WorldWideScience

Sample records for high-resolution electronic spectroscopy

  1. Modelling high-resolution electron microscopy based on core-loss spectroscopy

    International Nuclear Information System (INIS)

    Allen, L.J.; Findlay, S.D.; Oxley, M.P.; Witte, C.; Zaluzec, N.J.

    2006-01-01

    There are a number of factors affecting the formation of images based on core-loss spectroscopy in high-resolution electron microscopy. We demonstrate unambiguously the need to use a full nonlocal description of the effective core-loss interaction for experimental results obtained from high angular resolution electron channelling electron spectroscopy. The implications of this model are investigated for atomic resolution scanning transmission electron microscopy. Simulations are used to demonstrate that core-loss spectroscopy images formed using fine probes proposed for future microscopes can result in images that do not correspond visually with the structure that has led to their formation. In this context, we also examine the effect of varying detector geometries. The importance of the contribution to core-loss spectroscopy images by dechannelled or diffusely scattered electrons is reiterated here

  2. Secondary electron spectroscopy and Auger microscopy at high spatial resolution. Application to scanning electron microscopy

    International Nuclear Information System (INIS)

    Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene

    1979-01-01

    Secondary electron spectroscopy (SES), Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS) are combined with ultra high vacuum scanning microscopy (SEM) for surface analysis at high spatial resolution. Reliability tests for the optical column for the vacuum and for the spectrometer are discussed. Furthermore the sensitivity threshold in AES which is compatible with a non destructive surface analysis at high spatial resolution is evaluated. This combination of all spectroscopies is used in the study of the beam damage correlated with the well known secondary electron image (SEI) darkening still observed in ultra high vacuum. The darkening is explained as a bulk decontamination of the sample rather than as a surface contamination from the residual vacuum gas [fr

  3. A high resolution portable spectroscopy system

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.; Bhatnagar, P.V.; Pande, S.S.; Padmini, S.

    2003-01-01

    Full text: This paper describes the system details of a High Resolution Portable Spectroscopy System (HRPSS) developed at Electronics Division, BARC. The system can be used for laboratory class, high-resolution nuclear spectroscopy applications. The HRPSS consists of a specially designed compact NIM bin, with built-in power supplies, accommodating a low power, high resolution MCA, and on-board embedded computer for spectrum building and communication. A NIM based spectroscopy amplifier and a HV module for detector bias are integrated (plug-in) in the bin. The system communicates with a host PC via a serial link. Along-with a laptop PC, and a portable HP-Ge detector, the HRPSS offers a laboratory class performance for portable applications

  4. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    Science.gov (United States)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.

    2015-10-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  5. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    International Nuclear Information System (INIS)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.

    2015-01-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range

  6. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira da Silva, F.; Lange, E. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Århus C (Denmark); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Institut de Chimie-Bât. B6C, Université de Liège, B-4000 Liège 1 (Belgium); Brunger, M. J., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); and others

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  7. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.

    Science.gov (United States)

    Alexander, Jessica A; Scheltens, Frank J; Drummy, Lawrence F; Durstock, Michael F; Hage, Fredrik S; Ramasse, Quentin M; McComb, David W

    2017-09-01

    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C 61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C 60 ). Data was collected on two different monochromated instruments - a Nion UltraSTEM 100 MC 'HERMES' and a FEI Titan 3 60-300 Image-Corrected S/TEM - using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35meV and 175meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers-Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  9. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    Energy Technology Data Exchange (ETDEWEB)

    Lestinsky, M.

    2007-04-18

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc{sup 18+} yield a high-precision measurement of the 2s-2p{sub 3/2} transition energy in this system. Operation of the two-electron-beam setup at high collision energy ({approx}1000 eV) is established using resonances of hydrogenlike Mg{sup 11+}, while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F{sup 6+}. (orig.)

  10. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    International Nuclear Information System (INIS)

    Lestinsky, M.

    2007-01-01

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc 18+ yield a high-precision measurement of the 2s-2p 3/2 transition energy in this system. Operation of the two-electron-beam setup at high collision energy (∼1000 eV) is established using resonances of hydrogenlike Mg 11+ , while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F 6+ . (orig.)

  11. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    Science.gov (United States)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  12. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    Science.gov (United States)

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  13. Free radicals. High-resolution spectroscopy and molecular structure

    International Nuclear Information System (INIS)

    Hirota, E.

    1983-01-01

    High-resolution, high-sensitivity spectroscopy using CW laser and microwave sources has been applied to free radicals and transient molecules to establish their existence and to explore their properties in detail. The radicals studied were mainly generated by discharge-induced reactions. A few molecules are used as typical examples to illustrate the results so far obtained. The molecular and electronic structures of free radicals, intramolecular motions of large amplitudes in some labile molecules, and metastable electronic states of carbenes are given special emphasis. The significance of the present spectroscopic results in other related fields such as astronomy and atmospheric chemistry is stressed. 4 figures, 3 tables

  14. High-resolution EELS investigation of the electronic structure of ilmenites

    NARCIS (Netherlands)

    Radtke, G.; Lazar, S.; Botton, G.A.

    2006-01-01

    The electronic structure of a series of compounds belonging to the ilmenite family is investigated using high resolution electron energy loss spectroscopy (EELS). The energy loss near edge structure (ELNES) of the O-K, Ti-L23 and transition metal L23 edges have been recorded in MnTiO3, FeTiO3,

  15. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  16. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  17. Optimization of Monochromated TEM for Ultimate Resolution Imaging and Ultrahigh Resolution Electron Energy Loss Spectroscopy

    KAUST Repository

    Lopatin, Sergei; Cheng, Bin; Liu, Wei-Ting; Tsai, Meng-Lin; He, Jr-Hau; Chuvilin, Andrey

    2017-01-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction).

  18. Optimization of Monochromated TEM for Ultimate Resolution Imaging and Ultrahigh Resolution Electron Energy Loss Spectroscopy

    KAUST Repository

    Lopatin, Sergei

    2017-09-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction).

  19. A high dutycycle low cost multichannel analyser for electron spectroscopy

    International Nuclear Information System (INIS)

    Norell, K.E.; Baltzer, P.

    1983-03-01

    A high dutycycle multichannel analyzer has been designed and used in time-of-flight electron spectroscopy. The memory capacity is 64k counts. The number of channels is 8192 with a time resolution of 100 ns. An oscilloscope is used to display the spectra synchronous with the counting. The unit has been built with standard electronic components. (author)

  20. High-resolution coherent three-dimensional spectroscopy of Br2.

    Science.gov (United States)

    Chen, Peter C; Wells, Thresa A; Strangfeld, Benjamin R

    2013-07-25

    In the past, high-resolution spectroscopy has been limited to small, simple molecules that yield relatively uncongested spectra. Larger and more complex molecules have a higher density of peaks and are susceptible to complications (e.g., effects from conical intersections) that can obscure the patterns needed to resolve and assign peaks. Recently, high-resolution coherent two-dimensional (2D) spectroscopy has been used to resolve and sort peaks into easily identifiable patterns for molecules where pattern-recognition has been difficult. For very highly congested spectra, however, the ability to resolve peaks using coherent 2D spectroscopy is limited by the bandwidth of instrumentation. In this article, we introduce and investigate high-resolution coherent three-dimensional spectroscopy (HRC3D) as a method for dealing with heavily congested systems. The resulting patterns are unlike those in high-resolution coherent 2D spectra. Analysis of HRC3D spectra could provide a means for exploring the spectroscopy of large and complex molecules that have previously been considered too difficult to study.

  1. Phonon spectrum of single-crystalline FeSe probed by high-resolution electron energy-loss spectroscopy

    Science.gov (United States)

    Zakeri, Khalil; Engelhardt, Tobias; Le Tacon, Matthieu; Wolf, Thomas

    2018-06-01

    Utilizing high-resolution electron energy-loss spectroscopy (HREELS) we measure the phonon frequencies of β-FeSe(001), cleaved under ultra-high vacuum conditions. At the zone center (Γ bar-point) three prominent loss features are observed at loss energies of about ≃ 20.5 and 25.6 and 40 meV. Based on the scattering selection rules we assign the observed loss features to the A1g, B1g, and A2u phonon modes of β-FeSe(001). The experimentally measured phonon frequencies do not agree with the results of density functional based calculations in which a nonmagnetic, a checkerboard or a strip antiferromagnetic order is assumed for β-FeSe(001). Our measurements suggest that, similar to the other Fe-based materials, magnetism has a profound impact on the lattice dynamics of β-FeSe(001).

  2. High resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arko, A.J.

    1988-01-01

    Photoelectron Spectroscopy (PES) covers a very broad range of measurements, disciplines, and interests. As the next generation light source, the FEL will result in improvements over the undulator that are larger than the undulater improvements over bending magnets. The combination of high flux and high inherent resolution will result in several orders of magnitude gain in signal to noise over measurements using synchrotron-based undulators. The latter still require monochromators. Their resolution is invariably strongly energy-dependent so that in the regions of interest for many experiments (h upsilon > 100 eV) they will not have a resolving power much over 1000. In order to study some of the interesting phenomena in actinides (heavy fermions e.g.) one would need resolving powers of 10 4 to 10 5 . These values are only reachable with the FEL

  3. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  4. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy.

    Science.gov (United States)

    Souma, S; Sato, T; Takahashi, T; Baltzer, P

    2007-12-01

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He Ialpha line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  5. High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins

    Directory of Open Access Journals (Sweden)

    M. Salewski

    2017-08-01

    Full Text Available Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using microwaves and radio waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses still remains a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra, which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated steplike Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground-state doublet which can be retrieved only optically because of selective excitation of the same subensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon-echo measurements in an n-type CdTe/(Cd,MgTe quantum-well structure detected by a heterodyne technique. The difference in the sub-μeV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by 2 orders of magnitude.

  6. Optimization of the detector and associated electronics used for high-resolution liquid-scintillation alpha spectroscopy

    International Nuclear Information System (INIS)

    Thorngate, J.H.; Christian, D.J.

    1977-01-01

    The performance of various reflector geometries, light coupling liquids, photomultiplier tubes, preamplifiers and linear amplifiers were compared and the configuration found that optimized the combination of pulse-height resolution and pulse-shape discrimination. The best combination used a hemispherical reflector, filled with distilled water, coupled to an 8575 photomultiplier tube, the output of which was conditioned by a special integrating preamplifier and a double-delay-line linear amplifier. Careful choice of the scintillator, sample preparation procedures, and electronic apparatus can produce liquid-scintillation alpha spectroscopy with a pulse-height resolution of 300 keV, or less, and, by using pulse-shape discrimination, background levels as low as 0.01 counts/min. (author)

  7. Applications of molecules as high-resolution, high-sensitivity threshold electron detectors

    International Nuclear Information System (INIS)

    Chutjian, A.

    1991-01-01

    The goal of the work under the contract entitled ''Applications of Molecules as High-Resolution, High-Sensitivity Threshold Electron Detectors'' (DoE IAA No. DE-AI01-83ER13093 Mod. A006) was to explore the electron attachment properties of a variety of molecules at electron energies not accessible by other experimental techniques. As a result of this work, not only was a large body of basic data measured on attachment cross sections and rate constants; but also extensive theoretical calculations were carried out to verify the underlying phenomenon of s-wave attachment. Important outgrowths of this week were also realized in other areas of research. The basic data have applications in fields such as combustion, soot reduction, rocket-exhaust modification, threshold photoelectron spectroscopy, and trace species detection

  8. Characterisation of radiation damage in perovskite using high angular resolution electron channeling x-ray spectroscopy (HARECXS)

    International Nuclear Information System (INIS)

    Smith, K.L.; Zaluzec, N.J.

    2002-01-01

    Full text: Predicting and/or modelling the occurrence of radiation damage induced defects and their effects on physical properties (eg. amorphisation induced swelling, electrical conductivity., optical response etc.) in ceramic phases requires knowledge of the displacement energies, E d , of cations and anions in those phases. In this study, High Angular Resolution Electron Channelling X-ray Spectroscopy (HARECXS) spectra were collected from perovskite (CaTiO 3 ) samples that had been exposed to high-energy electrons or high-energy heavy ions. Calculations based on experimental data were then used to indicate the E d of the cations in perovskite. The HARECXS measurements were conducted on a Philips EM 420T AEM (LaB6 source, operated at 120 kV) fitted with an EDAX ultra thin window Si(Li) detector. The specimen was first manually oriented to an appropriate zone axis. Then control of the relative orientation of the incident probe was accomplished via direct computer control of the beam tilt coils, Typical acquisition times for a complete two-dimensional scan were 18-24 hours, while one dimensional scans ranged from 1-5 hours. Our experiments established that: a) HARECXS can detect radiation damage in perovskite caused by either high energy heavy ions or high energy electrons, b) the HARECXS signature of perovskite shows a systematic change with ion dose, c) HARECXS detects damage in perovskite that has been irradiated with 900kV electrons and does not detect damage in perovskite that has been irradiated with 620kV electrons, indicating the existance of an electron irradiation damage threshold. Calculations based on the latter results indicate that the displacement energy, E d of calcium and titanium in perovskite lie between 50 and 85eV. Copyright (2002) Australian Society for Electron Microscopy Inc

  9. Using elastic peak electron spectroscopy for enhanced depth resolution in sputter profiling

    International Nuclear Information System (INIS)

    Hofmann, S.; Kesler, V.

    2002-01-01

    Elastic peak electron spectroscopy (EPES) is an alternative to AES in sputter depth profiling of thin film structures. In contrast to AES, EPES depth profiling is not influenced by chemical effects. The high count rate ensures a good signal to noise ratio, that is lower measurement times and/or higher precision. In addition, because of the elastically scattered electrons travel twice through the sample, the effective escape depth is reduced, an important factor for the depth resolution function. Thus, the depth resolution is increased. EPES depth profiling was successfully applied to a Ge/Si multilayer structure. For an elastic peak energy of 1.0 keV the information depth is considerably lower (0.8 nm) as compared to the Ge (LMM, 1147 eV) peak (1.6 nm) used in AES depth profiling, resulting in a respectively improved depth resolution for EPES profiling under otherwise similar profiling conditions. EPES depth profiling is successfully applied to measure small diffusion lengths at Ge/Si interfaces of the order of 1 nm. (Authors)

  10. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    spectroscopy, ultraviolet photoelectron spectroscopy, Auger electron spectroscopy, low-energy electron diffraction, temperature programmed desorption, high-resolution electron energy-loss and Fourier-transform infrared spectroscopies, and others. Material systems ranging from atomic layers of metals and semiconductors to biology related depositions are being investigated. In the case of biological materials, however, strict limitations to high-resolution applications are imposed by electron radiation damage considerations

  11. Inner-shell electron spectroscopy for microanalysis

    International Nuclear Information System (INIS)

    Joy, D.C.; Maher, D.M.

    1979-01-01

    The transmission electron energy-loss spectrum shows characteristic edges corresponding to the excitation of inner-shell electrons of atoms in a thin sample. Analysis of these edges provides detailed chemical, structural, and electronic data from the radiated volume. By combining electron spectroscopy and electron microscopy, this microanalytical technique can be performed in conjunction with high-resolution imaging of the sample. It is shown that this approach has advantages of sensitivity, spatial resolution, and convenience over other comparable techniques. 7 figures

  12. High resolution spectroscopy in the microwave and far infrared

    Science.gov (United States)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  13. The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy

    International Nuclear Information System (INIS)

    Armendariz, Veronica; Parsons, Jason G; Lopez, Martha L; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L; Jose-Yacaman, Miguel

    2009-01-01

    Gold (Au) nanoparticles can be produced through the interaction of Au(III) ions with oat and wheat biomasses. This paper describes a procedure to recover gold nanoparticles from oat and wheat biomasses using cetyltrimethylammonium bromide or sodium citrate. Extracts were analyzed using UV-visible spectroscopy, high-resolution transmission electron microscopy (HRTEM), and x-ray absorption spectroscopy. The HRTEM data demonstrated that smaller nanoparticles are extracted first, followed by larger nanoparticles. In the fourth extraction, coating of chelating agents is visible on the extracted nanoparticles.

  14. The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy.

    Science.gov (United States)

    Armendariz, Veronica; Parsons, Jason G; Lopez, Martha L; Peralta-Videa, Jose R; Jose-Yacaman, Miguel; Gardea-Torresdey, Jorge L

    2009-03-11

    Gold (Au) nanoparticles can be produced through the interaction of Au(III) ions with oat and wheat biomasses. This paper describes a procedure to recover gold nanoparticles from oat and wheat biomasses using cetyltrimethylammonium bromide or sodium citrate. Extracts were analyzed using UV-visible spectroscopy, high-resolution transmission electron microscopy (HRTEM), and x-ray absorption spectroscopy. The HRTEM data demonstrated that smaller nanoparticles are extracted first, followed by larger nanoparticles. In the fourth extraction, coating of chelating agents is visible on the extracted nanoparticles.

  15. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...... high resolution spectral performance by observing emission from hot water vapor in a butane gas burner....

  16. Electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of the commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article discusses electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. (UK)

  17. Novel techniques in VUV high-resolution spectroscopy

    NARCIS (Netherlands)

    Ubachs, W.M.G.; Salumbides, E.J.; Eikema, K.S.E.; de Oliveira, N.; Nahon, L.

    2014-01-01

    Novel VUV sources and techniques for VUV spectroscopy are reviewed. Laser-based VUV sources have been developed via non-linear upconversion of laser pulses in the nanosecond (ns), the picosecond (ps), and femtosecond (fs) domain, and are applied in high-resolution gas phase spectroscopic studies.

  18. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV

    Energy Technology Data Exchange (ETDEWEB)

    Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Ferreira da Silva, F.; Almeida, D. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Hoshino, M.; Tanaka, H. [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Mogi, D. [Development and Marketing Department, New Products Development Division, Kanto Denka, Kogyo Co., Ltd., Chiyoda-ku, Tokyo 101-0063 (Japan); Tanioka, T. [Shibukawa Development Research Laboratory, New Products Development Division, Kanto Denka Kogyo Co., Ltd., Shibukawa City, Gunma 377-8513 (Japan); Mason, N. J. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Århus C (Denmark); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, allée de la Chimie 3, B-4000 Liège 1 (Belgium)

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ({sup 1}Δ←{sup 1}Σ{sup +}) transition, with a new weak transition assigned to ({sup 1}Σ{sup −}←{sup 1}Σ{sup +}) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to {sup 1}Σ{sup +} and {sup 1}Π transitions. Based on our recent measurements of differential cross sections for the optically allowed ({sup 1}Σ{sup +} and {sup 1}Π) transitions of COS by electron impact, the optical oscillator strength f{sub 0} value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)

  19. Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity.

    Science.gov (United States)

    Hart, James L; Lang, Andrew C; Leff, Asher C; Longo, Paolo; Trevor, Colin; Twesten, Ray D; Taheri, Mitra L

    2017-08-15

    In many cases, electron counting with direct detection sensors offers improved resolution, lower noise, and higher pixel density compared to conventional, indirect detection sensors for electron microscopy applications. Direct detection technology has previously been utilized, with great success, for imaging and diffraction, but potential advantages for spectroscopy remain unexplored. Here we compare the performance of a direct detection sensor operated in counting mode and an indirect detection sensor (scintillator/fiber-optic/CCD) for electron energy-loss spectroscopy. Clear improvements in measured detective quantum efficiency and combined energy resolution/energy field-of-view are offered by counting mode direct detection, showing promise for efficient spectrum imaging, low-dose mapping of beam-sensitive specimens, trace element analysis, and time-resolved spectroscopy. Despite the limited counting rate imposed by the readout electronics, we show that both core-loss and low-loss spectral acquisition are practical. These developments will benefit biologists, chemists, physicists, and materials scientists alike.

  20. electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. 6 figs

  1. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  2. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  3. High-Resolution Spectroscopy of Jet-Cooled 1,1 '-Diphenylethylene: Electronically Excited and Ionic States of a Prototypical Cross-Conjugated System

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C. A.; Zgierski, M. Z.; Buma, W. J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated pi-system, 1,1'-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio

  4. High resolution laser spectroscopy as a diagnostic tool in beams

    International Nuclear Information System (INIS)

    Bergmann, K.; Hefter, U.; Hering, P.

    1977-01-01

    The combination of high resolution laser spectroscopy with the technique of molecular beams allows a very detailed beam research since molecules or atoms in specific quantum states can be sampled yielding previously unavailable sources of data. In these experiments a Na/Na 2 beam emerges from a 0.2 mm nozzle and is collimated by a 2 mm wide slit 50 cm downstream. To probe the molecules a single mode Ar + -laser was used which can be tuned within the gain profile of the laser line (8 GHz) to several transitions between specific levels in the ground state and second electronically excited state of the Na 2 molecule. (Auth.)

  5. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission spectra gases (e.g. CO2, H2O or SO2) at high-resolution and elevated temperatures are essential both...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  6. Auger electron and X-ray spectroscopy of hollow atoms

    NARCIS (Netherlands)

    Morgenstern, R; Johnson, RL; Schmidtbocking, H; Sonntag, BF

    1997-01-01

    Hollow atoms as formed during collisions of multiply charged ions on metallic, semiconducting and insulating surfaces have in recent years successfully been investigated by various spectroscopic methods: low- and high-resolution X-ray spectroscopy as well as high resolution Auger electron

  7. Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Heimann, P.A.; Mossessian, D. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.

  8. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  9. High-resolution spectroscopy of jet-cooled 1,1 '-diphenylethylene: electronically excited and ionic states of a prototypical cross-conjugated system

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C.A.; Zgierski, M.Z.; Buma, W.J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated π-system, 1,1′-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio calculations. We

  10. Optimized high energy resolution in γ-ray spectroscopy with AGATA triple cluster detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, Andreas

    2011-06-20

    The AGATA demonstrator consists of five AGATA Triple Cluster (ATC) detectors. Each triple cluster detector contains three asymmetric, 36-fold segmented, encapsulated high purity germanium detectors. The purpose of the demonstrator is to show the feasibility of position-dependent γ-ray detection by means of γ-ray tracking, which is based on pulse shape analysis. The thesis describes the first optimization procedure of the first triple cluster detectors. Here, a high signal quality is mandatory for the energy resolution and the pulse shape analysis. The signal quality was optimized and the energy resolution was improved through the modification of the electronic properties, of the grounding scheme of the detector in particular. The first part of the work was the successful installation of the first four triple cluster detectors at INFN (National Institute of Nuclear Physics) in Legnaro, Italy, in the demonstrator frame prior to the AGATA commissioning experiments and the first physics campaign. The four ATC detectors combine 444 high resolution spectroscopy channels. This number combined with a high density were achieved for the first time for in-beam γ-ray spectroscopy experiments. The high quality of the ATC detectors is characterized by the average energy resolutions achieved for the segments of each crystal in the range of 1.943 and 2.131 keV at a γ-ray energy of 1.33 MeV for the first 12 crystals. The crosstalk level between individual detectors in the ATC is negligible. The crosstalk within one crystal is at a level of 10{sup -3}. In the second part of the work new methods for enhanced energy resolution in highly segmented and position sensitive detectors were developed. The signal-to-noise ratio was improved through averaging of the core and the segment signals, which led to an improvement of the energy resolution of 21% for γ-energies of 60 keV to a FWHM of 870 eV. In combination with crosstalk correction, a clearly improved energy resolution was

  11. High-resolution electron-energy-loss spectroscopy studies of clean and hydrogen-covered tungsten (100) surfaces

    International Nuclear Information System (INIS)

    Woods, J.P.

    1986-01-01

    High-resolution (10-meV FWHM) low-energy (≤ 100eV) electrons are scattered from the tungsten (100) surface. Electron-energy-loss spectroscopy (EELS) selection rules are utilized to identify vibrational modes of the surface tungsten atoms. A 36-meV mode is measured on the c(2 X 2) thermally reconstructed surface and is modeled as an overtone of the 18-meV mode at M in the surface Brillouin zone. The superstructure of the reconstructed surface allows this mode to be observed in specular scattering. The surface tungsten atoms return to their bulk lateral positions with saturated hydrogen (β 1 phase) adsorption; and a 26-meV mode identified is due to the perpendicular vibration of the surface tungsten layers. The clean-room temperature surface does not display either low-energy vibrations and the surface is modeled as disordered. The three β 1 phase hydrogen vibrations are observed and a new vibration at 118 meV is identified. The 118-meV cross section displays characteristics of a parallel mode, but calculations show this assignment to be erroneous. There are two hydrogen atoms for each surface tungsten atom in the β 1 phase, and lattice-dynamical calculations show that the 118-meV mode is due to a hydrogen-zone edge vibration. The predicted breakdown of the parallel hydrogen vibration selection rule was not observed

  12. Beam-transport system for high-resolution heavy-ion spectroscopy

    International Nuclear Information System (INIS)

    Roussel, P.; Kashy, E.

    1980-01-01

    A method is given to adjust a beam-transport system to the requirements of high-energy resolution heavy-ion spectroscopy. The results of a test experiment performed on a MP tandem with a 12 C beam are shown. A drastic improvement in energy resolution is obtained for a kinematical factor K=1/p dp/dtheta=0.12 [fr

  13. 2012 ELECTRONIC SPECTROSCOPY & DYNAMICS GORDON RESEARCH CONFERENCE, JULY 22-27, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Bern

    2012-07-27

    Topics covered in this GRC include high-resolution spectroscopy, coherent electronic energy transport in biology, excited state theory and dynamics, excitonics, electronic spectroscopy of cold and ultracold molecules, and the spectroscopy of nanostructures. Several sessions will highlight innovative techniques such as time-resolved x-ray spectroscopy, frequency combs, and liquid microjet photoelectron spectroscopy that have forged stimulating new connections between gas-phase and condensed-phase work.

  14. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  15. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  16. High-resolution ultrasonic spectroscopy

    Directory of Open Access Journals (Sweden)

    V. Buckin

    2018-03-01

    Full Text Available High-resolution ultrasonic spectroscopy (HR-US is an analytical technique for direct and non-destructive monitoring of molecular and micro-structural transformations in liquids and semi-solid materials. It is based on precision measurements of ultrasonic velocity and attenuation in analysed samples. The application areas of HR-US in research, product development, and quality and process control include analysis of conformational transitions of polymers, ligand binding, molecular self-assembly and aggregation, crystallisation, gelation, characterisation of phase transitions and phase diagrams, and monitoring of chemical and biochemical reactions. The technique does not require optical markers or optical transparency. The HR-US measurements can be performed in small sample volumes (down to droplet size, over broad temperature range, at ambient and elevated pressures, and in various measuring regimes such as automatic temperature ramps, titrations and measurements in flow.

  17. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  18. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.; Golberg, D., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3058577 (Japan); Xu, Z., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kvashnin, D. G. [National University of Science and Technology, MISIS, Leninskiy Prospect 4, Moscow 119049 (Russian Federation); Tang, D.-M.; Xue, Y. M.; Bando, Y. [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Sorokin, P. B. [National University of Science and Technology, MISIS, Leninskiy Prospect 4, Moscow 119049 (Russian Federation); Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny 141700 (Russian Federation)

    2015-08-31

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  19. Toward high-resolution NMR spectroscopy of microscopic liquid samples

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Mark C.; Mehta, Hardeep S.; Chen, Ying; Reardon, Patrick N.; Renslow, Ryan S.; Khbeis, Michael; Irish, Duane; Mueller, Karl T.

    2017-01-01

    A longstanding limitation of high-resolution NMR spectroscopy is the requirement for samples to have macroscopic dimensions. Commercial probes, for example, are designed for volumes of at least 5 mL, in spite of decades of work directed toward the goal of miniaturization. Progress in miniaturizing inductive detectors has been limited by a perceived need to meet two technical requirements: (1) minimal separation between the sample and the detector, which is essential for sensitivity, and (2) near-perfect magnetic-field homogeneity at the sample, which is typically needed for spectral resolution. The first of these requirements is real, but the second can be relaxed, as we demonstrate here. By using pulse sequences that yield high-resolution spectra in an inhomogeneous field, we eliminate the need for near-perfect field homogeneity and the accompanying requirement for susceptibility matching of microfabricated detector components. With this requirement removed, typical imperfections in microfabricated components can be tolerated, and detector dimensions can be matched to those of the sample, even for samples of volume << 5 uL. Pulse sequences that are robust to field inhomogeneity thus enable small-volume detection with optimal sensitivity. We illustrate the potential of this approach to miniaturization by presenting spectra acquired with a flat-wire detector that can easily be scaled to subnanoliter volumes. In particular, we report high-resolution NMR spectroscopy of an alanine sample of volume 500 pL.

  20. Optical and mechanical design for 1 nm resolution Auger spectroscopy in an electron microscope

    International Nuclear Information System (INIS)

    Bleeker, A.J.

    1991-01-01

    Detailed information about the atomic structure of surfaces and interfaces is vital for the progress in materials science and physics. One widely used surface sensitive technique is Auger spectroscopy (AS). This technique, in which the electron energy spectrum emerging from the sample is evaluated, gives information about the average elemental composition of the surface over a relative large surface area (>30nm). Electron microscopy (EM), on the other hand, is capable of producing surface structural, but no elemental, information with almost atomic resolution. EM and AS techniques have not been combined so far because of the different nature of the instrumentation used in both techniques. In AS instruments the sample is placed in an Ultra High Vacuum (UHV) system with a relatively large open space around the sample. In EM the sample is situated in the tight volume between the magnetic polepieces of the probe forming objective lens. The space around the sample is therefore tight. Furthermore the vacuum in most electron microscopes is not in UHV range. Radical mechanical changes to improve the vacuum are necessary to do AS in an electron microscope. Since the sample is immersed in the strong magnetic field of the objective lens the Auger electrons can not be extracted with conventional electrostatical methods. The only possibility to extract the Auger electrons is through the upper bore of the objective lens. However, this has large implications on the optical system of the microscope and requires a thorough investigation of the extraction of the Auger electrons. In this work it will be discussed how the surface sensitive AS can be combined with the high spatial resolution of the electron microscope in a practical instrument. (author). 102 refs.; 81 figs.; 4 tabs

  1. A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets

    NARCIS (Netherlands)

    Brogi, M.; Line, M.; Bean, J.; Désert, J.-M.; Schwarz, H.

    2017-01-01

    Current observations of the atmospheres of close-in exoplanets are predominantly obtained with two techniques: low-resolution spectroscopy with space telescopes and high-resolution spectroscopy from the ground. Although the observables delivered by the two methods are in principle highly

  2. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  3. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, J.; Doriese, W. B.; Fowler, J. W.; Swetz, D. S.; Jaye, C.; Fischer, D. A.; Reintsema, C. D.; Bennett, D. A.; Vale, L. R.; Mandal, U.; O' Neil, G. C.; Miaja-Avila, L.; Joe, Y. I.; El Nahhas, A.; Fullagar, W.; Parnefjord Gustafsson, F.; Sundström, V.; Kurunthu, D.; Hilton, G. C.; Schmidt, D. R.; Ullom, J. N.

    2015-04-21

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

  4. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  5. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, R. [Dalton Cumbrian Facility, Dalton Nuclear Institute, The University of Manchester, Westlakes Science & Technology Park, Moor Row, Whitehaven, Cumbria, CA24 3HA (United Kingdom); Jones, A.N., E-mail: Abbie.Jones@manchester.ac.uk [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom); McDermott, L.; Marsden, B.J. [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom)

    2015-12-15

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite

  6. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    International Nuclear Information System (INIS)

    Krishna, R.; Jones, A.N.; McDermott, L.; Marsden, B.J.

    2015-01-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite exhibits

  7. High-resolution spectroscopy of gases for industrial applications

    OpenAIRE

    Fateev, Alexander; Clausen, Sønnik

    2012-01-01

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission s...

  8. THz Electron Paramagnetic Resonance / THz Spectroscopy at BESSY II

    Directory of Open Access Journals (Sweden)

    Karsten Holldack

    2016-02-01

    Full Text Available The THz beamline at BESSY II employs high power broadband femto- to picosecond long THz pulses for magneto-optical THz and FIR studies. A newly designed set-up exploits the unique properties of ultrashort THz pulses generated by laser-energy modulation of electron bunches in the storage ring or alternatively from compressed electron bunches. Experiments from 0.15 to 5 THz (~ 5 – 150 cm-1 may be conducted at a user station equipped with a fully evacuated high resolution FTIR spectrometer (0.0063 cm-1, lHe cooled bolometer detectors, a THz TDS set-up and different sample environments, including a superconducting high field magnet (+11 T - 11T with variable temperature insert (1.5 K – 300 K, a sample cryostat and a THz attenuated total reflection chamber.  Main applications are Frequency Domain Fourier transform THz-Electron Paramagnetic Resonance (FD-FT THz-EPR, THz-FTIR spectroscopy and optical pump - THz probe time domain spectroscopy (TDS, with sub-ps time resolution.

  9. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  10. High spatial and temporal resolution charge exchange recombination spectroscopy on the HL-2A tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y. L.; Yu, D. L., E-mail: yudl@swip.ac.cn; Liu, L.; Cao, J. Y.; Sun, A. P.; Ma, Q.; Chen, W. J.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Liu, Yong [Southwestern Institute of Physics, Chengdu 610041 (China); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Hellermann, M. von [ITER Diagnostic Team, IO, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); FOM-Institute for Plasma physics “Rijnhuizen,” Association EURATOM, Trilateral Euregio Cluster, 3430 BE Nieuwegein (Netherlands)

    2014-10-01

    A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ~1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8–7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode)

  11. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  12. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    Science.gov (United States)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  13. High resolution hypernuclear spectroscopy at Jefferson Lab Hall A

    International Nuclear Information System (INIS)

    Garibaldi, F.; Bydžovský, P.; Cisbani, E.; Cusanno, F.; De Leo, R.; Frullani, S.; Iodice, M.; LeRose, J.J.; Markowitz, P.; Millener, D.J.; Urciuoli, G.M.

    2013-01-01

    The characteristics of the Jefferson Lab electron beam, together with those of the experimental equipment, offer a unique opportunity to study hypernuclear spectroscopy via electromagnetic induced (e,e ′ K + ) reactions. Experiment 94-107 started a systematic study on 1p-shell targets, 12 C, 9 Be and 16 O. For 12 C for the first time measurable strength in the core-excited part of the spectrum between the ground state and the p state was shown in the 12 Λ B spectrum. For 16 O a high-quality 16 Λ N spectrum was produced for the first time with sub-MeV energy resolution. A very precise Λ binding energy value for 16 Λ N, calibrated against the elementary (e,e ′ K + ) reaction on hydrogen, has also been obtained. Preliminary data on the 9 Λ Li spectrum shows some disagreement in strength for the second and third doublet with respect to the theory

  14. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  15. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    Science.gov (United States)

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Highly effective portable beta spectrometer for precise depth selective electron Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Aldiyarov, N.U.; Kadyrzhanov, K.K.; Seytimbetov, A.M.; Zhdanov, V.S.

    2007-01-01

    Full text: More broad application of the nuclear-physical method of precise Depth Selective Electron Moessbauer Spectroscopy (DS EMS) is limited by insufficient accessibility of highly-effective beta spectrometers with acceptable resolution. It should be mentioned that the method DS EMS is realized at a combined installation that consists of a highly-effective beta spectrometer and a conventional portable nuclear gamma-resonance spectrometer. Yet few available beta spectrometers have sophisticated design and controlling; in most cases they are cumbersome. All the attempts to simplify beta spectrometers resulted in noticeable worsening of depth resolution for the DS EMS method making the measurements non precise. There is currently an obvious need in a highly-effective portable easily controlled beta spectrometer. While developing such portable beta spectrometer, it is more promising to use as basis a simpler spectrometer, which has ratio of sample size to spectrometer size of about five times. The paper presents an equal-arm version of a highly-effective portable beta spectrometer with transverse heterogeneous sector magnetic field that assures double focusing. The spectrometer is equipped with a large-area non-equipotential source (a sample under investigation) and a position-sensitive detector. This portable spectrometer meets all requirements for achievement of the DS EMS depth resolution close to the physical limit and demonstrates the following main characteristics: equilibrium orbit radius ρ 0 = 80 mm, instrumental energy resolution 0.6 % at solid angle 1 % of 4π steradian, area of non-equipotential source ∼ 80 mm 2 , registration by position-sensitive detector of ∼ 10 % of the energy interval. Highly-effective portable beta spectrometer assures obtaining Moessbauer data with depth resolution close to physical limit of the DS EMS method. So in measurements at conversion and Auger electrons with energies of about units of keV and above, the achieved

  17. Electron-optical design parameters for a high-resolution electron monochromator

    International Nuclear Information System (INIS)

    Tanaka, H.; Huebner, R.H.

    1976-01-01

    Detailed design parameters of a new, high-resolution electron monochromator are presented. The design utilizes a hemispherical filter as the energy-dispersing element and combines both cylindrical and aperture electrostatic lenses to accelerate, decelerate, transport, and focus the electron beam from the cathode to the interaction region

  18. Human enamel structure studied by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Wen, S.L.

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references

  19. High-resolution in-source laser spectroscopy in perpendicular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinke, R., E-mail: reinhard.heinke@uni-mainz.de; Kron, T. [Universität Mainz, Institut für Physik (Germany); Raeder, S. [Helmholtz-Institut Mainz (Germany); Reich, T.; Schönberg, P. [Universität Mainz, Institut für Kernchemie (Germany); Trümper, M.; Weichhold, C.; Wendt, K. [Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    Operation of the novel laser ion source unit LIST (Laser Ion Source and Trap), operating at the on-line radioactive ion beam facility ISOLDE at CERN allowed for the production of ultra-pure beams of exotic isotopes far-off stability as well as direct isobar-free laser spectroscopy, giving access to the study of atomic and nuclear properties of so far inaccessible nuclides. We present a specific upgrade and adaption of the LIST targeted for high resolution spectroscopy with a Doppler-reduced perpendicular atom - laser beam geometry. With this PI-LIST (Perpendicularly Illuminated Laser Ion Source and Trap) setup, experimental linewidths below 100 MHz could be demonstrated in optical laser spectroscopy off-line, applying a pulsed injection-locked high repetition rate Ti:sapphire laser. A dual repeller configuration ensured highest suppression of isobaric interferences and almost background-free measurements on small samples in the order of 10{sup 11} atoms.

  20. High-Resolution X-Ray Spectroscopy of Galactic Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Satoru Katsuda

    2014-12-01

    Full Text Available High-resolution X-ray spectroscopy of Galactic supernova remnants (SNRs, based on grating spectrometers onboard XMM-Newton and Chandra, has been revealing a variety of new astrophysical phenomena. Broadened oxygen lines for a northwestern compact knot in SN 1006 clearly show a high oxygen temperature of ~300 keV. The high temperature together with a lower electron temperature (kTe ~ 1 keV can be reasonably interpreted as temperature non-equilibration between electrons and oxygen behind a collisionless shock. An ejecta knot in the Puppis A SNR shows blueshifted line emission by ~ 1500kms-1. The line widths are fairly narrow in contrast to the SN 1006's knot; an upper limit of 0.9 eV is obtained for O VIII Lyα, which translates to an oxygen temperature of kTO < 30 keV. The low temperature suggests that the knot was heated by a reverse shock whose velocity is 4 times slower than that of a forward shock. Anomalous intensity ratios in O VII Heα lines, i.e., a stronger forbidden line than a resonance line, is found in a cloud-shock interaction region in Puppis A. The line ratio can be best explained by the charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. There are several other targets for which we plan to analyze high-quality grating data prior to the operation of the soft X-ray spectrometer onboard Astro-H.

  1. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser.

    Science.gov (United States)

    Zhao, Xin; Hu, Guoqing; Zhao, Bofeng; Li, Cui; Pan, Yingling; Liu, Ya; Yasui, Takeshi; Zheng, Zheng

    2016-09-19

    Dual-comb spectroscopy holds the promise as real-time, high-resolution spectroscopy tools. However, in its conventional schemes, the stringent requirement on the coherence between two lasers requires sophisticated control systems. By replacing control electronics with an all-optical dual-comb lasing scheme, a simplified dual-comb spectroscopy scheme is demonstrated using one dual-wavelength, passively mode-locked fiber laser. Pulses with a intracavity-dispersion-determined repetition-frequency difference are shown to have good mutual coherence and stability. Capability to resolve the comb teeth and a picometer-wide optical spectral resolution are demonstrated using a simple data acquisition system. Energy-efficient, free-running fiber lasers with a small comb-tooth-spacing could enable low-cost dual-comb systems.

  2. High resolution spectroscopy in solids by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bonagamba, T.J.

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120 0 C to +160 0 C, and is fully controlled by a Macintosh IIci microcomputer. (author)

  3. Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.

    1975-01-01

    General features of electron excited Auger electron spectroscopy (AES) which is a nondestructive technique for the analysis of surfaces upto about 15 Adeg depth with a detection limit of about 0.1% of a monolayer. Methods of measuring the Auger electron energies and recent improvements in the instrumentation are reviewed. Typical energy resolution is found to be about 0.5% which is specially suited for the detection of light elements. It is widely used in metallurgy, surface chemistry and thin film studies. (K.B.)

  4. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing.

    Science.gov (United States)

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-02-17

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  5. High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field

    International Nuclear Information System (INIS)

    Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Lipton, Andrew S.; Berthold, Deborah A.; Rienstra, Chad M.

    2010-01-01

    Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly- 13 C, 15 N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla ( 1 H frequencies of 500, 750, and 900 MHz). For two protein systems-GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein-line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C-C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine Cδ1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies.

  6. SALT high-resolution spectroscopy of nova PNV J15384000-4744500

    Science.gov (United States)

    Aydi, E.; Buckley, D. A. H.; Mohamed, S.; Whitelock, P. A.

    2018-06-01

    We report on high-resolution spectroscopy of PNV J15384000-4744500 which was reported as a possible nova by Rob Kaufman (Bright, Victoria, Australia; CBAT follow-up: http://www.cbat.eps.harvard.edu/unconf/followups/J15384000-4744500.html) and confirmed as a classical nova by F. Walter (ATel #11681).

  7. Improvement of sensitivity in high-resolution Rutherford backscattering spectroscopy

    International Nuclear Information System (INIS)

    Hashimoto, H.; Nakajima, K.; Suzuki, M.; Kimura, K.; Sasakawa, K.

    2011-01-01

    The sensitivity (limit of detection) of high-resolution Rutherford backscattering spectroscopy (HRBS) is mainly determined by the background noise of the spectrometer. There are two major origins of the background noise in HRBS, one is the stray ions scattered from the inner wall of the vacuum chamber of the spectrometer and the other is the dark noise of the microchannel plate (MCP) detector which is commonly used as a focal plane detector of the spectrometer in HRBS. In order to reject the stray ions, several barriers are installed inside the spectrometer and a thin Mylar foil is mounted in front of the detector. The dark noise of the MCP detector is rejected by the coincidence measurement with the secondary electrons emitted from the Mylar foil upon the ion passage. After these improvements, the background noise is reduced by a factor of 200 at a maximum. The detection limit can be improved down to 10 ppm for As in Si at a measurement time of 1 h under ideal conditions.

  8. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Jakob

    2010-04-03

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to {delta}E/E{approx}10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION {sup registered} ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to {delta}E/E < 1. The exceptional surface sensitivity and elemental selectivity of PAES was demonstrated in measurements of Pd and Fe, both coated with Cu layers of varying thickness. PAES showed that with 0.96 monolayer of Cu on Fe, more than 55% of the detected Auger electrons stem from Cu. In the case of the Cu coated Pd sample 0.96 monolayer of Cu resulted in a Cu Auger fraction of more than 30% with PAES and less than 5% with electron induced Auger spectroscopy

  9. Electron spectroscopy on high-temperature superconductors and related compounds

    International Nuclear Information System (INIS)

    Knupfer, M.

    1994-01-01

    In the last two classes of materials have been discovered which distinguish themselves due to a transition into the superconducting state at relatively high temperatures. These are the cuprate superconductors and the alkali metal doped fullerenes. In this work the electronic structure of representatives of these materials, undoped and Ca-doped YBa 2 Cu 4 O 8 and A 3 C 60 (A=K, Rb), has been investigated using electron energy-loss spectroscopy and photoemission spectroscopy. (orig.) [de

  10. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    Directory of Open Access Journals (Sweden)

    Simone Borri

    2016-02-01

    Full Text Available The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  11. Determination of channel temperature for AlGaN/GaN HEMTs by high spectral resolution micro-Raman spectroscopy

    International Nuclear Information System (INIS)

    Zhang Guangchen; Feng Shiwei; Li Jingwan; Guo Chunsheng; Zhao Yan

    2012-01-01

    Channel temperature determinations of AlGaN/GaN high electron mobility transistors (HEMTs) by high spectral resolution micro-Raman spectroscopy are proposed. The temperature dependence of the E2 phonon frequency of GaN material is calibrated by using a JYT-64000 micro-Raman system. By using the Lorentz fitting method, the measurement uncertainty for the Raman phonon frequency of ±0.035 cm −1 is achieved, corresponding to a temperature accuracy of ±3.2 °C for GaN material, which is the highest temperature resolution in the published works. The thermal resistance of the tested AlGaN/GaN HEMT sample is 22.8 °C/W, which is in reasonably good agreement with a three dimensional heat conduction simulation. The difference among the channel temperatures obtained by micro-Raman spectroscopy, the pulsed electrical method and the infrared image method are also investigated quantificationally. (semiconductor devices)

  12. Computer simulation of high resolution transmission electron micrographs: theory and analysis

    International Nuclear Information System (INIS)

    Kilaas, R.

    1985-03-01

    Computer simulation of electron micrographs is an invaluable aid in their proper interpretation and in defining optimum conditions for obtaining images experimentally. Since modern instruments are capable of atomic resolution, simulation techniques employing high precision are required. This thesis makes contributions to four specific areas of this field. First, the validity of a new method for simulating high resolution electron microscope images has been critically examined. Second, three different methods for computing scattering amplitudes in High Resolution Transmission Electron Microscopy (HRTEM) have been investigated as to their ability to include upper Laue layer (ULL) interaction. Third, a new method for computing scattering amplitudes in high resolution transmission electron microscopy has been examined. Fourth, the effect of a surface layer of amorphous silicon dioxide on images of crystalline silicon has been investigated for a range of crystal thicknesses varying from zero to 2 1/2 times that of the surface layer

  13. A study of human liver ferritin and chicken liver and spleen using Moessbauer spectroscopy with high velocity resolution

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M. I., E-mail: oshtrakh@mail.utnet.ru [Ural State Technical University-UPI, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Milder, O. B.; Semionkin, V. A. [Ural State Technical University-UPI, Faculty of Experimental Physics (Russian Federation)

    2008-01-15

    Lyophilized samples of human liver ferritin and chicken liver and spleen were measured at room temperature using Moessbauer spectroscopy with high velocity resolution. An increase in the velocity resolution of Moessbauer spectroscopy permitted us to increase accuracy and decrease experimental error in determining the hyperfine parameters of human liver ferritin and chicken liver and spleen. Moessbauer spectroscopy with high velocity resolution may be very useful for revealing small differences in hyperfine parameters during biomedical research.

  14. High resolution infrared spectroscopy of symbiotic stars

    International Nuclear Information System (INIS)

    Bensammar, S.

    1989-01-01

    We report here very early results of high resolution (5x10 3 - 4x10 4 ) infrared spectroscopy (1 - 2.5 μm) of different symbiotic stars (T CrB, RW Hya, CI Cyg, PU Vul) observed with the Fourier Transform Spectrometer of the 3.60m Canada France Hawaii Telescope. These stars are usually considered as interacting binaries and only little details are known about the nature of their cool component. CO absorption lines are detected for the four stars. Very different profiles of hydrogen Brackett γ and helium 10830 A lines are shown for CI Cyg observed at different phases, while Pu Vul shows very intense emission lines

  15. Electron energy-loss spectrometry at the frontier of spatial and energy resolution

    International Nuclear Information System (INIS)

    Hofer, F.; Grogger, W.; Kothleitner, G.

    2004-01-01

    Full text: Electron energy-loss spectroscopy (EELS) in the transmission electron microscope (TEM) is now used routinely as a means of measuring chemical and structural properties of very small regions of a thin specimen. The power of this technique depends significantly on two parameters: its spatial resolution and the energy resolution available in the spectrum and in the energy-filtered TEM (EFTEM) image. The cold field emission source and the Schottky emitter have made an energy resolution below 1 eV possible and it is now feasible to obtain data with a spatial resolution close to atomic dimensions, given the right instrumentation and specimen. EFTEM allows to record elemental maps at sub-nanometre resolution, being mainly limited by chromatic and spherical aberration of the objective lens and by delocalization of inelastic scattering. Recently the possibility of correcting spherical and even chromatic aberrations of electron lenses has become a practical reality thus improving the point resolution of the TEM to below 0.1 nm. The other limiting factor for EFTEM resolution is delocalization. However, recent measurements show that resolution values in the range of 1 nm and below can be achieved, even for energy-losses of only a few eV. In terms of energy-resolution, EELS and EFTEM compare less favourably with other spectroscopies. For common TEMs, the overall energy-resolution is mainly determined by the energy width of the electron source, typically between 0.5 and 1.5 eV. For comparison, synchrotron x-ray sources and beam line spectrometers, provide a resolution well below 0.1 eV for absorption spectroscopy. During the early sixties, the energy spread of an electron beam could be reduced by incorporating an energy-filter into the illumination system, but the system lacked spatial resolution. Later developments combined high energy resolution in the range of 0.1 eV with improved spatial resolution. Recently, FEI introduced a new high resolution EELS system based

  16. Remarkably High Conversion Efficiency of Inverted Bulk Heterojunction Solar Cells: From Ultrafast Laser Spectroscopy and Electron Microscopy to Device Fabrication and Optimization

    KAUST Repository

    Alsulami, Qana; Banavoth, Murali; Alsinan, Yara; Parida, Manas R.; Aly, Shawkat Mohammede; Mohammed, Omar F.

