical and physiological properties of the skin and can further be used to extend the studies of skin hydration. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics

    Science.gov (United States)

    Ji, XueBin; Zang, XiaoFei; Li, Zhou; Shi, Cheng; Chen, Lin; Cai, Bin; Zhu, YiMing

    2015-05-01

    Based on the transformation optics (TO) and the effective medium theory (EMT), a new illusion media with homogeneous and isotropic materials is proposed to realize the far-field high resolution effects. When two point sources with the separation distance of λ0 / 4 are covered with the illusion media (λ0 is the free-space wavelength), the corresponding far-field pattern is equivalent to the case of two point sources with the separation distance larger than λ0 / 2 in free space, leading to the far-field high resolution effects (in free space, the separation distance of λ0 / 4 is less than half-wavelength, and thus the two point sources cannot be distinguished from each other). Furthermore, such illusion media can be applied to design tunable high-directivity antenna and an angle-dependent floating carpet cloak. Full wave simulations are carried out to verify the performance of our device.

  1. Interpretation of high resolution airborne magnetic data (HRAMD of Ilesha and its environs, Southwest Nigeria, using Euler deconvolution method

    Directory of Open Access Journals (Sweden)

    Olurin Oluwaseun Tolutope

    2017-12-01

    Full Text Available Interpretation of high resolution aeromagnetic data of Ilesha and its environs within the basement complex of the geological setting of Southwestern Nigeria was carried out in the study. The study area is delimited by geographic latitudes 7°30′–8°00′N and longitudes 4°30′–5°00′E. This investigation was carried out using Euler deconvolution on filtered digitised total magnetic data (Sheet Number 243 to delineate geological structures within the area under consideration. The digitised airborne magnetic data acquired in 2009 were obtained from the archives of the Nigeria Geological Survey Agency (NGSA. The airborne magnetic data were filtered, processed and enhanced; the resultant data were subjected to qualitative and quantitative magnetic interpretation, geometry and depth weighting analyses across the study area using Euler deconvolution filter control file in Oasis Montag software. Total magnetic intensity distribution in the field ranged from –77.7 to 139.7 nT. Total magnetic field intensities reveal high-magnitude magnetic intensity values (high-amplitude anomaly and magnetic low intensities (low-amplitude magnetic anomaly in the area under consideration. The study area is characterised with high intensity correlated with lithological variation in the basement. The sharp contrast is enhanced due to the sharp contrast in magnetic intensity between the magnetic susceptibilities of the crystalline and sedimentary rocks. The reduced-to-equator (RTE map is characterised by high frequencies, short wavelengths, small size, weak intensity, sharp low amplitude and nearly irregular shaped anomalies, which may due to near-surface sources, such as shallow geologic units and cultural features. Euler deconvolution solution indicates a generally undulating basement, with a depth ranging from −500 to 1000 m. The Euler deconvolution results show that the basement relief is generally gentle and flat, lying within the basement terrain.

  2. High resolution neurography of the brachial plexus by 3 Tesla magnetic resonance imaging.

    Science.gov (United States)

    Cejas, C; Rollán, C; Michelin, G; Nogués, M

    2016-01-01

    The study of the structures that make up the brachial plexus has benefited particularly from the high resolution images provided by 3T magnetic resonance scanners. The brachial plexus can have mononeuropathies or polyneuropathies. The mononeuropathies include traumatic injuries and trapping, such as occurs in thoracic outlet syndrome due to cervical ribs, prominent transverse apophyses, or tumors. The polyneuropathies include inflammatory processes, in particular chronic inflammatory demyelinating polyneuropathy, Parsonage-Turner syndrome, granulomatous diseases, and radiation neuropathy. Vascular processes affecting the brachial plexus include diabetic polyneuropathy and the vasculitides. This article reviews the anatomy of the brachial plexus and describes the technique for magnetic resonance neurography and the most common pathologic conditions that can affect the brachial plexus. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  3. High-resolution photocurrent microscopy using near-field cathodoluminescence of quantum dots

    Directory of Open Access Journals (Sweden)

    Heayoung P. Yoon

    2013-06-01

    Full Text Available We report a fast, versatile photocurrent imaging technique to visualize the local photo response of solar energy devices and optoelectronics using near-field cathodoluminescence (CL from a homogeneous quantum dot layer. This approach is quantitatively compared with direct measurements of high-resolution Electron Beam Induced Current (EBIC using a thin film solar cell (n-CdS / p-CdTe. Qualitatively, the observed image contrast is similar, showing strong enhancement of the carrier collection efficiency at the p-n junction and near the grain boundaries. The spatial resolution of the new technique, termed Q-EBIC (EBIC using quantum dots, is determined by the absorption depth of photons. The results demonstrate a new method for high-resolution, sub-wavelength photocurrent imaging measurement relevant for a wide range of applications.

  4. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  5. Method for high resolution magnetic resonance analysis using magic angle technique

    Science.gov (United States)

    Wind, Robert A.; Hu, Jian Zhi

    2003-12-30

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  6. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.

    Science.gov (United States)

    Quodbach, Julian; Moussavi, Amir; Tammer, Roland; Frahm, Jens; Kleinebudde, Peter

    2014-01-01

    The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 × 80 µm with a section thickness of only 600 µm were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the impact of disintegrant concentration were examined. Crospovidone seems to be the only disintegrant acting by a shape memory effect, whereas the others mainly swell. A higher relative density of tablets containing croscarmellose sodium leads to a more even distribution of water within the tablet matrix but hardly impacts the disintegration kinetics. Increasing the polacrilin potassium disintegrant concentration leads to a quicker and more thorough disintegration process. Real-time MRI emerges as valuable tool to visualize and investigate the process of tablet disintegration.

  7. Crocus sativus Petals: Waste or Valuable Resource? The Answer of High-Resolution and High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance.

    Science.gov (United States)

    Righi, Valeria; Parenti, Francesca; Tugnoli, Vitaliano; Schenetti, Luisa; Mucci, Adele

    2015-09-30

    Intact Crocus sativus petals were studied for the first time by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, revealing the presence of kinsenoside (2) and goodyeroside A (3), together with 3-hydroxy-γ-butyrolactone (4). These findings were confirmed by HR-NMR analysis of the ethanol extract of fresh petals and showed that, even though carried out rapidly, partial hydrolysis of glucopyranosyloxybutanolides occurs during extraction. On the other hand, kaempferol 3-O-sophoroside (1), which is "NMR-silent" in intact petals, is present in extracts. These results suggest to evaluate the utilization of saffron petals for phytopharmaceutical and nutraceutical purposes to exploit a waste product of massive production of commercial saffron and point to the application of HR-MAS NMR for monitoring bioactive compounds directly on intact petals, avoiding the extraction procedure and the consequent hydrolysis reaction.

  8. Electron beam fabrication and characterization of high- resolution magnetic force microscopy tips

    NARCIS (Netherlands)

    Ruhrig, M.; Rührig, M.; Porthun, S.; Porthun, S.; Lodder, J.C.; Mc vitie, S.; Heyderman, L.J.; Johnston, A.B.; Chapman, J.N.

    1996-01-01

    The stray field, magnetic microstructure, and switching behavior of high‐resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a

  9. The investigation of Martian dune fields using very high resolution photogrammetric measurements and time series analysis

    Science.gov (United States)

    Kim, J.; Park, M.; Baik, H. S.; Choi, Y.

    2016-12-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has rarely conducted only a very few times Therefore, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution High Resolution Imaging Science Experimen (HIRISE) employing a high-accuracy photogrammetric processor and sub-pixel image correlator. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE images over a large number of Martian dune fields covering whole Mars Global Dune Database. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). Only over a few Martian dune fields, such as Kaiser crater, meaningful migration speeds (>1m/year) compared to phtotogrammetric error residual have been measured. Currently a technical improved processor to compensate error residual using time series observation is under developing and expected to produce the long term migration speed over Martian dune

  10. Geophysical Modelling and Multi-Scale Studies in the Arctic Seiland Igneous Province: Millimeter to Micrometer Scale Mapping of the Magnetic Sources by High Resolution Magnetic Microscopy

    Science.gov (United States)

    Pastore, Z.; Church, N. S.; McEnroe, S. A.; Oda, H.; ter Maat, G. W.

    2017-12-01

    Rocks samples can have wide range of magnetic properties depending on composition, amount of ferromagnetic minerals, grain sizes and microstructures. These influence the magnetic anomalies from the micro to the global scale making the study of the magnetic properties of interest for multiple applications. Later geological processes such as serpentinization can significantly influence these properties and change the nature of the magnetic anomalies. Particularly, magnetic properties such as remanent magnetization and magnetic susceptibility are directly linked to the magnetic mineralogy composition and grain size and can provide useful information about the geological history of the source. Scanning magnetic microscopy is a highly sensitive and high-resolution magnetometric technique for mapping the magnetic field over a planar surface of a rock sample. The device measures the vertical component of the field above the thin sections and the technique offers a spatial resolution down to tens of micrometers and thus can be used to investigate discrete magnetic mineral grains or magnetic textures and structures, and the magnetic history of the sample. This technique allows a direct correlation between the mineral chemistry (through both electron and optical microscopy) and the magnetic properties. We present as case-study three thin section magnetic scans of two dunite samples from the Reinfjord Ultramafic complex, in northern Norway. The selected thin sections show different magnetic properties which reflect the magnetic petrology. One of the thin sections is from a pristine dunite sample; the other two are highly serpentinized with newly formed magnetite found in multiple, few micrometer thick, veins. We present the preliminary results obtained applying a forward modelling approach on the magnetic anomaly maps acquired over the thin sections. Modelling consists of uniformly-magnetized polygonal bodies whose geometry is constrained by the thickness of the thin section

  11. High-resolution, in vivo magnetic resonance imaging of Drosophila at 18.8 Tesla.

    Directory of Open Access Journals (Sweden)

    Brian Null

    Full Text Available High resolution MRI of live Drosophila was performed at 18.8 Tesla, with a field of view less than 5 mm, and administration of manganese or gadolinium-based contrast agents. This study demonstrates the feasibility of MR methods for imaging the fruit fly Drosophila with an NMR spectrometer, at a resolution relevant for undertaking future studies of the Drosophila brain and other organs. The fruit fly has long been a principal model organism for elucidating biology and disease, but without capabilities like those of MRI. This feasibility marks progress toward the development of new in vivo research approaches in Drosophila without the requirement for light transparency or destructive assays.

  12. High resolution in-vivo imaging of skin with full field optical coherence tomography

    Science.gov (United States)

    Dalimier, E.; Bruhat, Alexis; Grieve, K.; Harms, F.; Martins, F.; Boccara, C.

    2014-03-01

    Full-field OCT (FFOCT) has the ability to provide en-face images with a very good axial sectioning as well as a very high transverse resolution (about 1 microns in all directions). Therefore it offers the possibility to visualize biological tissues with very high resolution both on the axial native view, and on vertical reconstructed sections. Here we investigated the potential dermatological applications of in-vivo skin imaging with FFOCT. A commercial FFOCT device was adapted for the in-vivo acquisition of stacks of images on the arm, hand and finger. Several subjects of different benign and pathological skin conditions were tested. The images allowed measurement of the stratum corneum and epidermis thicknesses, measurement of the stratum corneum refractive index, size measurement and count of the keratinocytes, visualization of the dermal-epidermal junction, and visualization of the melanin granules and of the melanocytes. Skins with different pigmentations could be discriminated and skin pathologies such as eczema could be identified. The very high resolution offered by FFOCT both on axial native images and vertical reconstructed sections allows for the visualization and measurement of a set of parameters useful for cosmetology and dermatology. In particular, FFOCT is a potential tool for the understanding and monitoring of skin hydration and pigmentation, as well as skin inflammation.

  13. Localization and Retrieval of an Eyelid Metallic Foreign Body With an Oscillating Magnet and High-Resolution Ultrasonography.

    Science.gov (United States)

    Yoo, Sylvia H; Rootman, Dan B; Goh, Alice; Savar, Aaron; Goldberg, Robert A

    2016-01-01

    A patient was found to have a metallic foreign body in the left anterior orbit on CT imaging, but the foreign body was not evident on clinical examination. On high-resolution ultrasonography, an object was identified in the left upper eyelid; however, the typical shadow with metallic foreign bodies was not seen. A high-power oscillating magnet was then applied to the eyelid, which revealed a subcutaneous metallic foreign body in the left upper eyelid. When used in conjunction, the high-resolution ultrasound and oscillating magnet successfully localized and facilitated retrieval of the metallic foreign body from the left upper eyelid.

  14. High-resolution magnetic resonance imaging of arthritic pathology in the rat knee

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, T.A. (Herchel Smith Lab. for Medicinal Chemistry, Cambridge Univ. (United Kingdom)); Everett, J.R. (Smith Kline Beecham Pharmaceuticals, Betchworth (United Kingdom)); Hall, L.D. (Herchel Smith Lab. for Medicinal Chemistry, Cambridge Univ. (United Kingdom)); Harper, G.P. (Smith Kline Beecham Pharmaceuticals, Welwyn (United Kingdom)); Hodgson, R.J. (Herchel Smith Lab. for Medicinal Chemistry, Cambridge Univ. (United Kingdom)); James, M.F. (Smith Kline Beecham Pharmaceuticals, Harlow (United Kingdom)); Watson, P.J. (Herchel Smith Lab. for Medicinal Chemistry, Cambridge Univ. (United Kingdom))

    1994-08-01

    High-resolution magnetic resonance imaging (MRI) has been used to visualise the changes that occur in both soft tissue and bone during antigen-induced, monoarticular arthritis (AIMA) of the rat knee. Extensive optimisation studies were performed in order to minimise the time of the experiments and to maximise both the signal-to-noise ratio and the contrast in the MR images. The study was cross-sectional rather than longitudinal and at each of the 13 time points studied during the progression of the disease, corresponding X-radiographs and histological sections were obtained. Interpretation of the spin echo MR images was aided by the use of chemical shift-selective imaging, magnetisation transfer contrast and relaxation time experiments, as well as by correlation with the histology and X-radiography data. The MR images clearly show invasion of the synovium by an inflammatory pannus which spreads over the articular cartilage and invades the bone, leading to erosion and later remodelling. Two distinct types of bony erosion were observed: focal erosions, especially at the margins of the joint, and subchondral erosions. It is concluded that MRI provides a sensitive, non-invasive method for investigating both early-stage inflammatory changes and late-stage bony changes in the knee joints of the arthritic rat. (orig.)

  15. High resolution magnetic resonance imaging of urethral anatomy in continent nulliparous pregnant women

    International Nuclear Information System (INIS)

    Preyer, Oliver; Brugger, Peter C.; Laml, Thomas; Hanzal, Engelbert; Prayer, Daniela; Umek, Wolfgang

    2011-01-01

    Introduction: To quantify the distribution of morphologic appearances of urethral anatomy and measure variables of urethral sphincter anatomy in continent, nulliparous, pregnant women by high resolution magnetic resonance imaging (MRI). Materials and methods: We studied fifteen women during their first pregnancy. We defined and quantified bladder neck and urethral morphology on axial and sagittal MR images from healthy, continent women. Results: The mean (±standard deviation) total transverse urethral diameter, anterior–posterior diameter, unilateral striated sphincter muscle thickness, and striated sphincter length were 15 ± 2 mm (range: 12–19 mm), 15 ± 2 mm (range: 11–20 mm), 2 ± 1 mm (range: 1–4 mm), and 13 ± 3 mm (range: 9–18 mm) respectively. The mean (±standard deviation) total urethral length on sagittal scans was 22 ± 3 mm (range: 17.6–26.4 mm). Discussion: Advances in MR technique combined with anatomical and histological findings will provide an insight to understand how changes in urethral anatomy might affect the continence mechanisms in pregnant and non-pregnant, continent or incontinent individuals.

  16. Study of $\\overline{p}$-Nucleus Interaction with a High Resolution Magnetic Spectrometer

    CERN Multimedia

    2002-01-01

    This experiment uses the high resolution, large solid angle and large momentum acceptance magnetic spectrometer SPES~II to study the interaction between @* and complex nuclei in the following experiments: \\\\ \\\\ \\item 1)~~~~A(@*, @*)A. Angular distribution of @* elastically scattered from |1|2C, |4|0Ca and |2|0|8Pb. \\item 2)~~~~A(@*, @*')A*. Excitation energy spectra and some angular distributions of @* inelastically scattered from |1|2C, |4|0Ca and |2|0|8Pb up to an excitation energy of &prop.~100~MeV. \\item 3)~~~~A(@*, p)A^z^-^1 (@*). Excitation energy spectra for knock out reaction on |6Li, |1|2C, |6|3Cu and |2|0|9Bi at several angles. \\end{enumerate}\\\\ \\\\ Any beam momentum between 300 MeV/c and 800 MeV/c will be suitable for this experiment. In order to vary the effect of strong absorption of @* by nuclei, elastic and inelastic scattering will be performed at two or three different @* momenta (depending on the way LEAR will be operated) down to 300~MeV/c.

  17. Relating speech production to tongue muscle compressions using tagged and high-resolution magnetic resonance imaging

    Science.gov (United States)

    Xing, Fangxu; Ye, Chuyang; Woo, Jonghye; Stone, Maureen; Prince, Jerry

    2015-03-01

    The human tongue is composed of multiple internal muscles that work collaboratively during the production of speech. Assessment of muscle mechanics can help understand the creation of tongue motion, interpret clinical observations, and predict surgical outcomes. Although various methods have been proposed for computing the tongue's motion, associating motion with muscle activity in an interdigitated fiber framework has not been studied. In this work, we aim to develop a method that reveals different tongue muscles' activities in different time phases during speech. We use fourdimensional tagged magnetic resonance (MR) images and static high-resolution MR images to obtain tongue motion and muscle anatomy, respectively. Then we compute strain tensors and local tissue compression along the muscle fiber directions in order to reveal their shortening pattern. This process relies on the support from multiple image analysis methods, including super-resolution volume reconstruction from MR image slices, segmentation of internal muscles, tracking the incompressible motion of tissue points using tagged images, propagation of muscle fiber directions over time, and calculation of strain in the line of action, etc. We evaluated the method on a control subject and two postglossectomy patients in a controlled speech task. The normal subject's tongue muscle activity shows high correspondence with the production of speech in different time instants, while both patients' muscle activities show different patterns from the control due to their resected tongues. This method shows potential for relating overall tongue motion to particular muscle activity, which may provide novel information for future clinical and scientific studies.

  18. High-resolution magnetic resonance imaging of arthritic pathology in the rat knee

    International Nuclear Information System (INIS)

    Carpenter, T.A.; Everett, J.R.; Hall, L.D.; Harper, G.P.; Hodgson, R.J.; James, M.F.; Watson, P.J.

    1994-01-01

    High-resolution magnetic resonance imaging (MRI) has been used to visualise the changes that occur in both soft tissue and bone during antigen-induced, monoarticular arthritis (AIMA) of the rat knee. Extensive optimisation studies were performed in order to minimise the time of the experiments and to maximise both the signal-to-noise ratio and the contrast in the MR images. The study was cross-sectional rather than longitudinal and at each of the 13 time points studied during the progression of the disease, corresponding X-radiographs and histological sections were obtained. Interpretation of the spin echo MR images was aided by the use of chemical shift-selective imaging, magnetisation transfer contrast and relaxation time experiments, as well as by correlation with the histology and X-radiography data. The MR images clearly show invasion of the synovium by an inflammatory pannus which spreads over the articular cartilage and invades the bone, leading to erosion and later remodelling. Two distinct types of bony erosion were observed: focal erosions, especially at the margins of the joint, and subchondral erosions. It is concluded that MRI provides a sensitive, non-invasive method for investigating both early-stage inflammatory changes and late-stage bony changes in the knee joints of the arthritic rat. (orig.)

  19. High-resolution magnetic resonance imaging of rotator cuff tears using a microscopy coil. Noninvasive detection without intraarticular contrast material

    International Nuclear Information System (INIS)

    Hitachi, Shin; Takase, Kei; Higano, Shuichi; Takahashi, Shoki; Tanaka, Minoru; Tojo, Yuichi; Tabata, Shiro; Majima, Kazuhiro

    2011-01-01

    The aim of this study was to evaluate the feasibility of high-resolution magnetic resonance imaging (MRI) using a microscopy coil for the diagnosis of rotator cuff tears by comparing the method to conventional MRI and MRI arthrography. A total of 68 shoulders were prospectively studied using a 1.5-T MRI unit. Conventional MRI scans were obtained with a surface coil and high-resolution MRI scans with a microscopy coil. MRI arthrography was performed in 28 shoulders using a surface coil. MRI evaluation of tears of rotator cuff tendons was compared with arthroscopic findings and surgical results. The surgery revealed 40 full-thickness tears, 13 partial-thickness tears, and 15 intact cuffs. In all, 35 (88%) full-thickness tears were correctly diagnosed on conventional MRI and 40 (100%) on high-resolution MRI. MR arthrography delineated 11 of 12 (92%) full-thickness tears. Altogether, 5 (38%) of the partial-thickness tears were detected on conventional MRI, and 12 (92%) were clearly demonstrated on high-resolution MRI. MRI arthrography depicted three (60%) of five partial-thickness tears. High-resolution MRI showed higher sensitivity than conventional MRI (P<0.05) and had values equivalent to those of MRI arthrography for diagnosing partial-thickness tears. High-resolution MRI with a microscopy coil is a feasible, noninvasive technique for diagnosing rotator cuff tears. (author)

  20. The investigation of active Martian dune fields using very high resolution photogrammetric measurements

    Science.gov (United States)

    Kim, Jungrack; Kim, Younghwi; Park, Minseong

    2016-10-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has succeeded only a very few times—for example, in the Nili Patera study (Bridges et al. 2012) using change-detection algorithms and orbital imagery. Therefore, in this study, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution orbital imagery specifically using a high-accuracy photogrammetric processor. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE time-series images over several Martian dune fields. Dune migrations were iteratively processed both spatially and volumetrically, and the results were integrated to be compared to the Martian climate model. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). As a result, a number of measurements over dune fields in the Mars Global Dune Database (Hayward et al. 2014) covering polar areas and mid-latitude will be demonstrated

  1. High-resolution nuclear magnetic resonance of quadrupolar nuclei in solids

    International Nuclear Information System (INIS)

    Charpentier, Th.

    1998-01-01

    After a brief review of existing methods in high-resolution NMR of quadrupolar nuclei, the manipulation of multi-quantum coherencies by radiofrequency pulses is studied. Results are then applied to the determination of optimal conditions for performing the recently introduced multiple-quantum magic-angle experiment (MQMAS). The principles of this new method, the different pulse sequences and the data processing are described in detail. Applications on aluminum hydrates and cement pastes show the improvements of this new technique over the previous ones. In a second part, after an investigation of the Floquet theory, a new formalism has been devised for studying the behavior of a spin submitted to a strong quadrupolar interaction and radiofrequency field in a rotating sample. This formalism is then applied to a quantitative study of the phenomenon of rotational induced adiabatic transfer of coherencies (RIACT). The extension of our theoretical approach to two-dimensional experiments provides a powerful tool for quantitative analyses of MQMAS spectra. Agreement between experimental data and simulations demonstrates the reliability of our approach. Preliminary results concerning the application of MQMAS spectroscopy, using our simulation programs, to structural study of amorphous materials are presented. The third and last part presents a theoretical and experimental investigation of dipolar order in a rotating sample. Two theoretical models are described, the first for the slow spinning speed regime where an adiabatic approximation can be made, and the second for the fast spinning speed regime. (author)

  2. Determining the Accuracy of Paleomagnetic Remanence and High-Resolution Chronostratigraphy for Sedimentary Rocks using Rock Magnetics

    Science.gov (United States)

    Kodama, K. P.

    2017-12-01

    The talk will consider two broad topics in rock magnetism and paleomagnetism: the accuracy of paleomagnetic remanence and the use of rock magnetics to measure geologic time in sedimentary sequences. The accuracy of the inclination recorded by sedimentary rocks is crucial to paleogeographic reconstructions. Laboratory compaction experiments show that inclination shallows on the order of 10˚-15˚. Corrections to the inclination can be made using the effects of compaction on the directional distribution of secular variation recorded by sediments or the anisotropy of the magnetic grains carrying the ancient remanence. A summary of all the compaction correction studies as of 2012 shows that 85% of sedimentary rocks studied have enjoyed some amount of inclination shallowing. Future work should also consider the effect of grain-scale strain on paleomagnetic remanence. High resolution chronostratigraphy can be assigned to a sedimentary sequence using rock magnetics to detect astronomically-forced climate cycles. The power of the technique is relatively quick, non-destructive measurements, the objective identification of the cycles compared to facies interpretations, and the sensitivity of rock magnetics to subtle changes in sedimentary source. An example of this technique comes from using rock magnetics to identify astronomically-forced climate cycles in three globally distributed occurrences of the Shuram carbon isotope excursion. The Shuram excursion may record the oxidation of the world ocean in the Ediacaran, just before the Cambrian explosion of metazoans. Using rock magnetic cyclostratigraphy, the excursion is shown to have the same duration (8-9 Myr) in southern California, south China and south Australia. Magnetostratigraphy of the rocks carrying the excursion in California and Australia shows a reversed to normal geomagnetic field polarity transition at the excursion's nadir, thus supporting the synchroneity of the excursion globally. Both results point to a

  3. High resolution modelling of wind fields for optimization of empirical storm flood predictions

    Science.gov (United States)

    Brecht, B.; Frank, H.

    2014-05-01

    High resolution wind fields are necessary to predict the occurrence of storm flood events and their magnitude. Deutscher Wetterdienst (DWD) created a catalogue of detailed wind fields of 39 historical storms at the German North Sea coast from the years 1962 to 2011. The catalogue is used by the Niedersächsisches Landesamt für Wasser-, Küsten- und Naturschutz (NLWKN) coastal research center to improve their flood alert service. The computation of wind fields and other meteorological parameters is based on the model chain of the DWD going from the global model GME via the limited-area model COSMO with 7 km mesh size down to a COSMO model with 2.2 km. To obtain an improved analysis COSMO runs are nudged against observations for the historical storms. The global model GME is initialised from the ERA reanalysis data of the European Centre for Medium-Range Weather Forecasts (ECMWF). As expected, we got better congruency with observations of the model for the nudging runs than the normal forecast runs for most storms. We also found during the verification process that different land use data sets could influence the results considerably.

  4. Surface drag effects on simulated wind fields in high-resolution atmospheric forecast model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kyo Sun; Lim, Jong Myoung; Ji, Young Yong [Environmental Radioactivity Assessment Team,Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Hye Yum [NOAA/Geophysical Fluid Dynamics Laboratory, Princeton (United States); Hong, Jin Kyu [Yonsei University, Seoul (Korea, Republic of)

    2017-04-15

    It has been reported that the Weather Research and Forecasting (WRF) model generally shows a substantial over prediction bias at low to moderate wind speeds and winds are too geostrophic (Cheng and Steenburgh 2005), which limits the application of WRF model in the area that requires the accurate surface wind estimation such as wind-energy application, air-quality studies, and radioactive-pollutants dispersion studies. The surface drag generated by the subgrid-scale orography is represented by introducing a sink term in the momentum equation in their studies. The purpose of our study is to evaluate the simulated meteorological fields in the high-resolution WRF framework, that includes the parameterization of subgrid-scale orography developed by Mass and Ovens (2010), and enhance the forecast skill of low-level wind fields, which plays an important role in transport and dispersion of air pollutants including radioactive pollutants. The positive bias in 10-m wind speed is significantly alleviated by implementing the subgrid-scale orography parameterization, while other meteorological fields including 10-m wind direction are not changed. Increased variance of subgrid- scale orography enhances the sink of momentum and further reduces the bias in 10-m wind speed.

  5. High-Resolution Metallic Magnetic Calorimeters for beta-Spectroscopy on 187-Rhenium and Position Resolved X-Ray Spectroscopy

    OpenAIRE

    Porst, Jan-Patrick

    2010-01-01

    This thesis describes the development of metallic magnetic calorimeters (MMCs) for high resolution spectroscopy. MMCs are energy dispersive particle detectors based on the calorimetric principle which are typically operated at temperatures below 100 mK. The detectors make use of a paramagnetic temperature sensor to transform the temperature rise upon the absorption of a particle in the detector into a measurable magnetic flux change in a dc-SQUID. The application of MMCs for neutrino mass mea...

  6. Near-field electromagnetic holography for high-resolution analysis of network interactions in neuronal tissue.

    Science.gov (United States)

    Kjeldsen, Henrik D; Kaiser, Marcus; Whittington, Miles A

    2015-09-30

    Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions

  7. New GOES High-Resolution Magnetic Measurements and their Contribution to Understanding Magnetospheric Particle Dynamics

    Science.gov (United States)

    Redmon, R. J.; Loto'aniu, P. T. M.; Boudouridis, A.; Chi, P. J.; Singer, H. J.; Kress, B. T.; Rodriguez, J. V.; Abdelqader, A.; Tilton, M.

    2017-12-01

    The era of NOAA observations of the geomagnetic field started with SMS-1 in May 1974 and continues to this day with GOES-13-16 (on-orbit). We describe the development of a new 20+ year archive of science-quality, high-cadence geostationary measurements of the magnetic field from eight NOAA spacecraft (GOES-8 through GOES-15), the status of GOES-16 and new scientific results using these data. GOES magnetic observations provide an early warning of impending space weather, are the core geostationary data set used for the construction of magnetospheric magnetic models, and can be used to estimate electromagnetic wave power in frequency bands important for plasma processes. Many science grade improvements are being made across the GOES archive to unify the format and content from GOES-8 through the new GOES-R series (with the first of that series launched on November 19, 2016). A majority of the 2-Hz magnetic observations from GOES-8-12 have never before been publicly accessible due to processing constraints. Now, a NOAA Big Earth Data Initiative project is underway to process these measurements starting from original telemetry records. Overall the new archive will include vector measurements in geophysically relevant coordinates (EPN, GSM, and VDH), comprehensive documentation, highest temporal cadence, best calibration parameters, recomputed means, updated quality flagging, full spacecraft ephemeris information, a unified standard format and public access. We are also developing spectral characterization tools for estimating power in standard frequency bands (up to 1 Hz for G8-15), and detecting ULF waves related to field-line resonances. We present the project status and findings, including in-situ statistical and extreme ULF event properties, and case studies where the ULF oscillations along the same field line were observed simultaneously by GOES near the equator in the magnetosphere, the ST-5 satellites at low altitudes, and ground magnetometer stations. For event

  8. First field test of NAPL detection with high resolution borehole seismic imaging

    International Nuclear Information System (INIS)

    Geller, Jil T.; Peterson, John E.; Williams, Kenneth H.; Ajo-Franklin, Jonathan B.; Majer, Ernest L.

    2002-01-01

    The purpose of this field test is to evaluate the detectability of NAPLs by high resolution tomographic borehole seismic imaging. The site is a former Department of Energy (DOE) manufacturing facility in Pinellas County, Florida. Cross-hole seismic and radar measurements were made in a shallow aquifer contaminated with non-aqueous phase liquids (NAPLs). Cone penetration test (CPT) and induction logging were performed for lithology and conductivity, respectively. The main challenge is to distinguish fluid phase heterogeneities from anomalies arising from geologic structure. Our approach is to compare measurements between locations of known contamination with a nearby uncontaminated location of similar lithology where differences in signal transmission may be attributed to fluid phase changes. The CPT data show similar lithologic structure at the locations both within and outside the NAPL-contaminated area. Zones of low seismic amplitude at about 7 m depth appear more extensive in the NAPL-contaminated area. These zones may be the result of fluid phase heterogeneities (NAPL or gas), or they may be due to the lithology, i.e. attenuating nature of the layer itself, or the transition between two distinct layers. The presence of lithologic contrasts, specifically from higher permeability sands to lower permeability silts and clays, also indicate potential locations of NAPL, as they could be flow barriers to downward NAPL migration

  9. Curved sensors for compact high-resolution wide-field designs: prototype demonstration and optical characterization

    Science.gov (United States)

    Chambion, Bertrand; Gaschet, Christophe; Behaghel, Thibault; Vandeneynde, Aurélie; Caplet, Stéphane; Gétin, Stéphane; Henry, David; Hugot, Emmanuel; Jahn, Wilfried; Lombardo, Simona; Ferrari, Marc

    2018-02-01

    Over the recent years, a huge interest has grown for curved electronics, particularly for opto-electronics systems. Curved sensors help the correction of off-axis aberrations, such as Petzval Field Curvature, astigmatism, and bring significant optical and size benefits for imaging systems. In this paper, we first describe advantages of curved sensor and associated packaging process applied on a 1/1.8'' format 1.3Mpx global shutter CMOS sensor (Teledyne EV76C560) into its standard ceramic package with a spherical radius of curvature Rc=65mm and 55mm. The mechanical limits of the die are discussed (Finite Element Modelling and experimental), and electro-optical performances are investigated. Then, based on the monocentric optical architecture, we proposed a new design, compact and with a high resolution, developed specifically for a curved image sensor including optical optimization, tolerances, assembly and optical tests. Finally, a functional prototype is presented through a benchmark approach and compared to an existing standard optical system with same performances and a x2.5 reduction of length. The finality of this work was a functional prototype demonstration on the CEA-LETI during Photonics West 2018 conference. All these experiments and optical results demonstrate the feasibility and high performances of systems with curved sensors.

  10. Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging.

    Science.gov (United States)

    Thaung, Jörgen; Knutsson, Per; Popovic, Zoran; Owner-Petersen, Mette

    2009-03-16

    We present analysis and preliminary laboratory testing of a real-time dual-conjugate adaptive optics (DCAO) instrument for ophthalmology that will enable wide-field high resolution imaging of the retina in vivo. The setup comprises five retinal guide stars (GS) and two deformable mirrors (DM), one conjugate to the pupil and one conjugate to a plane close to the retina. The DCAO instrument has a closed-loop wavefront sensing wavelength of 834 nm and an imaging wavelength of 575 nm. It incorporates an array of collimator lenses to spatially filter the light from all guide stars using one adjustable iris, and images the Hartmann patterns of multiple reference sources on a single detector. Zemax simulations were performed at 834 nm and 575 nm with the Navarro 99 and the Liou- Brennan eye models. Two correction alternatives were evaluated; conventional single conjugate AO (SCAO, using one GS and a pupil DM) and DCAO (using multiple GS and two DM). Zemax simulations at 575 nm based on the Navarro 99 eye model show that the diameter of the corrected field of view for diffraction-limited imaging (Strehl >or= 0.8) increases from 1.5 deg with SCAO to 6.5 deg using DCAO. The increase for the less stringent condition of a wavefront error of 1 rad or less (Strehl >or= 0.37) is from 3 deg with SCAO to approximately 7.4 deg using DCAO. Corresponding results for the Liou-Brennan eye model are 3.1 deg (SCAO) and 8.2 deg (DCAO) for Strehl >or= 0.8, and 4.8 deg (SCAO) and 9.6 deg (DCAO) for Strehl >or= 0.37. Potential gain in corrected field of view with DCAO is confirmed both by laboratory experiments on a model eye and by preliminary in vivo imaging of a human eye. (c) 2009 Optical Society of America

  11. Quadrupole magnetic mapping of the high resolution spectrometers of Thomas Jefferson National Accelerator Laboratory, Hall A. (Q.M.M. project: Quadrupole Magnetic Measurement)

    International Nuclear Information System (INIS)

    Quemener, Gilles

    1997-01-01

    This thesis describes the magnetic measurements that have been performed on the superconducting quadrupoles of the High Resolution Spectrometers of TJNAF, Hall A (USA), which are designed to measure particle momentum up to 4 GeV.c -1 with a σp/p = 10 -4 resolution. The mapping method is based on rotating coil technique, the originality being a segmentation of the probe along the quad axis. Together with an accurate magnet modelling, the measurement of the flux variations through the set of rotating coils allows to determine the magnetic field at each point. We use the 3D field formalism, i.e., the Fourier-Bessel expansion of the field obtained by solving the Laplace equation. We describe the QMM method and then the apparatus consisting in two probes of length 1.6 m and 3.2 m built to map the three quadrupoles Q1, Q2, Q3. Data processing uses Fourier analysis. The mapping of the Electron Arm took place in situ in 1996. A first set of results concerns integral measurements including the properties of excitation cycle of the magnets (saturation and hysteresis). Second set of results in terms of local field yields the 3D field maps of the quadrupoles. After having applied corrections to the data we obtain a local field accuracy of 5 Gauss on each component, i.e. an uncertainty of 5.10 -4 relative to the quadrupole central field. We use SNAKE ray-tracing code with the implementation of QMM field maps and obtain preliminary results on HRS optics. (author)

  12. A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK

    International Nuclear Information System (INIS)

    Khotkevych, V. V.; Bending, S. J.; Milosevic, M. V.

    2008-01-01

    We present the design, construction, and performance of a low-temperature scanning Hall probe microscope with submicron lateral resolution and a large scanning range. The detachable microscope head is mounted on the cold flange of a commercial 3 He-refrigerator (Oxford Instruments, Heliox VT-50) and operates between room temperature and 300 mK. It is fitted with a three-axis slip-stick nanopositioner that enables precise in situ adjustment of the probe location within a 6x6x7 mm 3 space. The local magnetic induction at the sample surface is mapped with an easily changeable microfabricated Hall probe [typically GsAs/AlGaAs or AlGaAs/InGaAs/GaAs Hall sensors with integrated scanning tunnel microscopy (STM) tunneling tips] and can achieve minimum detectable fields ≥10 mG/Hz 1/2 . The Hall probe is brought into very close proximity to the sample surface by sensing and controlling tunnel currents at the integrated STM tip. The instrument is capable of simultaneous tunneling and Hall signal acquisition in surface-tracking mode. We illustrate the potential of the system with images of superconducting vortices at the surface of a Nb thin film down to 372 mK, and also of labyrinth magnetic-domain patterns of an yttrium iron garnet film captured at room temperature.

  13. High-resolution magnetic resonance imaging of the wrist: Normal anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Baker, L.L.; Hajek, P.C.; Bjoerkengren, A.; Sartoris, D.J.; Resnick, D.; Galbraith, R.; Gelberman, R.H.

    1987-02-01

    Magnetic resonance imaging (MRI) provided adequate depiction of carpal soft tissue structures in normal volunteers, as well as accurate anatomic correlation with cadaveric specimens. Using a high field strength system and surface coil techniques, the intricate anatomy of the wrist was best defined on long TR short TE images. However, from a practical view, T1 weighted images (TR 600 ms, TE 25 ms) were most useful because of short imaging times, satisfactory image quality, and the absence of motion artifacts. The coronal plane provided the clearest definition of important structures. Potential diagnostic limitations exist due to the inability of MRI to clearly delineate articular cartilage, joint capsules, and small interosseous ligaments. The presence of intra-articular fluid in both living subjects and cadaveric specimens, however, allowed for fine depiction of these structures on T2 weighted images.

  14. High resolution magnetic force microscopy: instrumentation and application for recording media

    NARCIS (Netherlands)

    Porthun, Steffen; Porthun, S.

    This thesis describes aspects of the use of magnetic force microscopy for the study of magnetic recording media. The maximum achievable storage density in magnetic recording is limited by the magnetic reversal behaviour of the medium and by the stability of the written information. The shape and

  15. High resolution magnetic force microscopy using focused ion beam modified tips

    NARCIS (Netherlands)

    Phillips, G.N.; Siekman, Martin Herman; Abelmann, Leon; Lodder, J.C.

    2002-01-01

    Atomic force microscope tips coated by the thermal evaporation of a magnetic 30 nm thick Co film have been modified by focused ion beam milling with Ga+ ions to produce tips suitable for magnetic force microscopy. Such tips possess a planar magnetic element with high magnetic shape anisotropy, an

  16. High resolution method for the magnetic axis localization for multipole magnets on the base of the garnet films technology

    International Nuclear Information System (INIS)

    Gertsev, K.F.; Gribkov, V.L.; Liskov, V.A.; Chervonenkis, A.J.

    1992-01-01

    The methods of stretched wires for the localization of the magnetic axis may be inconvenient sometimes in accelerators and colliders of very high energies because of high gradients, large lengths and small apertures. High gradients may deform the wires due to the nonzero magnetic susceptibility and microscopic ferromagnetic particles on their surface. Long wires have large sagittas and small apertures of magnets limit the transversal working domains for the measuring devices. Precision optics magnets possess extreme parameters, in particular, in interaction regions. The magneto-optic (MO) methods of the measurements present some new possibilities for the solution of the above problems. The use of MO films for magnetic field visualization and mapping was proposed and shown that on the basis of Bi-substituted iron garnet films and MO Faraday effect it's possible to obtain the quantitative vector maps of complicated magnetic field structure. Later this was described on a large scale. This method was discussed in terms of its applicability to the magnetic axis localization in quadrupoles of accelerators. In our opinion, the films technology has great advantages as compared with the colloidal solution. In this paper the principles and variants of the films method are presented and further development of the method under discussion is described

  17. A high-resolution computational localization method for transcranial magnetic stimulation mapping.

    Science.gov (United States)

    Aonuma, Shinta; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa; Takakura, Tomokazu; Tamura, Manabu; Muragaki, Yoshihiro

    2018-05-15

    Transcranial magnetic stimulation (TMS) is used for the mapping of brain motor functions. The complexity of the brain deters determining the exact localization of the stimulation site using simplified methods (e.g., the region below the center of the TMS coil) or conventional computational approaches. This study aimed to present a high-precision localization method for a specific motor area by synthesizing computed non-uniform current distributions in the brain for multiple sessions of TMS. Peritumoral mapping by TMS was conducted on patients who had intra-axial brain neoplasms located within or close to the motor speech area. The electric field induced by TMS was computed using realistic head models constructed from magnetic resonance images of patients. A post-processing method was implemented to determine a TMS hotspot by combining the computed electric fields for the coil orientations and positions that delivered high motor-evoked potentials during peritumoral mapping. The method was compared to the stimulation site localized via intraoperative direct brain stimulation and navigated TMS. Four main results were obtained: 1) the dependence of the computed hotspot area on the number of peritumoral measurements was evaluated; 2) the estimated localization of the hand motor area in eight non-affected hemispheres was in good agreement with the position of a so-called "hand-knob"; 3) the estimated hotspot areas were not sensitive to variations in tissue conductivity; and 4) the hand motor areas estimated by this proposal and direct electric stimulation (DES) were in good agreement in the ipsilateral hemisphere of four glioma patients. The TMS localization method was validated by well-known positions of the "hand-knob" in brains for the non-affected hemisphere, and by a hotspot localized via DES during awake craniotomy for the tumor-containing hemisphere. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. High resolution spectroscopy in solids by nuclear magnetic resonance; Espectroscopia de alta resolucao em solidos por ressonancia magnetica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Bonagamba, T J

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120{sup 0} C to +160{sup 0} C, and is fully controlled by a Macintosh IIci microcomputer. (author).

  19. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor

    Science.gov (United States)

    Glenn, David R.; Bucher, Dominik B.; Lee, Junghyun; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.

    2018-03-01

    Quantum systems that consist of solid-state electronic spins can be sensitive detectors of nuclear magnetic resonance (NMR) signals, particularly from very small samples. For example, nitrogen–vacancy centres in diamond have been used to record NMR signals from nanometre-scale samples, with sensitivity sufficient to detect the magnetic field produced by a single protein. However, the best reported spectral resolution for NMR of molecules using nitrogen–vacancy centres is about 100 hertz. This is insufficient to resolve the key spectral identifiers of molecular structure that are critical to NMR applications in chemistry, structural biology and materials research, such as scalar couplings (which require a resolution of less than ten hertz) and small chemical shifts (which require a resolution of around one part per million of the nuclear Larmor frequency). Conventional, inductively detected NMR can provide the necessary high spectral resolution, but its limited sensitivity typically requires millimetre-scale samples, precluding applications that involve smaller samples, such as picolitre-volume chemical analysis or correlated optical and NMR microscopy. Here we demonstrate a measurement technique that uses a solid-state spin sensor (a magnetometer) consisting of an ensemble of nitrogen–vacancy centres in combination with a narrowband synchronized readout protocol to obtain NMR spectral resolution of about one hertz. We use this technique to observe NMR scalar couplings in a micrometre-scale sample volume of approximately ten picolitres. We also use the ensemble of nitrogen–vacancy centres to apply NMR to thermally polarized nuclear spins and resolve chemical-shift spectra from small molecules. Our technique enables analytical NMR spectroscopy at the scale of single cells.

  20. Targeting high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance analysis with high-resolution radical scavenging profiles - bioactive secondary metabolites from the endophytic fungus Penicillium namyslowskii

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Nyberg, Nils; Tejesvi, Mysore V.

    2013-01-01

    The high-resolution radical scavenging profile of an extract of the endophytic fungus Penicillium namyslowskii was used to target analysis by high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy, i.e., HPLC...... NMR probe designed for 1.7-mm NMR tubes. To further explore the potential of the above HPLC-HRMS-SPE-NMR platform for analysis of endophytic extracts, six peaks displaying no radical scavenging activity were also analyzed. This allowed unambiguous identification of six metabolites, i...... and griseofulvin, directly from crude extract via HPLC-HRMS-SPE-NMR. Dechlorodehydrogriseofulvin was reported for the first time from nature....

