WorldWideScience

Sample records for high-pressure shock tube

  1. Design of a high-pressure single pulse shock tube for chemical kinetic investigations

    International Nuclear Information System (INIS)

    Tranter, R. S.; Brezinsky, K.; Fulle, D.

    2001-01-01

    A single pulse shock tube has been designed and constructed in order to achieve extremely high pressures and temperatures to facilitate gas-phase chemical kinetic experiments. Postshock pressures of greater than 1000 atmospheres have been obtained. Temperatures greater than 1400 K have been achieved and, in principle, temperatures greater than 2000 K are easily attainable. These high temperatures and pressures permit the investigation of hydrocarbon species pyrolysis and oxidation reactions. Since these reactions occur on the time scale of 0.5--2 ms the shock tube has been constructed with an adjustable length driven section that permits variation of reaction viewing times. For any given reaction viewing time, samples can be withdrawn through a specially constructed automated sampling apparatus for subsequent species analysis with gas chromatography and mass spectrometry. The details of the design and construction that have permitted the successful generation of very high-pressure shocks in this unique apparatus are described. Additional information is provided concerning the diaphragms used in the high-pressure shock tube

  2. THE EFFECTS OF AREA CONTRACTION ON SHOCK WAVE STRENGTH AND PEAK PRESSURE IN SHOCK TUBE

    Directory of Open Access Journals (Sweden)

    A. M. Mohsen

    2012-06-01

    Full Text Available This paper presents an experimental investigation into the effects of area contraction on shock wave strength and peak pressure in a shock tube. The shock tube is an important component of the short duration, high speed fluid flow test facility, available at the Universiti Tenaga Nasional (UNITEN, Malaysia. The area contraction was facilitated by positioning a bush adjacent to the primary diaphragm section, which separates the driver and driven sections. Experimental measurements were performed with and without the presence of the bush, at various diaphragm pressure ratios, which is the ratio of air pressure between the driver (high pressure and driven (low pressure sections. The instantaneous static pressure variations were measured at two locations close to the driven tube end wall, using high sensitivity pressure sensors, which allow the shock wave strength, shock wave speed and peak pressure to be analysed. The results reveal that the area contraction significantly reduces the shock wave strength, shock wave speed and peak pressure. At a diaphragm pressure ratio of 10, the shock wave strength decreases by 18%, the peak pressure decreases by 30% and the shock wave speed decreases by 8%.

  3. Shock tubes: compressions in the low pressure chamber

    International Nuclear Information System (INIS)

    Schins, H.; Giuliani, S.

    1986-01-01

    The gas shock tube used in these experiments consists of a low pressure chamber and a high pressure chamber, divided by a metal-diaphragm-to-rupture. In contrast to the shock mode of operation, where incident and reflected shocks in the low pressure chamber are studied which occur within 3.5 ms, in this work the compression mode of operation was studied, whose maxima occur (in the low pressure chamber) about 9 ms after rupture. Theoretical analysis was done with the finite element computer code EURDYN-1M, where the computation was carried out to 30 ms

  4. Free Piston Double Diaphragm Shock Tube

    OpenAIRE

    OGURA, Eiji; FUNABIKI, Katsushi; SATO, Shunichi; ABE, Takashi; 小倉, 栄二; 船曳, 勝之; 佐藤, 俊逸; 安部, 隆士

    1997-01-01

    A free piston double diaphragm shock tube was newly developed for generation of high Mach number shock wave. Its characteristics was investigated for various operation parameters; such as a strength of the diaphragm at the end of the comparession tube, an initial pressure of low pressure tube, an initial pressure of medium pressure tube and the volume of compression tube. Under the restriction of fixed pressures for the driver high pressure tube (32×10^5Pa) and the low pressure tube (40Pa) in...