    2016-01-01

    of these photophysical processes at device interfaces remains superficial, creating a major bottleneck that circumvents advancements and the optimization of these solar cells. Here, results from time-resolved laser spectroscopy and high-resolution electron microscopy

  17. Electron-probe microanalysis: x-ray spectroscopy

    International Nuclear Information System (INIS)

    1987-01-01

    The main principles on X-ray, energy and wave length dispersive spectroscopy are reviewed. In order to allow the choice of the best operating conditions, the importance of the regulation and control systems is underlined. Emission theory, X-rays nature and its interaction with matter and electrons in the matter is shown. The structure, operating procedures and necessary electronics (single channel - analysis chain) automatic-control system for the threshold-energies discrimination and the energy distribution visualization) associated to the wavelength dispersive spectroscopy are described. The focusing control, resolution, influence of chemical bonds and multilayer-structure monochromators relaled to wavelength dispersive spectroscopy are studied. Concerning the energy-dispersive spectroscopy, the detector, preamplifier, amplifier, analog-digital converter, as well as the utilization and control of the spectrometer are described. Problems and instrumental progress on energy-dispersive spectroscopy related to the electronic-noise control, charge collection and light-elements detection are discussed [fr

  18. Refinement procedure for the image alignment in high-resolution electron tomography

    International Nuclear Information System (INIS)

    Houben, L.; Bar Sadan, M.

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. -- Highlights: → Alignment procedure for electron tomography based on iterative tomogram contrast optimisation. → Marker-free, independent of object, little user interaction. → Accuracy competitive with fiducial marker methods and suited for high-resolution tomography.

  19. Experimental positions and lifetimes of Be-like 1s23lnl'(n=3 to 5) states of O4+ and Ne6+ ions investigated by high resolution electron spectroscopy: test of calculations

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Bordenave-Montesquieu, D.

    1999-01-01

    Using high resolution electron spectroscopy, positions and lifetimes of many Be-like singlet states of the 1s 2 3lnl' Rydberg series (n = 3 to 5) of oxygen and neon have been measured for the first time. This was achieved by a fitting procedure which takes into account an accurate definition of the post-collisional electron lineshapes. These states are produced after a double electron capture by multicharged ions has occurred in O 6+ (1s 2 )+He, H 2 and Ne 8+ (1s 2 )+He collisions at about 4 keV/amu collision energy. (orig.)

  20. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor

    Science.gov (United States)

    Glenn, David R.; Bucher, Dominik B.; Lee, Junghyun; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.

    2018-03-01

    Quantum systems that consist of solid-state electronic spins can be sensitive detectors of nuclear magnetic resonance (NMR) signals, particularly from very small samples. For example, nitrogen–vacancy centres in diamond have been used to record NMR signals from nanometre-scale samples, with sensitivity sufficient to detect the magnetic field produced by a single protein. However, the best reported spectral resolution for NMR of molecules using nitrogen–vacancy centres is about 100 hertz. This is insufficient to resolve the key spectral identifiers of molecular structure that are critical to NMR applications in chemistry, structural biology and materials research, such as scalar couplings (which require a resolution of less than ten hertz) and small chemical shifts (which require a resolution of around one part per million of the nuclear Larmor frequency). Conventional, inductively detected NMR can provide the necessary high spectral resolution, but its limited sensitivity typically requires millimetre-scale samples, precluding applications that involve smaller samples, such as picolitre-volume chemical analysis or correlated optical and NMR microscopy. Here we demonstrate a measurement technique that uses a solid-state spin sensor (a magnetometer) consisting of an ensemble of nitrogen–vacancy centres in combination with a narrowband synchronized readout protocol to obtain NMR spectral resolution of about one hertz. We use this technique to observe NMR scalar couplings in a micrometre-scale sample volume of approximately ten picolitres. We also use the ensemble of nitrogen–vacancy centres to apply NMR to thermally polarized nuclear spins and resolve chemical-shift spectra from small molecules. Our technique enables analytical NMR spectroscopy at the scale of single cells.

  1. Photon-Counting Microwave Kinetic Inductance Detectors (MKIDs) for High Resolution Far-Infrared Spectroscopy

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing ultrasensitive Microwave Kinetic Inductance Detectors (MKIDs) for high resolution far-infrared spectroscopy applications, with a long-term goal of...

  2. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy.

    Science.gov (United States)

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements.

  3. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    Science.gov (United States)

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements. PMID:22291552

  4. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng, E-mail: dssu@imr.ac.cn [Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016 (China)

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  5. Electron spectroscopy with fast heavy ions

    International Nuclear Information System (INIS)

    Schneider, D.

    1983-01-01

    Since about 1970 the spectroscopy of Auger-electrons and characteristic x-rays following energetic ion-atom collisions has received a great deal of attention. An increasing number of accelerators, capable of providing a large number of projectile ion species over a wide range of projectile energies, became available for studying ion-atom collision phenomena. Many charged particles from protons up to heavy ions like uranium can be accelerated to energies ranging over six orders of magnitude. This allows us to study systematically a great variety of effects accompanied by dynamic excitation processes of the atomic shells in either the projectile- or target-atoms. The studies yield fundamental information regarding the excitation mechanism (e.g., Coulomb and quasi-molecular excitation) and allow sensitive tests of atomic structure theories. This information in turn is valuable to other fields in physics like plasma-, astro-, or solid-state (surface) physics. It is a characteristic feature of fast heavy-ion accelerators that they can produce highly stripped ion species which have in turn the capability to highly ionize neutral target atoms or molecules in a single collision. The ionization process, mainly due to the strong electrical fields that are involved, allows us to study few-electron atoms with high atomic numbers Z. High resolution spectroscopy performed with these atoms allows a particularly good test of relativistic and QED effects. The probability of producing these few electron systems is determined by the charge state and the velocity of the projectile ions. In this contribution the possibilities of using electron spectroscopy as a tool to investigate fast ion-atom collisions is discussed and demonstrated with a few examples. 30 references

  6. Molecular studies by electron spectroscopy

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1977-01-01

    Experience gained in experimental nuclear physics has played a large role in the development of electron spectroscopy as a powerful tool for studying chemical systems. The use of ESCA (Electron Spectroscopy for Chemical Analysis) for the mapping of molecular properties connected with inner as well as outer electron shells is reviewed, mainly from a phenomological point of view. Molecular Auger electron spectroscopy is described as a means of gaining information on details in molecular structure, simultaneously being extensively applied for surface studies. Future highly promising research areas for molecular electron spectroscopy are suggested to be (e,2e) processes as well as continued exploitation of synchrotron radiation from high energy nuclear devices. (Auth.)

  7. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  8. High-resolution gas-phase spectroscopy of a single-bond axle rotary motor

    NARCIS (Netherlands)

    Maltseva, Elena; Amirjalayer, Saeed; Cnossen, Arjen; Browne, Wesley R.; Feringa, Ben L.; Buma, Wybren Jan

    2017-01-01

    High-resolution laser spectroscopy in combination with molecular beams and mass-spectrometry has been applied to study samples of a prototypical rotary motor. Vibrationally well-resolved excitation spectra have been recorded that are assigned, however, to a structural isomer of the original rotary

  9. Pulsed-High Field/High-Frequency EPR Spectroscopy

    Science.gov (United States)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  10. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    Directory of Open Access Journals (Sweden)

    Guillaume Ducournau

    2009-11-01

    Full Text Available A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements.

  11. Direct observation and analysis of yolk-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, Shunsuke; Suga, Mitsuo; Takahashi, Hideyuki [JEOL Ltd., SM Business Unit, Tokyo (Japan); Young Jeong, Hu [Graduate School of EEWS, WCU/BK21+, KAIST, Daejeon 305-701 (Korea, Republic of); Galeano, Carolina; Schüth, Ferdi [Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Mülheim (Germany); Terasaki, Osamu, E-mail: terasaki@mmk.su.se, E-mail: terasaki@kaist.ac.kr [Graduate School of EEWS, WCU/BK21+, KAIST, Daejeon 305-701 (Korea, Republic of); Department of Materials and Environmental Chemistry, Berzelii Centre EXSELENT on Porous Materials, Stockholm University, SE-10691 Stockholm (Sweden)

    2014-11-01

    Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in yolk-shell materials of Au@C, Ru/Pt@C, Au@TiO{sub 2}, and Pt@Polymer. Progresses in the following categories were shown for the yolk-shell materials: (i) resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii) sample preparation for observing internal structures; and (iii) X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  12. Dose-dependent high-resolution electron ptychography

    International Nuclear Information System (INIS)

    D'Alfonso, A. J.; Allen, L. J.; Sawada, H.; Kirkland, A. I.

    2016-01-01

    Recent reports of electron ptychography at atomic resolution have ushered in a new era of coherent diffractive imaging in the context of electron microscopy. We report and discuss electron ptychography under variable electron dose conditions, exploring the prospects of an approach which has considerable potential for imaging where low dose is needed

  13. What can we Expect of High-Resolution Spectroscopies on Carbohydrates?

    Science.gov (United States)

    Cocinero, Emilio J.; Ecija, Patricia; Uriarte, Iciar; Usabiaga, Imanol; Fernández, José A.; Basterretxea, Francisco J.; Lesarri, Alberto; Davis, Benjamin G.

    2015-06-01

    Carbohydrates are one of the most multifaceted building blocks, performing numerous roles in living organisms. We present several structural investigations on carbohydrates exploiting an experimental strategy which combines microwave (MW) and laser spectroscopies in high-resolution. Laser spectroscopy offers high sensitivity coupled to mass and conformer selectivity, making it ideal for polysaccharides studies. On the other hand, microwave spectroscopy provides much higher resolution and direct access to molecular structure of monosaccharides. This combined approach provides not only accurate chemical insight on conformation, structure and molecular properties, but also benchmarking standards guiding the development of theoretical calculations. In order to illustrate the possibilities of a combined MW-laser approach we present results on the conformational landscape and structural properties of several monosaccharides and oligosaccharides including microsolvation and molecular recognition processes of carbohydrates. E.J. Cocinero, A. Lesarri, P. écija, F.J. Basterretxea, J.-U. Grabow, J.A. Fernández and F. Casta {n}o Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E.J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B.G. Davis, F.J. Basterretxea, J.A. Fernández and F. Casta {n}o J. Am. Chem. Soc. 135, 2845-2852, 2013. E.J. Cocinero, P. Çarçabal, T.D. Vaden, J.P. Simons and B.G. Davis Nature 469, 76-80, 2011. C.S. Barry, E.J. Cocinero, P. Çarçabal, D.P. Gamblin, E.C. Stanca-Kaposta, S. M. Fernández-Alonso, S. Rudić, J.P. Simons and B.G. Davis J. Am. Chem. Soc. 135, 16895-16903, 2013.

  14. High resolution electron energy loss spectroscopy of clean and hydrogen covered Si(001) surfaces: first principles calculations.

    Science.gov (United States)

    Patterson, C H

    2012-09-07

    Surface phonons, conductivities, and loss functions are calculated for reconstructed (2×1), p(2×2) and c(4×2) clean Si(001) surfaces, and (2×1) H and D covered Si(001) surfaces. Surface conductivities perpendicular to the surface are significantly smaller than conductivities parallel to the surface. The surface loss function is compared to high resolution electron energy loss measurements. There is good agreement between calculated loss functions and experiment for H and D covered surfaces. However, agreement between experimental data from different groups and between theory and experiment is poor for clean Si(001) surfaces. Formalisms for calculating electron energy loss spectra are reviewed and the mechanism of electron energy losses to surface vibrations is discussed.

  15. Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy.

    Science.gov (United States)

    Liu, Qianlang; March, Katia; Crozier, Peter A

    2017-07-01

    Surface and near-surface electronic states were probed with nanometer spatial resolution in MgO and TiO 2 anatase nanoparticles using ultra-high energy resolution electron energy-loss spectroscopy (EELS) coupled to a scanning transmission electron microscope (STEM). This combination allows the surface electronic structure determined with spectroscopy to be correlated with nanoparticle size, morphology, facet etc. By acquiring the spectra in aloof beam mode, radiation damage to the surface can be significantly reduced while maintaining the nanometer spatial resolution. MgO and TiO 2 showed very different bandgap features associated with the surface/sub-surface layer of the nanoparticles. Spectral simulations based on dielectric theory and density of states models showed that a plateau feature found in the pre-bandgap region in the spectra from (100) surfaces of 60nm MgO nanocubes is consistent with a thin hydroxide surface layer. The spectroscopy shows that this hydroxide species gives rise to a broad filled surface state at 1.1eV above the MgO valence band. At the surfaces of TiO 2 nanoparticles, pronounced peaks were observed in the bandgap region, which could not be well fitted to defect states. In this case, the high refractive index and large particle size may make Cherenkov or guided light modes the likely causes of the peaks. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Refinement procedure for the image alignment in high-resolution electron tomography.

    Science.gov (United States)

    Houben, L; Bar Sadan, M

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Structure of Se-rich As-Se glasses by high-resolution x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Golovchak, R.; Kovalskiy, A.; Miller, A. C.; Jain, H.; Shpotyuk, O.

    2007-01-01

    To establish the validity of various proposed structural models, we have investigated the structure of the binary As x Se 100-x chalcogenide glass family (x≤40) by high-resolution x-ray photoelectron spectroscopy. From the composition dependence of the valence band, the contributions to the density of states from the 4p lone pair electrons of Se and the 4p bonding states and 4s electrons of Se and As are identified in the top part of the band. The analysis of Se 3d and As 3d core-level spectra supports the so-called chain crossing model for the atomic structure of Se-rich As x Se 100-x bulk glasses. The results also indicate small deviations (∼3-8%) from this model, especially for glass compositions with short Se chains (25 40 Se 60 and of Se-Se-Se fragments in a glass with composition x=30 is established

  18. Depth sectioning using electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    D'Alfonso, A J; Findlay, S D; Allen, L J; Cosgriff, E C; Kirkland, A I; Nellist, P D; Oxley, M P

    2008-01-01

    The continued development of electron probe aberration correctors for scanning transmission electron microscopy has enabled finer electron probes, allowing atomic resolution column-by-column electron energy loss spectroscopy. Finer electron probes have also led to a decrease in the probe depth of focus, facilitating optical slicing or depth sectioning of samples. The inclusion of post specimen aberration corrected image forming lenses allows for scanning confocal electron microscopy with further improved depth resolution and selectivity. We show that in both scanning transmission electron microscopy and scanning confocal electron microscopy geometries, by performing a three dimensional raster scan through a specimen and detecting electrons scattered with a characteristic energy loss, it will be possible to determine the location of isolated impurities embedded within the bulk.

  19. High resolution spectroscopy of the 12Lambda B hypernucleus produced by the (e,e'K+) reaction.

    Science.gov (United States)

    Miyoshi, T; Sarsour, M; Yuan, L; Zhu, X; Ahmidouch, A; Ambrozewicz, P; Androic, D; Angelescu, T; Asaturyan, R; Avery, S; Baker, O K; Bertovic, I; Breuer, H; Carlini, R; Cha, J; Chrien, R; Christy, M; Cole, L; Danagoulian, S; Dehnhard, D; Elaasar, M; Empl, A; Ent, R; Fenker, H; Fujii, Y; Furic, M; Gan, L; Garrow, K; Gasparian, A; Gueye, P; Harvey, M; Hashimoto, O; Hinton, W; Hu, B; Hungerford, E; Jackson, C; Johnston, K; Juengst, H; Keppel, C; Lan, K; Liang, Y; Likhachev, V P; Liu, J H; Mack, D; Margaryan, A; Markowitz, P; Martoff, J; Mkrtchyan, H; Nakamura, S N; Petkovic, T; Reinhold, J; Roche, J; Sato, Y; Sawafta, R; Simicevic, N; Smith, G; Stepanyan, S; Tadevosyan, V; Takahashi, T; Tanida, K; Tang, L; Ukai, M; Uzzle, A; Vulcan, W; Wells, S; Wood, S; Xu, G; Yamaguchi, H; Yan, C

    2003-06-13

    High-energy, cw electron beams at new accelerator facilities allow electromagnetic production and precision study of hypernuclear structure, and we report here on the first experiment demonstrating the potential of the (e,e'K+) reaction for hypernuclear spectroscopy. This experiment is also the first to take advantage of the enhanced virtual photon flux available when electrons are scattered at approximately zero degrees. The observed energy resolution was found to be approximately 900 keV for the (12)(Lambda)B spectrum, and is substantially better than any previous hypernuclear experiment using magnetic spectrometers. The positions of the major excitations are found to be in agreement with a theoretical prediction and with a previous binding energy measurement, but additional structure is also observed in the core excited region, underlining the future promise of this technique.

  20. A high resolution 16 k multi-channel analyzer PC add-on card

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Paulson, Molly; Vaidya, P.P.

    2001-01-01

    This paper describes the system details of a 16 K channel resolution Multi-Channel Analyzer (MCA) developed at Electronics Division, BARC, which is used in high resolution nuclear spectroscopy systems for pulse height analysis. The high resolution data acquisition PC add-on card is architectured using a state of the art digital circuit design technology which makes use of a Field Programmable Gate Array (FPGA), and some of the most modern and advanced analog counterparts like low power, high speed and high precision comparators, Op-amps, ADCs and DACs etc. The 16 K MCA card gives an economic, compact, and low power alternative for nuclear pulse spectroscopy use. (author)

  1. High-resolution laser spectroscopy of rare-earth doped insulators: a personal perspective

    International Nuclear Information System (INIS)

    Macfarlane, Roger M.

    2002-01-01

    I offer some reflections on the past three decades of high-resolution spectroscopy of rare-earth ions in solids which was ushered in by the development of tunable lasers in the mid 1970s. A brief review is given of some of the accomplishments in the area of spectral hole-burning and coherent transient spectroscopy, emphasizing work with which the author has been associated. Spectral hole-burning has been characterized by a richness of mechanisms. These include population storage in nuclear-spin and electron-spin Zeeman sub-levels, hyperfine and superhyperfine levels and metastable optical levels with corresponding hole lifetimes from many hours to microseconds. In addition, persistent hole-burning has been seen in disordered materials and in those showing photo-ionization or photo-chemistry following excitation into zero-phonon lines. This has made hole-burning a generally useful technique for the measurement of magnetic and electric dipole moments, hyperfine interactions, spin relaxation and thermally induced line-broadening. Photon-echoes have proven to be the prime source of coherence-time information and coherence times as long as several milliseconds corresponding to optical resonance widths of less than 100 Hz have been reported. Tables summarizing these results and providing references to original work are included

  2. High-resolution observation by double-biprism electron holography

    International Nuclear Information System (INIS)

    Harada, Ken; Tonomura, Akira; Matsuda, Tsuyoshi; Akashi, Tetsuya; Togawa, Yoshihiko

    2004-01-01

    High-resolution electron holography has been achieved by using a double-biprism interferometer implemented on a 1 MV field emission electron microscope. The interferometer was installed behind the first magnifying lens to narrow carrier fringes and thus enabled complete separation of sideband Fourier spectrum from center band in reconstruction process. Holograms of Au fine particles and single-crystalline thin films with the finest fringe spacing of 4.2 pm were recorded and reconstructed. The overall holography system including the reconstruction process performed well for holograms in which carrier fringes had a spacing of around 10 pm. High-resolution lattice images of the amplitude and phase were clearly reconstructed without mixing of the center band and sideband information. Additionally, entire holograms were recorded without Fresnel fringes normally generated by the filament electrode of the biprism, and the holograms were thus reconstructed without the artifacts caused by Fresnel fringes

  3. High resolution NMR spectroscopy of physiological fluids: from metabolism to physiology

    International Nuclear Information System (INIS)

    Vion-Dury, J.; Nicoli, F.; Torri, G.; Torri, J.; Kriat, M.; Sciaky, M.; Davin, A.; Viout, P.; Confort-Gouny, S.; Cozzone, P.J.

    1992-01-01

    High resolution NMR spectroscopy of physiological fluids provides quantitative, qualitative and dynamic information on the metabolic status of the interstitial and plasma compartments under a variety of pathophysiological conditions. The simultaneous detection and quantitation by NMR spectroscopy of numerous compounds of the intermediary metabolism offers a new insight in the understanding of the 'milieu interieur'.NMR spectroscopy of physiological fluids offers a unique way to define and monitor the global metabolic homeostasis in humans. The development of this analytical approach is still limited by the scarcity of pluridisciplinary teams able to fully exploit the wealth of information present on the NMR spectrum of a fluid. While application in pharmacology and toxicology is already established, the main areas of current development are cancer, hereditary metabolic disorders, organ transplantation and neurological diseases

  4. High Resolution Gamma Ray Spectroscopy at MHz Counting Rates With LaBr3 Scintillators for Fusion Plasma Applications

    Science.gov (United States)

    Nocente, M.; Tardocchi, M.; Olariu, A.; Olariu, S.; Pereira, R. C.; Chugunov, I. N.; Fernandes, A.; Gin, D. B.; Grosso, G.; Kiptily, V. G.; Neto, A.; Shevelev, A. E.; Silva, M.; Sousa, J.; Gorini, G.

    2013-04-01

    High resolution γ-ray spectroscopy measurements at MHz counting rates were carried out at nuclear accelerators, combining a LaBr 3(Ce) detector with dedicated hardware and software solutions based on digitization and off-line analysis. Spectra were measured at counting rates up to 4 MHz, with little or no degradation of the energy resolution, adopting a pile up rejection algorithm. The reported results represent a step forward towards the final goal of high resolution γ-ray spectroscopy measurements on a burning plasma device.

  5. Energy analyzer for Auger electron spectroscopy and low-energy backscattering ion spectroscopy

    International Nuclear Information System (INIS)

    Volkov, S.S.; Gorelik, V.A.; Gutenko, V.T.; Protopopov, O.D.; Trubitsin, A.A.; Shuvalova, Z.A.; Yakushev, G.A.

    1988-01-01

    Energy analyzer for electron Auger spectroscopy and low-energy backscattering ion spectroscopy is described. Analyzer presents one-cascade variant of cylindrical mirror with second-order focusing. Energy relative resolution is continuously adjusted within 0.2-1.2% limits. Signal/noise relation by Cu Auger-line at 1 muA current of exciting beam changes upper limit of range 150-450

  6. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    Science.gov (United States)

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  7. High-resolution parallel electron energy-loss spectroscopy of MnL2,3-edges in inorganic manganese compounds

    International Nuclear Information System (INIS)

    Garvie, L.A.J.; Craven, A.J.

    1994-01-01

    Parallel electron energy-loss spectroscopy (PEELS) in a scanning transmission electron microscope (STEM) was used to record the Mn L 2,3 -edges from a range of natural and synthetic manganese containing materials, covering valences 0, II, III, IV and VII, with an energy resolution of ca. 0.5 eV. The Mn L 2,3 electron-loss near-edge structure (ELNES) of these edges provided a sensitive fingerprint of its valence. The Mn 2+ L 2,3 -edges show little sensitivity to the local site symmetry of the ligands surrounding the manganese. This is illustrated by comparing the Mn L 2,3 -edges from 4-, 6-and 8-fold coordinated Mn 2+ . In contrast, the Mn L 3 -edges from Mn 3+ and Mn 4+ containing minerals exhibited ELNES that are interpreted in terms of a crystals-field splitting of the 3d electrons, governed by the symmetry of the surrounding ligands. The Mn L 3 -edges for octahedrally coordinated Mn 2+ , Mn 3+ and Mn 4+ showed variations in their ELNES that were sensitive to the crystal-field strength. The crystal-field strength (10Q) was measured from these edges and compared very well with published optically determinted values. The magnitude of 10Dq measured from the Mn L 3 -edges and their O K-edge prepeaks of the manganese oxides were almost identical. This further confirms that the value of 10Dq measured at the Mn L 3 -edge is correct. Selected spectra are compared with theoretical 2p atomic multiplet spectra and the differences and similarities are explained in terms of the covalency and site symmetry of the manganese. The Mn L 3 -edges allow the valence of the manganese to be ascertained, even in multivalent state materials, and can also be used to dtermin 10Dq. (orig.)

  8. High resolution Moessbauer spectroscopy with 67Zn in metallic systems

    International Nuclear Information System (INIS)

    Potzel, W.

    1985-01-01

    Moessbauer experiments on metallic systems are described where the high resolution 93.3 keV resonance in 67 Zn is used. In the first part, the Cu-Zn alloy system is investigated and the high energy resolution of this Moessbauer transition is employed to determine small changes of the s-electron density at the 67 Zn nucleus when the Zn concentration is changed. In the second part, Zn metal is taken as an example to demonstrate that the 93.3 keV transition is also extremely sensitive to small changes of lattice dynamical effects. 7 refs., 18 figs. (author)

  9. Direct observation and analysis of york-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    Directory of Open Access Journals (Sweden)

    Shunsuke Asahina

    2014-11-01

    Full Text Available Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in york-shell materials of Au@C, Ru/Pt@C, Au@TiO2, and Pt@Polymer. Progresses in the following categories were shown for the york-shell materials: (i resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii sample preparation for observing internal structures; and (iii X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  10. A novel probe of intrinsic electronic structure: hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Takata, Y.; Tamasaku, K.; Nishino, Y.; Miwa, D.; Yabashi, M.; Ikenaga, E.; Horiba, K.; Arita, M.; Shimada, K.; Namatame, H.; Nohira, H.; Hattori, T.; Soedergren, S.; Wannberg, B.; Taniguchi, M.; Shin, S.; Ishikawa, T.; Kobayashi, K.

    2005-01-01

    We have realized hard X-ray (HX) photoemission spectroscopy (PES) with high throughput and high-energy resolution for core level and valence band studies using high-energy and high-brilliance synchrotron radiation at SPring-8. This is a brand new method because large escape depth of high-energy photoelectrons enables us to probe intrinsic bulk states free from surface condition. By use of a newly developed electron energy analyzer and well-focused X-rays, high-energy resolution of 75 meV (E/ΔE 79,000) was realized for 5.95 keV photoelectrons

  11. Linear and nonlinear optical spectroscopy: Spectral, temporal and spatial resolution

    DEFF Research Database (Denmark)

    Hvam, Jørn Marcher

    1997-01-01

    Selected linear and nonlinear optical spectroscopies are being described with special emphasis on the possibility of obtaining simultaneous spectral, temporal and spatial resolution. The potential of various experimental techniques is being demonstrated by specific examples mostly taken from inve...... investigations of the electronic, and opto-electronic, properties of semiconductor nanostructures....

  12. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    Science.gov (United States)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  13. Velocity-space observation regions of high-resolution two-step reaction gamma-ray spectroscopy

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nocente, M.; Gorini, G.

    2015-01-01

    High-resolution γ-ray spectroscopy (GRS) measurements resolve spectral shapes of Dopplerbroadened γ-rays. We calculate weight functions describing velocity-space sensitivities of any two-step reaction GRS measurements in magnetized plasmas using the resonant nuclear reaction 9Be(α, nγ)12C...

  14. On the optical stability of high-resolution transmission electron microscopes

    International Nuclear Information System (INIS)

    Barthel, J.; Thust, A.

    2013-01-01

    In the recent two decades the technique of high-resolution transmission electron microscopy experienced an unprecedented progress through the introduction of hardware aberration correctors and by the improvement of the achievable resolution to the sub-Ångström level. The important aspect that aberration correction at a given resolution requires also a well defined amount of optical stability has received little attention so far. Therefore we investigate the qualification of a variety of high-resolution electron microscopes to maintain an aberration corrected optical state in terms of an optical lifetime. We develop a comprehensive statistical framework for the estimation of the optical lifetime and find remarkably low values between tens of seconds and a couple of minutes. Probability curves are introduced, which inform the operator about the chance to work still in the fully aberration corrected state. - Highlights: • We investigate the temporal stability of optical aberrations in HRTEM. • We develop a statistical framework for the estimation of optical lifetimes. • We introduce plots showing the success probability for aberration-free work. • Optical lifetimes in sub-Ångström electron microscopy are surprisingly low. • The success of aberration correction depends strongly on the optical stability

  15. iDEEAA: A novel, versatile apparatus for electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lupulescu, C., E-mail: cosmin.lupulescu@helmholtz-berlin.de [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin (Germany); Arion, T. [Centre for Free-Electron Laser Science (DESY), Notkestrasse 85, 22607 Hamburg (Germany); Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Hergenhahn, U. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany); Ovsyannikov, R. [Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Förstel, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany); Gavrila, G. [Technische Universität Chemnitz, Fakultät Elektrotechnik und Informationstechnik, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Eberhardt, W. [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin (Germany); Centre for Free-Electron Laser Science (DESY), Notkestrasse 85, 22607 Hamburg (Germany)

    2013-12-15

    Highlights: •We developed an experimental end station for time- and angle-resolved X-ray electron spectroscopy. •The instrument can operate in combination with synchrotron radiation, VUV Helium discharge source or table-top high-harmonic laser sources. •Band mapping in solids is possible with unprecedented rapidity. •Electron–electron coincidence spectroscopy is performed at higher data collection rate (due to improved transmission) and with improved energy resolution. -- Abstract: We report the development and present status of the iDEEAA (Instrument for Direct Electron Energy and Angular Analysis) experimental end station for time- and angle-resolved X-ray photoelectron spectroscopy. The setup is based on multidimensional detection of photoelectrons by means of both time-of-flight (TOF) and/or electrostatic analyzers. The instrument offers the possibility to record simultaneously and independently photoelectron and Auger electron spectra. Samples can be either gases or solids. The system can operate with multiple photon sources, such as laboratory-based table-top laser extreme ultraviolet (EUV) sources, monochromatic Helium discharge lamp and soft X-ray synchrotron pulses. We demonstrate the performance of the setup by carrying out electron–electron coincidence experiments on CH{sub 4} and by mapping the band structure of Bi{sub 2}Se{sub 3} using photons of the BESSY II electron storage ring.

  16. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Michael R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)], E-mail: armstrong30@llnl.gov; Boyden, Ken [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Browning, Nigel D. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Gibson, David J.; Hartemann, Fred [N Division, Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-280, Livermore, CA 94550 (United States); Kim, Judy S. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)

    2007-04-15

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  17. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    International Nuclear Information System (INIS)

    Armstrong, Michael R.; Boyden, Ken; Browning, Nigel D.; Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M.; Gibson, David J.; Hartemann, Fred; Kim, Judy S.; King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R.

    2007-01-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10 7 electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution -6 s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed

  18. Development of a metallic magnetic calorimeter for high resolution spectroscopy

    International Nuclear Information System (INIS)

    Linck, M.

    2007-01-01

    In this thesis the development of a metallic magnetic calorimeter for high resolution detection of single x-ray quanta is described. The detector consists of an X-ray absorber and a paramagnetic temperature sensor. The raise in temperature of the paramagnetic sensor due to the absorption of a single X-ray is measured by the change in magnetization of the sensor using a low-noise SQUID magnetometer. The thermodynamic properties of the detector can be described by a theoretical model based on a mean field approximation. This allows for an optimization of the detector design with respect to signal size. The maximal archivable energy resolution is limited by thermodynamic energy fluctuations between absorber, heat bath and thermometer. An interesting field of application for a metallic magnetic calorimeter is X-ray astronomy and the investigation of X-ray emitting objects. Through high-resolution X-ray spectroscopy it is possible to obtain information about physical processes of even far distant objects. The magnetic calorimeter that was developed in this thesis has a metallic absorber with a quantum efficiency of 98% at 6 keV. The energy resolution of the magnetic calorimeter is EFWHM=2.7 eV at 5.9 keV. The deviation of the detector response from a linear behavior of the detector is only 0.8% at 5.9 keV. (orig.)

  19. APES: Acute Precipitating Electron Spectrometer - A High Time Resolution Monodirectional Magnetic Deflection Electron Spectrometer

    Science.gov (United States)

    Michell, R. G.; Samara, M.; Grubbs, G., II; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.

    2016-01-01

    We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm x 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm x 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.

  20. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  1. Atomic column resolved electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Duscher, G.; Pennycook, S.J.; Browning, N.D.

    1998-01-01

    Spatially resolved electron energy-loss spectroscopy (EELS) is rapidly developing into a unique and powerful tool to characterize internal interfaces. Because atomic column resolved Z-contrast imaging can be performed simultaneously with EELS in the scanning transmission electron microscope, this combination allows the atomic structure to be correlated with the electronic structure, and thus the local properties of interfaces or defects can be determined directly. However, the ability to characterize interfaces and defects at that level requires not only high spatial resolution but also the exact knowledge of the beam location, from where the spectrum is obtained. Here we discuss several examples progressing from cases where the limitation in spatial resolution is given by the microscopes or the nature of the sample, to one example of impurity atoms at a grain boundary, which show intensity and fine structure changes from atomic column to atomic column. Such data can be interpreted as changes in valence of the impurity, depending on its exact site in the boundary plane. Analysis ofthis nature is a valuable first step in understanding the microscopic structural, optical and electronic properties of materials. (orig.)

  2. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    Science.gov (United States)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  3. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke; Li, Zhean; Chen, Xiangjun, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-08-15

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  4. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-01-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  5. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B., E-mail: dturner@nyu.edu [Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 (United States)

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  6. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  7. Electron attachment cross sections obtained from electron attachment spectroscopy

    International Nuclear Information System (INIS)

    Popp, P.; Baumbach, J.I.; Leonhardt, J.W.; Mothes, S.

    1988-01-01

    Electron capture detectors have a high sensitivity for substances with high thermal electron attachment cross sections. The electron attachment spectroscopy makes it possible to change the mean electron energy in such a way that the maximum for dissociative electron attachment is reached. Thus, best operation modes of the detection system as well as significant dependencies of electron attachment coefficients are available. Cross sections for electron attachment as a function of the electron energy are obtained with the knowledge of electron energy distribution functions from Boltzmann equation analysis by a special computer code. A disadvantage of this electron attachment spectroscopy is the superposition of space charge effects due to the decrease of the electron drift velocity with increasing mean electron energy. These influences are discussed. (author)

  8. Silicon drift detectors with on-chip electronics for x-ray spectroscopy.

    Science.gov (United States)

    Fiorini, C; Longoni, A; Hartmann, R; Lechner, P; Strüder, L

    1997-01-01

    The silicon drift detector (SDD) is a semiconductor device based on high resistivity silicon fully depleted through junctions implanted on both sides of the semiconductor wafer. The electrons generated by the ionizing radiation are driven by means of a suitable electric field from the point of interaction toward a collecting anode of small capacitance, independent of the active area of the detector. A suitably designed front-end JFET has been directly integrated on the detector chip close to the anode region, in order to obtain a nearly ideal capacitive matching between detector and transistor and to minimize the stray capacitances of the connections. This feature allows it to reach high energy resolution also at high count rates and near room temperature. The present work describes the structure and the performance of SDDs specially designed for high resolution spectroscopy with soft x rays at high detection rate. Experimental results of SDDs used in spectroscopy applications are also reported.

  9. Probing the electronic structure and Au–C chemical bonding in AuC2− and AuC2 using high-resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    León, Iker; Yang, Zheng; Wang, Lai-Sheng

    2014-01-01

    We report photoelectron spectroscopy (PES) and high-resolution PE imaging of AuC 2 − at a wide range of photon energies. The ground state of AuC 2 − is found to be linear (C ∞v , 1 Σ + ) with a …8π 4 4δ 4 17σ 2 9π 4 18σ 2 valence configuration. Detachments from all the five valence orbitals of the ground state of AuC 2 − are observed at 193 nm. High-resolution PE images are obtained in the energy range from 830 to 330 nm, revealing complicated vibronic structures from electron detachment of the 18σ, 9π, and 17σ orbitals. Detachment from the 18σ orbital results in the 2 Σ + ground state of neutral AuC 2 , which, however, is bent due to strong vibronic coupling with the nearby 2 Π state from detachment of a 9π electron. The 2 Σ + – 2 Π vibronic and spin-orbit coupling results in complicated vibronic structures for the 2 Σ + and 2 Π 3/2 states with extensive bending excitations. The electron affinity of AuC 2 is measured accurately to be 3.2192(7) eV with a ground state bending frequency of 195(6) cm −1 . The first excited state ( 2 A′) of AuC 2 , corresponding to the 2 Π 3/2 state at the linear geometry, is only 0.0021 eV above the ground state ( 2 A′) and has a bending frequency of 207(6) cm −1 . The 2 Π 1/2 state, 0.2291 eV above the ground state, is linear with little geometry change relative to the anion ground state. The detachment of the 17σ orbital also results in complicated vibronic structures, suggesting again a bent state due to possible vibronic coupling with the lower 2 Π state. The spectrum at 193 nm shows the presence of a minor species with less than 2% intensity relative to the ground state of AuC 2 − . High-resolution data of the minor species reveal several vibrational progressions in the Au–C stretching mode, which are assigned to be from the metastable 3 Π 2,1,0 spin-orbit excited states of AuC 2 − to the 2 Π 3/2,1/2 spin-orbit states of neutral AuC 2 . The spin-orbit splittings of the 3 Π and 2

  10. Broadband high-resolution two-photon spectroscopy with laser frequency combs

    OpenAIRE

    Hipke, Arthur; Meek, Samuel A.; Ideguchi, Takuro; Hänsch, Theodor W.; Picqué, Nathalie

    2013-01-01

    Two-photon excitation spectroscopy with broad spectral span is demonstrated at Doppler-limited resolution. We describe first Fourier transform two-photon spectroscopy of an atomic sample with two mode-locked laser oscillators in a dual-comb technique. Each transition is uniquely identified by the modulation imparted by the interfering comb excitations. The temporal modulation of the spontaneous two-photon fluorescence is monitored with a single photodetector, and the spectrum is revealed by a...

  11. High-Resolution Spectroscopy of Laser Ablation Plumes Using Laser-Induced Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2017-02-06

    We used a CW laser as a narrow-band (~50kHz) tunable LIF excitation source to probe absorption from selected atomic transitions (Al, U etc. ) in a ns laser ablation plume. A comparison of fluorescence signal with respect to emission spectroscopy show significant increase in the magnitude and persistence from selected Al and U transitions in a LIBS plume. The high spectral resolution provided by the LIF measurement allows peaks to be easily separated even if they overlap in the emission spectra.

  12. Multidimensional high harmonic spectroscopy

    International Nuclear Information System (INIS)

    Bruner, Barry D; Soifer, Hadas; Shafir, Dror; Dudovich, Nirit; Serbinenko, Valeria; Smirnova, Olga

    2015-01-01

    High harmonic generation (HHG) has opened up a new frontier in ultrafast science where attosecond time resolution and Angstrom spatial resolution are accessible in a single measurement. However, reconstructing the dynamics under study is limited by the multiple degrees of freedom involved in strong field interactions. In this paper we describe a new class of measurement schemes for resolving attosecond dynamics, integrating perturbative nonlinear optics with strong-field physics. These approaches serve as a basis for multidimensional high harmonic spectroscopy. Specifically, we show that multidimensional high harmonic spectroscopy can measure tunnel ionization dynamics with high precision, and resolves the interference between multiple ionization channels. In addition, we show how multidimensional HHG can function as a type of lock-in amplifier measurement. Similar to multi-dimensional approaches in nonlinear optical spectroscopy that have resolved correlated femtosecond dynamics, multi-dimensional high harmonic spectroscopy reveals the underlying complex dynamics behind attosecond scale phenomena. (paper)

  13. Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception.

    Science.gov (United States)

    Richard-Lacroix, Marie; Zhang, Yao; Dong, Zhenchao; Deckert, Volker

    2017-07-03

    Recent years have seen tremendous improvement of our understanding of high resolution reachable in TERS experiments, forcing us to re-evaluate our understanding of the intrinsic limits of this field, but also exposing several inconsistencies. On the one hand, more and more recent experimental results have provided us with clear indications of spatial resolutions down to a few nanometres or even on the subnanometre scale. Moreover, lessons learned from recent theoretical investigations clearly support such high resolutions, and vice versa the obvious theoretical impossibility to evade high resolution from a purely plasmonic point of view. On the other hand, most of the published TERS results still, to date, claim a resolution on the order of tens of nanometres that would be somehow limited by the tip apex, a statement well accepted for the past 2 decades. Overall, this now leads the field to a fundamental question: how can this divergence be justified? The answer to this question brings up an equally critical one: how can this gap be bridged? This review aims at raising a fundamental discussion related to the resolution limits of tip-enhanced Raman spectroscopy, at revisiting our comprehension of the factors limiting it both from a theoretical and an experimental point of view and at providing indications on how to move the field ahead. It is our belief that a much deeper understanding of the real accessible lateral resolution in TERS and the practical factors that limit them will simultaneously help us to fully explore the potential of this technique for studying nanoscale features in organic, inorganic and biological systems, and also to improve both the reproducibility and the accuracy of routine TERS studies. A significant improvement of our comprehension of the accessible resolution in TERS is thus critical for a broad audience, even in certain contexts where high resolution TERS is not the desired outcome.

  14. Design and performance of a soft-x-ray interferometer for ultra-high-resolution fourier transform spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Duarte, R.M.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    A Fourier Transform Soft X-ray spectrometer (FT-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution (theoretical resolving power E/{delta}E{approximately}10{sup 6}) spectroscopy in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  15. Robust high-resolution quantification of time signals encoded by in vivo magnetic resonance spectroscopy

    Science.gov (United States)

    Belkić, Dževad; Belkić, Karen

    2018-01-01

    This paper on molecular imaging emphasizes improving specificity of magnetic resonance spectroscopy (MRS) for early cancer diagnostics by high-resolution data analysis. Sensitivity of magnetic resonance imaging (MRI) is excellent, but specificity is insufficient. Specificity is improved with MRS by going beyond morphology to assess the biochemical content of tissue. This is contingent upon accurate data quantification of diagnostically relevant biomolecules. Quantification is spectral analysis which reconstructs chemical shifts, amplitudes and relaxation times of metabolites. Chemical shifts inform on electronic shielding of resonating nuclei bound to different molecular compounds. Oscillation amplitudes in time signals retrieve the abundance of MR sensitive nuclei whose number is proportional to metabolite concentrations. Transverse relaxation times, the reciprocal of decay probabilities of resonances, arise from spin-spin coupling and reflect local field inhomogeneities. In MRS single voxels are used. For volumetric coverage, multi-voxels are employed within a hybrid of MRS and MRI called magnetic resonance spectroscopic imaging (MRSI). Common to MRS and MRSI is encoding of time signals and subsequent spectral analysis. Encoded data do not provide direct clinical information. Spectral analysis of time signals can yield the quantitative information, of which metabolite concentrations are the most clinically important. This information is equivocal with standard data analysis through the non-parametric, low-resolution fast Fourier transform and post-processing via fitting. By applying the fast Padé transform (FPT) with high-resolution, noise suppression and exact quantification via quantum mechanical signal processing, advances are made, presented herein, focusing on four areas of critical public health importance: brain, prostate, breast and ovarian cancers.

  16. Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qianlang [School for the Engineering of Matter, Transport and Energy, Arizona State University, 85287 AZ (United States); March, Katia [Laboratoire de Physique des Solides, Bâtiment 510, Université Paris-Sud, 91405 Orsay Cedex (France); Crozier, Peter A., E-mail: CROZIER@asu.edu [School for the Engineering of Matter, Transport and Energy, Arizona State University, 85287 AZ (United States)

    2017-07-15

    Surface and near-surface electronic states were probed with nanometer spatial resolution in MgO and TiO{sub 2} anatase nanoparticles using ultra-high energy resolution electron energy-loss spectroscopy (EELS) coupled to a scanning transmission electron microscope (STEM). This combination allows the surface electronic structure determined with spectroscopy to be correlated with nanoparticle size, morphology, facet etc. By acquiring the spectra in aloof beam mode, radiation damage to the surface can be significantly reduced while maintaining the nanometer spatial resolution. MgO and TiO{sub 2} showed very different bandgap features associated with the surface/sub-surface layer of the nanoparticles. Spectral simulations based on dielectric theory and density of states models showed that a plateau feature found in the pre-bandgap region in the spectra from (100) surfaces of 60 nm MgO nanocubes is consistent with a thin hydroxide surface layer. The spectroscopy shows that this hydroxide species gives rise to a broad filled surface state at 1.1 eV above the MgO valence band. At the surfaces of TiO{sub 2} nanoparticles, pronounced peaks were observed in the bandgap region, which could not be well fitted to defect states. In this case, the high refractive index and large particle size may make Cherenkov or guided light modes the likely causes of the peaks. - Highlights: • Bandgap states detected with aloof beam monochromated EELS on oxide nanoparticle surfaces. • Dielectric theory applied to simulate the spectra and interpret surface structure. • Density of states models also be employed to understand the surface electronic structure. • In MgO, one states associate with water species was found close to the valence band edge. • In anatase, two mid-gap states associated with point defects were found.

  17. Experimental positions and lifetimes of Be-like 1s{sup 2}3lnl'(n=3 to 5) states of O{sup 4+} and Ne{sup 6+} ions investigated by high resolution electron spectroscopy: test of calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Bordenave-Montesquieu, D. [Univ. Paul Sabatier, Toulouse (France). Lab. Collisions - Agregats - Reactivite

    1999-07-01

    Using high resolution electron spectroscopy, positions and lifetimes of many Be-like singlet states of the 1s{sup 2}3lnl' Rydberg series (n = 3 to 5) of oxygen and neon have been measured for the first time. This was achieved by a fitting procedure which takes into account an accurate definition of the post-collisional electron lineshapes. These states are produced after a double electron capture by multicharged ions has occurred in O{sup 6+}(1s{sup 2})+He, H{sub 2} and Ne{sup 8+}(1s{sup 2})+He collisions at about 4 keV/amu collision energy. (orig.)

  18. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: the role of 4f electrons.

    Science.gov (United States)

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  19. Electronic structure of Sr2RuO4 studied by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Iwasawa, H.; Aiura, Y.; Saitoh, T.; Yoshida, Y.; Hase, I.; Ikeda, S.I.; Bando, H.; Kubota, M.; Ono, K.

    2007-01-01

    Electronic structure of the monolayer strontium ruthenate Sr 2 RuO 4 was investigated by high-resolution angle-resolved photoemission spectroscopy. We present photon-energy (hν) dependence of the electronic structure near the Fermi level along the ΓM line. The hν dependence has shown a strong spectral weight modulation of the Ru 4d xy and 4d zx bands

  20. An ultrastable Michelson interferometer for high-resolution spectroscopy in the XUV.

    Science.gov (United States)

    Corsi, C; Liontos, I; Cavalieri, S; Bellini, M; Venturi, G; Eramo, R

    2015-02-23

    We developed an ultra-stable and accurately-controllable Michelson interferometer to be used in a deeply unbalanced arm configuration for split-pulse XUV Ramsey-type spectroscopy with high-order laser harmonics. The implemented active and passive stabilization systems allow one to reach instabilities in the nanometer range over meters of relative optical path differences. Producing precisely delayed pairs of pump pulses will generate XUV harmonic pulses that may significantly improve the achievable spectral resolution and the precision of absolute frequency measurements in the XUV.

  1. HIGH-RESOLUTION INFRARED IMAGING AND SPECTROSCOPY OF THE Z CANIS MAJORIS SYSTEM DURING QUIESCENCE AND OUTBURST

    Energy Technology Data Exchange (ETDEWEB)

    Hinkley, Sasha; Hillenbrand, Lynne; Crepp, Justin R. [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd, MC 249-17, Pasadena, CA 91125 (United States); Oppenheimer, Ben R.; Zimmerman, Neil; Brenner, Douglas [Astrophysics Department, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Rice, Emily L. [Department of Engineering Science and Physics, College of Staten Island, City University of New York, 2800 Victory Bvld, Staten Island, NY 10314 (United States); Pueyo, Laurent [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Vasisht, Gautam; Roberts, Jennifer E.; Roberts, Lewis C. Jr.; Burruss, Rick; Wallace, J. Kent; Cady, Eric; Zhai, Chengxing [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Kraus, Adam L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138 (United States); Ireland, Michael J. [Department of Physics and Astronomy, Macquarie University, New South Wales, NSW 2109 (Australia); Beichman, Charles [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Dekany, Richard [Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125 (United States); Parry, Ian R. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); and others

    2013-01-20

    We present adaptive optics photometry and spectra in the JHKL bands along with high spectral resolution K-band spectroscopy for each component of the Z Canis Majoris system. Our high angular resolution photometry of this very young ({approx}<1 Myr) binary, comprised of an FU Ori object and a Herbig Ae/Be star, was gathered shortly after the 2008 outburst while our high-resolution spectroscopy was gathered during a quiescent phase. Our photometry conclusively determines that the outburst was due solely to the embedded Herbig Ae/Be member, supporting results from earlier works, and that the optically visible FU Ori component decreased slightly ({approx}30%) in luminosity during the same period, consistent with previous works on the variability of FU Ori type systems. Further, our high-resolution K-band spectra definitively demonstrate that the 2.294 {mu}m CO absorption feature seen in composite spectra of the system is due solely to the FU Ori component, while a prominent CO emission feature at the same wavelength, long suspected to be associated with the innermost regions of a circumstellar accretion disk, can be assigned to the Herbig Ae/Be member. These findings clarify previous analyses of the origin of the CO emission in this complex system.