  1. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging

    International Nuclear Information System (INIS)

    Marlovits, Stefan; Striessnig, Gabriele; Resinger, Christoph T.; Aldrian, Silke M.; Vecsei, Vilmos; Imhof, Herwig; Trattnig, Siegfried

    2004-01-01

    To evaluate articular cartilage repair tissue after biological cartilage repair, we propose a new technique of non-invasive, high-resolution magnetic resonance imaging (MRI) and define a new classification system. For the definition of pertinent variables the repair tissue of 45 patients treated with three different techniques for cartilage repair (microfracture, autologous osteochondral transplantation, and autologous chondrocyte transplantation) was analyzed 6 and 12 months after the procedure. High-resolution imaging was obtained with a surface phased array coil placed over the knee compartment of interest and adapted sequences were used on a 1 T MRI scanner. The analysis of the repair tissue included the definition and rating of nine pertinent variables: the degree of filling of the defect, the integration to the border zone, the description of the surface and structure, the signal intensity, the status of the subchondral lamina and subchondral bone, the appearance of adhesions and the presence of synovitis. High-resolution MRI, using a surface phased array coil and specific sequences, can be used on every standard 1 or 1.5 T MRI scanner according to the in-house standard protocols for knee imaging in patients who have had cartilage repair procedures without substantially prolonging the total imaging time. The new classification and grading system allows a subtle description and suitable assessment of the articular cartilage repair tissue

  2. An overview of MADONA: A multinational field study of high-resolution meteorology and diffusion over complex terrain

    DEFF Research Database (Denmark)

    Cionco, R.M.; aufm Kampe, W.; Biltoft, C.

    1999-01-01

    The multination, high-resolution field study of Meteorology And Diffusion Over Non-Uniform Areas (MADONA) was conducted by scientists from the United States, the United Kingdom, Germany, Denmark, Sweden, and the Netherlands at Porton Down, Salisbury, Wiltshire, United Kingdom, during September...... and October 1992. The host of the field study was the Chemical and Biological Defence Establishment (CBDE, now part of Defence Evaluation and Research Agency) at Porton Down. MADONA was designed and conducted for high-resolution meteorological data collection and diffusion experiments using smoke......, sulphurhexaflouride (SF6), and propylene gas during unstable, neutral, and stable atmospheric conditions in an effort to obtain terrain-influenced meteorological fields, dispersion, and concentration fluctuation measurements using specialized sensors and tracer generators. Thirty-one days of meteorological data were...

  3. High-resolution rock-magnetic variability in shallow marine sediment: a sensitive paleoclimatic metronome

    Science.gov (United States)

    Arai, Kohsaku; Sakai, Hideo; Konishi, Kenji

    1997-05-01

    An outer shelf deposit in central Japan centered on the Olduvai normal polarity event in the reversed Matuyama chron reveals a close correlation of both the magnetic susceptibility and remanent intensity with the sedimentary cyclicities apparent in lithologies and molluscan assemblages. Two sedimentary cycles are characterized by distinctly similar, but double-peaked magnetic cyclicities. The rock-magnetic variability is primarily attributed to the relative abundance of terrigenous magnetic minerals, and the double peak of the variability is characterized by the concentration of finer-grained magnetic minerals. The concentration is suspected to be controlled by both climatic change and shifting proximity of the shoreline as a function of rise and fall of the sea level due to glacio-eustasy. Rock-magnetic study reveals the record of a 21 ka period of orbital precession cycles within the sedimentary cyclicity attributable to a 41 ka period of orbital obliquity forcing.

  4. FPscope: a field-portable high-resolution microscope using a cellphone lens.

    Science.gov (United States)

    Dong, Siyuan; Guo, Kaikai; Nanda, Pariksheet; Shiradkar, Radhika; Zheng, Guoan

    2014-10-01

    The large consumer market has made cellphone lens modules available at low-cost and in high-quality. In a conventional cellphone camera, the lens module is used to demagnify the scene onto the image plane of the camera, where image sensor is located. In this work, we report a 3D-printed high-resolution Fourier ptychographic microscope, termed FPscope, which uses a cellphone lens in a reverse manner. In our platform, we replace the image sensor with sample specimens, and use the cellphone lens to project the magnified image to the detector. To supersede the diffraction limit of the lens module, we use an LED array to illuminate the sample from different incident angles and synthesize the acquired images using the Fourier ptychographic algorithm. As a demonstration, we use the reported platform to acquire high-resolution images of resolution target and biological specimens, with a maximum synthetic numerical aperture (NA) of 0.5. We also show that, the depth-of-focus of the reported platform is about 0.1 mm, orders of magnitude longer than that of a conventional microscope objective with a similar NA. The reported platform may enable healthcare accesses in low-resource settings. It can also be used to demonstrate the concept of computational optics for educational purposes.

  5. High-resolution magnetic-domain imaging by Fourier transform holography at 21 nm wavelength

    International Nuclear Information System (INIS)

    Schaffert, Stefan; Pfau, Bastian; Günther, Christian M; Schneider, Michael; Korff Schmising, Clemens von; Eisebitt, Stefan; Geilhufe, Jan

    2013-01-01

    Exploiting x-ray magnetic circular dichroism at the L-edges of 3d transition metals, Fourier transform holography has become a standard technique to investigate magnetic samples with sub-100 nm spatial resolution. Here, magnetic imaging in the 21 nm wavelength regime using M-edge circular dichroism is demonstrated. Ultrafast pulses in this wavelength regime are increasingly available from both laser- and accelerator-driven soft x-ray sources. We explain the adaptations concerning sample preparation and data evaluation compared to conventional holography in the 1 nm wavelength range. We find the correction of the Fourier transform hologram to in-plane Fourier components to be critical for high-quality reconstruction and demonstrate 70 nm spatial resolution in magnetization imaging with this approach. (paper)

  6. Theory of high-resolution tunneling spin transport on a magnetic skyrmion

    OpenAIRE

    Palotás, Krisztián; Rózsa, Levente; Szunyogh, László

    2018-01-01

    Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport v...

  7. Phase separation and magnetic ordering studied by high resolution neutron diffraction

    International Nuclear Information System (INIS)

    Caspi, E.N.; Melamud, M.; Pinto, H.; Shaked, H.; Chmaissem, O.; Jorgensen, J.D.; Short, S.

    1999-01-01

    Complete text of publication follows. In a previous work on the (U 1-x Nd x )Co 2 Ge 2 system, two magnetic transitions were observed in the temperature dependencies of the magnetic susceptibility and in the intensity of the magnetic reflections in neutron diffraction [1]. Because of insufficient resolution, it was not clear whether this is due to clustering or phase separation. In both cases the U-rich regions are expected to order magnetically at higher temperature than the U-poor ones, resulting in two magnetic transitions. In order to resolve this question a temperature dependent TOF neutron diffraction of the x = 0.25 compound has been performed on the SEPD at Argonne's IPNS [2]. The temperature dependent diffractograms were refined by the Rietveld method. It was found that the compound separates into two phases: x = 0.4 (55 wt%) and x = 0.1 (45 wt%). The temperature dependence of the magnetic moment was obtained for each phase, with the transition temperatures: T N (x=0.4) = 130 K, and T N (x=0.1) = 165 K. (author) [1] E. Caspi et al., Phys. Rev. B, 57 (198) 449.; [2] J.D. Jorgensen et al., J. Appl. Cryst. 22 (1989) 321

  8. In vivo high-resolution magnetic resonance elastography of the uterine corpus and cervix

    International Nuclear Information System (INIS)

    Jiang, Xuyuan; Asbach, Patrick; Streitberger, Kaspar-Josche; Hamm, Bernd; Sack, Ingolf; Guo, Jing; Thomas, Anke; Braun, Juergen

    2014-01-01

    To apply 3D multifrequency MR elastography (3DMMRE) to the uterus and analyse the viscoelasticity of the uterine tissue in healthy volunteers considering individual variations and variations over the menstrual cycle. Sixteen healthy volunteers participated in the study, one of whom was examined 12 times over two menstrual cycles. Pelvic 3DMMRE was performed on a 1.5-T scanner with seven vibration frequencies (30-60 Hz) using a piezoelectric driver. Two mechanical parameter maps were obtained corresponding to the magnitude (vertical stroke G* vertical stroke) and the phase angle (φ) of the complex shear modulus. On average, the uterine corpus had higher elasticity, but similar viscosity compared with the cervix, reflected by vertical stroke G* vertical stroke uterine corpus = 2.58 ± 0.52 kPa vs. vertical stroke G* vertical stroke cervix = 2.00 ± 0.34 kPa (p uterine corpus = 0.54 ± 0.08, φ cervix = 0.57 ± 0.12 (p = 0.428). With 2.23 ± 0.26 kPa, vertical stroke G* vertical stroke of the myometrium was lower in the secretory phase (SP) compared with that of the proliferative phase (PP, vertical stroke G* vertical stroke = 3.01 ± 0.26 kPa). For the endometrium, the value of vertical stroke G* vertical stroke in SP was 68 % lower than during PP (PP, vertical stroke G* vertical stroke = 3.34 ± 0.42 kPa; SP, vertical stroke G* vertical stroke = 1.97 ± 0.34 kPa; p = 0.0061). 3DMMRE produces high-resolution mechanical parameter maps of the uterus and cervix and shows sensitivity to structural and functional changes of the endometrium and myometrium during the menstrual cycle. (orig.)

  9. In vivo high-resolution magnetic resonance elastography of the uterine corpus and cervix

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xuyuan [The First Affiliated Hospital of China Medical University, Department of Radiology, Shenyang (China); Asbach, Patrick; Streitberger, Kaspar-Josche; Hamm, Bernd; Sack, Ingolf; Guo, Jing [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Thomas, Anke [Charite - Universitaetsmedizin Berlin, Departments of Gynecology and Obstetrics, Berlin (Germany); Braun, Juergen [Charite - Universitaetsmedizin Berlin, Department of Medical Informatics, Berlin (Germany)

    2014-12-15

    To apply 3D multifrequency MR elastography (3DMMRE) to the uterus and analyse the viscoelasticity of the uterine tissue in healthy volunteers considering individual variations and variations over the menstrual cycle. Sixteen healthy volunteers participated in the study, one of whom was examined 12 times over two menstrual cycles. Pelvic 3DMMRE was performed on a 1.5-T scanner with seven vibration frequencies (30-60 Hz) using a piezoelectric driver. Two mechanical parameter maps were obtained corresponding to the magnitude (vertical stroke G* vertical stroke) and the phase angle (φ) of the complex shear modulus. On average, the uterine corpus had higher elasticity, but similar viscosity compared with the cervix, reflected by vertical stroke G* vertical stroke {sub uterine} {sub corpus} = 2.58 ± 0.52 kPa vs. vertical stroke G* vertical stroke {sub cervix} = 2.00 ± 0.34 kPa (p < 0.0001) and φ {sub uterine} {sub corpus} = 0.54 ± 0.08, φ {sub cervix} = 0.57 ± 0.12 (p = 0.428). With 2.23 ± 0.26 kPa, vertical stroke G* vertical stroke of the myometrium was lower in the secretory phase (SP) compared with that of the proliferative phase (PP, vertical stroke G* vertical stroke = 3.01 ± 0.26 kPa). For the endometrium, the value of vertical stroke G* vertical stroke in SP was 68 % lower than during PP (PP, vertical stroke G* vertical stroke = 3.34 ± 0.42 kPa; SP, vertical stroke G* vertical stroke = 1.97 ± 0.34 kPa; p = 0.0061). 3DMMRE produces high-resolution mechanical parameter maps of the uterus and cervix and shows sensitivity to structural and functional changes of the endometrium and myometrium during the menstrual cycle. (orig.)

  10. Generation of real-time mode high-resolution water vapor fields from GPS observations

    Science.gov (United States)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  11. Theory of high-resolution tunneling spin transport on a magnetic skyrmion

    Science.gov (United States)

    Palotás, Krisztián; Rózsa, Levente; Szunyogh, László

    2018-05-01

    Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque, are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport vectors is demonstrated that enables the estimation of tunneling spin transport properties based on experimentally measured SP-STM images. A considerable tunability of the spin transport vectors by the involved spin polarizations is also highlighted. These possibilities and the combined theory of tunneling charge and vector spin transport pave the way for gaining deep insight into electric-current-induced tunneling spin transport properties in SP-STM and to the related dynamics of complex magnetic textures at surfaces.

  12. Use of an ultra-high resolution magnetic spectrograph for materials research

    NARCIS (Netherlands)

    Boerma, DO; Arnoldbik, WM; Wolfswinkel, W; Balogh, AG; Walter, G

    1997-01-01

    A brief description is given of a magnetic spectrograph for RBS and ERD analysis with MeV beams, delivered by a Tandem accelerator. With a number of examples of thin layer analysis it is shown that the spectrograph is uniquely suited for the measurement of concentration depth profiles up to a depth

  13. High resolution ADC interface to main magnet power supply at the NSLS

    Energy Technology Data Exchange (ETDEWEB)

    Bordoley, M.

    1993-07-01

    Previous readings of DCCT were limited to 11 bits of resolution with large offsets and drifts, providing inaccurate data. The current design overcomes this limitation by using Analog Device`s AD7703 20 bit serial output ADC to digitize the main magnet DCCT at the power supply, and transmit the data serially at 2KHz over to the VME controller.

  14. High resolution ADC interface to main magnet power supply at the NSLS

    Energy Technology Data Exchange (ETDEWEB)

    Bordoley, M.

    1993-01-01

    Previous readings of DCCT were limited to 11 bits of resolution with large offsets and drifts, providing inaccurate data. The current design overcomes this limitation by using Analog Device's AD7703 20 bit serial output ADC to digitize the main magnet DCCT at the power supply, and transmit the data serially at 2KHz over to the VME controller.

  15. High resolution ADC interface to main magnet power supply at the NSLS

    International Nuclear Information System (INIS)

    Bordoley, M.

    1993-01-01

    Previous readings of DCCT were limited to 11 bits of resolution with large offsets and drifts, providing inaccurate data. The current design overcomes this limitation by using Analog Device's AD7703 20 bit serial output ADC to digitize the main magnet DCCT at the power supply, and transmit the data serially at 2KHz over to the VME controller

  16. Correlation of geothermal springs with sub-surface fault terminations revealed by high-resolution, UAV-acquired magnetic data

    Science.gov (United States)

    Glen, Jonathan; A.E. Egger,; C. Ippolito,; N.Athens,

    2013-01-01

    There is widespread agreement that geothermal springs in extensional geothermal systems are concentrated at fault tips and in fault interaction zones where porosity and permeability are dynamically maintained (Curewitz and Karson, 1997; Faulds et al., 2010). Making these spatial correlations typically involves geological and geophysical studies in order to map structures and their relationship to springs at the surface. Geophysical studies include gravity and magnetic surveys, which are useful for identifying buried, intra-basin structures, especially in areas where highly magnetic, dense mafic volcanic rocks are interbedded with, and faulted against less magnetic, less dense sedimentary rock. High-resolution magnetic data can also be collected from the air in order to provide continuous coverage. Unmanned aerial systems (UAS) are well-suited for conducting these surveys as they can provide uniform, low-altitude, high-resolution coverage of an area without endangering crew. In addition, they are more easily adaptable to changes in flight plans as data are collected, and improve efficiency. We have developed and tested a new system to collect magnetic data using small-platform UAS. We deployed this new system in Surprise Valley, CA, in September, 2012, on NASA's SIERRA UAS to perform a reconnaissance survey of the entire valley as well as detailed surveys in key transition zones. This survey has enabled us to trace magnetic anomalies seen in ground-based profiles along their length. Most prominent of these is an intra-basin magnetic high that we interpret as a buried, faulted mafic dike that runs a significant length of the valley. Though this feature lacks surface expression, it appears to control the location of geothermal springs. All of the major hot springs on the east side of the valley lie along the edge of the high, and more specifically, at structural transitions where the high undergoes steps, bends, or breaks. The close relationship between the springs

  17. Potentials of high resolution magnetic resonance imaging versus computed tomography for preoperative local staging of colon cancer

    International Nuclear Information System (INIS)

    Rollven, Erik; Blomqvist, Lennart; Holm, Torbjorn; Glimelius, Bengt; Loerinc, Esther

    2013-01-01

    Background: Preoperative identification of locally advanced colon cancer is of importance in order to properly plan treatment. Purpose: To study high resolution T2-weighted magnetic resonance imaging (MRI) versus computed tomography (CT) for preoperative staging of colon cancer with surgery and histopathology as reference standard. Material and Methods: Twenty-eight patients with a total of 29 tumors were included. Patients were examined on a 1.5 T MR unit using a phased array body coil. T2 turbo spin-echo high resolution sequences were obtained in a coronal, transverse, and perpendicular plane to the long axis of the colon at the site of the tumor. Contrast-enhanced CT was performed using a protocol for metastasis staging. The examinations were independently evaluated by two gastrointestinal radiologists using criteria adapted to imaging for prediction of T-stage, N-stage, and extramural venous invasion. Based on the T-stage, tumors were divided in to locally advanced (T3cd-T4) and not locally advanced (T1-T3ab). Surgical and histopathological findings served as reference standard. Results: Using MRI, T-stage, N-stage, and extramural venous invasion were correctly predicted for each observer in 90% and 93%, 72% and 69%, and 82% and 78% of cases, respectively. With CT the corresponding results were 79% and 76%, 72% and 72%, 78% and 67%. For MRI inter-observer agreements (Kappa statistics) were 0.79, 0.10, and 0.76. For CT the corresponding results were 0.64, 0.66, and 0.22. Conclusion: Patients with locally advanced colon cancer, defined as tumor stage T3cd-T4, can be identified by both high resolution MRI and CT, even when CT is performed with a metastasis staging protocol. MRI may have an advantage, due to its high soft tissue discrimination, to identify certain prognostic factors such as T-stage and extramural venous invasion

  18. Potentials of high resolution magnetic resonance imaging versus computed tomography for preoperative local staging of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rollven, Erik; Blomqvist, Lennart [Dept. of Diagnostic Radiology, Karolinska Univ. Hospital Solna, Stockholm (Sweden); Dept. of Molecular Medicine and Surgery, Karolinska Inst., Stockholm (Sweden)], e-mail: erik.rollven@ki.se; Holm, Torbjorn [Dept. of Molecular Medicine and Surgery, Karolinska Inst., Stockholm (Sweden); Dept. of Surgery, Karolinska Univ. Hospital Solna, Stockholm (Sweden); Glimelius, Bengt [Dept. of Radiology, Oncology and Radiation Science, Uppsala Univ., Uppsala (Sweden); Dept. of Oncology and Pathology, Karolinska Inst., Stockholm (Sweden); Loerinc, Esther [Dept. of Oncology and Pathology, Karolinska Inst., Stockholm (Sweden); Dept. of Pathology, Karolinska Univ. Hospital, Solna, Sweden (Sweden)

    2013-09-15

    Background: Preoperative identification of locally advanced colon cancer is of importance in order to properly plan treatment. Purpose: To study high resolution T2-weighted magnetic resonance imaging (MRI) versus computed tomography (CT) for preoperative staging of colon cancer with surgery and histopathology as reference standard. Material and Methods: Twenty-eight patients with a total of 29 tumors were included. Patients were examined on a 1.5 T MR unit using a phased array body coil. T2 turbo spin-echo high resolution sequences were obtained in a coronal, transverse, and perpendicular plane to the long axis of the colon at the site of the tumor. Contrast-enhanced CT was performed using a protocol for metastasis staging. The examinations were independently evaluated by two gastrointestinal radiologists using criteria adapted to imaging for prediction of T-stage, N-stage, and extramural venous invasion. Based on the T-stage, tumors were divided in to locally advanced (T3cd-T4) and not locally advanced (T1-T3ab). Surgical and histopathological findings served as reference standard. Results: Using MRI, T-stage, N-stage, and extramural venous invasion were correctly predicted for each observer in 90% and 93%, 72% and 69%, and 82% and 78% of cases, respectively. With CT the corresponding results were 79% and 76%, 72% and 72%, 78% and 67%. For MRI inter-observer agreements (Kappa statistics) were 0.79, 0.10, and 0.76. For CT the corresponding results were 0.64, 0.66, and 0.22. Conclusion: Patients with locally advanced colon cancer, defined as tumor stage T3cd-T4, can be identified by both high resolution MRI and CT, even when CT is performed with a metastasis staging protocol. MRI may have an advantage, due to its high soft tissue discrimination, to identify certain prognostic factors such as T-stage and extramural venous invasion.

  19. High-resolution magnetic resonance angiography of the lower extremities with a dedicated 36-element matrix coil at 3 Tesla.

    Science.gov (United States)

    Kramer, Harald; Michaely, Henrik J; Matschl, Volker; Schmitt, Peter; Reiser, Maximilian F; Schoenberg, Stefan O

    2007-06-01

    Recent developments in hard- and software help to significantly increase image quality of magnetic resonance angiography (MRA). Parallel acquisition techniques (PAT) help to increase spatial resolution and to decrease acquisition time but also suffer from a decrease in signal-to-noise ratio (SNR). The movement to higher field strength and the use of dedicated angiography coils can further increase spatial resolution while decreasing acquisition times at the same SNR as it is known from contemporary exams. The goal of our study was to compare the image quality of MRA datasets acquired with a standard matrix coil in comparison to MRA datasets acquired with a dedicated peripheral angio matrix coil and higher factors of parallel imaging. Before the first volunteer examination, unaccelerated phantom measurements were performed with the different coils. After institutional review board approval, 15 healthy volunteers underwent MRA of the lower extremity on a 32 channel 3.0 Tesla MR System. In 5 of them MRA of the calves was performed with a PAT acceleration factor of 2 and a standard body-matrix surface coil placed at the legs. Ten volunteers underwent MRA of the calves with a dedicated 36-element angiography matrix coil: 5 with a PAT acceleration of 3 and 5 with a PAT acceleration factor of 4, respectively. The acquired volume and acquisition time was approximately the same in all examinations, only the spatial resolution was increased with the acceleration factor. The acquisition time per voxel was calculated. Image quality was rated independently by 2 readers in terms of vessel conspicuity, venous overlay, and occurrence of artifacts. The inter-reader agreement was calculated by the kappa-statistics. SNR and contrast-to-noise ratios from the different examinations were evaluated. All 15 volunteers completed the examination, no adverse events occurred. None of the examinations showed venous overlay; 70% of the examinations showed an excellent vessel conspicuity

  20. Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast

    International Nuclear Information System (INIS)

    Cummings, M.L.; Chien, T.Y.; Preissner, C.; Madhavan, V.; Diesing, D.; Bode, M.; Freeland, J.W.; Rose, V.

    2012-01-01

    The combination of high-brilliance synchrotron radiation with scanning tunneling microscopy opens the path to high-resolution imaging with chemical, electronic, and magnetic contrast. Here, the design and experimental results of an in-situ synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system are presented. The system is designed to allow monochromatic synchrotron radiation to enter the chamber, illuminating the sample with x-ray radiation, while an insulator-coated tip (metallic tip apex open for tunneling, electron collection) is scanned over the surface. A unique feature of the SXSTM is the STM mount assembly, designed with a two free-flex pivot, providing an angular degree of freedom for the alignment of the tip and sample with respect to the incoming x-ray beam. The system designed successfully demonstrates the ability to resolve atomic-scale corrugations. In addition, experiments with synchrotron x-ray radiation validate the SXSTM system as an accurate analysis technique for the study of local magnetic and chemical properties on sample surfaces. The SXSTM system's capabilities have the potential to broaden and deepen the general understanding of surface phenomena by adding elemental contrast to the high-resolution of STM. -- Highlights: ► Synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system designed. ► Unique STM mount design allows angular DOF for tip alignment with x-ray beam. ► System demonstrates ability to resolve atomic corrugations on HOPG. ► Studies show chemical sensitivity with STM tip from photocurrent and tunneling. ► Results show system's ability to study local magnetic (XMCD) properties on Fe films.

  1. High-resolution morphologic and ultrashort time-to-echo quantitative magnetic resonance imaging of the temporomandibular joint

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Won C.; Chang, Eric Y.; Biswas, Reni; Statum, Sheronda; Chung, Christine B. [Veterans Administration San Diego Healthcare System, Department of Radiology, San Diego, CA (United States); University of California, San Diego, School of Medicine, Department of Radiology, San Diego, CA (United States); Tafur, Monica; Du, Jiang; Healey, Robert [University of California, San Diego, School of Medicine, Department of Radiology, San Diego, CA (United States); Kwack, Kyu-Sung [Ajou University Medical Center, Department of Radiology, Wonchon-dong, Yeongtong-gu, Gyeonggi-do, Suwon (Korea, Republic of)

    2016-03-15

    To implement high-resolution morphologic and quantitative magnetic resonance imaging (MRI) of the temporomandibular joint (TMJ) using ultrashort time-to-echo (UTE) techniques in cadavers and volunteers. This study was approved by the institutional review board. TMJs of cadavers and volunteers were imaged on a 3-T MR system. High-resolution morphologic and quantitative sequences using conventional and UTE techniques were performed in cadaveric TMJs. Morphologic and UTE quantitative sequences were performed in asymptomatic and symptomatic volunteers. Morphologic evaluation demonstrated the TMJ structures in open- and closed-mouth position. UTE techniques facilitated the visualization of the disc and fibrocartilage. Quantitative UTE MRI was successfully performed ex vivo and in vivo, reflecting the degree of degeneration. There was a difference in the mean UTE T2* values between asymptomatic and symptomatic volunteers. MRI evaluation of the TMJ using UTE techniques allows characterization of the internal structure and quantification of the MR properties of the disc. Quantitative UTE MRI can be performed in vivo with short scan times. (orig.)

  2. Characterisation of carotid plaques with ultrasound elastography: feasibility and correlation with high-resolution magnetic resonance imaging

    International Nuclear Information System (INIS)

    Naim, Cyrille; Cloutier, Guy; Mercure, Elizabeth; Destrempes, Francois; Qin, Zhao; El-Abyad, Walid; Lanthier, Sylvain; Giroux, Marie-France; Soulez, Gilles

    2013-01-01

    To evaluate the ability of ultrasound non-invasive vascular elastography (NIVE) strain analysis to characterise carotid plaque composition and vulnerability as determined by high-resolution magnetic resonance imaging (MRI). Thirty-one subjects with 50 % or greater carotid stenosis underwent NIVE and high-resolution MRI of internal carotid arteries. Time-varying strain images (elastograms) of segmented plaques were generated from ultrasonic raw radiofrequency sequences. On MRI, corresponding plaques and components were segmented and quantified. Associations between strain parameters, plaque composition and symptomatology were estimated with curve-fitting regressions and Mann-Whitney tests. Mean stenosis and age were 72.7 % and 69.3 years, respectively. Of 31 plaques, 9 were symptomatic, 17 contained lipid and 7 were vulnerable on MRI. Strains were significantly lower in plaques containing a lipid core compared with those without lipid, with 77-100 % sensitivity and 57-79 % specificity (P < 0.032). A statistically significant quadratic fit was found between strain and lipid content (P < 0.03). Strains did not discriminate symptomatic patients or vulnerable plaques. Ultrasound NIVE is feasible in patients with significant carotid stenosis and can detect the presence of a lipid core with high sensitivity and moderate specificity. Studies of plaque progression with NIVE are required to identify vulnerable plaques. (orig.)

  3. Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Vion-Dury, J.; Confort-Gouny, S.; Maillet, S.; Cozzone, P.J.; Nicoli, F.; Gastaut, J.L.

    1996-01-01

    We have analyzed the cerebrospinal fluid (CSF) of 19 patients with multiple sclerosis (MS), 12 patients with degenerative dementia and 17 control patients using in vitro high resolution proton magnetic resonance spectroscopy (MRS) at 400 MHz. The CSF metabolic profile is slightly modified in MS patients (increased lactate and fructose concentrations, decreased creatinine and phenylalanine concentrations) and is not correlated with the intensity of the intrathecal inflammation. Proton MRS of CSF does not differentiate relapsing-remitting MS and primary progressive MS. We have not detected any specific abnormal resonance in native or lyophilized CSF. The CSF metabolic profile of demented patients is much more altered (increased concentration of lactate, pyruvate, alanine, lysine, valine, leucine-isoleucine, tyrosine, glutamine) and is in agreement with a brain oxidative metabolism impairment as already described in Alzheimer's disease. Unassigned abnormal but non specific or constant resonances have been detected on MR spectra of demented patients. CSF inositol concentration is also increased in the CSF of patients with Alzheimer's disease. In vitro high resolution proton MRS of the CSF constitutes a new and original way to explore CSF for the differential and/or early diagnosis of dementias, as a complement to in vivo proton cerebral MRS. (authors). 22 refs., 4 figs., 2 tabs

  4. Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vion-Dury, J.; Confort-Gouny, S.; Maillet, S.; Cozzone, P.J. [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France); Nicoli, F. [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France)]|[Hopital Sainte-Marguerite, 13 - Marseille (France); Gastaut, J.L. [Hopital Sainte-Marguerite, 13 - Marseille (France)

    1996-07-01

    We have analyzed the cerebrospinal fluid (CSF) of 19 patients with multiple sclerosis (MS), 12 patients with degenerative dementia and 17 control patients using in vitro high resolution proton magnetic resonance spectroscopy (MRS) at 400 MHz. The CSF metabolic profile is slightly modified in MS patients (increased lactate and fructose concentrations, decreased creatinine and phenylalanine concentrations) and is not correlated with the intensity of the intrathecal inflammation. Proton MRS of CSF does not differentiate relapsing-remitting MS and primary progressive MS. We have not detected any specific abnormal resonance in native or lyophilized CSF. The CSF metabolic profile of demented patients is much more altered (increased concentration of lactate, pyruvate, alanine, lysine, valine, leucine-isoleucine, tyrosine, glutamine) and is in agreement with a brain oxidative metabolism impairment as already described in Alzheimer`s disease. Unassigned abnormal but non specific or constant resonances have been detected on MR spectra of demented patients. CSF inositol concentration is also increased in the CSF of patients with Alzheimer`s disease. In vitro high resolution proton MRS of the CSF constitutes a new and original way to explore CSF for the differential and/or early diagnosis of dementias, as a complement to in vivo proton cerebral MRS. (authors). 22 refs., 4 figs., 2 tabs.

  5. High-resolution magnetic resonance imaging of the ankle: Normal anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Hajek, P.C.; Baker, L.L.; Bjorkengren, A.; Sartoris, D.J.; Resnick, D.; Neumann, C.H.

    1986-10-01

    An imaging-anatomic correlative study of ankle anatomy based upon six healthy adults and six fresh cadaveric specimens was performed to evaluate the diagnostic capabilities of magnetic resonance imaging CMRI). Optimal pulsing sequences and imaging planes for various structures of interest were established. MRI afforded exquisite depiction of anatomic detial, particularly the diagnostically important collateral ligaments. Limitations in the ability to delineate the joint capsule and articular cartilage were documented, with the former detectable only on T2 weighted images in the presence of synovial fluid.

  6. Finding the magnetic center of a quadrupole to high resolution: A draft proposal

    International Nuclear Information System (INIS)

    Fischer, G.E.; Cobb, J.K.; Jensen, D.R.

    1989-03-01

    In a companion proposal it is proposed to align quadrupoles of a transport line to within transverse tolerances of 5 to 10 micrometers. Such a proposal is meaningful only if the effective magnetic center of such lenses can in fact be repeatably located with respect to some external mechanical tooling to comparable accuracy. It is the purpose of this note to describe some new methods and procedures that will accomplish this aim. It will be shown that these methods are capable of yielding greater sensitivity than the more traditional methods used in the past. The notion of the ''nodal'' point is exploited. 4 refs., 5 figs., 1 tab

  7. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    Science.gov (United States)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  8. Characterizing the Motion of Solar Magnetic Bright Points at High Resolution

    Science.gov (United States)

    Van Kooten, Samuel J.; Cranmer, Steven R.

    2017-11-01

    Magnetic bright points in the solar photosphere, visible in both continuum and G-band images, indicate footpoints of kilogauss magnetic flux tubes extending to the corona. The power spectrum of bright-point motion is thus also the power spectrum of Alfvén wave excitation, transporting energy up flux tubes into the corona. This spectrum is a key input in coronal and heliospheric models. We produce a power spectrum of bright-point motion using radiative magnetohydrodynamic simulations, exploiting spatial resolution higher than can be obtained in present-day observations, while using automated tracking to produce large data quantities. We find slightly higher amounts of power at all frequencies compared to observation-based spectra, while confirming the spectrum shape of recent observations. This also provides a prediction for observations of bright points with DKIST, which will achieve similar resolution and high sensitivity. We also find a granule size distribution in support of an observed two-population distribution, and we present results from tracking passive tracers, which show a similar power spectrum to that of bright points. Finally, we introduce a simplified, laminar model of granulation, with which we explore the roles of turbulence and of the properties of the granulation pattern in determining bright-point motion.

  9. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  10. Inverse transformation algorithm of transient electromagnetic field and its high-resolution continuous imaging interpretation method

    International Nuclear Information System (INIS)

    Qi, Zhipeng; Li, Xiu; Lu, Xushan; Zhang, Yingying; Yao, Weihua

    2015-01-01

    We introduce a new and potentially useful method for wave field inverse transformation and its application in transient electromagnetic method (TEM) 3D interpretation. The diffusive EM field is known to have a unique integral representation in terms of a fictitious wave field that satisfies a wave equation. The continuous imaging of TEM can be accomplished using the imaging methods in seismic interpretation after the diffusion equation is transformed into a fictitious wave equation. The interpretation method based on the imaging of a fictitious wave field could be used as a fast 3D inversion method. Moreover, the fictitious wave field possesses some wave field features making it possible for the application of a wave field interpretation method in TEM to improve the prospecting resolution.Wave field transformation is a key issue in the migration imaging of a fictitious wave field. The equation in the wave field transformation belongs to the first class Fredholm integration equation, which is a typical ill-posed equation. Additionally, TEM has a large dynamic time range, which also facilitates the weakness of this ill-posed problem. The wave field transformation is implemented by using pre-conditioned regularized conjugate gradient method. The continuous imaging of a fictitious wave field is implemented by using Kirchhoff integration. A synthetic aperture and deconvolution algorithm is also introduced to improve the interpretation resolution. We interpreted field data by the method proposed in this paper, and obtained a satisfying interpretation result. (paper)

  11. High-Resolution Longitudinal Screening with Magnetic Resonance Imaging in a Murine Brain Cancer Model

    Directory of Open Access Journals (Sweden)

    Nicholas A. Bock

    2003-11-01

    Full Text Available One of the main limitations of intracranial models of diseases is our present inability to monitor and evaluate the intracranial compartment noninvasively over time. Therefore, there is a growing need for imaging modalities that provide thorough neuropathological evaluations of xenograft and transgenic models of intracranial pathology. In this study, we have established protocols for multiple-mouse magnetic resonance imaging (MRI to follow the growth and behavior of intracranial xenografts of gliomas longitudinally. We successfully obtained weekly images on 16 mice for a total of 5 weeks on a 7-T multiple-mouse MRI. T2- and Ti-weighted imaging with gadolinium enhancement of vascularity was used to detect tumor margins, tumor size, and growth. These experiments, using 3D whole brain images obtained in four mice at once, demonstrate the feasibility of obtaining repeat radiological images in intracranial tumor models and suggest that MRI should be incorporated as a research modality for the investigation of intracranial pathobiology.

  12. Multi-wavelength high-resolution observations of a small-scale emerging magnetic flux event and the chromospheric and coronal response

    Energy Technology Data Exchange (ETDEWEB)

    Vargas Domínguez, Santiago; Kosovichev, Alexander; Yurchyshyn, Vasyl, E-mail: svargas@bbso.njit.edu [Big Bear Solar Observatory, NJIT, 40386 North Shore Lane, Big Bear City, CA 92314-9672 (United States)

    2014-10-20

    State-of-the-art solar instrumentation is now revealing magnetic activity of the Sun with unprecedented temporal and spatial resolutions. Observations with the 1.6 m aperture New Solar Telescope (NST) of the Big Bear Solar Observatory are making next steps in our understanding of the solar surface structure. Granular-scale magnetic flux emergence and the response of the solar atmosphere are among the key research topics of high-resolution solar physics. As part of a joint observing program with NASA's Interface Region Imaging Spectrograph (IRIS) mission on 2013 August 7, the NST observed active region NOAA 11,810 in the photospheric TiO 7057 Å band with a resolution of pixel size of 0.''034 and chromospheric He I 10830 Å and Hα 6563 Å wavelengths. Complementary data are provided by the Solar Dynamics Observatory (SDO) and Hinode space-based telescopes. The region displayed a group of solar pores, in the vicinity of which we detect a small-scale buoyant horizontal magnetic flux tube causing granular alignments and interacting with the preexisting ambient field in the upper atmospheric layers. Following the expansion of distorted granules at the emergence site, we observed a sudden appearance of an extended surge in the He I 10830 Å data (bandpass of 0.05 Å). The IRIS transition region imaging caught ejection of a hot plasma jet associated with the He I surge. The SDO/HMI data used to study the evolution of the magnetic and Doppler velocity fields reveal emerging magnetic loop-like structures. Hinode/Ca II H and IRIS filtergrams detail the connectivities of the newly emerged magnetic field in the lower solar chromosphere. From these data, we find that the orientation of the emerging magnetic field lines from a twisted flux tube formed an angle of ∼45° with the overlying ambient field. Nevertheless, the interaction of emerging magnetic field lines with the pre-existing overlying field generates high-temperature emission regions and boosts the

  13. High-Resolution Gravity Field Modeling for Mercury to Estimate Crust and Lithospheric Properties

    Science.gov (United States)

    Goossens, S.; Mazarico, E.; Genova, A.; James, P. B.

    2018-05-01

    We estimate a gravity field model for Mercury using line-of-sight data to improve the gravity field model at short wavelengths. This can be used to infer crustal density and infer the support mechanism of the lithosphere.

  14. High-resolution structural characterization and magnetic properties of epitaxial Ce-doped yttrium iron garnet thin films

    Science.gov (United States)

    Li, Zhong; Vikram Singh, Amit; Rastogi, Ankur; Gazquez, Jaume; Borisevich, Albina Y.; Mishra, Rohan; Gupta, Arunava

    2017-07-01

    Thin films of magnetic garnet materials, e.g. yttrium iron garnet (Y3Fe5O12, YIG), are useful for a variety of applications including microwave integrated circuits and spintronics. Substitution of rare earth ions, such as cerium, is known to enhance the magneto-optic Kerr effect (MOKE) as compared to pure YIG. Thin films of Ce0.75Y2.25Fe5O12 (Ce:YIG) have been grown using the pulsed laser deposition (PLD) technique and their crystal structure examined using high resolution scanning transmission electron microscopy. Homogeneous substitution of Ce in YIG, without oxidation to form a separate CeO2 phase, can be realized in a narrow process window with resulting enhancement of the MOKE signal. The thermally generated signal due to spin Seebeck effect for the optimally doped Ce:YIG films has also been investigated.

  15. Estimating photosynthesis with high resolution field spectroscopy in a Mediterranean grassland under different nutrient availability

    Science.gov (United States)

    Perez-Priego, O.; Guan, J.; Fava, F.; Rossini, M.; Wutzler, T.; Moreno, G.; Carrara, A.; Kolle, O.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2014-12-01

    Recent studies have shown how human induced N:P imbalances are affecting essential processes (e.g. photosynthesis, plant growth rate) that lead to important changes in ecosystem structure and function. In this regard, the accuracy of the approaches based on remotely-sensed data for monitoring and modeling gross primary production (GPP) relies on the ability of vegetation indices (VIs) to track the dynamics of vegetation physiological and biophysical properties/variables. Promising results have been recently obtained when Chlorophyll-sensitive VIs and Chlorophyll fluorescence are combined with structural indices in the framework of the Monteith's light use efficiency (LUE) model. However, further ground-based experiments are required to validate LUE model performances, and their capability to be generalized under different nutrient availability conditions. In this study, the overall objective was to investigate the sensitivity of VIs to track short- and long-term GPP variations in a Mediterranean grassland under different N and P fertilization treatments. Spectral VIs were acquired manually using high resolution spectrometers (HR4000, OceanOptics, USA) along a phenological cycle. The VIs examined included photochemical reflectance index (PRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI). Solar-induced chlorophyll fluorescence calculated at the oxygen absorption band O2-A (F760) using spectral fitting methods was also used. Simultaneously, measurements of GPP and environmental variables were conducted using a transient-state canopy chamber. Overall, GPP, F760 and VIs showed a clear seasonal time-trend in all treatments, which was driven by the phenological development of the grassland. Results showed significant differences (p<0.05) in midday GPP values between N and without N addition plots, in particular at the peak of the growing season during the flowering stage and at the end of the season during senescence. While

  16. Use of high-resolution satellite images for detection of geological structures related to Calerias geothermal field, Chile

    Science.gov (United States)

    Arellano-Baeza, A. A.; Urzua, L.

    2011-12-01

    Chile has enormous potential to use the geothermal resources for electric energy generation. The main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT and ASTER satellites have been used to delineate the geological structures related to the Calerias geothermal field located at the northern end of the Southern Volcanic Zone of Chile. It was done by applying the lineament extraction technique developed by authors. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields.

  17. Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Tot Bui

    2010-09-01

    Full Text Available Gadolinium (Gd, with its 7 unpaired electrons in 4f orbitals that provide a very large magnetic moment, is proven to be among the best agents for contrast enhanced MRI. Unfortunately, the most potent MR contrast agent based on Gd requires relatively high doses of Gd. The Gd-chelated to diethylene-triamine-penta-acetic acid (DTPA, or other derivatives (at 0.1 mmole/kg recommended dose, distribute broadly into tissues and clear through the kidney. These contrast agents carry the risk of Nephrogenic Systemic Fibrosis (NSF, particularly in kidney impaired subjects. Thus, Gd contrast agents that produce higher resolution images using a much lower Gd dose could address both imaging sensitivity and Gd safety.To determine whether a biocompatible lipid nanoparticle with surface bound Gd can improve MRI contrast sensitivity, we constructed Gd-lipid nanoparticles (Gd-LNP containing lipid bound DTPA and Gd. The Gd-LNP were intravenously administered to rats and MR images collected. We found that Gd in Gd-LNP produced a greater than 33-fold higher longitudinal (T(1 relaxivity, r(1, constant than the current FDA approved Gd-chelated contrast agents. Intravenous administration of these Gd-LNP at only 3% of the recommended clinical Gd dose produced MRI signal-to-noise ratios of greater than 300 in all vasculatures. Unlike current Gd contrast agents, these Gd-LNP stably retained Gd in normal vasculature, and are eliminated predominately through the biliary, instead of the renal system. Gd-LNP did not appear to accumulate in the liver or kidney, and was eliminated completely within 24 hrs.The novel Gd-nanoparticles provide high quality contrast enhanced vascular MRI at 97% reduced dose of Gd and do not rely on renal clearance. This new agent is likely to be suitable for patients exhibiting varying degrees of renal impairment. The simple and adaptive nanoparticle design could accommodate ligand or receptor coating for drug delivery optimization and in vivo drug

  18. Impact of the displacement current on low-frequency electromagnetic fields computed using high-resolution anatomy models

    International Nuclear Information System (INIS)

    Barchanski, A; Gersem, H de; Gjonaj, E; Weiland, T

    2005-01-01

    We present a comparison of simulated low-frequency electromagnetic fields in the human body, calculated by means of the electro-quasistatic formulation. The geometrical data in these simulations were provided by an anatomically realistic, high-resolution human body model, while the dielectric properties of the various body tissues were modelled by the parametric Cole-Cole equation. The model was examined under two different excitation sources and various spatial resolutions in a frequency range from 10 Hz to 1 MHz. An analysis of the differences in the computed fields resulting from a neglect of the permittivity was carried out. On this basis, an estimation of the impact of the displacement current on the simulated low-frequency electromagnetic fields in the human body is obtained. (note)

  19. Modern, PC based, high resolution portable EDXRF analyzer offers laboratory performance for field, in-situ analysis of environmental contaminants

    International Nuclear Information System (INIS)

    Piorek, Stanislaw

    1994-01-01

    The introduction of a new, high resolution, portable probe that has improved the sensitivity of the conventional field portable X-ray fluorescence (FPXRF) by up to an order of magnitude had been reported earlier [S. Piorek and J.R. Pasmore, Proc. 2nd Int. Symp. on Field Screening Methods for Hazardous Wastes and Toxic Chemicals, Las Vegas, 1991, p. 737]. A high resolution Si(Li) detector probe operates connected to a multichannel X-ray analyzer (2048 channels) which is housed in a portable, battery powered industrial computer. An improved energy resolution of the detector allows the implementation of more sophisticated data treatment methods to convert the measured intensities into mass concentrations of the analytes. A backscatter with a fundamental parameters approach (BFP) is one of the best methods, specifically for metallic contaminants in soil. A program has been written based on the BFP method for use with the new probe. The new software/probe combination enables one to quickly assess levels of contaminants on the site without the need of analyzed samples for instrument calibration. The performance of the EDXRF system in application to analysis of metals in contaminated soil is discussed in this paper. Also discussed is the extension of this method in the analysis of other types of environmental samples such as air particulates collected on filter paper. ((orig.))

  20. The measurement of internal stress fields in weldments and around cracks using high resolution neutron diffraction

    International Nuclear Information System (INIS)

    Allen, A.J.; Hutchings, M.T.; Windsor, C.G.

    1987-01-01

    The paper describes and illustrates the capability of neutron diffraction to measure the complete internal lattice macrostrain field, and hence the stress field, within steel components and weldments arising from their fabrication. A brief outline is given of the theory of the neutron method. The experimental considerations are discussed. The method is illustrated by its application to the measurement of the stress distribution in a:- uniaxially stressed mild steel rod, a double - V test weld, a tube-plate weld, and a cracked fatigue test specimen. (U.K.)

  1. U.S. West Coast MODIS Aqua High Resolution CHLA Anomaly Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  2. U.S. West Coast MODIS Aqua High Resolution SST Climatology Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  3. U.S. West Coast MODIS Aqua High Resolution CHLA Climatology Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  4. U.S. West Coast MODIS Aqua High Resolution SST Anomaly Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  5. Beamline 9.3.2 - a high-resolution, bend-magnet beamline with circular polarization capability

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.2 is a high resolution, SGM beamline on an ALS bending magnet with access to photon energies from 30-1500 eV. Features include circular polarization capability, a rotating chamber platform that allows switching between experiments without breaking vacuum, an active feedback system that keeps the beam centered on the entrance slit of the monochromator, and a bendable refocusing mirror. The beamline optics consist of horizontally and vertically focussing mirrors, a Spherical Grating Monochromator (SGM) with movable entrance and exit slits, and a bendable refocussing mirror. In addition, a movable aperature has been installed just upstream of the vertically focussing mirror which can select the x-rays above or below the plane of the synchrotron storage ring, allowing the user to select circularly or linearly polarized light. Circularly polarized x-rays are used to study the magnetic properties of materials. Beamline 9.3.2 can supply left and right circularly polarized x-rays by a computer controlled aperture which may be placed above or below the plane of the synchrotron storage ring. The degree of linear and circular polarization has been measured and calibrated.