  5. Experimental study of micro-shock tube flow

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ouk; Kim, Gyu Wan; Rasel, Md. Alim Iftakhar [Dept. of Mechanical Engineering, Andong National University, Andong (Korea, Republic of); Kim, Heuy Dong [Fire Research Center, Korea Institute of Civil Engineering and Building Technology, Hwasung (Korea, Republic of)

    2015-03-15

    The flow characteristics in micro shock tube are investigated experimentally. Studies were carried out using a stainless steel micro shock tube. Shock and expansion wave was measured using 8 pressure sensors. The initial pressure ratio was varied from 4.3 to 30.5, and the diameter of tube was also changed from 3 mm to 6 mm. Diaphragm conditions were varied using two types of diaphragms. The results obtained show that the shock strength in the tube becomes stronger for an increase in the initial pressure ratio and diameter of tube. For the thinner diaphragm, the highest shock strength was found among varied diaphragm condition. Shock attenuation was highly influenced by the diameter of tube.

  6. Dynamics of explosively imploded pressurized tubes

    Science.gov (United States)

    Szirti, Daniel; Loiseau, Jason; Higgins, Andrew; Tanguay, Vincent

    2011-04-01

    The detonation of an explosive layer surrounding a pressurized thin-walled tube causes the formation of a virtual piston that drives a precursor shock wave ahead of the detonation, generating very high temperatures and pressures in the gas contained within the tube. Such a device can be used as the driver for a high energy density shock tube or hypervelocity gas gun. The dynamics of the precursor shock wave were investigated for different tube sizes and initial fill pressures. Shock velocity and standoff distance were found to decrease with increasing fill pressure, mainly due to radial expansion of the tube. Adding a tamper can reduce this effect, but may increase jetting. A simple analytical model based on acoustic wave interactions was developed to calculate pump tube expansion and the resulting effect on the shock velocity and standoff distance. Results from this model agree quite well with experimental data.

  7. High-speed imaging of inhomogeneous ignition in a shock tube

    Science.gov (United States)

    Tulgestke, A. M.; Johnson, S. E.; Davidson, D. F.; Hanson, R. K.

    2018-05-01

    Homogeneous and inhomogeneous ignition of real and surrogate fuels were imaged in two Stanford shock tubes, revealing the influence of small particle fragmentation. n-Heptane, iso-octane, and Jet A were studied, each mixed in an oxidizer containing 21% oxygen and ignited at low temperatures (900-1000 K), low pressures (1-2 atm), with an equivalence ratio of 0.5. Visible images (350-1050 nm) were captured through the shock tube endwall using a high-speed camera. Particles were found to arrive near the endwalls of the shock tubes approximately 5 ms after reflection of the incident shock wave. Reflected shock wave experiments using diaphragm materials of Lexan and steel were investigated. Particles collected from the shock tubes after each experiment were found to match the material of the diaphragm burst during the experiment. Following each experiment, the shock tubes were cleaned by scrubbing with cotton cloths soaked with acetone. Particles were observed to fragment after arrival near the endwall, often leading to inhomogeneous ignition of the fuel. Distinctly more particles were observed during experiments using steel diaphragms. In experiments exhibiting inhomogeneous ignition, flames were observed to grow radially until all the fuel within the cross section of the shock tube had been consumed. The influence of diluent gas (argon or helium) was also investigated. The use of He diluent gas was found to suppress the number of particles capable of causing inhomogeneous flames. The use of He thus allowed time history studies of ignition to extend past the test times that would have been limited by inhomogeneous ignition.

  8. Methodology for the investigation of ignition near hot surfaces in a high-pressure shock tube

    Science.gov (United States)

    Niegemann, P.; Fikri, M.; Wlokas, I.; Röder, M.; Schulz, C.

    2018-05-01

    Autoignition of fuel/air mixtures is a determining process in internal combustion engines. Ignition can start either homogeneously in the gas phase after compression or in the vicinity of hot surfaces. While ignition properties of commercial fuels are conventionally described by a single quantity (octane number), it is known that some fuels have a varying propensity to the two processes. We present a new experimental concept that generates well-controlled temperature inhomogeneities in the shock-heated gases of a high-pressure shock tube. A shock-heated reactive mixture is brought into contact with a heated silicon nitride ceramic glow plug. The glow-plug temperature can be set up to 1200 K, higher than the post-reflected-shock gas temperatures (650-1050 K). High-repetition-rate chemiluminescence imaging is used to localize the onset of ignition in the vicinity of the hot surface. In experiments with ethanol, the results show that in most cases under shock-heated conditions, the ignition begins inhomogeneously in the vicinity of the glow plug and is favored because of the high wall temperature. Additionally, the interaction of geometry, external heating, and gas-dynamic effects was investigated by numerical simulations of the shock wave in a non-reactive flow.