  2. High resolution X-ray emission spectroscopy: An advanced tool for actinide research

    Science.gov (United States)

    Vitova, T.; Brendebach, B.; Dardenne, K.; Denecke, M. A.; Lebid, A.; Löble, M.; Rothe, J.; Batuk, O. N.; Hormes, J.; Liu, D.; Breher, F.; Geckeis, H.

    2010-03-01

    High resolution X-ray emission spectroscopy (HRXES) is becoming increasingly important for our understanding of electronic and coordination structures. The combination of such information with development of quantum theoretical tools will advance our capability for predicting reactivity and physical behavior especially of 5f elements. HRXES can be used to remove lifetime broadening by registering the partial fluorescence yield emitted by the sample (i.e., recording a windowed signal from the energy dispersed fluorescence emission while varying incident photon energy), thereby yielding highly resolved X-ray absorption fine structure (XAFS) spectra. Such spectra often display resonant features not observed in conventional XAFS. The spectrometer set-up can also be used for a wide range of other experiments, for example, resonant inelastic X-ray scattering (RIXS), where bulk electron configuration information in solids, liquids and gases is obtained. Valence-selective XAFS studies, where the local structure of a selected element's valence state present in a mixture of valence states can be obtained, as well as site-selective XAFS studies, where the coordination structure of a metal bound to selected elements can be differentiated from that of all the other ligating atoms. A HRXES spectrometer has been constructed and is presently being commissioned for use at the INE-Beamline for actinide research at the synchrotron source ANKA at FZK. We present the spectrometer's compact, modular design, optimized for attaining a wide range of energies, and first test measurement results. Examples from HRXES studies of lanthanides, actinides counter parts, are also shown.

  3. Metallic magnetic calorimeters for high resolution X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, M.; Hengstler, D.; Geist, J.; Schoetz, C.; Hassel, K.; Hendricks, S.; Keller, M.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C. [Heidelberg Univ. (Germany). KIP

    2015-07-01

    We develop microfabricated, energy dispersive particle detector arrays based on metallic magnetic calorimeters (MMCs) for high resolution X-ray spectroscopy to challenge bound-state QED calculations. Our MMCs are operated at about T=30 mK and use a paramagnetic temperature sensor, read-out by a SQUID, to measure the energy deposited by single X-ray photons. We discuss the physics of MMCs, the detector performance and the cryogenic setups for two different detector arrays. We present their microfabrication layouts with focus on challenges like the heatsinking of each pixel of the detector and the overhanging absorbers. The maXs-20 detector is a linear 1x8-pixel array with excellent linearity in its designated energy range up to 20 keV and unsurpassed energy resolution of 1.6 eV for 6 keV x-rays. MaXs-20 operated in a highly portable pulse tube cooled ADR setup has already been used at the EBIT facilities of the MPI-K for new reference measurements of V-like and Ti-like tungsten. The maXs-30 detector currently in development is a 8x8-pixel 2d-array with an active detection area of 16 mm{sup 2} and is designed to detect X-rays up to 50 keV with a designated energy resolution below 5 eV. MaXs-30 will be operated in a cryogen free 3He/4He-dilution refrigerator at the tip of a 40 cm long cold finger at T=20 mK.

  4. a Thz Photomixing Synthesizer Based on a Fiber Frequency Comb for High Resolution Rotational Spectroscopy

    Science.gov (United States)

    Hindle, Francis; Mouret, Gael; Cuisset, Arnaud; Yang, Chun; Eliet, Sophie; Bocquet, Robin

    2010-06-01

    To date the principal application for photomixing sources has been for high resolution spectroscopy of gases due to the large tuning range and spectral purity. New Developments of the Opto-Electronic THz Spectrometer have been performed in order to obtain a powerful tool for High-Resolution Spectroscopy. The combination of two extended cavity laser diodes and fast charge carrier lifetime semiconductor materials has allowed a continuous-wave THz spectrometer to be constructed based on optical heterodyning. Unlike many THz sources, this instrument gives access to all frequencies in the range 0.3 to 3.5 THz with a resolution of 1 MHz. The main spectroscopic applications of this spectrometer were dedicated to line profile analysis of rotational transitions referenced in the spectroscopic databases. One limitation of the THz spectrometer was accuracy with which the generated frequency is known. Recently, this obstacle has been circled with the construction of a photomixing spectrometer where the two pump lasers are phase locked to two modes of a repetition rate stabilized frequency doubled fiber laser frequency comb. In order to achieve a tuning range in excess to 100 MHz a third cw laser was required in the new configuration of the THz spectrometer. To assess the performances of this instrument, the frequencies of the pure rotational transitions of OCS molecules have been measured between 0,8 to 1,2 THz. A rms inferior to 100 kHz, deduced from the frequencies measured, demonstrates that the THz photomixing synthesizer is now able to be competitive with microwave and submillimeter techniques. S. Matton, F. Rohart, R. Bocquet, D. Bigourd, A. Cuisset, F. Hindle, G. Mouret, J. Mol. Spectrosc., 2006, 239: 182. C. Yang, J. Buldyreva, I. E. Gordon, F. Rohart, A. Cuisset, G. Mouret, R. Bocquet, F. Hindle, J. Quant. Spectrosc. Radiat. Transfer, 2008, 109: 2857. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.

  5. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    International Nuclear Information System (INIS)

    Mayer, Jakob

    2010-01-01

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to ΔE/E∼10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION registered ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to ΔE/E 2,3 VV-transition with PAES. Thus, within this thesis two objectives were achieved: Firstly, the PAES spectrometer was renewed and improved by at least one order of magnitude with respect to the signal to noise ratio, the measurement time and the energy resolution. Secondly, several measurements have been carried out, demonstrating the high performance of the spectrometer. Amongst them are first dynamic PAES measurements and a high resolution measurement of the CuM 2,3 VV

  6. High Resolution Infrared Spectroscopy in Astronomy Proceedings of an ESO Workshop Held at Garching, Germany, 18-21 November 2003

    CERN Document Server

    Käufl, Hans Ulrich; Moorwood, Alan F. M

    2005-01-01

    Two specialized new instruments for ESO's VLT, VISIR and CRIRES, spawned the idea for this workshop. CRIRES is a dedicated very high resolution infrared spectrograph; VISIR features a high resolution spectroscopic mode. Together, the instruments combine the sensitivity of an 8m-telescope with the now well-established reliability of VLT-facility instruments. High resolution here means that lines in cool stellar atmospheres and HII-regions can be resolved. The astrophysical topics discussed in this rather specialized workshop range from the inner solar system to active galactic nuclei. There are many possibilities for new discoveries with these instruments, but the unique capability, which becomes available through high-resolution infrared spectroscopy, is the observation of molecular rotational-vibrational transitions in many astrophysical environments. Particularly interesting and surprising in this context, many papers on modeling and laboratory spectroscopy at the workshop appear to indicate that astronomic...

  7. High-resolution electron microscopy and its applications.

    Science.gov (United States)

    Li, F H

    1987-12-01

    A review of research on high-resolution electron microscopy (HREM) carried out at the Institute of Physics, the Chinese Academy of Sciences, is presented. Apart from the direct observation of crystal and quasicrystal defects for some alloys, oxides, minerals, etc., and the structure determination for some minute crystals, an approximate image-contrast theory named pseudo-weak-phase object approximation (PWPOA), which shows the image contrast change with crystal thickness, is described. Within the framework of PWPOA, the image contrast of lithium ions in the crystal of R-Li2Ti3O7 has been observed. The usefulness of diffraction analysis techniques such as the direct method and Patterson method in HREM is discussed. Image deconvolution and resolution enhancement for weak-phase objects by use of the direct method are illustrated. In addition, preliminary results of image restoration for thick crystals are given.

  8. Construction of a high resolution electron beam profile monitor

    International Nuclear Information System (INIS)

    Norem, J.; Dawson, J.; Haberichter, W.; Novak, W.; Reed, L.; Yang, X.F.

    1993-01-01

    Bremsstrahlung from an electron beam on a heavy target can be used to image the beam profile using collimators and slits. The limiting resolution using this system is determined by Fresnel diffraction, and is ∼ √(λd/2), where λ is the photon wavelength and d is determined by the linear dimensions of the system. For linear colliders this resolution could be a few nm. The highest resolution requires detectors which see only high energy, (small λ), photons, and this is accomplished by converting photons to pairs, and detecting Cherenkov light in a nearly forward angle with a CCD detector or streak camera. Tests are planned at the Argonne APS and SLAC FFTB

  9. High-resolution two-photon spectroscopy of a 5 p56 p ←5 p6 transition of xenon

    Science.gov (United States)

    Altiere, Emily; Miller, Eric R.; Hayamizu, Tomohiro; Jones, David J.; Madison, Kirk W.; Momose, Takamasa

    2018-01-01

    We report high-resolution Doppler-free two-photon excitation spectroscopy of Xe from the ground state to the 5 p5(P 3 /2 2 ) 6 p [3 /2 ] 2 2 electronic excited state. This is a first step to developing a comagnetometer using polarized 129Xe atoms for planned neutron electric dipole moment measurements at TRIUMF. Narrow linewidth radiation at 252.5 nm produced by a continuous wave laser was built up in an optical cavity to excite the two-photon transition, and the near-infrared emission from the 5 p56 p excited state to the 5 p56 s intermediate electronic state was used to detect the two-photon transition. Hyperfine constants and isotope shift parameters were evaluated and compared with previously reported values. In addition, the detected photon count rate was estimated from the observed intensities.

  10. Identification of very low energy projectile autoionizing transitions in high velocity collisions using zero-degree Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Liao, C.; Montenegro, E.C.; Hagmann, S.; Richard, P.; Grabbe, S.; Bhalla, C.P.; Wong, K.L.

    1995-01-01

    The unusual looking ''mesa''-shaped cusp observed in O 3+ collisions with He [N. Stolterfoht et al., Proc. 2nd US-Mexico Symp. on Atomic and Molecular Phy. eds. A. Cisneros and T. Morgan (Instituto de Fysica, Cuernavaca, Mexico, 1986) p. 51.], has been investigated using zero-degree electron spectroscopy, in both high resolution singles measurements and lower resolution electron-projectile coincidence measurements at 10, 15 and 23 MeV. The high resolution studies indicate the ''mesa'' peak to be actually composed of primarily two (other than the cusp) very strong autoionizing peaks corresponding to energies of 60 and 100 meV in the emitter frame. The coincidence studies, indicate these lines to originate from excitation of the O 3+ ion followed by autoionization. Ongoing Hartree-Fock-Slater calculations, severely tested at these extremely small transition energies, indicate that these lines can indeed result from the autoionization of t he O 3+ (1s 2 2s2p5l) Rydberg states produced during the collision. Furthermore, the unusually sharp edges of these lines giving rise to the characteristic ''mesa''-shape look, can be explained in terms of the kinematic constraints imposed by the energy and angular acceptance range of the spectrometer. (orig.)

  11. High-Resolution Light Transmission Spectroscopy of Nanoparticles in Real Time

    Science.gov (United States)

    Tanner, Carol; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven

    2017-04-01

    As implemented here, Light Transmission Spectroscopy (LTS) is a high-resolution real-time technique for eliminating spectral noise and systematic effects in wide band spectroscopic measurements of nanoparticles. In this work, we combine LTS with spectral inversion for the purpose of characterizing the size, shape, and number of nanoparticles in solution. The apparatus employs a wide-band multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, and the wavelength dependent light detection system ranges from 200 to 1100 nm with model the total extinction cross-section, and spectral inversion is employed to obtain quantitative particle size distributions. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired. University of Notre Dame Office of Research, College of Science, Department of Physics, and USDA.

  12. Longitudinal profile diagnostic scheme with subfemtosecond resolution for high-brightness electron beams

    Directory of Open Access Journals (Sweden)

    G. Andonian

    2011-07-01

    Full Text Available High-resolution measurement of the longitudinal profile of a relativistic electron beam is of utmost importance for linac based free-electron lasers and other advanced accelerator facilities that employ ultrashort bunches. In this paper, we investigate a novel scheme to measure ultrashort bunches (subpicosecond with exceptional temporal resolution (hundreds of attoseconds and dynamic range. The scheme employs two orthogonally oriented deflecting sections. The first imparts a short-wavelength (fast temporal resolution horizontal angular modulation on the beam, while the second imparts a long-wavelength (slow angular kick in the vertical dimension. Both modulations are observable on a standard downstream screen in the form of a streaked sinusoidal beam structure. We demonstrate, using scaled variables in a quasi-1D approximation, an expression for the temporal resolution of the scheme and apply it to a proof-of-concept experiment at the UCLA Neptune high-brightness injector facility. The scheme is also investigated for application at the SLAC NLCTA facility, where we show that the subfemtosecond resolution is sufficient to resolve the temporal structure of the beam used in the echo-enabled free-electron laser. We employ beam simulations to verify the effect for typical Neptune and NLCTA parameter sets and demonstrate the feasibility of the concept.

  13. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    International Nuclear Information System (INIS)

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, L.A.; Watkins, S.P.

    2016-01-01

    Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-type dopants. Here we present high-resolution photoluminescence (PL) spectroscopy studies of unintentionally doped and Sn-doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I 10 bound exciton transition that was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. The PL linewidths are exceptionally sharp for these samples, enabling a clear identification of several donor species. Temperature-dependent PL measurements of the I 10 line emission energy and intensity dependence reveal a behavior that is similar to other shallow donors in ZnO. Ionized donor bound-exciton and two-electron satellite transitions of the I 10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule) similar to recently observed carbon related donors, and confirming the shallow nature of this defect center, which was recently attributed to a Sn Zn double donor compensated by an unknown single acceptor.

  14. High-Resolution Integrated Optical System

    Science.gov (United States)

    Prakapenka, V. B.; Goncharov, A. F.; Holtgrewe, N.; Greenberg, E.

    2017-12-01

    Raman and optical spectroscopy in-situ at extreme high pressure and temperature conditions relevant to the planets' deep interior is a versatile tool for characterization of wide range of properties of minerals essential for understanding the structure, composition, and evolution of terrestrial and giant planets. Optical methods, greatly complementing X-ray diffraction and spectroscopy techniques, become crucial when dealing with light elements. Study of vibrational and optical properties of minerals and volatiles, was a topic of many research efforts in past decades. A great deal of information on the materials properties under extreme pressure and temperature has been acquired including that related to structural phase changes, electronic transitions, and chemical transformations. These provide an important insight into physical and chemical states of planetary interiors (e.g. nature of deep reservoirs) and their dynamics including heat and mass transport (e.g. deep carbon cycle). Optical and vibrational spectroscopy can be also very instrumental for elucidating the nature of the materials molten states such as those related to the Earth's volatiles (CO2, CH4, H2O), aqueous fluids and silicate melts, planetary ices (H2O, CH4, NH3), noble gases, and H2. The optical spectroscopy study performed concomitantly with X-ray diffraction and spectroscopy measurements at the GSECARS beamlines on the same sample and at the same P-T conditions would greatly enhance the quality of this research and, moreover, will provide unique new information on chemical state of matter. The advanced high-resolution user-friendly integrated optical system is currently under construction and expected to be completed by 2018. In our conceptual design we have implemented Raman spectroscopy with five excitation wavelengths (266, 473, 532, 660, 946 nm), confocal imaging, double sided IR laser heating combined with high temperature Raman (including coherent anti-Stokes Raman scattering) and

  15. 256-pixel microcalorimeter array for high-resolution γ-ray spectroscopy of mixed-actinide materials

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, R., E-mail: rwinkler@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM (United States); Hoover, A.S.; Rabin, M.W. [Los Alamos National Laboratory, Los Alamos, NM (United States); Bennett, D.A.; Doriese, W.B.; Fowler, J.W.; Hays-Wehle, J.; Horansky, R.D.; Reintsema, C.D.; Schmidt, D.R.; Vale, L.R.; Ullom, J.N. [National Institute of Standards and Technology, Boulder, CO (United States)

    2015-01-11

    The application of cryogenic microcalorimeter detectors to γ-ray spectroscopy allows for measurements with unprecedented energy resolution. These detectors are ideally suited for γ-ray spectroscopy applications for which the measurement quality is limited by the spectral overlap of many closely spaced transitions using conventional detector technologies. The non-destructive analysis of mixed-isotope Pu materials is one such application where the precision can be potentially improved utilizing microcalorimeter detectors compared to current state-of-the-art high-purity Ge detectors (HPGe). The LANL-NIST γ-ray spectrometer, a 256-pixel microcalorimeter array based on transition-edge sensors (TESs), was recently commissioned and used to collect data on a variety of Pu isotopic standards to characterize the instrument performance. These measurements represent the first time the simultaneous readout of all 256 pixels for measurements of mixed-isotope Pu materials has been achieved. The LANL-NIST γ-ray spectrometer has demonstrated an average pixel resolution of 55 eV full-width-at-half-maximum at 100 keV, nearly an order of magnitude better than HPGe detectors. Some challenges of the analysis of many-channel ultra-high resolution data and the techniques used to produce quality spectra for isotopic analysis will be presented. The LANL-NIST γ-ray spectrometer has also demonstrated stable operation and obtained high resolution measurements at total array event rates beyond 1 kHz. For a total event rate of 1.25 kHz, approximately 5.6 cps/pixel, a 72.2 eV average FWHM for the 103 keV photopeak of {sup 153}Gd was achieved.

  16. Very high resolution UV and x-ray spectroscopy and imagery of solar active regions. Final report

    International Nuclear Information System (INIS)

    Bruner, M.; Brown, W.A.; Haisch, B.M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft x-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the x-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical x-ray observations using this new technique

  17. Damage-free vibrational spectroscopy of biological materials in the electron microscope.

    Science.gov (United States)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.

  18. High-Resolution Metallic Magnetic Calorimeters for beta-Spectroscopy on 187-Rhenium and Position Resolved X-Ray Spectroscopy

    OpenAIRE

    Porst, Jan-Patrick

    2010-01-01

    This thesis describes the development of metallic magnetic calorimeters (MMCs) for high resolution spectroscopy. MMCs are energy dispersive particle detectors based on the calorimetric principle which are typically operated at temperatures below 100 mK. The detectors make use of a paramagnetic temperature sensor to transform the temperature rise upon the absorption of a particle in the detector into a measurable magnetic flux change in a dc-SQUID. The application of MMCs for neutrino mass mea...

  19. Photoelectron spectroscopy in a wide hν region from 6 eV to 8 keV with full momentum and spin resolution

    International Nuclear Information System (INIS)

    Suga, Shigemasa; Tusche, Christian

    2015-01-01

    Highlights: • Full two-dimensional angle resolved photoelectron spectroscopy (2D-ARPES). • Spin-resolved ARPES (SP-ARPES) with very high spin detection efficiency. • Aberration corrected double hemispherical deflection analyzers (HDAs). • Momentum microscopy (M.M.) with high energy and momentum resolutions. • Spin resolved momentum microscopy with capability of micro-nano region detection. - Abstract: High resolution photoelectron spectroscopy is recognized to be a very powerful approach to study surface and bulk electronic structures of various solids by employing different photon energies (hν). In particular, angle resolved photoelectron spectroscopy (ARPES) has progressed dramatically in the last few decades providing useful information on Fermi surface (FS) topology and band dispersions. The information of the electron spin is often decisive to fully understand the electronic properties of many material classes. However, spin-resolved studies by photoelectron spectroscopy were strongly hindered by the low detection efficiency of spin detectors. In the case of surface electronic structures, possible surface degradation with time is a serious problem to discuss intrinsic electronic effects. Therefore rather fast and high efficiency detection is required in the case of surface sensitive spin-resolved ARPES. Two-dimensional (2D) detection is nowadays widely employed in ARPES. In the use of a conventional hemispherical deflection analyzer (HDA), one direction on the 2D detector corresponds to the binding energy E_B and the other direction to the emission angle. The novel concept of momentum microscopy, however, directly provides 2D (k_x,k_y) maps of the photoemission intensities. The reciprocal space image directly represents the cross section through the valence band structure of the sample at a selected energy. By scanning E_B, very high resolution three-dimensional E_B(k_x,k_y) maps of the band-dispersion can be obtained with high efficiency. If

  20. Digital synthesis of pulse shapes in real time for high resolution radiation spectroscopy

    International Nuclear Information System (INIS)

    Jordanov, Valentin T.; Knoll, Glenn F.

    1994-01-01

    Techniques have been developed for the synthesis of pulse shapes using fast digital schemes in place of the traditional analog methods of pulse shaping. Efficient recursive algorithms have been developed that allow real time implementation of a shaper that can produce either trapezoidal or triangular pulse shapes. Other recursive techniques are presented which allow a synthesis of finite cusp-like shapes. Preliminary experimental tests show potential advantages of using these techniques in high resolution, high count rate pulse spectroscopy. ((orig.))

  1. High resolution neutron spectroscopy - a tool for the investigation of dynamics of polymers and soft matter

    International Nuclear Information System (INIS)

    Monkenbusch, M.; Richter, D.

    2007-01-01

    Neutron scattering, with the ability to vary the contrast of molecular items by hydrogen/deuterium exchanges, is an invaluable tool for soft matter research. Besides the structural information on the mesoscopic scale that is obtained by diffraction methods like small angle neutron scattering, the slow dynamics of molecular motion on mesoscopic scale is accessible by high resolution neutron spectroscopy. The basic features of neutron backscattering spectroscopy, and in particular neutron spin-echo spectroscopy, are presented, in combination with illustrations of results from polymer melt dynamics to protein dynamics which are obtained by these techniques. (authors)

  2. Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Shinohara, T.; Kai, T.; Ooi, M. [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kamiyama, T.; Kiyanagi, Y.; Shiota, Y. [Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo-shi, Hokkaido 060-8628 (Japan); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2014-05-11

    The sharp variation of neutron attenuation at certain energies specific to particular nuclides (the lower range being from ∼1 eV up to ∼1 keV), can be exploited for the remote mapping of element and/or isotope distributions, as well as temperature probing, within relatively thick samples. Intense pulsed neutron beam-lines at spallation sources combined with a high spatial, high-timing resolution neutron counting detector, provide a unique opportunity to measure neutron transmission spectra through the time-of-flight technique. We present the results of experiments where spatially resolved neutron resonances were measured, at energies up to 50 keV. These experiments were performed with the intense flux low background NOBORU neutron beamline at the J-PARC neutron source and the high timing resolution (∼20 ns at epithermal neutron energies) and spatial resolution (∼55 µm) neutron counting detector using microchannel plates coupled to a Timepix electronic readout. Simultaneous element-specific imaging was carried out for several materials, at a spatial resolution of ∼150 µm. The high timing resolution of our detector combined with the low background beamline, also enabled characterization of the neutron pulse itself – specifically its pulse width, which varies with neutron energy. The results of our measurements are in good agreement with the predicted results for the double pulse structure of the J-PARC facility, which provides two 100 ns-wide proton pulses separated by 600 ns, broadened by the neutron energy moderation process. Thermal neutron radiography can be conducted simultaneously with resonance transmission spectroscopy, and can reveal the internal structure of the samples. The transmission spectra measured in our experiments demonstrate the feasibility of mapping elemental distributions using this non-destructive technique, for those elements (and in certain cases, specific isotopes), which have resonance energies below a few keV, and with lower

  3. Investigations and characterization of the microstructure of special ceramic materials using the high-resolution electron microscope

    International Nuclear Information System (INIS)

    Kirn, M.

    1979-01-01

    The possibilities to characterize phases and microstructures by direct lattice imaging are indicated in the following work. Ceramic materials are particularly suitable for this as these exhibit a high mechanical stability in the investigation in the transmission electron microscope. First of all the fundamentals of the high-resolution electron microscopy are introduced and the various resulting possibilities to characterize microstructures are presented. A report then follows on experimental observations on undisturbed crystals of special ceramics on a Si 3 N 4 basis. Furthermore, it is shown that the high-resolution electron microscope provides valuable contributions to the determination of structure, in particular of twin variants. Finally, revealing information on the structure of the interfaces was obtained with the help of high-resolution electron microscopy. (orig./IHOE) [de

  4. Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy.

    Science.gov (United States)

    Vendelbo, S B; Kooyman, P J; Creemer, J F; Morana, B; Mele, L; Dona, P; Nelissen, B J; Helveg, S

    2013-10-01

    In situ high-resolution transmission electron microscopy (TEM) of solids under reactive gas conditions can be facilitated by microelectromechanical system devices called nanoreactors. These nanoreactors are windowed cells containing nanoliter volumes of gas at ambient pressures and elevated temperatures. However, due to the high spatial confinement of the reaction environment, traditional methods for measuring process parameters, such as the local temperature, are difficult to apply. To address this issue, we devise an electron energy loss spectroscopy (EELS) method that probes the local temperature of the reaction volume under inspection by the electron beam. The local gas density, as measured using quantitative EELS, is combined with the inherent relation between gas density and temperature, as described by the ideal gas law, to obtain the local temperature. Using this method we determined the temperature gradient in a nanoreactor in situ, while the average, global temperature was monitored by a traditional measurement of the electrical resistivity of the heater. The local gas temperatures had a maximum of 56 °C deviation from the global heater values under the applied conditions. The local temperatures, obtained with the proposed method, are in good agreement with predictions from an analytical model. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Auger electron spectroscopy, ionization loss spectroscopy, appearance potential spectroscopy

    International Nuclear Information System (INIS)

    Riwan, R.

    1973-01-01

    The spectroscopy of surfaces using an incident electron beam is studied. The fundamental mechanisms are discussed together with the parameters involved in Auger emission: excitation of the atom, de-excitation by electron emission, and the migration of electrons towards the surface and their ejection. Some examples of applications are given (surface structures, metallurgy, chemical information). Two new techniques for analyzing surfaces are studied: ionization spectroscopy, and appearance potential spectroscopy [fr

  6. Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast

    International Nuclear Information System (INIS)

    Cummings, M.L.; Chien, T.Y.; Preissner, C.; Madhavan, V.; Diesing, D.; Bode, M.; Freeland, J.W.; Rose, V.

    2012-01-01

    The combination of high-brilliance synchrotron radiation with scanning tunneling microscopy opens the path to high-resolution imaging with chemical, electronic, and magnetic contrast. Here, the design and experimental results of an in-situ synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system are presented. The system is designed to allow monochromatic synchrotron radiation to enter the chamber, illuminating the sample with x-ray radiation, while an insulator-coated tip (metallic tip apex open for tunneling, electron collection) is scanned over the surface. A unique feature of the SXSTM is the STM mount assembly, designed with a two free-flex pivot, providing an angular degree of freedom for the alignment of the tip and sample with respect to the incoming x-ray beam. The system designed successfully demonstrates the ability to resolve atomic-scale corrugations. In addition, experiments with synchrotron x-ray radiation validate the SXSTM system as an accurate analysis technique for the study of local magnetic and chemical properties on sample surfaces. The SXSTM system's capabilities have the potential to broaden and deepen the general understanding of surface phenomena by adding elemental contrast to the high-resolution of STM. -- Highlights: ► Synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system designed. ► Unique STM mount design allows angular DOF for tip alignment with x-ray beam. ► System demonstrates ability to resolve atomic corrugations on HOPG. ► Studies show chemical sensitivity with STM tip from photocurrent and tunneling. ► Results show system's ability to study local magnetic (XMCD) properties on Fe films.

  7. Comparative analysis of the heme iron electronic structure and stereochemistry in tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a using Mössbauer spectroscopy with a high velocity resolution

    Science.gov (United States)

    Alenkina, I. V.; Kumar, A.; Berkovsky, A. L.; Oshtrakh, M. I.

    2018-02-01

    A comparative study of tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a in the oxy- and deoxy-forms was carried out using 57Fe Mössbauer spectroscopy with a high velocity resolution in order to analyze the heme iron electronic structure and stereochemistry in relation to the Mössbauer hyperfine parameters. The Mössbauer spectra of tetrameric rabbit hemoglobin in both forms were fitted using two quadrupole doublets related to the 57Fe in ɑ- and β-subunits. In contrast, the Mössbauer spectra of monomeric soybean leghemoglobin a were fitted using: (i) two quadrupole doublets for the oxy-form related to two conformational states of the distal His E7 imidazole ring and different hydrogen bonding of oxygen molecule in the oxy-form and (ii) using three quadrupole doublets for deoxy-form related to three conformational states of the proximal His F8 imidazole ring. Small variations of Mössbauer hyperfine parameters related to small differences in the heme iron electronic structure and stereochemistry in tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a are discussed.

  8. Extracting chemical information from high-resolution Kβ X-ray emission spectroscopy

    Science.gov (United States)

    Limandri, S.; Robledo, J.; Tirao, G.

    2018-06-01

    High-resolution X-ray emission spectroscopy allows studying the chemical environment of a wide variety of materials. Chemical information can be obtained by fitting the X-ray spectra and observing the behavior of some spectral features. Spectral changes can also be quantified by means of statistical parameters calculated by considering the spectrum as a probability distribution. Another possibility is to perform statistical multivariate analysis, such as principal component analysis. In this work the performance of these procedures for extracting chemical information in X-ray emission spectroscopy spectra for mixtures of Mn2+ and Mn4+ oxides are studied. A detail analysis of the parameters obtained, as well as the associated uncertainties is shown. The methodologies are also applied for Mn oxidation state characterization of double perovskite oxides Ba1+xLa1-xMnSbO6 (with 0 ≤ x ≤ 0.7). The results show that statistical parameters and multivariate analysis are the most suitable for the analysis of this kind of spectra.

  9. Electron beam fabrication and characterization of high-resolution magnetic force microscopy tips

    Science.gov (United States)

    Rührig, M.; Porthun, S.; Lodder, J. C.; McVitie, S.; Heyderman, L. J.; Johnston, A. B.; Chapman, J. N.

    1996-03-01

    The stray field, magnetic microstructure, and switching behavior of high-resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a thermally evaporated magnetic thin film are transparent to the electron energies used in these TEMs it is possible to observe both the external stray field emanating from the tips as well as their internal domain structure. The experiments confirm the basic features of electron beam fabricated thin film tips concluded from various MFM observations using these tips. Only a weak but highly concentrated stray field is observed emanating from the immediate apex region of the tip, consistent with their capability for high resolution. It also supports the negligible perturbation of the magnetization sample due to the tip stray field observed in MFM experiments. Investigation of the magnetization distributions within the tips, as well as preliminary magnetizing experiments, confirm a preferred single domain state of the high aspect ratio tips. To exclude artefacts of the observation techniques both nonmagnetic tips and those supporting different magnetization states are used for comparison.

  10. Two dimensional molecular electronics spectroscopy for molecular fingerprinting, DNA sequencing, and cancerous DNA recognition.

    Science.gov (United States)

    Rajan, Arunkumar Chitteth; Rezapour, Mohammad Reza; Yun, Jeonghun; Cho, Yeonchoo; Cho, Woo Jong; Min, Seung Kyu; Lee, Geunsik; Kim, Kwang S

    2014-02-25

    Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.

  11. High-resolution proton NMR spectroscopy of cerebrospinal fluid: methodological issues and potential clinical applications

    International Nuclear Information System (INIS)

    Kriat, M.; Nicoli, F.; Vion-Dury, J.; Confort-Gouny, S.; Cozzone, P.J.; Nicoli, F.; Gastaut, J.L.; Dano, P.; Grisoli, F.

    1991-01-01

    High resolution proton nuclear magnetic resonance (NMR) spectroscopy is a new analytical technique which allows to readily identify and quantitate a variety of key metabolites in cerebrospinal fluid (CSF) in relation to normal and pathological brain activity. Proton NMR spectroscopy can be performed on native CSF, with or without addition of exchange reagent (NH 4 Cl). The analysis of native CSF provides qualitative information (identification) of metabolites or xenobiotics present in the fluid. Alternately, CSF can be lyophilized and dissolved in deuterated water. This concentration offers 2 advantages: additional compounds are detected and a precise quantification of all CSF metabolites can be obtained. Both protocols require a very small volume of CFS (1-2 ml). The high informational content available on the NMR spectra of CSF, the ease-of-use of NMR spectroscopy and its cost effectiveness concur to predict that this analytical approach will keep developing to completement the array of existing tests which are already routinely performed on CSF. 6 figs [fr

  12. Probing the electronic structure and Au—C chemical bonding in AuCn− and AuCnH− (n = 2, 4, and 6) using high-resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    León, Iker; Ruipérez, Fernando; Ugalde, Jesus M.; Wang, Lai-Sheng

    2016-01-01

    We report a joint photoelectron spectroscopy and theoretical study on AuC 4 − , AuC 6 − , and AuC n H − (n = 2, 4, and 6) using high-resolution photoelectron imaging and ab initio calculations. The ground state of AuC 2 H − , AuC 4 H − , and AuC 6 H − is found to be linear, while that of AuC 4 − and AuC 6 − is bent. All the species are found to be linear in their neutral ground states. The electron affinities (EAs) are measured to be 3.366(1) and 3.593(1) eV for AuC 4 and AuC 6 , respectively. Both bending and stretching frequencies are resolved in the spectra of AuC 4 − and AuC 6 − . High-resolution data of AuC n H − reveal major vibrational progressions in the Au—C stretching and bending modes. AuC 2 H − has a ground state stretching frequency of 445(10) cm −1 and a bending frequency of 260(10) cm −1 ; AuC 4 H − has a ground state stretching frequency of 340(10) cm −1 ; AuC 6 H − has a ground state stretching frequency of 260(10) cm −1 and a bending frequency of 55(10) cm −1 . The EAs are measured to be 1.475(1), 1.778(1), and 1.962(1) eV for AuC 2 H, AuC 4 H, and AuC 6 H, respectively. The strength of the Au—C bond decreases as the number of carbon atoms increases. The current study provides a wealth of electronic structure information about AuC 4 − , AuC 6 − , and AuC n H − (n = 2, 4, and 6) and their corresponding neutrals.

  13. The Spitzer Infrared Nearby Galaxies Survey: A High-Resolution Spectroscopy Anthology

    Science.gov (United States)

    Dale, Daniel A.; SINGS Team

    2009-05-01

    Results from high resolution mid-infrared spectroscopy are presented for 155 nuclear and extranuclear regions from SINGS. The SINGS sample shows a wide range in the ratio of [SIII]18.71/[SIII]33.48, but the average ratio of the ensemble indicates a typical interstellar electron density of 300--400 cm-3 on 23"x15" scales and 500--600 cm-3 using 11"x9" apertures, independent of whether the region probed is a star-forming nuclear, a star-forming extranuclear, or an AGN environment. Evidence is provided that variations in gas-phase metallicity play an important role in driving variations in radiation field hardness, as indicated by [NeIII]15.56/[NeII]12.81, for regions powered by star formation. Conversely, the radiation hardness for galaxy nuclei powered by accretion around a massive black hole is independent of metal abundance. Furthermore, for metal-rich environments AGN are distinguishable from star-forming regions by significantly larger [NeIII]15.56/[NeII]12.81 ratios. Finally, [FeII]25.99/[NeII]12.81 versus [SiII]34.82/[SIII]33.48 also provides an empirical method for discerning AGN from normal star-forming sources. However, similar to [NeIII]15.56/[NeII]12.81, these mid-infrared line ratios lose their AGN/star-formation diagnostic powers for very low metallicity star-forming systems with hard radiation fields.

  14. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  15. Two-dimensional vibrational-electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  16. High-resolution x-ray spectroscopy of coherent bremsstrahlung fine structure

    International Nuclear Information System (INIS)

    Lund, M.W.

    1989-01-01

    The aim of this research was to provide experimental evidence for fine structure due to umklapp by distinct reciprocal lattice vectors in coherent bremsstrahlung spectra. The spontaneous emission of photons by relativistic electrons transversing thin crystals is made possible by recoil of the crystal, which absorbs momentum in multiples of ℎG where G is a reciprocal lattice vector. Previous work in the MeV-GeV beam energy range used detectors whose energy resolution was greater than 10%. By fitting a Johann wavelength dispersive spectrometer to a transmission electron microscope the author obtained coherent bremsstrahlung spectra of very high quality with energy resolution of 1%. Important to this result were also the fine angular collimation, small energy width of the electron beam in the microscope, and the accurate control of crystal orientation possible in a modern goniometer stage. The theory of the design of bent crystal x-ray spectrometers is extended to include effects of defocus and aberrations. The theory for diffraction from a stationary three dimensional grating due to a dipole radiator moving at relativistic speeds is derived as well as several other broadening mechanisms stemming from experimental variables. This dissertation provides the first experimental observations and corresponding theoretical background for the fine structure of coherent bremsstrahlung due to umklapp by different G-vectors in the same reciprocal lattice plane

  17. High energy photoelectron spectroscopy in basic and applied science: Bulk and interface electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Knut, Ronny; Lindblad, Rebecka [Department of Physics and Astronomy, Uppsala University, SE-751 21 Uppsala (Sweden); Gorgoi, Mihaela [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Rensmo, Håkan [Department of Physics and Astronomy, Uppsala University, SE-751 21 Uppsala (Sweden); Karis, Olof, E-mail: olof.karis@physics.uu.se [Department of Physics and Astronomy, Uppsala University, SE-751 21 Uppsala (Sweden)

    2013-10-15

    Highlights: •We demonstrate how hard X-ray photoelectron spectroscopy can be used to investigate interface properties of multilayers. •By combining HAXPES and statistical methods we are able to provide quantitative analysis of the interface diffusion process. •We show how photoionization cross sections can be used to map partial density of states contributions to valence states. •We use HAXPES to provide insight into the valence electronic structure of e.g. multiferroics and dye-sensitized solar cells. -- Abstract: With the access of new high-performance electron spectrometers capable of analyzing electron energies up to the order of 10 keV, the interest for photoelectron spectroscopy has grown and many new applications of the technique in areas where electron spectroscopies were considered to have limited use have been demonstrated over the last few decades. The technique, often denoted hard X-ray photoelectron spectroscopy (HX-PES or HAXPES), to distinguish the experiment from X-ray photoelectron spectroscopy performed at lower energies, has resulted in an increasing interest in photoelectron spectroscopy in many areas. The much increased mean free path at higher kinetic energies, in combination with the elemental selectivity of the core level spectroscopies in general has led to this fact. It is thus now possible to investigate the electronic structure of materials with a substantially enhanced bulk sensitivity. In this review we provide examples from our own research using HAXPES which to date has been performed mainly at the HIKE facility at the KMC-1 beamline at HZB, Berlin. The review exemplifies the new opportunities using HAXPES to address both bulk and interface electronic properties in systems relevant for applications in magnetic storage, energy related research, but also in purely curiosity driven problems.

  18. High energy photoelectron spectroscopy in basic and applied science: Bulk and interface electronic structure

    International Nuclear Information System (INIS)

    Knut, Ronny; Lindblad, Rebecka; Gorgoi, Mihaela; Rensmo, Håkan; Karis, Olof

    2013-01-01

    Highlights: •We demonstrate how hard X-ray photoelectron spectroscopy can be used to investigate interface properties of multilayers. •By combining HAXPES and statistical methods we are able to provide quantitative analysis of the interface diffusion process. •We show how photoionization cross sections can be used to map partial density of states contributions to valence states. •We use HAXPES to provide insight into the valence electronic structure of e.g. multiferroics and dye-sensitized solar cells. -- Abstract: With the access of new high-performance electron spectrometers capable of analyzing electron energies up to the order of 10 keV, the interest for photoelectron spectroscopy has grown and many new applications of the technique in areas where electron spectroscopies were considered to have limited use have been demonstrated over the last few decades. The technique, often denoted hard X-ray photoelectron spectroscopy (HX-PES or HAXPES), to distinguish the experiment from X-ray photoelectron spectroscopy performed at lower energies, has resulted in an increasing interest in photoelectron spectroscopy in many areas. The much increased mean free path at higher kinetic energies, in combination with the elemental selectivity of the core level spectroscopies in general has led to this fact. It is thus now possible to investigate the electronic structure of materials with a substantially enhanced bulk sensitivity. In this review we provide examples from our own research using HAXPES which to date has been performed mainly at the HIKE facility at the KMC-1 beamline at HZB, Berlin. The review exemplifies the new opportunities using HAXPES to address both bulk and interface electronic properties in systems relevant for applications in magnetic storage, energy related research, but also in purely curiosity driven problems

  19. Very High Spectral Resolution Imaging Spectroscopy: the Fluorescence Explorer (FLEX) Mission

    Science.gov (United States)

    Moreno, Jose F.; Goulas, Yves; Huth, Andreas; Middleton, Elizabeth; Miglietta, Franco; Mohammed, Gina; Nedbal, Ladislav; Rascher, Uwe; Verhoef, Wouter; Drusch, Matthias

    2016-01-01

    The Fluorescence Explorer (FLEX) mission has been recently selected as the 8th Earth Explorer by the European Space Agency (ESA). It will be the first mission specifically designed to measure from space vegetation fluorescence emission, by making use of very high spectral resolution imaging spectroscopy techniques. Vegetation fluorescence is the best proxy to actual vegetation photosynthesis which can be measurable from space, allowing an improved quantification of vegetation carbon assimilation and vegetation stress conditions, thus having key relevance for global mapping of ecosystems dynamics and aspects related with agricultural production and food security. The FLEX mission carries the FLORIS spectrometer, with a spectral resolution in the range of 0.3 nm, and is designed to fly in tandem with Copernicus Sentinel-3, in order to provide all the necessary spectral / angular information to disentangle emitted fluorescence from reflected radiance, and to allow proper interpretation of the observed fluorescence spatial and temporal dynamics.

  20. Pluto's atmosphere in 2015 from high-resolution spectroscopy

    Science.gov (United States)

    Roe, Henry G.; Cook, Jason C.; Mace, Gregory N.; Holler, Bryan J.; Young, Leslie A.; McLane, Jacob N.; Jaffe, Daniel T.

    2015-11-01

    Pluto's thin N2/CH4 atmosphere is in vapor-pressure equilibrium with ices on its surface. The atmosphere evolves seasonally with the varying insolation pattern on Pluto's heterogenous surface, perhaps even largely freezing out to the surface during the coldest portion of Pluto's year. We use high-resolution (R≈25,000-50,000) near-infrared spectroscopy to resolve atmospheric methane absorption lines from Pluto's continuum spectra, as well as separate Pluto's atmospheric lines from the telluric spectrum. In addition to measuring the abundance and temperature of Pluto's atmospheric CH4, with broad wavelength coverage we are able to search for the inevitable products of N2/CH4 photochemistry. In 2015 we are undertaking an intensive campaign using NIRSPEC at Keck Observatory and IGRINS (Immersion Grating INfrared Spectrometer) at McDonald Observatory to coincide with the New Horizons Pluto encounter. We will report initial results from this 2015 campaign and compare the state of Pluto's atmosphere at the time of the New Horizons encounter with earlier years.

  1. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    International Nuclear Information System (INIS)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of Kα and Kβ emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS

  2. High-resolution high-speed dynamic mechanical spectroscopy of cells and other soft materials with the help of atomic force microscopy.

    Science.gov (United States)

    Dokukin, M; Sokolov, I

    2015-07-28

    Dynamic mechanical spectroscopy (DMS), which allows measuring frequency-dependent viscoelastic properties, is important to study soft materials, tissues, biomaterials, polymers. However, the existing DMS techniques (nanoindentation) have limited resolution when used on soft materials, preventing them from being used to study mechanics at the nanoscale. The nanoindenters are not capable of measuring cells, nanointerfaces of composite materials. Here we present a highly accurate DMS modality, which is a combination of three different methods: quantitative nanoindentation (nanoDMA), gentle force and fast response of atomic force microscopy (AFM), and Fourier transform (FT) spectroscopy. This new spectroscopy (which we suggest to call FT-nanoDMA) is fast and sensitive enough to allow DMS imaging of nanointerfaces, single cells, while attaining about 100x improvements on polymers in both spatial (to 10-70 nm) and temporal resolution (to 0.7 s/pixel) compared to the current art. Multiple frequencies are measured simultaneously. The use of 10 frequencies are demonstrated here (up to 300 Hz which is a rather relevant range for biological materials and polymers, in both ambient conditions and liquid). The method is quantitatively verified on known polymers and demonstrated on cells and polymers blends. Analysis shows that FT-nanoDMA is highly quantitative. The FT-nanoDMA spectroscopy can easily be implemented in the existing AFMs.

  3. Exploring high-resolution magic angle spinning (HR-MAS) NMR spectroscopy for metabonomic analysis of apples.

    Science.gov (United States)

    Vermathen, Martina; Marzorati, Mattia; Vermathen, Peter

    2012-01-01

    Classical liquid-state high-resolution (HR) NMR spectroscopy has proved a powerful tool in the metabonomic analysis of liquid food samples like fruit juices. In this paper the application of (1)H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy to apple tissue is presented probing its potential for metabonomic studies. The (1)H HR-MAS NMR spectra are discussed in terms of the chemical composition of apple tissue and compared to liquid-state NMR spectra of apple juice. Differences indicate that specific metabolic changes are induced by juice preparation. The feasibility of HR-MAS NMR-based multivariate analysis is demonstrated by a study distinguishing three different apple cultivars by principal component analysis (PCA). Preliminary results are shown from subsequent studies comparing three different cultivation methods by means of PCA and partial least squares discriminant analysis (PLS-DA) of the HR-MAS NMR data. The compounds responsible for discriminating organically grown apples are discussed. Finally, an outlook of our ongoing work is given including a longitudinal study on apples.

  4. High-resolution imaging and near-infrared spectroscopy of penumbral decay

    Science.gov (United States)

    Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; Rezaei, R.; Sobotka, M.; Deng, N.; Wang, H.; Tritschler, A.; Collados, M.; Diercke, A.; Manrique, S. J. González

    2018-06-01

    Aims: Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us to scrutinize the velocity and magnetic fields of sunspots and their surroundings. Methods: Active region NOAA 12597 was observed on 2016 September 24 with the 1.5-meter GREGOR solar telescope using high-spatial-resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with local correlation tracking, whereas line-of-sight (LOS) velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the "Stokes Inversions based on Response functions" (SIR) code for the Si I and Ca I NIR lines. Results: At the time of the GREGOR observations, the leading sunspot had two light bridges indicating the onset of its decay. One of the light bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55° clockwise over 12 h. Conclusions: In the high-resolution observations of a decaying sunspot, the penumbral filaments facing the flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale.

  5. Conversion electron spectroscopy in transfermium nuclei

    International Nuclear Information System (INIS)

    Herzberg, R.D.

    2003-01-01

    Conversion electron spectroscopy is an essential tool for the spectroscopy of heavy deformed nuclei. The conversion electron spectrometer SACRED has been used in conjunction with the gas-filled recoil separator RITU to study conversion electron cascades in 254 No. The spectra reveal the ground state rotational bands down to low spin. A detailed analysis of the background seen for 254 No shows that approximately 40% of the decay path goes via excited high K bands which may be built on an isomer. (orig.)

  6. Photoelectron spectroscopy in a wide hν region from 6 eV to 8 keV with full momentum and spin resolution

    Energy Technology Data Exchange (ETDEWEB)

    Suga, Shigemasa, E-mail: ssmsuga@gmail.com [Institute of Scientific and Industrial Research, Osaka University, Osaka (Japan); Max-Planck-Institute für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Tusche, Christian [Max-Planck-Institute für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2015-04-15

    Highlights: • Full two-dimensional angle resolved photoelectron spectroscopy (2D-ARPES). • Spin-resolved ARPES (SP-ARPES) with very high spin detection efficiency. • Aberration corrected double hemispherical deflection analyzers (HDAs). • Momentum microscopy (M.M.) with high energy and momentum resolutions. • Spin resolved momentum microscopy with capability of micro-nano region detection. - Abstract: High resolution photoelectron spectroscopy is recognized to be a very powerful approach to study surface and bulk electronic structures of various solids by employing different photon energies (hν). In particular, angle resolved photoelectron spectroscopy (ARPES) has progressed dramatically in the last few decades providing useful information on Fermi surface (FS) topology and band dispersions. The information of the electron spin is often decisive to fully understand the electronic properties of many material classes. However, spin-resolved studies by photoelectron spectroscopy were strongly hindered by the low detection efficiency of spin detectors. In the case of surface electronic structures, possible surface degradation with time is a serious problem to discuss intrinsic electronic effects. Therefore rather fast and high efficiency detection is required in the case of surface sensitive spin-resolved ARPES. Two-dimensional (2D) detection is nowadays widely employed in ARPES. In the use of a conventional hemispherical deflection analyzer (HDA), one direction on the 2D detector corresponds to the binding energy E{sub B} and the other direction to the emission angle. The novel concept of momentum microscopy, however, directly provides 2D (k{sub x},k{sub y}) maps of the photoemission intensities. The reciprocal space image directly represents the cross section through the valence band structure of the sample at a selected energy. By scanning E{sub B}, very high resolution three-dimensional E{sub B}(k{sub x},k{sub y}) maps of the band-dispersion can be

  7. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  8. Moessbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nano technological research

    International Nuclear Information System (INIS)

    Oshtrakha, M.I.; Semionkina, V.A.