  6. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    International Nuclear Information System (INIS)

    Smith, Verne V.; Cunha, Katia; Shetrone, Matthew D.; Meszaros, Szabolcs; Allende Prieto, Carlos; Bizyaev, Dmitry; Garcìa Pèrez, Ana; Majewski, Steven R.; Schiavon, Ricardo; Holtzman, Jon; Johnson, Jennifer A.

    2013-01-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants (α Boo and μ Leo), two M-giants (β And and δ Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes 12 C, 13 C, 14 N, and 16 O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of 12 C synthesized during 4 He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to ∼0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  7. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Verne V.; Cunha, Katia [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Shetrone, Matthew D. [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Meszaros, Szabolcs; Allende Prieto, Carlos [Instituto d' Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM 88349 (United States); Garcia Perez, Ana; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Schiavon, Ricardo [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5UX (United Kingdom); Holtzman, Jon [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Johnson, Jennifer A., E-mail: vsmith@noao.edu [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)

    2013-03-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  8. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas

    DEFF Research Database (Denmark)

    Saygin, Z M; Kliemann, D; Iglesias, J. E.

    2017-01-01

    The amygdala is composed of multiple nuclei with unique functions and connections in the limbic system and to the rest of the brain. However, standard in vivo neuroimaging tools to automatically delineate the amygdala into its multiple nuclei are still rare. By scanning postmortem specimens at high...... resolution (100-150µm) at 7T field strength (n = 10), we were able to visualize and label nine amygdala nuclei (anterior amygdaloid, cortico-amygdaloid transition area; basal, lateral, accessory basal, central, cortical medial, paralaminar nuclei). We created an atlas from these labels using a recently...... developed atlas building algorithm based on Bayesian inference. This atlas, which will be released as part of FreeSurfer, can be used to automatically segment nine amygdala nuclei from a standard resolution structural MR image. We applied this atlas to two publicly available datasets (ADNI and ABIDE...

  9. In vivo high resolution human corneal imaging using full-field optical coherence tomography.

    Science.gov (United States)

    Mazlin, Viacheslav; Xiao, Peng; Dalimier, Eugénie; Grieve, Kate; Irsch, Kristina; Sahel, José-Alain; Fink, Mathias; Boccara, A Claude

    2018-02-01

    We present the first full-field optical coherence tomography (FFOCT) device capable of in vivo imaging of the human cornea. We obtained images of the epithelial structures, Bowman's layer, sub-basal nerve plexus (SNP), anterior and posterior stromal keratocytes, stromal nerves, Descemet's membrane and endothelial cells with visible nuclei. Images were acquired with a high lateral resolution of 1.7 µm and relatively large field-of-view of 1.26 mm x 1.26 mm - a combination, which, to the best of our knowledge, has not been possible with other in vivo human eye imaging methods. The latter together with a contactless operation, make FFOCT a promising candidate for becoming a new tool in ophthalmic diagnostics.

  10. Wide-field Spatio-Spectral Interferometry: Bringing High Resolution to the Far- Infrared

    Science.gov (United States)

    Leisawitx, David

    Wide-field spatio-spectral interferometry combines spatial and spectral interferometric data to provide integral field spectroscopic information over a wide field of view. This technology breaks through a mission cost barrier that stands in the way of resolving spatially and measuring spectroscopically at far-infrared wavelengths objects that will lead to a deep understanding of planetary system and galaxy formation processes. A space-based far-IR interferometer will combine Spitzer s superb sensitivity with a two order of magnitude gain in angular resolution, and with spectral resolution in the thousands. With the possible exception of detector technology, which is advancing with support from other research programs, the greatest challenge for far-IR interferometry is to demonstrate that the interferometer will actually produce the images and spectra needed to satisfy mission science requirements. With past APRA support, our team has already developed the highly specialized hardware testbed, image projector, computational model, and image construction software required for the proposed effort, and we have access to an ideal test facility.

  11. High resolution structuring of emitter tips for the gaseous field ionization source

    International Nuclear Information System (INIS)

    Kubby, J.A.; Siegel, B.M.

    1986-01-01

    Extraction of a stable, high brightness ion beam from an apertured field ion emitter surface requires microfabrication procedures to sculpture the surface topography on both microscopic (100 --1000 nm) and near atomic (10 --100 nm) length scales. Structuring on a near atomic scale is required to confine and stabilize the ion beam by local enhancement of the surface electrostatic field and to orient that emission on the optical axis. Control of the emitter contour on a microscopic scale is required for manipulating the supply of neutral molecules to the ionization site and also affects beam stability. We have developed a method using ion milling for configuring surface contour on microscopic and near atomic length scales which utilizes the morphological changes occurring at ion bombarded surfaces as a result of erosion by sputtering. A SEM study of the microscopic emitter topographical development is compared to computer simulations of the kinematical wave equation which depicts the erosion process. In this way, prediction of configuration on a length scale large compared to the ion penetration depth has been established. TEM observations show the surface development on the length scale of ion penetration depth. Preliminary results using this microfabricated emitter in a gaseous field ion source to produce a hydrogen ion beam with high angular beam confinement are given. Requirements for surface topography that are essential to obtain stable high brightness ion beams are discussed

  12. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  13. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  14. Tsunami Rapid Assessment Using High Resolution Images and Field Surveys: the 2010 , Central Chile, and the 2011, Tohoku Tsunamis

    Science.gov (United States)

    Ramirez-Herrera, M.; Navarrete-Pacheco, J.; Lagos, M.; Arcas, D.

    2013-12-01

    Recent extreme tsunamis have shown their major socioeconomic impact and imprint in the coastal landscape. Extensive destruction, erosion, sediment transport and deposition resculpted coastal landscape within few minutes along hundreds of kilometers of the Central Chile, in 2010, and the Northeast coast of Japan, in 2011. In the central coast of Chile, we performed a post-tsunami survey a week after the tsunami due to access restrictions. Our observations focus on the inundation and geomorphic effects of the 2010 tsunami and included an air reconnaissance flight, analysis of pre- and post-event low fly air-photographs and Google Earth satellite images, together with ground reconnaissance and mapping in the field, including topographic transects, during a period of 13 days. Eyewitness accounts enabled us to confirm our observations on effects produced by the tsunami along ~ 500km along the coastline landscape in central Chile For the Tohoku case study, we assessed in a day tsunami inundation distances and runup heights using satellite data (very high resolution satellite images from the GeoEye1 satellite and from the DigitalGlobe worldview through the Google crisis response project, SRTM and ASTER GDEM) of the Tohoku region, Northeast Japan. Field survey data by Japanese, other international scientists and us validated our results. The rapid assessment of damage using high-resolution images has proven to be an excellent tool neccessary for effcient postsunami surveys as well as for rapid assessment of areas with access restrictions. All countries, in particular those with less access to technology and infrastructure, can benefit from the use of freely available satellite imagery and DEMs for an initial, pre-field survey, rapid estimate of inundated areas, distances and runup, tsunami effects in the coastal geomorphology and for assisting in hazard management and mitigation after a natural disaster. These data provide unprecedented opportunities for rapid assessment

  15. High resolution field study of sediment dynamics on a strongly heterogeneous bed

    Science.gov (United States)

    Bailly Du Bois, P.; Blanpain, O.; Lafite, R.; Cugier, P.; Lunven, M.

    2010-12-01

    Extensive field measurements have been carried out at several stations in a macrotidal inner continental shelf in the English Channel (around 25 m depth) during spring tide period. The strong tidal current measured (up to 1.6 m.s-1) allowed sediment dynamics on a bed characterised by a mixture of size with coarse grains to be dominant. Data acquired in such hydro-sedimentary conditions are scarce. A new instrument, the DYnamic Sediment Profile Imagery (DySPI) system, was specifically conceived and implemented in-situ to observe and measure, with a high temporal resolution, the dynamics of a strongly heterogeneous mixture of particles in a grain-size scale. The data collected covered: 1) grain size range (side scan sonar, video observations, Shipeck grab samples, DySPI images) and vertical sorting (stratigraphic sampling by divers) of sediment cover, 2) hydrodynamic features (acoustic Doppler velocimeter, acoustic Doppler profiler), 3) suspended load nature and dynamics (optical backscatter, chlorophyll fluorometer, particle size analyser, Niskin bottles, scanning electron microscopy), 4) sand and gravel bedload transport estimates (DySPI image processing), 5) transfer dynamics of fine grains within a coarse matrix and their depth of penetration (radionuclides measurements in stratigraphic samples). The four stations present different grain size vertical sorting from a quasi-permanent armouring to a homogenous distribution. The sediment cover condition is directly linked to hydrodynamic capacity and sediment availability. Fine grain ratio within deep sediment layers (up to 10 cm) is higher when the bed armouring is durable. However, fine sediments are not permanently depth trapped: deep layers are composed of few years-old radionuclide tracers fixed on fine grains and a vertical mixing coefficient has been evaluated for each sediment cover. Fine grain dynamics within a coarse matrix is inversely proportional to the robustness of the armour layer. For current

  16. The Galactic magnetic fields

    International Nuclear Information System (INIS)

    Han Jinlin

    2006-01-01

    A good progress has been made on studies of Galactic magnetic fields in last 10 years. I describe what we want to know about the Galactic magnetic fields, and then review we current knowledge about magnetic fields in the Galactic disk, the Galactic halo and the field strengths. I also listed many unsolved problems on this area

  17. Wall enhancement on high-resolution magnetic resonance imaging may predict an unsteady state of an intracranial saccular aneurysm

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Peng; Zhang, Hong-Qi [Capital Medical University, Department of Neurosurgery, Xuanwu Hospital, Beijing (China); Yang, Qi [Capital Medical University, Department of Radiology, Xuanwu Hospital, Beijing (China); Wang, Dan-Dan [Capital Medical University, Department of Clinical Pathology, Xuanwu Hospital, Beijing (China); Guan, Shao-Chen [Capital Medical University, Department of Evidence-Based Medicine, Xuanwu Hospital, Beijing (China)

    2016-10-15

    The aneurysm wall has been reported to play a critical role in the formation, development, and even rupture of an aneurysm. We used high-resolution magnetic resonance imaging (HRMRI) to investigate the aneurysm wall in an effort to identify evidence of inflammation invasion and define its relationship with aneurysm behavior. Patients with intracranial aneurysms who were prospectively evaluated using HRMRI between July 2013 and June 2014 were enrolled in this study. The aneurysm's wall enhancement and evidence of inflammation invasion were determined. In addition, the relationship between aneurysm wall enhancement and aneurysm size and symptoms, including ruptured aneurysms, giant unruptured intracranial aneurysms (UIAs) presenting as mass effect, progressively growing aneurysms, and aneurysms associated with neurological symptoms, was statistically analyzed. Twenty-five patients with 30 aneurysms were available for the current study. Fourteen aneurysms showed wall enhancement, including 6 ruptured and 8 unruptured aneurysms. Evidence of inflammation was identified directly through histological studies and indirectly through intraoperative investigations and clinical courses. The statistical analysis indicated no significant correlation between aneurysm wall enhancement and aneurysm size. However, there was a strong correlation between wall enhancement and aneurysm symptoms, with a kappa value of 0.86 (95 % CI 0.68-1). Aneurysm wall enhancement on HRMRI might be a sign of inflammatory change. Symptomatic aneurysms exhibited wall enhancement on HRMRI. Wall enhancement had a high consistent correlation of symptomatic aneurysms. Therefore, wall enhancement on HRMRI might predict an unsteady state of an intracranial saccular aneurysm. (orig.)

  18. High resolution inelastic electron scattering on 90Zr at low momentum transfer and strong fragmentation of the magnetic quadrupole strength

    International Nuclear Information System (INIS)

    Meuer, D.; Frey, R.; Hoffmann, D.H.H.; Richter, A.; Spamer, E.; Titze, O.; Knuepfer, W.

    1980-01-01

    High-resolution (FWHM approx. 30 keV) inelastic electron scattering on 90 Zr at low momentum transfer (0.20 -1 ) has been used to study magnetic transitions at excitation energies Esub(x) = 8-10 MeV. The experimental data were analyzed in the distorted-wave Born approximation (DWBA) with wave functions calculated in the random phase approximation (RPA). Three Jsup(π) = 1 + states have been identified Esub(x) = 8.233, 9.000 and 9.371 MeV. There is some indication of further very fragmented dipole strength and the upper limit for the total M1 strength in the investigated energy region is ΣB(M1)up 2 sub(K). It is much smaller than any theoretical prediction. Furthermore, a large number of 2 - states has been observed, with the center of gravity located at Esub(x) approx. 9 MeV. These states carry a total strength of ΣB(M2)up = 1000 μ 2 sub(K) x fm 2 . Their strong fragmentation is in qualitative agreement with theoretical calculations, but the deduced strength is much smaller than theoretically predicted. In addition the distributions of spacings and radiative widths of the 2 - states are consistent with a Wigner and a Porter-Thomas distribution, respectively. (orig.)

  19. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS Magnetic Resonance Spectroscopy (MRS

    Directory of Open Access Journals (Sweden)

    Taylor L. Fuss

    2016-03-01

    Full Text Available According to World Health Organization (WHO estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS magnetic resonance spectroscopy (MRS has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics.

  20. Hyperpolarized 3helium magnetic resonance ventilation imaging of the lung in cystic fibrosis: comparison with high resolution CT and spirometry

    International Nuclear Information System (INIS)

    McMahon, Colm J.; Dodd, Jonathan D.; Skehan, Stephen J.; Masterson, James B.; Hill, Catherine; Woodhouse, Neil; Wild, Jim M.; Fichele, Stan; Gallagher, Charles G.; Beek, Edwin J.R. van

    2006-01-01

    The purpose of this study was to compare hyperpolarized 3 helium magnetic resonance imaging ( 3 He MRI) of the lungs in adults with cystic fibrosis (CF) with high-resolution computed tomography (HRCT) and spirometry. Eight patients with stable CF prospectively underwent 3 He MRI, HRCT, and spirometry within 1 week. Three-dimensional (3D) gradient-echo sequence was used during an 18-s breath-hold following inhalation of hyperpolarized 3 He. Each lung was divided into six zones; 3 He MRI was scored as percentage ventilation per lung zone. HRCT was scored using a modified Bhalla scoring system. Univariate (Spearman rank) and multivariate correlations were performed between 3 He MRI, HRCT, and spirometry. Results are expressed as mean±SD (range). Spirometry is expressed as percent predicted. There were four men and four women, mean age=31.9±9 (20-46). Mean forced expiratory volume in 1 s (FEV) 1 =52%±29 (27-93). Mean 3 He MRI score=74%±25 (55-100). Mean HRCT score=48.8±24 (13.5-83). The correlation between 3 He MRI and HRCT was strong (R=±0.89, p 3 He MRI; 3 He MRI correlated better with FEV 1 and forced vital capacity (FVC) (R=0.86 and 0.93, p 3 He MRI correlates strongly with structural HRCT abnormalities and is a stronger correlate of spirometry than HRCT in CF. (orig.)

  1. High-resolution magnetic resonance imaging tracks changes in organ and tissue mass in obese and aging rats.

    Science.gov (United States)

    Tang, Haiying; Vasselli, Joseph R; Wu, Ed X; Boozer, Carol N; Gallagher, Dympna

    2002-03-01

    Magnetic resonance imaging (MRI) has the ability to discriminate between various soft tissues in vivo. Whole body, specific organ, total adipose tissue (TAT), intra-abdominal adipose tissue (IAAT), and skeletal muscle (SM) weights determined by MRI were compared with weights determined by dissection and chemical analysis in two studies with male Sprague-Dawley rats. A 4.2-T MRI machine acquired high-resolution, in vivo, longitudinal whole body images of rats as they developed obesity or aged. Weights of the whole body and specific tissues were determined using computer image analysis software, including semiautomatic segmentation algorithms for volume calculations. High correlations were found for body weight (r = 0.98), TAT (r = 0.99), and IAAT (r = 0.98) between MRI and dissection and chemical analyses. MRI estimated the weight of the brain, kidneys, and spleen with high accuracy (r > 0.9), but overestimated IAAT, SM, and liver volumes. No differences were detected in organ weights using MRI and dissection measurements. Longitudinal MRI measurements made during the development of obesity and aging accurately represented changes in organ and tissue mass.

  2. Automated high resolution full-field spatial coherence tomography for quantitative phase imaging of human red blood cells

    Science.gov (United States)

    Singla, Neeru; Dubey, Kavita; Srivastava, Vishal; Ahmad, Azeem; Mehta, D. S.

    2018-02-01

    We developed an automated high-resolution full-field spatial coherence tomography (FF-SCT) microscope for quantitative phase imaging that is based on the spatial, rather than the temporal, coherence gating. The Red and Green color laser light was used for finding the quantitative phase images of unstained human red blood cells (RBCs). This study uses morphological parameters of unstained RBCs phase images to distinguish between normal and infected cells. We recorded the single interferogram by a FF-SCT microscope for red and green color wavelength and average the two phase images to further reduced the noise artifacts. In order to characterize anemia infected from normal cells different morphological features were extracted and these features were used to train machine learning ensemble model to classify RBCs with high accuracy.

  3. High-resolution metallic magnetic calorimeters for β-spectroscopy on 187rhenium and position resolved X-ray spectroscopy

    International Nuclear Information System (INIS)

    Porst, Jan-Patrick

    2011-01-01

    This thesis describes the development of metallic magnetic calorimeters (MMCs) for high resolution spectroscopy. MMCs are energy dispersive particle detectors based on the calorimetric principle which are typically operated at temperatures below 100 mK. The detectors make use of a paramagnetic temperature sensor to transform the temperature rise upon the absorption of a particle in the detector into a measurable magnetic flux change in a dc-SQUID. The application of MMCs for neutrino mass measurements and their advantages with respect to other approaches are discussed. In view of this application the development of an MMC optimized for β-endpoint spectroscopy on 187 rhenium is presented. A fully micro-fabricated X-ray detector is characterized and performs close to design values. Furthermore, a new technique to more efficiently couple rhenium absorbers mechanically and thermally to the sensor was developed and successfully tested. By employing a metallic contact, signal rise times faster than 5 μs could be observed with superconducting rhenium absorbers. In addition to the single pixel detectors, an alternative approach of reading out multiple pixels was developed in this work, too. Here, the individual absorbers have a different thermal coupling to only one temperature sensor resulting in a distribution of different pulse shapes. Straightforward position discrimination by means of rise time analysis is demonstrated for a four pixel MMC and a thermal model of the detector is provided. Unprecedented so far, an energy resolution of less than ΔE FWHM <5 eV for 5.9 keV X-rays was achieved across all absorbers. (orig.)

  4. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  5. High-resolution, real-time mapping of surface soil moisture at the field scale using ground penetrating radar

    Science.gov (United States)

    Lambot, S.; Minet, J.; Slob, E.; Vereecken, H.; Vanclooster, M.

    2008-12-01

    Measuring soil surface water content is essential in hydrology and agriculture as this variable controls important key processes of the hydrological cycle such as infiltration, runoff, evaporation, and energy exchanges between the earth and the atmosphere. We present a ground-penetrating radar (GPR) method for automated, high-resolution, real-time mapping of soil surface dielectric permittivity and correlated water content at the field scale. Field scale characterization and monitoring is not only necessary for field scale management applications, but also for unravelling upscaling issues in hydrology and bridging the scale gap between local measurements and remote sensing. In particular, such methods are necessary to validate and improve remote sensing data products. The radar system consists of a vector network analyzer combined with an off-ground, ultra-wideband monostatic horn antenna, thereby setting up a continuous-wave steeped-frequency GPR. Radar signal analysis is based on three-dimensional electromagnetic inverse modelling. The forward model accounts for all antenna effects, antenna-soil interactions, and wave propagation in three-dimensional multilayered media. A fast procedure was developed to evaluate the involved Green's function, resulting from a singular, complex integral. Radar data inversion is focused on the surface reflection in the time domain. The method presents considerable advantages compared to the current surface characterization methods using GPR, namely, the ground wave and common reflection methods. Theoretical analyses were performed, dealing with the effects of electric conductivity on the surface reflection when non-negligible, and on near-surface layering, which may lead to unrealistic values for the surface dielectric permittivity if not properly accounted for. Inversion strategies are proposed. In particular the combination of GPR with electromagnetic induction data appears to be promising to deal with highly conductive soils

  6. Omnigenous magnetic fields

    International Nuclear Information System (INIS)

    Stupakov, G.V.

    1982-01-01

    In omnigenous magnetic fields particles' drift surfaces coincide with plasma magnetic surfaces. In this paper we formulate equations of omnigenous magnetic fields in natural curvilinear coordinates. An analysis of fields which are omnigenous only in the paraxial approximation is presented. (author)

  7. Optical system design with wide field of view and high resolution based on monocentric multi-scale construction

    Science.gov (United States)

    Wang, Fang; Wang, Hu; Xiao, Nan; Shen, Yang; Xue, Yaoke

    2018-03-01

    With the development of related technology gradually mature in the field of optoelectronic information, it is a great demand to design an optical system with high resolution and wide field of view(FOV). However, as it is illustrated in conventional Applied Optics, there is a contradiction between these two characteristics. Namely, the FOV and imaging resolution are limited by each other. Here, based on the study of typical wide-FOV optical system design, we propose the monocentric multi-scale system design method to solve this problem. Consisting of a concentric spherical lens and a series of micro-lens array, this system has effective improvement on its imaging quality. As an example, we designed a typical imaging system, which has a focal length of 35mm and a instantaneous field angle of 14.7", as well as the FOV set to be 120°. By analyzing the imaging quality, we demonstrate that in different FOV, all the values of MTF at 200lp/mm are higher than 0.4 when the sampling frequency of the Nyquist is 200lp/mm, which shows a good accordance with our design.

  8. Cosmic Magnetic Fields

    Science.gov (United States)

    Sánchez Almeida, J.; Martínez González, M. J.

    2018-05-01

    Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.

  9. Rectal cancer staging: focus on the prognostic significance of the findings described by high-resolution magnetic resonance imaging

    Science.gov (United States)

    2013-01-01

    Abstract High-resolution (HR) magnetic resonance imaging (MRI) has become an indispensable tool for multidisciplinary teams (MDTs) addressing rectal cancer. It provides anatomic information for surgical planning and allows patients to be stratified into different groups according to the risk of local and distant recurrence. One of the objectives of the MDT is the preoperative identification of high-risk patients who will benefit from neoadjuvant treatment. For this reason, the correct evaluation of the circumferential resection margin (CRM), the depth of tumor spread beyond the muscularis propria, extramural vascular invasion and nodal status is of the utmost importance. Low rectal tumors represent a special challenge for the MDT, because decisions seek a balance between oncologic safety, in the pursuit of free resection margins, and the patient’s quality of life, in order to preserve sphincter function. At present, the exchange of information between the different specialties involved in dealing with patients with rectal cancer can rank the contribution of colleagues, auditing their work and incorporating knowledge that will lead to a better understanding of the pathology. Thus, beyond the anatomic description of the images, the radiologist’s role in the MDT makes it necessary to know the prognostic value of the findings that we describe, in terms of recurrence and survival, because these findings affect decision making and, therefore, the patients’ life. In this review, the usefulness of HR MRI in the initial staging of rectal cancer and in the evaluation of neoadjuvant treatment, with a focus on the prognostic value of the findings, is described as well as the contribution of HR MRI in assessing patients with suspected or confirmed recurrence of rectal cancer. PMID:23876415

  10. Neurochemical Changes after Acute Binge Toluene Inhalation in Adolescent and Adult Rats: A High-Resolution Magnetic Resonance Spectroscopy Study

    Science.gov (United States)

    O'Leary-Moore, Shonagh K.; Galloway, Matthew P.; McMechan, Andrew P.; Irtenkauf, Susan; Hannigan, John H.; Bowen, Scott E.

    2009-01-01

    Inhalant abuse in young people is a growing public health concern. We reported previously that acute toluene intoxication in young rats, using a pattern of exposures that approximate abuse patterns of inhalant use in humans, significantly altered neurochemical measures in select brain regions. In this study, adolescent and young adult rats were exposed similarly to an acute (2 × 15 min), high dose (8000 − 12000 ppm) of toluene and high-resolution magic angle spinning proton magnetic resonance spectroscopy (HR-MAS 1H-MRS) was used to assess neurochemical profiles of tissue samples from a number of brain regions collected immediately following solvent exposure. The current investigation focused on N-acetyl-aspartate (NAA), choline-containing compounds, creatine, glutamate, GABA, and glutamine. Contrary to our predictions, no significant alterations were found in levels of NAA, choline, creatine, glutamate, or glutamine in adolescent animals. In contrast to these minimal effects in adolescents, binge toluene exposure altered several neurochemical parameters in young adult rats, including decreased levels of choline and GABA in the frontal cortex and striatum and lowered glutamine and NAA levels in the frontal cortex. One of the more robust findings was a wide-ranging increase in lactate after toluene exposure in adult animals, an effect not observed in adolescents. These age-dependent effects of toluene are distinct from those reported previously in juvenile rats and suggest a developmental difference in vulnerability to the effects of inhalants. Specifically, the results suggest that the neurochemical response to toluene in adolescents is attenuated compared to adults, and imply an association between these neurochemical differences and age-influenced differences in solvent abuse in humans. PMID:19628036

  11. Rectal cancer staging: focus on the prognostic significance of the findings described by high-resolution magnetic resonance imaging.

    Science.gov (United States)

    Dieguez, Adriana

    2013-07-22

    High-resolution (HR) magnetic resonance imaging (MRI) has become an indispensable tool for multidisciplinary teams (MDTs) addressing rectal cancer. It provides anatomic information for surgical planning and allows patients to be stratified into different groups according to the risk of local and distant recurrence. One of the objectives of the MDT is the preoperative identification of high-risk patients who will benefit from neoadjuvant treatment. For this reason, the correct evaluation of the circumferential resection margin (CRM), the depth of tumor spread beyond the muscularis propria, extramural vascular invasion and nodal status is of the utmost importance. Low rectal tumors represent a special challenge for the MDT, because decisions seek a balance between oncologic safety, in the pursuit of free resection margins, and the patient's quality of life, in order to preserve sphincter function. At present, the exchange of information between the different specialties involved in dealing with patients with rectal cancer can rank the contribution of colleagues, auditing their work and incorporating knowledge that will lead to a better understanding of the pathology. Thus, beyond the anatomic description of the images, the radiologist's role in the MDT makes it necessary to know the prognostic value of the findings that we describe, in terms of recurrence and survival, because these findings affect decision making and, therefore, the patients' life. In this review, the usefulness of HR MRI in the initial staging of rectal cancer and in the evaluation of neoadjuvant treatment, with a focus on the prognostic value of the findings, is described as well as the contribution of HR MRI in assessing patients with suspected or confirmed recurrence of rectal cancer.

  12. The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences

    Science.gov (United States)

    Schwalbe, Ellen; Maas, Hans-Gerd

    2017-12-01

    This paper presents a comprehensive method for the determination of glacier surface motion vector fields at high spatial and temporal resolution. These vector fields can be derived from monocular terrestrial camera image sequences and are a valuable data source for glaciological analysis of the motion behaviour of glaciers. The measurement concepts for the acquisition of image sequences are presented, and an automated monoscopic image sequence processing chain is developed. Motion vector fields can be derived with high precision by applying automatic subpixel-accuracy image matching techniques on grey value patterns in the image sequences. Well-established matching techniques have been adapted to the special characteristics of the glacier data in order to achieve high reliability in automatic image sequence processing, including the handling of moving shadows as well as motion effects induced by small instabilities in the camera set-up. Suitable geo-referencing techniques were developed to transform image measurements into a reference coordinate system.The result of monoscopic image sequence analysis is a dense raster of glacier surface point trajectories for each image sequence. Each translation vector component in these trajectories can be determined with an accuracy of a few centimetres for points at a distance of several kilometres from the camera. Extensive practical validation experiments have shown that motion vector and trajectory fields derived from monocular image sequences can be used for the determination of high-resolution velocity fields of glaciers, including the analysis of tidal effects on glacier movement, the investigation of a glacier's motion behaviour during calving events, the determination of the position and migration of the grounding line and the detection of subglacial channels during glacier lake outburst floods.

  13. A high-resolution melting (HRM) assay for the differentiation between Israeli field and Neethling vaccine lumpy skin disease viruses.

    Science.gov (United States)

    Menasherow, Sophia; Erster, Oran; Rubinstein-Giuni, Marisol; Kovtunenko, Anita; Eyngor, Evgeny; Gelman, Boris; Khinich, Evgeny; Stram, Yehuda

    2016-06-01

    Lumpy skin disease (LSD) is a constant threat to the Middle East including the State of Israel. During vaccination programs it is essential for veterinary services and farmers to be able to distinguish between animals affected by the cattle-borne virulent viruses and vaccinated animals, subsequently affected by the vaccine strain. This study describes an improved high resolution-melting (HRM) test that exploits a 27 base pair (bp) fragment of the LSDV126 extracellular enveloped virion (EEV) gene that is present in field viruses but is absent from the Neethling vaccine strain. This difference leads to ∼0.5 °C melting point change in the HRM assay, when testing the quantitative PCR (qPCR) products generated from the virulent field viruses compared to the attenuated vaccine. By exploiting this difference, it could be shown using the newly developed HRM assay that virus isolated from vaccinated cattle that developed disease symptoms behave similarly to vaccine virus control, indicating that the vaccine virus can induce disease symptoms. This assay is not only in full agreement with the previously published PCR gradient and restriction fragment length polymorphism (RFLP) tests but it is faster with, fewer steps, cheaper and dependable. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter

    Science.gov (United States)

    Bernal, T.; Fernández-Hernández, L. M.; Matos, T.; Rodríguez-Meza, M. A.

    2018-04-01

    Cold dark matter (CDM) has shown to be an excellent candidate for the dark matter (DM) of the Universe at large scales; however, it presents some challenges at the galactic level. The scalar field dark matter (SFDM), also called fuzzy, wave, Bose-Einstein condensate, or ultralight axion DM, is identical to CDM at cosmological scales but different at the galactic ones. SFDM forms core haloes, it has a natural cut-off in its matter power spectrum, and it predicts well-formed galaxies at high redshifts. In this work we reproduce the rotation curves of high-resolution low surface brightness (LSB) and SPARC galaxies with two SFDM profiles: (1) the soliton+NFW profile in the fuzzy DM (FDM) model, arising empirically from cosmological simulations of real, non-interacting scalar field (SF) at zero temperature, and (2) the multistate SFDM (mSFDM) profile, an exact solution to the Einstein-Klein-Gordon equations for a real, self-interacting SF, with finite temperature into the SF potential, introducing several quantum states as a realistic model for an SFDM halo. From the fits with the soliton+NFW profile, we obtained for the boson mass 0.212 motivated framework additional or alternative to the FDM profile.

  15. DEM RECONSTRUCTION USING LIGHT FIELD AND BIDIRECTIONAL REFLECTANCE FUNCTION FROM MULTI-VIEW HIGH RESOLUTION SPATIAL IMAGES

    Directory of Open Access Journals (Sweden)

    F. de Vieilleville

    2016-06-01

    Full Text Available This paper presents a method for dense DSM reconstruction from high resolution, mono sensor, passive imagery, spatial panchromatic image sequence. The interest of our approach is four-fold. Firstly, we extend the core of light field approaches using an explicit BRDF model from the Image Synthesis community which is more realistic than the Lambertian model. The chosen model is the Cook-Torrance BRDF which enables us to model rough surfaces with specular effects using specific material parameters. Secondly, we extend light field approaches for non-pinhole sensors and non-rectilinear motion by using a proper geometric transformation on the image sequence. Thirdly, we produce a 3D volume cost embodying all the tested possible heights and filter it using simple methods such as Volume Cost Filtering or variational optimal methods. We have tested our method on a Pleiades image sequence on various locations with dense urban buildings and report encouraging results with respect to classic multi-label methods such as MIC-MAC, or more recent pipelines such as S2P. Last but not least, our method also produces maps of material parameters on the estimated points, allowing us to simplify building classification or road extraction.

  16. A high-resolution EPR-CT microscope using cavity-resonators equipped with small field gradient coils

    International Nuclear Information System (INIS)

    Miki, T.; Murata, T.; Kumai, H.; Yamashiro, A.

    1996-01-01

    Cylindrical cavity resonators equipped with field gradient coils were developed for two-dimensional EPR-CT microscope systems. The field gradient coils lie in four (or six) thin metal tubes placed along the direction of the microwave magnetic field in the cavity to minimize impact on the resonator's quality factor. Two pairs of the tubes carry a 100 kHz current for magnetic field modulation. This cavity has high spin-detection sensitivity and can provide EPR images with submillimeter resolution. In order to reconstruct better images from fewer projections, we used an algebraic reconstruction technique (ART) for the two-dimensional image reconstruction. The ART method may be suitable for not only spectral-spatial two-dimensional EPR imaging, but also spatio-temporal EPR imaging in dynamic spin systems. (author)

  17. Use of high-resolution satellite images for detection of geological structures related to Central Andes geothermal field, Chile.

    Science.gov (United States)

    Benavides-Rivas, C. L.; Soto-Pinto, C. A.; Arellano-Baeza, A. A.

    2014-12-01

    Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT 8 satellite have been used to delineate the geological structures related to the potential geothermal reservoirs located at the northern end of the Southern Volcanic Zone of Chile. It was done by applying the lineament extraction technique, using the ADALGEO software, developed by [Soto et al., 2013]. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields. A lineament is generally defined as a straight or slightly curved feature in the landscape visible satellite image as an aligned sequence of pixel intensity contrast compared to the background. The system features extracted from satellite images is not identical to the geological lineaments that are generally determined by ground surveys, however, generally reflects the structure of faults and fractures in the crust. A temporal sequence of eight Landsat multispectral images of Central Andes geothermal field, located in VI region de Chile, was used to study changes in the configuration of the lineaments during 2011. The presence of minerals with silicification, epidotization, and albitization, which are typical for geothrmal reservoirs, was also identified, using their spectral characteristics, and subsequently corroborated in the field. Both lineament analysis and spectral analysis gave similar location of the reservoir, which increases reliability of the results.

  18. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas.

    Science.gov (United States)

    Saygin, Z M; Kliemann, D; Iglesias, J E; van der Kouwe, A J W; Boyd, E; Reuter, M; Stevens, A; Van Leemput, K; McKee, A; Frosch, M P; Fischl, B; Augustinack, J C

    2017-07-15

    The amygdala is composed of multiple nuclei with unique functions and connections in the limbic system and to the rest of the brain. However, standard in vivo neuroimaging tools to automatically delineate the amygdala into its multiple nuclei are still rare. By scanning postmortem specimens at high resolution (100-150µm) at 7T field strength (n = 10), we were able to visualize and label nine amygdala nuclei (anterior amygdaloid, cortico-amygdaloid transition area; basal, lateral, accessory basal, central, cortical medial, paralaminar nuclei). We created an atlas from these labels using a recently developed atlas building algorithm based on Bayesian inference. This atlas, which will be released as part of FreeSurfer, can be used to automatically segment nine amygdala nuclei from a standard resolution structural MR image. We applied this atlas to two publicly available datasets (ADNI and ABIDE) with standard resolution T1 data, used individual volumetric data of the amygdala nuclei as the measure and found that our atlas i) discriminates between Alzheimer's disease participants and age-matched control participants with 84% accuracy (AUC=0.915), and ii) discriminates between individuals with autism and age-, sex- and IQ-matched neurotypically developed control participants with 59.5% accuracy (AUC=0.59). For both datasets, the new ex vivo atlas significantly outperformed (all p amygdala derived from the segmentation in FreeSurfer 5.1 (ADNI: 75%, ABIDE: 54% accuracy), as well as classification based on whole amygdala volume (using the sum of all amygdala nuclei volumes; ADNI: 81%, ABIDE: 55% accuracy). This new atlas and the segmentation tools that utilize it will provide neuroimaging researchers with the ability to explore the function and connectivity of the human amygdala nuclei with unprecedented detail in healthy adults as well as those with neurodevelopmental and neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [Determination of hydroxyproline in liver tissue by hydrophilic interaction chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry].

    Science.gov (United States)

    Liu, Wei; Qi, Shenglan; Xu, Ying; Xiao, Zhun; Fu, Yadong; Chen, Jiamei; Yang, Tao; Liu, Ping

    2017-12-08

    A method for the determination of hydroxyproline (Hyp) in liver tissue of mice by hydrophilic interaction chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry (HILIC-HRMS) was developed. The liver tissue samples of normal mice and liver fibrosis mice induced by carbon tetrachloride were hydrolyzed by concentrated hydrochloric acid. After filtrated and diluted by solution, the diluent was separated on an Hypersil GOLD HILIC column (100 mm×2.1 mm, 3 μm). Water-acetonitrile (28:72, v/v)were used as the mobile phases with isocratic elution. Finally, the target analytes were detected in positive model by HRMS equipped with an electrospray ionization source. The linear range of hydroxyproline was from 0.78 to 100.00 μg/L with the correlation coefficient ( R 2 ) of 0.9983. The limit of quantification was 0.78 μg/L. By detecting the spiked samples, the recoveries were in the range of 97.4%-100.9% with the relative standard deviations (RSDs) between 1.4% and 2.0%. In addition, comparison of the measurement results by this method and the chloramine T method was proceeded. It was found that the linear correlation between the two methods was very good, and the Pearson correlation coefficient was 0.927. And this method had simpler operation procedure and higher accuracy than chloramine T method. This method can be used for the quick determination of hydroxyproline in liver tissue samples.

  20. High-resolution measurement of the unsteady velocity field to evaluate blood damage induced by a mechanical heart valve.

    Science.gov (United States)

    Bellofiore, Alessandro; Quinlan, Nathan J

    2011-09-01

    We investigate the potential of prosthetic heart valves to generate abnormal flow and stress patterns, which can contribute to platelet activation and lysis according to blood damage accumulation mechanisms. High-resolution velocity measurements of the unsteady flow field, obtained with a standard particle image velocimetry system and a scaled-up model valve, are used to estimate the shear stresses arising downstream of the valve, accounting for flow features at scales less than one order of magnitude larger than blood cells. Velocity data at effective spatial and temporal resolution of 60 μm and 1.75 kHz, respectively, enabled accurate extraction of Lagrangian trajectories and loading histories experienced by blood cells. Non-physiological stresses up to 10 Pa were detected, while the development of vortex flow in the wake of the valve was observed to significantly increase the exposure time, favouring platelet activation. The loading histories, combined with empirical models for blood damage, reveal that platelet activation and lysis are promoted at different stages of the heart cycle. Shear stress and blood damage estimates are shown to be sensitive to measurement resolution.

  1. High resolution modelling of aerosol dispersion regimes during the CAPITOUL field experiment: from regional to local scale interactions

    Directory of Open Access Journals (Sweden)

    B. Aouizerats

    2011-08-01

    Full Text Available High resolution simulation of complex aerosol particle evolution and gaseous chemistry over an atmospheric urban area is of great interest for understanding air quality and processes. In this context, the CAPITOUL (Canopy and Aerosol Particle Interactions in the Toulouse Urban Layer field experiment aims at a better understanding of the interactions between the urban dynamics and the aerosol plumes. During a two-day Intensive Observational Period, a numerical model experiment was set up to reproduce the spatial distribution of specific particle pollutants, from the regional scales and the interactions between different cities, to the local scales with specific turbulent structures. Observations show that local dynamics depends on the day-regime, and may lead to different mesoscale dynamical structures. This study focuses on reproducing these fine scale dynamical structures, and investigate the impact on the aerosol plume dispersion. The 500-m resolution simulation manages to reproduce convective rolls at local scale, which concentrate most of the aerosol particles and can locally affect the pollutant dispersion and air quality.

  2. Static and Dynamic Reservoir Characterization Using High Resolution P-Wave Velocity Data in Delhi Field, la

    Science.gov (United States)

    Hussain, S.; Davis, T.

    2012-12-01

    Static and dynamic reservoir characterization was done on high resolution P-wave seismic data in Delhi Field, LA to study the complex stratigraphy of the Holt-Bryant sands and to delineate the CO2 flow path. The field is undergoing CO2 injection for enhanced oil recovery. The seismic data was bandwidth extended by Geotrace to decrease the tuning thickness effect. Once the authenticity of the added frequencies in the data was determined, the interpretation helped map thin Tuscaloosa and Paluxy sands. Cross-equalization was done on the baseline and monitor surveys to remove the non-repeatable noise in the data. Acoustic impedance (AI) inversion was done on the baseline and monitor surveys to map the changes in AI with CO2 injection in the field. Figure 1 shows the AI percentage change at Base Paluxy. The analysis helped identify areas that were not being swept by CO2. Figure 2 shows the CO2 flow paths in Tuscaloosa formation. The percentage change of AI with CO2 injection and pressure increase corresponded with the fluid substitution modeling results. Time-lapse interpretation helped in delineating the channels, high permeability zones and the bypassed zones in the reservoir.; Figure 1: P-impedance percentage difference map with a 2 ms window centered at the base of Paluxy with the production data from June 2010 overlain; the black dashed line is the oil-water contact; notice the negative impedance change below the OWC. The lighter yellow color shows area where Paluxy is not being swept completely. ; Figure 2: P-impedance percentage difference map at TUSC 7 top; the white triangles are TUSC 7 injectors and the white circles are TUSC 7 producers; the black polygons show the flow paths of CO2.

  3. Precision Near-Field Reconstruction in the Time Domain via Minimum Entropy for Ultra-High Resolution Radar Imaging

    Directory of Open Access Journals (Sweden)

    Jiwoong Yu

    2017-05-01

    Full Text Available Ultra-high resolution (UHR radar imaging is used to analyze the internal structure of objects and to identify and classify their shapes based on ultra-wideband (UWB signals using a vector network analyzer (VNA. However, radar-based imaging is limited by microwave propagation effects, wave scattering, and transmit power, thus the received signals are inevitably weak and noisy. To overcome this problem, the radar may be operated in the near-field. The focusing of UHR radar signals over a close distance requires precise geometry in order to accommodate the spherical waves. In this paper, a geometric estimation and compensation method that is based on the minimum entropy of radar images with sub-centimeter resolution is proposed and implemented. Inverse synthetic aperture radar (ISAR imaging is used because it is applicable to several fields, including medical- and security-related applications, and high quality images of various targets have been produced to verify the proposed method. For ISAR in the near-field, the compensation for the time delay depends on the distance from the center of rotation and the internal RF circuits and cables. Required parameters for the delay compensation algorithm that can be used to minimize the entropy of the radar images are determined so that acceptable results can be achieved. The processing speed can be enhanced by performing the calculations in the time domain without the phase values, which are removed after upsampling. For comparison, the parameters are also estimated by performing random sampling in the data set. Although the reduced data set contained only 5% of the observed angles, the parameter optimization method is shown to operate correctly.

  4. Strong Magnetic Field Characterisation

    Science.gov (United States)

    2012-04-01

    an advertised surface field of approximately 0.5 T were used to supply the static magnetic field source. The disc magnet had a diameter of 50 mm and... colour bar indicates the magnetic field strength set to an arbitrary 0.25 T. The white area has a field >0.25 T. The size of the arrow is proportional...9 shows the magnetic field strength along a slice in the XZ plane. The colours represent the total UNCLASSIFIED 10 UNCLASSIFIED DSTO-TR-2699

  5. The Juno Magnetic Field Investigation

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Benn, Mathias; Bjarnø, Jonas Bækby

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor ...

  6. Prevalence Study of Proximal Vertebral Artery Stenosis Using High-Resolution Contrast-Enhanced Magnetic Resonance Angiography

    International Nuclear Information System (INIS)

    Kim, S.H.; Lee, J.S.; Kwon, O.K.; Han, M.K.; Kim, J.H.

    2005-01-01

    Purpose: To evaluate the prevalence of proximal vertebral artery stenosis, compared with those of the distal vertebral/basilar artery and extracranial internal carotid artery, in a large population of stroke and non-stroke patients. Material and Methods: Nine-hundred-and-thirty-five patients who underwent high-resolution contrast-enhanced magnetic resonance angiography in a regional general hospital were categorized into six groups based on neurological symptoms and disease: an asymptomatic group (n ∼ 182), a minor symptom group with headache or dizziness (n ∼ 519), a cardiac group with coronary artery steno-occlusive disease (n ∼ 15), a hemorrhagic group with old cerebral hemorrhage (n ∼ 26), an anterior circulation infarct group (n ∼ 121), and posterior circulation infarct group (n ∼ 72). Prevalence of stenosis of the proximal vertebral artery, distal vertebral/basilar artery, and internal carotid artery was analyzed. Results: The prevalence of stenosis of the proximal vertebral artery, distal vertebral/basilar artery, and internal carotid artery was 12.9%, 5.5%, and 7.2%, respectively, in the study population, and rose as the age increased (P <0.0001 for all arteries). The prevalence of stenosis of the proximal vertebral artery, distal vertebral/basilar artery, and internal carotid artery was 3.3%, 0.5%, and.1%, respectively, in the asymptomatic group; 8.3%, 2.1%, and 3.7%, respectively, in the minor symptom group; 13.3%, 6.7%, and 6.7%, respectively, in the cardiac group; 19.2%, 7.7%, and 7.7%, respectively, in the hemorrhagic group; 27.3%, 8.3%, and 25.6%, respectively, in the anterior circulation infarct group; and 44.4%, 36.1%, and 16.7%, respectively, in the posterior circulation infarct group. This increasing tendency of stenosis accordingly was statistically significant ( P <0.0001 for all arteries). Conclusion: The prevalence of proximal vertebral artery stenosis was highest, compared with those of the distal vertebral/basilar artery and

  7. Interpenetration and deflection phenomena in collisions between supersonic, magnetized, tungsten plasma flows diagnosed using high resolution optical Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Burdiak, G.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Hall, G. N.; Suzuki-Vidal, F.; Bland, S. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2015-07-15

    An optical Thomson scattering diagnostic has been used to investigate collisions between supersonic, magnetized plasma flows, in particular the transition from collisionless to collisional interaction dynamics. These flows were produced using tungsten wire array z-pinches, driven by the 1.4 MA 240 ns Magpie generator at Imperial College London. Measurements of the collective-mode Thomson scattering ion-feature clearly indicate that the ablation flows are interpenetrating at 100 ns (after current start), and this interpenetration continues until at least 140 ns. The Thomson spectrum at 150 ns shows a clear change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams near the axis. The Thomson scattering data also provide indirect evidence of the presence of a significant toroidal magnetic field embedded in the “precursor” plasma near the axis of the array over the period 100–140 ns; these observations are in agreement with previous measurements [Swadling et al., Phys. Rev. Lett. 113, 035003 (2014)]. The Thomson scattering measurements at 150 ns suggest that this magnetic field must collapse at around the time the dense precursor column begins to form.