  9. Phase velocity enhancement of linear explosive shock tubes

    Science.gov (United States)

    Loiseau, Jason; Serge, Matthew; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent

    2011-06-01

    Strong, high density shocks can be generated by sequentially detonating a hollow cylinder of explosives surrounding a thin-walled, pressurized tube. Implosion of the tube results in a pinch that travels at the detonation velocity of the explosive and acts like a piston to drive a shock into the gas ahead of it. In order to increase the maximum shock velocities that can be obtained, a phase velocity generator can be used to drag an oblique detonation wave along the gas tube at a velocity much higher than the base detonation velocity of the explosive. Since yielding and failure of the gas tube is the primary limitation of these devices, it is desirable to retain the dynamic confinement effects of a heavy-walled tamper without interfering with operation of the phase velocity generator. This was accomplished by cutting a slit into the tamper and introducing a phased detonation wave such that it asymmetrically wraps around the gas tube. This type of configuration has been previously experimentally verified to produce very strong shocks but the post-shock pressure and shock velocity limits have not been investigated. This study measured the shock trajectory for various fill pressures and phase velocities to ascertain the limiting effects of tube yield, detonation obliquity and pinch aspect ratio.

  10. Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies

    International Nuclear Information System (INIS)

    Tranter, Robert S.; Giri, Binod R.; Kiefer, John H.

    2007-01-01

    A shock tube (ST) with online, time-of-flight mass spectrometric (TOF-MS) detection has been constructed for the study of elementary reactions at high temperature. The ST and TOF-MS are coupled by a differentially pumped molecular beam sampling interface, which ensures that the samples entering the TOF-MS are not contaminated by gases drawn from the cold end wall thermal boundary layer in the ST. Additionally, the interface allows a large range of postshock pressures to be used in the shock tube while maintaining high vacuum in the TOF-MS. The apparatus and the details of the sampling system are described along with an analysis in which cooling of the sampled gases and minimization of thermal boundary layer effects are discussed. The accuracy of kinetic measurements made with the apparatus has been tested by investigating the thermal unimolecular dissociation of cyclohexene to ethylene and 1,3-butadiene, a well characterized reaction for which considerable literature data that are in good agreement exist. The experiments were performed at nominal reflected shock wave pressures of 600 and 1300 Torr, and temperatures ranging from 1260 to 1430 K. The rate coefficients obtained are compared with the earlier shock tube studies and are found to be in very good agreement. As expected no significant difference is observed in the rate constant between pressures of 600 and 1300 Torr

  11. On Poor Separation in Magnetically Driven Shock Tube

    DEFF Research Database (Denmark)

    Chang, C.T.

    1973-01-01

    Observations made at steady-state running conditions in a magnetically driven shock tube, with parallel-plate electrodes, showed that for a given discharge voltage, sufficient separation between the shock and the current-sheet occurred only at relatively high discharge pressures. As a comparison......, poor separations were also noted in conventional diaphragm-type shock tubes running at low initial pressures. It is demonstrated that the observed poor separation can be explained by a mass leakage, instead of through the wall boundary layer, but through the current-sheet itself....

  12. Chemical kinetics studies at high temperatures using shock tubes

    OpenAIRE

    Rajakumar, B; Anandraj, D; Reddy, KPJ; Arunan, E

    2002-01-01

    Shock tube is an unique facility to create temperature gradients exceeding million degrees Kelvin per second. We have established two shock tubes for measuring the kinetic reaction rates at high temperatures with two different but complementary detection techniques. The first one is a single pulse shock tube, in which the reflected shock is used to heat the molecules. The equilibrated products are analyzed by gas chromatograph and infrared spectrometer. The second one uses laser-schlieren sys...

  13. Improvement of pump tubes for gas guns and shock tube drivers

    Science.gov (United States)

    Bogdanoff, D. W.