    2011-01-01

    Full text: Velocity resolution is a term denoted the smallest velocity step (2V/2 n ) in velocity driving system of Moessbauer spectrometer and velocity step for the one point in Moessbauer spectrum. Velocity resolution coefficient 1/2 n in velocity driving system is constant and velocity resolution value depends on velocity range (2V) only while velocity resolution in Moessbauer spectrum may be the same or less. Moessbauer spectroscopy with a high velocity resolution is a new method to measure precision high quality spectra. It is well known that one of the main parts of Moessbauer spectrometer is velocity driving system. Usual spectrometers are used sinusoidal or triangular velocity reference signal and 256 or 512 channels to form velocity signal. Such velocity driving system provides spectra measurement with a low velocity resolution (2 n =256 or 512 channels) with possibility to decrease measurement time and reach needed signal/noise ratio by spectra folding on the direct and reverse motion. However, these driving systems do not provide a low systematic error for velocity signal while folding increases integral velocity error due to different velocity errors on the direct and reverse motions. These problems can be neglected if a high precision is not required for spectra measurement. Nevertheless, further development of Moessbauer spectroscopy may be related to increase in precision and quality of spectra measurement with less instrumental (systematic) velocity error and to increase in velocity resolution for both spectrometer and spectrum. A new velocity driving system was developed for Moessbauer spectrometer SM- 2201. This system uses saw-tooth shape velocity reference signal and 2 n =4096 channels to form velocity signal. On the basis of SM-2201 and liquid nitrogen cryostat with moving absorber and temperature variation in the range of 295-85 K a new automated precision Moessbauer spectrometric system with a high velocity resolution was created

  9. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    International Nuclear Information System (INIS)

    Borgatti, F.; Torelli, P.; Panaccione, G.

    2016-01-01

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  10. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Borgatti, F., E-mail: francesco.borgatti@cnr.it [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna I-40129 (Italy); Torelli, P.; Panaccione, G. [Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park, Trieste I-34149 (Italy)

    2016-04-15

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  11. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy.

    Science.gov (United States)

    Richter, Johannes M; Branchi, Federico; Valduga de Almeida Camargo, Franco; Zhao, Baodan; Friend, Richard H; Cerullo, Giulio; Deschler, Felix

    2017-08-29

    In band-like semiconductors, charge carriers form a thermal energy distribution rapidly after optical excitation. In hybrid perovskites, the cooling of such thermal carrier distributions occurs on timescales of about 300 fs via carrier-phonon scattering. However, the initial build-up of the thermal distribution proved difficult to resolve with pump-probe techniques due to the requirement of high resolution, both in time and pump energy. Here, we use two-dimensional electronic spectroscopy with sub-10 fs resolution to directly observe the carrier interactions that lead to a thermal carrier distribution. We find that thermalization occurs dominantly via carrier-carrier scattering under the investigated fluences and report the dependence of carrier scattering rates on excess energy and carrier density. We extract characteristic carrier thermalization times from below 10 to 85 fs. These values allow for mobilities of 500 cm 2  V -1  s -1 at carrier densities lower than 2 × 10 19  cm -3 and limit the time for carrier extraction in hot carrier solar cells.Carrier-carrier scattering rates determine the fundamental limits of carrier transport and electronic coherence. Using two-dimensional electronic spectroscopy with sub-10 fs resolution, Richter and Branchi et al. extract carrier thermalization times of 10 to 85 fs in hybrid perovskites.

  12. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    Science.gov (United States)

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2017-05-01

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of Al x Ga 1-x As, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Applications of Cr:ZnSe and Cr:ZnS lasers to ultrabroadband high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Sorokin, E.; Sorokina, I.; Picque, N.; Guelachvili, G.

    2006-01-01

    Full text: Cr 2+ :ZnSe laser, and since recently also the Cr 2+ :ZnS laser proved to be versatile laser sources for trace gas measurements in the whole range between 2 and 3.1 μm. Among the existing methods of sensitive gas detection, intracavity laser absorption spectroscopy (ICLAS) offers some distinct advantages such as the simultaneous coverage of a broad spectral domain and large dynamic range. Under ICLAS the absorbing medium is put inside a laser cavity with broadband gain. As a result, the laser cavity acts as a multipass cell. Equivalent absorption path length of tens of kilometers can be achieved, corresponding to high detection sensitivities of the order of 10 -8 cm -1 and better. Only few examples of ICLAS spectrometers were demonstrated beyond 2 μm. Among them are: KCl:Li Fa(II) color center laser with coverage up to 4 nm at 2638 nm, Co:MgF 2 , covering up to 30 nm around 2040 and 2245 nm, Tm:YAG with coverage up to 35 nm at 2030 nm, and pulsed Cr:ZnSe, with coverage up to 50 nmat 2500 nm. In this talk we discuss application of a Cr 2+ :ZnSe laser to high-resolution and high-sensitivity intracavity absorption spectroscopy (ICLAS) analyzed by time-resolved Fourier transform spectroscopy. This represents the extreme limit presently reached in the infrared by ICLAS with Doppler limited resolution. Our most recent works concern application of a Cr 2+ :ZnS laser for broadband ultrasensitive intracavity laser spectroscopy (ICLAS), with effective absorption path up to about 50 km in the 2.4 μm range. The spectrometer operates with both Er-fiber and direct diode pumping in the very interesting water-free window between ∼ 2.1 and 2.5 μm. The sensitivity of 2 x 10 -9 cm -1 at Doppler-limited resolution allows obtaining spectral information that was previously unreachable in laboratory conditions. Summarizing, intracavity laser spectroscopy technique has been successfully used for measuring and detecting gas constituents with extreme sensitivity and

  14. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-01-01

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ∼7 eV, delivering under typical conditions >10 12 ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  15. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region

    International Nuclear Information System (INIS)

    Sato, Yohei; Terauchi, Masami; Mukai, Masaki; Kaneyama, Toshikatsu; Adachi, Kenji

    2011-01-01

    The dielectric properties of LaB 6 crystals and the plasmonic behavior of LaB 6 nanoparticles, which have been applied to solar heat-shielding filters, were studied by high energy-resolution electron energy-loss spectroscopy (HR-EELS). An EELS spectrum of a LaB 6 crystal showed a peak at 2.0 eV, which was attributed to volume plasmon excitation of carrier electrons. EELS spectra of single LaB 6 nanoparticles showed peaks at 1.1-1.4 eV depending on the dielectric effect from the substrates. The peaks were assigned to dipole oscillation excitations. These peak energies almost coincided with the peak energy of optical absorption of a heat-shielding filter with LaB 6 nanoparticles. On the other hand, those energies were a smaller than a dipole oscillation energy predicted using the dielectric function of bulk LaB 6 crystal. It is suggested that the lower energy than expected is due to an excitation at 1.2 eV, which was observed for oxidized LaB 6 area. -- Highlights: → The dielectric properties of LaB 6 nanoparticles applied to solar heat-shielding filters were studied by HR-EELS. → Plasmon peak energies of the LaB 6 nanoparticles were almost equal to optical absorption energy of a heat-shielding filter. → From this result, near-infrared optical absorption of the filter is due to the surface dipole mode of the nanoparticles.

  16. High resolution neutron spectroscopy for helium isotopes

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; Klages, H.O.; Schmalz, G.; Haesner, B.H.; Kecskemeti, J.; Schwarz, P.; Wilczynski, J.

    1992-01-01

    A high resolution fast neutron time-of-flight spectrometer is described, neutron time-of-flight spectra are taken using a specially designed TDC in connection to an on-line computer. The high time-of-flight resolution of 5 ps/m enabled the study of the total cross section of 4 He for neutrons near the 3/2 + resonance in the 5 He nucleus. The resonance parameters were determined by a single level Breit-Winger fit to the data. (orig.)

  17. Time-of-flight electron energy loss spectroscopy using TM110 deflection cavities

    Directory of Open Access Journals (Sweden)

    W. Verhoeven

    2016-09-01

    Full Text Available We demonstrate the use of two TM110 resonant cavities to generate ultrashort electron pulses and subsequently measure electron energy losses in a time-of-flight type of setup. The method utilizes two synchronized microwave cavities separated by a drift space of 1.45 m. The setup has an energy resolution of 12 ± 2 eV FWHM at 30 keV, with an upper limit for the temporal resolution of 2.7 ± 0.4 ps. Both the time and energy resolution are currently limited by the brightness of the tungsten filament electron gun used. Through simulations, it is shown that an energy resolution of 0.95 eV and a temporal resolution of 110 fs can be achieved using an electron gun with a higher brightness. With this, a new method is provided for time-resolved electron spectroscopy without the need for elaborate laser setups or expensive magnetic spectrometers.

  18. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    Science.gov (United States)

    Zhang, Daliang; Zhu, Yihan; Liu, Lingmei; Ying, Xiangrong; Hsiung, Chia-En; Sougrat, Rachid; Li, Kun; Han, Yu

    2018-02-01

    High-resolution imaging of electron beam–sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  19. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    KAUST Repository

    Zhang, Daliang

    2018-01-18

    High-resolution imaging of electron beam-sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  20. Characterization of tunable light source by optical parametric oscillator for high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. W. [Ewha Womens Univ., Seoul (Korea); Rhee, B. G. [Sejong Univ., Seoul (Korea); Park, S. W. [Yonsei Univ., Seoul (Korea); Noh, J. W. [Inha Univ., Incheon (Korea)

    1998-04-01

    A tunable light source is developed by the optical parametric oscillator, which is very useful for a high resolution spectroscopy. The electronic structure of molecules and atoms can be examined by a proper coherent light source. Optical parametric oscillator provides light sources stable and widely tunable. In this work, the characteristics of the parametric optical generation are examined in the LiNbO{sub 3}. The theoretical analysis as well as the experimental measurement is performed. The pump laser is a second harmonic of Nd:YAG laser, and the parametric gain is measured. The characteristics of singly resonant oscillator and doubly resonant oscillator is studied as a function of temperature. It is found that 1mole% MgO:LiNbO{sub 3} crystal provides the tunability from 0.6{mu}m to 3.0{mu}m wavelength. Both the critical and noncritical phase matching are studied. The optical damage occurring in a congruent LiNbO{sub 3} crystal was not observed in 1mole% MgO:LiNbO{sub 3} crystal, opening a possibility for a high power optical parametric oscillation generation. The current work can be extended to an experiment employing the fundamental Nd:YAG as pump to provide a coherent light source for the study of molecular vibrations. 28 refs., 14 figs., 3 tabs. (Author)

  1. X-ray spectroscopy of highly-ionized atoms in an electron beam ion trap (EBIT)

    International Nuclear Information System (INIS)

    Marrs, R.E.; Bennett, C.; Chen, M.H.

    1988-01-01

    An Electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged-ions (q /le/ 70+) for x-ray spectroscopy measurements. Recent measurements of dielectronic recombination, electron impact excitation and transition energies are presented. 15 refs., 12 figs., 1 tab

  2. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy

    Science.gov (United States)

    Hoesch, M.; Kim, T. K.; Dudin, P.; Wang, H.; Scott, S.; Harris, P.; Patel, S.; Matthews, M.; Hawkins, D.; Alcock, S. G.; Richter, T.; Mudd, J. J.; Basham, M.; Pratt, L.; Leicester, P.; Longhi, E. C.; Tamai, A.; Baumberger, F.

    2017-01-01

    A synchrotron radiation beamline in the photon energy range of 18-240 eV and an electron spectroscopy end station have been constructed at the 3 GeV Diamond Light Source storage ring. The instrument features a variable polarisation undulator, a high resolution monochromator, a re-focussing system to form a beam spot of 50 × 50 μm2, and an end station for angle-resolved photoelectron spectroscopy (ARPES) including a 6-degrees-of-freedom cryogenic sample manipulator. The beamline design and its performance allow for a highly productive and precise use of the ARPES technique at an energy resolution of 10-15 meV for fast k-space mapping studies with a photon flux up to 2 ṡ 1013 ph/s and well below 3 meV for high resolution spectra.

  3. Precision crystal alignment for high-resolution electron microscope imaging

    International Nuclear Information System (INIS)

    Wood, G.J.; Beeching, M.J.

    1990-01-01

    One of the more difficult tasks involved in obtaining quality high-resolution electron micrographs is the precise alignment of a specimen into the required zone. The current accepted procedure, which involves changing to diffraction mode and searching for symmetric point diffraction pattern, is insensitive to small amounts of misalignment and at best qualitative. On-line analysis of the fourier space representation of the image, both for determining and correcting crystal tilt, is investigated. 8 refs., 42 figs

  4. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    Science.gov (United States)

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  5. High Resolution Rotational Spectroscopy of a Flexible Cyclic Ether

    Science.gov (United States)

    Gámez, F.; Martínez-Haya, B.; Blanco, S.; López, J. C.; Alonso, J. L.

    2011-06-01

    Crown ethers stand as one cornerstone molecular class inhost-guest Supramolecular Chemistry and constitute building blocks for a broad range of modern materials. We report here the first high resolution rotational study of a crown ether: 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5 ether,15c5). Molecular beam Fourier transform microwave spectroscopy has been employed. The liquid sample of 15c5 has been vaporized using heating methods. The considerable size of 15c5 and the broad range of conformations allowed by the flexibility of its backbone pose important challenges to spectroscopy approaches. In fact, the ab-initio computational study for isolated 15c5, yields at least six stable conformers with relative free energies within 2 kJ Mol-1 (167 Cm-1). Nevertheless, in this investigation it has been possible to identify and characterize in detail one stable rotamer of the 15c5 molecule and to challenge different quantum methods for the accurate description of this system. The results pave the ground for an extensive description of the conformational landscape of 15c5 and related cyclic ethers in the near term. J. L. Alonso, F. J. Lorenzo, J. C. López, A. Lesarri, S. Mata and H. Dreizler, Chem. Phys., 218, 267 (1997) S. Blanco, J.C López, J.L. Alonso, P. Ottaviani, W. Caminati, J. Chem. Phys. 119, 880 (2003) S.E. Hill, D. Feller, Int. J. Mass Spectrom. 201, 41 (2000)

  6. High resolution transmission electron microscopy and microdiffraction for radiation damage analysis

    International Nuclear Information System (INIS)

    Sinclair, R.

    1982-01-01

    High resolution TEM techniques have developed to quite a sophisticated level over the past few years. In addition TEM instruments with a scanning capability have become available commercially which permit in particular the formation of a small electron probe at the specimen. Thus direct resolution and microdiffraction investigations of thin specimens are now possible, neither of which have been employed to any great extent in the analysis of radiation damage. Some recent advances which are thought to be relevant to this specific area of research are highlighted

  7. High resolution and high voltage electron microscopy at the University of California, Berkeley

    International Nuclear Information System (INIS)

    Thomas, G.; Westmacott, K.H.

    1978-01-01

    Recent applications of high-resolution and high-voltage techniques at Berkely are described, using 100-kV TEMs and a standard 650-keV HVEM: grain boundary precipitation in Al--Zn, lattice imaging of grain boundaries in ceramics, steels, phase transitions and magnetic properties of ferrites, lattice defects, precipitation in Al--Si and behavior of interstitial dislocations under electron irradiation, effect of oxide films on loop formation in Al--Mg, and polytypism in magnesium Sialon. 13 refs. 12 figs

  8. Calibration of high-resolution electronic autocollimators with demanded low uncertainties using single reading head angle encoders

    International Nuclear Information System (INIS)

    Yandayan, Tanfer; Akgoz, S Asli; Asar, Muharrem

    2014-01-01

    Calibration of high-resolution electronic autocollimators is carried out in TUBITAK UME using an angle comparator to ensure direct traceability to the SI unit of plane angle, radian (rad). The device is a specially designed air-bearing rotary table fitted with a commercially available angular encoder utilizing a single reading head. It is shown that high-resolution electronic autocollimators in the large measurement range (e.g. ±1000 arcsec) can be calibrated with an expanded uncertainty of 0.035 arcsec (k = 2) in conventional dimensional laboratory conditions, applying good measurement strategy for single reading head angle encoders and taking simple but smart precautions. Description of the angle comparator is presented with various test results derived using different high-precision autocollimators, and a detailed uncertainty budget is given for the calibration of a high-resolution electronic autocollimator. (paper)

  9. Triple aldose reductase/α-glucosidase/radical scavenging high-resolution profiling combined with high-performance liquid chromatography – high-resolution mass spectrometry – solid-phase extraction – nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude, extract of Radix Scutellariae

    DEFF Research Database (Denmark)

    Tahtah, Yousof; Kongstad, Kenneth Thermann; Wubshet, Sileshi Gizachew

    2015-01-01

    high-performance liquid chromatography – high-resolution mass spectrometry – solid-phase extraction – nuclear magnetic resonance spectroscopy. The only α-glucosidase inhibitor was baicalein, whereas main aldose reductase inhibitors in the crude extract were baicalein and skullcapflavone II, and main....../α-glucosidase/radical scavenging high-resolution inhibition profile - allowing proof of concept with Radix Scutellariae crude extract as a polypharmacological herbal drug. The triple bioactivity high-resolution profiles were used to pinpoint bioactive compounds, and subsequent structure elucidation was performed with hyphenated...

  10. Use of radiochromic film as a high-spatial resolution dosimeter by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Jamal Ahmad; Park, Hyeonsuk [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826 (Korea, Republic of); Park, So-Yeon [Interdisciplinary Program in Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul 03080 (Korea, Republic of); Ye, Sung-Joon, E-mail: sye@snu.ac.kr [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-08-15

    Purpose: Due to increasing demand for high-spatial resolution dosimetry, radiochromic films have been investigated as potential candidates but are often limited by the scanning system, e.g., flatbed optical scanner. In this study, Raman spectroscopy in conjunction with a microscope was selected as an alternative method for high-spatial resolution dosimetry of radiochromic film. Methods: Unlaminated Gafchromic™ EBT3 films were irradiated with doses between 0 and 50 Gy using 6 MV x-rays of a clinical linear accelerator. Depth profiling from the surface of unlaminated film was performed to acquire the maximum Raman intensity peaks of C≡C and C=C stretching bands of diacetylene polymer. The Raman mapping technique for a region of interest (200 × 200, 30 × 30 μm{sup 2}) was developed to reduce a large variation in a Raman spectrum produced with a sampling resolution of a few μm. The preprocessing of Raman spectra was carried out to determine a dosimetric relationship with the amount of diacetylene polymerization. Results: Due to partial diacetylene polymerization upon irradiation, two Raman peaks of C=C and C≡C stretching bands were observed around 1447 and 2060 cm{sup −1}, respectively. The maximum intensities of the two peaks were obtained by positioning a focused laser spot on the surface of unlaminated film. For the dose range of 0–50 Gy, the band heights of both C≡C and C=C peaks increase asymptotically with increasing doses and can be fit with an exponential function of two components. The relative standard deviation in Raman mapping was found to be less than ±5%. By using this technique, dose uniformity was found to be within ±2%. Conclusions: The Raman intensity for C=C and C≡C peaks increases with an increase in the amount of diacetylene polymerization due to an increase in dose. This study shows the potential of Raman spectroscopy as an alternative for absolute dosimetry verifications with a high-spatial resolution of a few μm, but these

  11. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    Science.gov (United States)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  12. High resolution electron microscopy and electron diffraction of YBa2Cu3O(7-x)

    International Nuclear Information System (INIS)

    Krakow, W.; Shaw, T.M.

    1988-01-01

    Experimental high resolution electron micrographs and computer simulation experiments have been used to evaluate the visibility of the atomic constituents of YBa 2 Cu 3 O(7-x). In practice, the detection of oxygen has not been possible in contradiction to that predicted by modelling of perfect crystalline material. Preliminary computer experiments of the electron diffraction patterns when oxygen vacancies are introduced on the Cu-O sheets separating Ba layers show the diffuse streaks characteristic of short range ordering. 7 references

  13. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, D.; Kirschner, J. [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2016-08-15

    We describe a new “complete” spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the “spin-polarizing mirror” type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å{sup −1}, at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution.

  14. Practical Approaches to Mitigation of Specimen Charging in High-Resolution Transmission Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Young-Min Kim

    2010-09-01

    Full Text Available Specimen charging that is associated with the electron bombardment on the sample is a practical hindrance to high-resolution transmission electron microscopy (HRTEM analysis because it causes a severe loss of resolution in either diffraction or image data. Conductive thin film deposition on an insulating specimen has been proposed as an effective approach to the mitigation of the specimen charging; however, this method is generally not useful in HRTEM imaging of materials because the deposited film induces another artifact in the HRTEM image contrast. In this study, we propose practical methods to mitigate the specimen charging that takes place during the HRTEM of materials. For bulk-type specimens prepared by either an ion-thinning or focused-ion beam (FIB process, a plasma cleaning treatment is significantly effective in eliminating the charging phenomenon. In the case of low-dimensional nanomaterials such as nanowires and nanoparticles, the plasma cleaning is not feasible; however, the charging effect can be effectively eliminated by adjusting the electron illumination condition. The proposed methods facilitate a decrease in the buildup of specimen charging, thereby enhancing the quality of high-resolution images significantly.

  15. Development of a high-resolution electron-beam profile monitor using Fresnel zone plates

    International Nuclear Information System (INIS)

    Nakamura, Norio; Sakai, Hiroshi; Muto, Toshiya; Hayano, Hitoshi

    2004-01-01

    We present a high-resolution and real-time beam profile monitor using Fresnel zone plates (FZPs) developed in the KEK-ATF damping ring. The monitor system has an X-ray imaging optics with two FZPs. In this monitor, the synchrotron radiation from the electron beam at the bending magnet is monochromatized by a crystal monochromator and the transverse electron beam image is twenty-times magnified by the two FZPs and detected on an X-ray CCD camera. The expected spatial resolution for the selected photon energy of 3.235 keV is less than 1 μm. With the beam profile monitor, we succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. It is greatly expected that the beam profile monitor will be used in high-brilliance light sources and low-emittance accelerators. (author)

  16. High resolution optical spectroscopy of air-induced electrical instabilities in n-type polymer semiconductors.

    Science.gov (United States)

    Di Pietro, Riccardo; Sirringhaus, Henning

    2012-07-03

    We use high-resolution charge-accumulation optical spectroscopy to measure charge accumulation in the channel of an n-type organic field-effect transistor. We monitor the degradation of device performance in air, correlate the onset voltage shift with the reduction of charge accumulated in the polymer semiconductor, and explain the results in view of the redox reaction between the polymer, water and oxygen in the accumulation layer. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    International Nuclear Information System (INIS)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Padmore, H. A.

    2016-01-01

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs via numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4"t"h or 5"t"h order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.

  18. Efficient creation of electron vortex beams for high resolution STEM imaging.

    Science.gov (United States)

    Béché, A; Juchtmans, R; Verbeeck, J

    2017-07-01

    The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angström, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    Energy Technology Data Exchange (ETDEWEB)

    Foehlisch, A.; Nilsson, A.; Martensson, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  20. Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering

    Science.gov (United States)

    John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard

    2018-05-01

    The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.

  1. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Noroozian, Omid [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, Colorado 80309 (United States); Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Kang, Zhao [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States)

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  2. Electron Energy-Loss Spectroscopy: Fundamentals and applications in the characterization of minerals

    International Nuclear Information System (INIS)

    Krishnan, K.M.

    1989-04-01

    The combined use of an energy-loss spectrometer and an analytical electron microscope with fine probe forming capabilities provides a wealth of information about the sample at high spatial resolution. Fundamental principles governing the physics of the interaction between the fast electron and a thin foil sample, to account for the fine structure in the inelastically scattered fast electron distribution (Electron-Energy Loss Spectroscopy, EELS), will be reviewed. General application of EELS is in the area of low atomic number elements (Z < 11) microanalysis, where it significantly complements the more widely used Energy Dispersive X-ray Spectroscopy (EDXS). However, a careful analysis of the low loss plasmon oscillations and the fine structure in the core-loss edges, can provide additional information related to the bonding and electronic structure of the sample. An illustration of this is presented from our study of Cδ diamond residue from the Allende carbonaceous chondrite. Combination of EELS with channeling effects can provide specific site occupation/valence information in crystalline materials. Details of this novel crystallographic method will be outlined and illustrated with an example of the study of chromite spinels. Finally, some pertinent experimental details will be discussed. 7 figs

  3. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.

    Science.gov (United States)

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  4. High-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array

    Science.gov (United States)

    Guss, Paul; Rabin, Michael; Croce, Mark; Hoteling, Nathan; Schwellenbach, David; Kruschwitz, Craig; Mocko, Veronika; Mukhopadhyay, Sanjoy

    2017-09-01

    We demonstrate very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor (TES) array. The readout circuit consists of superconducting microwave resonators coupled to radio frequency superconducting-quantum-interference devices (RF-SQUIDs) and transduces changes in input current to changes in phase of a microwave signal. We used a flux-ramp modulation to linearize the response and avoid low-frequency noise. The result is a very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array. We performed and validated a small-scale demonstration and test of all the components of our concept system, which encompassed microcalorimetry, microwave multiplexing, RF-SQUIDs, and software-defined radio (SDR). We shall display data we acquired in the first simultaneous combination of all key innovations in a 4-pixel demonstration, including microcalorimetry, microwave multiplexing, RF-SQUIDs, and SDR. We present the energy spectrum of a gadolinium-153 (153Gd) source we measured using our 4-pixel TES array and the RF-SQUID multiplexer. For each pixel, one can observe the two 97.4 and 103.2 keV photopeaks. We measured the 153Gd photon source with an achieved energy resolution of 70 eV, full width half maximum (FWHM) at 100 keV, and an equivalent readout system noise of 90 pA/pHz at the TES. This demonstration establishes a path for the readout of cryogenic x-ray and gamma ray sensor arrays with more elements and spectral resolving powers. We believe this project has improved capabilities and substantively advanced the science useful for missions such as nuclear forensics, emergency response, and treaty verification through the explored TES developments.

  5. Experiments with the High Resolution Kaon Spectrometer at Jlab Hall C and the New Spectroscopy of ^12_Lambda B Hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Liguang; Chen, Chunhua; Gogami, Toshiyuki; Kawama, Daisuke; Han, Yuncheng; Yuan, Lulin; Matsumura, Akihiko; Okayasu, Yuichi; Seva, Tomislav; Rodriguez, Victor; Baturin, Pavlo; Acha Quimper, Armando; Achenbach, Carsten; Ahmidouch, Abdellah; Albayrak, Ibrahim; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Ates, Ozgur; Badui, Rafael; Baker, Oliver; Benmokhtar, Fatiha; Boeglin, Werner; Bono, Jason; Bosted, Peter; Brash, Edward; Carter, Philip; Carlini, Roger; Chiba, Atsushi; Christy, Michael; Cole, Leon; Dalton, Mark; Danagoulian, Samuel; Daniel, Aji; De Leo, Raffaele; Dharmawardane, Kahanawita; Doi, Daisuke; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gabrielyan, Marianna; Gan, Liping; Garibaldi, Franco; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Hashimoto, Osamu; Honda, D; Horn, Tanja; Hu, Bitao; Hungerford, Ed; Jayalath, Chandana; Jones, Mark; Johnston, Kathleen; Kalantarians, Narbe; Kanda, Hiroki; Kaneta, M; Kato, F; Kato, Seigo; Kawai, Masaharu; Keppel, Cynthia; Khanal, Hari; Kohl, M; Kramer, Laird; Lan, Kejian; Li, Ya; Habarakada Liyanage, Anusha; Luo, Wei; Mack, David; Maeda, Kazushige; Malace, Simona; Margaryan, Amur; Marikyan, Gagik; Markowitz, Pete; Maruta, Tomofumi; Maruyama, Nayuta; Maxwell, Victor; Millener, David; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Motoba, Toshio; Nagao, Sho; Nakamura, Satoshi; Narayan, Amrendra; Neville, Casey; Niculescu, Gabriel; Niculescu, Maria; Nunez, Angel; Nuruzzaman, nfn; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Oyamada, Masamichi; Perez, Naipy; Petkovic, Tomislav; Pochodzalla, J; Qiu, Xiyu; Randeniya, Kapugodage; Raue, Brian; Reinhold, Joerg; Rivera, R; Roche, Julie; Samanta, Chhanda; Sato, Yoshinori; Sawatzky, Bradley; Segbefia, Edwin; Schott, Diane; Shichijo, Ayako; Simicevic, Neven; Smith, Gregory; Song, Yushou; Sumihama, Mizuki; Tadevosyan, Vardan; Takahashi, Toshiyuki; Taniya, Naotaka; Tsukada, Kyo; Tvaskis, Vladas; Veilleux, Micah; Vulcan, William; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yamamoto, Taku; Yan, Chen; Ye, Z; Yokota, Kosuke; Zhamkochyan, Simon; Zhu, Lingyan

    2014-09-01

    Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "Tilt Method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. These two experiments, E01-011 and E05-115, resulted in two new data sets, producing sub-MeV energy resolution in the spectra of ${}^{7}_{\\Lambda}\\text{He}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{28}_{\\Lambda} \\text{Al}$ and ${}^{7}_{\\Lambda}\\text{He}$, ${}^{10}_{\\Lambda}\\text{Be}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{52}_{\\Lambda}\\text{V}$. All three experiments obtained a ${}^{12}_{\\Lambda}\\text{B}$, spectrum, which is the most characteristic $p$-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the $(e,e^{\\prime}K^+)$ reaction. This paper presents details of these experiments, and the extraction and analysis of the observed ${}^{12}_{\\Lambda}\\text{B}$ spectrum.

  6. Polystyrene negative resist for high-resolution electron beam lithography

    Directory of Open Access Journals (Sweden)

    Ma Siqi

    2011-01-01

    Full Text Available Abstract We studied the exposure behavior of low molecular weight polystyrene as a negative tone electron beam lithography (EBL resist, with the goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 20-nm period line array and a 15-nm period dot array, which are the densest patterns ever achieved using organic EBL resists. Such dense patterns can be achieved both at 20 and 5 keV beam energies using different developers. In addition to its ultra-high resolution capability, polystyrene is a simple and low-cost resist with easy process control and practically unlimited shelf life. It is also considerably more resistant to dry etching than PMMA. With a low sensitivity, it would find applications where negative resist is desired and throughput is not a major concern.

  7. Development of an environmental high-voltage electron microscope for reaction science.

    Science.gov (United States)

    Tanaka, Nobuo; Usukura, Jiro; Kusunoki, Michiko; Saito, Yahachi; Sasaki, Katuhiro; Tanji, Takayoshi; Muto, Shunsuke; Arai, Shigeo

    2013-02-01

    Environmental transmission electron microscopy and ultra-high resolution electron microscopic observation using aberration correctors have recently emerged as topics of great interest. The former method is an extension of the so-called in situ electron microscopy that has been performed since the 1970s. Current research in this area has been focusing on dynamic observation with atomic resolution under gaseous atmospheres and in liquids. Since 2007, Nagoya University has been developing a new 1-MV high voltage (scanning) transmission electron microscope that can be used to observe nanomaterials under conditions that include the presence of gases, liquids and illuminating lights, and it can be also used to perform mechanical operations to nanometre-sized areas as well as electron tomography and elemental analysis by electron energy loss spectroscopy. The new instrument has been used to image and analyse various types of samples including biological ones.

  8. DNA Electronic Fingerprints by Local Spectroscopy on Graphene

    Science.gov (United States)

    Balatsky, Alexander

    2013-03-01

    Working and scalable alternatives to the conventional chemical methods of DNA sequencing that are based on electronic/ionic signatures would revolutionize the field of sequencing. The approach of a single molecule imaging and spectroscopy with unprecedented resolution, achieved by Scanning Tunneling Spectroscopy (STS) and nanopore electronics could enable this revolution. We use the data from our group and others in applying this local scanning tunneling microscopy and illustrate possibilities of electronic sequencing of freeze dried deposits on graphene. We will present two types of calculated fingerprints: first in Local Density of States (LDOS) of DNA nucleotide bases (A,C,G,T) deposited on graphene. Significant base-dependent features in the LDOS in an energy range within few eV of the Fermi level were found in our calculations. These features can serve as electronic fingerprints for the identification of individual bases in STS. In the second approach we present calculated base dependent electronic transverse conductance as DNA translocates through the graphene nanopore. Thus we argue that the fingerprints of DNA-graphene hybrid structures may provide an alternative route to DNA sequencing using STS. Work supported by US DOE, NORDITA.

  9. High-Resolution Spectroscopy of the Lunar Sodium Exosphere

    Science.gov (United States)

    Mierkiewicz, E. J.; Oliversen, R. J.; Roesler, F. L.; Lupie, O. L.

    2014-01-01

    We have applied high-resolution Fabry-Perot spectroscopy to the study of the lunar sodium exosphere for the study of exospheric effective temperature and velocity variations. Observing from the National Solar Observatory McMath-Pierce Telescope, we used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 to measure line widths and Doppler shifts of the sodium D2 (5889.95 Å) emission line. Our field of view was 360 km, and measurements were made in equatorial and polar regions from 500 km to 3500 km off the limb. Data were obtained from full moon to 3 days following full moon (waning phase) in March 2009. Measured Doppler line widths within 1100 km of the sunlit east and south lunar limbs for observations between 5 and 40 deg lunar phase imply effective temperatures ranging between 3260 +/- 190 and 1000 +/- 135 K. Preliminary line center analysis indicates velocity displacements between different locations off the lunar limb ranging between 100 and 600 m/s from the lunar rest velocity with a precision of +/-20 to +/-50 m/s depending on brightness. Based on the success of these exploratory observations, an extensive program has been initiated that is expected to constrain lunar atmospheric and surface-process modeling and help quantify source and escape mechanisms.

  10. Exploring semiconductor quantum dots and wires by high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Molina, S I [Departamento de Ciencia de los Materiales e Ing Metalurgica y Q. Inorganica, F. de Ciencias, Universidad de Cadiz, Campus Rio San Pedro. 11510 Puerto Real (Cadiz) (Spain); Galindo, P L [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus Rio San Pedro. 11510 Puerto Real (Cadiz) (Spain); Gonzalez, L; Ripalda, J M [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Varela, M; Pennycook, S J, E-mail: sergio.molina@uca.e [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 (United States)

    2010-02-01

    We review in this communication our contribution to the structural characterisation of semiconductor quantum dots and wires by high resolution electron microscopy, both in phase-contrast and Z-contrast modes. We show how these techniques contribute to predict the preferential sites of nucleation of these nanostructures, and also determine the compositional distribution in 1D and 0D nanostructures. The results presented here were produced in the framework of the European Network of Excellence entitled {sup S}elf-Assembled semiconductor Nanostructures for new Devices in photonics and Electronics (SANDiE){sup .}

  11. High-resolution reflection spectroscopy

    International Nuclear Information System (INIS)

    Ducloy, Martial

    1997-01-01

    In this article some recent developments in selective reflection spectroscopy is reviewed and the various ways to extend Doppler free techniques to this spectroscopic field is discussed. Its main feature is to probe atomic gas close to the cell boundaries

  12. High-resolution imaging in the scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Pennycook, S.J.; Jesson, D.E.

    1992-03-01

    The high-resolution imaging of crystalline materials in the scanning transmission electron microscopy (STEM) is reviewed with particular emphasis on the conditions under which an incoherent image can be obtained. It is shown that a high-angle annular detector can be used to break the coherence of the imaging process, in the transverse plane through the geometry of the detector, or in three dimensions if multiphonon diffuse scattering is detected. In the latter case, each atom can be treated as a highly independent source of high-angle scattering. The most effective fast electron states are therefore tightly bound s-type Bloch states. Furthermore, they add constructively for each incident angle in the coherent STEM probe, so that s states are responsible for practically the entire image contrast. Dynamical effects are largely removed, and almost perfect incoherent imaging is achieved. s states are relatively insensitive to neighboring strings, so that incoherent imaging is maintained for superlattice and interfaces, and supercell calculations are unnecessary. With an optimum probe profile, the incoherent image represents a direct image of the crystal projection, with compositional sensitivity built in through the strong dependence of the scattering cross sections on atomic number Z

  13. Effects of display resolution and size on primary diagnosis of chest images using a high-resolution electronic work station

    International Nuclear Information System (INIS)

    Fuhrman, C.R.; Cooperstein, L.A.; Herron, J.; Good, W.F.; Good, B.; Gur, D.; Maitz, G.; Tabor, E.; Hoy, R.J.

    1987-01-01

    To evaluate the acceptability of electronically displayed planar images, the authors have a high-resolution work station. This system utilizes a high-resolution film digitizer (100-micro resolution) interfaced to a mainframe computer and two high-resolution (2,048 X 2,048) display devices (Azuray). In a clinically simulated multiobserver blind study (19 cases and five observers) a prodetermined series of reading sessions is stored on magnetic disk and is transferred to the displays while the preceding set of images is being reviewed. Images can be linearly processed on the fly into 2,000 X 2,000 full resolution, 1,000 X 1,000 minified display, or 1,000 X 1,000 interpolated for full-size display. Results of the study indicate that radiologists accept but do not like significant minification (more than X2), and they rate 2,000 X 2,000 images as having better diagnostic quality than 1,000 X 1,000 images

  14. Environmental high resolution electron microscopy and applications to chemical science

    OpenAIRE

    Boyes, Edward; Gai, Pratibha

    2017-01-01

    An environmental cell high resolution electron microscope (EHREM) has been developed for in situ studies of dynamic chemical reactions on the atomic scale. It allows access to metastable intermediate phases of catalysts and to sequences of reversible microstructural and chemical development associated with the activation, deactivation and poisoning of a catalyst. Materials transported through air can be restored or recreated and samples damaged, e.g. by dehydration, by the usual vacuum enviro...

  15. Monitoring of Antarctic moss ecosystems using a high spatial resolution imaging spectroscopy

    Science.gov (United States)

    Malenovsky, Zbynek; Lucieer, Arko; Robinson, Sharon; Harwin, Stephen; Turner, Darren; Veness, Tony

    2013-04-01

    The most abundant photosynthetically active plants growing along the rocky Antarctic shore are mosses of three species: Schistidium antarctici, Ceratodon purpureus, and Bryum pseudotriquetrum. Even though mosses are well adapted to the extreme climate conditions, their existence in Antarctica depends strongly on availability of liquid water from snowmelt during the short summer season. Recent changes in temperature, wind speed and stratospheric ozone are stimulating faster evaporation, which in turn influences moss growing rate, health state and abundance. This makes them an ideal bio-indicator of the Antarctic climate change. Very short growing season, lasting only about three months, requires a time efficient, easily deployable and spatially resolved method for monitoring the Antarctic moss beds. Ground and/or low-altitude airborne imaging spectroscopy (called also hyperspectral remote sensing) offers a fast and spatially explicit approach to investigate an actual spatial extent and physiological state of moss turfs. A dataset of ground-based spectral images was acquired with a mini-Hyperspec imaging spectrometer (Headwall Inc., the USA) during the Antarctic summer 2012 in the surroundings of the Australian Antarctic station Casey (Windmill Islands). The collection of high spatial resolution spectral images, with pixels about 2 cm in size containing from 162 up to 324 narrow spectral bands of wavelengths between 399 and 998 nm, was accompanied with point moss reflectance measurements recorded with the ASD HandHeld-2 spectroradiometer (Analytical Spectral Devices Inc., the USA). The first spectral analysis indicates significant differences in red-edge and near-infrared reflectance of differently watered moss patches. Contrary to high plants, where the Normalized Difference Vegetation Index (NDVI) represents an estimate of green biomass, NDVI of mosses indicates mainly the actual water content. Similarly to high plants, reflectance of visible wavelengths is

  16. Fabrication of thin TEM sample of ionic liquid for high-resolution ELNES measurements

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Tomohiro, E-mail: tomo-m@iis.u-tokyo.ac.jp; Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp

    2017-07-15

    Investigation of the local structure, ionic and molecular behavior, and chemical reactions at high spatial resolutions in liquids has become increasingly important. Improvements in these areas help to develop efficient batteries and improve organic syntheses. Transmission electron microscopy (TEM) and scanning-TEM (STEM) have excellent spatial resolution, and the electron energy-loss near edge structure (ELNES) measured by the accompanied electron energy-loss spectroscopy (EELS) is effective to analyze the liquid local structure owing to reflecting the electronic density of states. In this study, we fabricate a liquid-layer-only sample with thickness of single to tens nanometers using an ionic liquid. Because the liquid film has a thickness much less than the inelastic mean free path (IMFP) of the electron beam, the fine structure of the C-K edge electron energy loss near edge structure (ELNES) can be measured with sufficient resolution to allow meaningful analysis. The ELNES spectrum from the thin liquid film has been interpreted using first principles ELNES calculations. - Highlights: • A fabrication method of thin liquid film samples for STEM-EELS observations is proposed. • The thickness of the fabricated thin liquid film is about 10 nm. • An ELNES is measured from the thin liquid with a high energy resolution. • The peaks of the ELNES are interpreted using first principles calculations.

  17. High resolution deep level transient spectroscopy and process-induced defects in silicon

    International Nuclear Information System (INIS)

    Evans-Freeman, J.H.; Emiroglu, D.; Vernon-Parry, K.D.

    2004-01-01

    High resolution, or Laplace, deep level transient spectroscopy (LDLTS) enables the identification of very closely spaced energetic levels in a semiconductor bandgap. DLTS may resolve peaks with a separation of tens of electron volts, but LDLTS can resolve defect energy separations as low as a few MeV. In this paper, we present results from LDLTS applied to ion implantation-induced defects in silicon, with particular emphasis on characterisation of end-of-range interstitial type defects. Silicon was implanted with a variety of ions from mass 28 to 166. A combination of LDLTS and direct capture cross-section measurements was employed to show that electrically active small extended defects were present in the as-implanted samples. Larger dislocations were then generated in Si by oxygenation to act as a control sample. These stacking faults had typical lengths of microns, and their electrical activity was subsequently characterised by LDLTS. This was to establish the sensitivity of LDLTS to defects whose carrier capture is characterised by a non-exponential filling process and an evolving band structure as carrier capture proceeds. The LDLTS spectra show several components in capacitance transients originating from both the end-of-range defects, and the stacking faults, and also clearly show that the carrier emission rates reduce as these extended defects fill with carriers. The end-of-range defects and the stacking faults are shown to have the same electrical behaviour

  18. Carbon K-shell excitation in small molecules by high-resolution electron impact

    International Nuclear Information System (INIS)

    Tronc, M.; King, G.C.; Read, F.H.

    1979-01-01

    The excitation of 1s carbon electrons has been observed in C0, CH 4 , CF4, C0 2 , COS, C 2 H 2 and C 2 H 4 by means of the electron energy-loss technique with high resolution (70 meV in the 300 eV excitation energy range) and at an incident electron energy of 1.5 keV. The energies, widths and vibrational structures of excited states corresponding to the promotion of 1s carbon electrons to unoccupied valence and Rydberg orbitals have been obtained. The validity of the equivalent-core model, and the role of resonances caused by potential barriers, are discussed. (author)

  19. High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics

    International Nuclear Information System (INIS)

    Abargues, R; Marques-Hueso, J; Canet-Ferrer, J; Pedrueza, E; Valdes, J L; Jimenez, E; MartInez-Pastor, J P

    2008-01-01

    Polymer nanocomposites containing noble metal nanoparticles are promising materials for plasmonic applications. In this paper, we report on a high-resolution negative-tone nanocomposite resist based on poly(vinyl alcohol) where silver nanoparticles and nanopatterns are simultaneously generated by electron-beam lithography. Our results indicate nanostructures with a relatively high concentration of nanoparticles and, consequently, an electromagnetic coupling among the nanoparticles. Therefore, the patternable nanocomposite described in this work may be a suitable material for future plasmonic circuitry

  20. High resolution hard X-ray photoemission using synchrotron radiation as an essential tool for characterization of thin solid films

    International Nuclear Information System (INIS)

    Kim, J.J.; Ikenaga, E.; Kobata, M.; Takeuchi, A.; Awaji, M.; Makino, H.; Chen, P.P.; Yamamoto, A.; Matsuoka, T.; Miwa, D.; Nishino, Y.; Yamamoto, T.; Yao, T.; Kobayashi, K.

    2006-01-01

    Recently, we have shown that hard X-ray photoemission spectroscopy using undulator X-rays at SPring-8 is quite feasible with both high resolution and high throughput. Here we report an application of hard X-ray photoemission spectroscopy to the characterization of electronic and chemical states of thin solid films, for which conventional PES is not applicable. As a typical example, we focus on the problem of the scatter in the reported band-gap values for InN. We show that oxygen incorporation into the InN film strongly modifies the valence and plays a crucial role in the band gap problem. The present results demonstrate the powerful applicability of high resolution photoemission spectroscopy with hard X-rays from a synchrotron source

  1. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  2. High-resolution metallic magnetic calorimeters for β-spectroscopy on 187rhenium and position resolved X-ray spectroscopy

    International Nuclear Information System (INIS)

    Porst, Jan-Patrick

    2011-01-01

    This thesis describes the development of metallic magnetic calorimeters (MMCs) for high resolution spectroscopy. MMCs are energy dispersive particle detectors based on the calorimetric principle which are typically operated at temperatures below 100 mK. The detectors make use of a paramagnetic temperature sensor to transform the temperature rise upon the absorption of a particle in the detector into a measurable magnetic flux change in a dc-SQUID. The application of MMCs for neutrino mass measurements and their advantages with respect to other approaches are discussed. In view of this application the development of an MMC optimized for β-endpoint spectroscopy on 187 rhenium is presented. A fully micro-fabricated X-ray detector is characterized and performs close to design values. Furthermore, a new technique to more efficiently couple rhenium absorbers mechanically and thermally to the sensor was developed and successfully tested. By employing a metallic contact, signal rise times faster than 5 μs could be observed with superconducting rhenium absorbers. In addition to the single pixel detectors, an alternative approach of reading out multiple pixels was developed in this work, too. Here, the individual absorbers have a different thermal coupling to only one temperature sensor resulting in a distribution of different pulse shapes. Straightforward position discrimination by means of rise time analysis is demonstrated for a four pixel MMC and a thermal model of the detector is provided. Unprecedented so far, an energy resolution of less than ΔE FWHM <5 eV for 5.9 keV X-rays was achieved across all absorbers. (orig.)

  3. Electron beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in-situ electron beam induced desorption

    Energy Technology Data Exchange (ETDEWEB)

    Olynick, D.L.; Cord, B.; Schipotinin, A.; Ogletree, D.F.; Schuck, P.J.

    2009-11-13

    Hydrogen Silsesquioxane (HSQ) is used as a high-resolution resist with resolution down below 10nm half-pitch. This material or materials with related functionalities could have widespread impact in nanolithography and nanoscience applications if the exposure mechanism was understood and instabilities controlled. Here we have directly investigated the exposure mechanism using vibrational spectroscopy (both Raman and Fourier transform Infrared) and electron beam desorption spectrocscopy (EBDS). In the non-networked HSQ system, silicon atoms sit at the corners of a cubic structure. Each silicon is bonded to a hydrogen atom and bridges 3 oxygen atoms (formula: HSiO3/2). For the first time, we have shown, via changes in the Si-H2 peak at ~;;2200 cm -1 in the Raman spectra and the release of SiHx products in EBID, that electron-bam exposed materials crosslinks via a redistribution reaction. In addition, we observe the release of significantly more H2 than SiH2 during EBID, which is indicative of additional reaction mechanisms. Additionally, we compare the behavior of HSQ in response to both thermal and electron-beam induced reactions.

  4. Atomic resolution three-dimensional electron diffraction microscopy

    International Nuclear Information System (INIS)

    Miao Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; Hodgson, Keith O.; O'Keefe, Michael A.

    2002-01-01

    We report the development of a novel form of diffraction-based 3D microscopy to overcome resolution barriers inherent in high-resolution electron microscopy and tomography. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a nanocrystal can be determined ab initio at a resolution of 1 Angstrom from 29 simulated noisy diffraction patterns. This new form of microscopy can be used to image the 3D structures of nanocrystals and noncrystalline samples, with resolution limited only by the quality of sample diffraction

  5. X-ray spectroscopy of highly ionized heavy ions as an advanced research for controlled nuclear fusion power

    International Nuclear Information System (INIS)

    Zschornack, G.; Musiol, G.

    1988-01-01

    Diagnostics and modelling of nuclear fusion plasmas require a detailed knowledge of atomic and molecular data for highly ionized heavy ions. Experimental verification of atomic data is made on the basis of IAEA recommendations using the method of high-resolution wavelength-dispersive X-ray spectroscopy in order to obtain contributions extensioning the available atomic data lists. Basic facilities for producing highly charged heavy ions are the electron-ion rings of the heavy ion collective accelerator and the electron beam ion source KRYON-2 at the Joint Institute for Nuclear Research at Dubna. For high-resolution X-ray spectroscopy with these sources a computer-aided crystal diffraction spectrometer has been developed the precision of which is achieved by using advanced principles of measurement and control. Relativistic atomic structure calculations have been carried out for a great number of elements and configurations to obtain data in ionization regions heavily accessible to the experiment. (author)

  6. Uncharted Frontiers in the Spectroscopy of Highly Charged Ions

    CERN Document Server

    Beiersdorfer, P; Crespo, J; Kim, S H; Neill, P; Utter, S; Widmann, K

    2000-01-01

    The development of novel techniques is critical for maintaining a state-of-the-art core competency in atomic physics and readiness for evolving programmatic needs. We have carried out a three-year effort to develop novel spectroscopic instrumentation that added new dimensions to our capabilities for measuring energy levels, radiative transition probabilities, and electron-ion excitation processes. The new capabilities created were in areas that heretofore had been inaccessible to scientific scrutiny and included high-resolution spectroscopy of hard x rays, femtosecond lifetime measurements, measurements of transition probabilities of long-lived metastable levels, polarization spectroscopy, ultra-precise determinations of energy levels, and the establishment of absolute wavelength standards in x-ray spectroscopy. Instrumentation developed during the period included a transmission-type crystal spectrometer, a flat-field EUV spectrometer, and the development and deployment of absolutely calibrated monolithic cry...