  8. Cosmological magnetic fields - V

    Indian Academy of Sciences (India)

    Magnetic fields seem to be everywhere that we can look in the universe, from our own ... The field tensor is observer-independent, while the electric and magnetic .... based on string theory [11], in which vacuum fluctuations of the field are ...

  9. Conductance of auroral magnetic field lines

    International Nuclear Information System (INIS)

    Weimer, D.R.; Gurnett, D.A.; Goertz, C.K.

    1986-01-01

    DE-1 high-resolution double-probe electric-field data and simultaneous magnetic-field measurements are reported for two 1981 events with large electric fields which reversed over short distances. The data are presented graphically and analyzed in detail. A field-line conductance of about 1 nmho/sq m is determined for both upward and downward currents, and the ionospheric conductivity is shown, in the short-wavelength limit, to have little effect on the relationship between the (N-S) electric and (E-W) magnetic fields above the potential drop parallel to the magnetic-field lines. The results are found to be consistent with a linear relationship between the field-aligned current density and the parallel potential drop. 14 references

  10. High-Resolution Seafloor Mapping at A Deep-Sea Methane Seep Field with an Autonomous Underwater Vehicle

    Science.gov (United States)

    Skarke, A. D.

    2017-12-01

    A growing body of research indicates that points of seafloor gas emission, known as cold-seeps, are a common feature along many continental margins. Results from recent exploration efforts show that benthic environments at cold-seeps are characterized by extensive authigenic carbonate crusts and complex chemosynthetic communities. The seafloor morphology and geophysical properties of these locations are heterogeneous and relatively complex due to the three-dimensional structure created by carbonate buildups and dense bivalve beds. Seeps are often found clustered and the spatial extent of associated seafloor crusts and beds can reach multiple square kilometers. Here, the results of a 1.25 km2 autonomous underwater vehicle (AUV) survey of a deep-sea methane seep field with 13 vents, at a nominal depth of 1400 m, located near Veatch Canyon on the US Atlantic margin are presented. Multibeam sonar, sidescan sonar, and a sub bottom profiler on the AUV were used to make high-resolution observations of seafloor bathymetry (resolution 1m2) as well as water column, seafloor, and subsurface acoustic backscatter intensity. Additionally, a downward oriented camera was used to collect seafloor imagery coincident with acoustic observations at select locations. Acoustic results indicated the location of discrete gas plumes as well as a continuous area of elevated seafloor roughness and backscatter intensity consistent with the presence of large scale authigenic rock outcrops and extensive mussel beds, which were visually confirmed with camera imagery. Additionally, a linear area of particularly elevated seafloor roughness and acoustic backscatter intensity that lies sub-parallel to an adjacent ridge was interpreted to be controlled by underlying geologic processes such as soft sediment faulting. Automated analysis of camera imagery and coincident acoustic backscatter and bathymetry data as well as derivative metrics (e.g. slope and rugosity) was used to segment and classify bed

  11. Organic magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  12. SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES

    International Nuclear Information System (INIS)

    Kotarba, H.; Karl, S. J.; Naab, T.; Johansson, P. H.; Lesch, H.; Dolag, K.; Stasyszyn, F. A.

    2010-01-01

    We present self-consistent high-resolution simulations of NGC 4038/4039 (the A ntennae galaxies ) including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code GADGET, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 10 -9 to 10 -4 G. At the time of the best match with the central region of the Antennae system, the magnetic field has been amplified by compression and shear flows to an equilibrium field value of ∼10 μG, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly nonlinear environment. We also discuss the relevance of the amplification effect for present-day magnetic fields in the context of hierarchical structure formation.

  13. Detection of tannins in modern and fossil barks and in plant residues by high-resolution solid-state /sup 13/C nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M A; Hatcher, P G

    1988-01-01

    Bark samples isolated from brown coal deposits in Victoria, Australia, and buried wood from Rhizophora mangle have been studied by high-resolution solid-state nuclear magnetic resonance (NMR) techniques. Dipolar dephasing /sup 13/C NMR appears to be a useful method of detecting the presence of tannins in geochemical samples including barks, buried woods, peats and leaf litter. It is shown that tannins are selectively preserved in bark during coalification to the brown coal stage. 28 refs., 9 figs., 1 tab.

  14. Detection of tannins in modern and fossil barks and in plant residues by high-resolution solid-state 13C nuclear magnetic resonance

    Science.gov (United States)

    Wilson, M.A.; Hatcher, P.G.

    1988-01-01

    Bark samples isolated from brown coal deposits in Victoria, Australia, and buried wood from Rhizophora mangle have been studies by high-resolution solid-state nuclear magnetic resonance (NMR) techniques. Dipolar dephasing 13C NMR appears to be a useful method of detecting the presence of tannins in geochemical samples including barks, buried woods, peats and leaf litter. It is shown that tannins are selectively preserved in bark during coalification to the brown coal stage. ?? 1988.

  15. A high-resolution paleosecular variation record from Black Sea sediments indicating fast directional changes associated with low field intensities during marine isotope stage (MIS) 4

    Science.gov (United States)

    Nowaczyk, Norbert R.; Jiabo, Liu; Frank, Ute; Arz, Helge W.

    2018-02-01

    A total of nine sediment cores recovered from the Archangelsky Ridge in the SE Black Sea were systematically subjected to intense paleo- and mineral magnetic analyses. Besides 16 accelerator mass spectrometry (AMS) 14C ages available for another core from this area, dating was accomplished by correlation of short-term warming events during the last glacial monitored by high-resolution X-ray fluorescence (XRF) scanning as maxima in both Ca/Ti and K/Ti ratios in Black Sea sediments to the so-called 'Dansgaard-Oeschger events' recognized from Greenland ice cores. Thus, several hiatuses could be identified in the various cores during the last glacial/interglacial cycle. Finally, core sections documenting marine isotope stage (MIS) 4 at high resolution back to 69 ka were selected for detailed analyses. At 64.5 ka, according to obtained results from Black Sea sediments, the second deepest minimum in relative paleointensity during the past 69 ka occurred, with the Laschamp geomagnetic excursion at 41 ka being associated with the lowest field intensities. The field minimum during MIS 4 is associated with large declination swings beginning about 3 ka before the minimum. While a swing to 50°E is associated with steep inclinations (50-60°) according to the coring site at 42°N, the subsequent declination swing to 30°W is associated with shallow inclinations of down to 40°. Nevertheless, these large deviations from the direction of a geocentric axial dipole field (I = 61 °, D = 0 °) still can not yet be termed as 'excursional', since latitudes of corresponding virtual geomagnetic poles (VGP) only reach down to 51.5°N (120°E) and 61.5°N (75°W), respectively. However, these VGP positions at opposite sides of the globe are linked with VGP drift rates of up to 0.2° per year in between. These extreme secular variations might be the mid-latitude expression of a geomagnetic excursion with partly reversed inclinations found at several sites much further North in Arctic

  16. The last frontier? High-resolution, near-bottom measurements of the Hawaiian Jurassic magnetic anomaly sequence

    Science.gov (United States)

    Tivey, M.; Tominaga, M.; Sager, W. W.

    2012-12-01

    The Jurassic sequence of marine magnetic anomalies i.e. older than M29 remain the last part of the marine magnetic anomaly sequence of the geomagnetic polarity timescale (GPTS) that can be gleaned from the ocean crustal record. While Jurassic crust is present in several areas of the world's ocean basins, the oldest and arguably best preserved sequence is in the western Pacific where three lineations sets (Japanese, Hawaiian and Phoenix) converge on the oldest remaining ocean crust on the planet (i.e. crust that has not been subducted). The magnetic anomalies in these 3 lineation sets are marked by low amplitude, relatively indistinct anomalies (tiny wiggles) that collectively have been called the Jurassic quiet Zone (JQZ). Over the past 20 years we have been working on resolving the character and origin of these anomalies with various technologies to improve our resolution of this period. Following an aeromagnetic survey that revealed the possible presence of lineated anomalies older than M29 in the Japanese lineations, we conducted a deeptow magnetometer survey of the Japanese sequence in 1992. In 2002/03 we extended and confirmed this deeptow record with a deeptowed sidescan and magnetometer survey of the Japanese lineation sequence by tying in ODP Hole 801C and extending the anomaly sequence between M29 and M44. These surveys reveal remarkably fast reversals that are lineated and decrease in intensity back in time until M38, prior to which the sequence becomes somewhat confused (the LAZ or low amplitude zone) before recovering in both amplitude and lineated character around Hole 801C (M42). These results are partially supported by recently reported terrestrial magnetostratigraphy records that show the existence of reversals back to M38. A Jurassic GPTS was constructed from this Japanese anomaly sequence, but the overall global significance of the reversal sequence and systematic field intensity changes require confirmation from crustal records created at

  17. Magnetic field on board

    International Nuclear Information System (INIS)

    Estevez Radio, H.; Fernandez Arenal, C.A.

    1995-01-01

    Here, the calculation of the magnetic field on board ships is performed, using matrix calculus, in a similar way as when the magnetic field in matter is studied. Thus the final formulas are written in a more compact form and they are obtained through a simpler way, more suitable for the university education. (Author)

  18. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1984-03-01

    The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained

  19. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.

  20. High resolution T{sub 2}{sup *}-weighted magnetic resonance imaging at 3 Tesla using PROPELLER-EPI

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, Martin; Reichenbach, Juergen R. [Jena University Hospital (Germany). Medical Physics Group

    2014-09-01

    We report the application of PROPELLER-EPI for high resolution T{sub 2}{sup *}-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 x 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T{sub 2}{sup *}-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps. (orig.)

  1. Controlling magnetic field profiles

    International Nuclear Information System (INIS)

    Freeman, J.R.

    1979-04-01

    A method for designing solenoid magnets with controlled field profiles is discussed. The method, originated by D.B. Montgomery, minimizes both the field errors and the power consumption. An NOS time-sharing computer program for the CDC-6600, entitled MAGCOR, was constructed to provide an interactive magnet design capability. Results obtained during the design of magnets for a radial line electron accelerator are presented. 9 figures

  2. Rapid Calibration of High Resolution Geologic Models to Dynamic Data Using Inverse Modeling: Field Application and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Akhil Datta-Gupta

    2008-03-31

    Streamline-based assisted and automatic history matching techniques have shown great potential in reconciling high resolution geologic models to production data. However, a major drawback of these approaches has been incompressibility or slight compressibility assumptions that have limited applications to two-phase water-oil displacements only. We propose an approach to history matching three-phase flow using a novel compressible streamline formulation and streamline-derived analytic sensitivities. First, we utilize a generalized streamline model to account for compressible flow by introducing an 'effective density' of total fluids along streamlines. Second, we analytically compute parameter sensitivities that define the relationship between the reservoir properties and the production response, viz. water-cut and gas/oil ratio (GOR). These sensitivities are an integral part of history matching, and streamline models permit efficient computation of these sensitivities through a single flow simulation. We calibrate geologic models to production data by matching the water-cut and gas/oil ratio using our previously proposed generalized travel time inversion (GTTI) technique. For field applications, however, the highly non-monotonic profile of the gas/oil ratio data often presents a challenge to this technique. In this work we present a transformation of the field production data that makes it more amenable to GTTI. Further, we generalize the approach to incorporate bottom-hole flowing pressure during three-phase history matching. We examine the practical feasibility of the method using a field-scale synthetic example (SPE-9 comparative study) and a field application. Recently Ensemble Kalman Filtering (EnKF) has gained increased attention for history matching and continuous reservoir model updating using data from permanent downhole sensors. It is a sequential Monte-Carlo approach that works with an ensemble of reservoir models. Specifically, the method

  3. High-resolution scanning near-field EBIC microscopy: Application to the characterisation of a shallow ion implanted p+-n silicon junction

    International Nuclear Information System (INIS)

    Smaali, K.; Faure, J.; El Hdiy, A.; Troyon, M.

    2008-01-01

    High-resolution electron beam induced current (EBIC) analyses were carried out on a shallow ion implanted p + -n silicon junction in a scanning electron microscope (SEM) and a scanning probe microscope (SPM) hybrid system. With this scanning near-field EBIC microscope, a sample can be conventionally imaged by SEM, its local topography investigated by SPM and high-resolution EBIC image simultaneously obtained. It is shown that the EBIC imaging capabilities of this combined instrument allows the study of p-n junctions with a resolution of about 20 nm

  4. Non-contact distance measurement and profilometry using thermal near-field radiation towards a high resolution inspection and metrology solution

    NARCIS (Netherlands)

    Bijster, R.J.F.; Sadeghian Marnani, H.; van Keulen, A.; Sanchez, M.I.; Ukraintsev, V.A.

    2016-01-01

    Optical near-field technologies such as solid immersion lenses and hyperlenses are candidate solutions for high resolution and high throughput wafer inspection and metrology for the next technology nodes. Besides sub-diffraction limited optical performance, these concepts share the necessity of

  5. Magnetic fields at Neptune

    International Nuclear Information System (INIS)

    Ness, N.F.; Acuna, M.H.; Burlaga, L.F.; Connerney, J.E.P.; Lepping, R.P.; Neubauer, F.M.

    1989-01-01

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10 -5 gauss) was observed near closest approach, at a distance of 1.18 R N . The planetary magnetic field between 4 and 15 R N can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R N and inclined by 47 degrees with respect to the rotation axis. Within 4 R N , the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an oblique rotator

  6. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    Science.gov (United States)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the

  7. Magnetic fields in cosmology

    International Nuclear Information System (INIS)

    Madsen, M.S.

    1989-01-01

    The possible role of a large-scale relic magnetic field in the history of the Universe is considered. The perturbation of the cosmic microwave back-ground radiation on large angular scales due to a homogeneous magnetic field is estimated in a simple relativistic model. This allows corresponding limits to be placed on the magnitude of any such large-scale relic magnetic field at the present time. These limits are essentially the strongest which can be set on the largest scales. A corresponding bound is obtained by use of the requirement that the field should not spoil the predictions of primordial nucleosynthesis. It is noted that the existence of large-scale cosmic magnetic fields would circumvent the limits previously set - also on the basis of nucleosynthesis considerations - on the large-scale anisotropy now present in the Universe. (author)

  8. Combined Confocal and Wide-Field High-Resolution Cytometry of Fluorescent In Situ Hybridization-Stained Cells

    Czech Academy of Sciences Publication Activity Database

    Kozubek, Michal; Kozubek, Stanislav; Lukášová, Emilie; Bártová, Eva; Skalníková, M.; Matula, Pa.; Matula, Pe.; Jirsová, Pavla; Cafourková, Alena; Koutná, Irena

    2001-01-01

    Roč. 45, č. 1 (2001), s. 1-12 ISSN 0196-4763 R&D Projects: GA MŠk VS97031; GA ČR GA202/99/P008; GA AV ČR IBS5004010 Institutional research plan: CEZ:AV0Z5004920 Keywords : high-resolution cytometry * fluorescence in situ hybridization * interphase nuclei Subject RIV: BO - Biophysics Impact factor: 2.220, year: 2001

  9. High-resolution magnetic resonance imaging (HR-MRI) of the pleura and chest wall: Normal findings and pathological changes

    International Nuclear Information System (INIS)

    Bittner, R.C.; Schnoy, N.; Schoenfeld, N.; Grassot, A.; Loddenkemper, R.; Lode, H.; Kaiser, D.; Krumhaar, D.; Felix, R.

    1995-01-01

    To determine the value of high-resolution MRI in pleural and chest wall diseases, the normal and pathologic costal pleura and adjacent chest wall between paravertebral and the axillar region were examined with contrast enhanced high-resolution T 1 -weighted MRI images using a surface coil. Normal anatomy was evaluated in 5 healthy volunteers and a normal specimen of the thoracic wall, and correlation was made with corresponding HR-CT and histologic sections. CT-proved focal and diffuse changes of the pleura and the chest wall in 36 patients underwent HR-MRI, and visual comparison of MRI and CT was done retrospectively. Especially sagittal T 1 -weighted HR-MRI images allowed accurate delineation of the peripleural fat layer (PFL) and the innermost intercostal muscle (IIM), which served as landmarks of the intact inner chest wall. PFL and IIM were well delineated in 3/4 patients with tuberculous pleuritis, and in all 7 patients with non-specific pleuritis, as opposed to impairment of the PFL and/or the IIM, which was detected in 15/18 malignancies as a pattern of malignant chest wall involvement. In one case of tuberculous pleural empyema with edema of the inner chest wall HR-MRI produced false positive diagnosis of malignant disease. HR-MRI images improved non-invasive evaluation of pleural and chest wall diseases, and allowed for differentiation of bengin and malignant changes. (orig./MG) [de

  10. High-resolution melt PCR analysis for rapid identification of Chlamydia abortus live vaccine strain 1B among C. abortus strains and field isolates.

    Science.gov (United States)

    Vorimore, Fabien; Cavanna, Noémie; Vicari, Nadia; Magnino, Simone; Willems, Hermann; Rodolakis, Annie; Siarkou, Victoria I; Laroucau, Karine

    2012-09-01

    We describe a novel high-resolution melt assay that clearly differentiates Chlamydia abortus live vaccine strain 1B from field C. abortus strains and field wild-type isolates based on previously described single nucleotide polymorphisms. This modern genotyping technique is inexpensive, easy to use, and less time-consuming than PCR-RFLP. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. High-resolution numerical simulation of summer wind field comparing WRF boundary-layer parametrizations over complex Arctic topography: case study from central Spitsbergen

    Czech Academy of Sciences Publication Activity Database

    Láska, K.; Chládová, Zuzana; Hošek, Jiří

    2017-01-01

    Roč. 26, č. 4 (2017), s. 391-408 ISSN 0941-2948 Institutional support: RVO:68378289 Keywords : surface wind field * model evaluation * topographic effect * circulation pattern * Svalbard Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.989, year: 2016 http://www.schweizerbart.de/papers/metz/detail/prepub/87659/High_resolution_numerical_simulation_of_summer_wind_field_comparing_WRF_boundary_layer_parametrizations_over_complex_Arctic_topography_case_study_from_central_Spitsbergen

  12. A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data

    Science.gov (United States)

    Pengra, Bruce; Long, Jordan; Dahal, Devendra; Stehman, Stephen V.; Loveland, Thomas R.

    2015-01-01

    The methodology for selection, creation, and application of a global remote sensing validation dataset using high resolution commercial satellite data is presented. High resolution data are obtained for a stratified random sample of 500 primary sampling units (5 km  ×  5 km sample blocks), where the stratification based on Köppen climate classes is used to distribute the sample globally among biomes. The high resolution data are classified to categorical land cover maps using an analyst mediated classification workflow. Our initial application of these data is to evaluate a global 30 m Landsat-derived, continuous field tree cover product. For this application, the categorical reference classification produced at 2 m resolution is converted to percent tree cover per 30 m pixel (secondary sampling unit)for comparison to Landsat-derived estimates of tree cover. We provide example results (based on a subsample of 25 sample blocks in South America) illustrating basic analyses of agreement that can be produced from these reference data. Commercial high resolution data availability and data quality are shown to provide a viable means of validating continuous field tree cover. When completed, the reference classifications for the full sample of 500 blocks will be released for public use.

  13. Triple aldose reductase/α-glucosidase/radical scavenging high-resolution profiling combined with high-performance liquid chromatography – high-resolution mass spectrometry – solid-phase extraction – nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude, extract of Radix Scutellariae

    DEFF Research Database (Denmark)

    Tahtah, Yousof; Kongstad, Kenneth Thermann; Wubshet, Sileshi Gizachew

    2015-01-01

    high-performance liquid chromatography – high-resolution mass spectrometry – solid-phase extraction – nuclear magnetic resonance spectroscopy. The only α-glucosidase inhibitor was baicalein, whereas main aldose reductase inhibitors in the crude extract were baicalein and skullcapflavone II, and main....../α-glucosidase/radical scavenging high-resolution inhibition profile - allowing proof of concept with Radix Scutellariae crude extract as a polypharmacological herbal drug. The triple bioactivity high-resolution profiles were used to pinpoint bioactive compounds, and subsequent structure elucidation was performed with hyphenated...

  14. Magnetic field dosimeter development

    International Nuclear Information System (INIS)

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation

  15. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  16. High-resolution inelastic electron scattering on 208Pb at 50 and 63.5 MeV and fragmentation of the magnetic quadrupole strength

    International Nuclear Information System (INIS)

    Knuepfer, W.; Frey, R.; Richter, A.; Schwierczinski, A.; Spamer, E.; Titze, O.

    1977-12-01

    High-resolution inelastic electron scattering (FWHM approximately equal to 33 keV) with 50 MeV and 63.5 MeV electrons on 208 Pb has been used to study magnetic excitations between Esub(x) = 6 MeV and 8 MeV. Angular distributions were analyzed in terms of the DWBA with RPA wave functions. Eight Isup(π) = 2- states carrying a total strength ΣB(M2) = 8500 μ 2 sub(K) fm 2 have been found. The strong fragmentation is in qualitative agreement with theoretical predictions. (orig.) [de

  17. High-resolution 13C nuclear magnetic resonance evidence of phase transition of Rb,Cs-intercalated single-walled nanotubes

    KAUST Repository

    Bouhrara, M.

    2011-09-06

    We present 13 C high-resolution magic-angle-turning (MAT) and magic angle spinning nuclear magnetic resonance data of Cs and Rb intercalated single walled carbon nanotubes. We find two distinct phases at different intercalation levels. A simple charge transfer is applicable at low intercalation level. The new phase at high intercalation level is accompanied by a hybridization of alkali (s) orbitals with the carbon (sp2) orbitals of the single walled nanotubes, which indicate bundle surface sites is the most probable alkali site.

  18. Magnetic Fields Versus Gravity

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  19. High-resolution empirical geomagnetic field model TS07D: Investigating run-on-request and forecasting modes of operation

    Science.gov (United States)

    Stephens, G. K.; Sitnov, M. I.; Ukhorskiy, A. Y.; Vandegriff, J. D.; Tsyganenko, N. A.

    2010-12-01

    The dramatic increase of the geomagnetic field data volume available due to many recent missions, including GOES, Polar, Geotail, Cluster, and THEMIS, required at some point the appropriate qualitative transition in the empirical modeling tools. Classical empirical models, such as T96 and T02, used few custom-tailored modules to represent major magnetospheric current systems and simple data binning or loading-unloading inputs for their fitting with data and the subsequent applications. They have been replaced by more systematic expansions of the equatorial and field-aligned current contributions as well as by the advanced data-mining algorithms searching for events with the global activity parameters, such as the Sym-H index, similar to those at the time of interest, as is done in the model TS07D (Tsyganenko and Sitnov, 2007; Sitnov et al., 2008). The necessity to mine and fit data dynamically, with the individual subset of the database being used to reproduce the geomagnetic field pattern at every new moment in time, requires the corresponding transition in the use of the new empirical geomagnetic field models. It becomes more similar to runs-on-request offered by the Community Coordinated Modeling Center for many first principles MHD and kinetic codes. To provide this mode of operation for the TS07D model a new web-based modeling tool has been created and tested at the JHU/APL (http://geomag_field.jhuapl.edu/model/), and we discuss the first results of its performance testing and validation, including in-sample and out-of-sample modeling of a number of CME- and CIR-driven magnetic storms. We also report on the first tests of the forecasting version of the TS07D model, where the magnetospheric part of the macro-parameters involved in the data-binning process (Sym-H index and its trend parameter) are replaced by their solar wind-based analogs obtained using the Burton-McPherron-Russell approach.

  20. Magnetic investigations along selected high-resolution seismic traverses in the central block of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Sikora, R.F.; Roberts, C.W.; Morin, R.L.; Halvorson, P.F.

    1995-01-01

    Ground magnetic data collected along several traverses across the central block of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Magnetic data and models along traverses across the central block of Yucca Mountain reveal anomalies associated with known faults and indicate a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by numerous small-amplitude anomalies that probably reflect small-scale faulting. Magnetic modeling of the terrain along the eastern flank of Yucca Mountain indicates that terrain induced magnetic anomalies of about 100 to 150 nT are present along some profiles where steep terrain exists above the magnetometer

  1. High resolution magnetic resonance imaging in adults with partial or secondary generalised epilepsy attending a tertiary referral unit.

    Science.gov (United States)

    Li, L M; Fish, D R; Sisodiya, S M; Shorvon, S D; Alsanjari, N; Stevens, J M

    1995-10-01

    In the past the underlying structural abnormalities leading to the development of chronic seizure disorders have usually only been disclosed by histological examination of surgical or postmortem material, due to their often subtle nature that was beyond the resolution of CT or early MRI. The MRI findings in 341 patients with chronic, refractory epilepsy attending The National Hospital for Neurology and Neurosurgery and Chalfont Centre for Epilepsy are reported. Studies were performed on a 1.5 Tesla scanner with a specific volumetric protocol, allowing the reconstruction of 1.5 mm contiguous slices throughout the whole brain. Direct visual inspection of the two dimensional images without the use of additional quantitative measures showed that 254/341 (74%) were abnormal. Twenty four (7%) patients had more than one lesion. The principal MRI diagnoses were hippocampal asymmetry (32%), cortical dysgenesis (12%), tumour (12%), and vascular malformation (8%). Pathological confirmation was available from surgical specimens in 70 patients and showed a very high degree of sensitivity and specificity for the different entities. The advent of more widely available high resolution MRI should make it possible to identify the underlying pathological substrate in most patients with chronic partial epilepsy. This will allow a fundamental reclassification of the epilepsies for both medical and surgical management, with increasing precision as new methods (both of acquisition and postprocessing) are added to the neuroimaging battery used in clinical practice.

  2. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, R.; Scheidler, J.; Porn, U.; Reiser, M. [Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Seelos, K.; Yousry, T. [Department of Neuroradiology, Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Exner, H. [Institute for Medical Epidemiology, Klinikum Grosshadern, University of Munich, Munich (Germany); Rosen, B.R. [Department of Radiology, Massachusetts General Hospital, NMR Center, Charlestown, MA (United States)

    1999-09-01

    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1.5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. (orig.) With 3 figs., 3 tabs., 27 refs.

  3. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors

    International Nuclear Information System (INIS)

    Bruening, R.; Scheidler, J.; Porn, U.; Reiser, M.; Seelos, K.; Yousry, T.; Exner, H.; Rosen, B.R.

    1999-01-01

    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1.5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. (orig.)

  4. Detection and quantification of phenolic compounds in olive oil by high resolution {sup 1}H nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Christophoridou, Stella [NMR Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, Voutes, 71003 Heraklion, Crete (Greece); Dais, Photis [NMR Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, Voutes, 71003 Heraklion, Crete (Greece)], E-mail: dais@chemistry.uoc.gr

    2009-02-09

    High resolution {sup 1}H NMR spectroscopy has been employed as a versatile and rapid method to analyze the polar fraction of extra virgin olive oils containing various classes of phenolic compounds. The strategy for identification of phenolic compounds is based on the NMR chemical shifts of a large number of model compounds assigned by using two-dimensional (2D) NMR spectroscopy. Furthermore, 2D NMR was applied to phenolic extracts in an attempt to discover additional phenolic compounds. The {sup 1}H NMR methodology was successful in detecting simple phenols, such as p-coumaric acid, vanillic acid, homovanillyl alcohol, vanillin, free tyrosol, and free hydroxytyrosol, the flavonols apigenin and luteolin, the lignans (+) pinoresinol, (+) 1-acetoxypinoresinol and syringaresinol, two isomers of the aldehydic form of oleuropein and ligstroside, the dialdehydic form of oleuropein and ligstroside lacking a carboxymethyl group, and finally total hydroxytyrosol and total tyrosol reflecting the total amounts of free and esterified hydroxytyrol and tyrosol, respectively. The absolute amount of each phenolic constituent was determined in the polar fraction by using anhydrous 1,3,5-triazine as an internal standard.

  5. Detection and quantification of phenolic compounds in olive oil by high resolution 1H nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Christophoridou, Stella; Dais, Photis

    2009-01-01

    High resolution 1 H NMR spectroscopy has been employed as a versatile and rapid method to analyze the polar fraction of extra virgin olive oils containing various classes of phenolic compounds. The strategy for identification of phenolic compounds is based on the NMR chemical shifts of a large number of model compounds assigned by using two-dimensional (2D) NMR spectroscopy. Furthermore, 2D NMR was applied to phenolic extracts in an attempt to discover additional phenolic compounds. The 1 H NMR methodology was successful in detecting simple phenols, such as p-coumaric acid, vanillic acid, homovanillyl alcohol, vanillin, free tyrosol, and free hydroxytyrosol, the flavonols apigenin and luteolin, the lignans (+) pinoresinol, (+) 1-acetoxypinoresinol and syringaresinol, two isomers of the aldehydic form of oleuropein and ligstroside, the dialdehydic form of oleuropein and ligstroside lacking a carboxymethyl group, and finally total hydroxytyrosol and total tyrosol reflecting the total amounts of free and esterified hydroxytyrol and tyrosol, respectively. The absolute amount of each phenolic constituent was determined in the polar fraction by using anhydrous 1,3,5-triazine as an internal standard

  6. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  7. Computer-assisted superimposition of magnetic resonance and high-resolution technetium-99m-HMPAO and thallium-201 SPECT images of the brain

    International Nuclear Information System (INIS)

    Holman, B.L.; Zimmerman, R.E.; Johnson, K.A.; Carvalho, P.A.; Schwartz, R.B.; Loeffler, J.S.; Alexander, E.; Pelizzari, C.A.; Chen, G.T.

    1991-01-01

    A method for registering three-dimensional CT, MR, and PET data sets that require no special patient immobilization or other precise positioning measures was adapted to high-resolution SPECT and MRI and was applied in 14 subjects [five normal volunteers, four patients with dementia (Alzheimer's disease), two patients with recurrent glioblastoma, and three patients with focal lesions (stroke, arachnoid cyst and head trauma)]. T2-weighted axial magnetic resonance images and transaxial 99mTc-HMPAO and 201Tl images acquired with an annular gamma camera were merged using an objective registration (translation, rotation and rescaling) program. In the normal subjects and patients with dementia and focal lesions, focal areas of high uptake corresponded to gray matter structures. Focal lesions observed on MRI corresponded to perfusion defects on SPECT. In the patients who had undergone surgical resection of glioblastoma followed by interstitial brachytherapy, increased 201Tl corresponding to recurrent tumor could be localized from the superimposed images. The method was evaluated by measuring the residuals in all subjects and translational errors due to superimposition of deep structures in the 12 subjects with normal thalamic anatomy and 99mTc-HMPAO uptake. This method for superimposing magnetic resonance and high-resolution SPECT images of the brain is a useful technique for correlating regional function with brain anatomy

  8. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    2012-01-01

    High Resolution NMR: Theory and Chemical Applications discusses the principles and theory of nuclear magnetic resonance and how this concept is used in the chemical sciences. This book is written at an intermediate level, with mathematics used to augment verbal descriptions of the phenomena. This text pays attention to developing and interrelating four approaches - the steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The style of this book is based on the assumption that the reader has an acquaintance with the general principles of quantum mechanics, but no extensive background in quantum theory or proficiency in mathematics is required. This book begins with a description of the basic physics, together with a brief account of the historical development of the field. It looks at the study of NMR in liquids, including high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. This book is intended to assis...

  9. Luciola Hypertelescope Space Observatory. Versatile, Upgradable High-Resolution Imaging,from Stars to Deep-Field Cosmology

    Science.gov (United States)

    Labeyrie, Antoine; Le Coroller, Herve; Dejonghe, Julien; Lardiere, Olivier; Aime, Claude; Dohlen, Kjetil; Mourard, Denis; Lyon, Richard; Carpenter, Kenneth G.

    2008-01-01

    Luciola is a large (one kilometer) "multi-aperture densified-pupil imaging interferometer", or "hypertelescope" employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a pupil densifier micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having hundreds of thousands of individual receivers . With its high limiting magnitude, reaching the mv=30 limit of HST when 100 collectors of 25cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1200 Angstrom ultra-violet to the 20 micron infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras ( currently 200 to 1000nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent upgrade

  10. Cosmic magnetic fields

    CERN Document Server

    Kronberg, Philipp P

    2016-01-01

    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  11. Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Hovden, Robert, E-mail: rmh244@cornell.edu [School of Applied and Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 (United States); Ercius, Peter [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Jiang, Yi [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Wang, Deli; Yu, Yingchao; Abruña, Héctor D. [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (United States); Elser, Veit [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Muller, David A. [School of Applied and Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 (United States)

    2014-05-01

    To date, high-resolution (<1 nm) imaging of extended objects in three-dimensions (3D) has not been possible. A restriction known as the Crowther criterion forces a tradeoff between object size and resolution for 3D reconstructions by tomography. Further, the sub-Angstrom resolution of aberration-corrected electron microscopes is accompanied by a greatly diminished depth of field, causing regions of larger specimens (>6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability. - Highlights: • Develop tomography technique for high-resolution and large field of view. • We combine depth sectioning with traditional tilt tomography. • Through-focal tomography reduces tilts and improves resolution. • Through-focal tomography overcomes the fundamental Crowther limit. • Aberration-corrected becomes a benefit and not a hindrance for tomography.

  12. The coupling of supercritical fluid chromatography and field ionization time-of-flight high-resolution mass spectrometry for rapid and quantitative analysis of petroleum middle distillates.

    Science.gov (United States)

    Qian, Kuangnan; Diehl, John W; Dechert, Gary J; DiSanzo, Frank P

    2004-01-01

    We report the first coupling of supercritical fluid chromatography (SFC) with field ionization time-of-flight high-resolution mass spectrometry (FI-ToF HRMS), in parallel with ultraviolet (UV) detection and flame ionization detection (FID), for rapid and quantitative analysis of petroleum middle distillates. SFC separates petroleum middle distillates into saturates and 1- to 3-ring aromatics. FI generates molecular ions for hydrocarbon species eluted from the SFC. The high resolution and exact mass measurements by ToF mass spectrometry provide elemental compositions of the molecules in the petroleum product. The amounts of saturates and aromatic ring types were quantified using the parallel SFC-FID assisted by SFC-UV. With a proper carbon-number calibration, the detailed composition of the petroleum middle distillate was rapidly determined.

  13. Magnetic field measurements on board of altitude-research rockets

    International Nuclear Information System (INIS)

    Theile, B.; Luehr, H.

    1976-01-01

    Electric currents within the Earth's magneto- and ionosphere can be probed by measuring their magnetic fields. Different payloads of the national sounding rocket programme will carry magnetometers of high resolution and dynamic range. Thorough test procedures are necessary to evaluate the instrument's properties and possible interference problems. (orig.) [de

  14. Exploring the Relationship between Burn Severity Field Data and Very High Resolution GeoEye Images: The Case of the 2011 Evros Wildfire in Greece

    OpenAIRE

    Eleni Dragozi; Ioannis Z. Gitas; Sofia Bajocco; Dimitris G. Stavrakoudis

    2016-01-01

    Monitoring post-fire vegetation response using remotely-sensed images is a top priority for post-fire management. This study investigated the potential of very-high-resolution (VHR) GeoEye images on detecting the field-measured burn severity of a forest fire that occurred in Evros (Greece) during summer 2011. To do so, we analysed the role of topographic conditions and burn severity, as measured in the field immediately after the fire (2011) and one year after (2012) using the Composite Burn ...

  15. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  16. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  17. Magnetic field of Mercury

    International Nuclear Information System (INIS)

    Jackson, D.J.; Beard, D.B.

    1977-01-01

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/ 3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 10 22 G cm 3 in the same direction as the earth's dipole), approx.-113 γR/sub M/ 4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  18. Cold-seep habitat mapping: High-resolution spatial characterization of the Blake Ridge Diapir seep field

    Science.gov (United States)

    Wagner, Jamie K. S.; McEntee, Molly H.; Brothers, Laura L.; German, Christopher R.; Kaiser, Carl L.; Yoerger, Dana R.; Van Dover, Cindy Lee

    2013-08-01

    Relationships among seep community biomass, diversity, and physiographic controls such as underlying geology are not well understood. Previous efforts to constrain these relationships at the Blake Ridge Diapir were limited to observations from piloted deep-submergence vehicles. In August 2012, the autonomous underwater vehicle (AUV) Sentry collected geophysical and photographic data over a 0.131 km2 area at the Blake Ridge Diapir seeps. A nested survey approach was used that began with a regional or reconnaissance-style survey using sub-bottom mapping systems to locate and identify seeps and underlying conduits. This survey was followed by AUV-mounted sidescan sonar and multibeam echosounder systems mapping on a mesoscale to characterize the seabed physiography. At the most detailed survey level, digital photographic imaging was used to resolve sub-meter characteristics of the biology. Four pockmarks (25-70 m diameter) were documented, each supporting chemosynthetic communities. Concentric zonation of mussels and clams suggests the influence of chemical gradients on megafaunal distribution. Data collection and analytical techniques used here yield high-resolution habitat maps that can serve as baselines to constrain temporal evolution of seafloor seeps, and to inform ecological niche modeling and resource management.

  19. Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions

    International Nuclear Information System (INIS)

    Hovden, Robert; Ercius, Peter; Jiang, Yi; Wang, Deli; Yu, Yingchao; Abruña, Héctor D.; Elser, Veit; Muller, David A.

    2014-01-01

    To date, high-resolution ( 6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability. - Highlights: • Develop tomography technique for high-resolution and large field of view. • We combine depth sectioning with traditional tilt tomography. • Through-focal tomography reduces tilts and improves resolution. • Through-focal tomography overcomes the fundamental Crowther limit. • Aberration-corrected becomes a benefit and not a hindrance for tomography

  20. Designing magnets with prescribed magnetic fields

    International Nuclear Information System (INIS)

    Liu Liping

    2011-01-01

    We present a novel design method capable of finding the magnetization densities that generate prescribed magnetic fields. The method is based on the solution to a simple variational inequality and the resulting designs have simple piecewise-constant magnetization densities. By this method, we obtain new designs of magnets that generate commonly used magnetic fields: uniform magnetic fields, self-shielding fields, quadrupole fields and sextupole fields. Further, it is worth noting that this method is not limited to the presented examples, and in particular, three-dimensional designs can be constructed in a similar manner. In conclusion, this novel design method is anticipated to have broad applications where specific magnetic fields are important for the performance of the devices.

  1. Swarm: ESA's Magnetic Field Mission

    Science.gov (United States)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2013-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

  2. Applications of high resolution airborne magnetic and radiometric data in the Barberton Greenstone Belt of South Africa

    International Nuclear Information System (INIS)

    Moore, C.

    1994-01-01

    We investigated the data obtained from a geophysical survey of the Greenstone Belt in the Barberton mountain land in the Transvaal, South Africa. A geological map is derived from the airborne magnetic and radiometric survey which differs significantly from the published geological map, particularly in the eastern are of the survey. There is no evidence contained within the geological data to suggest that the Greenstone Belt extends to a depth greater that 3 kilometers. The major geological constituents of the Barberton mountain land displays distinctive and diagnostic radiometric signatures, enabling accurate lithologic discrimination. 63 refs

  3. High resolution metric imaging payload

    Science.gov (United States)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  4. High magnetic field MRI system

    International Nuclear Information System (INIS)

    Maeda, Hideaki; Urata, Masami; Satoh, Kozo

    1990-01-01

    A high field superconducting magnet, 4-5 T in central magnetic field, is required for magnetic resonance spectroscopic imaging (MRSI) on 31 P, essential nuclei for energy metabolism of human body. This paper reviews superconducting magnets for high field MRSI systems. Examples of the cross-sectional image and the spectrum of living animals are shown in the paper. (author)

  5. Surface magnetic field measurement with magnetic shielding

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy

    2010-01-01

    Roč. 61, č. 7 (2010), 66-68 ISSN 1335-3632 Grant - others:AVČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic hysteresis * magnetic field measurement * magnetic shielding * extrapolation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.270, year: 2010

  6. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  7. The earth's magnetic field

    International Nuclear Information System (INIS)

    Merrill, R.T.

    1983-01-01

    After a historical introduction in Chapter 1, the more traditional aspects of geomagnetism relating to the present field and historical observations are presented in Chapter 2. The various methods and techniques and theoretical background of palaeomagnetism are given in Chapter 3. Chapters 4, 5 and 6 present the results of palaeomagnetic and archaeomagnetic studies in three topics. Chapter 4 relates to studies of the geomagnetic field roughly back to about 50,000 years ago. Chapter 5 is about reversals of the geomagnetic field and Chapter 6 presents studies of the field for times older than 50,000 years and on the geological time scale of millions or hundreds of millions of years. Chapters 7, 8 and 9 provide insight into dynamo theory. Chapter 7 is essentially a non-mathematical attempt to explain the physical basis of dynamo theories to palaeomagnetists. This is followed in Chapter 8 by a more advanced theoretical treatment. Chapter 9 explains theoretical aspects of secular variation and the origin of reversals of the geomagnetic field. Chapter 10 is our attempt to relate theory to experiment and vice versa. The final two chapters consider the magnetic fields of the moon, sun, planets and meteorites, in an attempt to determine the necessary and sufficient conditions for magnetic field generation in large solar system bodies. (author)

  8. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  9. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    Directory of Open Access Journals (Sweden)

    Piotto Martial

    2012-01-01

    Full Text Available Abstract Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9 originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample. Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater.

  10. High-resolution 3T Magnetic Resonance Imaging of the Triangular Fibrocartilage Complex in Chinese Wrists: Correlation with Cross-sectional Anatomy.

    Science.gov (United States)

    Zhan, Hui-Li; Li, Wen-Ting; Bai, Rong-Jie; Wang, Nai-Li; Qian, Zhan-Hua; Ye, Wei; Yin, Yu-Ming

    2017-04-05

    The injury of the triangular fibrocartilage complex (TFCC) is a common cause of ulnar-sided wrist pain. The aim of this study was to investigate if the high-resolution 3T magnetic resonance imaging (MRI) could demonstrate the detailed complex anatomy of TFCC in Chinese. Fourteen Chinese cadaveric wrists (from four men and three women; age range at death from 30 to 60 years; mean age at 46 years) and forty healthy Chinese wrists (from 20 healthy volunteers, male/female: 10/10; age range from 21 to 53 years with a mean age of 32 years) in Beijing Jishuitan Hospital from March 2014 to March 2016 were included in this study. All cadavers and volunteers had magnetic resonance (MR) examination of the wrist with coronal T1-weighted and proton density-weighted imaging with fat suppression in three planes, respectively. MR arthrography (MRAr) was performed on one of the cadaveric wrists. Subsequently, all 14 cadaveric wrists were sliced into 2 mm thick slab with band saw (six in coronal plane, four in sagittal plane, and four in axial plane). The MRI features of normal TFCC were analyzed in these specimens and forty healthy wrists. Triangular fibrocartilage, the ulnar collateral ligament, and the meniscal homolog could be best observed on images in coronal plane. The palmar and dorsal radioulnar ligaments were best evaluated in transverse plane. The ulnotriquetral and ulnolunate ligaments were best visualized in sagittal plane. The latter two structures and the volar and dorsal capsules were better demonstrated on MRAr. High-resolution 3T MRI is capable to show the detailed complex anatomy of the TFCC and can provide valuable information for the clinical diagnosis in Chinese.

  11. Crustal architecture of the Faroe-Shetland Margin: insights from a newly merged high resolution gravity and magnetic dataset

    Science.gov (United States)

    Rippington, Stephen; Mazur, Stan; Anderson, Chris

    2014-05-01

    The Faroe-Shetland region is geologically complex; it has undergone several phases of extension and rifting since the middle Palaeozoic (Ritchie et al., 2011; Coward et al., 2003), culminating in the Eocene with continental breakup between Northwest Europe and Greenland (Gernigon et al., 2012). Final breakup may have been facilitated by the presence of the Iceland Plume and was accompanied by the emplacement of voluminous basaltic rocks, attributed to the North Atlantic Igneous Province (White and McKenzie, 1989). It is difficult to image beneath the thick Paleogene basalts in the region using conventional seismic methods, because the high impedance contrast between the sediments and shallow basalts causes strong reflections. These mask deeper and weaker reflections and cause prominent inter-bed multiples (White et al., 1999). Consequently, determining the location and shape of basins and basement highs, and elucidating the timing and manner of their formation, remains a major cause of uncertainty in the appraisal of the hydrocarbon potential of the region. Gravity and magnetic data record variations in the density and susceptibility of the entire crust. Consequently, the thick basalt piles that are shallow in the section do not hinder the ability to detect deeper features. Instead, the principal challenge is distinguishing superposed bodies, with different densities and susceptibilities, from the combined gravity and magnetic anomalies. In this study, seismic data and horizons from the shallow section are used in combination with gravity and magnetic data to produce map view interpretations, and 2D and 3D models of the crust in the Faroe-Shetland region. These models help distinguish important variations in timing of rifting in different basins, and reveal the crustal architecture of the Faroe-Shetland Basin from the seabed to the Moho. We present a new structural and kinematic interpretation of the geology of the region, and propose an asymmetric simple shear

  12. Magnetic field screens

    International Nuclear Information System (INIS)

    Mansfield, P.; Turner, R.; Chapman, B.L.W.; Bowley, R.M.