    1990-01-01

    In a pump tube, a gas is mechanically compressed, producing very high pressures and sound speeds. The intensely heated gas produced in such a tube can be used to drive light gas guns and shock tubes. Three concepts are presented that have the potential to allow substantial reductions in the size and mass of the pump tube to be achieved. The first concept involves the use of one or more diaphragms in the pump tube, thus replacing a single compression process by multiple, successive compressions. The second concept involves a radical reduction in the length-to-diameter ratio of the pump tube and the pump tube piston. The third concept involves shock heating of the working gas by high explosives in a cyclindrical geometry reusable device. Preliminary design analyses are performed on all three concepts and they appear to be quite feasible. Reductions in the length and mass of the pump tube by factors up to about 11 and about 7, respectively, are predicted, relative to a benchmark conventional pump tube.

  14. Investigation of pressure transients in nuclear filtration systems: construction details of a large shock tube

    International Nuclear Information System (INIS)

    Smith, P.R.; Gregory, W.S.

    1980-04-01

    This report documents the construction of a 0.914-m (36-in.)-dia. shock tube on the New Mexico State University caompus. Highly variable low-grade explosions can be simulated with the shock tube. We plan to investigate the response of nuclear facility ventilation system components to low-grade explosions. Components of particular interest are high-capacity, high efficiency paticulate air (HEPA) filters. Shock tube construction details, operating principles, firing sequence, and preliminary results are reported

  15. Calibration of PCB-132 Sensors in a Shock Tube

    Science.gov (United States)

    Berridge, Dennis C.; Schneider, Steven P.

    2012-01-01

    While PCB-132 sensors have proven useful for measuring second-mode instability waves in many hypersonic wind tunnels, they are currently limited by their calibration. Until now, the factory calibration has been all that was available, which is a single-point calibration at an amplitude three orders of magnitude higher than a second-mode wave. In addition, little information has been available about the frequency response or spatial resolution of the sensors, which is important for measuring high-frequency instability waves. These shortcomings make it difficult to compare measurements at different conditions and between different sensors. If accurate quantitative measurements could be performed, comparisons of the growth and breakdown of instability waves could be made in different facilities, possibly leading to a method of predicting the amplitude at which the waves break down into turbulence, improving transition prediction. A method for calibrating the sensors is proposed using a newly-built shock tube at Purdue University. This shock tube, essentially a half-scale version of the 6-Inch shock tube at the Graduate Aerospace Laboratories at Caltech, has been designed to attain a moderate vacuum in the driven section. Low driven pressures should allow the creation of very weak, yet still relatively thin shock waves. It is expected that static pressure rises within the range of second-mode amplitudes should be possible. The shock tube has been designed to create clean, planar shock waves with a laminar boundary layer to allow for accurate calibrations. Stronger shock waves can be used to identify the frequency response of the sensors out to hundreds of kilohertz.

  16. Generation of high shock pressures by laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J.P. (GRECO ILM, Laboratoire d' Energetique et Detonique, E.N.S.M.A., 86 - Poitiers (France))

    1984-11-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 ..mu..m wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined.

  17. Generation of high shock pressures by laser pulses

    International Nuclear Information System (INIS)

    Romain, J.P.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 μm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined

  18. GENERATION OF HIGH SHOCK PRESSURES BY LASER PULSES

    OpenAIRE

    Romain , J.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 µm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of ...