  7. High-resolution gamma spectroscopy with whole-body and partial-body counters. Experience, recommendations. Report

    International Nuclear Information System (INIS)

    Sahre, P.

    1997-12-01

    The application of high-resolution gamma spectroscopy with whole-body and partial-body counters shows a steadily rising upward trend over the last few years. This induced the ''Arbeitskreis Inkorporationsueberwachung'' of the association ''Fachverband fuer Strahlenschutz e.V.'' to organise a meeting for joint elaboration of a guide on recommended applications of this measuring technique, based on a review of existing experience and results. A key item on the agenda of the meeting was the comparative evaluation of the Ge semiconductor detector and the NaI solid scintillation detector. (orig./CB) [de

  8. High resolution electron attachment to molecules of atmospheric relevance

    International Nuclear Information System (INIS)

    Senn, G.

    2000-10-01

    This Ph.D. thesis is divided into three parts. The first is an introduction into the field of electron attachment. In the second part the experimental apparatus is described, and in the third part the results are presented. In the present thesis molecules were chosen for our investigations that are not only of academic interest but that also play an important role for applications or even the life on this planet. All the molecules studied in this work are of atmospheric relevance. NO, and OClO, are involved in the ozone depletion of the stratosphere. The D-layer of the ionosphere is an upper boundary of the ozone layer, therefore the interaction of the electrons from the D-layer with O 3 might play an important role for the chemistry in that part of the atmosphere. Especially the interaction of slow electrons (that will be present in the D-layer in large numbers) with ozone was emphasized in the present study. The production of O - and O 2 - by dissociative electron attachment to ozone was measured for incident electron energies between 0 and 10eV. A previously unobserved sharp structure was discovered in the formation of O - ions for electrons with zero kinetic energy. This additional cross section peak has important consequences for the role of ozone in the anion formation process in the ionosphere. Since OClO is a night time reservoir for chlorine atoms (Cl) and chlorine monoxide (ClO) both of which play a critical role in the depletion of the stratospheric ozone, we have studied negative ion formation following electron impact (0-10eV) to OClO. Despite its atmospheric relevance the mechanism of dissociative electron attachment (DEA) to NO is still a matter of controversy. DEA was studied at high energy resolution and with a kinetic-energy analysis of the O - fragment in two independent crossed electron-molecular-beam experiments. The DEA cross section exhibits a vertical onset near 7.45eV that corresponds to the energy threshold of the DEA channel O - ( 2 P

  9. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  10. Application of ESCA spectroscopy to the study of electronic structure of high temperature superconductors

    International Nuclear Information System (INIS)

    Dagoury, G.

    1988-01-01

    Characteristics of high T c oxide superconductors are very sensitive to slight variation of chemical composition, ESCA spectroscopy is used for identification of YBaCuO superconductivity. Binding energy of the different electronic levels and structure of valence band are determined [fr

  11. A Multi-Contact, Low Capacitance HPGe Detector for High Rate Gamma Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Christopher [XIA LLC, Hayward, CA (United States)

    2014-12-04

    The detection, identification and non-destructive assay of special nuclear materials and nuclear fission by-products are critically important activities in support of nuclear non-proliferation programs. Both national and international nuclear safeguard agencies recognize that current accounting methods for spent nuclear fuel are inadequate from a safeguards perspective. Radiation detection and analysis by gamma-ray spectroscopy is a key tool in this field, but no instrument exists that can deliver the required performance (energy resolution and detection sensitivity) in the presence of very high background count rates encountered in the nuclear safeguards arena. The work of this project addresses this critical need by developing a unique gamma-ray detector based on high purity germanium that has the previously unachievable property of operating in the 1 million counts-per-second range while achieving state-of-the-art energy resolution necessary to identify and analyze the isotopes of interest. The technical approach was to design and fabricate a germanium detector with multiple segmented electrodes coupled to multi-channel high rate spectroscopy electronics. Dividing the germanium detector’s signal electrode into smaller sections offers two advantages; firstly, the energy resolution of the detector is potentially improved, and secondly, the detector is able to operate at higher count rates. The design challenges included the following; determining the optimum electrode configuration to meet the stringent energy resolution and count rate requirements; determining the electronic noise (and therefore energy resolution) of the completed system after multiple signals are recombined; designing the germanium crystal housing and vacuum cryostat; and customizing electronics to perform the signal recombination function in real time. In this phase I work, commercial off-the-shelf electrostatic modeling software was used to develop the segmented germanium crystal geometry

  12. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  13. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Eliza M.-R. [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Heng, Kevin, E-mail: kemptone@grinnell.edu [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  14. Positron annihilation induced Auger electron spectroscopy and its implementation at accelerator based low energy positron factories

    International Nuclear Information System (INIS)

    Weiss, A.; Koeymen, A.R.; Mehl, D.; Lee, K.H.; Yang Gimo; Jensen, K.

    1991-01-01

    Positron annihilation induced auger electron spectroscopy (PAES) makes use of a beam of low energy positrons to excite Auger transitions by annihilating core electrons. The large secondary electron background usually present in Auger spectra can be eliminated by setting the positron beam energy well below the Auger electron energy. This allows true Auger lineshapes to be obtained. Further, because the positron is localized just outside the surface before it annihilates, PAES is extremely sensitive to the topmost atomic layer. Recent PAES results obtained at the University of Texas at Arlington will be presented. In addition, the use of high resolution energy analyzers with multichannel particle detection schemes to prevent problems due to the high data rates associated with accelerator based positron beams will be discussed. (orig.)

  15. Design and development of high-resolution atomic beam fluorescence spectroscopy facility for isotope shift and hyperfine structure measurements

    International Nuclear Information System (INIS)

    Acharyulu, G.V.S.G.; Sankari, M.; Kiran Kumar, P.V.; Suryanarayana, M.V.

    2012-01-01

    A high-resolution atomic beam fluorescence spectroscopy facility for the determination of isotope shifts and hyperfine structure in atomic species has been designed and developed. A resistively heated graphite tube atomic beam source was designed, tested and integrated into a compact interaction chamber for atomic beam fluorescence experiments. The design of the laser-atom interaction chamber and the source has been modified in a phased manner so as to achieve sub-Doppler resolution. The system has been used to record the hyperfine spectrum of the D2 transitions of Rb and K isotopes. The spectral resolution achieved is ∼ 26 MHz and is adequate to carry out high resolution measurement of isotope shifts and hyperfine structure of various atomic species. The other major advantage of the source is that it requires very small amounts of sample for achieving very good signal to noise ratio. (author)

  16. Bulk superconducting gap of V_3Si studied by low-energy ultrahigh-resolution photoemission spectroscopy

    International Nuclear Information System (INIS)

    Sato, T.; Souma, S.; Nakayama, K.; Sugawara, K.; Toyota, N.; Takahashi, T.

    2016-01-01

    Highlights: • We report ultrahigh-resolution photoemission spectroscopy of A15 compound V_3Si. • We found a sharp quasiparticle peak due to superconducting-gap opening. • The surface metallic component is negligibly small in the bulk-sensitive measurement. • We show that V_3Si is a single-gap s-wave superconductor. - Abstract: We have performed low-energy ultrahigh-resolution photoemission spectroscopy (PES) of A15 compound V_3Si with a xenon-plasma discharge lamp to elucidate the bulk superconducting gap. Below the superconducting transition temperature (T_c = 15.9 K), we found a sharp quasiparticle peak at the Fermi level in the PES spectrum. The gap spectrum is well fitted by a single s-wave superconducting-gap function together with a dip structure at ∼30 meV suggestive of a strong electron-phonon coupling. The anomalous in-gap state previously observed in the PES measurement with high-energy photons is absent or negligibly small in the present bulk-sensitive measurement. The present PES result shows that V_3Si is a single-gap s-wave superconductor.

  17. M31 GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY

    International Nuclear Information System (INIS)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott; McWilliam, Andrew; Cohen, Judith G.

    2009-01-01

    We report the first detailed chemical abundances for five globular clusters (GCs) in M31 from high-resolution (R ∼ 25,000) spectroscopy of their integrated light (IL). These GCs are the first in a larger set of clusters observed as part of an ongoing project to study the formation history of M31 and its GC population. The data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope and are analyzed using a new IL spectra analysis method that we have developed. In these clusters, we measure abundances for Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, and Ba, ages ≥10 Gyr, and a range in [Fe/H] of -0.9 to -2.2. As is typical of Milky Way GCs, we find these M31 GCs to be enhanced in the α-elements Ca, Si, and Ti relative to Fe. We also find [Mg/Fe] to be low relative to other [α/Fe], and [Al/Fe] to be enhanced in the IL abundances. These results imply that abundances of Mg, Al (and likely O, Na) recovered from IL do display the inter- and intra-cluster abundance variations seen in individual Milky Way GC stars, and that special care should be taken in the future in interpreting low- or high-resolution IL abundances of GCs that are based on Mg-dominated absorption features. Fe-peak and the neutron-capture elements Ba and Y also follow Milky Way abundance trends. We also present high-precision velocity dispersion measurements for all five M31 GCs, as well as independent constraints on the reddening toward the clusters from our analysis.

  18. High-resolution metallic magnetic calorimeters for {beta}-spectroscopy on {sup 187}rhenium and position resolved X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Porst, Jan-Patrick

    2011-02-01

    This thesis describes the development of metallic magnetic calorimeters (MMCs) for high resolution spectroscopy. MMCs are energy dispersive particle detectors based on the calorimetric principle which are typically operated at temperatures below 100 mK. The detectors make use of a paramagnetic temperature sensor to transform the temperature rise upon the absorption of a particle in the detector into a measurable magnetic flux change in a dc-SQUID. The application of MMCs for neutrino mass measurements and their advantages with respect to other approaches are discussed. In view of this application the development of an MMC optimized for {beta}-endpoint spectroscopy on {sup 187}rhenium is presented. A fully micro-fabricated X-ray detector is characterized and performs close to design values. Furthermore, a new technique to more efficiently couple rhenium absorbers mechanically and thermally to the sensor was developed and successfully tested. By employing a metallic contact, signal rise times faster than 5 {mu}s could be observed with superconducting rhenium absorbers. In addition to the single pixel detectors, an alternative approach of reading out multiple pixels was developed in this work, too. Here, the individual absorbers have a different thermal coupling to only one temperature sensor resulting in a distribution of different pulse shapes. Straightforward position discrimination by means of rise time analysis is demonstrated for a four pixel MMC and a thermal model of the detector is provided. Unprecedented so far, an energy resolution of less than {delta}E{sub FWHM}<5 eV for 5.9 keV X-rays was achieved across all absorbers. (orig.)

  19. Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:Sapphire lasers

    International Nuclear Information System (INIS)

    Eich, S.; Stange, A.; Carr, A.V.; Urbancic, J.; Popmintchev, T.; Wiesenmayer, M.; Jansen, K.; Ruffing, A.; Jakobs, S.; Rohwer, T.; Hellmann, S.; Chen, C.; Matyba, P.; Kipp, L.; Rossnagel, K.; Bauer, M.; Murnane, M.M.; Kapteyn, H.C.; Mathias, S.; Aeschlimann, M.

    2014-01-01

    Highlights: • We present a scheme to generate high intensity XUV pulses from HHG with variable time-bandwidth product. • Shorter-wavelength driven high-harmonic XUV trARPES provides higher photon flux and increased energy resolution. • High-quality high-harmonic XUV trARPES data with sub 150 meV energy and sub 30 fs time resolution is presented. - Abstract: Time- and angle-resolved photoemission spectroscopy (trARPES) using femtosecond extreme ultraviolet high harmonics has recently emerged as a powerful tool for investigating ultrafast quasiparticle dynamics in correlated-electron materials. However, the full potential of this approach has not yet been achieved because, to date, high harmonics generated by 800 nm wavelength Ti:Sapphire lasers required a trade-off between photon flux, energy and time resolution. Photoemission spectroscopy requires a quasi-monochromatic output, but dispersive optical elements that select a single harmonic can significantly reduce the photon flux and time resolution. Here we show that 400 nm driven high harmonic extreme-ultraviolet trARPES is superior to using 800 nm laser drivers since it eliminates the need for any spectral selection, thereby increasing photon flux and energy resolution to <150 meV while preserving excellent time resolution of about 30 fs

  20. High-resolution compact Johann crystal spectrometer with the Livermore electron beam ion trap

    International Nuclear Information System (INIS)

    Robbins, D.L.; Chen, H.; Beiersdorfer, P.; Faenov, A.Ya.; Pikuz, T.A.; May, M.J.; Dunn, J.; Smith, A.J.

    2004-01-01

    A compact high-resolution (λ/Δλ≅10 000) spherically bent crystal spectrometer in the Johann geometry was recently installed and tested on the Lawrence Livermore National Laboratory SuperEBIT electron beam ion trap. The curvature of the mica (002) crystal grating allows for higher collection efficiency compared to the flat and cylindrically bent crystal spectrometers commonly used on the Livermore electron beam ion traps. The spectrometer's Johann configuration enables orientation of its dispersion plane to be parallel to the electron beam propagation. Used in concert with a crystal spectrometer, whose dispersion plane is perpendicular to the electron beam propagation, the polarization of x-ray emission lines can be measured

  1. High resolution VUV facility at INDUS-1

    International Nuclear Information System (INIS)

    Krishnamurty, G.; Saraswathy, P.; Rao, P.M.R.; Mishra, A.P.; Kartha, V.B.

    1993-01-01

    Synchrotron radiation (SR) generated in the electron storage rings is an unique source for the study of atomic and molecular spectroscopy especially in the vacuum ultra violet region. Realizing the potential of this light source, efforts are in progress to develop a beamline facility at INDUS-1 to carry out high resolution atomic and molecular spectroscopy. This beam line consists of a fore-optic which is a combination of three cylindrical mirrors. The mirrors are so chosen that SR beam having a 60 mrad (horizontal) x 6 mrad (vertical) divergence is focussed onto a slit of a 6.65 metre off-plane spectrometer in Eagle Mount equipped with horizontal slit and vertical dispersion. The design of the various components of the beam line is completed. It is decided to build the spectrometer as per the requirements of the user community. Details of the various aspects of the beam line will be presented. (author). 3 figs

  2. Principles of electron tunneling spectroscopy

    CERN Document Server

    Wolf, E L

    2012-01-01

    Electron tunnelling spectroscopy as a research tool has strongly advanced understanding of superconductivity. This book explains the physics and instrumentation behind the advances illustrated in beautiful images of atoms, rings of atoms and exotic states in high temperature superconductors, and summarizes the state of knowledge that has resulted.

  3. General survey of recent development of photoemission spectroscopy

    International Nuclear Information System (INIS)

    Edamoto, Kazuyuki

    1994-01-01

    On the present state of the recent development of photoemission spectroscopy, by limiting the topics to the development of the spectroscopy proper and the development contributing to the progress of surface science, general explanation is made. As to the development that enabled to heighten spectrum resolution, surface core-level shift and the precise measurement of the Fermi surface of surface level are described, showing the example. Also a number of the developments which enabled the utilization of the light source, of which the wavelength is variable, and which was brought about by synchrotron radiation beam, were mentioned. Besides, spin polarized photoelectron spectroscopy, the development of photoelectron microscope and others are outlined. Photoemission spectroscopy is very useful for analyzing the electron condition of solid surfaces. There are two factors in heightening core level spectrum resolution, namely, heightening the resolution of an electron energy analyzer proper and the utilization of synchrotron radiation as a light source. High resolution core-level spectra, angle-resolved photoemission spectroscopy, and as the light source of which the wavelength is variable, resonance photoemission spectroscopy, constant initial state spectroscopy and soft X-ray photoemission spectroscopy, and as the recently developed spectroscopy, spin polarized photoemission spectroscopy, Auger photoelectron coincidence spectroscopy and photoelectron microscope are explained. (K.I.)

  4. IXO and the Missing Baryons: The Need High Resolution Spectroscopy

    Science.gov (United States)

    Nicastro, Fabrizio

    2009-01-01

    About half of the baryons in the Universe are currently eluding detection. Hydrodynamical simulations for the formation of Large Scale Structures (LSSs), predict that these baryons, at zmatter: the Warm-Hot Intergalactic Medium (WHIM). The WHIM has probably been progressively enriched with metals, during phases of intense starburst and AGN activity, up to possibly solar metallicity (Cen & Ostriker, 2006), and should therefore shine and/or absorb in in the soft X-ray band, via electronic transitions from the most abundant metals. The importance of detecting and studying the WHIM lies not only in the possibility of finally making a complete census of all baryons in the Universe, but also in the possibility of (a) directly measuring the metallicity history of the Universe, and so investigating on metal-transport in the Universe and galaxy-IGM, AGN-IGM feedback mechanisms, (b) directly measuring the heating history of the Universe, and so understanding the process of LSS formation and shocks, and (c) performing cosmological parameter measurements through a 3D 2-point angular correlation function analysis of the WHIM filaments. Detecting, and studying the WHIM with the current X-ray instrumentation however, is extremely challenging, because of the low sensitivity and resolution of the Chandra and XMM-Newton gratings, and the very low 'grasp' of all currently available imaging-spectrometers. IXO, instead, thanks to its large grating effective area (> 1000 cm2 at 0.5 keV) and high spectral resolution (R>2500 at 0.5 keV) will be perfectly suited to attack the problem in a systematic way. Here we demonstrate that high resolution gratings are crucial for these kind of studies and show that the IXO gratings will be able to detect more than 300-700 OVII WHIM filaments along about 70 lines of sight, in less than 0.7.

  5. High resolution surface scanning of Thick-GEM for single photo-electron detection

    International Nuclear Information System (INIS)

    Hamar, G.; Varga, D.

    2012-01-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10–100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: ► First demonstration of Thick GEM surface scanning with single photo-electrons. ► Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. ► Gain and detection efficiency and separately measurable. ► Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  6. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics.

    Science.gov (United States)

    Hyun, Woo Jin; Secor, Ethan B; Hersam, Mark C; Frisbie, C Daniel; Francis, Lorraine F

    2015-01-07

    High-resolution screen printing of pristine graphene is introduced for the rapid fabrication of conductive lines on flexible substrates. Well-defined silicon stencils and viscosity-controlled inks facilitate the preparation of high-quality graphene patterns as narrow as 40 μm. This strategy provides an efficient method to produce highly flexible graphene electrodes for printed electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Gas-phase synthesis of magnesium nanoparticles : A high-resolution transmission electron microscopy study

    NARCIS (Netherlands)

    Kooi, B.J.; Palasantzas, G.; de Hosson, J.T.M.

    2006-01-01

    Magnesium nanoparticles with size above 10 nm, prepared by gas-phase syntheses, were investigated by high-resolution transmission electron microscopy. The dominant particle shape is a hexagonal prism terminated by Mg(0002) and Mg{1010} facets. Oxidation of Mg yields a MgO shell (similar to 3 nm

  8. Structure and orbital ordering of ultrathin LaVO{sub 3} probed by atomic resolution electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors-Vrejoiu, Ionela; Engelmayer, Johannes; Loosdrecht, Paul H.M. van [II. Physikalisches Institut, Koeln Univ. (Germany); Jin, Lei; Jia, Chun-Lin [Peter Gruenberg Institut (PGI-5) and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH (Germany); Himcinschi, Cameliu [Institut fuer Theoretische Physik, TU Bergakademie Freiberg (Germany); Hensling, Felix; Waser, Rainer; Dittmann, Regina [Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH (Germany)

    2017-03-15

    Orbital ordering has been less investigated in epitaxial thin films, due to the difficulty to evidence directly the occurrence of this phenomenon in thin film samples. Atomic resolution electron microscopy enabled us to observe the structural details of the ultrathin LaVO{sub 3} films. The transition to orbital ordering of epitaxial layers as thin as ∼4 nm was probed by temperature-dependent Raman scattering spectroscopy of multilayer samples. From the occurrence and temperature dependence of the 700 cm{sup -1} Raman active mode it can be inferred that the structural phase transition associated with orbital ordering takes place in ultrathin LaVO{sub 3} films at about 130 K. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. High-resolution transmission electron microscopy studies of graphite materials prepared by high-temperature treatment of unburned carbon concentrates from combustion fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Miguel Cabielles; Jean-Nol Rouzaud; Ana B. Garcia [Instituto Nacional del Carbn (INCAR), Oviedo (Spain)

    2009-01-15

    High-resolution transmission electron microscopy (HRTEM) has been used in this work to study the microstructural (structure and microtexture) changes occurring during the high-temperature treatment of the unburned carbon concentrates from coal combustion fly ashes. Emphasis was placed on two aspects: (i) the development of graphitic carbon structures and (ii) the disordered carbon forms remaining in the graphitized samples. In addition, by coupling HRTEM with energy-dispersive spectroscopy, the transformations with the temperature of the inorganic matter (mainly iron- and silicon-based phases) of the unburned carbon concentrates were evidenced. The HRTEM results were compared to the averaged structural order of the materials as evaluated by X-ray diffraction (XRD) and Raman spectroscopy. As indicated by XRD and Raman parameters, more-ordered materials were obtained from the unburned carbon concentrates with higher mineral/inorganic matter, thus inferring the catalytic effect of some of their components. However, the average character of the information provided by these instrumental techniques seems to be inconclusive in discriminating between carbon structures with different degrees of order (stricto sensu graphite, graphitic, turbostratic, etc.) in a given graphitized unburned carbon. Unlike XRD and Raman, HRTEM is a useful tool for imaging directly the profile of the polyaromatic layers (graphene planes), thus allowing the sample heterogeneity to be looked at, specifically the presence of disordered carbon phases. 49 refs., 9 figs., 3 tabs.

  10. Design and construction of a high-stability, low-noise power supply for use with high-resolution electron energy loss spectrometers

    International Nuclear Information System (INIS)

    Katz, J.E.; Davies, P.W.; Crowell, J.E.; Somorjai, G.A.

    1982-01-01

    The design and construction of a high-stability, low-noise power supply which provides potentials for the lens and analyzer elements of a 127 0 Ehrhardt-type high-resolution electron energy loss spectrometer (HREELS) is described. The supply incorporates a filament emission-control circuit and facilities for measuring electron beam current at each spectrometer element, thus facilitating optimal tuning of the spectrometer. Spectra obtained using this supply are shown to have a four-fold improvement in signal-to-noise ratio and a higher resolution of the vibrational loss features when compared with spectra taken using a previously existing supply based on passive potential divider networks

  11. Sub-micron resolution selected area electron channeling patterns.

    Science.gov (United States)

    Guyon, J; Mansour, H; Gey, N; Crimp, M A; Chalal, S; Maloufi, N

    2015-02-01

    Collection of selected area channeling patterns (SACPs) on a high resolution FEG-SEM is essential to carry out quantitative electron channeling contrast imaging (ECCI) studies, as it facilitates accurate determination of the crystal plane normal with respect to the incident beam direction and thus allows control the electron channeling conditions. Unfortunately commercial SACP modes developed in the past were limited in spatial resolution and are often no longer offered. In this contribution we present a novel approach for collecting high resolution SACPs (HR-SACPs) developed on a Gemini column. This HR-SACP technique combines the first demonstrated sub-micron spatial resolution with high angular accuracy of about 0.1°, at a convenient working distance of 10mm. This innovative approach integrates the use of aperture alignment coils to rock the beam with a digitally calibrated beam shift procedure to ensure the rocking beam is maintained on a point of interest. Moreover a new methodology to accurately measure SACP spatial resolution is proposed. While column considerations limit the rocking angle to 4°, this range is adequate to index the HR-SACP in conjunction with the pattern simulated from the approximate orientation deduced by EBSD. This new technique facilitates Accurate ECCI (A-ECCI) studies from very fine grained and/or highly strained materials. It offers also new insights for developing HR-SACP modes on new generation high-resolution electron columns. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. High resolution terahertz spectroscopy of a whispering gallery mode bubble resonator using Hilbert analysis.

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2017-07-10

    We report on data processing for continuous wave (CW) terahertz (THz) spectroscopy measurements based on a Hilbert spectral analysis to achieve MHz resolution. As an example we investigate the spectral properties of a whispering gallery mode (WGM) THz bubble resonator at critical coupling. The experimental verification clearly demonstrates the significant advantages in relative frequency resolution and required acquisition time of the proposed method over the traditional data analysis. An effective frequency resolution, only limited by the precision and stability of the laser beat signal, can be achieved without complex extensions to a standard commercially available CW THz spectrometer.

  13. High-resolution transmission electron microscopy and energetics of flattened carbon nonoshells

    International Nuclear Information System (INIS)

    Bourgeois, L.N.; Bursill, L.A.

    1998-01-01

    When examined under a high-resolution transmission electron microscope, carbon soot produced alongside buckytubes in an arc-discharge is found to contain a small percentage of flattened carbon shells. These objects are shown to be small graphite flakes which eliminated their dangling bonds by terminating their edges with highly curved junctions. Ideal models for these structures are presented, and their energy estimated. The calculations show that the establishment of highly curved junctions is energetically favourable for a graphite flake in an inert atmosphere. Flattened shells also appear more stable than their 'inflated' counterparts (fullerene 'onions' and buckytubes) when the shell dimensions obey specific criteria.(authors)

  14. Photoelectron and electron momentum spectroscopy of 1-butene at benchmark theoretical levels

    International Nuclear Information System (INIS)

    Shojaei, S H Reza; Morini, Filippo; Hajgató, Bálazs; Deleuze, Michael S

    2011-01-01

    The results of experimental studies of the valence electronic structure of 1-butene employing photoelectron spectroscopy as well as electron momentum spectroscopy are interpreted on the ground of quantitative calculations of one-electron and shake-up ionization energies and of the related Dyson orbitals, using one-particle Green's function theory in conjunction with the third-order algebraic diagrammatic construction scheme (ADC(3)). Comparison is made with simulations of (e, 2e) electron momentum distributions obtained from standard (B3LYP) Kohn-Sham orbitals. Our analysis is based on highly quantitative determinations of the energy difference between the cis and gauche (C 1 ) conformers, within ∼0.02 kcal mol -1 accuracy, and a thermostatistical evaluation thereby of conformer weights beyond the level of the rigid rotor harmonic oscillator approximation. Relative entropies are found to be particularly sensitive to hindered rotations. The shake-up onset is located at 15.9 eV, and the orbital picture of ionization breaks down completely at electron binding energies above 19 eV. If the available experimental momentum profiles demonstrate the dominance of the C 1 conformer, they are in this case clearly not sensitive enough to the molecular conformation for evaluating conformer abundances with accuracies better than 10% due to the limited energy and momentum resolutions and likely physical complications.

  15. High-Resolution Spectroscopy at the Wyoming Infrared Observatory: Setting TESS Science on FHiRE

    Science.gov (United States)

    Jang-Condell, Hannah; Pierce, Michael J.; Pilachowski, C. A.; Kobulnicky, Henry; McLane, Jacob N.

    2018-01-01

    The Fiber High Resolution Echelle (FHiRE) spectrograph is a new instrument designed for the 2.3-m Wyoming InfraRed Observatory (WIRO). With the construction of a vacuum chamber for FHiRE to stabilize the spectrograph and a temperature-stabilized Thorium-Argon lamp for precise velocity calibration, we will be able to achieve 1 m/s RV precision, making it an ideal instrument for finding exoplanets. Details of the design of FHiRE are presented in a companion poster (Pierce et al.). The construction of this instrument is well-timed with the planned 2018 launch of NASA's Transiting Exoplanet Survey Satellite (TESS) mission. TESS will require a great deal of follow-up spectroscopy to characterize potential exoplanet host stars as well as radial velocity measurements to confirm new exoplanets. WIRO is ideally suited to acquire the long-term, high-cadence observations that will be required to make progress in this frontier area of astrophysics. We will coordinate our efforts with the TESS Follow-up Observing Program (TFOP), specifically as part of the Recon Spectroscopy and Precise Radial Velocity Work sub-groups.This work is supported by a grant from NASA EPSCOR.

  16. High resolution neutron spectroscopy - a tool for the investigation of dynamics of polymers and soft matter; La spectroscopie de neutrons a haute resolution-un outil pour l'etude de la dynamique des polymeres et de la matiere molle

    Energy Technology Data Exchange (ETDEWEB)

    Monkenbusch, M.; Richter, D. [Institut fur Festkorperforschung (IFF), Forschungszentrum Julich, Julich (Germany)

    2007-09-15

    Neutron scattering, with the ability to vary the contrast of molecular items by hydrogen/deuterium exchanges, is an invaluable tool for soft matter research. Besides the structural information on the mesoscopic scale that is obtained by diffraction methods like small angle neutron scattering, the slow dynamics of molecular motion on mesoscopic scale is accessible by high resolution neutron spectroscopy. The basic features of neutron backscattering spectroscopy, and in particular neutron spin-echo spectroscopy, are presented, in combination with illustrations of results from polymer melt dynamics to protein dynamics which are obtained by these techniques. (authors)

  17. Direct band gap measurement of Cu(In,Ga)(Se,S)2 thin films using high-resolution reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho; Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-01-01

    To investigate the band gap profile of Cu(In 1−x ,Ga x )(Se 1−y S y ) 2 of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth

  18. Development Of High-Resolution Mechanical Spectroscopy, HRMS: Status And Perspectives. HRMS Coupled With A Laser Dilatometer

    Directory of Open Access Journals (Sweden)

    Magalas L.B.

    2015-09-01

    Full Text Available Recent achievements in the development of low-frequency high-resolution mechanical spectroscopy (HRMS are briefly reported. It is demonstrated that extremely low values of the loss angle, ϕ, (tanϕb = 1×10−5 can be measured as a function of frequency, and the precision in estimation of the dynamic modulus is better than 1×10−5 in arbitrary units. Three conditions must be fulfilled to obtain high resolution in subresonant and resonant mechanical loss measurements: (1 noise in stress and elastic strain signals must be lower than 70 dB, (2 high quality of stress and strain signals must be tested both in the frequency- and time-domains, and (3 the estimation of the mechanical loss and modulus must be verified by at least two different computing methods operating in the frequency- and time-domains. It is concluded that phase measurements in the subresonant domain are no longer determined by precision in estimation of the loss angle. Recent developments in high-resolution resonant mechanical loss measurements stem from the application of advanced nonparametric and parametric computing methods and algorithms to estimate the logarithmic decrement and the elastic modulus from exponentially damped free decaying oscillations embedded in experimental noise.

  19. High Harmonic Generation XUV Spectroscopy for Studying Ultrafast Photophysics of Coordination Complexes

    Science.gov (United States)

    Ryland, Elizabeth S.; Lin, Ming-Fu; Benke, Kristin; Verkamp, Max A.; Zhang, Kaili; Vura-Weis, Josh

    2017-06-01

    Extreme ultraviolet (XUV) spectroscopy is an inner shell technique that probes the M_{2,3}-edge excitation of atoms. Absorption of the XUV photon causes a 3p→3d transition, the energy and shape of which is directly related to the element and ligand environment. This technique is thus element-, oxidation state-, spin state-, and ligand field specific. A process called high-harmonic generation (HHG) enables the production of ultrashort (˜20fs) pulses of collimated XUV photons in a tabletop instrument. This allows transient XUV spectroscopy to be conducted as an in-lab experiment, where it was previously only possible at accelerator-based light sources. Additionally, ultrashort pulses provide the capability for unprecedented time resolution (˜50fs IRF). This technique has the capacity to serve a pivotal role in the study of electron and energy transfer processes in materials and chemical biology. I will present the XUV transient absorption instrument we have built, along with ultrafast transient M_{2,3}-edge absorption data of a series of small inorganic molecules in order to demonstrate the high specificity and time resolution of this tabletop technique as well as how our group is applying it to the study of ultrafast electronic dynamics of coordination complexes.

  20. Electron Temperatures in W51 Complex from High Resolution, Low ...

    Indian Academy of Sciences (India)

    2001-03-09

    Mar 9, 2001 ... kinematics and local thermodynamic equilibrium (LTE) electron temperature (Te) of this region. H109α RRL observations by Wilsonet al.(1970) with a resolution of 4 and by Pankonin et al. (1979) with a resolution of 2.6 show that Te ∼ 6000 K in G49.5-0.4. Lower frequency observations for H137β and ...

  1. A Search for Water in a Super-Earth Atmosphere: High-resolution Optical Spectroscopy of 55Cancri e

    Energy Technology Data Exchange (ETDEWEB)

    Esteves, Lisa J. [Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); De Mooij, Ernst J. W.; Watson, Chris [Astrophysics Research Centre, School of Mathematics and Physics, Queens University, Belfast (United Kingdom); Jayawardhana, Ray [Physics and Astronomy, York University, Toronto, Ontario L3T 3R1 (Canada); De Kok, Remco, E-mail: esteves@astro.utoronto.ca, E-mail: ernst.demooij@dcu.ie, E-mail: c.a.watson@qub.ac.uk, E-mail: rayjay@yorku.ca, E-mail: r.j.de.kok@sron.nl [Leiden Observatory, Leiden University, Postbus 9513, 2300 RA, Leiden (Netherlands)

    2017-06-01

    We present the analysis of high-resolution optical spectra of four transits of 55Cnc e, a low-density super-Earth that orbits a nearby Sun-like star in under 18 hr. The inferred bulk density of the planet implies a substantial envelope, which, according to mass–radius relationships, could be either a low-mass extended or a high-mass compact atmosphere. Our observations investigate the latter scenario, with water as the dominant species. We take advantage of the Doppler cross-correlation technique, high-spectral resolution, and the large wavelength coverage of our observations to search for the signature of thousands of optical water absorption lines. Using our observations with HDS on the Subaru telescope and ESPaDOnS on the Canada–France–Hawaii Telescope, we are able to place a 3 σ lower limit of 10 g mol{sup −1} on the mean-molecular weight of 55Cnc e’s water-rich (volume mixing ratio >10%), optically thin atmosphere, which corresponds to an atmospheric scale-height of ∼80 km. Our study marks the first high-spectral resolution search for water in a super-Earth atmosphere, and demonstrates that it is possible to recover known water-vapor absorption signals in a nearby super-Earth atmosphere, using high-resolution transit spectroscopy with current ground-based instruments.

  2. Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)

    Science.gov (United States)

    Britton, T. B.; Hickey, J. L. R.

    2018-01-01

    High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.

  3. The Israeli EA-FEL Upgrade Towards Long Pulse Operation for Ultra-High Resolution Single Pulse Coherent Spectroscopy

    CERN Document Server

    Gover, A; Kanter, M; Kapilevich, B; Litvak, B; Peleg, S; Socol, Y; Volshonok, M

    2005-01-01

    The Israeli Electrostatic Accelerator FEL (EA-FEL) is now being upgraded towards long pulse (1005s) operation and ultra-high resolution (10(-6)) single pulse coherent spectroscopy. We present quantitative estimations regarding the applications of controlled radiation chirp for spectroscopic applications with pulse-time Fourier Transform limited spectral resolution. Additionally, we describe a novel extraction-efficiency-improving scheme based on increase of accelerating voltage (boosting) after saturation is achieved. The efficiency of the proposed scheme is confirmed by theoretical and numerical calculations. The latter are performed using software, based on 3D space-frequency domain model. The presentation provides an overview of the upgrade status: the high-voltage terminal is being reconfigured to accept the accelerating voltage boost system; a new broad band low-loss resonator is being manufactured; multi-stage depressed collector is assembled.

  4. Detection of water and its derivatives on individual nanoparticles using vibrational electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, Peter A., E-mail: crozier@asu.edu [School for the Engineering of Matter, Transport and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85287-6106 (United States); Aoki, Toshihiro [LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704 (United States); Liu, Qianlang [School for the Engineering of Matter, Transport and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85287-6106 (United States)

    2016-10-15

    Understanding the role of water, hydrate and hydroxyl species on nanoparticle surfaces and interfaces is very important in both physical and life sciences. Detecting the presence of oxygen-hydrogen species with nanometer resolution is extremely challenging at present. Here we show that the recently developed vibrational electron energy-loss spectroscopy using subnanometer focused electron beams can be employed to spectroscopically identify the local presence and variation of OH species on nanoscale surfaces. The hydrogen-oxygen fingerprint can be correlated with highly localized structural and morphological information obtained from electron imaging. Moreover, the current approach exploits the aloof beam mode of spectral acquisition which does not require direct electron irradiation of the sample thus greatly reducing beam damage to the OH bond. These findings open the door for using electron microscopy to probe local hydroxyl and hydrate species on nanoscale organic and inorganic structures. - Highlights: • High spatial resolution spectroscopic detection of water related species in nanoparticles. • Detection of OH stretch modes with vibrational EELS. • Differentiation between hydrate and hydroxide species on or on nanoparticles. • Detection of hydrate on a single 60 nm oxide nanoparticle of MgO. • Use of aloof beam EELS to minimize radiation damage.

  5. High-resolution γ-ray spectroscopy: a versatile tool for nuclear β-decay studies at TRIUMF-ISAC

    Science.gov (United States)

    Ball, G. C.; Achtzehn, T.; Albers, D.; Khalili, J. S. Al; Andreoiu, C.; Andreyev, A.; Ashley, S. F.; Austin, R. A. E.; Becker, J. A.; Bricault, P.; Chan, S.; Chakrawarthy, R. S.; Churchman, R.; Coombes, H.; Cunningham, E. S.; Daoud, J.; Dombsky, M.; Drake, T. E.; Eshpeter, B.; Finlay, P.; Garrett, P. E.; Geppert, C.; Grinyer, G. F.; Hackman, G.; Hanemaayer, V.; Hyland, B.; Jones, G. A.; Koopmans, K. A.; Kulp, W. D.; Lassen, J.; Lavoie, J. P.; Leslie, J. R.; Litvinov, Y.; Macdonald, J. A.; Mattoon, C.; Melconian, D.; Morton, A. C.; Osborne, C. J.; Pearson, C. J.; Pearson, M.; Phillips, A. A.; Ressler, J. J.; Sarazin, F.; Schumaker, M. A.; Schwarzenberg, J.; Scraggs, H. C.; Smith, M. B.; Svensson, C. E.; Valiente-Dobon, J. J.; Waddington, J. C.; Walker, P. M.; Wendt, K.; Williams, S. J.; Wood, J. L.; Zganjar, E. F.

    2005-10-01

    High-resolution γ-ray spectroscopy is essential to fully exploit the unique, high-quality beams available at the next generation of radioactive ion beam facilities such as the TRIUMF isotope separator and accelerator (ISAC). The 8π spectrometer, which consists of 20 Compton-suppressed HPGe detectors, has recently been reconfigured for a vigorous research programme in weak interaction and nuclear structure physics. With the addition of a variety of ancillary detectors it has become the world's most powerful device dedicated to β-decay studies. This paper provides a brief overview of the apparatus and highlights from recent experiments.

  6. Transistor reset preamplifier for high-rate high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Landis, D.A.; Cork, C.P.; Madden, N.W.; Goulding, F.S.

    1981-10-01

    Pulsed transistor reset of high resolution charge sensitive preamplifiers used in cooled semiconductor spectrometers can sometimes have an advantage over pulsed light reset systems. Several versions of transistor reset spectrometers using both silicon and germanium detectors have been built. This paper discusses the advantages of the transistor reset system and illustrates several configurations of the packages used for the FET and reset transistor. It also describes the preamplifer circuit and shows the performance of the spectrometer at high rates

  7. Fluorine substitution and nonconventional OH...pi intramolecular bond: high-resolution UV spectroscopy and ab initio calculations of 2-(p-fluorophenyl)ethanol.

    Science.gov (United States)

    Karaminkov, Rosen; Chervenkov, Sotir; Neusser, Hans J

    2008-05-21

    The para-fluorinated flexible neurotransmitter analogue 2-phenylethanol has been investigated by highly resolved resonance-enhanced two-photon ionisation two-colour UV laser spectroscopy with mass resolution and ab initio structural optimisations and energy calculations. Two stable conformations, gauche and anti, separated by a high potential barrier have been identified in the cold molecular beam by rotational analysis of the vibronic band structures. The theoretically predicted higher-lying conformations most likely relax to these two structures during the adiabatic expansion. The lowest-energy gauche conformer is stabilised by an intramolecular nonconventional OH...pi-type hydrogen bond between the terminal OH group of the side chain and the pi electrons of the phenyl ring. The good agreement between the experimental and theoretical results demonstrates that even the substitution with a strongly electronegative atom of 2-phenylethanol at the para position has no noticeable effect on the strength and orientation of the OH...pi bond.

  8. High resolution surface scanning of Thick-GEM for single photo-electron detection

    Energy Technology Data Exchange (ETDEWEB)

    Hamar, G., E-mail: hamar.gergo@wigner.mta.hu [Wigner Research Centre for Physics, Budapest (Hungary); Varga, D., E-mail: vdezso@mail.cern.ch [Eoetvoes Lorand University, Budapest (Hungary)

    2012-12-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10-100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: Black-Right-Pointing-Pointer First demonstration of Thick GEM surface scanning with single photo-electrons. Black-Right-Pointing-Pointer Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. Black-Right-Pointing-Pointer Gain and detection efficiency and separately measurable. Black-Right-Pointing-Pointer Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  9. An ASIC implementation of digital front-end electronics for a high resolution PET scanner

    International Nuclear Information System (INIS)

    Newport, D.F.; Young, J.W.

    1993-01-01

    AN Application Specific Integrated Circuit (ASIC) has been designed and fabricated which implements many of the current functions found in the digital front-end electronics for a high resolution Positron Emission Tomography (PET) scanner. The ASIC performs crystal selection, energy qualification, time correction, and event counting functions for block technology high resolution PET scanners. Digitized x and y position, event energy, and time information are used by the ASIC to determine block crystal number, qualify the event based on energy, and correct the event time. In addition, event counting and block dead time calculations are performed for system dead time corrections. A loadable sequencer for controlling the analog front-end electronics is also implemented. The ASIC is implemented in a 37,000 gate, 1.0 micron CMOS gate-array and is capable of handling 4 million events/second while reducing parts count, cost, and power consumption over current board-level designs

  10. Electron microscopy and auger spectroscopy study of the wetting of the grain boundaries in the systems Mo-Pb, Mo-Sn, Mo-Ni and Ni-Pb

    International Nuclear Information System (INIS)

    Charai, A.; Kutcherinenko, I.; Priester, L.; Penisson, J.M.; Pontikis, V.; Wolski, K.; Vystavel, T.

    2002-01-01

    Understanding the mechanism of the intergranular penetration of a liquid phase into a metallic solid is an important problem. The structural and chemical characterization of nano-metric films at grain boundaries is now possible by using high resolution electron microscopy associated with X-ray micro-analysis, electron energy loss spectroscopy and Auger spectroscopy. In order to study this problem, two different classes of model materials were selected according to their crystallographic structure: a bcc metal (molybdenum) and an fcc one (nickel). The wetting element was either lead or tin or nickel. In a first approach, the metallic matrix was polycrystalline. The conditions in which the liquid phase penetrates into the grain boundaries were studied by using special preparation and observation techniques. In particular, the use of a Focused Ion Beam microscope (FIB) allowed the preparation of thin foils located very precisely inside the matrix as well as multi-scale observations. These specimens were further observed in electron microscopy with a very high resolution. (authors)

  11. High resolution electron microscopy and electron diffraction of YBa/sub 2/Cu/sub 3/O/sub 7-x/

    International Nuclear Information System (INIS)

    Krakow, W.; Shaw, T.M.

    1988-01-01

    Experimental high resolution electron micrographs and computer simulation experiments have been used to evaluate the visibility of the atomic constituents of YBa/sub 2/Cu/sub 3/O/sub 7-x/. In practice, the detection of oxygen has not been possible in contradiction to that predicted by modelling of perfect crystalline material. Preliminary computer experiments of the electron diffraction patterns when oxygen vacancies are introduced on the Cu-O sheets separating Ba layers show the diffuse streaks characteristic of short range ordering

  12. Spectroscopy with trapped highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, Peter

    2009-01-01

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed; and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  13. An extended model of electrons: experimental evidence from high-resolution scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Hofer, Werner A

    2012-01-01

    In a recent paper we introduced a model of extended electrons, which is fully compatible with quantum mechanics in the formulation of Schrödinger. However, it contradicts the current interpretation of electrons as point-particles. Here, we show by a statistical analysis of high-resolution scanning tunneling microscopy (STM) experiments, that the interpretation of electrons as point particles and, consequently, the interpretation of the density of electron charge as a statistical quantity will lead to a conflict with the Heisenberg uncertainty principle. Given the precision in these experiments we find that the uncertainty principle would be violated by close to two orders of magnitude, if this interpretation were correct. We are thus forced to conclude that the density of electron charge is a physically real, i.e. in principle precisely measurable quantity, as derived in a recent paper. Experimental evidence to the contrary, in particular high-energy scattering experiments, is briefly discussed. The finding is expected to have wide implications in condensed matter physics, chemistry, and biology, scientific disciplines which are based on the properties and interactions of electrons.

  14. High-Resolution Detector For X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.

    1988-01-01

    Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.

  15. Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Robert, E-mail: bobsinc@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Lee, Sang Chul, E-mail: sclee99@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Shi, Yezhou; Chueh, William C. [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2017-05-15

    We have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e{sup -}/Å{sup 2}s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower lose rates (ca. 2600 e{sup -}/Å{sup 2}s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce{sup 3+} versus Ce{sup 4+} cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface. - Highlights: • The local structure and chemistry of ceria can be studied by TEM combined with EELS. • At lower electron, there are no observable changes in the ceria thin films. • At higher dose rates, an ordered phase is created due to oxygen vacancy ordering. • In situ HRTEM shows the oxygen vacancy ordering and the movement of surface atoms.

  16. Spectroscopy of hexafluorides with an odd number of electrons; Spectroscopie des hexafluorures a nombre impair d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Boudon, V

    1995-05-01

    From a theoretical point of view, a tensorial formalism adapted to the study of molecules or octahedral ions with a half-integer angular momentum has been developed for the first time. We have used here the method of projective representations, more consistent than that of double groups. A complete set of coupling coefficients and formulas, as well as the corresponding computing programs have been elaborated. This has firstly allowed us to write a simple model describing the vibronic structure of colored hexafluorides. Then, some applications of this formalism to the study of ro-vibronic couplings of XY{sub 6} molecules in a fourfold degenerate electronic state have been considered, especially concerning operators associated to dynamic Jahn-Teller effect. From an experimental point of view, we have considered IrF{sub 6}, for which we have mastered the synthesis, purification and conservation processes. A first study at low resolution (absorption and Raman scattering) has been performed for this molecule. We have then set up two high resolution spectroscopic devices in the visible region (saturated absorption - tested with an iodine cell- and simple absorption with multiple pass). These especially use a dye laser. They should now allow the spectroscopy of the visible band of IrF{sub 6} in order to resolve for the first time its fine rotational structure. (author)

  17. Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images

    International Nuclear Information System (INIS)

    Lee, Z.; Rose, H.; Lehtinen, O.; Biskupek, J.; Kaiser, U.

    2014-01-01

    In order to achieve the highest resolution in aberration-corrected (AC) high-resolution transmission electron microscopy (HRTEM) images, high electron doses are required which only a few samples can withstand. In this paper we perform dose-dependent AC-HRTEM image calculations, and study the dependence of the signal-to-noise ratio, atom contrast and resolution on electron dose and sampling. We introduce dose-dependent contrast, which can be used to evaluate the visibility of objects under different dose conditions. Based on our calculations, we determine optimum samplings for high and low electron dose imaging conditions. - Highlights: • The definition of dose-dependent atom contrast is introduced. • The dependence of the signal-to-noise ratio, atom contrast and specimen resolution on electron dose and sampling is explored. • The optimum sampling can be determined according to different dose conditions

  18. Process analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy.

    Science.gov (United States)

    Fink, Herbert; Panne, Ulrich; Niessner, Reinhard

    2002-09-01

    An experimental setup for direct elemental analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy (LIPS, or laser-induced breakdown spectroscopy, LIBS) was realized. The combination of a echelle spectrograph, featuring a high resolution with a broad spectral coverage, with multivariate methods, such as PLS, PCR, and variable subset selection via a genetic algorithm, resulted in considerable improvements in selectivity and sensitivity for this complex matrix. With a normalization to carbon as internal standard, the limits of detection were in the ppm range. A preliminary pattern recognition study points to the possibility of polymer recognition via the line-rich echelle spectra. Several experiments at an extruder within a recycling plant demonstrated successfully the capability of LIPS for different kinds of routine on-line process analysis.