    1990-01-01

    A screen for a magnetic coil, for producing, for example, a homogeneous, gradient or RF field in nuclear magnetic resonance imaging, is described. It is provided by surround the coil with a set of electrical conductors. The currents within the conductors are controlled in such a manner that the field is neutralised in a specific region of space. The current distribution within the conductors is determined by calculating the current within a hypothetical superconductive shield which would have the effect of neutralising the field, the current through the conductors thereby being a substitute for the superconductive shield. The conductors may be evenly spaced and connected in parallel, their resistances being determined by thickness or composition to provide the desired current, or they may carry equal currents but be differently spaced. A further set or sets of controlled conductors outside the first set may ensure that the first set does not upset the field from the NMR coil. The shield may selectively reflect certain fields while transmitting others and may prevent acoustic vibration e.g. when switching gradient fields. An RF coil arrangement may consist of two orthogonal coils, one coil within the other for use as a transmit/receive set or as a double resonance transmitter; a shield between the coils is in series with, and formed from the same winding as, the inner coil. (author)

  13. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  14. High-resolution 3D Magnetic Resonance angiography in the evaluation of neck vessels and intracranial circulation

    International Nuclear Information System (INIS)

    Villa, A.; Di Guglielmo, L.; Campani, R.; Nicolato, A.; D'Amato, M.; Rodriguez y Balena, R.

    1991-01-01

    Magnetic Resonance Angiography (MRA) is a modern vascular imaging technique which allows the non-invasive and direct imaging of vessels. The authors aimed at evaluating the diagnostic accuracy of MRA in the study of pathologic conditions in the neck and intracranial vessels; spatial resolution of the technique was also investigated. Twenty-four healthy volunteers and 82 patients suffering from various diseases of the head and neck vessels were included in the study. First of all, MRA capabilities ware investigated in visualizing normal vessels of both neck and intracranial circle. The diagnostic accuracy of the method was then evaluated in the study of vascular diseases, and the results compared with conventional/digital angiographic findings. The comparison demonstrated how stenoses and atherosclerotic plaques tend to be overestimated by MRA because of technical artifacts inherent to the technique itself, whereas vascular ulcerations and aneurysms are frequently underestimated. However, this data was steady and therefore evaluable- the exact knowledge of the artifacts making diagnosis reliable. The diagnostic and technical problems relative to the various vascular diseases are discussed. Finally, several hypotheses of diagnostic iter are suggested

  15. Vector magnetic field changes associated with X-class flares

    Science.gov (United States)

    Wang, Haimin; Ewell, M. W., Jr.; Zirin, H.; Ai, Guoxiang

    1994-01-01

    We present high-resolution transverse and longitudinal magnetic field measurements bracketing five X-class solar flares. We show that the magnetic shear, defined as the angular difference between the measured field and calculated potential field, actually increases after all of these flares. In each case, the shear is shown to increase along a substantial portion of the magnetic neutral line. For two of the cases, we have excellent time resolution, on the order of several minutes, and we demonstrate that the shear increase is impulsive. We briefly discuss the theoretical implications of our results.

  16. High resolution Slovak Bouguer gravity anomaly map and its enhanced derivative transformations: new possibilities for interpretation of anomalous gravity fields

    Science.gov (United States)

    Pašteka, Roman; Zahorec, Pavol; Kušnirák, David; Bošanský, Marián; Papčo, Juraj; Szalaiová, Viktória; Krajňák, Martin; Ivan, Marušiak; Mikuška, Ján; Bielik, Miroslav

    2017-06-01

    The paper deals with the revision and enrichment of the present gravimetric database of the Slovak Republic. The output of this process is a new version of the complete Bouguer anomaly (CBA) field on our territory. Thanks to the taking into account of more accurate terrain corrections, this field has significantly higher quality and higher resolution capabilities. The excellent features of this map will allow us to re-evaluate and improve the qualitative interpretation of the gravity field when researching the structural and tectonic geology of the Western Carpathian lithosphere. In the contribution we also analyse the field of the new CBA based on the properties of various transformed fields - in particular the horizontal gradient, which by its local maximums defines important density boundaries in the lateral direction. All original and new transformed maps make a significant contribution to improving the geological interpretation of the CBA field. Except for the horizontal gradient field, we are also interested in a new special transformation of TDXAS, which excellently separates various detected anomalies of gravity field and improves their lateral delimitation.

  17. Earth's Magnetic Field

    DEFF Research Database (Denmark)

    This volume provides a comprehensive view on the different sources of the geomagnetic field both in the Earth’s interior and from the field’s interaction with the terrestrial atmosphere and the solar wind. It combines expertise from various relevant areas of geomagnetic and near Earth space...... research with the aim to better characterise the state and dynamics of Earth’s magnetic field. Advances in the exploitation of geomagnetic observations hold a huge potential not only for an improved quantitative description of the field source but also for a better understanding of the underlying processes...... and space observations, and on state-of-the-art empirical models and physics-based simulations. Thus, it provides an in-depth overview over recent achievements, current limitations and challenges, and future opportunities in the field of geomagnetism and space sciences....

  18. Iron in the Fire: Searching for Fire's Magnetic Fingerprint using Controlled Heating Experiments, High-Resolution FORCs, IRM Coercivity Spectra, and Low-Temperature Remanence Experiments

    Science.gov (United States)

    Lippert, P. C.; Reiners, P. W.

    2014-12-01

    Evidence for recent climate-wildfire linkages underscores the need for better understanding of relationships between wildfire and major climate shifts in Earth history, which in turn offers the potential for prognoses for wildfire and human adaptations to it. In particular, what are the links between seasonality and wildfire frequency and severity, and what are the feedbacks between wildfire, landscape evolution, and biogeochemical cycles, particularly the carbon and iron cycles? A key first step in addressing these questions is recovering well-described wildfire records from a variety of paleolandscapes and paleoclimate regimes. Although charcoal and organic biomarkers are commonly used indicators of fire, taphonomic processes and time-consuming analytical preparations often preclude their routine use in some environments and in high-stratigraphic resolution paleowildfire surveying. The phenomenological relationship between fire and magnetic susceptibility can make it a useful surveying tool, but increased magnetic susceptibility in sediments is not unique to fire, and thus limits its diagnostic power. Here we utilize component-specific rock magnetic methods and analytical techniques to identify the rock magnetic fingerprint of wildfire. We use a custom-designed air furnace, a series of iron-free laboratory soils, natural saprolites and soils, and fuels from Arizona Ponderosa pine forests and grasslands to simulate wildfire in a controlled and monitored environment. Soil-ash residues and soil and fuel controls were then characterized using First Order Reversal Curve (FORC) patterns, DC backfield IRM coercivity spectra, low-temperature SIRM demagnetization behavior, and low-temperature cycling of room-temperature SIRM behavior. We will complement these magnetic analyses with high-resolution TEM of magnetic extracts. Here we summarize the systematic changes to sediment magnetism as pyrolitized organic matter is incorporated into artificial and natural soils. These

  19. Structure and microstructure of Ni-Mn-Ga single crystal exhibiting magnetic shape memory effect analysed by high resolution X-ray diffraction

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Cejpek, P.; Drahokoupil, Jan; Holý, V.

    2016-01-01

    Roč. 115, Aug (2016), s. 250-258 ISSN 1359-6454 R&D Projects: GA ČR GA13-30397S; GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : magnetic field-induced strain * magnetic shape memory effect * X-ray diffraction * structure of Ni-Mn-Ga Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.301, year: 2016

  20. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  1. Wavefield back-propagation in high-resolution X-ray holography with a movable field of view.

    Science.gov (United States)

    Guehrs, Erik; Günther, Christian M; Pfau, Bastian; Rander, Torbjörn; Schaffert, Stefan; Schlotter, William F; Eisebitt, Stefan

    2010-08-30

    Mask-based Fourier transform holography is used to record images of biological objects with 2.2 nm X-ray wavelength. The holography mask and the object are decoupled from each other which allows us to move the field of view over a large area over the sample. Due to the separation of the mask and the sample on different X-ray windows, a gap between both windows in the micrometer range typically exists. Using standard Fourier transform holography, focussed images of the sample can directly be reconstructed only for gap distances within the setup's depth of field. Here, we image diatoms as function of the gap distance and demonstrate the possibility to recover focussed images via a wavefield back-propagation technique. The limitations of our approach with respect to large separations are mainly associated with deviations from flat-field illumination of the object.

  2. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  3. Adaptive Scanning Optical Microscope (ASOM): A multidisciplinary optical microscope design for large field of view and high resolution imaging

    NARCIS (Netherlands)

    Potsaid, B.; Bellouard, Y.J.; Wen, J.T.

    2005-01-01

    From micro-assembly to biological observation, the optical microscope remains one of the most important tools for observing below the threshold of the naked human eye. However, in its conventional form, it suffers from a trade-off between resolution and field of view. This paper presents a new

  4. Candidates for multiple impact craters?: Popigai and Chicxulub as seen by the global high resolution gravitational field model EGM2008

    Czech Academy of Sciences Publication Activity Database

    Klokočník, Jaroslav; Kostelecký, J.; Pešek, I.; Novák, P.; Wagner, C. A.; Sebera, Josef

    2010-01-01

    Roč. 1, č. 1 (2010), s. 71-83 ISSN 1869-9510 Grant - others:ESA(XE) ESA- PECS project no. 98056 Institutional research plan: CEZ:AV0Z10030501 Keywords : impact craters * gravity field model EGM2008 * second radial derivatives Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  5. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields.

    Science.gov (United States)

    Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian

    2018-04-03

    Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.

  6. Wp index: A new substorm index derived from high-resolution geomagnetic field data at low latitude

    DEFF Research Database (Denmark)

    Nose, M.; Iyemori, T.; Wang, L.

    2012-01-01

    Geomagnetic field data with high time resolution (typically 1 s) have recently become more commonly acquired by ground stations. Such high time resolution data enable identifying Pi2 pulsations which have periods of 40-150 s and irregular (damped) waveforms. It is well-known that pulsations of th...

  7. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  8. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  9. Low field magnetic resonance imaging

    Science.gov (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  10. The Capacitive Magnetic Field Sensor

    Science.gov (United States)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  11. Parahydrogen-enhanced zero-field nuclear magnetic resonance

    Science.gov (United States)

    Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.

    2011-07-01

    Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.

  12. Dark Matter Profiles in Dwarf Galaxies: A Statistical Sample Using High-Resolution Hα Velocity Fields from PCWI

    Science.gov (United States)

    Relatores, Nicole C.; Newman, Andrew B.; Simon, Joshua D.; Ellis, Richard; Truong, Phuongmai N.; Blitz, Leo

    2018-01-01

    We present high quality Hα velocity fields for a sample of nearby dwarf galaxies (log M/M⊙ = 8.4-9.8) obtained as part of the Dark Matter in Dwarf Galaxies survey. The purpose of the survey is to investigate the cusp-core discrepancy by quantifying the variation of the inner slope of the dark matter distributions of 26 dwarf galaxies, which were selected as likely to have regular kinematics. The data were obtained with the Palomar Cosmic Web Imager, located on the Hale 5m telescope. We extract rotation curves from the velocity fields and use optical and infrared photometry to model the stellar mass distribution. We model the total mass distribution as the sum of a generalized Navarro-Frenk-White dark matter halo along with the stellar and gaseous components. We present the distribution of inner dark matter density profile slopes derived from this analysis. For a subset of galaxies, we compare our results to an independent analysis based on CO observations. In future work, we will compare the scatter in inner density slopes, as well as their correlations with galaxy properties, to theoretical predictions for dark matter core creation via supernovae feedback.

  13. Field-portable high-resolution EDXRF analysis with HgI2-detector-based instrumentation

    International Nuclear Information System (INIS)

    Berry, P.F.; Little, S.R.; Voots, G.R.

    1992-01-01

    Energy dispersive x-ray fluorescence (EDXRF) analysis is well known for its efficient use of x-ray detector technology for simultaneous multielement determination. Low-intensity excitation, such as from a radioisotope source, can thus be employed and has enabled the design of many types of truly portable EDXRF instrumentation. Portable design, however, has not been without significant compromise in analytical performance because of the limited x-ray resolving power of prior detection methods, except by the use of a cryogenically operated detector. The developments we refer to stem from the use of a comparatively new x-ray detection device fabricated from mercuric iodide (HgI 2 ). For this detector, only a modest degree of cooling is required to achieve an energy resolution of > 300 eV. Two field-portable instrument designs of different hand-held measurement probe configurations are available that have applications for industrial quality assurance and environmental screening

  14. High-Resolution Mineralogical Characterization and Biogeochemical Modeling of Uranium Reduction Pathways at the NABIR Field-Research Center

    International Nuclear Information System (INIS)

    David R. Veblen; Chen Zhu; Lee Krumholz; Claudine Stirling; Emma-Kate Potter; Alex N. Halliday

    2004-01-01

    The effectiveness and feasibility of bioremediation at the field scale cannot be fully assessed until the mechanisms of immobilization and U speciation in the solid matrix are resolved. However, characterization of the immobilized U and its valence states is extremely difficult, because microbially mediated mineral precipitates are generally nanometer (nm)-sized, poorly crystalline, or amorphous. We are developing combined field emission gun--scanning electron microscopy (FEG-SEM, at Indiana University) and FEG transmission electron microscopy (TEM, at Hopkins) to detect and isolate uranium containing phases; (1) method developments for TEM sample preparations and parallel electron energy loss spectroscopy (EELS) determination of uranium valence; and (2) to determine the speciation, fate, reactivity, valence states of immobilized uranium, using the state-of-the-art 300-kV, FEG-TEM. We have obtained preliminary results on contaminated sediments from Area 3 at the Oak Ridge Field Research Center (FRC). TEM results show that the sediments contain numerous minerals, including quartz, mica/clay (muscovite and/or illite), rutile, ilmenite, zircon, and an Al-Sr-Ce-Ca phosphate mineral, none of which contain uranium above the EDS detection limit. Substantial U (up to ∼2 wt.%) is, however, clearly associated with two materials: (1) the Fe oxyhydroxide and (2) clots of a chemically complex material that is likely a mixture of several nm-scale phases. The Fe oxyhydroxide was identified as goethite from its polycrystalline SAED pattern and EDS analysis showing it to be very Fe-rich; the aggregate also displays one of several morphologies that are common for goethite. U is strongly sorbed to goethite in the FRC sediment, and the ubiquitous association with phosphorous suggests that complexes containing both U and P may play an important role in that sorption. Results from bulk analysis and SEM had previously demonstrated the association of U with Fe and thus suggested that U

  15. Continuous assessment of land mapping accuracy at High Resolution from global networks of atmospheric and field observatories -concept and demonstration

    Science.gov (United States)

    Sicard, Pierre; Martin-lauzer, François-regis

    2017-04-01

    In the context of global climate change and adjustment/resilience policies' design and implementation, there is a need not only i. for environmental monitoring, e.g. through a range of Earth Observations (EO) land "products" but ii. for a precise assessment of uncertainties of the aforesaid information that feed environmental decision-making (to be introduced in the EO metadata) and also iii. for a perfect handing of the thresholds which help translate "environment tolerance limits" to match detected EO changes through ecosystem modelling. Uncertainties' insight means precision and accuracy's knowledge and subsequent ability of setting thresholds for change detection systems. Traditionally, the validation of satellite-derived products has taken the form of intensive field campaigns to sanction the introduction of data processors in Payload Data Ground Segments chains. It is marred by logistical challenges and cost issues, reason why it is complemented by specific surveys at ground-based monitoring sites which can provide near-continuous observations at a high temporal resolution (e.g. RadCalNet). Unfortunately, most of the ground-level monitoring sites, in the number of 100th or 1000th, which are part of wider observation networks (e.g. FLUXNET, NEON, IMAGINES) mainly monitor the state of the atmosphere and the radiation exchange at the surface, which are different to the products derived from EO data. In addition they are "point-based" compared to the EO cover to be obtained from Sentinel-2 or Sentinel-3. Yet, data from these networks, processed by spatial extrapolation models, are well-suited to the bottom-up approach and relevant to the validation of vegetation parameters' consistency (e.g. leaf area index, fraction of absorbed photosynthetically active radiation). Consistency means minimal errors on spatial and temporal gradients of EO products. Test of the procedure for land-cover products' consistency assessment with field measurements delivered by worldwide

  16. High-Resolution Metabolomics: Review of the Field and Implications for Nursing Science and the Study of Preterm Birth.

    Science.gov (United States)

    Li, Shuzhao; Dunlop, Anne L; Jones, Dean P; Corwin, Elizabeth J

    2016-01-01

    Most complex health conditions do not have a single etiology but rather develop from exposure to multiple risk factors that interact to influence individual susceptibility. In this review, we discuss the emerging field of metabolomics as a means by which metabolic pathways underlying a disease etiology can be exposed and specific metabolites can be identified and linked, ultimately providing biomarkers for early detection of disease onset and new strategies for intervention. We present the theoretical foundation of metabolomics research, the current methods employed in its conduct, and the overlap of metabolomics research with other "omic" approaches. As an exemplar, we discuss the potential of metabolomics research in the context of deciphering the complex interactions of the maternal-fetal exposures that underlie the risk of preterm birth, a condition that accounts for substantial portions of infant morbidity and mortality and whose etiology and pathophysiology remain incompletely defined. We conclude by providing strategies for including metabolomics research in future nursing studies for the advancement of nursing science. © The Author(s) 2015.

  17. High Resolution Integral Field Spectroscopy of Europa's Sodium Clouds: Evidence for a Component with Origins in Iogenic Plasma.

    Science.gov (United States)

    Schmidt, C.; Johnson, R. E.; Mendillo, M.; Baumgardner, J. L.; Moore, L.; O'Donoghue, J.; Leblanc, F.

    2015-12-01

    With the object of constraining Iogenic contributions and identifying drivers for variability, we report new observations of neutral sodium in Europa's exosphere. An R~20000 integral field spectrograph at McDonald Observatory is used to generate Doppler maps of sodium cloud structures with a resolution of 2.8 km/s/pixel. In the five nights of observations since 2011, measurements on UT 6.15-6.31 May 2015 uniquely feature fast (10s of km/s) neutral sodium clouds extending nearly 100 Europa radii, more distant than in any previous findings. During these measurements, the satellite geometry was favorable for the transfer of Na from Io to Europa, located at 1:55 to 4:00 and 3:38 to 4:39 Jovian local time, respectively. Eastward emission (away from Jupiter) extends 10-20 Europa radii retaining the moon's rest velocity, while westward emission blue-shifts with distance, and a broad range of velocities are measured, reaching at least 70 km/s at 80 Europa radii. These cloud features are distinct from Io's "banana" and "stream" features, the distant Jupiter-orbiting nebula, and from terrestrial OH and Na contaminant emissions. Io's production was quiescent during this observation, following an extremely active phase in February 2015. These results are consistent with previous findings that Europa's Na exosphere has peak emission between midnight and dawn Jovian local time and support the idea that sodium escape from Io can significantly enhance the emission intensity measured at Europa.

  18. Sudden flux change studies in high field superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Feher, S.; Bordini, B.; Carcagno, R.; Makulski, A.; Orris, D.F.; Pischalnikov, Y.M.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.; Zlobin, A.V.

    2004-01-01

    As part of the High Field Magnet Program at Fermilab many magnets have been tested which utilize multi strand Rutherford type cable made of state-of-the art Nb 3 Sn strands. During these magnet tests we observed sudden flux changes by monitoring coil voltages and the magnetic field close to the magnets. These flux changes might be linked to magnet instabilities. The voltage spike signals were correlated with quench antenna signals, a strong indication that these are magnet phenomena. With a new high resolution voltage spike detection system, we were able to observe the detailed structure of the spikes. Two fundamentally different signal shapes were distinguished, most likely generated by different mechanisms

  19. Probing High Temperature Superconductors with Magnetometry in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-07-26

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and on potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.

  20. An Equivalent Source Method for Modelling the Lithospheric Magnetic Field Using Satellite and Airborne Magnetic Data

    DEFF Research Database (Denmark)

    Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris

    . Advantages of the equivalent source method include its local nature and the ease of transforming to spherical harmonics when needed. The method can also be applied in local, high resolution, investigations of the lithospheric magnetic field, for example where suitable aeromagnetic data is available......We present a technique for modelling the lithospheric magnetic field based on estimation of equivalent potential field sources. As a first demonstration we present an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010. Three component vector field...... for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid with an increasing grid resolution towards the airborne survey area. The corresponding source values are estimated using an iteratively reweighted least squares algorithm that includes model...

  1. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  2. TFTR magnetic field design analyses

    International Nuclear Information System (INIS)

    Davies, K.; Iwinski, E.; McWhirter, J.M.

    1975-11-01

    The three main magnetic field windings for the TFTR are the toroidal field (TF) windings, the ohmic heating (OH) winding, and the equilibrium field (EF) winding. The following information is provided for these windings: (1) descriptions, (2) functions, (3) magnetic designs, e.g., number and location of turns, (4) design methods, and (5) descriptions of resulting magnetic fields. This report does not deal with the thermal, mechanical support, or construction details of the windings

  3. High resolution data acquisition

    Science.gov (United States)

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  4. In-vivo monitoring of acute DSS-Colitis using Colonoscopy, high resolution Ultrasound and bench-top Magnetic Resonance Imaging in Mice

    International Nuclear Information System (INIS)

    Walldorf, J.; Hermann, M.; Pohl, S.; Zipprich, A.; Porzner, M.; Seufferlein, T.; Metz, H.; Maeder, K.; Christ, B.

    2015-01-01

    The aim of this study was to establish and evaluate (colour Doppler-) high-resolution-ultrasound (hrUS) and bench-top magnetic resonance imaging (btMRI) as new methods to monitor experimental colitis. hrUS, btMRI and endoscopy were performed in mice without colitis (n = 15), in mice with acute colitis (n = 14) and in mice with acute colitis and simultaneous treatment with infliximab (n = 19). Determination of colon wall thickness using hrUS (32 MHz) and measurement of the cross-sectional colonic areas by btMRI allowed discrimination between the treatment groups (mean a vs. b vs. c - btMRI: 922 vs. 2051 vs. 1472 pixel, hrUS: 0.26 vs. 0.45 vs. 0.31 mm). btMRI, endoscopy, hrUS and colour Doppler-hrUS correlated to histological scoring (p < 0.05), while endoscopy and btMRI correlated to post-mortem colon length (p < 0.05). The innovative in vivo techniques btMRI and hrUS are safe and technically feasible. They differentiate between distinct grades of colitis in an experimental setting, and correlate with established post-mortem parameters. In addition to endoscopic procedures, these techniques provide information regarding colon wall thickness and perfusion. Depending on the availability of these techniques, their application increases the value of in vivo monitoring in experimental acute colitis in small rodents. (orig.)

  5. High resolution ultrasound and magnetic resonance imaging of the optic nerve and the optic nerve sheath: anatomic correlation and clinical importance.

    Science.gov (United States)

    Steinborn, M; Fiegler, J; Kraus, V; Denne, C; Hapfelmeier, A; Wurzinger, L; Hahn, H

    2011-12-01

    We performed a cadaver study to evaluate the accuracy of measurements of the optic nerve and the optic nerve sheath for high resolution US (HRUS) and magnetic resonance imaging (MRI). Five Thiel-fixated cadaver specimens of the optic nerve were examined with HRUS and MRI. Measurements of the optic nerve and the ONSD were performed before and after the filling of the optic nerve sheath with saline solution. Statistical analysis included the calculation of the agreement of measurements and the evaluation of the intraobserver and interobserver variation. Overall a good correlation of measurement values between HRUS and MRI can be found (mean difference: 0.02-0.97 mm). The repeatability coefficient (RC) and concordance correlation coefficient (CCC) values were good to excellent for most acquisitions (RC 0.2-1.11 mm; CCC 0.684-0.949). The highest variation of measurement values was found for transbulbar sonography (RC 0.58-1.83 mm; CCC 0.615/0.608). If decisive anatomic structures are clearly depicted and the measuring points are set correctly, there is a good correlation between HRUS and MRI measurements of the optic nerve and the ONSD even on transbulbar sonography. As most of the standard and cut-off values that have been published for ultrasound are significantly lower than the results obtained with MRI, a reevaluation of sonographic ONSD measurement with correlation to MRI is necessary. © Georg Thieme Verlag KG Stuttgart · New York.

  6. An assessment on the incremental value of high-resolution magnetic resonance imaging to identify culprit plaques in atherosclerotic disease of the middle cerebral artery

    International Nuclear Information System (INIS)

    Teng, Zhongzhao; Graves, Martin J.; Gillard, Jonathan H.; Peng, Wenjia; Zhan, Qian; Zhang, Xuefeng; Liu, Qi; Chen, Shiyue; Tian, Xia; Chen, Luguang; Lu, Jianping; Brown, Adam J.

    2016-01-01

    Although certain morphological features depicted by high resolution, multi-contrast magnetic resonance imaging (hrMRI) have been shown to be different between culprit and non-culprit middle cerebral artery (MCA) atherosclerotic lesions, the incremental value of hrMRI to define culprit lesions over stenosis has not been assessed. Patients suspected with MCA stenosis underwent hrMRI. Lumen and outer wall were segmented to calculate stenosis, plaque burden (PB), volume (PV), length (PL) and minimum luminal area (MLA). Data from 165 lesions (112 culprit and 53 non-culprit) in 139 individuals were included. Culprit lesions were larger and longer with a narrower lumen and increased PB compared with non-culprit lesions. More culprit lesions showed contrast enhancement. Both PB and MLA were better indicators than stenosis in differentiating lesion types (AUC were 0.649, 0.732 and 0.737 for stenosis, PB and MLA, respectively). Combinations of PB, MLA and stenosis could improve positive predictive value (PPV) and specificity significantly. An optimal combination of stenosis ≥ 50 %, PB ≥ 77 % and MLA ≤ 2.0 mm 2 produced a PPV = 85.7 %, negative predictive value = 54.1 %, sensitivity = 69.6 %, specificity = 75.5 %, and accuracy = 71.5 %. hrMRI plaque imaging provides incremental information to luminal stenosis in identifying culprit lesions. (orig.)

  7. Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from Trichoderma.

    Science.gov (United States)

    Mazzei, Pierluigi; Vinale, Francesco; Woo, Sheridan Lois; Pascale, Alberto; Lorito, Matteo; Piccolo, Alessandro

    2016-05-11

    Trichoderma fungi release 6-pentyl-2H-pyran-2-one (1) and harzianic acid (2) secondary metabolites to improve plant growth and health protection. We isolated metabolites 1 and 2 from Trichoderma strains, whose different concentrations were used to treat seeds of Solanum lycopersicum. The metabolic profile in the resulting 15 day old tomato leaves was studied by high-resolution magic-angle-spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy directly on the whole samples without any preliminary extraction. Principal component analysis (PCA) of HRMAS NMR showed significantly enhanced acetylcholine and γ-aminobutyric acid (GABA) content accompanied by variable amount of amino acids in samples treated with both Trichoderma secondary metabolites. Seed germination rates, seedling fresh weight, and the metabolome of tomato leaves were also dependent upon doses of metabolites 1 and 2 treatments. HRMAS NMR spectroscopy was proven to represent a rapid and reliable technique for evaluating specific changes in the metabolome of plant leaves and calibrating the best concentration of bioactive compounds required to stimulate plant growth.

  8. The role of high-resolution computed tomography (HRCT) and magnetic resonance imaging (MRI) in the diagnosis of preoperative and postoperative complications caused by acquired cholesteatomas

    International Nuclear Information System (INIS)

    Krestan, C.; Czerny, C.; Gstoettner, W.; Franz, P.

    2003-01-01

    The role of high-resolution computed tomography (HRCT) and magnetic resonance imaging (MRI) in the diagnosis of preoperative and postoperative complications caused by acquired cholesteatomas will be described in this paper. The pre- and postoperative imaging of the temporal bone was performed with HRCT and MRI. HRCT and MRI were performed in the axial and coronal plane. MRI was done with T2 weighted and T1 weighted sequences both before and after the intravenous application of contrast material. All imaging findings were confirmed clinically or surgically. The preoperative cholesteatoma-caused complications depicted by HRCT included bony erosions of the ossicles, scutum, facial canal in the middle ear, tympanic walls including the tegmen tympani, and of the labyrinth. The preoperative cholesteatoma-caused complications depicted by MRI included signs indicative for labyrinthitis, and brain abscess. Postoperative HRCT depicted bony erosions caused by recurrent cholesteatoma, bony defects of the facial nerve and of the labyrinth, and a defect of the tegmen tympani with a soft tissue mass in the middle ear. Postoperative MRI delineated neuritis of the facial nerve, labyrinthitis, and a meningo-encephalocele protruding into the middle ear. HRCT and MRI are excellent imaging tools to depict either bony or soft tissue complications or both if caused by acquired cholesteatomas. According to our findings and to the literature HRCT and MRI are complementary imaging methods to depict pre- or postoperative complications of acquired cholesteatomas if these are suspected by clinical examination. (orig.) [de

  9. In-vivo monitoring of acute DSS-Colitis using Colonoscopy, high resolution Ultrasound and bench-top Magnetic Resonance Imaging in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Walldorf, J.; Hermann, M.; Pohl, S.; Zipprich, A. [Martin Luther University Halle-Wittenberg, Department of Internal Medicine I, Halle (Germany); Porzner, M.; Seufferlein, T. [University of Ulm, Department of Internal Medicine I, Ulm (Germany); Metz, H.; Maeder, K. [Martin Luther University, Institut of Pharmacy, Halle-Wittenberg (Germany); Christ, B. [University of Leipzig, Department of Surgery II, Leipzig (Germany)

    2015-10-15

    The aim of this study was to establish and evaluate (colour Doppler-) high-resolution-ultrasound (hrUS) and bench-top magnetic resonance imaging (btMRI) as new methods to monitor experimental colitis. hrUS, btMRI and endoscopy were performed in mice without colitis (n = 15), in mice with acute colitis (n = 14) and in mice with acute colitis and simultaneous treatment with infliximab (n = 19). Determination of colon wall thickness using hrUS (32 MHz) and measurement of the cross-sectional colonic areas by btMRI allowed discrimination between the treatment groups (mean a vs. b vs. c - btMRI: 922 vs. 2051 vs. 1472 pixel, hrUS: 0.26 vs. 0.45 vs. 0.31 mm). btMRI, endoscopy, hrUS and colour Doppler-hrUS correlated to histological scoring (p < 0.05), while endoscopy and btMRI correlated to post-mortem colon length (p < 0.05). The innovative in vivo techniques btMRI and hrUS are safe and technically feasible. They differentiate between distinct grades of colitis in an experimental setting, and correlate with established post-mortem parameters. In addition to endoscopic procedures, these techniques provide information regarding colon wall thickness and perfusion. Depending on the availability of these techniques, their application increases the value of in vivo monitoring in experimental acute colitis in small rodents. (orig.)

  10. Incremental Value of Plaque Enhancement in Patients with Moderate or Severe Basilar Artery Stenosis: 3.0 T High-Resolution Magnetic Resonance Study.

    Science.gov (United States)

    Wang, Wanqian; Yang, Qi; Li, Debiao; Fan, Zhaoyang; Bi, Xiaoming; Du, Xiangying; Wu, Fang; Wu, Ye; Li, Kuncheng

    2017-01-01

    To investigate the clinical relevance of plaque's morphological characteristics and distribution pattern using 3.0 T high-resolution magnetic resonance imaging (HRMRI) in patients with moderate or severe basilar artery (BA) atherosclerosis stenosis. Fifty-seven patients (33 symptomatic patients and 24 asymptomatic patients) were recruited for 3.0 T HRMRI scan; all of them had >50% stenosis on the BA. The intraplaque hemorrhage (IPH), contrast-enhancement pattern, and distribution of BA plaques were compared between the symptomatic and asymptomatic groups. Factors potentially associated with posterior ischemic stroke were calculated by multivariate analyses. Enhancement of BA plaque was more frequently observed in symptomatic than in asymptomatic patients (27/33, 81.8% versus 11/24, 45.8%; p 50%. Plaques were mainly distributed at the ventral site (39.3%) or involved more than two arcs (21.2%) in the symptomatic group but were mainly distributed at left (33.3%) and right (25.0%) sites in the asymptomatic group.

  11. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  12. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  13. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  14. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  15. High-resolution metallic magnetic calorimeters for {beta}-spectroscopy on {sup 187}rhenium and position resolved X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Porst, Jan-Patrick

    2011-02-01

    This thesis describes the development of metallic magnetic calorimeters (MMCs) for high resolution spectroscopy. MMCs are energy dispersive particle detectors based on the calorimetric principle which are typically operated at temperatures below 100 mK. The detectors make use of a paramagnetic temperature sensor to transform the temperature rise upon the absorption of a particle in the detector into a measurable magnetic flux change in a dc-SQUID. The application of MMCs for neutrino mass measurements and their advantages with respect to other approaches are discussed. In view of this application the development of an MMC optimized for {beta}-endpoint spectroscopy on {sup 187}rhenium is presented. A fully micro-fabricated X-ray detector is characterized and performs close to design values. Furthermore, a new technique to more efficiently couple rhenium absorbers mechanically and thermally to the sensor was developed and successfully tested. By employing a metallic contact, signal rise times faster than 5 {mu}s could be observed with superconducting rhenium absorbers. In addition to the single pixel detectors, an alternative approach of reading out multiple pixels was developed in this work, too. Here, the individual absorbers have a different thermal coupling to only one temperature sensor resulting in a distribution of different pulse shapes. Straightforward position discrimination by means of rise time analysis is demonstrated for a four pixel MMC and a thermal model of the detector is provided. Unprecedented so far, an energy resolution of less than {delta}E{sub FWHM}<5 eV for 5.9 keV X-rays was achieved across all absorbers. (orig.)

  16. Magnetic field modification of optical magnetic dipoles.

    Science.gov (United States)

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.

  17. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Ness, N.F.

    1988-01-01

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  18. Direct Imaging of a Toroidal Magnetic Field in the Inner Jet of NRAO 150

    Directory of Open Access Journals (Sweden)

    Sol N. Molina

    2016-11-01

    Full Text Available Most formation models and numerical simulations cause a helical magnetic field to form, accelerate and collimate jets in active galactic nuclei (AGN. For this reason, observational direct evidence for the existence of these helical magnetic fields is of special relevance. In this work, we present ultra- high-resolution observations of the innermost regions of the jet in the quasar NRAO150. We study the polarization structure and report evidence of a helical magnetic field.

  19. High-resolution nuclear magnetic resonance imaging and single photon emission computerized tomography--cerebral blood flow in a case of pure sensory stroke and mild dementia owing to subcortical arteriosclerotic encephalopathy (Binswanger's disease)

    DEFF Research Database (Denmark)

    De Chiara, S; Lassen, N A; Andersen, A R

    1987-01-01

    hypertensive, 72-year-old patient with PSS, CT scanning and conventional nuclear magnetic resonance imaging (NMRI) scanning using a 7-mm-thick slice on a 1.5 Tesla instrument all failed to visualize the thalamic infarct. Using the high-resolution mode with 2-mm slice thickness it was, however, clearly seen...

  20. High-Resolution Nuclear Magnetic Resonance Determination of Transfer RNA Tertiary Base Pairs in Solution. 2. Species Containing a Large Variable Loop

    NARCIS (Netherlands)

    HURD, RE; ROBILLARD, GT; REID, BR

    1977-01-01

    The number of base pairs in the solution structure of several class III D3VN tRNA species from E. coli has been determined by analyzing the number of low-field (-15 to -11 ppm) proton resonances in their nuclear magnetic resonance spectra at 360 MHz. Contrary to previous reports indicating the

  1. High-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF2:Dy crystal

    International Nuclear Information System (INIS)

    Atari, N.A.; Svensson, G.K.

    1986-01-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields

  2. High-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF2:Dy crystal

    International Nuclear Information System (INIS)

    Atari, N.A.; Svensson, G.K.

    1986-01-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF 2 :Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +- 2 μm (1sigma) corresponding to 16 +- 1 line pair/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +- 4 μm (1sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields

  3. High-resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon

    Science.gov (United States)

    B. W. Butler; N. S. Wagenbrenner; J. M. Forthofer; B. K. Lamb; K. S. Shannon; D. Finn; R. M. Eckman; K. Clawson; L. Bradshaw; P. Sopko; S. Beard; D. Jimenez; C. Wold; M. Vosburgh

    2015-01-01

    A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The...

  4. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  5. High-resolution nuclear magnetic resonance of quadrupolar nuclei in solids; Resonance magnetique nucleaire haute-resolution des noyaux quadrupolaires dans les solides

    Energy Technology Data Exchange (ETDEWEB)

    Charpentier, Th

    1998-10-23

    After a brief review of existing methods in high-resolution NMR of quadrupolar nuclei, the manipulation of multi-quantum coherencies by radiofrequency pulses is studied. Results are then applied to the determination of optimal conditions for performing the recently introduced multiple-quantum magic-angle experiment (MQMAS). The principles of this new method, the different pulse sequences and the data processing are described in detail. Applications on aluminum hydrates and cement pastes show the improvements of this new technique over the previous ones. In a second part, after an investigation of the Floquet theory, a new formalism has been devised for studying the behavior of a spin submitted to a strong quadrupolar interaction and radiofrequency field in a rotating sample. This formalism is then applied to a quantitative study of the phenomenon of rotational induced adiabatic transfer of coherencies (RIACT). The extension of our theoretical approach to two-dimensional experiments provides a powerful tool for quantitative analyses of MQMAS spectra. Agreement between experimental data and simulations demonstrates the reliability of our approach. Preliminary results concerning the application of MQMAS spectroscopy, using our simulation programs, to structural study of amorphous materials are presented. The third and last part presents a theoretical and experimental investigation of dipolar order in a rotating sample. Two theoretical models are described, the first for the slow spinning speed regime where an adiabatic approximation can be made, and the second for the fast spinning speed regime. (author)

  6. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  7. Magnetic fields of Herbig Ae/Be stars

    Directory of Open Access Journals (Sweden)

    Hubrig S.

    2014-01-01

    Full Text Available We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred dipoles with polar magnetic field strengths of several hundred Gauss. A number of Herbig Ae/Be stars with detected magnetic fields have recently been observed with X-shooter in the visible and the near-IR, as well as with the high-resolution near-IR spectrograph CRIRES. These observations are of great importance to understand the relation between the magnetic field topology and the physics of the accretion flow and the accretion disk gas emission.

  8. Magnetographic observations of magnetic fields in quiet and active regions of the Sun

    International Nuclear Information System (INIS)

    Tsap, T.T.

    1979-01-01

    The results of measurement of the solar longitudinal magnetic field carried out on the double magnetograph of the Crimea astrophysical observatory in the FeI 5250 A and 5233 A lines are presented. The registration of magnetic field is performed with the high resolution of 1x1''. It is found that in the most cases the measured magnetic field intensity outside active areas does not exceed 20-25 Hauss. In rare cases magnetic fields with the intensity greater than 500 Hauss are observed. The magnetic field intensity in the flocculas is greater in average than in nondisturbed areas

  9. Hyperpolarized {sup 3}helium magnetic resonance ventilation imaging of the lung in cystic fibrosis: comparison with high resolution CT and spirometry

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Colm J.; Dodd, Jonathan D.; Skehan, Stephen J.; Masterson, James B. [St. Vincent' s University Hospital, Department of Radiology, Dublin (Ireland); Hill, Catherine; Woodhouse, Neil; Wild, Jim M.; Fichele, Stan [Royal Hallamshire Hospital, The Unit of Academic Radiology, University of Sheffield, Sheffield (United Kingdom); Gallagher, Charles G. [St. Vincent' s University Hospital, Department of National Referral Centre for Adult Cystic Fibrosis, Dublin (Ireland); Beek, Edwin J.R. van [Royal Hallamshire Hospital, The Unit of Academic Radiology, University of Sheffield, Sheffield (United Kingdom); University of Iowa, Department of Radiology, Carver College of Medicine, Iowa City, IA (United States)

    2006-11-15

    The purpose of this study was to compare hyperpolarized {sup 3}helium magnetic resonance imaging ({sup 3}He MRI) of the lungs in adults with cystic fibrosis (CF) with high-resolution computed tomography (HRCT) and spirometry. Eight patients with stable CF prospectively underwent {sup 3}He MRI, HRCT, and spirometry within 1 week. Three-dimensional (3D) gradient-echo sequence was used during an 18-s breath-hold following inhalation of hyperpolarized {sup 3}He. Each lung was divided into six zones; {sup 3}He MRI was scored as percentage ventilation per lung zone. HRCT was scored using a modified Bhalla scoring system. Univariate (Spearman rank) and multivariate correlations were performed between {sup 3}He MRI, HRCT, and spirometry. Results are expressed as mean{+-}SD (range). Spirometry is expressed as percent predicted. There were four men and four women, mean age=31.9{+-}9 (20-46). Mean forced expiratory volume in 1 s (FEV){sub 1}=52%{+-}29 (27-93). Mean {sup 3}He MRI score=74%{+-}25 (55-100). Mean HRCT score=48.8{+-}24 (13.5-83). The correlation between {sup 3}He MRI and HRCT was strong (R={+-}0.89, p<0.001). Bronchiectasis was the only independent predictor of {sup 3}He MRI; {sup 3}He MRI correlated better with FEV{sub 1} and forced vital capacity (FVC) (R=0.86 and 0.93, p<0.01, respectively) than HRCT (R={+-}0.72 and {+-}0.81, p<0.05, respectively). This study showed that {sup 3}He MRI correlates strongly with structural HRCT abnormalities and is a stronger correlate of spirometry than HRCT in CF. (orig.)

  10. Preoperative high-resolution magnetic resonance imaging can identify good prognosis stage I, II, and III rectal cancer best managed by surgery alone: a prospective, multicenter, European study.

    Science.gov (United States)

    Taylor, Fiona G M; Quirke, Philip; Heald, Richard J; Moran, Brendan; Blomqvist, Lennart; Swift, Ian; Sebag-Montefiore, David J; Tekkis, Paris; Brown, Gina

    2011-04-01

    To assess local recurrence, disease-free survival, and overall survival in magnetic resonance imaging (MRI)-predicted good prognosis tumors treated by surgery alone. The MERCURY study reported that high-resolution MRI can accurately stage rectal cancer. The routine policy in most centers involved in the MERCURY study was primary surgery alone in MRI-predicted stage II or less and in MRI "good prognosis" stage III with selective avoidance of neoadjuvant therapy. Data were collected prospectively on all patients included in the MERCURY study who were staged as MRI-defined "good" prognosis tumors. "Good" prognosis included MRI-predicted safe circumferential resection margins, with MRI-predicted T2/T3a/T3b (less than 5 mm spread from muscularis propria), regardless of MRI N stage. None received preoperative or postoperative radiotherapy. Overall survival, disease-free survival, and local recurrence were calculated. Of 374 patients followed up in the MERCURY study, 122 (33%) were defined as "good prognosis" stage III or less on MRI. Overall and disease-free survival for all patients with MRI "good prognosis" stage I, II and III disease at 5 years was 68% and 85%, respectively. The local recurrence rate for this series of patients predicted to have a good prognosis tumor on MRI was 3%. The preoperative identification of good prognosis tumors using MRI will allow stratification of patients and better targeting of preoperative therapy. This study confirms the ability of MRI to select patients who are likely to have a good outcome with primary surgery alone.

  11. Magnetic resonance imaging of trabecular and cortical bone in mice: comparison of high resolution in vivo and ex vivo MR images with corresponding histology

    International Nuclear Information System (INIS)

    Weber, Michael H.; Sharp, Jonathan C.; Latta, Peter; Sramek, Milos; Hassard, H. Thomas; Orr, F. William

    2005-01-01

    Measurements of bone morphometry and remodeling have been shown to reflect bone strength and can be used to diagnose degenerative bone disease. In this study, in vivo and ex vivo magnetic resonance imaging (MRI) techniques to assess trabecular and cortical bone properties have been compared to each other and to histology as a novel means for the quantification of bone. Femurs of C57Bl/6 mice were examined both in vivo and ex vivo on an 11.7 T MRI scanner, followed by histologic processing and morphometry. A thresholding analysis technique was applied to the MRI images to generate contour lines and to delineate the boundaries between bone and marrow. Using MRI, an optimal correlation with histology was obtained with an in vivo longitudinal sectioned short echo time gradient-echo versus an in vivo long echo time spin-echo sequence or an ex vivo pulse sequence. Gradient-echo images were acquired with a maximum in-plane resolution of 35 μm. Our results demonstrated that in both the in vivo and ex vivo data sets, the percent area of marrow increases and percent area of trabecular bone and cortical bone thickness decreases moving from the epiphyseal growth plate to the diaphysis. These changes, observed with MRI, correlate with the histological data. Investigations using in vivo MRI gradient-echo sequences consistently gave the best correlation with histology. Our quantitative evaluation using both ex vivo and in vivo MRI was found to be an effective means to visualize non-invasively the normal variation in trabecular and cortical bone as compared to a histological 'gold standard' The experiments validated in vivo MRI as a potential high resolution technique for investigating both soft tissue, such as marrow, and bone without radiation exposure

  12. Magnetic studies of archaeological obsidian: Variability of eruptive conditions within obsidian flows is key to high-resolution artifact sourcing (Invited)

    Science.gov (United States)

    Feinberg, J. M.; Frahm, E.; Muth, M.

    2013-12-01

    Previous studies have endeavored to use petrophysical traits of obsidian, particularly its magnetic properties, as an alternative to conventional geochemical sourcing, one of the greatest successes in archaeological science. Magnetic approaches, however, have not seen widespread application due to their mixed success. In a time when geochemical analyses can be conducted non-destructively, in the field, and in a minute or two, magnetic measurements of obsidian must offer novel archaeological insights to be worthwhile, not merely act as a less successful version of geochemistry. To this end, we report the findings of a large-scale study of obsidian magnetism, which includes 912 geological obsidian specimens and 97 artifacts measured for six simple magnetic parameters. Based on these results, we propose, rather than using magnetic properties to source artifacts to a particular obsidian flow (inter-flow sourcing), these properties are best used to differentiate quarrying sites within an individual flow (intra-flow sourcing). The magnetic properties within an individual flow are highly variable, due to the fact that a single flow experiences a wide array of cooling rates, absolute temperatures, viscosities, deformation, and oxidation. These conditions affect the concentrations, compositions, size distributions, shapes, and spatial arrangements of magnetic grains within an obsidian specimen and, thus, its intrinsic magnetic properties. This variability decreases dramatically at spatial scales of individual outcrops, and decreases even further at scales of hand samples. Thus, magnetic data appear to shift the scale of obsidian sourcing from flows to quarries and, in turn, enable new insights into raw-material procurement strategies, group mobility, lithic technology, and the organization of space and production. From a geologic perspective, the magnetic variability of obsidian can be broadly interpreted within the context of the igneous processes that were active during

  13. High-Resolution Magic-Angle-Spinning NMR and Magnetic Resonance Imaging Spectroscopies Distinguish Metabolome and Structural Properties of Maize Seeds from Plants Treated with Different Fertilizers and Arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Mazzei, Pierluigi; Cozzolino, Vincenza; Piccolo, Alessandro

    2018-03-21

    Both high-resolution magic-angle-spinning (HRMAS) and magnetic resonance imaging (MRI) NMR spectroscopies were applied here to identify the changes of metabolome, morphology, and structural properties induced in seeds (caryopses) of maize plants grown at field level under either mineral or compost fertilization in combination with the inoculation by arbuscular mycorrhizal fungi (AMF). The metabolome of intact caryopses was examined by HRMAS-NMR, while the morphological aspects, endosperm properties and seed water distribution were investigated by MRI. Principal component analysis (PCA) was applied to evaluate 1 H CPMG (Carr-Purcel-Meiboom-Gill) HRMAS spectra as well as several MRI-derived parameters ( T 1 , T 2 , and self-diffusion coefficients) of intact maize caryopses. PCA score-plots from spectral results indicated that both seeds metabolome and structural properties depended on the specific field treatment undergone by maize plants. Our findings show that a combination of multivariate statistical analyses with advanced and nondestructive NMR techniques, such as HRMAS and MRI, enables the evaluation of the effects induced on maize caryopses by different fertilization and management practices at field level. The spectroscopic approach adopted here may become useful for the objective appraisal of the quality of seeds produced under a sustainable agriculture.

  14. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  15. Exploring the Relationship between Burn Severity Field Data and Very High Resolution GeoEye Images: The Case of the 2011 Evros Wildfire in Greece

    Directory of Open Access Journals (Sweden)

    Eleni Dragozi

    2016-07-01

    Full Text Available Monitoring post-fire vegetation response using remotely-sensed images is a top priority for post-fire management. This study investigated the potential of very-high-resolution (VHR GeoEye images on detecting the field-measured burn severity of a forest fire that occurred in Evros (Greece during summer 2011. To do so, we analysed the role of topographic conditions and burn severity, as measured in the field immediately after the fire (2011 and one year after (2012 using the Composite Burn Index (CBI for explaining the post-fire vegetation response, which is measured using VHR satellite imagery. To determine this relationship, we applied redundancy analysis (RDA, which allowed us to identify which satellite variables among VHR spectral bands and Normalized Difference Vegetation Index (NDVI can better express the post-fire vegetation response. Results demonstrated that in the first year after the fire event, variations in the post-fire vegetation dynamics can be properly detected using the GeoEye VHR data. Furthermore, results showed that remotely-sensed NDVI-based variables are able to encapsulate burn severity variability over time. Our analysis showed that, in this specific case, burn severity variations are mildly affected by the topography, while the NDVI index, as inferred from VHR data, can be successfully used to monitor the short-term post-fire dynamics of the vegetation recovery.

  16. High Resolution Definition of Subsurface Heterogeneity for Understanding the Biodynamics of Natural Field Systems: Advancing the Ability for Scaling to Field Conditions

    International Nuclear Information System (INIS)

    Majer, Ernest L.; Brockman, Fred J.

    1999-01-01

    This research is an integrated project which uses physical (geophysical and hydrologic) and innovative geophysical imaging and microbial characterization methods to identify key scales of physical heterogeneities that affect bioremediation. In the this effort data from controlled laboratory and in situ experiments at the Idaho National Engineering and Environmental (INEEL) Test Area North (TAN) site were used to determine the dominant physical characteristics (lithologic, structural, and hydrologic) that can be imaged in situ and correlated with flow and transport properties. Emphasis was placed on identifying fundamental scales of variation of physical parameters that control transport behavior relative to subsurface microbial dynamics that could be used to develop a predictive model. A key hypothesis of the work was that nutrient flux and transport properties are key factors in controlling microbial dynamics, and that geophysical techniques could be used to identify the critical physical properties and scales controlling transport. This hypothesis was essentially validated. The goal was not only to develop and apply methods to monitor the spatial and temporal distribution of the bioremediation in fractured sites such as TAN, but also to develop methods applicable to a wider range of DOE sites. The outcome has been an improved understanding of the relationship between physical, chemical and microbial processes in heterogeneous environments, thus applicable to the design and monitoring of bioremediation strategies for a variety of environments. In this EMSP work we demonstrated that high resolution geophysical methods have considerable resolving power, especially when linked with modern advanced processing and interpretation. In terms of basic science, in addition to providing innovative methods for monitoring bioremediation, the work also provided a strong motivation for developing and extending high resolution geophysical methods

  17. Measurements of magnetic field alignment

    International Nuclear Information System (INIS)

    Kuchnir, M.; Schmidt, E.E.

    1987-01-01

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs

  18. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy; Bontemps, P.; Rikken, Geert L J A

    2011-01-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  19. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  20. High resolution ultrasonic densitometer

    International Nuclear Information System (INIS)

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks

  1. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  2. A review of the evaluation of TENORM levels at the produced water lagoon of the Minagish oil field using high-resolution gamma-ray spectrometry

    Science.gov (United States)

    Shams, H. M.; Bradley, D. A.; Alshammari, H.; Regan, P. H.

    2017-11-01

    An evaluation of the specific activity concentrations associated with technologically enhanced naturally occurring radioactive materials (TENORM) and anthropogenic radionuclides has been undertaken as part of a systematic study to provide a radiological map of the outer boundary of the produced water lagoon located in the Minagish oil field in the south west of the State of Kuwait. The lagoon contains material from the discharge of produced water which is a by-product of oil production in the region. The lagoon samples were prepared and placed into sealed, marinelli beakers for a full gamma-ray spectrometric analysis using a high-resolution, low-background, high-purity germanium detection systems at the University of Surrey Environmental Radioactivity Laboratory. Of particular interest are the calculation of the activity concentrations associated with members of the decay chains following decays of the primordial radionuclides of the 238U chain (226Ra, 214Pb, 214Bi) and the 232Th chain (228Ra, 228Ac, 212Pb, 212Bi, 208Tl), and the enhanced concentrations of radium isotopes. This conference paper presents an overview summary of the experimental samples which have been measured and the analysis techniques applied, including isotopic correlation plots across the sample region. The result shows the expected significant increase in 226Ra (and progeny) concentrations compared to the NORM values previously reported by our group for the overall terrain in Kuwait.

  3. Study of $ \\bar{p} $ and $ \\bar{n} $ annihilations at LEAR with OBELIX, a large acceptance and high resolution detector based on the Open Axial Field Spectrometer

    CERN Multimedia

    2002-01-01

    % PS201 Study of $\\bar{p}$ and $\\bar{n}$ annihilations at LEAR with OBELIX, a large acceptance and high resolution detector based on the Open Axial Field Spectrometer \\\\ \\\\OBELIX is designed to study exclusive final states of antiproton and antineutron annihilations at low energies with protons and nuclei. \\\\ \\\\The physics motivations of the experiment are:\\\\ \\\\\\begin{itemize} \\item (gg, ggg), hybrids ($ q \\bar{q} g $), multiquarks ($ q q \\bar{q} \\bar{q} $) and light mesons ($ q \\bar{q} $) produced in $ N \\bar{N} $ annihilations and study of their spectroscopy and decays. Also broad structures will be searched for by comparing identical decay modes in exclusive final states of the same type occuring from initial states with different angular momentum or isospin. \\item Study of the dynamics of $ N \\bar{N} $ interactions and of the dependence of the final and intermediate resonant states of annihilation upon the quantum numbers of the initial $ N \\bar{N} $ state (angular momentum: S and P-wave in $\\bar{p}p $ at...

  4. The bat-bird-bug battle: daily flight activity of insects and their predators over a rice field revealed by high-resolution Scheimpflug Lidar

    Science.gov (United States)

    Malmqvist, Elin; Jansson, Samuel; Zhu, Shiming; Li, Wansha; Svanberg, Katarina; Svanberg, Sune; Rydell, Jens; Song, Ziwei; Bood, Joakim; Brydegaard, Mikkel; Åkesson, Susanne

    2018-04-01

    We present the results of, to our knowledge, the first Lidar study applied to continuous and simultaneous monitoring of aerial insects, bats and birds. It illustrates how common patterns of flight activity, e.g. insect swarming around twilight, depend on predation risk and other constraints acting on the faunal components. Flight activity was monitored over a rice field in China during one week in July 2016, using a high-resolution Scheimpflug Lidar system. The monitored Lidar transect was about 520 m long and covered approximately 2.5 m3. The observed biomass spectrum was bimodal, and targets were separated into insects and vertebrates in a categorization supported by visual observations. Peak flight activity occurred at dusk and dawn, with a 37 min time difference between the bat and insect peaks. Hence, bats started to feed in declining insect activity after dusk and stopped before the rise in activity before dawn. A similar time difference between insects and birds may have occurred, but it was not obvious, perhaps because birds were relatively scarce. Our observations are consistent with the hypothesis that flight activity of bats is constrained by predation in bright light, and that crepuscular insects exploit this constraint by swarming near to sunset/sunrise to minimize predation from bats.

  5. Convergence and divergence in spherical harmonic series of the gravitational field generated by high-resolution planetary topography—A case study for the Moon

    Science.gov (United States)

    Hirt, Christian; Kuhn, Michael

    2017-08-01

    Theoretically, spherical harmonic (SH) series expansions of the external gravitational potential are guaranteed to converge outside the Brillouin sphere enclosing all field-generating masses. Inside that sphere, the series may be convergent or may be divergent. The series convergence behavior is a highly unstable quantity that is little studied for high-resolution mass distributions. Here we shed light on the behavior of SH series expansions of the gravitational potential of the Moon. We present a set of systematic numerical experiments where the gravity field generated by the topographic masses is forward-modeled in spherical harmonics and with numerical integration techniques at various heights and different levels of resolution, increasing from harmonic degree 90 to 2160 ( 61 to 2.5 km scales). The numerical integration is free from any divergence issues and therefore suitable to reliably assess convergence versus divergence of the SH series. Our experiments provide unprecedented detailed insights into the divergence issue. We show that the SH gravity field of degree-180 topography is convergent anywhere in free space. When the resolution of the topographic mass model is increased to degree 360, divergence starts to affect very high degree gravity signals over regions deep inside the Brillouin sphere. For degree 2160 topography/gravity models, severe divergence (with several 1000 mGal amplitudes) prohibits accurate gravity modeling over most of the topography. As a key result, we formulate a new hypothesis to predict divergence: if the potential degree variances show a minimum, then the SH series expansions diverge somewhere inside the Brillouin sphere and modeling of the internal potential becomes relevant.

  6. Characterizing Volcanic Processes using Near-bottom, High Resolution Magnetic Mapping of the Caldera and Inner Crater of the Kick'em Jenny Submarine Volcano

    Science.gov (United States)

    Ruchala, T. L.; Chen, M.; Tominaga, M.; Carey, S.

    2016-12-01

    Kick'em Jenny (KEJ) is an active submarine volcano located in the Lesser Antilles subduction zone, 7.5 km north of the Caribbean island Grenada. KEJ, known as one of the most explosive volcanoes in Caribbean, erupted 12 times since 1939 with recent eruptions in 2001 and possibly in 2015. Multiple generations of submarine landslides and canyons have been observed in which some of them can be attributed to past eruptions. The structure of KEJ can be characterized as a 1300 m high conical profile with its summit crater located around 180 m in depth. Active hydrothermal venting and dominantly CO2 composition gas seepage take place inside this 250m diameter crater, with the most activity occurring primarily within a small ( 70 x 110 m) depression zone (inner crater). In order to characterize the subsurface structure and decipher the processes of this volcanic system, the Nautilus NA054 expedition in 2014 deployed the underwater Remotely Operated Vehicle (ROV) Hercules to conduct near-bottom geological observations and magnetometry surveys transecting KEJ's caldera. Raw magnetic data was corrected for vehicle induced magnetic noise, then merged with ROV to ship navigation at 1 HZ. To extract crustal magnetic signatures, the reduced magnetic data was further corrected for external variations such as the International Geomagnetic Reference Field and diurnal variations using data from the nearby San Juan Observatory. We produced a preliminary magnetic anomaly map of KEJ's caldera for subsequent inversion and forward modeling to delineate in situ magnetic source distribution in understanding volcanic processes. We integrated the magnetic characterization of the KEJ craters with shipboard multibeam, ROV visual descriptions, and photomosaics. Initial observations show the distribution of short wavelength scale highly magnetized source centered at the north western part of the inner crater. Although locations of gas seeps are ubiquitous over the inner crater area along ROV

  7. Use of along-track magnetic field differences in lithospheric field modelling

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils

    2015-01-01

    . Experiments in modelling the Earth's lithospheric magnetic field with along-track differences are presented here as a proof of concept. We anticipate that use of such along-track differences in combination with east–west field differences, as are now provided by the Swarm satellite constellation......We demonstrate that first differences of polar orbiting satellite magnetic data in the along-track direction can be used to obtain high resolution models of the lithospheric field. Along-track differences approximate the north–south magnetic field gradients for non-polar latitudes. In a test case......, using 2 yr of low altitude data from the CHAMP satellite, we show that use of along-track differences of vector field data results in an enhanced recovery of the small scale lithospheric field, compared to the use of the vector field data themselves. We show that the along-track technique performs...

  8. High Resolution Thermometry for EXACT

    Science.gov (United States)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  9. High-resolution T{sub 2}-weighted cervical cancer imaging: a feasibility study on ultra-high-field 7.0-T MRI with an endorectal monopole antenna

    Energy Technology Data Exchange (ETDEWEB)

    Hoogendam, Jacob P.; Verheijen, Rene H.M.; Zweemer, Ronald P. [University Medical Centre Utrecht, Department of Gynaecological Oncology, UMC Utrecht Cancer Centre, PO Box 85500, Utrecht (Netherlands); Kalleveen, Irene M.L.; Castro, Catalina S.A. de; Raaijmakers, Alexander J.E.; Bosch, Maurice A.A.J. van den; Klomp, Dennis W.J.; Veldhuis, Wouter B. [University Medical Centre Utrecht, Department of Radiology, Utrecht (Netherlands)

    2017-03-15

    We studied the feasibility of high-resolution T{sub 2}-weighted cervical cancer imaging on an ultra-high-field 7.0-T magnetic resonance imaging (MRI) system using an endorectal antenna of 4.7-mm thickness. A feasibility study on 20 stage IB1-IIB cervical cancer patients was conducted. All underwent pre-treatment 1.5-T MRI. At 7.0-T MRI, an external transmit/receive array with seven dipole antennae and a single endorectal monopole receive antenna were used. Discomfort levels were assessed. Following individualised phase-based B{sub 1} {sup +} shimming, T{sub 2}-weighted turbo spin echo sequences were completed. Patients had stage IB1 (n = 9), IB2 (n = 4), IIA1 (n = 1) or IIB (n = 6) cervical cancer. Discomfort (ten-point scale) was minimal at placement and removal of the endorectal antenna with a median score of 1 (range, 0-5) and 0 (range, 0-2) respectively. Its use did not result in adverse events or pre-term session discontinuation. To demonstrate feasibility, T{sub 2}-weighted acquisitions from 7.0-T MRI are presented in comparison to 1.5-T MRI. Artefacts on 7.0-T MRI were due to motion, locally destructive B{sub 1} interference, excessive B{sub 1} under the external antennae and SENSE reconstruction. High-resolution T{sub 2}-weighted 7.0-T MRI of stage IB1-IIB cervical cancer is feasible. The addition of an endorectal antenna is well tolerated by patients. (orig.)

  10. Validating the WRF-Chem model for wind energy applications using High Resolution Doppler Lidar data from a Utah 2012 field campaign

    Science.gov (United States)

    Mitchell, M. J.; Pichugina, Y. L.; Banta, R. M.

    2015-12-01

    Models are important tools for assessing potential of wind energy sites, but the accuracy of these projections has not been properly validated. In this study, High Resolution Doppler Lidar (HRDL) data obtained with high temporal and spatial resolution at heights of modern turbine rotors were compared to output from the WRF-chem model in order to help improve the performance of the model in producing accurate wind forecasts for the industry. HRDL data were collected from January 23-March 1, 2012 during the Uintah Basin Winter Ozone Study (UBWOS) field campaign. A model validation method was based on the qualitative comparison of the wind field images, time-series analysis and statistical analysis of the observed and modeled wind speed and direction, both for case studies and for the whole experiment. To compare the WRF-chem model output to the HRDL observations, the model heights and forecast times were interpolated to match the observed times and heights. Then, time-height cross-sections of the HRDL and WRF-Chem wind speed and directions were plotted to select case studies. Cross-sections of the differences between the observed and forecasted wind speed and directions were also plotted to visually analyze the model performance in different wind flow conditions. A statistical analysis includes the calculation of vertical profiles and time series of bias, correlation coefficient, root mean squared error, and coefficient of determination between two datasets. The results from this analysis reveals where and when the model typically struggles in forecasting winds at heights of modern turbine rotors so that in the future the model can be improved for the industry.

  11. Magnetic field reconnexion in a sheared field

    International Nuclear Information System (INIS)

    Ugai, M.

    1981-01-01

    A nonlinear development of the Petschek mode in a sheared magnetic field where there is a field component Bsub(z) along an X line is numerically studied. It is found that finite-amplitude intermediate waves, adjacent to the slow shock, may eventually stand in the quasi-steady configuration; on the other hand, the fundamental characteristics of the Petschek-mode development are scarcely influenced, either qualitatively or quantitatively, by the Bsub(z) field. (author)

  12. Magnetic fields and scintillator performance

    International Nuclear Information System (INIS)

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University

  13. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery

    Science.gov (United States)

    Malambo, L.; Popescu, S. C.; Murray, S. C.; Putman, E.; Pugh, N. A.; Horne, D. W.; Richardson, G.; Sheridan, R.; Rooney, W. L.; Avant, R.; Vidrine, M.; McCutchen, B.; Baltensperger, D.; Bishop, M.

    2018-02-01

    Plant breeders and agronomists are increasingly interested in repeated plant height measurements over large experimental fields to study critical aspects of plant physiology, genetics and environmental conditions during plant growth. However, collecting such measurements using commonly used manual field measurements is inefficient. 3D point clouds generated from unmanned aerial systems (UAS) images using Structure from Motion (SfM) techniques offer a new option for efficiently deriving in-field crop height data. This study evaluated UAS/SfM for multitemporal 3D crop modelling and developed and assessed a methodology for estimating plant height data from point clouds generated using SfM. High-resolution images in visible spectrum were collected weekly across 12 dates from April (planting) to July (harvest) 2016 over 288 maize (Zea mays L.) and 460 sorghum (Sorghum bicolor L.) plots using a DJI Phantom 3 Professional UAS. The study compared SfM point clouds with terrestrial lidar (TLS) at two dates to evaluate the ability of SfM point clouds to accurately capture ground surfaces and crop canopies, both of which are critical for plant height estimation. Extended plant height comparisons were carried out between SfM plant height (the 90th, 95th, 99th percentiles and maximum height) per plot and field plant height measurements at six dates throughout the growing season to test the repeatability and consistency of SfM estimates. High correlations were observed between SfM and TLS data (R2 = 0.88-0.97, RMSE = 0.01-0.02 m and R2 = 0.60-0.77 RMSE = 0.12-0.16 m for the ground surface and canopy comparison, respectively). Extended height comparisons also showed strong correlations (R2 = 0.42-0.91, RMSE = 0.11-0.19 m for maize and R2 = 0.61-0.85, RMSE = 0.12-0.24 m for sorghum). In general, the 90th, 95th and 99th percentile height metrics had higher correlations to field measurements than the maximum metric though differences among them were not statistically significant. The

  14. Geometric and dosimetric verification of step-and-shoot modulated fields with a new fast and high resolution beam imaging system

    International Nuclear Information System (INIS)

    Bindoni, Luca

    2005-01-01

    from BIS maps, are compared with the corresponding scans performed with a diode detector. Disagreement is always shown in the regions outside the field penumbra (tails) and near the field edges only for field sizes ≥15x15 cm 2 due to the metal/phosphor screen higher sensitivity to low energy scattering x-rays. A straightforward correction method for the 'tails effect' was developed and then generalized to MLC-shaped fields. In order to demonstrate the validity of this procedure, the comparison between the two-dimensional (2D) dose distributions of a triangle MLC-shaped field and of two simple IMRT fields created by the superimposition of five segments resulting from BIS images and the dose distribution of the same fields achieved by film, was measured and reported. The gamma index method, introduced by Low et al. (1998), was used for 2D dose distributions analysis. Agreements are good for both 6 and 15 MV energies. The described technique provides a lower time-expensive mean to verify geometric and dosimetric accuracy of the treatment delivered in IMRT with the use of a high resolution beam imaging system and homemade software tools

  15. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    Science.gov (United States)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon

  16. Study of marine magnetic field

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.

    magnetized in the direction of the Earth’s magnetic field at that time. As seafloor spreading pulls the new oceanic crust apart, stripes of approximately the same size gets carried away from the ridge on each side. The basaltic oceanic crust formed...

  17. Measuring Earth's Magnetic Field Simply.

    Science.gov (United States)

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  18. ISR split-field magnet

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  19. The Juno Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-11-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  20. High-Field Accelerator Magnets

    International Nuclear Information System (INIS)

    Rijk, G de

    2014-01-01

    In this lecture an overview is given of the present technology for high field accelerator magnets. We indicate how to get high fields and what are the most important parameters. The available conductors and their limitations are presented followed by the most relevant types of coils and support structures. We conclude by showing a number of recent examples of development magnets which are either pure R&D objects or models for the LHC luminosity upgrade

  1. Method validation for high resolution sector field inductively coupled plasma mass spectrometry determination of the emerging contaminants in the open ocean: Rare earth elements as a case study

    Science.gov (United States)

    Wysocka, Irena; Vassileva, Emilia

    2017-02-01

    Analytical procedure for the determination of fourteen rare earth elements (REEs) in the seawater samples has been developed and validated. The elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) at ultra-trace level were measured by high resolution sector field inductively coupled plasma mass spectrometry (HR ICP-SFMS) after off-line analytes pre-concentration and matrix separation. The sample pre-treatment was carried out by commercially available automated system seaFAST-pico™, which is a low-pressure ion chromatography technique, based on solid phase extraction principles. Efficient elimination of seawater matrix and up to 50-fold pre-concentration of REEs enabled their accurate and precise quantification at ng L- 1 level. A validation approach in line with the requirements of ISO/IEC 17025 standard and Eurachem guidelines were followed. With this in mind, selectivity, working range, linearity, recovery (from 92% to 102%), repeatability (1%-4%), intermediate precision (2%-6%), limits of detection (0.001-0.08 ng L- 1) were systematically assessed. The total uncertainty associated to each result was estimated and the main sources of uncertainty sorted out. All major contributions to the combined uncertainty of the obtained results were identified and propagated together, following the ISO/GUM guidelines. The relative expanded uncertainty was estimated at range from 10.4% to 11.6% (k = 2). Demonstration of traceability of measurement results was also presented. Due to the low limits of detection, this method enables the determination of ultra-low levels of REEs in the open seawater as well as small variations in their concentrations. The potential of the proposed analytical procedure, based on combination of seaFAST-pico™ for sample preparation and HR ICP-SFMS, was demonstrated by direct analysis of seawater form different regions of the world.

  2. [Determination of 11 mycotoxins in baked foods and raw materials by ultra performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry].

    Science.gov (United States)

    Li, Rong; He, Chunmei; Yang, Luqi; Wang, Yong; Zhang, Pengjie; Gao, Yongqing

    2017-08-08

    A method for the determination of 11 mycotoxins in baked foods and raw materials by ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry (UPLC-HRMS) is reported in this paper. The samples were extracted with 20 mL 90% (v/v) acetonitrile aqueous solution containing 1% (v/v) formic acid, and the extracts were salted out by 2.0 g MgSO 4 and 0.5 g NaCl, cleaned up by 300 mg C18. The analytes were carried out on a CORTECS C18 column (100 mm×2.1 mm, 1.6 μ m) by gradient elution with 2 mmol/L ammonium acetate with 0.1% (v/v) formic acid aqueous solution and 2 mmol/L ammonium acetate methanol with 0.1% (v/v) formic acid. The results showed that the 11 mycotoxins had good linear relationships in their respective mass concentration ranges. The correlation coefficients were not less than 0.9960 and the limits of quantitation (LOQs) were from 0.15 to 20.00 μ g/kg. The recoveries of the 11 mycotoxins in bread ranged from 64.38% to 122.61% with the relative standard deviations (RSDs) from 1.52% to 12.99% at three spiked levels ( n =6). The method is demonstrated to be simple, fast, highly sensitive, reliable and it is effective to detect common mycotoxins in baked foods and raw materials.

  3. Automated drumlin shape and volume estimation using high resolution LiDAR imagery (Curvature Based Relief Separation): A test from the Wadena Drumlin Field, Minnesota

    Science.gov (United States)

    Yu, Peter; Eyles, Nick; Sookhan, Shane

    2015-10-01

    Resolving the origin(s) of drumlins and related megaridges in areas of megascale glacial lineations (MSGL) left by paleo-ice sheets is critical to understanding how ancient ice sheets interacted with their sediment beds. MSGL is now linked with fast-flowing ice streams but there is a broad range of erosional and depositional models. Further progress is reliant on constraining fluxes of subglacial sediment at the ice sheet base which in turn is dependent on morphological data such as landform shape and elongation and most importantly landform volume. Past practice in determining shape has employed a broad range of geomorphological methods from strictly visualisation techniques to more complex semi-automated and automated drumlin extraction methods. This paper reviews and builds on currently available visualisation, semi-automated and automated extraction methods and presents a new, Curvature Based Relief Separation (CBRS) technique; for drumlin mapping. This uses curvature analysis to generate a base level from which topography can be normalized and drumlin volume can be derived. This methodology is tested using a high resolution (3 m) LiDAR elevation dataset from the Wadena Drumlin Field, Minnesota, USA, which was constructed by the Wadena Lobe of the Laurentide Ice Sheet ca. 20,000 years ago and which as a whole contains 2000 drumlins across an area of 7500 km2. This analysis demonstrates that CBRS provides an objective and robust procedure for automated drumlin extraction. There is strong agreement with manually selected landforms but the method is also capable of resolving features that were not detectable manually thereby considerably expanding the known population of streamlined landforms. CBRS provides an effective automatic method for visualisation of large areas of the streamlined beds of former ice sheets and for modelling sediment fluxes below ice sheets.

  4. Theorem on magnet fringe field

    International Nuclear Information System (INIS)

    Wei, Jie; Talman, R.

    1995-01-01

    Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (b n ) and skew (a n ) multipoles, B y + iB x = summation(b n + ia n )(x + iy) n , where x, y, and z denote horizontal, vertical, and longitudinal (along the magnet) coordinates. Since the magnet length L is necessarily finite, deflections are actually proportional to ''field integrals'' such as bar BL ≡ ∫ B(x,y,z)dz where the integration range starts well before the magnet and ends well after it. For bar a n , bar b n , bar B x , and bar B y defined this way, the same expansion Eq. 1 is valid and the ''standard'' approximation is to neglect any deflections not described by this expansion, in spite of the fact that Maxwell's equations demand the presence of longitudinal field components at the magnet ends. The purpose of this note is to provide a semi-quantitative estimate of the importance of |Δp ∝ |, the transverse deflection produced by the ion-gitudinal component of the fringe field at one magnet end relative to |Δp 0 |, the total deflection produced by passage through the whole magnet. To emphasize the generality and simplicity of the result it is given in the form of a theorem. The essence of the proof is an evaluation of the contribution of the longitudinal field B x from the vicinity of one magnet end since, along a path parallel to the magnet axis such as path BC

  5. Demeter high resolution observations of the ionospheric thermal plasma response to magnetospheric energy input during the magnetic storm of November 2004

    Directory of Open Access Journals (Sweden)

    E. Séran

    2008-01-01

    Full Text Available High resolution Demeter plasma and wave observations were available during one of the geomagnetic storms of November 2004 when the ionospheric footprint of the plasmasphere was pushed below 64 degrees in the midnight sector. We report here onboard observations of thermal/suprathermal plasma and HF electric field variations with a temporal resolution of 0.4 s, which corresponds to a spatial resolution of 3 km. Local perturbations of the plasma parameters at the altitude of 730 km are analysed with respect to the variation of the field-aligned currents, electron and proton precipitation and large-scale electric fields, measured in-situ by Demeter and by remote optical methods from the IMAGE/Polar satellites.

    Flow monitoring in the 21:00 and 24:00 MLT sectors during storm conditions reveals two distinct regions of O+ outflow, i.e. the region of the field-aligned currents, which often comprises few layers of opposite currents, and the region of velocity reversal toward dusk at sub-auroral latitudes. Average upward O+ velocities are identical in both local time sectors and vary between 200 and 450 m s−1, with an exception of a few cases of higher speed (~1000 m s−1 outflow, observed in the midnight sector. Each individual outflow event does not indicate any heating process of the thermal O+ population. On the contrary, the temperature of the O+, outflowing from auroral latitudes, is found to be even colder than that of the ambient ion plasma. The only ion population which is observed to be involved in the heating is the O+ with energies a few times higher than the thermal energy. Such a population was detected at sub-auroral latitudes in the region of duskward flow reversal. Its temperature raises up to a few eV inside the layer of sheared velocity.

    A deep decrease in the H+ density at heights and latitudes, where, according to the IRI model

  6. Demeter high resolution observations of the ionospheric thermal plasma response to magnetospheric energy input during the magnetic storm of November 2004

    Directory of Open Access Journals (Sweden)

    E. Séran

    2007-01-01

    Full Text Available High resolution Demeter plasma and wave observations were available during one of the geomagnetic storms of November 2004 when the ionospheric footprint of the plasmasphere was pushed below 64 degrees in the midnight sector. We report here onboard observations of thermal/suprathermal plasma and HF electric field variations with a temporal resolution of 0.4 s, which corresponds to a spatial resolution of 3 km. Local perturbations of the plasma parameters at the altitude of 730 km are analysed with respect to the variation of the field-aligned currents, electron and proton precipitation and large-scale electric fields, measured in-situ by Demeter and by remote optical methods from the IMAGE/Polar satellites. Flow monitoring in the 21:00 and 24:00 MLT sectors during storm conditions reveals two distinct regions of O+ outflow, i.e. the region of the field-aligned currents, which often comprises few layers of opposite currents, and the region of velocity reversal toward dusk at sub-auroral latitudes. Average upward O+ velocities are identical in both local time sectors and vary between 200 and 450 m s−1, with an exception of a few cases of higher speed (~1000 m s−1 outflow, observed in the midnight sector. Each individual outflow event does not indicate any heating process of the thermal O+ population. On the contrary, the temperature of the O+, outflowing from auroral latitudes, is found to be even colder than that of the ambient ion plasma. The only ion population which is observed to be involved in the heating is the O+ with energies a few times higher than the thermal energy. Such a population was detected at sub-auroral latitudes in the region of duskward flow reversal. Its temperature raises up to a few eV inside the layer of sheared velocity. A deep decrease in the H+ density at heights and latitudes, where, according to the IRI model, these ions are expected to comprise ~50% of the positive charge, indicates that the thermospheric balance

  7. High resolution sequence stratigraphy in China

    International Nuclear Information System (INIS)

    Zhang Shangfeng; Zhang Changmin; Yin Yanshi; Yin Taiju

    2008-01-01

    Since high resolution sequence stratigraphy was introduced into China by DENG Hong-wen in 1995, it has been experienced two development stages in China which are the beginning stage of theory research and development of theory research and application, and the stage of theoretical maturity and widely application that is going into. It is proved by practices that high resolution sequence stratigraphy plays more and more important roles in the exploration and development of oil and gas in Chinese continental oil-bearing basin and the research field spreads to the exploration of coal mine, uranium mine and other strata deposits. However, the theory of high resolution sequence stratigraphy still has some shortages, it should be improved in many aspects. The authors point out that high resolution sequence stratigraphy should be characterized quantitatively and modelized by computer techniques. (authors)

  8. Magnetic field induced dynamical chaos.

    Science.gov (United States)

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  9. Concept of dual-resolution light field imaging using an organic photoelectric conversion film for high-resolution light field photography.

    Science.gov (United States)

    Sugimura, Daisuke; Kobayashi, Suguru; Hamamoto, Takayuki

    2017-11-01

    Light field imaging is an emerging technique that is employed to realize various applications such as multi-viewpoint imaging, focal-point changing, and depth estimation. In this paper, we propose a concept of a dual-resolution light field imaging system to synthesize super-resolved multi-viewpoint images. The key novelty of this study is the use of an organic photoelectric conversion film (OPCF), which is a device that converts spectra information of incoming light within a certain wavelength range into an electrical signal (pixel value), for light field imaging. In our imaging system, we place the OPCF having the green spectral sensitivity onto the micro-lens array of the conventional light field camera. The OPCF allows us to acquire the green spectra information only at the center viewpoint with the full resolution of the image sensor. In contrast, the optical system of the light field camera in our imaging system captures the other spectra information (red and blue) at multiple viewpoints (sub-aperture images) but with low resolution. Thus, our dual-resolution light field imaging system enables us to simultaneously capture information about the target scene at a high spatial resolution as well as the direction information of the incoming light. By exploiting these advantages of our imaging system, our proposed method enables the synthesis of full-resolution multi-viewpoint images. We perform experiments using synthetic images, and the results demonstrate that our method outperforms other previous methods.

  10. High-resolution heavily T2-weighted magnetic resonance imaging for evaluation of the pituitary stalk in children with ectopic neurohypophysis

    Energy Technology Data Exchange (ETDEWEB)

    Sanharawi, Imane El; Tzarouchi, Loukia [Hopital Robert Debre, APHP, Service de Radiologie Pediatrique, Paris (France); Cardoen, Liesbeth [Hopital Robert Debre, APHP, Service de Radiologie Pediatrique, Paris (France); Universite Paris Diderot, Paris (France); Martinerie, Laetitia; Leger, Juliane; Carel, Jean-Claude [Universite Paris Diderot, Paris (France); Inserm U1141, DHU PROTECT, Paris (France); Hopital Robert Debre, APHP, Service d' Endocrinologie Pediatrique, Paris (France); Elmaleh-Berges, Monique [Hopital Robert Debre, APHP, Service de Radiologie Pediatrique, Paris (France); Inserm U1141, DHU PROTECT, Paris (France); Alison, Marianne [Hopital Robert Debre, APHP, Service de Radiologie Pediatrique, Paris (France); Universite Paris Diderot, Paris (France); Inserm U1141, DHU PROTECT, Paris (France)

    2017-05-15

    In anterior pituitary deficiency, patients with non visible pituitary stalk have more often multiple deficiencies and persistent deficiency than patients with visible pituitary stalk. To compare the diagnostic value of a high-resolution heavily T2-weighted sequence to 1.5-mm-thick unenhanced and contrast-enhanced sagittal T1-weighted sequences to assess the presence of the pituitary stalk in children with ectopic posterior pituitary gland. We retrospectively evaluated the MRI data of 14 children diagnosed with ectopic posterior pituitary gland between 2010 and 2014. We evaluated the presence of a pituitary stalk using a sagittal high-resolution heavily T2-weighted sequence and a 1.5-mm sagittal T1-weighted turbo spin-echo sequence before and after contrast medium administration. A pituitary stalk was present on at least one of the sequences in 10 of the 14 children (71%). T2-weighted sequence depicted the pituitary stalk in all 10 children, whereas the 1.5-mm-thick T1-weighted sequence depicted 2/10 (20%) before contrast injection and 8/10 (80%) after contrast injection (P=0.007). Compared with 1.5-mm-thick contrast-enhanced T1-weighted sequences, high-resolution heavily T2-weighted sequence demonstrates better sensitivity in detecting the pituitary stalk in children with ectopic posterior pituitary gland, suggesting that contrast injection is unnecessary to assess the presence of a pituitary stalk in this setting. (orig.)

  11. High-resolution heavily T2-weighted magnetic resonance imaging for evaluation of the pituitary stalk in children with ectopic neurohypophysis.

    Science.gov (United States)

    El Sanharawi, Imane; Tzarouchi, Loukia; Cardoen, Liesbeth; Martinerie, Laetitia; Leger, Juliane; Carel, Jean-Claude; Elmaleh-Berges, Monique; Alison, Marianne

    2017-05-01

    In anterior pituitary deficiency, patients with non visible pituitary stalk have more often multiple deficiencies and persistent deficiency than patients with visible pituitary stalk. To compare the diagnostic value of a high-resolution heavily T2-weighted sequence to 1.5-mm-thick unenhanced and contrast-enhanced sagittal T1-weighted sequences to assess the presence of the pituitary stalk in children with ectopic posterior pituitary gland. We retrospectively evaluated the MRI data of 14 children diagnosed with ectopic posterior pituitary gland between 2010 and 2014. We evaluated the presence of a pituitary stalk using a sagittal high-resolution heavily T2-weighted sequence and a 1.5-mm sagittal T1-weighted turbo spin-echo sequence before and after contrast medium administration. A pituitary stalk was present on at least one of the sequences in 10 of the 14 children (71%). T2-weighted sequence depicted the pituitary stalk in all 10 children, whereas the 1.5-mm-thick T1-weighted sequence depicted 2/10 (20%) before contrast injection and 8/10 (80%) after contrast injection (P=0.007). Compared with 1.5-mm-thick contrast-enhanced T1-weighted sequences, high-resolution heavily T2-weighted sequence demonstrates better sensitivity in detecting the pituitary stalk in children with ectopic posterior pituitary gland, suggesting that contrast injection is unnecessary to assess the presence of a pituitary stalk in this setting.

  12. Toward high-resolution NMR spectroscopy of microscopic liquid samples

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Mark C.; Mehta, Hardeep S.; Chen, Ying; Reardon, Patrick N.; Renslow, Ryan S.; Khbeis, Michael; Irish, Duane; Mueller, Karl T.

    2017-01-01

    A longstanding limitation of high-resolution NMR spectroscopy is the requirement for samples to have macroscopic dimensions. Commercial probes, for example, are designed for volumes of at least 5 mL, in spite of decades of work directed toward the goal of miniaturization. Progress in miniaturizing inductive detectors has been limited by a perceived need to meet two technical requirements: (1) minimal separation between the sample and the detector, which is essential for sensitivity, and (2) near-perfect magnetic-field homogeneity at the sample, which is typically needed for spectral resolution. The first of these requirements is real, but the second can be relaxed, as we demonstrate here. By using pulse sequences that yield high-resolution spectra in an inhomogeneous field, we eliminate the need for near-perfect field homogeneity and the accompanying requirement for susceptibility matching of microfabricated detector components. With this requirement removed, typical imperfections in microfabricated components can be tolerated, and detector dimensions can be matched to those of the sample, even for samples of volume << 5 uL. Pulse sequences that are robust to field inhomogeneity thus enable small-volume detection with optimal sensitivity. We illustrate the potential of this approach to miniaturization by presenting spectra acquired with a flat-wire detector that can easily be scaled to subnanoliter volumes. In particular, we report high-resolution NMR spectroscopy of an alanine sample of volume 500 pL.

  13. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    2004-01-01

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation

  14. High-resolution imaging and crowded-field photometry of the stellar populations in the cores of the Globular Clusters M15 and M4

    Science.gov (United States)

    Butler, R. F.

    1999-02-01

    This thesis presents work performed at the Department of Physics, University College Galway from 1992 to 1997. It is concerned with ground- and space-based high-resolution optical imaging of globular cluster cores, and the subsequent application of image-restoration and crowded-field photometry techniques; thus we may gain an improved understanding of the nature of their stellar populations, by either monitoring their temporal behaviour over moderate periods for the first time, or by obtaining a more precise "static" picture than was hitherto possible. These goals can be achieved by the development of innovative instrumentation and data analysis techniques. The particularly unique aspect of this work is that it deals with the first application of two-dimensional photon-counting detectors (2D-PCDs) and post-exposure image sharpening (PEIS) for crowded-field photometry. The thesis starts by introducing some basic concepts and characteristics of globular clusters and the diverse stellar species which they contain, in particular those predicted to have formed as a result of dynamical processes in the cluster cores, and those which exhibit variability in emission over time. It then reviews the fields of high-resolution imaging through the turbulent atmosphere & image deconvolution, optical stellar photometry, and Hubble Space Telescope observing and data reduction, each concluded with a description of the systems used in the work reported here (for the HST chapter this involves photometry of WFPC2 (Wide Field & Planetary Camera 2) observations of M15 (NGC 7078) released into the archives in 1995). The core of the thesis begins with a review of the observations to date of the objects with which this thesis is chiefly concerned, M15 and M4 (NGC 6121). In the following sections we describe the observations of these clusters which were made using the TRIFFID camera between 1992 and 1995, the image sharpening and calibration steps performed, and the photometric techniques

  15. High resolution backscattering instruments

    International Nuclear Information System (INIS)

    Coldea, R.

    2001-01-01

    The principle of operation of indirect-geometry time-of-flight spectrometers are presented, including the IRIS at the ISIS spallation neutron source. The key features that make those types of spectrometers ideally suited for low-energy spectroscopy are: high energy resolution over a wide dynamic range, and simultaneous measurement over a large momentum transfer range provided by the wide angular detector coverage. To exemplify these features are discussed of single-crystal experiments of the spin dynamics in the two-dimensional frustrated quantum magnet Cs 2 CuCl 4 . (R.P.)

  16. The evolution of magnetic fields in clusters of galaxies

    International Nuclear Information System (INIS)

    Stoeckl, J.

    2011-01-01

    Although the observational knowledge base about the properties of magnetic fields in clusters of galaxies has significantly improved in recent years, our understanding of the evolution and influence of the magnetic fields is still limited. We present results from our study on the influence of cluster scale magnetic fields on the structure formation of clusters of galaxies and the evolution of the intra-cluster medium (ICM). The high-resolution simulations employ a self-consistent numerical setup, which includes gravity, cosmology, magnetohydrodynamics and radiative cooling. We find that during structure formation cosmological magnetic seed fields of the order of 10 -1 1 to 10 -9 G are amplified by up to six orders of magnitude, which is in good agreement with observations. Furthermore we find that merger shocks during the cluster formation can have a dispersive effect on the magnetic field in the cluster center, and the outgoing shock waves can lead to magnetic fields of the order of [mu]G even at distances of more than 1 Mpc from the center. We highlight this as a possible explanation for the faint or undetectable radio halos that can be observed together with strong radio relics. (author) [de

  17. Magnetic field effects in proteins

    Science.gov (United States)

    Jones, Alex R.

    2016-06-01

    Many animals can sense the geomagnetic field, which appears to aid in behaviours such as migration. The influence of man-made magnetic fields on biology, however, is potentially more sinister, with adverse health effects being claimed from exposure to fields from mobile phones or high voltage power lines. Do these phenomena have a common, biophysical origin, and is it even plausible that such weak fields can profoundly impact noisy biological systems? Radical pair intermediates are widespread in protein reaction mechanisms, and the radical pair mechanism has risen to prominence as perhaps the most plausible means by which even very weak fields might impact biology. In this New Views article, I will discuss the literature over the past 40 years that has investigated the topic of magnetic field effects in proteins. The lack of reproducible results has cast a shadow over the area. However, magnetic field and spin effects have proven to be useful mechanistic tools for radical mechanism in biology. Moreover, if a magnetic effect on a radical pair mechanism in a protein were to influence a biological system, the conditions necessary for it to do so appear increasing unlikely to have come about by chance.

  18. Separation of magnetic field lines

    International Nuclear Information System (INIS)

    Boozer, Allen H.

    2012-01-01

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor σ, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e 2σ , and the ratio of the longer distance to the initial radius increases as e σ . Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/ω pe , which is about 10 cm in the solar corona, and reconnection must be triggered if σ becomes sufficiently large. The radius of the sun, R ⊙ =7×10 10 cm is about e 23 times larger, so when σ≳23, two lines separated by c/ω pe at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, σ, are derived, and the importance of exponentiation is discussed.

  19. Lasers plasmas and magnetic field

    International Nuclear Information System (INIS)

    Albertazzi, Bruno

    2014-01-01

    We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertial Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a re-collimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the re-collimation point could explain the 'puzzling' observations of stationary X ray emission zones embedded within astrophysical jets. (author) [fr

  20. Indoor localization using magnetic fields

    Science.gov (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  1. High resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arko, A.J.

    1988-01-01

    Photoelectron Spectroscopy (PES) covers a very broad range of measurements, disciplines, and interests. As the next generation light source, the FEL will result in improvements over the undulator that are larger than the undulater improvements over bending magnets. The combination of high flux and high inherent resolution will result in several orders of magnitude gain in signal to noise over measurements using synchrotron-based undulators. The latter still require monochromators. Their resolution is invariably strongly energy-dependent so that in the regions of interest for many experiments (h upsilon > 100 eV) they will not have a resolving power much over 1000. In order to study some of the interesting phenomena in actinides (heavy fermions e.g.) one would need resolving powers of 10 4 to 10 5 . These values are only reachable with the FEL

  2. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  3. Magnetic field line reconnection experiments

    International Nuclear Information System (INIS)

    Gekelman, W.; Stenzel, R.L.; Wild, N.