  19. Evidences from electron momentum spectroscopy for ultra-fast charge transfers and structural reorganizations in a floppy molecule: Ethanol

    International Nuclear Information System (INIS)

    Deleuze, Michael S; Hajgato, Balazs; Morini, Filippo

    2009-01-01

    Calculations of electron momentum distributions employing advanced Dyson orbital theories and statistical thermodynamics beyond the RRHO approximation fail to quantitatively reproduce the outermost momentum profile inferred from experiments on ethanol employing high resolution Electron Momentum Spectroscopy [1]. Study of the influence of nuclear dynamics in the initial ground state and final ionized state indicates that this discrepancy between theory and experiment reflects a charge transfer occurring during an ultra-fast dissociation of the ethanol radical cation into a methyl radical and H 2 C=O-H + .

  20. Electron capture and energy-gain spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taulbjerg, K.

    1989-01-01

    The applicability of translation energy spectroscopy as a tool to determine individual reaction cross sections in atomic collisions is analyzed with special emphasis on the electron capture process in highly charged ion collisions. A condition is derived to separate between higher collision energies where translation energy spectroscopy is problem free and lower energies where strong overlap of individual spectra features prohibits an analysis of the total translation energy spectrum by means of a simple deconvolution procedure. 8 refs., 6 figs.

  1. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak.

    Science.gov (United States)

    Truong, D D; Austin, M E

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels' IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters' center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a "zoomed-in" analysis of a ∼2-4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, are presented.

  2. Minimal exposure technique in the Cambridge University 600kV high resolution electron microscope

    International Nuclear Information System (INIS)

    Fryer, J.R.; Cleaver, J.R.A.; Smith, D.J.

    1980-01-01

    Radiation damage due to the incident electron beam imposes a fundamental limitation on the information obtainable by electron microscopy about organic materials; it is desirable therefore that exposure of the specimen to the electron beam should be restricted to the actual period during which the image is being recorded. A description is given of methods employed in the observation of the organic aromatic hydrocarbons quaterrylene, ovalene and coronene with the Cambridge University 600kV high resolution electron microscope (HREM). In particular, the condenser-objective mode of operation of this microscope lends itself to the use of an area-defining aperture below the second condenser lens conjugate with the specimen. Furthermore, operation at the higher accelerating voltage of this instrument could be anticipated to reduce the rate of damage, depending on the dominant beam-specimen interaction, whilst the increased width of the first broad band of the contrast transfer function of this microscope at the optimum defocus may overcome the reported resolution limitation of current 100kV microscopes for the observation of related materials. (author)

  3. Insight into Resolution Enhancement in Generalized Two-Dimensional Correlation Spectroscopy

    OpenAIRE

    Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K.; Asher, Sanford A.

    2013-01-01

    Generalized two-dimensional correlation spectroscopy (2D COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) are not completely understood. In the work here we studied the 2D COS of simulated spectra in order to develop new insights into the dependence of the 2D COS spectral features on the overlapping band separat...

  4. Magnetic lens apparatus for a low-voltage high-resolution electron microscope

    Science.gov (United States)

    Crewe, Albert V.

    1996-01-01

    A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.

  5. X-ray High-resolution Spectroscopy for Laser-produced Plasma

    Science.gov (United States)

    Barbato, F.; Scarpellini, D.; Malizia, A.; Gaudio, P.; Richetta, M.; Antonelli, L.

    The study of the emission spectrum gives information about the material generating the spectrum itself and the condition in which this is generated. The wavelength spectra lines are linked to the specific element and plasma conditions (electron temperature, density), while their shape is influenced by several physical effects like Stark and Doppler ones. In this work we study the X-ray emission spectra of a copper laser-produced plasma by using a spherical bent crystal spectrometer to measure the electron temperature. The facility used is the laser TVLPS, at the Tor Vergata University in Rome. It consists of a Nd:Glass source (in first harmonic - 1064 nm) whose pulse parameters are: 8 J in energy, time duration of 15 ns and a focal spot diameter of 200 μm. The adopted spectrometer is based on a spherical bent crystal of muscovite. The device combines the focusing property of a spherical mirror with the Bragg's law. This allows to obtain a great power resolution but a limited range of analysis. In our case the resolution is on average 80 eV. As it is well-known, the position of the detector on the Rowland's circle is linked to the specific spectral range which has been studied. To select the area to be investigated, we acquired spectra by means of a flat spectrometer. The selected area is centered on 8.88 Å. To calibrate the spectrum we wrote a ray-tracing MATLAB code, which calculates the detector alignment parameters and calibration curve. We used the method of line ratio to measure the electron temperature. This is possible because we assumed the plasma to be in LTE condition. The temperature value was obtained comparing the experimental one, given by the line ratio, with the theoretical one, preceded by FLYCHK simulations.

  6. On-line high-resolution mass spectroscopy. Progress report, July 1, 1975--July 1, 1976

    International Nuclear Information System (INIS)

    Macfarlane, R.D.; Torgerson, D.F.

    1976-08-01

    The search for second-class currents in nuclear beta decay continued with measurements of beta--gamma correlations for the mirror decays 20 F(β - ) 20 Ne*(1.63) and 20 Na(β + ) 20 Ne*(1.63). The 20 F beta--gamma correlation was measured in beam, and the results are being compared with values obtained using the He-jet method. A careful analysis of ion velocity distributions emitted from fission fragment tracks in solids yielded new information on the nature of the process. The temperature of the microplasma formed by a fission fragment was determined to be of the order 10 4 K, and the temperature is dependent on the fission fragment's energy. A mass reflectron is being developed for high mass resolution using time-of-flight mass spectroscopy. The application of 252 Cf-PDMS (plasma desorption mass spectroscopy) to new classes of involatile compounds continued. Techniques are being studied for the routine analysis of involatile species of mass greater than 2000. The report is basically descriptive in nature. 5 figures, 1 table

  7. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    Science.gov (United States)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  8. Joint density of states of wide-band-gap materials by electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Fan, X.D.; Peng, J.L.; Bursill, L.A.

    1998-01-01

    Kramers-Kronig analysis for parallel electron energy loss spectroscopy (PEELS) data is developed as a software package. When used with a JEOL 4000EX high-resolution transmission electron microscope (HRTEM) operating at 100 keV this allows us to obtain the dielectric function of relatively wide band gap materials with an energy resolution of approx 1.4 eV. The imaginary part of the dielectric function allows the magnitude of the band gap to be determined as well as the joint-density-of-states function. Routines for obtaining three variations of the joint-density of states function, which may be used to predict the optical and dielectric response for angle-resolved or angle-integration scattering geometries are also described. Applications are presented for diamond, aluminum nitride (AlN), quartz (SiO 2 ) and sapphire (Al 2 O 3 ). The results are compared with values of the band gap and density of states results for these materials obtained with other techniques. (authors)

  9. Charge deep-level transient spectroscopy study of high-energy-electron-beam-irradiated hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Klaver, A.; Nádaždy, V.; Zeman, M.; Swaaiij, R.A.C.M.M.

    2006-01-01

    We present a study of changes in the defect density of states in hydrogenated amorphous silicon (a-Si:H) due to high-energy electron irradiation using charged deep-level transient spectroscopy. It was found that defect states near the conduction band were removed, while in other band gap regions the

  10. High resolution spectroscopy in solids by nuclear magnetic resonance; Espectroscopia de alta resolucao em solidos por ressonancia magnetica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Bonagamba, T J

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120{sup 0} C to +160{sup 0} C, and is fully controlled by a Macintosh IIci microcomputer. (author).

  11. High-Frequency Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Functionalized Nanodiamonds in Aqueous Solution.

    Science.gov (United States)

    Akiel, R D; Stepanov, V; Takahashi, S

    2017-06-01

    Nanodiamond (ND) is an attractive class of nanomaterial for fluorescent labeling, magnetic sensing of biological molecules, and targeted drug delivery. Many of those applications require tethering of target biological molecules on the ND surface. Even though many approaches have been developed to attach macromolecules to the ND surface, it remains challenging to characterize dynamics of tethered molecule. Here, we show high-frequency electron paramagnetic resonance (HF EPR) spectroscopy of nitroxide-functionalized NDs. Nitroxide radical is a commonly used spin label to investigate dynamics of biological molecules. In the investigation, we developed a sample holder to overcome water absorption of HF microwave. Then, we demonstrated HF EPR spectroscopy of nitroxide-functionalized NDs in aqueous solution and showed clear spectral distinction of ND and nitroxide EPR signals. Moreover, through EPR spectral analysis, we investigate dynamics of nitroxide radicals on the ND surface. The demonstration sheds light on the use of HF EPR spectroscopy to investigate biological molecule-functionalized nanoparticles.

  12. Electron energy loss spectroscopy microanalysis and imaging in the transmission electron microscope: example of biological applications

    International Nuclear Information System (INIS)

    Diociaiuti, Marco

    2005-01-01

    This paper reports original results obtained in our laboratory over the past few years in the application of both electron energy loss spectroscopy (EELS) and electron spectroscopy imaging (ESI) to biological samples, performed in two transmission electron microscopes (TEM) equipped with high-resolution electron filters and spectrometers: a Gatan model 607 single magnetic sector double focusing EEL serial spectrometer attached to a Philips 430 TEM and a Zeiss EM902 Energy Filtering TEM. The primary interest was on the possibility offered by the combined application of these spectroscopic techniques with those offered by the TEM. In particular, the electron beam focusing available in a TEM allowed us to perform EELS and ESI on very small sample volumes, where high-resolution imaging and electron diffraction techniques can provide important structural information. I show that ESI was able to improve TEM performance, due to the reduced chromatic aberration and the possibility of avoiding the sample staining procedure. Finally, the analysis of the oscillating extended energy loss fine structure (EXELFS) beyond the ionization edges characterizing the EELS spectra allowed me, in a manner very similar to the extended X-ray absorption fine structure (EXAFS) analysis of the X-ray absorption spectra, to obtain short-range structural information for such light elements of biological interest as O or Fe. The Philips EM430 (250-300 keV) TEM was used to perform EELS microanalysis on Ca, P, O, Fe, Al and Si. The assessment of the detection limits of this method was obtained working with well-characterized samples containing Ca and P, and mimicking the actual cellular matrix. I applied EELS microanalysis to Ca detection in bone tissue during the mineralization process and to P detection in the cellular membrane of erythrocytes treated with an anti-tumoral drug, demonstrating that the cellular membrane is a drug target. I applied EELS microanalysis and selected area electron

  13. Millisecond resolution electron fluxes from the Cluster satellites: Calibrated EDI ambient electron data

    Science.gov (United States)

    Förster, Matthias; Rashev, Mikhail; Haaland, Stein

    2017-04-01

    The Electron Drift Instrument (EDI) onboard Cluster can measure 500 eV and 1 keV electron fluxes with high time resolution during passive operation phases in its Ambient Electron (AE) mode. Data from this mode is available in the Cluster Science Archive since October 2004 with a cadence of 16 Hz in the normal mode or 128 Hz for burst mode telemetry intervals. The fluxes are recorded at pitch angles of 0, 90, and 180 degrees. This paper describes the calibration and validation of these measurements. The high resolution AE data allow precise temporal and spatial diagnostics of magnetospheric boundaries and will be used for case studies and statistical studies of low energy electron fluxes in the near-Earth space. We show examples of applications.

  14. Investigation of the molecular conformations of ethanol using electron momentum spectroscopy

    International Nuclear Information System (INIS)

    Ning, C G; Luo, Z H; Huang, Y R; Liu, K; Zhang, S F; Deng, J K; Hajgato, B; Morini, F; Deleuze, M S

    2008-01-01

    The valence electronic structure and momentum-space electron density distributions of ethanol have been investigated with our newly constructed high-resolution electron momentum spectrometer. The measurements are compared to thermally averaged simulations based on Kohn-Sham (B3LYP) orbital densities as well as one-particle Green's function calculations of ionization spectra and Dyson orbital densities, assuming Boltzmann's statistical distribution of the molecular structure over the two energy minima defining the anti and gauche conformers. One-electron ionization energies and momentum distributions in the outer-valence region were found to be highly dependent upon the molecular conformation. Calculated momentum distributions indeed very sensitively reflect the distortions and topological changes that molecular orbitals undergo due to the internal rotation of the hydroxyl group, and thereby exhibit variations which can be traced experimentally. The B3LYP model Kohn-Sham orbital densities are overall in good agreement with the experimental distributions, and closely resemble benchmark ADC(3) Dyson orbital densities. Both approaches fail to quantitatively reproduce the experimental momentum distributions characterizing the highest occupied molecular orbital. Since electron momentum spectroscopy measurements at various electron impact energies indicate that the plane wave impulse approximation is valid, this discrepancy between theory and experiment is tentatively ascribed to thermal disorder, i.e. large-amplitude and thermally induced dynamical distortions of the molecular structure in the gas phase

  15. Spectroscopy of two-electron atoms

    International Nuclear Information System (INIS)

    Desesquelles, J.

    1988-01-01

    Spectroscopy of heliumlike ions is discussed putting emphasis on mid and high Z atoms. Experimental aspects of ion charge, excitation production, clean spectra, and precise wavelength measurement are detailed. Recent results obtained at several laboratories including Lyon, Argonne, Notre-Dame, Oxford, Berkeley, Darmstadt, Paris, are used to test the QED contributions and higher order relativistic corrections to two-electron atom energies. (orig.)

  16. Picometer-resolution dual-comb spectroscopy with a free-running fibre laser

    OpenAIRE

    Zhao, Xin; Hu, Guoqing; Zhao, Bofeng; Li, Cui; Pan, Yingling; Liu, Ya; Yasui, Takeshi; Zheng, Zheng

    2016-01-01

    Dual-comb spectroscopy utilizes two sets of comb lines with slightly different comb-tooth-spacings, and optical spectral information is acquired by measuring the radio-frequency beat notes between the sets of comb lines. It holds the promise as a real-time, high-resolution analytical spectroscopy tool for a range of applications. However, the stringent requirement on the coherence between comb lines from two separate lasers and the sophisticated control system to achieve that have confined th...

  17. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

    Science.gov (United States)

    Deming, Drake; Sheppard, Kyle

    2017-05-01

    We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar-planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at high spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope/WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.

  18. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

    Energy Technology Data Exchange (ETDEWEB)

    Deming, Drake; Sheppard, Kyle [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States)

    2017-05-20

    We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar–planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at high spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope /WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.

  19. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

    International Nuclear Information System (INIS)

    Deming, Drake; Sheppard, Kyle

    2017-01-01

    We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar–planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at high spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope /WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.

  20. Styrylpyrylium Salts: 1H and 13C NMR High-Resolution Spectroscopy (1D and 2D

    Directory of Open Access Journals (Sweden)

    Jean Claude W. Ouédraogo

    2010-01-01

    Full Text Available 1H and 13C NMR high-resolution spectroscopy (1D and 2D (1H, 1H-COSY, HSQC, HMBC for four styrylpyrylium perchlorates were carried out and signal attributions are reported. Chemical shifts observed on 13C NMR spectra for the styrylpyrylium salts were compared with net atomic charge for carbon obtained by AM1 semiempirical calculations. The position of the styryl group present low effect on chemical shifts for carbon atoms, while the presence of methyl group led to the unshielding of the substituted carbon.

  1. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    International Nuclear Information System (INIS)

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-01-01

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As x Se 100−x , As x S 100−x , Ge x Se 100−x and Ge x S 100−x chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  2. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Kozyukhin, S., E-mail: sergkoz@igic.ras.ru [Russian Academy of Science, Institute of General and Inorganic Chemistry (Russian Federation); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Kovalskiy, A. [Lehigh University, Department of Materials Science and Engineering (United States); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Jain, H. [Lehigh University, Department of Materials Science and Engineering (United States)

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  3. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  4. Applications of high lateral and energy resolution imaging XPS with a double hemispherical analyser based spectromicroscope

    International Nuclear Information System (INIS)

    Escher, M.; Winkler, K.; Renault, O.; Barrett, N.

    2010-01-01

    The design and applications of an instrument for imaging X-ray photoelectron spectroscopy (XPS) are reviewed. The instrument is based on a photoelectron microscope and a double hemispherical analyser whose symmetric configuration avoids the spherical aberration (α 2 -term) inherent for standard analysers. The analyser allows high transmission imaging without sacrificing the lateral and energy resolution of the instrument. The importance of high transmission, especially for highest resolution imaging XPS with monochromated laboratory X-ray sources, is outlined and the close interrelation of energy resolution, lateral resolution and analyser transmission is illustrated. Chemical imaging applications using a monochromatic laboratory Al Kα-source are shown, with a lateral resolution of 610 nm. Examples of measurements made using synchrotron and laboratory ultra-violet light show the broad field of applications from imaging of core level electrons with chemical shift identification, high resolution threshold photoelectron emission microscopy (PEEM), work function imaging and band structure imaging.

  5. Spectroscopy of hexafluorides with an odd number of electrons; Spectroscopie des hexafluorures a nombre impair d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Boudon, V

    1995-05-01

    From a theoretical point of view, a tensorial formalism adapted to the study of molecules or octahedral ions with a half-integer angular momentum has been developed for the first time. We have used here the method of projective representations, more consistent than that of double groups. A complete set of coupling coefficients and formulas, as well as the corresponding computing programs have been elaborated. This has firstly allowed us to write a simple model describing the vibronic structure of colored hexafluorides. Then, some applications of this formalism to the study of ro-vibronic couplings of XY{sub 6} molecules in a fourfold degenerate electronic state have been considered, especially concerning operators associated to dynamic Jahn-Teller effect. From an experimental point of view, we have considered IrF{sub 6}, for which we have mastered the synthesis, purification and conservation processes. A first study at low resolution (absorption and Raman scattering) has been performed for this molecule. We have then set up two high resolution spectroscopic devices in the visible region (saturated absorption - tested with an iodine cell- and simple absorption with multiple pass). These especially use a dye laser. They should now allow the spectroscopy of the visible band of IrF{sub 6} in order to resolve for the first time its fine rotational structure. (author)

  6. EROIC: a BiCMOS pseudo-gaussian shaping amplifier for high-resolution X-ray spectroscopy

    Science.gov (United States)

    Buzzetti, Siro; Guazzoni, Chiara; Longoni, Antonio

    2003-10-01

    We present the design and complete characterization of a fifth-order pseudo-gaussian shaping amplifier with 1 μs shaping time. The circuit is optimized for the read-out of signals coming from Silicon Drift Detectors for high-resolution X-ray spectroscopy. The novelty of the designed chip stands in the use of a current feedback loop to place the poles in the desired position on the s-plane. The amplifier has been designed in 0.8 μm BiCMOS technology and fully tested. The EROIC chip comprises also the peak stretcher, the peak detector, the output buffer to drive the external ADC and the pile-up rejection system. The circuit needs a single +5 V power supply and the dissipated power is 5 mW per channel. The digital outputs can be directly coupled to standard digital CMOS ICs. The measured integral-non-linearity of the whole chip is below 0.05% and the achieved energy resolution at the Mn Kα line detected by a 5 mm 2 Peltier-cooled Silicon Drift Detector is 167 eV FWHM.

  7. EROIC: a BiCMOS pseudo-gaussian shaping amplifier for high-resolution X-ray spectroscopy

    International Nuclear Information System (INIS)

    Buzzetti, Siro; Guazzoni, Chiara; Longoni, Antonio

    2003-01-01

    We present the design and complete characterization of a fifth-order pseudo-gaussian shaping amplifier with 1 μs shaping time. The circuit is optimized for the read-out of signals coming from Silicon Drift Detectors for high-resolution X-ray spectroscopy. The novelty of the designed chip stands in the use of a current feedback loop to place the poles in the desired position on the s-plane. The amplifier has been designed in 0.8 μm BiCMOS technology and fully tested. The EROIC chip comprises also the peak stretcher, the peak detector, the output buffer to drive the external ADC and the pile-up rejection system. The circuit needs a single +5 V power supply and the dissipated power is 5 mW per channel. The digital outputs can be directly coupled to standard digital CMOS ICs. The measured integral-non-linearity of the whole chip is below 0.05% and the achieved energy resolution at the Mn Kα line detected by a 5 mm 2 Peltier-cooled Silicon Drift Detector is 167 eV FWHM

  8. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Truong, D. D., E-mail: dtruong@wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas, 78712 (United States)

    2014-11-15

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ∼2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.

  9. Development of the high-power THz spectroscopy and imaging systems on the basis of an S-band compact electron LINAC

    International Nuclear Information System (INIS)

    Kuroda, R.; Taira, Y.; Tanaka, M.; Toyokawa, H.; Yamada, K.; Kumaki, M.; Tachibana, M.; Sakaue, K.; Washio, M.

    2014-01-01

    The high-power terahertz time-domain spectroscopy (THz-TDS) and imaging systems have been developed on the basis of an S-band compact electron linac at AIST. Such high-power THz source is strongly expected for inspection of dangerous materials in the homeland security field. The high-power THz radiations are generated in two methods with the high-brightness ultra-short electron bunch. One is THz coherent synchrotron radiation (THz-CSR) for THz imaging applications. The other is THz coherent transition radiation (THz-CTR) for the THz spectroscopy. The THz-CTR time-domain spectroscopy (TDS) has been constructed with the EO sampling method and demonstrated in freq. range between 0.1-2 THz. The absorption measurements of drug samples have been successfully performed in atmosphere. In this symposium, we will describe details of the THz-CTR-TDS and imaging experiments and a future plan of the THz applications. (author)

  10. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    Science.gov (United States)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  11. Optimization of a coherent synchrotron radiation source in the Tera-hertz range for high-resolution spectroscopy of molecules of astrophysical interest

    International Nuclear Information System (INIS)

    Barros, J.

    2012-01-01

    Fourier Transform spectroscopy is the most used multiplex tool for high-resolution measurements in the infrared range. Its extension to the Tera-hertz domain is of great interest for spectroscopic studies of interstellar molecules. This application is however hampered by the lack of dedicated, broadband sources with a sufficient intensity and stability. In this work, Coherent Synchrotron Radiation (CSR) was used as a source for molecular spectroscopy at high resolution on the AILES infrared and Tera-hertz beamline of SOLEIL synchrotron. The beamline being optimized for far-infrared, we could characterize the properties of CSR and compare them to the incoherent synchrotron radiation. A double detection system allowed to correct the effect of the source-related instabilities, hence to significantly increase the signal-to-noise ratio. Pure rotational spectra were measured using these developments. The case of the propynal molecule, for which a refined set of rotational and centrifugal distortion constants was calculated, proves the complementarity between CSR and the classical microwave or infrared sources. (author)

  12. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    Science.gov (United States)

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  13. Gas-phase synthesis of magnesium nanoparticles: A high-resolution transmission electron microscopy study

    International Nuclear Information System (INIS)

    Kooi, B. J.; Palasantzas, G.; De Hosson, J. Th. M.

    2006-01-01

    Magnesium nanoparticles with size above 10 nm, prepared by gas-phase syntheses, were investigated by high-resolution transmission electron microscopy. The dominant particle shape is a hexagonal prism terminated by Mg(0002) and Mg(1010) facets. Oxidation of Mg yields a MgO shell (∼3 nm thick), which has an orientation relation with the Mg. Inhomogeneous facet oxidation influences their growth kinetics resulting in a relatively broad size and shape distribution. Faceted voids between Mg and MgO shells indicate a fast outward diffusion of Mg and vacancy rearrangement into voids. The faceting of polar (220) planes is assisted by electron irradiation

  14. Near Infrared High Resolution Spectroscopy and Spectro-astrometry of Gas in Disks around Herbig Ae/Be Stars

    OpenAIRE

    Brittain, Sean D.; Najita, Joan R.; Carr, John S.

    2015-01-01

    In this review, we describe how high resolution near infrared spectroscopy and spectro-astrometry have been used to study the disks around Herbig~Ae/Be stars. We show how these tools can be used to identify signposts of planet formation and elucidate the mechanism by which Herbig Ae/Be stars accrete. We also highlight some of the artifacts that can complicate the interpretation of spectro-astrometric measurements and discuss best practices for mitigating these effects. We conclude with a brie...

  15. Identifying highly conducting Au–C links through inelastic electron tunneling spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Foti, G.; Vázquez, Héctor; Sanchez-Portal, D.; Arnau, A.; Frederiksen, T.

    2014-01-01

    Roč. 118, OCT (2014), s. 27106-27112 ISSN 1932-7447 Institutional support: RVO:68378271 Keywords : molecular electronics * alkanes * tin-functionalization * anchoring groups * vibrational spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.772, year: 2014

  16. High-resolution studies of momentum distributions using perfect crystal gamma diffractometry

    International Nuclear Information System (INIS)

    Krexner, G.; Bischof, G.; Jentschel, M.; Boerner, H.

    2006-01-01

    Full text: Positron annihilation spectroscopy has turned out to be highly successful in the investigation of Fermi surfaces, electronic structures and various kinds of defects. On the other hand, algorithms based on density functional theory have made enormous progress in recent years and calculations for the contributions of both delocalized and core electrons in a rapidly increasing number of systems is either already feasible today or to be expected in the near future. By comparison, over the last decades there has been little improvement in the experimental limitations which are still set by the energy resolution of germanium detectors (slightly above 1 keV for annihilation photons close to 500 keV) and the angular resolution in ACAR studies (superior by about one order of magnitude). In addition, coincidence techniques are hampered by low count rates. An alternative is suggested by the fact that, in principle, Bragg diffraction techniques using perfect single crystals provide a way for the precise determination of wavelengths corresponding to energies in the MeV range. The single crystal analyzer instrument PN3 at the Institute Laue-Langevin (Grenoble, France) offers the unique possibility to determine the energy of annihilation photons with an accuracy close to about 1 eV, i.e. an improvement of up to three orders of magnitude in comparison to conventional semiconductor detectors. We discuss possible applications of this spectrometer in high-resolution studies of momentum distributions for both delocalized and core electrons. (author)

  17. Self-calibration and self-optimization in DSP-based high resolution spectroscopy systems

    International Nuclear Information System (INIS)

    Geraci, A.; Ripamonti, G.; Pullia, A.

    1996-01-01

    We propose a mathematical method to automatically evaluate the weights of the digital filters used for high resolution spectroscopy in a mixed analog-digital setup. The optimum filter weighting function WF is obtained from the noise autocorrelation; an ultra-accurate estimate of the singularities of the antialiasing, filter is derived from its experimental pulse response. From these data the procedure automatically computes the optimum WF and the digital filter weights. We show that the method provides a much better flatness of the flat top (to within 0.1% of the peak value); a more precise elimination of tails in the WF (to better than 0.1% of the peak value) and a much lower quantization noise (more than a factor 10) at the filter output than other possible methods. It was successfully tested in the generation of trapezoidal and optimum cusp-like WFs even in presence of non negligible 1/f noise. It is run in around one second with no additional hardware

  18. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    International Nuclear Information System (INIS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-01

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N 2 , H 2 , CO 2 , O 2 , and CH 4 . Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location

  19. A high resolution electron microscopy investigation of curvature in multilayer graphite sheets

    International Nuclear Information System (INIS)

    Wang Zhenxia; Hu Jun; Wang Wenmin; Yu Guoqing

    1998-01-01

    Here the authors report a carbon sample generated by ultrasonic wave high oriented pyrolytic graphite (HOPG) in ethanol, water or ethanol-water mixed solution. High resolution transmission electron microscopy (HRTEM) revealed many multilayer graphite sheets with a total curved angle that is multiples of θ 0 (= 30 degree C). Close examination of the micrographs showed that the curvature is accomplished by bending the lattice planes. A possible explanation for the curvature in multilayer graphite sheets is discussed based on the conformation of graphite symmetry axes and the formation of sp 3 -like line defects in the sp 2 graphitic network

  20. Bulk superconducting gap of V{sub 3}Si studied by low-energy ultrahigh-resolution photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T., E-mail: t-sato@arpes.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Souma, S. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nakayama, K. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Sugawara, K. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Toyota, N. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Takahashi, T. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2016-04-15

    Highlights: • We report ultrahigh-resolution photoemission spectroscopy of A15 compound V{sub 3}Si. • We found a sharp quasiparticle peak due to superconducting-gap opening. • The surface metallic component is negligibly small in the bulk-sensitive measurement. • We show that V{sub 3}Si is a single-gap s-wave superconductor. - Abstract: We have performed low-energy ultrahigh-resolution photoemission spectroscopy (PES) of A15 compound V{sub 3}Si with a xenon-plasma discharge lamp to elucidate the bulk superconducting gap. Below the superconducting transition temperature (T{sub c} = 15.9 K), we found a sharp quasiparticle peak at the Fermi level in the PES spectrum. The gap spectrum is well fitted by a single s-wave superconducting-gap function together with a dip structure at ∼30 meV suggestive of a strong electron-phonon coupling. The anomalous in-gap state previously observed in the PES measurement with high-energy photons is absent or negligibly small in the present bulk-sensitive measurement. The present PES result shows that V{sub 3}Si is a single-gap s-wave superconductor.

  1. Auger electron spectroscopy analysis of high metal content micro-structures grown by electron beam induced deposition

    International Nuclear Information System (INIS)

    Cicoira, F.; Hoffmann, P.; Olsson, C.O.A.; Xanthopoulos, N.; Mathieu, H.J.; Doppelt, P.

    2005-01-01

    An auger electron spectroscopy study was carried out on Rh-containing micro-structures grown by electron beam induced deposition (EBID) of the iso-structural and iso-electronic precursors [RhCl(PF 3 ) 2 ] 2 and [RhCl(CO) 2 ] 2 . A material containing between 55 and 60 at.% Rh was obtained from both precursors. The chemical composition of structures grown from the two different precursors indicates a similar decomposition mechanism. Deposits grown from [RhCl(PF 3 ) 2 ] 2 showed a chemical composition independent of electron energy and electron dose in the investigated range of conditions

  2. Characterization of an Yb:LuVO{sub 4} single crystal using X-ray topography, high-resolution X-ray diffraction, and X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paszkowicz, W., E-mail: paszk@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw (Poland); Romanowski, P.; Bak-Misiuk, J. [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw (Poland); Wierzchowski, W. [Institute of Electronic Materials Technology, Wolczynska 133, PL-01919 Warsaw (Poland); Wieteska, K. [Institute of Atomic Energy POLATOM, PL-05400 Otwock-Swierk (Poland); Graeff, W. [HASYLAB at DESY, Notkestr. 85, D-22603 Hamburg (Germany); Iwanowski, R.J. [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw (Poland); Heinonen, M.H. [Laboratory of Materials Science, Department of Physics, University of Turku, Vesilinnantie 5, FI-20014, Turku (Finland); Ermakova, O. [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw (Poland); Dabkowska, H. [Department of Physics, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada)

    2011-10-15

    Knowledge on the defect and electronic structure allows for improved modeling of material properties. A short literature review has shown that the information on defect structure of rare earth orthovanadate single crystals is limited. In this paper, defect and electronic structure of a needle-shaped Yb:LuVO{sub 4} single crystal grown by the slow cooling method have been studied by means of X-ray diffraction topography employing white synchrotron beam, high-resolution diffraction (HRD) and photoelectron spectroscopy (XPS) techniques. Topographic investigations show that the crystal is composed of two blocks disoriented by about 1.5{sup o} and separated by a narrow deformed region. Some contrasts observed within the crystal volume may be attributed to glide bands and sector boundaries. The contrasts appearing in the vicinity of the surface may be interpreted as due to the presence of small inclusions. The HRD study indicates, in particular, that among point defects, the vacancy type defects dominate and that the density of other defects is small in comparison. The XPS measurements enabled, despite highly insulating properties of the studied crystal, an analysis of its bulk electronic structure, including the main core-levels (O 1s, V 2p, Lu 4f) as well as the valence band range.

  3. Zeolites - a high resolution electron microscopy study

    International Nuclear Information System (INIS)

    Alfredsson, V.

    1994-10-01

    High resolution transmission electron microscopy (HRTEM) has been used to investigate a number of zeolites (EMT, FAU, LTL, MFI and MOR) and a member of the mesoporous M41S family. The electron optical artefact, manifested as a dark spot in the projected centre of the large zeolite channels, caused by insufficient transfer of certain reflections in the objective lens has been explained. The artefact severely hinders observation of materials confined in the zeolite channels and cavities. It is shown how to circumvent the artefact problem and how to image confined materials in spite of disturbance caused by the artefact. Image processing by means of a Wiener filter has been applied for removal of the artefact. The detailed surface structure of FAU has been investigated. Comparison of experimental micrographs with images simulated using different surface models indicates that the surface can be terminated in different ways depending on synthesis methods. The dealuminated form of FAU (USY) is covered by an amorphous region. Platinum incorporated in FAU has a preponderance to aggregate in the (111) twin planes, probably due to a local difference in cage structure with more spacious cages. It is shown that platinum is intra-zeolitic as opposed to being located on the external surface of the zeolite crystal. This could be deduced from tomography of ultra-thin sections among observations. HRTEM studies of the mesoporous MCM-41 show that the pores have a hexagonal shape and also supports the mechanistic model proposed which involves a cooperative formation of a mesophase including the silicate species as well as the surfactant. 66 refs, 24 figs

  4. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris M.; Graff, Jeff; Lebedev, Gennadi; Andresen, Nord; Schmid, Andreas; Fedorov, Alexei; El Gabaly, Farid; Wan, Weishi; Lanzara, Alessandra; Hussain, Zahid

    2010-04-13

    We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90 degrees bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments.

  5. High Resolution Thz and FIR Spectroscopy of SOCl_2

    Science.gov (United States)

    Martin-Drumel, M. A.; Cuisset, A.; Sadovskii, D. A.; Mouret, G.; Hindle, F.; Pirali, O.

    2013-06-01

    Thionyl chloride (SOCl_2) is an extremely powerful oxidant widely used in industrial processes and playing a role in the chemistry of the atmosphere. In addition, it has a molecular configuration similar to that of phosgene (COCl_2), and is therefore of particular interest for security and defense applications. Low resolution vibrational spectra of gas phase SOCl_2 as well as high resolution pure rotational transitions up to 25 GHz have previously been investigated. To date no high resolution data are reported at frequencies higher than 25 GHz. We have investigated the THz absorption spectrum of SOCl_2 in the spectral region 70-650 GHz using a frequency multiplier chain coupled to a 1 m long single path cell containing a pressure of about 15 μbar. At the time of the writing, about 8000 pure rotational transitions of SO^{35}Cl_2 with highest J and K_a values of 110 and 50 respectively have been assigned on the spectrum. We have also recorded the high resolution FIR spectra of SOCl_2 in the spectral range 50-700 wn using synchrotron radiation at the AILES beamline of SOLEIL facility. A White-type cell aligned with an absorption path length of 150 m has been used to record, at a resolution of 0.001 wn, two spectra at pressures of 5 and 56 μbar of SOCl_2. On these spectra all FIR modes of SOCl_2 are observed (ν_2 to ν_6) and present a resolved rotational structure. Their analysis is in progress. T. J. Johnson et al., J. Phys. Chem. A 107, 6183 (2003) D. E. Martz and R. T. Lagemann, J. Chem. Phys. 22,1193 (1954) H. S. P. Müller and M. C. L. Gerry, J. Chem. Soc. Faraday Trans. 90, 3473 (1994)

  6. High-resolution three-dimensional compositional imaging by double-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Schiavo, C.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Poggialini, F.; Pagnotta, S.; Palleschi, V.; Menichetti, L.

    2016-01-01

    In this paper we present a new instrument specifically realized for high-resolution three-dimensional compositional analysis and mapping of materials. The instrument is based on the coupling of a Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS) instrument with an optical microscope. The compositional mapping of the samples is obtained by scanning the laser beam across the surface of the sample, while the in depth analysis is performed by sending multiple laser pulses on the same point. Depths of analysis of several tens of microns can be obtained. The instrument presented has definite advantages with respect to Laser Ablation-ICP Mass Spectrometry in many applications related to material analysis, biomedicine and environmental diagnostics. An application to the diagnostics of industrial ceramics is presented, demonstrating the feasibility of Double-Pulse LIBS Imaging and its advantages with respect to conventional single-pulse LIBS imaging.

  7. Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x (x=1,2,3) phase change material

    NARCIS (Netherlands)

    Kooi, B.J.; de Hosson, J.T.M.

    2002-01-01

    The crystal structures of GeSb2Te4, Ge2Sb2Te5, and Ge3Sb2Te6 were determined using electron diffraction and high-resolution transmission electron microscopy. The structure determined for the former two crystals deviates from the ones proposed in the literature. These crystal structures were

  8. Photoelectron-Auger electron coincidence spectroscopy of free molecules: New experiments

    International Nuclear Information System (INIS)

    Ulrich, Volker; Barth, Silko; Lischke, Toralf; Joshi, Sanjeev; Arion, Tiberiu; Mucke, Melanie; Foerstel, Marko; Bradshaw, Alex M.; Hergenhahn, Uwe

    2011-01-01

    Photoelectron-Auger electron coincidence spectroscopy probes the dicationic states produced by Auger decay following the photoionization of core or inner valence levels in atoms, molecules or clusters. Moreover, the technique provides valuable insight into the dynamics of core hole decay. This paper serves the dual purpose of demonstrating the additional information obtained by this technique compared to Auger spectroscopy alone as well as of describing the new IPP/FHI apparatus at the BESSY II synchrotron radiation source. The distinguishing feature of the latter is the capability to record both the photoelectron and Auger electron with good energy and angle resolution, for which purpose a large hemispherical electrostatic analyser is combined with several linear time-of-flight spectrometers. New results are reported for the K-shell photoionization of oxygen (O 2 ) and the subsequent KVV Auger decay. Calculations in the literature for non-coincident O 2 Auger spectra are found to be in moderately good agreement with the new data.

  9. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    Science.gov (United States)

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  10. Development of micro-optics for high-resolution IL spectroscopy with a proton microbeam probe

    International Nuclear Information System (INIS)

    Kada, Wataru; Satoh, Takahiro; Yokoyama, Akihito; Koka, Masashi; Kamiya, Tomihiro

    2014-01-01

    Confocal optics for ion luminescence (IL) was developed for the precise analysis of the chemical composition of microscopic targets with an external proton microbeam probe. Anti-reflection-coated confocal micro-lens optics with an effective focus area of approximately 800 × 800 μm was installed on the microbeam line of a single-ended accelerator. Chromatic aberrations of the confocal optics were examined at wavelengths of 300–900 nm. An electrically-cooled back-thinned charge coupled device spectrometer with a wavelength resolution of 0.5 nm was used for the microscopic spectroscopy and IL imaging of microscopic mineral targets. Simultaneous microscopic IL and micro-PIXE analysis were performed using an external 3 MeV H + microbeam with a current of less than 100 pA. A spectral resolution of 3 nm was achieved for a single IL peak which corresponded to Cr 3+ impurities in a single-crystal of aluminum oxide. The use of IL spectroscopy and imaging for aerosol targets revealed microscopic distributions of the chemical and elemental composition in the atmosphere

  11. A computer simulation of auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ragheb, M S; Bakr, M H.S. [Dept. Of Accellerators and Ion Sources, Division of Basic Nuclear Sciences, NRC, Atomic Energy Authority, (Egypt)

    1997-12-31

    A simulation study of Auger electron spectroscopy was performed to reveal how far the dependency between the different parameters governing the experimental behavior affects the peaks. The experimental procedure followed by the AC modulation technique were reproduced by means of a computer program. It generates the assumed output Auger electron peaks, exposes them to a retarding AC modulated field and collects the resulting modulated signals. The program produces the lock-in treatment in order to demodulate the signals revealing the Auger peaks. It analyzes the spectrum obtained giving the peak positions and energies. Comparison between results of simulation and the experimental data showed good agreement. The peaks of the spectrum obtained depend upon the amplitude, frequency and resolution of the applied modulated signal. The peak shape is effected by the rise time, the slope and the starting potential of the retarding field. 4 figs.

  12. Terahertz imaging and spectroscopy based on hot electron bolometer (HEB) heterodyne detection

    Science.gov (United States)

    Gerecht, Eyal; You, Lixing

    2008-02-01

    Imaging and spectroscopy at terahertz frequencies have great potential for healthcare, plasma diagnostics, and homeland security applications. Terahertz frequencies correspond to energy level transitions of important molecules in biology and astrophysics. Terahertz radiation (T-rays) can penetrate clothing and, to some extent, can also penetrate biological materials. Because of their shorter wavelengths, they offer higher spatial resolution than do microwaves or millimeter waves. We are developing hot electron bolometer (HEB) mixer receivers for heterodyne detection at terahertz frequencies. HEB detectors provide unprecedented sensitivity and spectral resolution at terahertz frequencies. We describe the development of a two-pixel focal plane array (FPA) based on HEB technology. Furthermore, we have demonstrated a fully automated, two-dimensional scanning, passive imaging system based on our HEB technology operating at 0.85 THz. Our high spectral resolution terahertz imager has a total system noise equivalent temperature difference (NEΔT) value of better than 0.5 K and a spatial resolution of a few millimeters. HEB technology is becoming the basis for advanced terahertz imaging and spectroscopic technologies for the study of biological and chemical agents over the entire terahertz spectrum.

  13. High-resolution x-ray scattering studies of charge ordering in highly correlated electron systems

    International Nuclear Information System (INIS)

    Ghazi, M.E.

    2002-01-01

    Many important properties of transition metal oxides such as, copper oxide high-temperature superconductivity and colossal magnetoresistance (CMR) in manganites are due to strong electron-electron interactions, and hence these systems are called highly correlated systems. These materials are characterised by the coexistence of different kinds of order, including charge, orbital, and magnetic moment. This thesis contains high-resolution X-ray scattering studies of charge ordering in such systems namely the high-T C copper oxides isostructural system, La 2-x Sr x NiO 4 with various Sr concentrations (x = 0.33 - 0.2), and the CMR manganite system, Nd 1/2 Sr 1/2 MnO 3 . It also includes a review of charge ordering in a large variety of transition metal oxides, such as ferrates, vanadates, cobaltates, nickelates, manganites, and cuprates systems, which have been reported to date in the scientific literature. Using high-resolution synchrotron X-ray scattering, it has been demonstrated that the charge stripes exist in a series of single crystals of La 2-x Sr x NiO 4 with Sr concentrations (x = 0.33 - 0.2) at low temperatures. Satellite reflections due to the charge ordering were found with the wavevector (2ε, 0, 1) below the charge ordering transition temperature, T CO , where 2ε is the amount of separation from the corresponding Bragg peak. The charge stripes are shown to be two-dimensional in nature both by measurements of their correlation lengths and by measurement of the critical exponents of the charge stripe melting transition with an anomaly at x = 0.25. The results show by decreasing the hole concentration from the x = 0.33 to 0.2, the well-correlated charge stripes change to a glassy state at x = 0.25. The electronic transition into the charge stripe phase is second-order without any corresponding structural transition. Above the second-order transition critical scattering was observed due to fluctuations into the charge stripe phase. In a single-crystal of Nd

  14. Application of spectroscopy and super-resolution microscopy: Excited state

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  15. Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2016-01-01

    The concentration and type of free radicals from the decay (termination stage) of pyrolysis at slow and fast heating rates and at high temperatures (above 1000°C) in biomass char have been studied. A room temperature electron spin resonance spectroscopy study was conducted on original wood...... because the free radicals were trapped in a char consisting of a molten amorphous silica at heating rates of 103-104 K s-1. The experimental electron spin resonance spectroscopy spectra were analyzed by fitting to simulated data in order to identify radical types, based on g-values and line widths......, herbaceous biomass, holocelluloses, lignin and their chars, prepared at high temperatures in a wire mesh reactor, an entrained flow reactor, and a tubular reactor. The radical concentrations in the chars from the decay stage range up between 7·1016 and 1.5·1018 spins g -1. The results indicated...

  16. High resolution collinear resonance ionization spectroscopy of neutron-rich $^{76,77,78}$Cu isotopes

    CERN Document Server

    AUTHOR|(CDS)2083035

    In this work, nuclear magnetic dipole moments, electric quadrupole moments, nuclear spins and changes in the mean-squared charge radii of radioactive copper isotopes are presented. Reaching up to $^{78}$Cu ($Z=29$, $N=49$), produced at rates of only 10 particles per second, these measurements represent the most exotic laser spectroscopic investigations near the doubly-magic and very exotic $^{78}$Ni ($Z=28$,$N=50$) to date. This thesis outlines the technical developments and investigations of laser-atom interactions that were performed during this thesis. These developments were crucial for establishing a high-resolution, high sensitivity collinear resonance ionization spectroscopy experiment at ISOLDE, CERN. This thesis furthermore provides a detailed description of the analysis tools that were implemented and applied to extract the nuclear observables from the experimental data. The results were compared to several large-scale shell model calculations, and provide deep insight into the structure of $^{78}$N...

  17. Effects of cations and cholesterol with sphingomyelin membranes investigated by high-resolution broadband sum frequency vibrational spectroscopy

    Science.gov (United States)

    Zhang, Zhen; Feng, Rong-juan; Li, Yi-yi; Liu, Ming-hua; Guo, Yuan

    2017-08-01

    Sphingomyelin(SM) is specifically enriched in the plasma membrane of mammalian cells. Its molecular structure is compose by N-acyl-Derythro-sphingosylphosphorylcholine. The function of the SM related to membrane signaling and protein trafficking are relied on the interactions of the SM, cations, cholesterol and proteins. In this report, the interaction of three different nature SMs, cations and cholesterol at air/aqueous interfaces studied by high-resolution broadband sum frequency vibrational spectroscopy, respectively. Our results shed lights on understanding the relationship between SMs monolayer, cholesterol and Cations.

  18. ESR spectroscopy and electron distribution

    International Nuclear Information System (INIS)

    Davies, A.G.

    1997-01-01

    EPR spectroscopy can map out the electron distribution in a molecule, in much the same way as proton NMR spectroscopy can map out the proton distribution, and it provides some of the most direct evidence for the principal concepts underlying the electronic theory of organic structure and mechanism. This is illustrated for phenomena of conjugation, hyper-conjugation, substituent effects in annulenes, Hueckel theory, ring strain, the Mills-Nixon effect, and ion pairing. (author)

  19. [A high resolution projection electron spectrometers]: Final report 1978-1987

    International Nuclear Information System (INIS)

    1988-01-01

    The main emphasis of the work has been to study inner shell ionization processes. The signatures have been K x-rays or K Auger transitions. We have worked with semiconductor or Bragg x-ray spectrometers. Toward the end of the contract we concentrated on projectile electron spectroscopy. These topics and other atomic physics projects are described briefly in this progress report

  20. High-resolution electron microscopy study of electron-irradiation-induced crystalline-to-amorphous transition in α-SiC single crystals

    International Nuclear Information System (INIS)

    Inui, H.; Mori, H.; Sakata, T.

    1992-01-01

    An electron-irradiation-induced crystalline-to-amorphous (CA) transition in α-SiC has been studied by high-resolution electron microscopy (HREM). The irradiation-produced damage structure was examined as a function of dose of electrons by taking high-resolution maps extending from the unirradiated crystalline region to the completely amorphized region. In the intermediate region between those two regions, that is in the CA transition region, the damage structure was essentially a mixture of crystalline and amorphous phases. The volume fraction of the amorphous phase was found to increase with increasing dose of electrons and no discrete crystalline-amorphous interface was observed in the CA transition region. These facts indicate the heterogeneous and gradual nature of the CA transition. In the transition region close to the unirradiated crystalline region, a sort of fragmentation of the crystal lattice was observed to occur, crystallites with slightly different orientations with respect to the parent crystal were formed owing to the strain around the dispersed local amorphous regions. In the transition region close to the amorphized region, these crystallites were reduced in size and were embedded in an amorphous matrix. This damage structure is the result of the increased volume fraction of the amorphous phase. In the completely amorphized region, no lattice fringes were recognized in the HREM images. The atomistic process of the CA transition is discussed on the basis of the present results and those from previous studies. (Author)

  1. Performance of ultrahigh resolution electron microscope JEM-4000EX and some applications of high Tc superconductors

    International Nuclear Information System (INIS)

    Honda, T.; Ibe, K.; Ishida, Y.; Kersker, M.M.

    1989-01-01

    The high resolution electron microscope is powerful for modern materials science because of its direct observation capability for the atomic structure of materials. the JEM-4000EX, a 400 kV accelerating voltage electron microscope whose objective lens has a 1 mm spherical aberration coefficient, has a 0.168 nm theoretical resolving power. Using this microscope, atomic structure images of high Tc superconductor such as Y-Ba-Cu-O, Bi-Ca-Sr-Cu-O and Tl-Ca-Ba-Cu-O are reported

  2. High-resolution inner-shell spectroscopies of free atoms and molecules using soft-x-ray beamlines at the third-generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2003-01-01

    This article reviews the current status of inner-shell spectroscopies of free atoms and molecules using high-resolution soft-x-ray monochromators installed in the soft-x-ray beamlines at the third-generation synchrotron radiation facilities. Beamlines and endstations devoted to atomic and molecular inner-shell spectroscopies and various types of experimental techniques, such as ion yield spectroscopy, resonant photoemission spectroscopy and multiple-coincidence momentum imaging, are described. Experimental results for K-shell excitation of Ne, O K-shell excitation of H 2 O and CO 2 , C K-shell excitation and ionization of CO 2 and B K-shell excitation of BF 3 , obtained at beamline 27SU of SPring-8 in Japan, are discussed as examples of atomic and molecular inner-shell spectroscopies using the third-generation synchrotron radiation sources. (topical review)

  3. High mass-resolution electron-ion-ion coincidence measurements on core-excited organic molecules

    CERN Document Server

    Tokushima, T; Senba, Y; Yoshida, H; Hiraya, A

    2001-01-01

    Total electron-ion-ion coincidence measurements on core excited organic molecules have been carried out with high mass resolution by using multimode (reflectron/linear) time-of-flight mass analyzer. From the ion correlation spectra of core excited CH sub 3 OH and CD sub 3 OH, the reaction pathway to form H sub 3 sup + (D sub 3 sup +) is identified as the elimination of three H (D) atoms from the methyl group, not as the inter-group (-CH sub 3 and -OH) interactions. In a PEPIPICO spectrum of acetylacetone (CH sub 3 COCH sub 2 COCH sub 3) measured by using a reflectron TOF, correlations between ions up to mass number 70 with one-mass resolution was recorded.