    1982-01-01

    A laboratory experiment concerned with the basic physics of magnetic field line reconnection is discussed. Stimulated by important processes in space plasmas and anomalous transport in fusion plasmas the work addresses the following topics: Dynamic magnetic fields in a high beta plasma, magnetic turbulence, plasma dynamics and energy transport. First, the formation of magnetic neutral sheets, tearing and island coalescence are shown. Nonstationary magnetic fluctuations are statistically evaluated displaying the correlation tensor in the #betta#-k domain for mode identification. Then, the plasma properties are analyzed with particular emphasis on transport processes. Although the classical fluid flow across the separatrix can be observed, the fluctuation processes strongly modify the plasma dynamics. Direct measurements of the fluid force density and ion acceleration indicate the presence of an anomalous scattering process characterized by an effective scattering tensor. Turbulence also enhances the plasma resistivity by one to two orders of magnitude. Measurements of the three-dimensional electron distribution function using a novel energy analyzer exhibit the formation of runaway electrons in the current sheet. Associated micro-instabilities are observed. Finally, a macroscopic disruptive instability of the current sheet is observed. Excess magnetic field energy is converted at a double layer into particle kinetic energy and randomized through beam-plasma instabilities. These laboratory results are compared with related observations in space and fusion plasmas. (Auth.)

  4. Origin of magnetic switching field distribution in bit patterned media based on pre-patterned substrates

    OpenAIRE

    Pfau , B; Günther , C.M.; Guehrs , E; Hauet , Thomas; Yang , H; Vinh , L.; Xu , X; Yaney , D; Rick , R; Eisebitt , S; Hellwig , O

    2011-01-01

    International audience; Using a combination of synchrotron radiation based magnetic imaging and high-resolution transmission electron microscopy we reveal systematic correlations between the magnetic switching field and the internal nanoscale structure of individual islands in bit patterned media fabricated by Co/Pd-multilayer deposition onto pre-patterned substrates. We find that misaligned grains at the island periphery are a common feature independent of the island switching field, while i...

  5. Isotope separation by magnetic fields

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1978-01-01

    One of the isotopes of an element having several isotopes can be separated from the others in a dense, neutral plasma. Thus initially a neutral plasma is prepared including the element in question. This may consist of positive ions and negative electrons or alternatively of positive and negative ions, or else of a mixture of positive ions, negative ions and electrons. The plasma may then be injected into a magnetic field or may be generated in the field where more energy is imparted to a selected isotope than to the others. Finally, the isotopes are separated from each other on the basis of their differential energies. For example, the selected isotope may be given more energy than the others by stimulating it within the plasma at its resonant frequency which may be close to the cyclotron frequency, either by an electric field or by a magnetic field. In order to excite the other isotope, a different resonant frequency is required which depends on the plasma density, the relative concentration of electrons if the plasma contains electrons, the strength of the magnetic field, the ratio of charge to mass of the isotope, and possibly on the physical parameters of the plasma apparatus itself, such as the ratio of the length of the plasma column to its radius. The more energetic isotope may be separated by energy dependent chemical reactions, it may be collected by a positively biased probe or else the isotopes may be separated from each other by magnetic fields or in various other ways

  6. Photographing magnetic fields in superconductors

    International Nuclear Information System (INIS)

    Harrison, R.B.; Wright, L.S.

    Magneto-optic techniques coupled with high-speed photography are being used to study the destruction of superconductivity by a magnetic field. The phenomenon of superconductivity will be introduced with emphasis placed on the properties of type I and type II superconductors in a magnetic field. The Faraday effect and its application to the study of the penetration of magnetic fields into these superconductors will be described; the relative effectiveness of some types of paramagnetic glass will be demonstrated. A number of cinefilms will be shown to illustrate the versatility of the magneto-optic method for observing flux motion and patterns. The analysis of data obtained from a high speed film (10,200 fps) of a flux jump in Nb-Zr will be presented and discussed

  7. Satellite to study earth's magnetic field

    Science.gov (United States)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  8. Reconnection of magnetic field lines

    International Nuclear Information System (INIS)

    Heyn, M.F.; Gratton, F.T.; Gnavi, G.; Heindler, M.

    1990-01-01

    Magnetic field line diffusion in a plasma is studied on the basis of the non-linear boundary layer equations of dissipative, incompressible magnetohydrodynamics. Non-linear steady state solutions for a class of plasma parameters have been obtained which are consistent with the boundary conditions appropriate for reconnection. The solutions are self-consistent in connecting a stagnation point flow of a plasma with reconnecting magnetic field lines. The range of the validity of the solutions, their relation to other fluid models of reconnection, and their possible applications to space plasma configurations are pointed out. (Author)

  9. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    International Nuclear Information System (INIS)

    Rata, Mihaela; Salomir, Rares; Lafon, Cyril; Umathum, Reiner; Jenne, Juergen; Bock, Michael; Cotton, Francois

    2008-01-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 x 0.25 x 3 mm 3 ) and accurate thermometry data (the PRFS method with a voxel size of 0.5 x 0.5 x 5 mm 3 , 2.2 s/image, 0.3 deg. C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  10. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    Science.gov (United States)

    Rata, Mihaela; Salomir, Rares; Umathum, Reiner; Jenne, Jürgen; Lafon, Cyril; Cotton, François; Bock, Michael

    2008-11-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 × 0.25 × 3 mm3) and accurate thermometry data (the PRFS method with a voxel size of 0.5 × 0.5 × 5 mm3, 2.2 s/image, 0.3 °C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  11. Motions and solar magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Krat, V A [AN SSSR, Leningrad. Glavnaya Astronomicheskaya Observatoriya

    1977-02-01

    Fine structure of magnetic fields in the Sun has been investigated. The data of the Soviet solar stratospheric observatory (SSO) with the telescope with a mirror first of 50 and then 100 cm in diameter obtained for the period of 1970-1973 served as material for research. The experiments give evidence of the presence of photospheric granulation with the characteristic dimension of granules below 150 km. The angular resolution of instruments does not make it possible to realize direct measurements of magnetic fields of such sizes. The indirect estimates indicate the fact that the magnetic fields of photosphere cannot be less than 10/sup 2/ Oe. A comparison of Hsub(..cap alpha..) lines with lines of metals and with the continuous spectrum shows that the least dimensions of chromosphere elements account for 500 km. Since in chromosphere density decreases drastically, than in order to suppress hydrodynamic flows fields should be of the order of 10/sup 3/ Oe. It has been concluded that the problem of the origin and evolution of the magnetic field of the Sun should be also solved by applying data on other stars.

  12. Forward modelling of global gravity fields with 3D density structures and an application to the high-resolution ( 2 km) gravity fields of the Moon

    Science.gov (United States)

    Šprlák, M.; Han, S.-C.; Featherstone, W. E.

    2017-12-01

    Rigorous modelling of the spherical gravitational potential spectra from the volumetric density and geometry of an attracting body is discussed. Firstly, we derive mathematical formulas for the spatial analysis of spherical harmonic coefficients. Secondly, we present a numerically efficient algorithm for rigorous forward modelling. We consider the finite-amplitude topographic modelling methods as special cases, with additional postulates on the volumetric density and geometry. Thirdly, we implement our algorithm in the form of computer programs and test their correctness with respect to the finite-amplitude topography routines. For this purpose, synthetic and realistic numerical experiments, applied to the gravitational field and geometry of the Moon, are performed. We also investigate the optimal choice of input parameters for the finite-amplitude modelling methods. Fourth, we exploit the rigorous forward modelling for the determination of the spherical gravitational potential spectra inferred by lunar crustal models with uniform, laterally variable, radially variable, and spatially (3D) variable bulk density. Also, we analyse these four different crustal models in terms of their spectral characteristics and band-limited radial gravitation. We demonstrate applicability of the rigorous forward modelling using currently available computational resources up to degree and order 2519 of the spherical harmonic expansion, which corresponds to a resolution of 2.2 km on the surface of the Moon. Computer codes, a user manual and scripts developed for the purposes of this study are publicly available to potential users.

  13. ATLAS cavern magnetic field calculations

    International Nuclear Information System (INIS)

    Vorojtsov, S.B.; Vorozhtsov, A.S.; Butin, F.; Price, M.

    2000-01-01

    A new approach has been adopted in an attempt to produce a complete ATLAS cavern B-field map using a more precise methodological approach (variable magnetisation, depending on the external field) and the latest design taking into account of the structural elements. The basic idea was to produce a dedicated basic TOSCA model and then to insert a series of ferromagnetic structure elements to monitor the perturbative effect on the basic field map. Eventually, it was found: the bedplate field perturbation is an order of magnitude above the permissible level; manufacturing of the bedplates from nonmagnetic material or careful evaluation of their field contribution in the event reconstruction codes is required; the field value at the rack positions is higher than the permissible one; the final position of racks should be chosen taking into account the detailed magnetic field distribution

  14. An Overview of Hardware for Protein Crystallization in a Magnetic Field

    Directory of Open Access Journals (Sweden)

    Er-Kai Yan

    2016-11-01

    Full Text Available Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction, research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field and progress in this area. Future prospects in this field will also be discussed.

  15. Digital mammography with high-resolution storage plates (CR) versus full-field digital mammography (CCD) (DR) for microcalcifications and focal lesions - a retrospective clinical histologic analysis (n = 102)

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Lell, M.; Wenkel, E.; Boehner, C.; Dassel, M.S.; Bautz, W.

    2005-01-01

    Purpose: to determine the diagnostic accuracy of microcalcifications and focal lesions in a retrospective clinical-histological study using high-resolution digital phosphor storage plates (hard copy) and full-field digital mammography (hard copy). Materials and methods: from May 2003 to September 2003, 102 patients underwent digital storage plate mammography (CR), using a mammography unit (Mammomat 3000 N, Siemens) in combination with a high resolution (9 lp/mm) digital storage phosphor plate system (pixel size 50 μm) (Fuji/Siemens). After diagnosis and preoperative wire localization, full-field digital mammography (CCD) (DR) was performed with the same exposure parameters. The full-field digital mammography used a CCD-detector (SenoScan) (fisher imaging) with a resolution of 10 Ip/mm and a pixel size of 50 μm. Five investigators determined the diagnosis (BI-RADS trademark I-V) retrospectively after the operation from randomly distributed mediolateral views (hard copy reading). These results were correlated with the final histology. Results: the diagnostic accuracy of digital storage plate mammography (CR) and full-field digital mammography (CCD) (DR) was 73% and 71% for all findings (n = 102), 73% and 71% for microcalcifications (n = 51), and 72% and 70% for focal lesions (n = 51). The overall results showed no difference. Conclusion: our findings indicate the equivalence of high-resolution digital phosphor storage plate mammography (CR) and full-field digital mammography (CCD) (DR). (orig.)

  16. Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C3A in the presence of sulfates

    KAUST Repository

    Kirchheim, A. P.

    2011-02-21

    This study details the differences in real-time hydration between pure tricalcium aluminate (cubic C3A or 3CaO·Al2O 3) and Na-doped tricalcium aluminate (orthorhombic C3A or Na2Ca8Al6O18), in aqueous solutions containing sulfate ions. Pure phases were synthesized in the laboratory to develop an independent benchmark for the reactions, meaning that their reactions during hydration in a simulated early age cement pore solution (saturated with respect to gypsum and lime) were able to be isolated. Because the rate of this reaction is extremely rapid, most microscopy methods are not adequate to study the early phases of the reactions in the early stages. Here, a high-resolution full-field soft X-ray imaging technique operating in the X-ray water window, combined with solution analysis by 27Al nuclear magnetic resonance (NMR) spectroscopy, was used to capture information regarding the mechanism of C3A hydration during the early stages. There are differences in the hydration mechanism between the two types of C3A, which are also dependent on the concentration of sulfate ions in the solution. The reactions with cubic C3A (pure) seem to be more influenced by higher concentrations of sulfate ions, forming smaller ettringite needles at a slower pace than the orthorhombic C3A (Na-doped) sample. The rate of release of aluminate species into the solution phase is also accelerated by Na doping. © 2011 American Chemical Society.

  17. Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry

    International Nuclear Information System (INIS)

    Nagaoka, Tomoaki; Watanabe, Soichi; Sakurai, Kiyoko; Kunieda, Etsuo; Watanabe, Satoshi; Taki, Masao; Yamanaka, Yukio

    2004-01-01

    With advances in computer performance, the use of high-resolution voxel models of the entire human body has become more frequent in numerical dosimetries of electromagnetic waves. Using magnetic resonance imaging, we have developed realistic high-resolution whole-body voxel models for Japanese adult males and females of average height and weight. The developed models consist of cubic voxels of 2 mm on each side; the models are segmented into 51 anatomic regions. The adult female model is the first of its kind in the world and both are the first Asian voxel models (representing average Japanese) that enable numerical evaluation of electromagnetic dosimetry at high frequencies of up to 3 GHz. In this paper, we will also describe the basic SAR characteristics of the developed models for the VHF/UHF bands, calculated using the finite-difference time-domain method

  18. Evaluation of a high-resolution, breast-specific, small-field-of-view gamma camera for the detection of breast cancer

    International Nuclear Information System (INIS)

    Brem, R.F.; Kieper, D.A.; Rapelyea, J.A.; Majewski, S.

    2003-01-01

    Purpose: The purpose of our study is to review the state of the art in nuclear medicine imaging of the breast (scintimammography) and to evaluate a novel, high-resolution, breast-specific gamma camera (HRBGC) for the detection of suspicious breast lesions. Materials and Methods: Fifty patients with 58 breast lesions in whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a HRBGC prototype. Nuclear studies were prospectively classified as negative (normal/benign) or positive (suspicious/malignant) by two radiologists, blinded to mammographic and histologic results with both the conventional and high-resolution. All lesions were confirmed by pathology. Results: Included in this study were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. Specificity of both systems was 93.3% (28/30). In the 18 nonpalpable cancers, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and HRBGC, respectively. In cancers ≤ 1cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four of the cancers (median size, 8.5 mm) detected with the HRBGC were missed by the conventional camera Conclusion: Evaluation of indeterminate breasts lesions with a high resolution, breast-specific gamma camera results in improved sensitivity for the detection of cancer with greater improvement demonstrated in nonpalpable and ≤1 cm cancers

  19. Resonant Magnetic Field Sensors Based On MEMS Technology

    Directory of Open Access Journals (Sweden)

    Elías Manjarrez

    2009-09-01

    Full Text Available Microelectromechanical systems (MEMS technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  20. Resonant Magnetic Field Sensors Based On MEMS Technology

    Science.gov (United States)

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  1. High-resolution NMR field-cycling device for full-range relaxation and structural studies of biopolymers on a shared commercial instrument

    International Nuclear Information System (INIS)

    Redfield, Alfred G.

    2012-01-01

    Improvements are described in a shuttling field-cycling device (Redfield in Magn Reson Chem 41:753–768, 2003), designed to allow widespread access to this useful technique by configuring it as a removable module to a commercial 500 MHz NMR instrument. The main improvements described here, leading to greater versatility, high reliability and simple construction, include: shuttling provided by a linear motor driven by an integrated-control servomotor; provision of automated bucking magnets to allow fast two-stage cycling to nearly zero field; and overall control by a microprocessor. A brief review of history and publications that have used the system is followed by a discussion of topics related to such a device including discussion of some future applications. A description of new aspects of the shuttling device follows. The minimum round trip time to 1T and above is less than 0.25 s and to 0.002 T is 0.36 s. Commercial probes are used and sensitivity is that of the host spectrometer reduced only by relaxation during travel. A key element is development of a linkage that prevents vibration of the linear motor from reaching the probe.

  2. Evaluation of toxicological effects induced by tributyltin in clam Ruditapes decussatus using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy: Study of metabolic responses in heart tissue and detection of a novel metabolite

    OpenAIRE

    Hanana, H.; Simon, G.; Kervarec, N.; Cérantola, S.

    2014-01-01

    Tributyltin (TBT) is a highly toxic pollutant present in many aquatic ecosystems. Its toxicity in mollusks strongly affects their performance and survival. The main purpose of this study was to elucidate the mechanisms of TBT toxicity in clam Ruditapes decussatus by evaluating the metabolic responses of heart tissues, using high-resolution magic angle-spinning nuclear magnetic resonance (HRMAS NMR), after exposure to TBT (10−9, 10−6 and 10−4 M) during 24 h and 72 h. Results show that response...

  3. Galactic and intergalactic magnetic fields

    CERN Document Server

    Klein, Ulrich

    2014-01-01

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible.In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later c

  4. A general protocol of ultra-high resolution MR angiography to image the cerebro-vasculature in 6 different rats strains at high field.

    Science.gov (United States)

    Pastor, Géraldine; Jiménez-González, María; Plaza-García, Sandra; Beraza, Marta; Padro, Daniel; Ramos-Cabrer, Pedro; Reese, Torsten

    2017-09-01

    Differences in the cerebro-vasculature among strains as well as individual animals might explain variability in animal models and thus, a non-invasive method tailored to image cerebral vessel of interest with high signal to noise ratio is required. Experimentally, we describe a new general protocol of three-dimensional time-of-flight magnetic resonance angiography to visualize non-invasively the cerebral vasculature in 6 different rat strains. Flow compensated angiograms of Sprague Dawley, Wistar Kyoto, Lister Hooded, Long Evans, Fisher 344 and Spontaneous Hypertensive Rat strains were obtained without the use of contrast agents. At 11.7T using a repetition time of 60ms, an isotropic resolution of up to 62μm was achieved; total imaging time was 98min for a 3D data set. The visualization of the cerebral arteries was improved by removing extra-cranial vessels prior to the calculation of maximum intensity projection to obtain the angiograms. Ultimately, we demonstrate that the newly implemented method is also suitable to obtain angiograms following middle cerebral artery occlusion, despite the presence of intense vasogenic edema 24h after reperfusion. The careful selection of the excitation profile and repetition time at a higher static magnetic field allowed an increase in spatial resolution to reliably detect of the hypothalamic artery, the anterior choroidal artery as well as arterial branches of the peri-amygdoidal complex and the optical nerve in six different rat strains. MR angiography without contrast agent can be utilized to study cerebro-vascular abnormalities in various animal models. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Electron dynamics in inhomogeneous magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Nogaret, Alain, E-mail: A.R.Nogaret@bath.ac.u [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2010-06-30

    This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation. (topical review)

  6. RESICALC: Magnetic field modeling program

    International Nuclear Information System (INIS)

    Silva, J.M.

    1992-12-01

    RESICALC, Version 1.0, is a Microsoft Windows application that describes the magnetic field environment produced by user-defined arrays of transmission lines, distribution lines, and custom conductors. These arrays simulate specific situations that may be encountered in real-world community settings. RESICALC allows the user to define an area or ''world'' that contains the transmission and/or distribution lines, user-defined conductors, and locations of residences. The world contains a ''reference grid'' within which RESICALC analyzes the magnetic field environment due to all conductors within the world. Unique physical parameters (e.g., conductor height and spacing) and operating characteristics can be assigned to all electrical conductors. RESICALC's output is available for the x, y, z axis separately, the resultant (the three axes added in quadrature), and the major axis, each in three possible formats: a three-dimensional map of the magnetic field, two dimensional-contours, and as a table with statistical values. All formats may be printed, accompanied by a three-dimensional view of the world the user has drawn. The view of the world and the corresponding three-dimensional field map may be adjusted to the elevation and rotation angle of the user's preference

  7. Diagnostics of vector magnetic fields

    Science.gov (United States)

    Stenflo, J. O.

    1985-01-01

    It is shown that the vector magnetic fields derived from observations with a filter magnetograph will be severely distorted if the spatially unresolved magnetic structure is not properly accounted for. Thus the apparent vector field will appear much more horizontal than it really is, but this distortion is strongly dependent on the area factor and the temperature line weakenings. As the available fluxtube models are not sufficiently well determined, it is not possible to correct the filter magnetograph observations for these effects in a reliable way, although a crude correction is of course much better than no correction at all. The solution to this diagnostic problem is to observe simultaneously in suitable combinations of spectral lines, and/or use Stokes line profiles recorded with very high spectral resolution. The diagnostic power of using a Fourier transform spectrometer for polarimetry is shown and some results from I and V spectra are illustrated. The line asymmetries caused by mass motions inside the fluxtubes adds an extra complication to the diagnostic problem, in particular as there are indications that the motions are nonstationary in nature. The temperature structure appears to be a function of fluxtube diameter, as a clear difference between plage and network fluxtubes was revealed. The divergence of the magnetic field with height plays an essential role in the explanation of the Stokes V asymmetries (in combination with the mass motions). A self consistent treatment of the subarcsec field geometry may be required to allow an accurate derivation of the spatially averaged vector magnetic field from spectrally resolved data.

  8. Generation of magnetic fields for accelerators with permanent magnets

    International Nuclear Information System (INIS)

    Meinander, T.

    1994-01-01

    Commercially available permanent magnet materials and their properties are reviewed. Advantages and disadvantages of using permanent magnets as compared to electromagnets for the generation of specific magnetic fields are discussed. Basic permanent magnet configurations in multipole magnets and insertion devices are presented. (orig.)

  9. Magnetic fluid bridge in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Pelevina, D.A.; Naletova, V.A.; Turkov, V.A.

    2017-01-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  10. Establishment of magnetic coordinates for a given magnetic field

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1981-04-01

    A method is given for expressing the magnetic field strength in magnetic coordinates for a given field. This expression is central to the study of equilibrium, stability, and transport in asymmetric plasmas

  11. Magnetic fluid bridge in a non-uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Pelevina, D.A., E-mail: pelevina.daria@gmail.com; Naletova, V.A.; Turkov, V.A.

    2017-06-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  12. High-resolution resonant magnetic x-ray scattering on TbNi2B2C: Determination of the modulation wave vector in the orthorhombic phase

    International Nuclear Information System (INIS)

    Song, C.; Wermeille, D.; Goldman, A. I.; Canfield, P. C.; Rhee, J. Y.; Harmon, B. N.

    2001-01-01

    Resonant magnetic x-ray scattering measurements have been performed on a single crystal of TbNi 2 B 2 C to uniquely determine the modulation wave vector in the low-temperature orthorhombic phase. Below the transition temperature of 14.4(±0.1)K, two magnetic satellite peaks develop, centered on (h00) orth charge reflections. Our study shows that the longitudinal modulation of the magnetic moment is along the longer basal plane axes of the orthorhombic phase. Power law fits to the temperature dependence of the structural distortion, a/b-1, and the magnetic scattering intensity result in the same exponent, β, and transition temperature evidencing explicitly that the structural phase transition is magneto-elastic in origin

  13. Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles

    CERN Document Server

    Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

    2004-01-01

    Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

  14. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  15. Field errors in superconducting magnets

    International Nuclear Information System (INIS)

    Barton, M.Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence

  16. Magnetic Fields of Neutron Stars

    Indian Academy of Sciences (India)

    Sushan Konar

    2017-09-12

    Sep 12, 2017 ... the material properties of the region where currents supporting the .... 1The evolution of magnetic field in neutron stars, in particular, the question of .... −10, 10. −9, 10. −8. M⊙/yr respec- tively. See Konar & Bhattacharya (1997) for details. Peq ≃ 1.9 ms ..... ported by a grant (SR/WOS-A/PM-1038/2014) from.

  17. High-resolution model for the simulation of the activity distribution and radiation field at the German FRJ-2 research reactor

    International Nuclear Information System (INIS)

    Winter, D.; Haeussler, A.; Abbasi, F.; Simons, F.; Nabbi, R.; Thomauske, B.

    2013-01-01

    F or the decommissioning of nuclear facilities in Germany, activity and dose rate atlases (ADAs) are required for the approval of the domestic regulatory authority. Thus, high detailed modeling efforts are demanded in order to optimize the quantification and the characterization of nuclear waste as well as to realize optimum radiation protection. For the generation of ADAs, computer codes based on the Monte-Carlo method are increasingly employed because of their potential for high resolution simulation of the neutron and gamma transport for activity and dose rate predictions, respectively. However, the demand on the modeling effort and the simulation time increases with the size and the complexity of the whole model that becomes a limiting factor. For instance, the German FRJ-2 research reactor consisting of a complex reactor core, the graphite reflector, and the adjacent thermal and biological shielding structures represents such a case. For the solving of this drawback, various techniques such as variance reduction methods are applied. A further simple but effective approach is the modeling of the regions of interest with appropriate boundary conditions e.g. surface source or reflective surfaces. In the framework of the existing research a high sophisticated simulation tool is developed which is characterized by: - CAD-based model generation for Monte-Carlo transport simulations; - Production and 3D visualization of high resolution activity and dose rate atlases; - Application of coupling routines and interface structures for optimum and automated simulations. The whole simulation system is based on the Monte-Carlo code MCNP5 and the depletion/activation code ORIGEN2. The numerical and computational efficiency of the proposed methods is discussed in this paper on the basis of the simulation and CAD-based model of the FRJ-2 research reactor with emphasis on the effect of variance reduction methods. (orig.)

  18. High-resolution model for the simulation of the activity distribution and radiation field at the German FRJ-2 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Winter, D.; Haeussler, A.; Abbasi, F.; Simons, F.; Nabbi, R.; Thomauske, B. [RWTH Aachen Univ. (Germany). Inst. of Nuclear Fuel Cycle; Damm, G. [Research Center Juelich (Germany)

    2013-11-15

    F or the decommissioning of nuclear facilities in Germany, activity and dose rate atlases (ADAs) are required for the approval of the domestic regulatory authority. Thus, high detailed modeling efforts are demanded in order to optimize the quantification and the characterization of nuclear waste as well as to realize optimum radiation protection. For the generation of ADAs, computer codes based on the Monte-Carlo method are increasingly employed because of their potential for high resolution simulation of the neutron and gamma transport for activity and dose rate predictions, respectively. However, the demand on the modeling effort and the simulation time increases with the size and the complexity of the whole model that becomes a limiting factor. For instance, the German FRJ-2 research reactor consisting of a complex reactor core, the graphite reflector, and the adjacent thermal and biological shielding structures represents such a case. For the solving of this drawback, various techniques such as variance reduction methods are applied. A further simple but effective approach is the modeling of the regions of interest with appropriate boundary conditions e.g. surface source or reflective surfaces. In the framework of the existing research a high sophisticated simulation tool is developed which is characterized by: - CAD-based model generation for Monte-Carlo transport simulations; - Production and 3D visualization of high resolution activity and dose rate atlases; - Application of coupling routines and interface structures for optimum and automated simulations. The whole simulation system is based on the Monte-Carlo code MCNP5 and the depletion/activation code ORIGEN2. The numerical and computational efficiency of the proposed methods is discussed in this paper on the basis of the simulation and CAD-based model of the FRJ-2 research reactor with emphasis on the effect of variance reduction methods. (orig.)

  19. Spline techniques for magnetic fields

    International Nuclear Information System (INIS)

    Aspinall, J.G.

    1984-01-01

    This report is an overview of B-spline techniques, oriented toward magnetic field computation. These techniques form a powerful mathematical approximating method for many physics and engineering calculations. In section 1, the concept of a polynomial spline is introduced. Section 2 shows how a particular spline with well chosen properties, the B-spline, can be used to build any spline. In section 3, the description of how to solve a simple spline approximation problem is completed, and some practical examples of using splines are shown. All these sections deal exclusively in scalar functions of one variable for simplicity. Section 4 is partly digression. Techniques that are not B-spline techniques, but are closely related, are covered. These methods are not needed for what follows, until the last section on errors. Sections 5, 6, and 7 form a second group which work toward the final goal of using B-splines to approximate a magnetic field. Section 5 demonstrates how to approximate a scalar function of many variables. The necessary mathematics is completed in section 6, where the problems of approximating a vector function in general, and a magnetic field in particular, are examined. Finally some algorithms and data organization are shown in section 7. Section 8 deals with error analysis

  20. Behaviour of magnetic superconductors in a magnetic field

    International Nuclear Information System (INIS)

    Buzdin, A.I.

    1984-01-01

    The behaviour of magnetic superconductors with close ferromagnetic and superconducting transition temperatures in a magnetic field is considered. It is shown that on lowering of the temperature the superconducting transition changes from a second to first order transition. The respective critical fields and dependence of the magnetization on the magnetic field and temperature are found. The magnetization discontinuity in the vortex core in magnetic superconductors is noted. Due to this property and the relatively large scattering cross section, magnetic superconductors are convenient for studying the superconducting vortex lattice by neutron diffraction techniques

  1. High-resolution(18)F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for pituitary adenoma detection in Cushing disease.

    Science.gov (United States)

    Chittiboina, Prashant; Montgomery, Blake K; Millo, Corina; Herscovitch, Peter; Lonser, Russell R

    2015-04-01

    OBJECT High-resolution PET (hrPET) performed using a high-resolution research tomograph is reported as having a resolution of 2 mm and could be used to detect corticotroph adenomas through uptake of(18)F-fluorodeoxyglucose ((18)F-FDG). To determine the sensitivity of this imaging modality, the authors compared(18)F-FDG hrPET and MRI detection of pituitary adenomas in Cushing disease (CD). METHODS Consecutive patients with CD who underwent preoperative(18)F-FDG hrPET and MRI (spin echo [SE] and spoiled gradient recalled [SPGR] sequences) were prospectively analyzed. Standardized uptake values (SUVs) were calculated from hrPET and were compared with MRI findings. Imaging findings were correlated to operative and histological findings. RESULTS Ten patients (7 females and 3 males) were included (mean age 30.8 ± 19.3 years; range 11-59 years). MRI revealed a pituitary adenoma in 4 patients (40% of patients) on SE and 7 patients (70%) on SPGR sequences.(18)F-FDG hrPET demonstrated increased(18)F-FDG uptake consistent with an adenoma in 4 patients (40%; adenoma size range 3-14 mm). Maximum SUV was significantly higher for(18)F-FDG hrPET-positive tumors (difference = 5.1, 95% CI 2.1-8.1; p = 0.004) than for(18)F-FDG hrPET-negative tumors.(18)F-FDG hrPET positivity was not associated with tumor volume (p = 0.2) or dural invasion (p = 0.5). Midnight and morning ACTH levels were associated with(18)F-FDG hrPET positivity (p = 0.01 and 0.04, respectively) and correlated with the maximum SUV (R = 0.9; p = 0.001) and average SUV (R = 0.8; p = 0.01). All(18)F-FDG hrPET-positive adenomas had a less than a 180% ACTH increase and(18)F-FDG hrPET-negative adenomas had a greater than 180% ACTH increase after CRH stimulation (p = 0.03). Three adenomas were detected on SPGR MRI sequences that were not detected by(18)F-FDG hrPET imaging. Two adenomas not detected on SE (but no adenomas not detected on SPGR) were detected on(18)F-FDG hrPET. CONCLUSIONS While(18)F-FDG hrPET imaging can

  2. Measurements of Solar Vector Magnetic Fields

    Science.gov (United States)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  3. Shaped superconductor cylinder retains intense magnetic field

    Science.gov (United States)

    Hildebrandt, A. F.; Wahlquist, H.

    1964-01-01

    The curve of the inner walls of a superconducting cylinder is plotted from the flux lines of the magnetic field to be contained. This shaping reduces maximum flux densities and permits a stronger and more uniform magnetic field.

  4. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Martin, James E.; Venturini, Eugene; Odinek, Judy; Anderson, Robert A.

    2000-01-01

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  5. Measurements of Solar Vector Magnetic Fields

    International Nuclear Information System (INIS)

    Hagyard, M.J.

    1985-05-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display

  6. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  7. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1999-01-01

    High Resolution NMR provides a broad treatment of the principles and theory of nuclear magnetic resonance (NMR) as it is used in the chemical sciences. It is written at an "intermediate" level, with mathematics used to augment, rather than replace, clear verbal descriptions of the phenomena. The book is intended to allow a graduate student, advanced undergraduate, or researcher to understand NMR at a fundamental level, and to see illustrations of the applications of NMR to the determination of the structure of small organic molecules and macromolecules, including proteins. Emphasis is on the study of NMR in liquids, but the treatment also includes high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. Careful attention is given to developing and interrelating four approaches - steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The presentation is based on the assumption that the reader has an acquaintan...

  8. LCS-1: A high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations

    DEFF Research Database (Denmark)

    Olsen, Nils; Ravat, Dhananjay; Finlay, Chris

    2017-01-01

    -West gradient is approximated by the difference between observations taken by Swarm Alpha and Charlie. In total, we used 6.2 mio data points.The model is parametrized by 35,000 equivalent point sources located on an almost equal-area grid at a depth of 100 km below the surface (WGS84 ellipsoid). The amplitudes...

  9. Biotropic parameters of magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Shishlo, M.A.

    The use of magnetic fields (MF) in biology and medicine to control biological systems has led to appearance of the term, biotropic parameters of MF. They include the physical characteristics of MF, which determine the primary biologically significant physicochemical mechanisms of field action causing formation of corresponding reactions on the level of the integral organism. These parameters include MF intensity, gradient, vector, pulse frequency and shape, and duration of exposure. Factors that elicit responses by the biological system include such parameter of MF interaction with the integral organism as localization of exposure and volume of tissues interacting with the field, as well as the initial state of the organism. In essence, the findings of experimental studies of biotropic parameters of MF make it possible to control physiological processes and will aid in optimizing methods of MF therapy.

  10. Method of regulating magnetic field of magnetic pole center

    International Nuclear Information System (INIS)

    Watanabe, Masao; Yamada, Teruo; Kato, Norihiko; Toda, Yojiro; Kaneda, Yasumasa.

    1978-01-01

    Purpose: To provide the subject method comprising using a plurality of magnetic metal pieces having different thicknesses, regulating very easily symmetry of the field of the magnetic pole center depending upon the combination of said metal pieces, thereby obtaining a magnetic field of high precision. Method: The regulation of magnetic field at the central part of the magnetic field is not depending only upon processing of the center plug, axial movement of trim coil and ion source but by providing a magnetic metal piece such as an iron ring, primary higher harmonics of the field at the center of the magnetic field can be regulated simply while the position of the ion source slit is on the equipotential surface in the field. (Yoshihara, H.)

  11. Bats respond to very weak magnetic fields.

    Directory of Open Access Journals (Sweden)

    Lan-Xiang Tian

    Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  12. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    Parzen, G.

    1976-01-01

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  13. Probing Black Hole Magnetic Fields with QED

    Directory of Open Access Journals (Sweden)

    Ilaria Caiazzo

    2018-05-01

    Full Text Available The effect of vacuum birefringence is one of the first predictions of quantum electrodynamics (QED: the presence of a charged Dirac field makes the vacuum birefringent when threaded by magnetic fields. This effect, extremely weak for terrestrial magnetic fields, becomes important for highly magnetized astrophysical objects, such as accreting black holes. In the X-ray regime, the polarization of photons traveling in the magnetosphere of a black hole is not frozen at emission but is changed by the local magnetic field. We show that, for photons traveling along the plane of the disk, where the field is expected to be partially organized, this results in a depolarization of the X-ray radiation. Because the amount of depolarization depends on the strength of the magnetic field, this effect can provide a way to probe the magnetic field in black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.

  14. Effective magnetic moment of neutrinos in strong magnetic fields

    International Nuclear Information System (INIS)

    Perez M, A.; Perez R, H.; Masood, S.S.; Gaitan, R.; Rodriguez R, S.

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  15. Magnetic field measuring system for remapping the ORIC magnetic field

    International Nuclear Information System (INIS)

    Mosko, S.W.; Hudson, E.D.; Lord, R.S.; Hensley, D.C.; Biggerstaff, J.A.

    1977-01-01

    The Holifield Heavy Ion Research Facility will integrate a new 25 MV tandem electrostatic acccelerator into the existing cyclotron laboratory which includes the Oak Ridge Isochronous Cyclotron (ORIC). Computations of ion paths for beam injection from the new tandem into ORIC require field mapping in the regions traversed by the beam. Additional field data is also desired for the higher levels (approx.19 kG) now used for most heavy ion beams. The magnetic field measurement system uses 39 flip coil/current integrator sets with computer controlled data scanning. The coils are spaced radially at 1 inch intervals in an arm which can be rotated azimuthally in 2 degree increments. The entire flip coil assembly can be shifted to larger radii to measure fields beyond the pole boundary. Temperature stabilization of electronic circuitry permits a measurement resolution of +-1 gauss over a dynamic range of +-25,000 gauss. The system will process a scan of 8000 points in about one hour

  16. Modelling the Earth's Main Magnetic Field by the spinning Astrid-2 satellite

    DEFF Research Database (Denmark)

    Merayo, Jose Maria Garcia; Jørgensen, Peter Siegbjørn; Risbo, T.

    1999-01-01

    and therefore the mapping of the Earth's magnetic field may be possible. The spinning of the spacecraft about a certain axis makes the stabilisation in space possible. This fact and the well distributed data over the globe makes the magnetic data well suited for the estimation of the magnetic field model......The Swedish micro-satellite Astrid-2 was successfully launched into a near polar orbit last December 98. Despite the fact that its primary mission was the research of Auroral phenomena, the magnetic instrumentation has been designed to accomplish high resolution vector field magnetic measurements...... at the spacecraft altitude (circa 1000km). Several methods for field modelling are presented in this paper with the assumption that the direction of the spin axis is nearly constant. In any case the orientation of the magnetometer is to bedetermined simultaneously with the instrument calibration and main field...

  17. Self-generation of magnetic fields

    International Nuclear Information System (INIS)

    Dolan, T.J.

    2000-01-01

    The stars generate self-magnetic fields on large spatial scales and long time scales,and laser-produced plasmas generate intense self-magnetic fields on very short spatial and time scales. Two questions are posed : (1) Could a self-magnetic field be generated in a laboratory plasma with intermediate spatial and time scales? (2) If a self-magnetic field were generated,would it evolve towards a minimum energy state? If the answers turned out to be affirmative,then self-magnetic fields could possibly have interesting applications

  18. The measurement of solar magnetic fields

    International Nuclear Information System (INIS)

    Stenflo, J.O.

    1978-01-01

    Solar activity is basically caused by the interaction between magnetic fields, solar rotation and convective motions. Detailed mapping of the Sun's rapidly varying magnetic field helps in the understanding of the mechanisms of solar activity. Observations in recent years have revealed unexpected and intriguing properties of solar magnetic fields, the explanation of which has become a challenge to plasma physicists. This review deals primarily with how the Sun's magnetic field is measured, but it also includes a brief review of the present observational picture of the magnetic field, which is needed to understand the problems of how to properly interpret the observations. 215 references. (author)

  19. Metabolite-cycled density-weighted concentric rings k-space trajectory (DW-CRT) enables high-resolution 1 H magnetic resonance spectroscopic imaging at 3-Tesla.

    Science.gov (United States)

    Steel, Adam; Chiew, Mark; Jezzard, Peter; Voets, Natalie L; Plaha, Puneet; Thomas, Michael Albert; Stagg, Charlotte J; Emir, Uzay E

    2018-05-17

    Magnetic resonance spectroscopic imaging (MRSI) is a promising technique in both experimental and clinical settings. However, to date, MRSI has been hampered by prohibitively long acquisition times and artifacts caused by subject motion and hardware-related frequency drift. In the present study, we demonstrate that density weighted concentric ring trajectory (DW-CRT) k-space sampling in combination with semi-LASER excitation and metabolite-cycling enables high-resolution MRSI data to be rapidly acquired at 3 Tesla. Single-slice full-intensity MRSI data (short echo time (TE) semi-LASER TE = 32 ms) were acquired from 6 healthy volunteers with an in-plane resolution of 5 × 5 mm in 13 min 30 sec using this approach. Using LCModel analysis, we found that the acquired spectra allowed for the mapping of total N-acetylaspartate (median Cramer-Rao Lower Bound [CRLB] = 3%), glutamate+glutamine (8%), and glutathione (13%). In addition, we demonstrate potential clinical utility of this technique by optimizing the TE to detect 2-hydroxyglutarate (long TE semi-LASER, TE = 110 ms), to produce relevant high-resolution metabolite maps of grade III IDH-mutant oligodendroglioma in a single patient. This study demonstrates the potential utility of MRSI in the clinical setting at 3 Tesla.

  20. High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gatu Johnson, M., E-mail: gatu@psfc.mit.edu; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Séguin, F. H. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bionta, R. M.; Casey, D. T.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Sayre, D. B.; Skulina, K.; Yeamans, C. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Farrell, M. P.; Hoppe, M.; Kilkenny, J. D.; Reynolds, H. G.; Schoff, M. E. [General Atomics, San Diego, California 92186 (United States)

    2016-11-15

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ∼200 keV FWHM.

  1. Structural and metabolic changes in the traumatically injured rat brain. High-resolution in vivo proton magnetic resonance spectroscopy at 7 T

    International Nuclear Information System (INIS)

    Li, Jing; Zhao, Can; Rao, Jia-Sheng; Yang, Fei-Xiang; Yang, Zhao-Yang; Wang, Zhan-Jing; Lei, Jian-Feng; Li, Xiao-Guang

    2017-01-01

    The understanding of microstructural and metabolic changes in the post-traumatic brain injury is the key to brain damage suppression and repair in clinics. Ten female Wistar rats were traumatically injured in the brain CA1 region and above the cortex. Next, diffusion tensor magnetic resonance imaging (DTI) and proton magnetic resonance spectroscopy ( 1 H MRS) were used to analyze the microstructural and metabolic changes in the brain within the following 2 weeks. Anisotropy fraction (FA) and axial diffusivity (AD) of the corpus callosum (CC) began to decrease significantly at day 1, whereas radial diffusivity (RD) significantly increased immediately after injury, reflecting the loss of white matter integrity. Compared with day 3, RD decreased significantly at day 7, implicating the angioedema reduction. In the hippocampus, FA significantly increased at day 7; the choline-containing compounds (Cho) and myo-inositol (MI) remarkably increased at day 7 compared with those at day 3, indicating the proliferation of astrocytes and radial glial cells after day 7. No significant differences between DTI and 1 H MRS parameters were observed between day 1 and day 3. Day 1-3 after traumatic brain injury (TBI) may serve as a relatively appropriate time window for treatment planning and the following nerve repair. (orig.)

  2. Structural and metabolic changes in the traumatically injured rat brain. High-resolution in vivo proton magnetic resonance spectroscopy at 7 T

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Zhao, Can; Rao, Jia-Sheng [Beihang University, Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beijing (China); Yang, Fei-Xiang; Yang, Zhao-Yang [Capital Medical University, Department of Neurobiology, School of Basic Medical Sciences, Beijing (China); Wang, Zhan-Jing; Lei, Jian-Feng [Capital Medical University, Medical Experiment and Test Center, Beijing (China); Li, Xiao-Guang [Beihang University, Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beijing (China); Capital Medical University, Department of Neurobiology, School of Basic Medical Sciences, Beijing (China)

    2017-12-15

    The understanding of microstructural and metabolic changes in the post-traumatic brain injury is the key to brain damage suppression and repair in clinics. Ten female Wistar rats were traumatically injured in the brain CA1 region and above the cortex. Next, diffusion tensor magnetic resonance imaging (DTI) and proton magnetic resonance spectroscopy ({sup 1}H MRS) were used to analyze the microstructural and metabolic changes in the brain within the following 2 weeks. Anisotropy fraction (FA) and axial diffusivity (AD) of the corpus callosum (CC) began to decrease significantly at day 1, whereas radial diffusivity (RD) significantly increased immediately after injury, reflecting the loss of white matter integrity. Compared with day 3, RD decreased significantly at day 7, implicating the angioedema reduction. In the hippocampus, FA significantly increased at day 7; the choline-containing compounds (Cho) and myo-inositol (MI) remarkably increased at day 7 compared with those at day 3, indicating the proliferation of astrocytes and radial glial cells after day 7. No significant differences between DTI and {sup 1}H MRS parameters were observed between day 1 and day 3. Day 1-3 after traumatic brain injury (TBI) may serve as a relatively appropriate time window for treatment planning and the following nerve repair. (orig.)

  3. Measurements of magnetic field sources in schools

    International Nuclear Information System (INIS)

    Johnson, G.B.

    1992-01-01

    The Electrical Systems Division of the Electric Power Research Institute (EPRI) has initiated several research projects to investigate magnetic field levels, their characteristics, and their sources. This paper describes measurements of magnetic field sources in schools. Magnetic field measurements were made at four schools in the service areas of two utility companies. Magnetic field measurements included profiles of the magnetic field versus distance near power lines, around the perimeter of the school buildings, and at several locations within each school. Twenty-four hour measurements were also made to record the temporal variation of the magnetic field at several locations at each school. The instrumentation, measurement techniques, and magnetic field sources identified are discussed

  4. Magnetic field driven domain-wall propagation in magnetic nanowires

    International Nuclear Information System (INIS)

    Wang, X.R.; Yan, P.; Lu, J.; He, C.

    2009-01-01

    The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.

  5. Fringing field measurement of dipole magnet

    International Nuclear Information System (INIS)

    Lu Hongyou; Jiang Weisheng; Mao Naifeng; Mao Xingwang

    1985-01-01

    The fringing field of a dipole magnet with a C-type circuit and homogeneous field in the gap has been measured including the distributions of fringing fields with and without magnetic shield. The measured data was analyzed by using the concept of virtual field boundary

  6. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders

    2016-01-01

    In a magnetic refrigeration device the magnet is the single most expensive component, and therefore it is crucially important to ensure that an effective magnetic field as possible is generated using the least amount of permanent magnets. Here we present a method for calculating the optimal...... remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...... in the optimal segmentation, for any number of segments specified. These two methods are used to determine the optimal magnet design of a 12-piece, two-pole concentric cylindrical magnet for use in a continuously rotating magnetic refrigeration device....

  7. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  8. Inertial fusion reactors and magnetic fields

    International Nuclear Information System (INIS)

    Cornwell, J.B.; Pendergrass, J.H.