  4. Preservation of high resolution protein structure by cryo-electron microscopy of vitreous sections

    International Nuclear Information System (INIS)

    Sader, Kasim; Studer, Daniel; Zuber, Benoit; Gnaegi, Helmut; Trinick, John

    2009-01-01

    We have quantitated the degree of structural preservation in cryo-sections of a vitrified biological specimen. Previous studies have used sections of periodic specimens to assess the resolution present, but preservation before sectioning was not assessed and so the damage due particularly to cutting was not clear. In this study large single crystals of lysozyme were vitrified and from these X-ray diffraction patterns extending to better than 2.1 A were obtained. The crystals were high pressure frozen in 30% dextran, and cryo-sectioned using a diamond knife. In the best case, preservation to a resolution of 7.9 A was shown by electron diffraction, the first observation of sub-nanometre structural preservation in a vitreous section.

  5. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY 11973 (United States); Geloni, Gianluca [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Kocharyan, Vitali [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Madsen, Anders [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Shvyd’ko, Yuri, E-mail: shvydko@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Sutter, John [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom)

    2016-02-12

    This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems. Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup −1} spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup −1} are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10{sup 12} photons s{sup −1} in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  6. Mapping boron in silicon solar cells using electron energy-loss spectroscopy

    DEFF Research Database (Denmark)

    in the energies of plasmon peaks in the low loss region [5]. We use these approaches to characterize both a thick n-p junction and the 10-nm-thick p-doped layer of a working solar cell. [1] U. Kroll, C. Bucher, S. Benagli, I. Schönbächler, J. Meier, A. Shah, J. Ballutaud, A. Howling, Ch. Hollenstein, A. Büchel, M......Amorphous silicon solar cells typically consist of stacked layers deposited on plastic or metallic substrates making sample preparation for transmission electron microscopy (TEM) difficult. The amorphous silicon layer - the active part of the solar cell - is sandwiched between 10-nm-thick n- and p...... resolution using TEM is highly challenging [3]. Recently, scanning TEM (STEM) combined with electron energy-loss spectroscopy (EELS) and spherical aberration-correction has allowed the direct detection of dopant concentration of 10^20cm-3 in 65-nm-wide silicon devices [4]. Here, we prepare TEM samples...

  7. High-Resolution EUV Spectroscopy of White Dwarfs

    Science.gov (United States)

    Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.

    2014-01-01

    We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.

  8. Electron beam fabrication and characterization of high- resolution magnetic force microscopy tips

    NARCIS (Netherlands)

    Ruhrig, M.; Rührig, M.; Porthun, S.; Porthun, S.; Lodder, J.C.; Mc vitie, S.; Heyderman, L.J.; Johnston, A.B.; Chapman, J.N.

    1996-01-01

    The stray field, magnetic microstructure, and switching behavior of high‐resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a

  9. Electron-impact-induced K plus M shell ionization in solid targets of medium-Z elements studied by means of high-resolution x-ray spectroscopy

    International Nuclear Information System (INIS)

    Ludziejewski, T.; Rymuza, P.; Sujkowski, Z.; Borchert, G.; Dousse, J.; Rheme, C.; Polasik, M.

    1996-01-01

    The Kβ 2 x-ray spectra of zirconium, niobium, molybdenum, and palladium bombarded by 150 and 300 keV electrons were measured with a high-resolution transmission curved crystal spectrometer. Multiconfiguration Dirac-Fock calculations were used for the decomposition of the experimental spectra into the Kβ 2 M 0 (diagram) and Kβ 2 M 1 (satellite) components. The probabilities of energy dependent (direct Coulomb and two-step) processes were estimated from the differences in the satellite line yields for electrons and photons. The satellite yields are found to be considerably enhanced in comparison with those for the proton-induced ionization recently measured and analyzed in the same way [T. Ludziejewski et al., Phys. Rev. A 52, 2791 (1995)]. This result indicates the importance of multielectron effects in the K plus M shell ionization by energetic projectiles. copyright 1996 The American Physical Society

  10. Investigations into the electronic structure of the high-Tc superconductors by means of photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Dauth, B.H.

    1989-08-01

    The electronic structure of various polycrystalline samples including the new YBaCuO- and BiCaSrCuO- high T c superconductors (HTSC) and related systems is investigated by photoelectron spectroscopy. Additional characterization is performed by conductivity measurements. In particular, the binding energy of the Cu-2p 3/2 - and the O-1s-levels of various HTSC is determined. For the first time the controversial 531 eV oxygen line was shown to be an intrinsic electronic structure effect. Sintered CuO-samples are obtained for the first time. The electronic structure of the sintered CuO turns out to be drastically different with respect to pressed CuO powder. For the first time a crossover resonance from a O-1s- into a Cu-3d-level was observed with synchrotron radiation. This is additional evidence for the strong hybridization between the Cu-3d and the O-2p states. Photoemission spectroscopy shows that the holes in the HTSC's are located at the oxygen p-band. Fe and Al overlayers on the HTSC-samples induce a drastic change in the electronic properties of the interface: apparently oxygen is removed from the HTSC to the overlayer. (orig./BHO)

  11. Temperature-dependent surface structure, composition, and electronic properties of the clean SrTiO3(111) crystal face: Low-energy-electron diffraction, Auger-electron spectroscopy, electron energy loss, and ultraviolet-photoelectron spectroscopy studies

    International Nuclear Information System (INIS)

    Lo, W.J.; Somorjai, G.A.

    1978-01-01

    Low-energy-electron diffraction, Auger-electron spectroscopy, electron-energy-loss, and ultraviolet-photoelectron spectroscopies were used to study the structure, composition, and electron energy distribution of a clean single-crystal (111) face of strontium titanate (perovskite). The dependence of the surface chemical composition on the temperature has been observed along with corresponding changes in the surface electronic properties. High-temperature Ar-ion bombardment causes an irreversible change in the surface structure, stoichiometry, and electron energy distribution. In contrast to the TiO 2 surface, there are always significant concentrations of Ti 3+ in an annealed ordered SrTiO 3 (111) surface. This stable active Ti 3+ monolayer on top of a substrate with large surface dipole potential makes SrTiO 3 superior to TiO 2 when used as a photoanode in the photoelectrochemical cell

  12. A graphene oxide-carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials

    International Nuclear Information System (INIS)

    Zhang Lina; Zhang Haoxu; Zhou Ruifeng; Chen Zhuo; Li Qunqing; Fan Shoushan; Jiang Kaili; Ge Guanglu; Liu Renxiao

    2011-01-01

    A novel grid for use in transmission electron microscopy is developed. The supporting film of the grid is composed of thin graphene oxide films overlying a super-aligned carbon nanotube network. The composite film combines the advantages of graphene oxide and carbon nanotube networks and has the following properties: it is ultra-thin, it has a large flat and smooth effective supporting area with a homogeneous amorphous appearance, high stability, and good conductivity. The graphene oxide-carbon nanotube grid has a distinct advantage when characterizing the fine structure of a mass of nanomaterials over conventional amorphous carbon grids. Clear high-resolution transmission electron microscopy images of various nanomaterials are obtained easily using the new grids.

  13. Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Feist, Armin; Bach, Nora; Rubiano da Silva, Nara; Danz, Thomas; Möller, Marcel; Priebe, Katharina E.; Domröse, Till; Gatzmann, J. Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha, E-mail: sascha.schaefer@phys.uni-goettingen.de; Ropers, Claus, E-mail: claus.ropers@uni-goettingen.de

    2017-05-15

    We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 Å focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams. - Highlights: • First implementation of an ultrafast TEM employing a nanoscale photocathode. • Localized single photon-photoemission from nanoscopic field emitter yields low emittance ultrashort electron pulses. • Electron pulses focused down to ~9 Å, with a duration of 200 fs and an energy width of 0.6 eV are demonstrated. • Quantitative characterization of ultrafast electron gun emittance and brightness. • A range of applications of high coherence ultrashort electron pulses is shown.

  14. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bohlin, Alexis; Kliewer, Christopher J., E-mail: cjkliew@sandia.gov [Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550 (United States)

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  15. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Sung [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Song, Taewon [Energy lab, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Lee, Dongho, E-mail: dhlee0333@gmail.com; Nam, Junggyu [PV Development Team, Energy Solution Business Division, Samsung SDI, 467 Beonyeong-ro, Cheonan-si, Chungcheongnam-do 331-330 (Korea, Republic of); Kang, Hee Jae [Department of Physics, Chungbuk National University, Gaesin-dong, Heungdeok-gu, Cheongju, 361-763 (Korea, Republic of); Choi, Pyung-Ho; Choi, Byoung-Deog, E-mail: bdchoi@skku.edu [College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  16. High resolution X-ray photoelectron spectroscopy of styrene oxide adsorption and reaction on Ag(1 1 1)

    Science.gov (United States)

    Piao, H.; Enever, M. C. N.; Adib, K.; Hrbek, J.; Barteau, M. A.

    2004-11-01

    Synchrotron-based X-ray photoelectron spectroscopy (XPS) has been used to investigate the adsorption and reaction of styrene oxide on Ag(1 1 1). When adsorption is carried out at 250 K or above, ring opening of styrene oxide forms a stable surface oxametallacycle intermediate which eventually reacts at 485 K to regenerate styrene oxide. High resolution XPS is capable of distinguishing the oxametallacycle from molecularly adsorbed and condensed styrene oxide on the basis of different C1s peak separations. The observed separations are well accounted for by the results of DFT calculations.

  17. Benchmarking NaI(Tl) Electron Energy Resolution Measurements

    International Nuclear Information System (INIS)

    Mengesha, Wondwosen; Valentine, J D.

    2002-01-01

    A technique for validating electron energy resolution results measured using the modified Compton coincidence technique (MCCT) has been developed. This technique relies on comparing measured gamma-ray energy resolution with calculated values that were determined using the measured electron energy resolution results. These gamma-ray energy resolution calculations were based on Monte Carlo photon transport simulations, the measured NaI(Tl) electron response, a simplified cascade sequence, and the measured electron energy resolution results. To demonstrate this technique, MCCT-measured NaI(Tl) electron energy resolution results were used along with measured gamma-ray energy resolution results from the same NaI(Tl) crystal. Agreement to within 5% was observed for all energies considered between the calculated and measured gamma-ray energy resolution results for the NaI(Tl) crystal characterized. The calculated gamma-ray energy resolution results were also compared with previously published gamma-ray energy resolution measurements with good agreement (<10%). In addition to describing the validation technique that was developed in this study and the results, a brief review of the electron energy resolution measurements made using the MCCT is provided. Based on the results of this study, it is believed that the MCCT-measured electron energy resolution results are reliable. Thus, the MCCT and this validation technique can be used in the future to characterize the electron energy resolution of other scintillators and to determine NaI(Tl) intrinsic energy resolution

  18. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    Science.gov (United States)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  19. High-resolution 1H NMR spectroscopy of fish muscle, eggs and small whole fish via Hadamard-encoded intermolecular multiple-quantum coherence.

    Directory of Open Access Journals (Sweden)

    Honghao Cai

    Full Text Available BACKGROUND AND PURPOSE: Nuclear magnetic resonance (NMR spectroscopy has become an important technique for tissue studies. Since tissues are in semisolid-state, their high-resolution (HR spectra cannot be obtained by conventional NMR spectroscopy. Because of this restriction, extraction and high-resolution magic angle spinning (HR MAS are widely applied for HR NMR spectra of tissues. However, both of the methods are subject to limitations. In this study, the feasibility of HR (1H NMR spectroscopy based on intermolecular multiple-quantum coherence (iMQC technique is explored using fish muscle, fish eggs, and a whole fish as examples. MATERIALS AND METHODS: Intact salmon muscle tissues, intact eggs from shishamo smelt and a whole fish (Siamese algae eater are studied by using conventional 1D one-pulse sequence, Hadamard-encoded iMQC sequence, and HR MAS. RESULTS: When we use the conventional 1D one-pulse sequence, hardly any useful spectral information can be obtained due to the severe field inhomogeneity. By contrast, HR NMR spectra can be obtained in a short period of time by using the Hadamard-encoded iMQC method without shimming. Most signals from fatty acids and small metabolites can be observed. Compared to HR MAS, the iMQC method is non-invasive, but the resolution and the sensitivity of resulting spectra are not as high as those of HR MAS spectra. CONCLUSION: Due to the immunity to field inhomogeneity, the iMQC technique can be a proper supplement to HR MAS, and it provides an alternative for the investigation in cases with field distortions and with samples unsuitable for spinning. The acquisition time of the proposed method is greatly reduced by introduction of the Hadamard-encoded technique, in comparison with that of conventional iMQC method.

  20. Bulk electronic state of high-Tc cuprate La2-xSrxCuO4 observed by high-energy angle integrated and resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Kasai, S.; Sekiyama, A.; Tsunekawa, M.; Ernst, P.T.; Shigemoto, A.; Yamasaki, A.; Irizawa, A.; Imada, S.; Sing, M.; Muro, T.; Sasagawa, T.; Takagi, H.; Suga, S.

    2005-01-01

    The high-energy core-level photoemission spectroscopy (PES) and angle-resolved photoemission spectroscopy (ARPES) measurements have been performed for La 2-x Sr x CuO 4 (LSCO). Polar-angle dependence of the Cu 2p core-level PES has revealed a discrepancy between bulk and surface. We have observed by the high-energy ARPES that the Fermi surface of LSCO with x=0.16 is electron-like, in contrast to previous low-energy ARPES results

  1. Emission spectroscopy of highly ionized high-temperature plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Belevtsev, A A; Chinnov, V F; Isakaev, E Kh [Associated Institute for High Temperatures, Russian Academy of Sciences Izhorskaya 13/19, Moscow, 125412 (Russian Federation)

    2006-08-01

    This paper deals with advanced studies on the optical emission spectroscopy of atmospheric pressure highly ionized high-temperature argon and nitrogen plasma jets generated by a powerful arc plasmatron. The emission spectra are taken in the 200-1000 nm range with a spectral resolution of {approx}0.01-0.02 nm. The exposure times are 6 x 10{sup -6}-2 x 10{sup -2} s, the spatial resolution is 0.02-0.03 mm. The recorded jet spectra are abundant in spectral lines originating from different ionization stages. In nitrogen plasmas, tens of vibronic bands are also observed. To interpret and process these spectra such that plasma characteristics can be derived, a purpose-developed automated processing system is applied. The use of a CCD camera at the spectrograph output allows a simultaneous recording of the spectral and chord intensity distributions of spectral lines, which can yet belong to the overlapped spectra of the first and second orders of interference. The modern optical diagnostic means and methods used permit the determination of spatial distributions of electron number densities and temperatures and evaluation of rotational temperatures. The radial profiles of the irradiating plasma components can also be obtained. Special attention is given to the method of deriving rotational temperatures using vibronic bands with an incompletely identified rotational structure.

  2. Electron microscopy at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Gronsky, R.

    1983-11-01

    The direct imaging of atomic structure in solids has become increasingly easier to accomplish with modern transmission electron microscopes, many of which have an information retrieval limit near 0.2 nm point resolution. Achieving better resolution, particularly with any useful range of specimen tilting, requires a major design effort. This presentation describes the new Atomic Resolution Microscope (ARM), recently put into operation at the Lawrence Berkeley Laboratory. Capable of 0.18 nm or better interpretable resolution over a voltage range of 400 kV to 1000 kV with +- 40/sup 0/ biaxial specimen tilting, the ARM features a number of new electron-optical and microprocessor-control designs. These are highlighted, and its atomic resolution performance demonstrated for a selection of inorganic crystals.

  3. Electron microscopy at atomic resolution

    International Nuclear Information System (INIS)

    Gronsky, R.

    1983-11-01

    The direct imaging of atomic structure in solids has become increasingly easier to accomplish with modern transmission electron microscopes, many of which have an information retrieval limit near 0.2 nm point resolution. Achieving better resolution, particularly with any useful range of specimen tilting, requires a major design effort. This presentation describes the new Atomic Resolution Microscope (ARM), recently put into operation at the Lawrence Berkeley Laboratory. Capable of 0.18 nm or better interpretable resolution over a voltage range of 400 kV to 1000 kV with +- 40 0 biaxial specimen tilting, the ARM features a number of new electron-optical and microprocessor-control designs. These are highlighted, and its atomic resolution performance demonstrated for a selection of inorganic crystals

  4. Neutron spin echo and high resolution inelastic spectroscopy

    International Nuclear Information System (INIS)

    Mezei, F.; Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics)

    1982-01-01

    The principles of neutrons spin echo (NSE) technique are considered. It is shown that the basis of NSE principle is a single step measurement of the change of the neutron velocity in the scattering process. The backscattering soectroscopy and the NSE techniques are compared. The NSF spectrometer is described. It is shown that 0.5 MeV energy resolution achieved in the NSE experiment is about 40 times superior to those achieved by the other techniques. The NSE technique has the unique feature that provides high resolution in neutron energy change independently of the monochromatization of the beam. The NSE instrument not only covers a wider dynamic range on a pulsed source that on a continuous one, but also collects data more efficiently

  5. Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Sergey [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Misra, Manoj; Shi, Shanling [Unilever Research and Development, Trumbull, CT 06611 (United States); Firlar, Emre [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Libera, Matthew, E-mail: mlibera@stevens.edu [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2010-06-15

    Spatially resolved low-loss electron energy-loss spectroscopy (EELS) is a powerful method to quantitatively determine the water distribution in frozen-hydrated biological materials at high spatial resolution. However, hydrated tissue, particularly its hydrophilic protein-rich component, is very sensitive to electron radiation. This sensitivity has traditionally limited the achievable spatial resolution because of the relatively high noise associated with low-dose data acquisition. We show that the damage caused by high-dose data acquisition affects the accuracy of a multiple-least-squares (MLS) compositional analysis because of inaccuracies in the reference spectrum used to represent the protein. Higher spatial resolution combined with more accurate compositional analysis can be achieved if a reference spectrum is used that better represents the electron-beam-damaged protein component under frozen-hydrated conditions rather than one separately collected from dry protein under low-dose conditions. We thus introduce a method to extract the best-fitting protein reference spectrum from an experimental spectrum dataset. This method can be used when the MLS-fitting problem is sufficiently constrained so that the only unknown is the reference spectrum for the protein component. We apply this approach to map the distribution of water in cryo-sections obtained from frozen-hydrated tissue of porcine skin. The raw spectral data were collected at doses up to 10{sup 5} e/nm{sup 2} despite the fact that observable damage begins at doses as low as 10{sup 3} e/nm{sup 2}. The resulting spatial resolution of 10 nm is 5-10 times better than that in previous studies of frozen-hydrated tissue and is sufficient to resolve sub-cellular water fluctuations as well as the inter-cellular lipid-rich regions of skin where water-mediated processes are believed to play a significant role in the phenotype of keratinocytes in the stratum corneum.

  6. Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Yakovlev, Sergey; Misra, Manoj; Shi, Shanling; Firlar, Emre; Libera, Matthew

    2010-01-01

    Spatially resolved low-loss electron energy-loss spectroscopy (EELS) is a powerful method to quantitatively determine the water distribution in frozen-hydrated biological materials at high spatial resolution. However, hydrated tissue, particularly its hydrophilic protein-rich component, is very sensitive to electron radiation. This sensitivity has traditionally limited the achievable spatial resolution because of the relatively high noise associated with low-dose data acquisition. We show that the damage caused by high-dose data acquisition affects the accuracy of a multiple-least-squares (MLS) compositional analysis because of inaccuracies in the reference spectrum used to represent the protein. Higher spatial resolution combined with more accurate compositional analysis can be achieved if a reference spectrum is used that better represents the electron-beam-damaged protein component under frozen-hydrated conditions rather than one separately collected from dry protein under low-dose conditions. We thus introduce a method to extract the best-fitting protein reference spectrum from an experimental spectrum dataset. This method can be used when the MLS-fitting problem is sufficiently constrained so that the only unknown is the reference spectrum for the protein component. We apply this approach to map the distribution of water in cryo-sections obtained from frozen-hydrated tissue of porcine skin. The raw spectral data were collected at doses up to 10 5 e/nm 2 despite the fact that observable damage begins at doses as low as 10 3 e/nm 2 . The resulting spatial resolution of 10 nm is 5-10 times better than that in previous studies of frozen-hydrated tissue and is sufficient to resolve sub-cellular water fluctuations as well as the inter-cellular lipid-rich regions of skin where water-mediated processes are believed to play a significant role in the phenotype of keratinocytes in the stratum corneum.

  7. State of the art in atomic resolution off-axis electron holography

    International Nuclear Information System (INIS)

    Linck, Martin; Freitag, Bert; Kujawa, Stephan; Lehmann, Michael; Niermann, Tore

    2012-01-01

    As proposed by Hannes Lichte, to resolve structure–property relations not only the question “Which atom is where?” but also the question “Which fields are around?” has to be answered. High-resolution off-axis electron holography opens up an access to these key questions in that it allows accessing the complete exit-wave of the object provided within the information limit of the microscope, i.e. amplitude and phase including atomic details such as position and species, and moreover, information about large area electric potentials and magnetic fields, which a conventional transmission electron microscope is blind for—also when using a Cs-corrector. For an excellent object exit-wave reconstruction, special care has to be taken on the hologram quality, i.e. interference fringe contrast and electron dose. Severe restrictions are given to signal resolution by the limited brightness of the electron source. Utilizing a new high-brightness Schottky field electron emitter in a state-of-the-art transmission electron microscope operated at 300 kV, the phase signal resolution at atomic resolution can significantly be enhanced. An improvement by at least a factor of 2.88 compared to the most recently reported single hologram at atomic resolution is found. To proof the applicability of this setup to real materials science problems, a grain boundary of gold has been investigated holographically. -- Highlights: ► Impact of the brightness on the reconstructed signal in electron holography. ► Factor 2.8 gain in signal quality by setup with a high brightness electron gun. ► Investigation of a grain boundary in gold with a state-of-the-art holography setup. ► A-posteriori aberration fine-tuning for true one Angstrom resolution in the object wave. ► Mistilt analysis on the atomic scale by numerical wave optics.

  8. Probing Conditions at Ionized/Molecular Gas Interfaces With High Resolution Near-Infrared Spectroscopy

    Science.gov (United States)

    Kaplan, Kyle Franklin

    2017-08-01

    Regions of star formation and star death in our Galaxy trace the cycle of gas and dust in the interstellar medium (ISM). Gas in dense molecular clouds collapses to form stars, and stars at the end of their lives return the gas that made up their outer layers back out into the Galaxy. Hot stars generate copious amounts of ultraviolet photons which interact with the surrounding medium and dominate the energetics, ionization state, and chemistry of the gas. The interface where molecular gas is being dissociated into neutral atomic gas by far-UV photons from a nearby hot source is called a photodissociation or photon-dominated region (PDR). PDRs are found primarily in star forming regions where O and B stars serve as the source of UV photons, and in planetary nebulae where the hot core of the dying star acts as the UV source. The main target of this dissertation is molecular hydrogen (H2), the most abundant molecule in the Universe, made from hydrogen formed during the Big Bang. H2 makes up the overwhelming majority of molecules found in the ISM and in PDRs. Far-UV radiation absorbed by H2 will excite an electron in the molecule. The molecule then either dissociates ( 10% of the time; Field et al. 1966) or decays into excited rotational and vibrational ("rovibrational") levels of the electronic ground state. These excited rovibrational levels then decay via a radiative cascade to the ground rovibrational state (v = 0, J = 0), giving rise to a large number of transitions observable in emission from the mid-IR to the optical (Black & van Dishoeck, 1987). These transitions provide an excellent probe of the excitation and conditions within the gas. These transitions are also observed in warm H2, such as in shocks, where collisions excite H2 to higher rovibrational levels. High resolution near-infrared spectroscopy, with its ability to see through dust, and avoid telluric absorption and emission, serves as an effective tool to detect emission from ions, atoms, and molecules

  9. ESSENSE: Ultra high resolution spectroscopy for the ESS

    International Nuclear Information System (INIS)

    Pasini, Stefano; Monkenbusch, Michael; Kozielewski, Tadeusz

    2016-01-01

    The instrument concept for a very high intensity neutron spin-echo spectrometer with ultimate resolution properties has been developed and submitted as an instrument proposal to ESS. Effective intensity gain factors up to 30 compared to the best current instruments are anticipated. In addition the resolution will be boosted to the technical limits by newly designed superconducting precession solenoids. The intensity gain results from the use of an optimized guide transporting the high flux from the ESS cold moderator on the one side and from the utilization of an extended wavelength frame of 8 Å yielding a multiplication of information collection rate on the other side. The instrument thus enables novel views on soft matter systems ranging from polymers, functional gels and more to to dynamics of biological molecules with relevance for MD development; the employment of new techniques for surface NSE (GINSE) may contribute to new knowledge in tribology and lubrication and other surface phenomena that currently are hampered by low intensity. New developments in “intelligent” polymers as e.g. self-healing, the properties of which depend on molecular mobility and dynamics, require observation at many 100 ns of correlation times with high intensity, which can be made with ESSENSE. (paper)

  10. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009

    Science.gov (United States)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John

    2010-01-01

    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  11. Mapping the layer count of few-layer hexagonal boron nitride at high lateral spatial resolutions

    Science.gov (United States)

    Mohsin, Ali; Cross, Nicholas G.; Liu, Lei; Watanabe, Kenji; Taniguchi, Takashi; Duscher, Gerd; Gu, Gong

    2018-01-01

    Layer count control and uniformity of two dimensional (2D) layered materials are critical to the investigation of their properties and to their electronic device applications, but methods to map 2D material layer count at nanometer-level lateral spatial resolutions have been lacking. Here, we demonstrate a method based on two complementary techniques widely available in transmission electron microscopes (TEMs) to map the layer count of multilayer hexagonal boron nitride (h-BN) films. The mass-thickness contrast in high-angle annular dark-field (HAADF) imaging in the scanning transmission electron microscope (STEM) mode allows for thickness determination in atomically clean regions with high spatial resolution (sub-nanometer), but is limited by surface contamination. To complement, another technique based on the boron K ionization edge in the electron energy loss spectroscopy spectrum (EELS) of h-BN is developed to quantify the layer count so that surface contamination does not cause an overestimate, albeit at a lower spatial resolution (nanometers). The two techniques agree remarkably well in atomically clean regions with discrepancies within  ±1 layer. For the first time, the layer count uniformity on the scale of nanometers is quantified for a 2D material. The methodology is applicable to layer count mapping of other 2D layered materials, paving the way toward the synthesis of multilayer 2D materials with homogeneous layer count.

  12. High resolution electron microscopy of a small crack at the superficial layer of enamel.

    Science.gov (United States)

    Hayashi, Y

    1994-12-01

    A small enamel crack was investigated using a high resolution electron microscope. The inside of the crack was filled with aggregates of irregularly oriented plate-like crystals. Amorphous mineral deposits were observed among these aggregates at a low magnification. Selected area electron diffractions indicated that the plate-like crystals consisted of hydroxyapatite (OH-AP), and that the amorphous mineral deposits were a mixture of OH-AP and whitlockite. These findings indicate that this crack may have been formed by occlusal and/or masticatory stress, and that a natural occlusion might occur through mineral deposition at the small crack such as in this case.

  13. New Optimizations of Microcalorimeter Arrays for High-Resolution Imaging X-ray Spectroscopy

    Science.gov (United States)

    Kilbourne, Caroline

    We propose to continue our successful research program in developing arrays of superconducting transition-edge sensors (TES) for x-ray astrophysics. Our standard 0.3 mm TES pixel achieves better than 2.5-eV resolution, and we now make 32x32 arrays of such pixels. We have also achieved better than 1-eV resolution in smaller pixels, and promising performance in a range of position-sensitive designs. We propose to continue to advance the designs of both the single-pixel and position-sensitive microcalorimeters so that we can produce arrays suitable for several x-ray spectroscopy observatories presently in formulation. We will also investigate various array and pixel optimizations such as would be needed for large arrays for surveys, large- pixel arrays for diffuse soft x-ray measurements, or sub-arrays of fast pixels optimized for neutron-star burst spectroscopy. In addition, we will develop fabrication processes for integrating sub-arrays with very different pixel designs into a monolithic focal-plane array to simplify the design of the focal-plane assembly and make feasible new detector configurations such as the one currently baselined for AXSIO. Through a series of measurements on test devices, we have improved our understanding of the weak-link physics governing the observed resistive transitions in TES detectors. We propose to build on that work and ultimately use the results to improve the immunity of the detector to environmental magnetic fields, as well as its fundamental performance, in each of the targeted optimizations we are developing.

  14. High Resolution Angle Resolved Photoemission Studies on Quasi-Particle Dynamics in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Leem, C.S.

    2010-06-02

    We obtained the spectral function of the graphite H point using high resolution angle resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photo-hole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted by our electron-phonon coupling theory considering the peculiar electronic DOS near the Fermi level. And we also investigated the temperature dependence of the peak widths both experimentally and theoretically. The upper bound for the electron-phonon coupling parameter is 0.23, nearly the same value as previously reported at the K point. Our analysis of temperature dependent ARPES data at K shows that the energy of phonon mode of graphite has much higher energy scale than 125K which is dominant in electron-phonon coupling.

  15. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.

    Science.gov (United States)

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-03-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  16. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Colliex, Christian, E-mail: christian.colliex@u-psud.fr; Kociak, Mathieu; Stéphan, Odile

    2016-03-15

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  17. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale

    International Nuclear Information System (INIS)

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-01-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  18. The goals of gamma-ray spectroscopy in high energy astrophysics

    Science.gov (United States)

    Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.

    1990-01-01

    The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.

  19. High-resolution spectroscopy of deeply-bound pionic atoms in heavy nuclei by pion-transfer reactions of inverse kinematics using the GSI cooler ring ESR

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1991-02-01

    Many studies published in the past are reviewed first in relation to high-resolution spectroscopy of deeply-bound pionic atoms in heavy nuclei. The report then describes a procedure for applying the method of inverse kinematics to the case of (d, 3 He) reactions. The (d, 3 He) reaction in inverse kinematics is feasible from practical viewpoints. Thus a discussion is made of the inverse kinematics in which a heavy-ion beam ( 208 Pb for instance) with a projectile kinetic energy hits a deuteron target and ejected recoil 3 He nuclei are measured in the forward direction. The recoil momentum is calculated as a function of the Q value. Analysis shows that the recoil spectroscopy with inverse kinematics can be applied to the case of (d, 3 He) reaction, which will yield a very high mass resolution. The experimental setup for use in the first stage is then outlined, and a simple detector configuration free of magnetic field is discussed. These investigations demonstrate that the (d, 3 He) reaction in inverse kinematics provides a promising tool for obtaining high-resolution spectra of deeply-bound pionic atoms. (N.K.)

  20. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    Science.gov (United States)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  1. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  2. Exploitation of high resolution beam spectroscopy diagnostics on MAST

    Science.gov (United States)

    Michael, Clive; Debock, Maarten; Conway, Neil; Akers, Rob; Appel, Lynton; Field, Anthony; Walsh, Mike; Wisse, Marco

    2009-11-01

    Recent developments in beam spectroscopy on MAST, including CXRS, MSE and a pilot FIDA system have revealed new information about phenomena such as ITBs, MHD instabilities, transport and fast particle physics. For example, ITBs in the ion temperature and toroidal rotation have been observed with the 64ch CXRS system, while reverse-shear q profiles have been observed with the recently commissioned 35ch MSE system. Thus, the synergy of these diagnostics helps us to understand, among other things, the role of magnetic and rotational shear on ITBs. MSE measurements have also helped to understand MHD phenomena such as locked modes (characterized by changes in toroidal momentum, revealed by CXRS), sawteeth, and internal reconnection events. Finally, the temporal/spatial resolution and SNR of the MSE system have been exploited. Interesting results include the detection of low frequency (˜2kHz) magnetic field fluctuations, characterization of the radial structure of higher frequency (<100kHz) broadband and coherent density (BES) fluctuations, and the identification of short scale length features (˜1.8cm) in the current profile near the edge pedestal.

  3. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  4. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  5. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles

    International Nuclear Information System (INIS)

    Ko, Seung H; Pan Heng; Grigoropoulos, Costas P; Luscombe, Christine K; Frechet, Jean M J; Poulikakos, Dimos

    2007-01-01

    All-printed electronics is the key technology to ultra-low-cost, large-area electronics. As a critical step in this direction, we demonstrate that laser sintering of inkjet-printed metal nanoparticles enables low-temperature metal deposition as well as high-resolution patterning to overcome the resolution limitation of the current inkjet direct writing processes. To demonstrate this process combined with the implementation of air-stable carboxylate-functionalized polythiophenes, high-resolution organic transistors were fabricated in ambient pressure and room temperature without utilizing any photolithographic steps or requiring a vacuum deposition process. Local thermal control of the laser sintering process could minimize the heat-affected zone and the thermal damage to the substrate and further enhance the resolution of the process. This local nanoparticle deposition and energy coupling enable an environmentally friendly and cost-effective process as well as a low-temperature manufacturing sequence to realize large-area, flexible electronics on polymer substrates

  6. Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E. [Stanford University, Stanford, California 94309 (United States)

    1999-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied with high-resolution core level photoelectron spectroscopy (PES). Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) Olefin insertion into the H{endash}Si bond of the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, PES has revealed a C 1s component shifted to lower binding energy and a Si 2p component shifted to higher binding energy. Both components are attributed to the presence of a C{endash}Si bond at the interface. Along with photoelectron diffraction data [Appl. Phys. Lett. {bold 71}, 1056, (1997)], these data are used to show that these two synthetic methods can be used to functionalize the Si(111) surface. {copyright} {ital 1999 American Institute of Physics.}

  7. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy

    Science.gov (United States)

    1994-01-01

    A simple method is described for high-resolution light and electron microscopic immunolocalization of proteins in cells and tissues by immunofluorescence and subsequent photooxidation of diaminobenzidine tetrahydrochloride into an insoluble osmiophilic polymer. By using eosin as the fluorescent marker, a substantial improvement in sensitivity is achieved in the photooxidation process over other conventional fluorescent compounds. The technique allows for precise correlative immunolocalization studies on the same sample using fluorescence, transmitted light and electron microscopy. Furthermore, because eosin is smaller in size than other conventional markers, this method results in improved penetration of labeling reagents compared to gold or enzyme based procedures. The improved penetration allows for three-dimensional immunolocalization using high voltage electron microscopy. Fluorescence photooxidation can also be used for high resolution light and electron microscopic localization of specific nucleic acid sequences by in situ hybridization utilizing biotinylated probes followed by an eosin-streptavidin conjugate. PMID:7519623

  8. Addressing the electronic properties of III–V nanowires by photoluminescence excitation spectroscopy

    International Nuclear Information System (INIS)

    De Luca, M

    2017-01-01

    Semiconductor nanowires (NWs) have been attracting an increasing interest in the scientific community. This is due to their peculiar filamentary shape and nanoscale diameter, which renders them versatile and cost-effective components of novel technological devices and also makes them an ideal platform for the investigation of a variety of fascinating physical effects. Absorption spectroscopy is a powerful and non-destructive technique able to provide information on the physical properties of the NWs. However, standard absorption spectroscopy is hard to perform in NWs, because of their small volume and the presence of opaque substrates. Here, we demonstrate that absorption can be successfully replaced by photoluminescence excitation (PLE). First, the use of polarization-resolved PLE to address the complex and highly-debated electronic band structure of wurtzite GaAs and InP NWs is shown. Then, PLE is used as a statistically-relevant method to localize the presence of separate wurtzite and zincblende NWs in the same InP sample. Finally, a variety of resonant exotic effects in the density of states of In x Ga 1−x As/GaAs core/shell NWs are highlighted by high-resolution PLE. (paper)

  9. Positron annihilation spectroscopy using high-energy photons

    International Nuclear Information System (INIS)

    Butterling, Maik; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Anwand, Wolfgang; Brauer, Gerhard; Cowan, Thomas E.; Hartmann, Andreas; Kosev, Krasimir; Schwengner, Ronald; Wagner, Andreas

    2010-01-01

    The superconducting electron accelerator ELBE (Electron Linac with high Brilliance and low Emittance) at the Research Centre Dresden-Rossendorf (Germany) serves as a high-intensity bremsstrahlung photon-source delivering a pulsed beam (26 MHz) with very short bunches (<5 ps). The photons are being converted into positrons by means of pair production inside the target material thus forming an intense positron source. The accelerator machine pulse is used as time reference allowing positron lifetime spectroscopy. We performed positron annihilation spectroscopy by pair production in different sample materials and used coincidence techniques to reduce the background due to scattered photons significantly in order resulting in spectra of extraordinary high quality. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy.

    Science.gov (United States)

    Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D

    2010-07-28

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  11. Non-periodic multi-slit masking for a single counter rotating 2-disc chopper and channeling guides for high resolution and high intensity neutron TOF spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowiak, M.; Hofmann, T.; Stüßer, N.

    2017-02-01

    Energy resolution is an important design goal for time-of-flight instruments and neutron spectroscopy. For high-resolution applications, it is required that the burst times of choppers be short, going down to the µs-range. To produce short pulses while maintaining high neutron flux, we propose beam masks with more than two slits on a counter-rotating 2-disc chopper, behind specially adapted focusing multi-channel guides. A novel non-regular arrangement of the slits ensures that the beam opens only once per chopper cycle, when the masks are congruently aligned. Additionally, beam splitting and intensity focusing by guides before and after the chopper position provide high intensities even for small samples. Phase-space analysis and Monte Carlo simulations on examples of four-slit masks with adapted guide geometries show the potential of the proposed setup.

  12. High-cadence Imaging and Imaging Spectroscopy at the GREGOR Solar Telescope—A Collaborative Research Environment for High-resolution Solar Physics

    Science.gov (United States)

    Denker, Carsten; Kuckein, Christoph; Verma, Meetu; González Manrique, Sergio J.; Diercke, Andrea; Enke, Harry; Klar, Jochen; Balthasar, Horst; Louis, Rohan E.; Dineva, Ekaterina

    2018-05-01

    In high-resolution solar physics, the volume and complexity of photometric, spectroscopic, and polarimetric ground-based data significantly increased in the last decade, reaching data acquisition rates of terabytes per hour. This is driven by the desire to capture fast processes on the Sun and the necessity for short exposure times “freezing” the atmospheric seeing, thus enabling ex post facto image restoration. Consequently, large-format and high-cadence detectors are nowadays used in solar observations to facilitate image restoration. Based on our experience during the “early science” phase with the 1.5 m GREGOR solar telescope (2014–2015) and the subsequent transition to routine observations in 2016, we describe data collection and data management tailored toward image restoration and imaging spectroscopy. We outline our approaches regarding data processing, analysis, and archiving for two of GREGOR’s post-focus instruments (see http://gregor.aip.de), i.e., the GREGOR Fabry–Pérot Interferometer (GFPI) and the newly installed High-Resolution Fast Imager (HiFI). The heterogeneous and complex nature of multidimensional data arising from high-resolution solar observations provides an intriguing but also a challenging example for “big data” in astronomy. The big data challenge has two aspects: (1) establishing a workflow for publishing the data for the whole community and beyond and (2) creating a collaborative research environment (CRE), where computationally intense data and postprocessing tools are colocated and collaborative work is enabled for scientists of multiple institutes. This requires either collaboration with a data center or frameworks and databases capable of dealing with huge data sets based on virtual observatory (VO) and other community standards and procedures.

  13. High-Resolution Faraday Rotation and Electron-Phonon Coupling in Surface States of the Bulk-Insulating Topological Insulator Cu_{0.02}Bi_{2}Se_{3}.

    Science.gov (United States)

    Wu, Liang; Tse, Wang-Kong; Brahlek, M; Morris, C M; Aguilar, R Valdés; Koirala, N; Oh, S; Armitage, N P

    2015-11-20

    We have utilized time-domain magnetoterahertz spectroscopy to investigate the low-frequency optical response of the topological insulator Cu_{0.02}Bi_{2}Se_{3} and Bi_{2}Se_{3} films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu_{0.02}Bi_{2}Se_{3} induces a true bulk insulator with only a single type of conduction with a total sheet carrier density of ~4.9×10^{12}/cm^{2} and mobility as high as 4000 cm^{2}/V·s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on the top and bottom of the film with a chemical potential ~145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero-field Drude conductance. In contrast, in normal Bi_{2}Se_{3} films, two conduction channels were observed, and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk or two-dimensional electron gas states. Our high-resolution Faraday rotation spectroscopy on Cu_{0.02}Bi_{2}Se_{3} paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push the chemical potential in the lowest Landau level.

  14. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, G. T., E-mail: seidler@uw.edu; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R. [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States)

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  15. Development of wave length-dispersive soft x-ray emission spectrometers for transmission electron microscopes - an introduction of valence electron spectroscopy for transmission electron microscopy

    International Nuclear Information System (INIS)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu 1-x Zn x alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Mα-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of π- and σ-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. (author)

  16. Extracting the redox orbitals in Li battery materials with high-resolution x-ray compton scattering spectroscopy.

    Science.gov (United States)

    Suzuki, K; Barbiellini, B; Orikasa, Y; Go, N; Sakurai, H; Kaprzyk, S; Itou, M; Yamamoto, K; Uchimoto, Y; Wang, Yung Jui; Hafiz, H; Bansil, A; Sakurai, Y

    2015-02-27

    We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution x-ray Compton scattering. Application of our method to spinel Li_{x}Mn_{2}O_{4}, a lithium ion battery cathode material, is discussed. The orbital involved in the lithium insertion and extraction process is shown to mainly be the oxygen 2p orbital. Moreover, the manganese 3d states are shown to experience spatial delocalization involving 0.16±0.05 electrons per Mn site during the battery operation. Our analysis provides a clear understanding of the fundamental redox process involved in the working of a lithium ion battery.

  17. Magnetic properties of iron oxide-based nanoparticles: Study using Mössbauer spectroscopy with a high velocity resolution and magnetization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, M.V. [Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Oshtrakh, M.I., E-mail: oshtrakh@gmail.com [Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Felner, I. [Racah Institute of Physics, The Hebrew University, Jerusalem (Israel); Semenova, A.S.; Kellerman, D.G. [Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Šepelák, V. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Semionkin, V.A. [Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Morais, P.C. [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 (China); Universidade de Brasília, Instituto de Física, DF, Brasília 70910-900 (Brazil)

    2017-06-01

    We review the results of the study of magnetite, maghemite and nickel ferrite nanoparticles (NPs), applying for magnetic fluids, using Mössbauer spectroscopy with a high velocity resolution and magnetization measurements. The Mössbauer spectra of these NPs were fitted using a large number of magnetic sextets reflecting NPs complicity. The presence of polar molecules at the magnetite surface in magnetic fluid increases the NPs magnetic moment and the median hyperfine magnetic field. However, surface coating of maghemite NPs with dimeracptosuccinic acid decreases the median hyperfine magnetic field. An example of nickel ferrite NPs demonstrated a new physical model based on distribution of Ni{sup 2+} in the local microenvironment of Fe{sup 3+} which can explain a large number of magnetic sextets in the Mössbauer spectra measured with a high velocity resolution.

  18. Recent trends in spin-resolved photoelectron spectroscopy

    Science.gov (United States)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  19. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens

    Science.gov (United States)

    Russo, Christopher J.; Passmore, Lori A.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474

  20. 40 keV atomic resolution TEM

    International Nuclear Information System (INIS)

    Bell, David C.; Russo, Christopher J.; Kolmykov, Dmitry V.

    2012-01-01

    Here we present the first atomic resolution TEM imaging at 40 keV using an aberration-corrected, monochromated source TEM. Low-voltage High-Resolution Electron Microscopy (LVHREM) has several advantages, including increased cross-sections for inelastic and elastic scattering, increased contrast per electron and improved spectroscopy efficiency, decreased delocalization effects and reduced knock-on damage. Together, these often improve the contrast to damage ratio obtained on a large class of samples. Third-order aberration correction now allows us to operate the TEM at low energies while retaining atomic resolution, which was previously impossible. At low voltage the major limitation to resolution becomes the chromatic aberration limit. We show that using a source monochromator we are able to reduce the effect of chromatic aberration and achieve a usable high-resolution limit at 40 keV to less than 1 Å. We show various materials' examples of the application of the technique to image graphene and silicon, and compare atomic resolution images with electron multislice simulations. -- Highlights: ► We present the first atomic resolution images recorded at 40 keV using an aberration-corrected, monochromated TEM. ► We show information transfer measured to better than 1 Å. ► At 40 keV an aberration-corrected monochromated TEM is limited by fifth-order spherical aberration. ► We show that using a monochromator the effect of chromatic aberration is reduced to enable high resolution imaging. ► Low voltage high resolution electron microscopy will be beneficial for imaging the organic/inorganic materials interface.

  1. Low-dose electron energy-loss spectroscopy using electron counting direct detectors.

    Science.gov (United States)

    Maigné, Alan; Wolf, Matthias

    2018-03-01

    Since the development of parallel electron energy loss spectroscopy (EELS), charge-coupled devices (CCDs) have been the default detectors for EELS. With the recent development of electron-counting direct-detection cameras, micrographs can be acquired under very low electron doses at significantly improved signal-to-noise ratio. In spectroscopy, in particular in combination with a monochromator, the signal can be extremely weak and the detection limit is principally defined by noise introduced by the detector. Here we report the use of an electron-counting direct-detection camera for EEL spectroscopy. We studied the oxygen K edge of amorphous ice and obtained a signal noise ratio up to 10 times higher than with a conventional CCD.We report the application of electron counting to record time-resolved EEL spectra of a biological protein embedded in amorphous ice, revealing chemical changes observed in situ while exposed by the electron beam. A change in the fine structure of nitrogen K and the carbon K edges were recorded during irradiation. A concentration of 3 at% nitrogen was detected with a total electron dose of only 1.7 e-/Å2, extending the boundaries of EELS signal detection at low electron doses.

  2. Electron microscopy and auger spectroscopy study of the wetting of the grain boundaries in the systems Mo-Pb, Mo-Sn, Mo-Ni and Ni-Pb; Etude par microscopie electronique et spectroscopie auger du mouillage des joints de grains dans les systemes Mo-Pb, Mo-Sn, Mo-Ni et Ni-Pb

    Energy Technology Data Exchange (ETDEWEB)

    Charai, A. [Faculte des Sciences et Techniques de Saint Jerome, Lab. TECSEN, UMR 6122 du CNRS, 13 - Marseille (France); Kutcherinenko, I.; Priester, L. [Paris-11 Univ., ISMA, 91 - Orsay (France); Penisson, J.M. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee, DRFMC-SP2M, 38 (France); Pontikis, V. [Centre National de la Recherche Scientifique (CNRS), Centre d' Etudes de Chimie Metallurgique, 94 - Vitry-sur-Seine (France); Wolski, K. [Ecole NationaleSuperieure des Mines de Saint Etienne, Centre SMS/MPI, URA 1884 du CNRS, 42 - Saint Etienne (France); Vystavel, T. [Academy of Sciences of Czech Republic, Institute of Physics, Praha (Czech Republic)

    2002-09-01

    Understanding the mechanism of the intergranular penetration of a liquid phase into a metallic solid is an important problem. The structural and chemical characterization of nano-metric films at grain boundaries is now possible by using high resolution electron microscopy associated with X-ray micro-analysis, electron energy loss spectroscopy and Auger spectroscopy. In order to study this problem, two different classes of model materials were selected according to their crystallographic structure: a bcc metal (molybdenum) and an fcc one (nickel). The wetting element was either lead or tin or nickel. In a first approach, the metallic matrix was polycrystalline. The conditions in which the liquid phase penetrates into the grain boundaries were studied by using special preparation and observation techniques. In particular, the use of a Focused Ion Beam microscope (FIB) allowed the preparation of thin foils located very precisely inside the matrix as well as multi-scale observations. These specimens were further observed in electron microscopy with a very high resolution. (authors)

  3. Electronic structure of the Ga1-xCr xN studied by high-energy photoemission spectroscopy

    International Nuclear Information System (INIS)

    Kim, J.J.; Makino, H.; Yao, T.; Takata, Y.; Kobayashi, K.; Yamamoto, T.; Hanada, T.; Cho, M.W.; Ikenaga, E.; Yabashi, M.; Miwa, D.; Nishino, Y.; Tamasaku, K.; Ishikawa, T.; Shin, S.