    1985-01-01

    The application of magnetic fields of simple configurations and modest strengths to direct target debris ions out of cavities can alleviate recognized shortcomings of several classes of inertial confinement fusion (ICF) reactors. Complex fringes of the strong magnetic fields of heavy-ion fusion (HIF) focusing magnets may intrude into reactor cavities and significantly affect the trajectories of target debris ions. The results of an assessment of potential benefits from the use of magnetic fields in ICF reactors and of potential problems with focusing-magnet fields in HIF reactors conducted to set priorities for continuing studies are reported. Computational tools are described and some preliminary results are presented

  9. SPIRAL2/DESIR high resolution mass separator

    Energy Technology Data Exchange (ETDEWEB)

    Kurtukian-Nieto, T., E-mail: kurtukia@cenbg.in2p3.fr [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver B.C., V6T 2A3 (Canada); Blank, B.; Chiron, T. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Davids, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Delalee, F. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Duval, M. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); El Abbeir, S.; Fournier, A. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Lunney, D. [CSNSM-IN2P3-CNRS, Université de Paris Sud, F-91405 Orsay (France); Méot, F. [BNL, Upton, Long Island, New York (United States); Serani, L. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Stodel, M.-H.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); and others

    2013-12-15

    DESIR is the low-energy part of the SPIRAL2 ISOL facility under construction at GANIL. DESIR includes a high-resolution mass separator (HRS) with a designed resolving power m/Δm of 31,000 for a 1 π-mm-mrad beam emittance, obtained using a high-intensity beam cooling device. The proposed design consists of two 90-degree magnetic dipoles, complemented by electrostatic quadrupoles, sextupoles, and a multipole, arranged in a symmetric configuration to minimize aberrations. A detailed description of the design and results of extensive simulations are given.

  10. Accurate method of the magnetic field measurement of quadrupole magnets

    International Nuclear Information System (INIS)

    Kumada, M.; Sakai, I.; Someya, H.; Sasaki, H.

    1983-01-01

    We present an accurate method of the magnetic field measurement of the quadrupole magnet. The method of obtaining the information of the field gradient and the effective focussing length is given. A new scheme to obtain the information of the skew field components is also proposed. The relative accuracy of the measurement was 1 x 10 -4 or less. (author)

  11. Electrolytic tiltmeters inside magnetic fields: Some observations

    International Nuclear Information System (INIS)

    Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.; Calderon, A.; Garcia-Moral, L.A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A.L.

    2007-01-01

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths

  12. Electrolytic tiltmeters inside magnetic fields: Some observations

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J. [CIEMAT, Madrid (Spain); Arce, P. [CIEMAT, Madrid (Spain); Barcala, J.M. [CIEMAT, Madrid (Spain); Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A. [CIEMAT, Madrid (Spain)]. E-mail: antonio.ferrando@ciemat.es; Josa, M.I. [CIEMAT, Madrid (Spain); Luque, J.M. [CIEMAT, Madrid (Spain); Molinero, A. [CIEMAT, Madrid (Spain); Navarrete, J. [CIEMAT, Madrid (Spain); Oller, J.C. [CIEMAT, Madrid (Spain); Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Garcia-Moral, L.A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gomez, G. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gonzalez-Sanchez, F.J. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Ruiz-Arbol, P. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Scodellaro, L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain)

    2007-04-21

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths.

  13. Metabonomic profiling of renal cell carcinoma: High-resolution proton nuclear magnetic resonance spectroscopy of human serum with multivariate data analysis

    International Nuclear Information System (INIS)

    Gao Hongchang; Dong Baijun; Liu Xia; Xuan Hanqing; Huang Yiran; Lin Donghai

    2008-01-01

    Metabonomic profiling using proton nuclear magnetic resonance ( 1 H NMR) spectroscopy and multivariate data analysis of human serum samples was used to characterize metabolic profiles in renal cell carcinoma (RCC). We found distinct, easily detectable differences between (a) RCC patients and healthy humans, (b) RCC patients with metastases and without metastases, and (c) RCC patients before and after nephrectomy. Compared to healthy human serum, RCC serum had higher levels of lipid (mainly very low-density lipoproteins), isoleucine, leucine, lactate, alanine, N-acetylglycoproteins, pyruvate, glycerol, and unsaturated lipid, together with lower levels of acetoacetate, glutamine, phosphatidylcholine/choline, trimethylamine-N-oxide, and glucose. This pattern was somewhat reversed after nephrectomy. Altered metabolite concentrations are most likely the result of the cells switching to glycolysis to maintain energy homeostasis following the loss of ATP caused by impaired TCA cycle in RCC. Serum NMR spectra combined with principal component analysis techniques offer an efficient, convenient way of depicting tumour biochemistry and stratifying tumours under different pathophysiological conditions. It may be able to assist early diagnosis and postoperative surveillance of human malignant diseases using single blood samples

  14. Design of mirror and monochromator crystals for a high-resolution multiwavelength anomalous diffraction beam line on a bending magnet at the ESRF

    International Nuclear Information System (INIS)

    Roth, M.; Ferrer, J.; Simon, J.; Geissler, E.

    1992-01-01

    High intensity for diffraction experiments with high-energy resolution on an intense x-ray beam, like the bending magnet beam lines at the ESRF, requires a strict control of the curvature of the optical elements placed in the beam for geometrical focusing and for wavelength monochromatization. Unwanted curvatures can come from nonuniform and variable heating of the optical elements produced by the absorption of x rays. To design the CRG/D2AM beam line described in the accompanying paper, some new techniques were developed to control these effects based on geometrical, i.e., topological, considerations. (1) Cooling of the entrance mirror: longitudinal curvature can be strongly reduced by cooling the mirror from the sides (and not from the rear) and only near the reflecting surface (i.e., not over the whole lateral surface). The cooling can be achieved for instance with an isothermal liquid Ga eutectic bath. (2) Cooling of the first single-crystal Si monochromator: because of the size of the crystal, only cooling from the rear is conceivable in this case. It can be shown by calculation that the curvature due to the front-to-rear gradient can be exactly compensated by the thermal expansion of a metallic layer at the rear of the crystal, having a larger expansion coefficient than Si

  15. Role of high resolution contrast-enhanced magnetic resonance angiography (HR CeMRA) in management of arterial complications of the renal transplant

    International Nuclear Information System (INIS)

    Ismaeel, M. Maged; Abdel-Hamid, Azza

    2011-01-01

    Introduction: Transplant renal artery (RA) stenosis (TRAS) is the most frequent posttransplantation vascular complication. Contrast enhanced magnetic resonance (CeMRA) angiography has been established as the preferred imaging technique for the evaluation of TRAS because it does not require the use of iodinated contrast material and does not expose the patient to ionizing radiation. Digital subtraction angiography (DSA) is the gold standard in the evaluation of arterial tree of the renal allograft. Aim of the work: This study was carried out to assess the accuracy of CeMRA in the detection of arterial complications after renal transplantation. Patients and methods: Thirty renal transplant patients with suspected arterial complications in which both CeMRA and DSA were performed were included in the study. The HR CeMRA shows 93.7% sensitivity, 80% specificity, 88.2% positive predictive value, 88.9% negative predictive value and 88.5% accuracy. Conclusion: HR CeMRA is an accurate reliable tool in the assessment of arterial complications after renal transplantation. It may replace DSA as a diagnostic modality with reservation of interventional techniques for endovascular treatment of suitable cases.

  16. Role of high resolution contrast-enhanced magnetic resonance angiography (HR CeMRA) in management of arterial complications of the renal transplant

    Energy Technology Data Exchange (ETDEWEB)

    Ismaeel, M. Maged [Suez Canal University (Egypt); Abdel-Hamid, Azza, E-mail: azza4951@hotmail.com [Suez Canal University (Egypt)

    2011-08-15

    Introduction: Transplant renal artery (RA) stenosis (TRAS) is the most frequent posttransplantation vascular complication. Contrast enhanced magnetic resonance (CeMRA) angiography has been established as the preferred imaging technique for the evaluation of TRAS because it does not require the use of iodinated contrast material and does not expose the patient to ionizing radiation. Digital subtraction angiography (DSA) is the gold standard in the evaluation of arterial tree of the renal allograft. Aim of the work: This study was carried out to assess the accuracy of CeMRA in the detection of arterial complications after renal transplantation. Patients and methods: Thirty renal transplant patients with suspected arterial complications in which both CeMRA and DSA were performed were included in the study. The HR CeMRA shows 93.7% sensitivity, 80% specificity, 88.2% positive predictive value, 88.9% negative predictive value and 88.5% accuracy. Conclusion: HR CeMRA is an accurate reliable tool in the assessment of arterial complications after renal transplantation. It may replace DSA as a diagnostic modality with reservation of interventional techniques for endovascular treatment of suitable cases.

  17. Biologically relevant conformational features of linear and cyclic proteolipid protein (PLP) peptide analogues obtained by high-resolution nuclear magnetic resonance and molecular dynamics

    Science.gov (United States)

    Kordopati, Golfo G.; Tzoupis, Haralambos; Troganis, Anastassios N.; Tsivgoulis, Gerasimos M.; Golic Grdadolnik, Simona; Simal, Carmen; Tselios, Theodore V.

    2017-09-01

    Proteolipid protein (PLP) is one of the main proteins of myelin sheath that are destroyed during the progress of multiple sclerosis (MS). The immunodominant PLP139-151 epitope is known to induce experimental autoimmune encephalomyelitis (EAE, animal model of MS), wherein residues 144 and 147 are recognized by T cell receptor (TCR) during the formation of trimolecular complex with peptide-antigen and major histocompability complex. The conformational behavior of linear and cyclic peptide analogues of PLP, namely PLP139-151 and cyclic (139-151) (L144, R147) PLP139-151, have been studied in solution by means of nuclear magnetic resonance (NMR) methods in combination with unrestrained molecular dynamics simulations. The results indicate that the side chains of mutated amino acids in the cyclic analogue have different spatial orientation compared with the corresponding side chains of the linear analogue, which can lead to reduced affinity to TCR. NMR experiments combined with theoretical calculations pave the way for the design and synthesis of potent restricted peptides of immunodominant PLP139-151 epitope as well as non peptide mimetics that rises as an ultimate goal.

  18. Investigations on magnetic field induced optical transparency in magnetic nanofluids

    Science.gov (United States)

    Mohapatra, Dillip Kumar; Philip, John

    2018-02-01

    We study the magnetic field induced optical transparency and its origin in magnetic nanoemulsion of droplets of average size ∼200 nm containing superparamagnetic iron oxide nanoparticles. Beyond a certain volume fraction (Φ > 0.0021) of magnetic nanoemulsion and a critical magnetic field (Hc1), the transmitted light intensity increases drastically and reaches a maximum at another critical magnetic field (Hc2), beyond which the transmitted light intensity decreases and reaches a plateau. Interestingly, the transmitted light intensity at Hc2 is found to increase linearly with Φ and the critical magnetic fields Hc1 and Hc2 follow power law decay with Φ (i.e. Hc ∼ Φ-x), with exponents 0.48 and 0.27, respectively. The light intensity recovers to its initial value when the magnetic field is switched off, indicating the perfect reversibility of the field induced transparency process. The observed straight line scattered patterns above Hc2, on a screen placed perpendicular to the incident beam, confirms the formation of rod like anisotropic nanostructures perpendicular to the direction of light propagation. The magneto-optical measurements in the emulsion confirm that the observed field induced transparency in magnetic emulsions for Φ > 0.0021 is due to the optical birefringence caused by the rod like nanostructures. The reduced birefringence is found to be proportional to the square of the applied magnetic field. This finding offers several possibilities in using magnetic nanofluids in tunable optical devices.

  19. The dynamic behavior of magnetic fluid adsorbed to small permanent magnet in alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Seiichi, E-mail: sudo@akita-pu.ac.j [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Asano, Daisaku [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Takana, Hidemasa; Nishiyama, Hideya [Institute of Fluid Science, Tohoku University, Katahira 2-1-1, Aobaku, Sendai 980-8577 (Japan)

    2011-05-15

    The dynamic behavior of a magnetic fluid adsorbed to a small NdFeB permanent magnet subjected to an alternating magnetic field was studied with a high speed video camera system. The directions of alternating magnetic field are parallel and opposite to that of the permanent magnet. It was found that the surface of magnetic fluid responds to the external alternating magnetic field in elongation and contraction with a lot of spikes. Generation of a capillary magnetic fluid jet was observed in the neighbourhood of a specific frequency of alternating field. The effect of gravitational force on surface phenomena of magnetic fluid adsorbed to the permanent magnet was revealed. - Research Highlights: Magnetic fluid of the system responds to alternating magnetic field with higher frequencies. Large-amplitude surface motions of magnetic fluid occur at the specific frequencies of the external field. Capillary jets of magnetic fluid are generated at the natural frequency of the system.

  20. Dynamic shielding of the magnetic fields

    Directory of Open Access Journals (Sweden)

    RAU, M.

    2010-11-01

    Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.

  1. Tripolar electric field Structure in guide field magnetic reconnection

    OpenAIRE

    S. Fu; S. Huang; M. Zhou; B. Ni; X. Deng

    2018-01-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplit...

  2. Metabolic fingerprinting of joint tissue of collagen-induced arthritis (CIA) rat: In vitro, high resolution NMR (nuclear magnetic resonance) spectroscopy based analysis.

    Science.gov (United States)

    Srivastava, Niraj Kumar; Sharma, Shikha; Sharma, Rajkumar; Sinha, Neeraj; Mandal, Sudhir Kumar; Sharma, Deepak

    2018-01-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease whose major characteristics persistent joint inflammation that results in joint destruction and failure of the function. Collagen-induced arthritis (CIA) rat is an autoimmune disease model and in many ways shares features with RA. The CIA is associated with systemic manifestations, including alterations in the metabolism. Nuclear magnetic resonance (NMR) spectroscopy-based metabolomics has been successfully applied to the perchloric acid extract of the joint tissue of CIA rat and control rat for the analysis of aqueous metabolites. GPC (Glycerophosphocholine), carnitine, acetate, and creatinine were important discriminators of CIA rats as compared to control rats. Level of lactate (significance; p = 0.004), alanine (p = 0.025), BCA (Branched-chain amino acids) (p = 0.006) and creatinine (p = 0.023) was significantly higher in CIA rats as compared to control rats. Choline (p = 0.038) and GPC (p = 0.009) were significantly reduced in CIA rats as compared to control rats. Choline to GPC correlation was good and negative (Pearson correlation = -0.63) for CIA rats as well as for control rats (Pearson correlation = -0.79). All these analyses collectively considered as metabolic fingerprinting of the joint tissue of CIA rat as compared to control rat. The metabolic fingerprinting of joint tissue of CIA rats was different as compared to control rats. The metabolic fingerprinting reflects inflammatory disease activity in CIA rats with synovitis, demonstrating that underlying inflammatory process drives significant changes in metabolism that can be measured in the joint tissue. Therefore, the outcome of this study may be helpful for understanding the mechanism of metabolic processes in RA. This may be also helpful for the development of advanced diagnostic methods and therapy for RA.

  3. Exploring the structure of fucosylated chondroitin sulfate through bottom-up nuclear magnetic resonance and electrospray ionization-high-resolution mass spectrometry approaches.

    Science.gov (United States)

    Santos, Gustavo Rc; Porto, Ana Co; Soares, Paulo Ag; Vilanova, Eduardo; Mourão, Paulo As

    2017-07-01

    Fucosylated chondroitin sulfate (FCS) from sea cucumbers is composed of a chondroitin sulfate (CS) central core and branches of sulfated fucose. The structure of this complex glycosaminoglycan is usually investigated via nuclear magnetic resonance (NMR) analyses of the intact molecule, ergo through a top-down approach, which often yield spectra with intricate sets of signals. Here we employed a bottom-up approach to analyze the FCSs from the sea cucumbers Isostichopus badionotus and Ludwigothurea grisea from their basic constituents, viz. CS cores and sulfated fucose branches, obtained via systematic fragmentation through mild acid hydrolysis. Oligosaccharides derived from the central CS core were analyzed via NMR spectroscopy and the disaccharides produced using chondroitin sulfate lyase via SAX-HPLC. The CS cores from the two species were similar, showing only slight differences in the proportions of 4- or 6-monosulfated and 4,6-disulfated β-d-GalNAc. Sulfated fucose units released from the FCSs were analyzed via NMR and ESI-HRMS spectroscopies. The fucose units from each species presented extensive qualitative differences, but quantitative assessments of these units were hindered, mostly because of their extensive desulfation during the hydrolysis. The bottom-up analysis performed here has proved useful to explore the structure of FCS through a sum-of-the-parts approach in a qualitative manner. We further demonstrate that under specific acidification conditions particular fucose branches can be removed preferentially from FCS. Preparation of derivatives enriched with particular fucose branches could be useful for studies on "structure vs. biological function" of FCS. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  5. Evolution of coronal and interplanetary magnetic fields

    International Nuclear Information System (INIS)

    Levine, R.H.

    1980-01-01

    Numerous studies have provided the detailed information necessary for a substantive synthesis of the empirical relation between the magnetic field of the sun and the structure of the interplanetary field. The author points out the latest techniques and studies of the global solar magnetic field and its relation to the interplanetary field. The potential to overcome most of the limitations of present methods of analysis exists in techniques of modelling the coronal magnetic field using observed solar data. Such empirical models are, in principle, capable of establishing the connection between a given heliospheric point and its magnetically-connected photospheric point, as well as the physical basis for the connection. (Auth.)

  6. Characterization of a 2D array of high-resolution measurement of small fields; Caracterizacion de una matriz 2D de alta resolucion para medida de campos pequenos

    Energy Technology Data Exchange (ETDEWEB)

    Brualla-Gonzalez, L.; Gonzalez-Castano, D.; Vicedo, A.; Pardo-Montero, J.; Trinitat Garcia, M.; Gago-Arias, A.; Granero, D.; Gomez, F.; Rosello, J.

    2011-07-01

    The true measure of small fields requires the use of suitable detectors in terms of spatial resolution and sensitivity. On the other hand, the need to work in real time optimizing the duration of treatment checks complexes with stereotactic radiotherapy small fields, particularly if they employ intensity modulation, leads to the use of software-controlled electronic equipment. Both issues indicate the desirability of developing a two-dimensional matrix appropriate to those requirements.

  7. Cosmic Rays in Intermittent Magnetic Fields

    International Nuclear Information System (INIS)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S.; Snodin, Andrew P.

    2017-01-01

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  8. Cosmic Rays in Intermittent Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S. [School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Snodin, Andrew P., E-mail: a.seta1@ncl.ac.uk, E-mail: amitseta90@gmail.com [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2017-04-10

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  9. Nonlinear physics of twisted magnetic field lines

    International Nuclear Information System (INIS)

    Yoshida, Zensho

    1998-01-01

    Twisted magnetic field lines appear commonly in many different plasma systems, such as magnetic ropes created through interactions between the magnetosphere and the solar wind, magnetic clouds in the solar wind, solar corona, galactic jets, accretion discs, as well as fusion plasma devices. In this paper, we study the topological characterization of twisted magnetic fields, nonlinear effect induced by the Lorentz back reaction, length-scale bounds, and statistical distributions. (author)

  10. Dilute Potts chain in a magnetic field

    International Nuclear Information System (INIS)

    Chaves, C.M.; Riera, R.

    1983-03-01

    The Potts lattice gas in presence of a uniform magnetic field is solved exactly in one dimension. For negative values of the exchange parameter, the magnetization curve exhibits two or three steps, depending on the concentration of vacancies. These steps arise as a result of the competition between the exchange interaction and the magnetic field, being associated to different structural distribution of vacancies and to the magnetic ordering of one or both sublattices. (Author) [pt

  11. High-resolution structural studies of ultra-thin magnetic, transition metal overlayers and two-dimensional transition metal oxides using synchrotron radiation

    International Nuclear Information System (INIS)

    Kellar, S.A.; Lawrence Berkeley National Lab., CA

    1997-05-01

    This thesis report the surface-structure determination of three, ultra-thin magnetic transition-metal films, Fe/Au(100), Mn/Ni(100), and Mn/Cu(100) using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and photoelectron holography. These structural studies are the first to use non-s initial states in the ARPEFS procedure. This thesis also reports an ARPEFS surface-structure determination of a two-dimensional transition-metal oxide, [(1 x 1)O/W(110)] x 12. The authors have analyzed the ARPFES signal from the Au 4f 7/5 core level of the Au(1 ML)/Fe(15 ML)/Au(100) system. The analysis shows that the Fe grows layer by layer with one monolayer of gold, acting as a surfactant, remaining on top of the growing Fe layers. These surface gold atoms sit in the four-fold hollow site, 1.67 ± 0.02 A above the iron surface. The grown Fe layer is very much like the bulk, bcc iron, with an interlayer spacing of 1.43 ± 0.03 A. Analysis of the Mn 3p ARPEFS signals from c(2 x 2)Mn/Ni(100) and c(2 x 2)Mn/Cu(100) shows that the Mn forms highly corrugated surface alloys. The corrugation of the Mn/Ni(100) and Mn/Cu(100) systems are 0.24 ± 0.02 A and 0.30 ± 0.04 A respectively. In both cases the Mn is sticking above the plane of the surface substrate atoms. For the Mn/Ni(100) system the first layer Ni is contracted 4% from the bulk value. The Mn/Cu(100) system shows bulk spacing for the substrate Cu. Photoelectron holography shows that the Mn/Ni interface is very abrupt with very little Mn leaking into the second layer, while the Mn/Cu(100) case has a significant amount of Mn leaking into the second layer. A new, five-element electrostatic electron lens was developed for hemispherical electron-energy analyzers. This lens system can be operated at constant transverse or constants angular magnification, and has been optimized for use with the very small photon-spot sizes. Improvements to the hemispherical electron-energy analyzer are also discussed

  12. High-resolution structural studies of ultra-thin magnetic, transition metal overlayers and two-dimensional transition metal oxides using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kellar, S.A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Advanced Light Source Div.

    1997-05-01

    This thesis report the surface-structure determination of three, ultra-thin magnetic transition-metal films, Fe/Au(100), Mn/Ni(100), and Mn/Cu(100) using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and photoelectron holography. These structural studies are the first to use non-s initial states in the ARPEFS procedure. This thesis also reports an ARPEFS surface-structure determination of a two-dimensional transition-metal oxide, [(1 x 1)O/W(110)] x 12. The authors have analyzed the ARPFES signal from the Au 4f{sub 7/5} core level of the Au(1 ML)/Fe(15 ML)/Au(100) system. The analysis shows that the Fe grows layer by layer with one monolayer of gold, acting as a surfactant, remaining on top of the growing Fe layers. These surface gold atoms sit in the four-fold hollow site, 1.67 {+-} 0.02 A above the iron surface. The grown Fe layer is very much like the bulk, bcc iron, with an interlayer spacing of 1.43 {+-} 0.03 A. Analysis of the Mn 3p ARPEFS signals from c(2 x 2)Mn/Ni(100) and c(2 x 2)Mn/Cu(100) shows that the Mn forms highly corrugated surface alloys. The corrugation of the Mn/Ni(100) and Mn/Cu(100) systems are 0.24 {+-} 0.02 A and 0.30 {+-} 0.04 A respectively. In both cases the Mn is sticking above the plane of the surface substrate atoms. For the Mn/Ni(100) system the first layer Ni is contracted 4% from the bulk value. The Mn/Cu(100) system shows bulk spacing for the substrate Cu. Photoelectron holography shows that the Mn/Ni interface is very abrupt with very little Mn leaking into the second layer, while the Mn/Cu(100) case has a significant amount of Mn leaking into the second layer. A new, five-element electrostatic electron lens was developed for hemispherical electron-energy analyzers. This lens system can be operated at constant transverse or constants angular magnification, and has been optimized for use with the very small photon-spot sizes. Improvements to the hemispherical electron-energy analyzer are also discussed.

  13. Magnetic field dependent atomic tunneling in non-magnetic glasses

    International Nuclear Information System (INIS)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-01-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field

  14. Magnetic field dependent atomic tunneling in non-magnetic glasses

    Science.gov (United States)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-05-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field.

  15. Strongly interacting matter in magnetic fields

    CERN Document Server

    Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung

    2013-01-01

    The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...

  16. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  17. Structure and magnetic field of periodic permanent magnetic focusing system with open magnetic rings

    International Nuclear Information System (INIS)

    Peng Long; Li Lezhong; Yang Dingyu; Zhu Xinghua; Li Yuanxun

    2011-01-01

    The magnetic field along the central axis for an axially magnetized permanent magnetic ring was investigated by analytical and finite element methods. For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. A new structure of periodic permanent magnet focusing system with open magnetic rings is proposed. The structure provides a satisfactory magnetic field with a stable peak value of 120 mT for a traveling wave tube system. - Research highlights: → For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. → A new structure of periodic permanent magnet (PPM) focusing system with open magnetic rings is proposed. → The new PPM focusing system with open magnetic rings meets the requirements for TWT system.

  18. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  19. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is also...... temperature dependent. We propose a relatively straightforward method to correct sufficiently for the demagnetizing field in AMR models. We discuss how the demagnetizing field behaves in regenerators made of packed spheres under realistic operation conditions....

  20. Interstellar Matters: Neutral Hydrogen and the Galactic Magnetic Field

    Science.gov (United States)

    Verschuur, Gerrit; Schmelz, Joan T.; Asgari-Targhi asgari-Targhi, M.

    2018-01-01

    The physics of the interstellar medium was revolutionized by the observations of the Galactic Arecibo L-Band Feed Array (GALFA) HI survey done at the Arecibo Observatory. The high-resolution, high-sensitivity, high-dynamic- range images show complex, tangled, extended filaments, and reveal that the fabric of the neutral interstellar medium is deeply tied to the structure of the ambient magnetic field. This discovery prompts an obvious question – how exactly is the interstellar {\\it neutral} hydrogen being affected by the galactic magnetic field? We look into this question by examining a set of GALFA-HI data in great detail. We have chosen a long, straight filament in the southern galactic sky. This structure is both close by and isolated in velocity space. Gaussian analysis of profiles both along and across the filament reveal internal structure – braided strands that can be traced through the simplest part, but become tangled in more complex segments. These braids do not resemble in any way the old spherical HI clouds and rudimentary pressure balance models that were used to explain the pre-GALFA- HI interstellar medium. It is clear that these structures are created, constrained, and dominated by magnetic fields. Like many subfields of astronomy before it, e.g., physics of the solar coronal, extragalactic radio jets, and pulsar environment, scientists are confronted with observations that simply cannot be explained by simple hydrodynamics and are forced to consider magneto-hydrodynamics.

  1. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-01-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  2. Effect of magnetic field on food freezing

    OpenAIRE

    村田, 圭治; 奥村, 太一; 荒賀, 浩一; 小堀, 康功

    2010-01-01

    [Abstract] This paper presents an experimental investigation on effects of magnetic field on food freezing process. Although purpose of food freezing is to suppress the deterioration of food, freezing breaks food tissue down, and some nutrient and delicious element flow out after thawing. Recently, a few of refrigeration equipments with electric and magnetic fields have attracted attention from food production companies and mass media. Water and tuna were freezed in magnetic field (100kH, 1.3...

  3. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  4. Novel Electrochemical Phenomena in Magnetic Fields(Research in High Magnetic Fields)

    OpenAIRE

    Mogi, Iwao; Kamiko, Masao

    1996-01-01

    Recent two topics are given of electrochemical studies in steady magnetic fields at the High Field Laboratory of Tohoku University. One is the magnetic-field-induced diffusion-limited-aggregation in the pattern formation of silver electrodeposits . The other is the magnetic field effect on the learning effect in a dopant-exchange process of an organic conducting polymer polypyrrole.

  5. Magnetic field measurements and mapping techniques

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.

  6. Minimizing magnetic fields for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S., E-mail: stefan.stuiber@ph.tum.de; Sturm, M.; Taggart Singh, J.; Taubenheim, B. [Physikdepartment, Technische Universität München, D-85748 Garching (Germany); Rohrer, H. K. [Rohrer GmbH, D-80667 München (Germany); Schläpfer, U. [IMEDCO AG, CH-4614 Hägendorf (Switzerland)

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  7. Minimizing magnetic fields for precision experiments

    International Nuclear Information System (INIS)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-01-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application

  8. Magnetic field and magnetic isotope effects on photochemical reactions

    International Nuclear Information System (INIS)

    Wakasa, Masanobu

    1999-01-01

    By at present exact experiments and the theoretical analysis, it was clear that the magnetic field less than 2 T affected a radical pair reaction and biradical reaction. The radical pair life and the dissipative radical yield showed the magnetic field effects on chemical reactions. The radical pair mechanism and the triplet mechanism were known as the mechanism of magnetic field effects. The radical pair mechanism consists of four mechanisms such as the homogeneous hyperfine interaction (HFC), the delta-g mechanism, the relaxation mechanism and the level cross mechanism. In order to observe the magnetic effects of the radical pair mechanism, two conditions need, namely, the recombination rate of singlet radical pair > the dissipation rate and the spin exchange rate > the dissipation rate. A nanosecond laser photo-decomposition equipment can observe the magnetic field effects. The inversion phenomena of magnetic field effect, isolation of the relaxation mechanism and the delta-g mechanism, the magnetic field effect of heavy metal radical reaction, the magnetic field effect in homogeneous solvent, saturation of delta-g mechanism are explained. The succeeded examples of isotope concentration by the magnetic isotope effect are 17 O, 19 Si, 33 S, 73 Ge and 235 U. (S.Y.)

  9. Magnetic vector field tag and seal

    Science.gov (United States)

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  10. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-01-01

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  11. Five years of magnetic field management

    International Nuclear Information System (INIS)

    Durkin, C.J.; Fogarty, R.P.; Halleran, T.M.; Mark, Dr. D.A.; Mukhopadhyay, A.

    1995-01-01

    The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors' experiences and shows the results of the specific projects completed in recent years

  12. Numerical analysis of magnetic field in superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Amemiya, Y.

    1991-01-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method

  13. The strongest magnetic fields in the universe

    CERN Document Server

    Balogh, A; Falanga, M; Lyutikov, M; Mereghetti, S; Piran, T; Treumann, RA

    2016-01-01

    This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.

  14. High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength.

    Science.gov (United States)

    Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W

    2017-11-10

    Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Resonance double magnetic bremsstrahlung in a strong magnetic field

    International Nuclear Information System (INIS)

    Fomin, P.I.; Kholodov, R.I.

    2003-01-01

    The possibility of resonance double magnetic bremsstrahlung in the approximation of weakly excited electron states in a strong external magnetic field is analyzed. The differential probability of this process in the Breit-Wigner form is obtained. The probability of double magnetic bremsstrahlung (second-order process of perturbation theory) is compared with the probability of magnetic bremsstrahlung (first-order process of perturbation theory)

  16. Reducing Field Distortion in Magnetic Resonance Imaging

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  17. NMR magnetic field controller for pulsed nuclear magnetic resonance experiments

    International Nuclear Information System (INIS)

    Scheler, G.; Anacker, M.

    1975-01-01

    A nuclear magnetic resonance controller for magnetic fields, which can also be used for pulsed NMR investigations, is described. A longtime stability of 10 -7 is achieved. The control signal is generated by a modified time sharing circuit with resonance at the first side band of the 2 H signal. An exact calibration of the magnetic field is achieved by the variation of the H 1 - or of the time-sharing frequency. (author)

  18. High-field superferric MR magnet

    International Nuclear Information System (INIS)

    Huson, F.R.; Carcagno, R.; Colvin, J.

    1987-01-01

    Current large-bore (>20 cm), high-field (2-T) MR magnets have major implementation disadvantages, mostly related to the extensive stray field of traditional air-core superconducting magnets. To circumvent this problem, the authors designed, constructed, and tested a 30-cm prototype superconducting, self-shielded, high field magnet. This unshimmed superferric magnet can operate between 0.5 and 4 T with a field quality of about one part per million over one quarter of its aperture. The magnet can be ramped from one field strength to another in approximately 10 minutes. The 5-Gauss line extends less than 1 meter outside the magnet structure. Further details, including MR measurements and images, are demonstrated, as well as 1-meter bore scale-up projections

  19. Principles of power frequency magnetic field management

    International Nuclear Information System (INIS)

    Fugate, D.; Feero, W.

    1995-01-01

    At the most general level, magnetic field management is the creation, elimination, or modification of sources in order to alter the spatial distribution of magnetic fields over some region of space. The two main options for magnetic field management are source modification (elimination or modification of original sources) and cancellation (creation of new sources). Source modification includes any changes in the layout or location of field sources, elimination of ground paths, or any options that increase the distance between sources and regions of interest. Cancellation involves the creation of new magnetic field sources, passive and/or active that produce magnetic fields that are opposite to the original fields in the region of interest. Shielding using materials of high conductivity and/or high permeability falls under the cancellation option. Strategies for magnetic field management, whether they are source modification or cancellation, typically vary on a case to case basis depending on the regions of interest, the types of sources and resulting complexity of the field structure, the field levels, and the attenuation requirements. This paper gives an overview of magnetic field management based on fundamental concepts. Low field design principles are described, followed by a structured discussion of cancellation and shielding. The two basic material shielding mechanisms, induced current shielding, and flux-shunting are discussed

  20. Impact of high resolution land surface initialization in Indian summer ...

    Indian Academy of Sciences (India)

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years ... surface initialization using a regional climate model. ...... ization of the snow field in a cloud model; J. Clim. Appl.

  1. Structure of magnetic field in Tokamaks

    International Nuclear Information System (INIS)

    Heller, M.V.A.P.; Caldas, I.L.

    1990-01-01

    Magnetic surfaces, necessary to plasma confinement, can be extinguished by resonant helical perturbations with small intensities due to plasma oscillations or external helical currents. The mapping of magnetic field is obtained intergrating numerically the differential equation of its lines. Criteria which evaluate the chaotic distribution of lines between resonant magnetic islands are presented. (M.C.K.) [pt

  2. High-resolution 1H magnetic resonance spectroscopy imaging at 1.5 and 3 Tesla of the human brain: development of techniques and applications for patients with primary brain tumors and multiple sclerosis

    International Nuclear Information System (INIS)

    Stadlbauer, A.

    2004-05-01

    The aim of this work was to develop several strategies and software-packages for the evaluation of in-vivo-data of the human brain, which were acquired with high-resolution 1H-MRSI at 1.5 and 3 T. Several studies involving phantoms, volunteers and patients were performed. Quality assurance studies were conducted in order to evaluate the reproducibility of the applied MR-techniques at both field strengths. A qualitative comparison-study between MRSI-data from a 1.5 T clinical MR-scanner and a 3 T research MR-scanner showed the advantages of the more advanced MRSI sequences and higher field strength (3 T). A study involving patients with primary brain tumours (gliomas) was performed in cooperation with the Department of Neurosurgery (University of Erlangen-Nuremberg). The methods developed in the course of this study, such as the integration of MRS-data into a stereotactic-system, the segmentation of metabolic maps and the correlation with histopathological findings represent a package of vital information for diagnostics and therapy of primary brain tumors, neurodegenerative disorders or epilepsy. In the course of two pilot-studies in cooperation with the MR-Centre of Excellence (Medical University of Vienna) the advantages of high-resolution 3D in-vivo-1H-MRSI at 3T were qualitatively evaluated via measurements on patients with brain tumors and multiple sclerosis (MS). It was demonstrated that 1H-MRSI may be valuable for the diagnosis, follow-up and prediction of 'seizures' with MS-patients. In conclusion, this work contains an overview of potential and advantages of in-vivo-1H-MRS-methods at 1.5 and 3 T for the clinical diagnosis and treatment of patients with gliomas and MS. (author)

  3. Dirac equation in magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Dept. Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M.; Smirnov, A.A. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2004-07-01

    We consider the Dirac equation in the magnetic-solenoid field (the field of a solenoid and a collinear uniform magnetic field). For the case of Aharonov-Bohm solenoid, we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We find self-adjoint extensions of the Dirac Hamiltonian and boundary conditions at the AB solenoid. Besides, for the first time, solutions of the Dirac equation in the magnetic-solenoid field with a finite radius solenoid were found. We study the structure of these solutions and their dependence on the behavior of the magnetic field inside the solenoid. Then we exploit the latter solutions to specify boundary conditions for the magnetic-solenoid field with Aharonov-Bohm solenoid. (orig.)

  4. Magnetic field decay in model SSC dipoles

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs

  5. Biogeochemical and isotopic gradients in a BTEX/PAH contaminant plume: Model-based interpretation of a high-resolution field data set

    DEFF Research Database (Denmark)

    Prommer, H.; Anneser, B.; Rolle, Massimo

    2009-01-01

    of toluene, which is the most rapidly degrading compound and the most important reductant at the site. The resulting depth profiles at the observation well show distinct differences between the small isotopic enrichment in the contaminant plume core and the much stronger enrichment of up to 3.3 parts per......A high spatial resolution data set documenting carbon and sulfur isotope fractionation at a tar oil-contaminated, sulfate-reducing field site was analyzed with a reactive transport model. Within a comprehensive numerical model, the study links the distinctive observed isotope depth profiles...... with the degradation of various monoaromatic and polycyclic aromatic hydrocarbon compounds (BTEX/PAHs) under sulfate-reducing conditions. In the numerical model, microbial dynamics were simulated explicitly and isotope fractionation was directly linked to the differential microbial uptake of lighter and heavier carbon...

  6. The Evolution of the Earth's Magnetic Field.

    Science.gov (United States)

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  7. High-Resolution Source Parameter and Site Characteristics Using Near-Field Recordings - Decoding the Trade-off Problems Between Site and Source

    Science.gov (United States)

    Chen, X.; Abercrombie, R. E.; Pennington, C.

    2017-12-01

    Recorded seismic waveforms include contributions from earthquake source properties and propagation effects, leading to long-standing trade-off problems between site/path effects and source effects. With near-field recordings, the path effect is relatively small, so the trade-off problem can be simplified to between source and site effects (commonly referred as "kappa value"). This problem is especially significant for small earthquakes where the corner frequencies are within similar ranges of kappa values, so direct spectrum fitting often leads to systematic biases due to corner frequency and magnitude. In response to the significantly increased seismicity rate in Oklahoma, several local networks have been deployed following major earthquakes: the Prague, Pawnee and Fairview earthquakes. Each network provides dense observations within 20 km surrounding the fault zone, recording tens of thousands of aftershocks between M1 to M3. Using near-field recordings in the Prague area, we apply a stacking approach to separate path/site and source effects. The resulting source parameters are consistent with parameters derived from ground motion and spectral ratio methods from other studies; they exhibit spatial coherence within the fault zone for different fault patches. We apply these source parameter constraints in an analysis of kappa values for stations within 20 km of the fault zone. The resulting kappa values show significantly reduced variability compared to those from direct spectral fitting without constraints on the source spectrum; they are not biased by earthquake magnitudes. With these improvements, we plan to apply the stacking analysis to other local arrays to analyze source properties and site characteristics. For selected individual earthquakes, we will also use individual-pair empirical Green's function (EGF) analysis to validate the source parameter estimations.

  8. Deriving temperature, mass, and age of evolved stars from high-resolution spectra. Application to field stars and the open cluster IC 4651

    Science.gov (United States)

    Biazzo, K.; Pasquini, L.; Girardi, L.; Frasca, A.; da Silva, L.; Setiawan, J.; Marilli, E.; Hatzes, A. P.; Catalano, S.

    2007-12-01

    Aims:We test our capability of deriving stellar physical parameters of giant stars by analysing a sample of field stars and the well studied open cluster IC 4651 with different spectroscopic methods. Methods: The use of a technique based on line-depth ratios (LDRs) allows us to determine with high precision the effective temperature of the stars and to compare the results with those obtained with a classical LTE abundance analysis. Results: (i) For the field stars we find that the temperatures derived by means of the LDR method are in excellent agreement with those found by the spectral synthesis. This result is extremely encouraging because it shows that spectra can be used to firmly derive population characteristics (e.g., mass and age) of the observed stars. (ii) For the IC 4651 stars we use the determined effective temperature to derive the following results. a) The reddening E(B-V) of the cluster is 0.12±0.02, largely independent of the color-temperature calibration used. b) The age of the cluster is 1.2±0.2 Gyr. c) The typical mass of the analysed giant stars is 2.0±0.2~M⊙. Moreover, we find a systematic difference of about 0.2 dex in log g between spectroscopic and evolutionary values. Conclusions: We conclude that, in spite of known limitations, a classical spectroscopic analysis of giant stars may indeed result in very reliable stellar parameters. We caution that the quality of the agreement, on the other hand, depends on the details of the adopted spectroscopic analysis. Based on observations collected at the ESO telescopes at the Paranal and La Silla Observatories, Chile.

  9. Tripolar electric field Structure in guide field magnetic reconnection

    Science.gov (United States)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  10. Tripolar electric field Structure in guide field magnetic reconnection

    Directory of Open Access Journals (Sweden)

    S. Fu

    2018-03-01

    Full Text Available It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection. In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg. Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  11. High-resolution 3-T MR neurography of peroneal neuropathy

    International Nuclear Information System (INIS)

    Chhabra, Avneesh; Faridian-Aragh, Neda; Chalian, Majid; Soldatos, Theodoros; Thawait, Shrey K.; Williams, Eric H.; Andreisek, Gustav

    2012-01-01

    The common peroneal nerve (CPN), a major terminal branch of the sciatic nerve, can be subject to a variety of pathologies, which may affect the nerve at any level from the lumbar plexus to its distal branches. Although the diagnosis of peripheral neuropathy is traditionally based on a patient's clinical findings and electrodiagnostic tests, magnetic resonance neurography (MRN) is gaining an increasing role in the definition of the type, site, and extent of peripheral nerve disorders. Current high-field MR scanners enable high-resolution and excellent soft-tissue contrast imaging of peripheral nerves. In the lower extremities, MR neurography has been employed in the demonstration of the anatomy and pathology of the CPN, as well as in the detection of associated secondary muscle denervation changes. This article reviews the normal appearance of the CPN as well as typical pathologies and abnormal findings at 3.0-T MR neurography of the lower extremity. (orig.)

  12. High-resolution 3-T MR neurography of peroneal neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Avneesh; Faridian-Aragh, Neda; Chalian, Majid; Soldatos, Theodoros; Thawait, Shrey K. [Johns Hopkins Hospital, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Williams, Eric H. [Johns Hopkins Hospital, Department of Plastic Surgery, Baltimore, MD (United States); Dellon Institute for Peripheral Nerve Surgery, Baltimore, MD (United States); Andreisek, Gustav [University Hospital Zurich, Institute for Diagnostic Radiology, Department of Medical Radiology, Zurich (Switzerland)

    2012-03-15

    The common peroneal nerve (CPN), a major terminal branch of the sciatic nerve, can be subject to a variety of pathologies, which may affect the nerve at any level from the lumbar plexus to its distal branches. Although the diagnosis of peripheral neuropathy is traditionally based on a patient's clinical findings and electrodiagnostic tests, magnetic resonance neurography (MRN) is gaining an increasing role in the definition of the type, site, and extent of peripheral nerve disorders. Current high-field MR scanners enable high-resolution and excellent soft-tissue contrast imaging of peripheral nerves. In the lower extremities, MR neurography has been employed in the demonstration of the anatomy and pathology of the CPN, as well as in the detection of associated secondary muscle denervation changes. This article reviews the normal appearance of the CPN as well as typical pathologies and abnormal findings at 3.0-T MR neurography of the lower extremity. (orig.)

  13. High-resolution imaging of solar system objects

    International Nuclear Information System (INIS)

    Goldberg, B.A.

    1988-01-01

    The strategy of this investigation has been to develop new high-resolution imaging capabilities and to apply them to extended observing programs. These programs have included Io's neutral sodium cloud and comets. The Io observing program was carried out at Table Mountain Observatory (1976 to 1981), providing a framework interpreting Voyager measurements of the Io torus, and serving as an important reference for studying asymmetries and time variabilities in the Jovian magnetosphere. Comet observations made with the 3.6 m Canada-France-Hawaii Telescope and 1.6 m AMOS telescope (1984 to 1987) provide basis for studying early coma development in Halley, the kinematics of its nucleus, and the internal and external structure of the nucleus. Images of GZ from the ICE encounter period form the basis for unique comparisons with in situ magnetic field and dust impact measurements to determine the ion tail and dust coma structure, respectively

  14. Observing Interstellar and Intergalactic Magnetic Fields

    Science.gov (United States)

    Han, J. L.

    2017-08-01

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  15. High-resolution computer-aided moire

    Science.gov (United States)

    Sciammarella, Cesar A.; Bhat, Gopalakrishna K.

    1991-12-01

    This paper presents a high resolution computer assisted moire technique for the measurement of displacements and strains at the microscopic level. The detection of micro-displacements using a moire grid and the problem associated with the recovery of displacement field from the sampled values of the grid intensity are discussed. A two dimensional Fourier transform method for the extraction of displacements from the image of the moire grid is outlined. An example of application of the technique to the measurement of strains and stresses in the vicinity of the crack tip in a compact tension specimen is given.

  16. Coulomb blockade induced by magnetic field

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-01-01

    In this paper, the authors found that a Coulomb blockade can be induced by magnetic field. The authors illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field

  17. Magnetic field errors tolerances of Nuclotron booster

    Science.gov (United States)

    Butenko, Andrey; Kazinova, Olha; Kostromin, Sergey; Mikhaylov, Vladimir; Tuzikov, Alexey; Khodzhibagiyan, Hamlet

    2018-04-01

    Generation of magnetic field in units of booster synchrotron for the NICA project is one of the most important conditions for getting the required parameters and qualitative accelerator operation. Research of linear and nonlinear dynamics of ion beam 197Au31+ in the booster have carried out with MADX program. Analytical estimation of magnetic field errors tolerance and numerical computation of dynamic aperture of booster DFO-magnetic lattice are presented. Closed orbit distortion with random errors of magnetic fields and errors in layout of booster units was evaluated.

  18. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high