    2005-01-01

    Valence band spectra of Ga 1-x Cr x N have been investigated by high-energy photoemission spectroscopy at the photon energy of 5.95 keV. Cr doping does introduce a novel electronic structure in the bandgap and causes some change in valence band structure. Based on the first-principle calculation, Cr-associated electronic levels in the bandgap are assigned to nonbonding and antibonding d states while the change of the valence band suggests that the Ga 4s originated states are significantly modified through hybridization with the Cr 3d orbital. The present result evidences that the Ga valence electrons are considerably modified through the interaction with the second nearest-neighbour Cr atoms

  4. High-resolution electron spectroscopy of the 1s23lnl' Be-like series in oxygen and neon. Test of theoretical data: II. Experimental results

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D

    2003-01-01

    A complete and accurate experimental test of theoretical spectroscopic data sets (state positions, lifetimes) available for the n=3-5 terms of the 1s 2 3lnl' Rydberg series of oxygen and neon ions is presented in a series of two papers. This result was achieved by fitting our high-resolution electron spectra with post-collisional lineshapes calculated with the help of these spectroscopic data. In this second paper we apply the fitting procedure described in the preceding companion paper (I) to the analysis of high-resolution electron spectra measured in O 6+ (1s 2 ) + He, H 2 and Ne 8+ (1s 2 ) + He collisional systems at 10 qkeV collision energy (q is the ion charge). Singlet states alone are found to be excited in oxygen; they also explain most of the neon lines; in the latter case a possible contribution of triplet states is discussed. Many 1s 2 3lnl' 1 L transitions are identified for the first time. A quantitative comparison between measured and calculated positions clearly points to the best theoretical data currently available. Finally, a first identification of some 4l4l' 1 L transitions observed in the neon spectrum is also proposed. From this huge spectroscopic work, we extract the first experimental partial branching ratios for autoionization into the 1s 2 2l ionization continua for a large number of 1s 2 3lnl' 1 L states, which are compared with the total ones calculated by other authors; we deduce that populations of |M L vertical bar = 0 and 1 magnetic sublevels are nearly identical. The double-capture process is also briefly characterized by comparing relative populations of many n=3-5 states; it is found that the same states are populated in O 6+ +H 2 and Ne 8+ +He collisional systems with the same relative populations

  5. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  6. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    International Nuclear Information System (INIS)

    Zhou, X.J.

    2010-01-01

    In addition to the record high superconducting transition temperature (T c ), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T c , and anomalous normal state properties above T c . In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T c . As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T c superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not thought possible

  7. THE HIGH-RESOLUTION EXTREME-ULTRAVIOLET SPECTRUM OF N{sub 2} BY ELECTRON IMPACT

    Energy Technology Data Exchange (ETDEWEB)

    Heays, A. N. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ajello, J. M.; Aguilar, A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Lewis, B. R.; Gibson, S. T., E-mail: heays@strw.leidenuniv.nl [Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2014-04-01

    We have analyzed high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N{sub 2} electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a {sup 1}Π {sub g} , b {sup 1}Π {sub u} , and b'{sup 1}Σ {sub u} {sup +} excited valence states and the Rydberg series c'{sub n} {sub +1} {sup 1}Σ {sub u} {sup +}, c{sub n} {sup 1}Π {sub u} , and o{sub n} {sup 1}Π {sub u} for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.

  8. Hot Electron Nanoscopy and Spectroscopy (HENs)

    KAUST Repository

    Giugni, Andrea; Torre, Bruno; Allione, Marco; Perozziello, Gerardo; Candeloro, Patrizio; Di Fabrizio, Enzo M.

    2017-01-01

    This chapter includes a brief description of different laser coupling methods with guided surface plasmon polariton (SPP) modes at the surface of a cone. It shows some devices, their electromagnetic simulations, and their optical characterization. A theoretical section illustrates the optical and quantum description of the hot charge generation rate as obtained for the SPP propagation along the nanocone in adiabatic compression. The chapter also shows some experimental results concerning the application of the hot electron nanoscopy and spectroscopy (HENs) in the so-called Schottky configuration, highlighting the sensitivity and the nanoscale resolution of the technique. The comparison with Kelvin probe and other electric atomic force microscopy (AFM) techniques points out the intrinsic advantages of the HENs. In the end, some further insights are given about the possibility of exploiting HENs with a pulsed laser at the femtosecond time scale without significant pulse broadening and dispersion.

  9. Hot Electron Nanoscopy and Spectroscopy (HENs)

    KAUST Repository

    Giugni, Andrea

    2017-08-17

    This chapter includes a brief description of different laser coupling methods with guided surface plasmon polariton (SPP) modes at the surface of a cone. It shows some devices, their electromagnetic simulations, and their optical characterization. A theoretical section illustrates the optical and quantum description of the hot charge generation rate as obtained for the SPP propagation along the nanocone in adiabatic compression. The chapter also shows some experimental results concerning the application of the hot electron nanoscopy and spectroscopy (HENs) in the so-called Schottky configuration, highlighting the sensitivity and the nanoscale resolution of the technique. The comparison with Kelvin probe and other electric atomic force microscopy (AFM) techniques points out the intrinsic advantages of the HENs. In the end, some further insights are given about the possibility of exploiting HENs with a pulsed laser at the femtosecond time scale without significant pulse broadening and dispersion.

  10. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.

    Science.gov (United States)

    Coggins, Brian E; Zhou, Pei

    2008-12-01

    Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise.

  11. Advances in Computational High-Resolution Mechanical Spectroscopy HRMS Part I: Logarithmic Decrement

    International Nuclear Information System (INIS)

    Majewski, M; Magalas, L B; Piłat, A

    2012-01-01

    The comparison between different methods used to compute the logarithmic decrement in high-resolution mechanical spectroscopy (HRMS) is analyzed. The performance of parametric OMI method (Optimization in Multiple Intervals) and interpolated discrete Fourier transform (IpDFT) methods are investigated as a function of the sampling frequency used to digitize free decaying oscillations in low-frequency resonant mechanical spectrometers. It is clearly demonstrated that a new Yoshida-Magalas (YM) method is the most powerful IpDFT-based method which outperforms the standard Yoshida (Y) method and other DFT-based methods. Four IpDFT methods and the OMI method are carefully analyzed as a function of the sampling frequency. The results presented in this work clearly show that the relative error in the estimation of the logarithmic decrement depends both on the length of free decaying signal and on the sampling frequency. The effect of the sampling frequency was not yet reported in the literature. The performance of different methods used in the computations of the logarithmic decrement can be listed in the following order: (1) the OMI, (2) the Yoshida-Magalas YM, (3) the Yoshida-Magalas YMC, and finally (4) the Yoshida Y.

  12. Electron beam excitation assisted optical microscope with ultra-high resolution.

    Science.gov (United States)

    Inami, Wataru; Nakajima, Kentaro; Miyakawa, Atsuo; Kawata, Yoshimasa

    2010-06-07

    We propose electron beam excitation assisted optical microscope, and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.

  13. On the electronic structure of high Tc superconductors

    International Nuclear Information System (INIS)

    Fink, J.; Nuecker, N.; Romberg, H.; Alexander, M.; Knupfer, M.; Mante, J.; Claessen, R.; Buslaps, T.; Harm, S.; Manzke, R.; Skibowski, M.

    1992-01-01

    Studies of the electronic structure of high-T c superconductors and related compounds by high-energy spectroscopies are reviewed. In particular, we report on investigations by electron energy-loss, angle-resolved photoemission, and inverse angle-resolved photoemission spectroscopy. Information on the symmetry and the character of states close to the Fermi level has been obtained. 25 refs., 8 figs

  14. High-resolution laser spectroscopy of nickel isotopes

    CERN Multimedia

    This proposal aims to measure the nuclear ground-state spins, moments and mean-square charge radii of $^{56-71}$Ni using collinear laser spectroscopy. This will enable direct measurements of isotopes in the region of shell closure $^{56}$Ni, structural change $^{68}$Ni and monopole migration beyond N = 40. Optical spectroscopy serves as a detailed probe not only of the changing single-particle behaviour, but also for the study of collective properties such as size and shape. Measurements of the most neutron-rich isotopes available at ISOLDE will critically test models which seek to extrapolate the data to the doubly magic region of $^{78}$Ni.

  15. Understanding reconstructed Dante spectra using high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    May, M. J., E-mail: may13@llnl.gov; Widmann, K.; Kemp, G. E.; Thorn, D.; Colvin, J. D.; Schneider, M. B.; Moore, A.; Blue, B. E. [L-170 Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94551 (United States); Weaver, J. [Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States)

    2016-11-15

    The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

  16. Silicon drift detectors for high resolution room temperature X-ray spectroscopy

    International Nuclear Information System (INIS)

    Lechner, P.; Eckbauer, S.; Hauff, D.; Strueder, L.; Gatti, E.; Longoni, A.; Sampietro, M.

    1996-01-01

    New cylindrical silicon drift detectors have been designed, fabricated and tested. They comprise an integrated on-chip amplifier system with continuous reset, on-chip voltage divider, electron accumulation layer stabilizer, large area, homogeneous radiation entrance window and a drain for surface generated leakage current. The test of the 3.5 mm 2 large individual devices, which have also been grouped together to form a sensitive area up to 21 mm 2 have shown the following spectroscopic results: at room temperature (300 K) the devices have shown a full width at half maximum at the Mn Kα line of a radioactive 55 Fe source of 225 eV with shaping times of 250 to 500 ns. At -20 C the resolution improves to 152 eV at 2 μs Gaussian shaping. At temperatures below 200 K the energy resolution is below 140 eV. With the implementation of a digital filtering system the resolution approaches 130 eV. The system was operated with count rates up to 800 000 counts per second and per readout node, still conserving the spectroscopic qualities of the detector system. (orig.)

  17. High resolution X-ray spectroscopy of laser generated plasmas

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Skobelev, I.Yu.; Rosmej, F.B.

    1999-01-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.)

  18. High resolution X-ray spectroscopy of laser generated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Rosmej, F.B. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik

    1999-11-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.) 28 refs.

  19. High-resolution sub-Doppler infrared spectroscopy of atmospherically relevant Criegee precursor CH2I radicals: CH2 stretch vibrations and "charge-sloshing" dynamics

    Science.gov (United States)

    Kortyna, A.; Lesko, D. M. B.; Nesbitt, D. J.

    2018-05-01

    The combination of a pulsed supersonic slit-discharge source and single-mode difference frequency direct absorption infrared spectroscopy permit first high resolution infrared study of the iodomethyl (CH2I) radical, with the CH2I radical species generated in a slit jet Ne/He discharge and cooled to 16 K in the supersonic expansion. Dual laser beam detection and collisional collimation in the slit expansion yield sub-Doppler linewidths (60 MHz), an absolute frequency calibration of 13 MHz, and absorbance sensitivities within a factor of two of the shot-noise limit. Fully rovibrationally resolved direct absorption spectra of the CH2 symmetric stretch mode (ν2) are obtained and fitted to a Watson asymmetric top Hamiltonian with electron spin-rotation coupling, providing precision rotational constants and spin-rotation tensor elements for the vibrationally excited state. Analysis of the asymmetric top rotational constants confirms a vibrationally averaged planar geometry in both the ground- and first-excited vibrational levels. Sub-Doppler resolution permits additional nuclear spin hyperfine structures to be observed, with splittings in excellent agreement with microwave measurements on the ground state. Spectroscopic data on CH2I facilitate systematic comparison with previous studies of halogen-substituted methyl radicals, with the periodic trends strongly correlated with the electronegativity of the halogen atom. Interestingly, we do not observe any asymmetric CH2 stretch transitions, despite S/N ≈ 25:1 on strongest lines in the corresponding symmetric CH2 stretch manifold. This dramatic reversal of the more typical 3:1 antisymmetric/symmetric CH2 stretch intensity ratio signals a vibrational transition moment poorly described by simple "bond-dipole" models. Instead, the data suggest that this anomalous intensity ratio arises from "charge sloshing" dynamics in the highly polar carbon-iodine bond, as supported by ab initio electron differential density plots and

  20. High flux and high resolution VUV beam line for synchrotron radiation

    International Nuclear Information System (INIS)

    Wilcke, H.; Boehmer, W.; Schwentner, N.

    1982-04-01

    A beam line has been optimized for high flux and high resolution in the wavelength range from 30 nm to 300 nm. Sample chambers for luminescence spectroscopy on gaseous, liquid and solid samples and for photoelectron spectroscopy have been integrated. The synchrotron radiation from the storage ring DORIS (at DESY, Hamburg) emitted into 50 mrad in horizontal and into 2.2 mrad in vertical direction is focused by a cylindrical and a plane elliptical mirror into the entrance slit of a 2m normal incidence monochromator. The light flux from the exit slit is focused by a rotational elliptic mirror onto the sample yielding a size of the light spot of 4 x 0.15 mm 2 . The light flux at the sample reaches 7 x 10 12 photons nm -1 s -1 at 8 eV photon energy for a current of 100 mA in DORIS. A resolution of 0.007 nm has been obtained. (orig.)

  1. Laser-induced blurring of molecular structure information in high harmonic spectroscopy

    DEFF Research Database (Denmark)

    Risoud, Francois; Leveque, Camille; Labeye, Marie

    2017-01-01

    High harmonic spectroscopy gives access to molecular structure with Angstrom resolution. Such information is encoded in the destructive interferences occurring between the harmonic emissions from the different parts of the molecule. By solving the time-dependent Schrodinger equation, either....... These findings have important consequences for molecular imaging and orbital tomography using high harmonic spectroscopy....

  2. An improved experimental scheme for simultaneous measurement of high-resolution zero electron kinetic energy (ZEKE) photoelectron and threshold photoion (MATI) spectra

    Science.gov (United States)

    Michels, François; Mazzoni, Federico; Becucci, Maurizio; Müller-Dethlefs, Klaus

    2017-10-01

    An improved detection scheme is presented for threshold ionization spectroscopy with simultaneous recording of the Zero Electron Kinetic Energy (ZEKE) and Mass Analysed Threshold Ionisation (MATI) signals. The objective is to obtain accurate dissociation energies for larger molecular clusters by simultaneously detecting the fragment and parent ion MATI signals with identical transmission. The scheme preserves an optimal ZEKE spectral resolution together with excellent separation of the spontaneous ion and MATI signals in the time-of-flight mass spectrum. The resulting improvement in sensitivity will allow for the determination of dissociation energies in clusters with substantial mass difference between parent and daughter ions.

  3. Observations of silicon carbide by high resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Smith, D.J.; Jepps, N.W.; Page, T.F.

    1978-01-01

    High resolution transmission electron microscopy techniques, principally involving direct lattice imaging, have been used as part of a study of the crystallography and phase transformation mechanics of silicon carbide polytypes. In particular, the 3C (cubic) and 6H (hexagonal) polytypes have been examined together with partially transformed structural mixtures. Although direct observation of two-dimensional atomic structures was not possible at an operating voltage of 100 kV, considerable microstructural information has been obtained by careful choice of the experimental conditions. In particular, tilted beam observations of the 0.25 nm lattice fringes have been made in the 3C polytype for two different brace 111 brace plane arrays in order to study the dimensions and coherency of finely-twinned regions together with brace 0006 brace and brace 1 0 bar1 2 brace lattice images in the 6H polytype which allow the detailed stacking operations to be resolved. Lower resolution lattice images formed with axial illumination have also been used to study the nature of the 3C → 6H transformation and results are presented showing that the transformation interface may originate with fine twinning of the 3C structure followed by growth of the resultant 6H regions. Observations have been made of the detailed stepped structure of this interface together with the stacking fault distribution in the resultant 6H material. (author)

  4. High resolution backscattering instruments

    International Nuclear Information System (INIS)

    Coldea, R.

    2001-01-01

    The principle of operation of indirect-geometry time-of-flight spectrometers are presented, including the IRIS at the ISIS spallation neutron source. The key features that make those types of spectrometers ideally suited for low-energy spectroscopy are: high energy resolution over a wide dynamic range, and simultaneous measurement over a large momentum transfer range provided by the wide angular detector coverage. To exemplify these features are discussed of single-crystal experiments of the spin dynamics in the two-dimensional frustrated quantum magnet Cs 2 CuCl 4 . (R.P.)

  5. Gamma-Ray Imager With High Spatial And Spectral Resolution

    Science.gov (United States)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  6. Combined in-beam gamma-ray and conversion electron spectroscopy with radioactive ion beams

    Directory of Open Access Journals (Sweden)

    Konki J.

    2013-12-01

    Full Text Available In-beam gamma-ray and electron spectroscopy have been widely used as tools to study the broad variety of phenomena in nuclear structure. The SPEDE spectrometer is a new device to be used in conjunction with the MINIBALL germanium detector array to enable the detection of internal conversion electrons in coincidence with gamma rays from de-exciting nuclei in radioactive ion beam experiments at the upcoming HIE-ISOLDE facility at CERN, Switzerland. Geant4 simulations were carried out in order to optimise the design and segmentation of the silicon detector to achieve good energy resolution and performance.

  7. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    International Nuclear Information System (INIS)

    Kowalczyk, S.P.

    1976-01-01

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF 2 as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states

  8. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Far Infrared High Resolution Synchrotron FTIR Spectroscopy of the Low Frequency Bending Modes of Dmso

    Science.gov (United States)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2010-06-01

    In addition to its importance for industrial and environmental studies, the monitoring of DiMethylSulfOxyde (DMSO, (CH_3)_2SO) concentrations is of considerable interest for civil protection. The existing high resolution gas phase spectroscopic data of DMSO only concerned the pure rotational transitions in the ground state. In the Far-IR domain, the low-frequency rovibrational transitions have never previously resolved. The high brightness of the AILES beamline of the synchrotron SOLEIL and the instrumental sensitivity provided by the multipass cell allowed to measure for the first time these transitions. 1581 A-type and C-type transitions in the ν11 band have been assigned and 25 molecular constants of Watson's s-form hamiltonian developed to degree 8 have been fitted within the experimental accuracy. The use of then synchrotron radiation has opened many possibilities for new spectroscopic studies. Together with several other recent studies, our successful measurement and analysis of DMSO convincingly demonstrates the potential of the AILES beamline for high resolution FIR spectroscopy. Thus our present work is just at the beginning of unraveling the rovibrational structure of low frequency bending and torsional vibrational states of DMSO and yielding important comprehensive structural and spectroscopic information on this molecule. L. Margules, R. A. Motienko, E. A. Alekseev, J. Demaison, J. Molec. Spectrosc., 260(23),2009 V. Typke, M. Dakkouri, J. Molec. Struct., 599(177),2001 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, D. Sadovskii, Chem. Phys. Lett., accepted for publication

  10. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  11. High-resolution Raman Spectroscopy for the Nanostructural Characterization of Explosive Nanodiamond Precursors.

    Science.gov (United States)

    Deckert-Gaudig, Tanja; Pichot, Vincent; Spitzer, Denis; Deckert, Volker

    2017-01-18

    The specific attributes of nanodiamonds have attracted increasing interest for electronics or biomedical applications. An efficient synthetic route towards nanodiamonds is via detonation of hexolite (i.e. a mixture of TNT [2,4,6-trinitrotoluene] and RDX [1,3,5-trinitro-1,3,5-triazine]). In particular, detonation of hexolite crystallized by spray flash evaporation (SFE) yields extremely small diamonds (<4 nm). To unravel the detonation mechanism, a structural characterization of the explosives is required but is challenging due to their thermal instability. We demonstrate a combination of conventional Raman spectroscopy and tip-enhanced Raman spectroscopy (TERS) for resolving morphological and structural differences of differently prepared hexolite nanocomposites. The experiments allow for the first time a structural differentiation of individual TNT and RDX crystals and 15-20 nm sized core-shell structures, consequently providing a general approach to investigate the actual composition of mixtures on the nanometer scale. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Some thoughts on source monochromation and the implications for electron energy loss spectroscopy

    CERN Document Server

    Brydson, R; Brown, A

    2003-01-01

    We briefly outline the factors determining the intrinsic widths of features in electron energy loss near edge structure (ELNES) measured by electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM). We have made estimates of the differing contributions of both the initial and final state lifetime effects in the ELNES ionisation processes and also show how these may be combined with the instrumental energy resolution. We discuss the potential benefits of source monochromation for ELNES measurements via a comparison of these theoretical estimates with experimental spectra from the literature. We show that for certain core level excitations, solid state broadening mechanisms may be the fundamental limiting factor for resolving fine detail in ELNES. (orig.)

  13. Correlation effects on double electron capture in highly-charged, low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Meyer, F.W.; Griffin, D.C.; Havener, C.C.; Huq, M.S.; Phaneuf, R.A.; Swenson, J.K.; Stolterfoht, N.

    1987-01-01

    The method of zero-degree Auger electron spectroscopy has been used to study two-electron excited states populated in slow double capture collisions of highly charged ions with He and H 2 . The focus of this study is on production of autoionization electrons originating from the non-equivalent 1s 2 2pnl electron configurations in comparison with electron production resulting from the Auger decay of (near) equivalent 1s 2 nln'l' (with n∼n') configurations. It is shown that production of non-equivalent electron configurations is significant and involves electron-electron correlation effects whose analysis leads beyond the independent-particle model. Recent results that include a measurement at non-zero angles are presented to illustrate the angular dependence of electron emission from non-equivalent electron configurations, as well as the dependence on projectile charge state and target species. Comparison of high resolution scans over two lines of the 1s 2 2pnl sequence for the O 6+ + He system with accurate transition energy calculations shows preferential population of high angular momentum substation

  14. Recent advances in ion and electron spectroscopy of polymer surfaces

    Science.gov (United States)

    Gardella, Joseph A.

    1988-01-01

    The structure of microdomains and bonding at multicomponent polymer material interfaces has been studied using a variety of surface sensitive spectroscopic techniques. In our laboratory, low energy ion scattering spectroscopy (ISS) and static secondary ion mass spectrometry (SIMS) serve to complement results from angular dependent X-ray photoelectron spectroscopy (XPS or ESCA), Fourier transform infrared (FTIR) with attenuated total reflectance (ATR) sampling and SEM techniques to provide a quantitative picture of the relationships between structure, bonding, morphology and microdomain formation in near surface regions of polymeric systems. The added surface sensitivity of ISS can yield quantitative information at a sampling depth of 3-5 Å, which, with ESCA and FTIR analysis yields a "non-destructive" depth profile of domain formation in copolymer and blend systems. These studies will be illustrated with results from siloxane and siloxane/polycarbonate copolymer systems, where a complete picture of surface domain formation and morphology as a function of composition and polymer crystallinity has been developed. ISS can also yield information regarding the orientation of surface functional groups which ESCA and FTIR do not have either sensitivity and/or sufficient detection limits to analyze. These studies will be illustrated by the analysis of plasma hydrolysis/oxidation of stereoregular poly(methyl-methacrylate). The effects of functional group orientation on reactivity will be explored using results from ISS, ESCA and FTIR for stereoregular (isotatic, syndiotactic) and random (atactic) PMMA. Electron energy loss spectroscopy at high resolution (HREELS) has recently been extended to the examination of polymer and organic surfaces. Vibrational information from this experiment can yield very precise results about surface functional groups (1-20 Å) but at much lower resolution than is typical from IR and Raman techniques. However, the promise of evaluating surface

  15. Application of principal component and factor analyses in electron spectroscopy

    International Nuclear Information System (INIS)

    Siuda, R.; Balcerowska, G.

    1998-01-01

    Fundamentals of two methods, taken from multivariate analysis and known as principal component analysis (PCA) and factor analysis (FA), are presented. Both methods are well known in chemometrics. Since 1979, when application of the methods to electron spectroscopy was reported for the first time, they became to be more and more popular in different branches of electron spectroscopy. The paper presents examples of standard applications of the method of Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). Advantages one can take from application of the methods, their potentialities as well as their limitations are pointed out. (author)

  16. Secondary electron emission studied by secondary electron energy loss coincidence spectroscopy (SE2ELCS)

    International Nuclear Information System (INIS)

    Khalid, R.

    2013-01-01

    Emission of secondary electrons is of importance in many branches of fundamental and applied science. It is widely applied in the electron microscope for the investigation of the structure and electronic state of solid surfaces and particle detection in electron multiplier devices, and generally it is related to the energy dissipation of energetic particles moving inside a solid. The process of secondary electron emission is a complex physical phenomenon, difficult to measure experimentally and treat theoretically with satisfactory accuracy. The secondary electron spectrum measured with single electron spectroscopy does not provide detailed information of the energy loss processes responsible for the emission of secondary electrons. This information can be accessed when two correlated electron pairs are measured in coincidence and the pair consists of a backscattered electron after a given energy loss and a resulting emitted secondary electron. To investigate the mechanisms responsible for the emission of secondary electrons, a reflection (e,2e) coincidence spectrometer named Secondary Electron Electron Energy Loss Coincidence Spectrometer (SE2ELCS) has been developed in the framework of this thesis which allows one to uncover the relation between the features in the spectra which are due to energy losses and true secondary electron emission structures. The correlated electron pairs are measured with a hemispherical mirror analyzer (HMA) and a time of flight analyzer (TOF) by employing a continuous electron beam. An effort has been made to increase the coincidence count rate by increasing the effective solid angle of the TOF analyzer and optimizing the experimental parameters to get optimum energy resolution. Double differential coincidence spectra for a number of materials namely, nearly free electron metals (Al, Si), noble metals (Ag, Au, Cu, W) and highly oriented pyrolytic graphite (HOPG) have been measured using this coincidence spectrometer. The

  17. Development of a metallic magnetic calorimeter for high resolution spectroscopy; Entwicklung eines metallischen magnetischen Kalorimeters fuer die hochaufloesende Roentgenspektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Linck, M.

    2007-05-02

    In this thesis the development of a metallic magnetic calorimeter for high resolution detection of single x-ray quanta is described. The detector consists of an X-ray absorber and a paramagnetic temperature sensor. The raise in temperature of the paramagnetic sensor due to the absorption of a single X-ray is measured by the change in magnetization of the sensor using a low-noise SQUID magnetometer. The thermodynamic properties of the detector can be described by a theoretical model based on a mean field approximation. This allows for an optimization of the detector design with respect to signal size. The maximal archivable energy resolution is limited by thermodynamic energy fluctuations between absorber, heat bath and thermometer. An interesting field of application for a metallic magnetic calorimeter is X-ray astronomy and the investigation of X-ray emitting objects. Through high-resolution X-ray spectroscopy it is possible to obtain information about physical processes of even far distant objects. The magnetic calorimeter that was developed in this thesis has a metallic absorber with a quantum efficiency of 98% at 6 keV. The energy resolution of the magnetic calorimeter is EFWHM=2.7 eV at 5.9 keV. The deviation of the detector response from a linear behavior of the detector is only 0.8% at 5.9 keV. (orig.)

  18. MULTIVARIATE CURVE RESOLUTION OF NMR SPECTROSCOPY METABONOMIC DATA

    Science.gov (United States)

    Sandia National Laboratories is working with the EPA to evaluate and develop mathematical tools for analysis of the collected NMR spectroscopy data. Initially, we have focused on the use of Multivariate Curve Resolution (MCR) also known as molecular factor analysis (MFA), a tech...

  19. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stoupin, Stanislav; Shvyd' ko, Yuri; Shu Deming; Khachatryan, Ruben; Xiao, Xianghui; DeCarlo, Francesco; Goetze, Kurt; Roberts, Timothy; Roehrig, Christian; Deriy, Alexey [Advanced Photon Source, Argonne National Laboratory, Illinois 60439 (United States)

    2012-02-15

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub X}{approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  20. Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER.

    Science.gov (United States)

    Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C

    2016-03-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  1. Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer.

    Science.gov (United States)

    Cremers, David A; Beddingfield, Alan; Smithwick, Robert; Chinni, Rosemarie C; Jones, C Randy; Beardsley, Burt; Karch, Larry

    2012-03-01

    The development of field-deployable instruments to monitor radiological, nuclear, and explosive (RNE) threats is of current interest for a number of assessment needs such as the on-site screening of suspect facilities and nuclear forensics. The presence of uranium and plutonium and radiological materials can be determined through monitoring the elemental emission spectrum using relatively low-resolution spectrometers. In addition, uranium compounds, explosives, and chemicals used in nuclear fuel processing (e.g., tributyl-phosphate) can be identified by applying chemometric analysis to the laser-induced breakdown (LIBS) spectrum recorded by these spectrometers. For nuclear forensic applications, however, isotopes of U and Pu and other elements (e.g., H and Li) must also be determined, requiring higher resolution spectrometers given the small magnitude of the isotope shifts for some of these elements (e.g., 25 pm for U and 13 pm for Pu). High-resolution spectrometers will be preferred for several reasons but these must fit into realistic field-based analysis scenarios. To address the need for field instrumentation, we evaluated a previously developed field-deployable hand-held LIBS interrogation probe combined with two relatively new high-resolution spectrometers (λ/Δλ ~75,000 and ~44,000) that have the potential to meet field-based analysis needs. These spectrometers are significantly smaller and lighter in weight than those previously used for isotopic analysis and one unit can provide simultaneous wide spectral coverage and high resolution in a relatively small package. The LIBS interrogation probe was developed initially for use with low resolution compact spectrometers in a person-portable backpack LIBS instrument. Here we present the results of an evaluation of the LIBS probe combined with a high-resolution spectrometer and demonstrate rapid detection of isotopes of uranium and hydrogen and highly enriched samples of (6)Li and (7)Li. © 2012 Society for

  2. A New Spin on Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The electronic spin degree of freedom is of general fundamental importance to all matter. Understanding its complex roles and behavior in the solid state, particularly in highly correlated and magnetic materials, has grown increasingly desirable as technology demands advanced devices and materials based on ever stricter comprehension and control of the electron spin. However, direct and efficient spin dependent probes of electronic structure are currently lacking. Angle Resolved Photoemission Spectroscopy (ARPES) has become one of the most successful experimental tools for elucidating solid state electronic structures, bolstered by-continual breakthroughs in efficient instrumentation. In contrast, spin-resolved photoemission spectroscopy has lagged behind due to a lack of similar instrumental advances. The power of photoemission spectroscopy and the pertinence of electronic spin in the current research climate combine to make breakthroughs in Spin and Angle Resolved Photoemission Spectroscopy (SARPES) a high priority . This thesis details the development of a unique instrument for efficient SARPES and represents a radical departure from conventional methods. A custom designed spin polarimeter based on low energy exchange scattering is developed, with projected efficiency gains of two orders of magnitude over current state-of-the-art polarimeters. For energy analysis, the popular hemispherical analyzer is eschewed for a custom Time-of-Flight (TOF) analyzer offering an additional order of magnitude gain in efficiency. The combined instrument signifies the breakthrough needed to perform the high resolution SARPES experiments necessary for untangling the complex spin-dependent electronic structures central to today's condensed matter physics.

  3. Spectroscopy of hexafluorides with an odd number of electrons

    International Nuclear Information System (INIS)

    Boudon, V.

    1995-05-01

    From a theoretical point of view, a tensorial formalism adapted to the study of molecules or octahedral ions with a half-integer angular momentum has been developed for the first time. We have used here the method of projective representations, more consistent than that of double groups. A complete set of coupling coefficients and formulas, as well as the corresponding computing programs have been elaborated. This has firstly allowed us to write a simple model describing the vibronic structure of colored hexafluorides. Then, some applications of this formalism to the study of ro-vibronic couplings of XY 6 molecules in a fourfold degenerate electronic state have been considered, especially concerning operators associated to dynamic Jahn-Teller effect. From an experimental point of view, we have considered IrF 6 , for which we have mastered the synthesis, purification and conservation processes. A first study at low resolution (absorption and Raman scattering) has been performed for this molecule. We have then set up two high resolution spectroscopic devices in the visible region (saturated absorption - tested with an iodine cell- and simple absorption with multiple pass). These especially use a dye laser. They should now allow the spectroscopy of the visible band of IrF 6 in order to resolve for the first time its fine rotational structure. (author)

  4. Reflection-time-of-flight spectrometer for two-electron (e,2e) coincidence spectroscopy on surfaces

    International Nuclear Information System (INIS)

    Kirschner, J.; Kerherve, G.; Winkler, C.

    2008-01-01

    In this article, a novel time-of-flight spectrometer for two-electron-emission (e,2e/γ,2e) correlation spectroscopy from surfaces at low electron energies is presented. The spectrometer consists of electron optics that collect emitted electrons over a solid angle of approximately 1 sr and focus them onto a multichannel plate using a reflection technique. The flight time of an electron with kinetic energy of E kin ≅25 eV is around 100 ns. The corresponding time- and energy resolution are typically ≅1 ns and ≅0.65 eV, respectively. The first (e,2e) data obtained with the present setup from a LiF film are presented

  5. Penning ionization processes studied by electron spectroscopy

    International Nuclear Information System (INIS)

    Yencha, A.J.

    1978-01-01

    The technique of measuring the kinetic energy of electrons ejected from atomic or molecular species as a result of collisional energy transfer between a metastable excited rare gas atom and an atom or molecule is known as Penning ionization spectroscopy. Like the analogous photoionization process of photoelectron spectroscopy, a considerable amount of information has been gained about the ionization potentials of numerous molecular systems. It is, in fact, through the combined analyses of photoelectron and Penning electron spectra that affords a probe of the particle-particle interactions that occur in the Penning process. In this paper a short survey of the phenomenon of Penning ionization, as studied by electron spectroscopy, will be presented as it pertains to the ionization processes of simple molecules by metastable excited atoms. (author)

  6. Hypernuclear Spectroscopy at JLab Hall C

    International Nuclear Information System (INIS)

    Hashimoto, Osamu; Chiba, Atsushi; Doi, Daisuke; Fujii, Yu; Toshiyuki, Gogami; Kanda, Hiroki; Kaneta, M.; Kawama, Daisuke; Maeda, Kazushige; Maruta, Tomofumi; Matsumura, Akihiko; Nagao, Sho; Nakamura, Satoshi; Shichijo, Ayako; Tamura, Hirokazu; Taniya, Naotaka; Yamamoto, Taku; Yokota, Kosuke; Kato, S.; Sato, Yoshinori; Takahashi, Toshiyuki; Noumi, Hiroyuki; Motoba, T.; Hiyama, E.; Albayrak, Ibrahim; Ates, Ozgur; Chen, Chunhua; Christy, Michael; Keppel, Cynthia; Kohl, Karl; Li, Ya; Liyanage, Anusha Habarakada; Tang, Liguang; Walton, T.; Ye, Zhihong; Yuan, Lulin; Zhu, Lingyan; Baturin, Pavlo; Boeglin, Werner; Dhamija, Seema; Markowitz, Pete; Raue, Brian; Reinhold, Joerg; Hungerford, Ed; Ent, Rolf; Fenker, Howard; Gaskell, David; Horn, Tanja; Jones, Mark; Smith, Gregory; Vulcan, William; Wood, Stephen; Johnston, C.; Simicevic, Neven; Wells, Stephen; Samanta, Chhanda; Hu, Bitao; Shen, Ji; Wang, W.; Zhang, Xiaozhuo; Zhang, Yi; Feng, Jing; Fu, Y.; Zhou, Jian; Zhou, S.; Jiang, Yi; Lu, H.; Yan, Xinhu; Ye, Yunxiu; Gan, Liping; Ahmidouch, Abdellah; Danagoulian, Samuel; Gasparian, Ashot; Elaasar, Mostafa; Wesselmann, Frank; Asaturyan, Arshak; Margaryan, Amur; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Tadevosyan, Vardan; Androic, Darko; Furic, Miroslav; Petkovic, Tomislav; Seva, Tomislav; Niculescu, Gabriel; Niculescu, Maria-Ioana; Rodriguez, Victor; Cisbani, Evaristo; Cusanno, Francesco; Garibaldi, Franco; Urciuoli, Guido; De Leo, Raffaele; Maronne, S.; Achenbach, Carsten; Pochodzalla, J.

    2010-01-01

    Since the 1st generation experiment, E89-009, which was successfully carried out as a pilot experiment of (e,e(prime)K + ) hypernuclear spectroscopy at JLab Hall C in 2000, precision hypernuclear spectroscopy by the (e,e(prime)K + ) reactions made considerable progress. It has evolved to the 2nd generation experiment, E01-011, in which a newly constructed high resolution kaon spectrometer (HKS) was installed and the 'Tilt method' was adopted in order to suppress large electromagnetic background and to run with high luminosity. Preliminary high-resolution spectra of 7 ΛHe and 28 ΛAl together with that of 12 ΛB that achieved resolution better than 500 keV(FWHM) were obtained. The third generation experiment, E05-115, has completed data taking with an experimental setup combining a new splitter magnet, high resolution electron spectrometer (HES) and the HKS used in the 2nd generation experiment. The data were accumulated with targets of 7 Li, 9 Be, 10 B, 12 C and 52 Cr as well as with those of CH 2 and H 2 O for calibration. The analysis is under way with particular emphasis of determining precision absolute hypernuclear masses. In this article, hypernuclear spectroscopy program in the wide mass range at JLab Hall C that has undergone three generation is described.

  7. High-resolution electron spectroscopy of the 1s23lnl' Be-like series in oxygen and neon. Test of theoretical data: I. Experimental method and theoretical background

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D

    2003-01-01

    A complete and accurate experimental test of theoretical spectroscopic data sets (state positions, lifetimes) available for the n = 3-5 terms of the 1s 2 3lnl' Rydberg series of oxygen and neon ions is presented in a series of two papers. This result was achieved by fitting our high resolution electron spectra with post-collisional lineshapes calculated with the help of these spectroscopic data. In this paper the method which has been developed for this fitting procedure is explained. In addition, as a first test, a comparison of all the available calculated spectroscopic data is presented and discussed. Strong deviations of transition energies and decay lifetimes are observed in many cases. Best data are selected in the following companion paper through a quantitative comparison with our experimental electron spectra

  8. Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis

    International Nuclear Information System (INIS)

    Kubo, Yugo; Hamada, Kotaro; Urano, Akira

    2013-01-01

    The minimum detection limit and spatial resolution for a thinned semiconductor sample were determined by electron probe microanalysis (EPMA) using a Schottky field emission (FE) electron gun and wavelength dispersive X-ray spectrometry. Comparison of the FE-EPMA results with those obtained using energy dispersive X-ray spectrometry in conjunction with scanning transmission electron microscopy, confirmed that FE-EPMA is largely superior in terms of detection sensitivity. Thin-sample FE-EPMA is demonstrated as a very effective method for high resolution, high sensitivity analysis in a laboratory environment because a high probe current and high signal-to-noise ratio can be achieved. - Highlights: • Minimum detection limit and spatial resolution determined for FE-EPMA. • Detection sensitivity of FE-EPMA greatly superior to that of STEM-EDX. • Minimum detection limit and spatial resolution controllable by probe current

  9. Averaging scheme for atomic resolution off-axis electron holograms.

    Science.gov (United States)

    Niermann, T; Lehmann, M

    2014-08-01

    All micrographs are limited by shot-noise, which is intrinsic to the detection process of electrons. For beam insensitive specimen this limitation can in principle easily be circumvented by prolonged exposure times. However, in the high-resolution regime several instrumental instabilities limit the applicable exposure time. Particularly in the case of off-axis holography the holograms are highly sensitive to the position and voltage of the electron-optical biprism. We present a novel reconstruction algorithm to average series of off-axis holograms while compensating for specimen drift, biprism drift, drift of biprism voltage, and drift of defocus, which all might cause problematic changes from exposure to exposure. We show an application of the algorithm utilizing also the possibilities of double biprism holography, which results in a high quality exit-wave reconstruction with 75 pm resolution at a very high signal-to-noise ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Internal structure of InP/ZnS nanocrystals unraveled by high-resolution soft X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Huang, Kai; Demadrille, Renaud; Silly, Mathieu G; Sirotti, Fausto; Reiss, Peter; Renault, Olivier

    2010-08-24

    High-energy resolution photoelectron spectroscopy (DeltaE InP/ZnS core/shell nanocrystals synthesized using a single-step procedure (core and shell precursors added at the same time), a homogeneously alloyed InPZnS core structure is evidenced by quantitative analysis of their In3d(5/2) spectra recorded at variable excitation energy. When using a two-step method (core InP nanocrystal synthesis followed by subsequent ZnS shell growth), XPS analysis reveals a graded core/shell interface. We demonstrate the existence of In-S and S(x)-In-P(1-x) bonding states in both types of InP/ZnS nanocrystals, which allows a refined view on the underlying reaction mechanisms.

  11. Comparative study of rare earth hexaborides using high resolution angle-resolved photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Ramankutty, S.V., E-mail: s.v.ramankutty@uva.nl [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Jong, N. de; Huang, Y.K.; Zwartsenberg, B. [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Massee, F. [Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Bay, T.V. [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Golden, M.S., E-mail: m.s.golden@uva.nl [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Frantzeskakis, E., E-mail: e.frantzeskakis@uva.nl [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

    2016-04-15

    }(001) surface. All in all, our study highlights the suitability of electron spectroscopies like high-resolution ARPES to provide links between electronic structure and function in complex and correlated materials such as the rare earth hexaborides.

  12. A comparative study of the energy resolution achievable with digital signal processors in x-ray spectroscopy

    International Nuclear Information System (INIS)

    Geraci, A.; Zambusi, M.; Ripamonti, G.

    1996-01-01

    Interest for digital processing of signals from radiation detectors is subject to a growing attention due to its intrinsic adaptivity, easiness of calibration, etc. This work compares two digital processing methods: a multiple-delay-line (DL) N filter and a least-mean-squares (LMS) adaptive filter for applications in high resolution X-ray spectroscopy. The signal pulse, as appears at the output of a proper analog conditioning circuit, is digitized; the samples undergo a digital filtering procedure. Both digital filters take advantage of the possibility of synthesizing the best possible weighting function with respect to the actual noise conditions. A noticeable improvement of more than 10% in energy resolution has been achieved with both systems with respect to state-of-the-art systems based on analog circuitry. In particular, the two digital processors are shown to be the best choice respectively; for on-line use with critical ballistic deficit conditions and for very-high-resolution spectroscopy systems, ultimately limited by 1/f noise

  13. High-resolution multi-slice PET

    International Nuclear Information System (INIS)

    Yasillo, N.J.; Chintu Chen; Ordonez, C.E.; Kapp, O.H.; Sosnowski, J.; Beck, R.N.

    1992-01-01

    This report evaluates the progress to test the feasibility and to initiate the design of a high resolution multi-slice PET system. The following specific areas were evaluated: detector development and testing; electronics configuration and design; mechanical design; and system simulation. The design and construction of a multiple-slice, high-resolution positron tomograph will provide substantial improvements in the accuracy and reproducibility of measurements of the distribution of activity concentrations in the brain. The range of functional brain research and our understanding of local brain function will be greatly extended when the development of this instrumentation is completed

  14. Characterisation of phases in nanostructured, multilayered titanium alloys by analytical and high-resolution electron microscopy.

    Science.gov (United States)

    Czyrska-Filemonowicz, A; Buffat, P A

    2009-01-01

    Surface processing of a Ti-6Al-4V alloy led to a complex multilayered microstructure containing several phases of the Ni-Ti-P-Al-O system, which improves the mechanical and tribological surface properties. The microstructure, chemical and phase compositions of the hard layer formed on the surface were investigated by LM, XRD, SEM as well as analytical/high-resolution TEM, STEM, EDS, electron diffraction and FIB. Phase identification based on electron diffraction, HRTEM and EDS microanalysis revealed the presence of several binary and ternary phases in the system Ti-Ni-P, sometimes with partial substitution of Ti by Al. However some phases, mainly nanoparticles, still remain not identified satisfactorily. Electron microscopy techniques used for identification of phases present in surface multilayers and some practical limits to their routine application are reminded here.

  15. Electron attachment to oxygen, ozone and other compounds of atmospheric relevance as studied with ultra-high energy resolution

    International Nuclear Information System (INIS)

    Maerk, T.D.; Matejcik, S.; Kiendler, A.; Cicman, P.; Senn, G.; Skalny, J.; Stampfli, P.; Illenberger, E.; Chu, Y.; Stamatovic, A.

    1996-01-01

    The processes of electron attachment to oxygen, ozone, ozone/oxygen cluster and oxygen cluster as well as other compounds of atmospheric relevance (CF 2 Cl 2 , CHCl 3 and CCl 3 Br) were studied with ultra-high energy resolution crossed beam technique

  16. Insight into resolution enhancement in generalized two-dimensional correlation spectroscopy.

    Science.gov (United States)

    Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K; Asher, Sanford A

    2013-03-01

    Generalized two-dimensional correlation spectroscopy (2D-COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D-COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) is not completely understood. In the work here, we studied the 2D-COS of simulated spectra in order to develop new insights into the dependence of 2D-COS spectral features on the overlapping band separations, their intensities and bandwidths, and their band intensity change rates. We found that the features in the 2D-COS maps that are derived from overlapping bands were determined by the spectral normalized half-intensities and the total intensity changes of the correlated bands. We identified the conditions required to resolve overlapping bands. In particular, 2D-COS peak resolution requires that the normalized half-intensities of a correlating band have amplitudes between the maxima and minima of the normalized half-intensities of the overlapping bands.

  17. New developments in transmission electron microscopy for nanotechnology

    International Nuclear Information System (INIS)

    Wang, Z.L.

    2003-01-01

    High-resolution transmission electron microscopy (HRTEM) is one of the most powerful tools used for characterizing nanomaterials, and it is indispensable for nanotechnology. This paper reviews some of the most recent developments in electron microscopy techniques for characterizing nanomaterials. The review covers the following areas: in-situ microscopy for studying dynamic shape transformation of nanocrystals; in-situ nanoscale property measurements on the mechanical, electrical and field emission properties of nanotubes/nanowires; environmental microscopy for direct observation of surface reactions; aberration-free angstrom-resolution imaging of light elements (such as oxygen and lithium); high-angle annular-dark-field scanning transmission electron microscopy (STEM); imaging of atom clusters with atomic resolution chemical information; electron holography of magnetic materials; and high-spatial resolution electron energy-loss spectroscopy (EELS) for nanoscale electronic and chemical analysis. It is demonstrated that the picometer-scale science provided by HRTEM is the foundation of nanometer-scale technology. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  18. True resolution enhancement for optical spectroscopy

    Science.gov (United States)

    Cooper, Justin T.; Oleske, Jeffrey B.

    2018-02-01

    Resolving spectrally adjacent peaks is important for techniques, such as tracking small shifts in Raman or fluorescence spectra, quantifying pharmaceutical polymorph ratios, or molecular orientation studies. Thus, suitable spectral resolution is a vital consideration when designing most spectroscopic systems. Most parameters that influence spectral resolution are fixed for a given system (spectrometer length, grating groove density, excitation source, CCD pixel size, etc.). Inflexible systems are non-problematic if the spectrometer is dedicated for a single purpose; however, these specifications cannot be optimized for different applications with wider range resolution requirements. Data processing techniques, including peak fitting, partial least squares, or principal component analysis, are typically used to achieve sub-optical resolution information. These techniques can be plagued by spectral artifacts introduced by post-processing as well as the subjective implementation of statistical parameters. TruRes™, from Andor Technology, uses an innovative optical means to greatly improve and expand the range of spectral resolutions accessible on a single setup. True spectral resolution enhancement of >30% is achieved without mathematical spectral alteration, dataprocessing, or spectrometer component changes. Discreet characteristic spectral lines from Laser-Induced Breakdown Spectroscopy (LIBS) and atomic calibration sources are now fully resolved from spectrally-adjacent peaks under otherwise identical configuration. TruRes™ has added advantage of increasing the spectral resolution without sacrificing bandpass. Using TruRes™ the Kymera 328i resolution can approach that of a 500 mm focal spectrometer. Furthermore, the bandpass of a 500 mm spectrograph with would be 50% narrower than the Kymera 328i with all other spectrometer components constant. However, the Kymera 328i with TruRes™ is able to preserve a 50% wider bandpass.

  19. High-resolution continuous flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    Science.gov (United States)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2014-12-01

    Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the

  20. Attosecond photoelectron spectroscopy of electron transport in solids

    International Nuclear Information System (INIS)

    Magerl, Elisabeth

    2011-01-01

    Time-resolved photoelectron spectroscopy of condensed matter systems in the attosecond regime promises new insights into excitation mechanisms and transient dynamics of electrons in solids. This timescale became accessible directly only recently with the development of the attosecond streak camera and of laser systems providing few-cycle, phase-controlled laser pulses in the near-infrared, which are used to generate isolated, sub-femtosecond extreme-ultraviolet pulses with a well-defined timing with respect to the near-infrared pulse. Employing these pulses, the attosecond streak camera offers time resolutions as short as a few 10 attoseconds. In the framework of this thesis, a new, versatile experimental apparatus combining attosecond pulse generation in gases with state of the art surface science techniques is designed, constructed, and commissioned. Employing this novel infrastructure and the technique of the attosecond transient recorder, we investigate transport phenomena occurring after photoexcitation of electrons in tungsten and rhenium single crystals and show that attosecond streaking is a unique method for resolving extremely fast electronic phenomena in solids. It is demonstrated that electrons originating from different energy levels, i.e. from the conduction band and the 4f core level, are emitted from the crystal surface at different times. The origin of this time delay, which is below 150 attoseconds for all studied systems, is investigated by a systematic variation of several experimental parameters, in particular the photon energy of the employed attosecond pulses. These experimental studies are complemented by theoretical studies of the group velocity of highly-excited electrons based on ab initio calculations. While the streaking technique applied on single crystals can provide only information about the relative time delay between two types of photoelectrons, the absolute transport time remains inaccessible. We introduce a scheme of a reference