  19. Shock Tube Ignition Delay Data Affected by Localized Ignition Phenomena

    KAUST Repository

    Javed, Tamour

    2016-12-29

    Shock tubes have conventionally been used for measuring high-temperature ignition delay times ~ O(1 ms). In the last decade or so, the operating regime of shock tubes has been extended to lower temperatures by accessing longer observation times. Such measurements may potentially be affected by some non-ideal phenomena. The purpose of this work is to measure long ignition delay times for fuels exhibiting negative temperature coefficient (NTC) and to assess the impact of shock tube non-idealities on ignition delay data. Ignition delay times of n-heptane and n-hexane were measured over the temperature range of 650 – 1250 K and pressures near 1.5 atm. Driver gas tailoring and long length of shock tube driver section were utilized to measure ignition delay times as long as 32 ms. Measured ignition delay times agree with chemical kinetic models at high (> 1100 K) and low (< 700 K) temperatures. In the intermediate temperature range (700 – 1100 K), however, significant discrepancies are observed between the measurements and homogeneous ignition delay simulations. It is postulated, based on experimental observations, that localized ignition kernels could affect the ignition delay times at the intermediate temperatures, which lead to compression (and heating) of the bulk gas and result in expediting the overall ignition event. The postulate is validated through simple representative computational fluid dynamic simulations of post-shock gas mixtures which exhibit ignition advancement via a hot spot. The results of the current work show that ignition delay times measured by shock tubes may be affected by non-ideal phenomena for certain conditions of temperature, pressure and fuel reactivity. Care must, therefore, be exercised in using such data for chemical kinetic model development and validation.

  20. In-tube shock wave driven by atmospheric millimeter-wave plasma

    International Nuclear Information System (INIS)

    Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Komurasaki, Kimiya

    2009-01-01

    A shock wave in a tube supported by atmospheric millimeter-wave plasma is discussed. After atmospheric breakdown, the shock wave supported by the millimeter wave propagates at a constant velocity in the tube. In this study, a driving model of the millimeter-wave shock wave is proposed. The model consists of a normal shock wave supported by a propagating heat-supply area in which an ionization front is located. The flow properties predicted by the model show good agreement with the measured properties of the shock wave generated in the tube using a 170 GHz millimeter wave beam. The shock propagation velocity U shock is identical to the propagation velocity of the ionization front U ioniz when U ioniz is supersonic. Then the pressure increment at the tube end is independent of the power density. (author)

  1. Fuel-coolant interactions in a shock-tube geometry

    International Nuclear Information System (INIS)

    Segev, A.; Henry, R.E.; Bankoff, S.G.

    1978-01-01

    Thermal interactions were studied in a shock tube configuration using different pairs of liquids. Large pressures were obtained for systems of water-Wood's metal and butanol-Wood's metal. Different types of interactions were observed, depending on the hot liquid temperature. It was found that thehydrodynamic component alone may account for the measured pressure in the lower temperature range. A combination of thermal and hydrodynamic interactions accounts for the pressures at high temperatures. Experiments with water and molten salt (LiCl + KCl) produced small scale explosions. All interactions were suppressed when driving pressure increased. (author)

  2. Shock Tube Measurements for Liquid Fuels Combustion

    National Research Council Canada - National Science Library

    Hanson, Ronald K

    2006-01-01

    ...) fundamental studies of fuel spray evaporation rates and ignition times of low-vapor pressure fuels such as JP-8, diesel fuel and normal alkane surrogates in a new aerosol shock tube using state...

  3. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  4. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis

    KAUST Repository

    Barari, Ghazal; Pryor, Owen; Koroglu, Batikan; Sarathy, Mani; Masunov, Artë m E.; Vasu, Subith S.

    2017-01-01

    Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.

  5. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis

    KAUST Repository

    Barari, Ghazal

    2017-03-10

    Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.

  6. Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field

    Directory of Open Access Journals (Sweden)

    N. V. Erkaev

    2002-01-01

    Full Text Available Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the magnetic flux tube decreases enormously with increasing magnetic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically using the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing magnetic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter being considered as a source of plasma pressure pulses.

  7. Experiments in a Combustion-Driven Shock Tube with an Area Change

    Science.gov (United States)

    Schmidt, B. E.; Bobbitt, B.; Parziale, N. J.; Shepherd, J. E.

    Shock tubes are versatile and useful tools for studying high temperature gas dynamics and the production of hypervelocity flows. High shock speeds are desirable for creating higher enthalpy, pressure, and temperature in the test gas which makes the study of thermo-chemical effects on fluid dynamics possible. Independent of construction and operational cost, free-piston drivers, such as the one used in the T5 facility at Caltech, give the best performance [3]. The high operational cost and long turnaround time of such a facility make a more economical option desirable for smaller-scale testing.

  8. Condensed matter at high shock pressures

    International Nuclear Information System (INIS)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-01-01

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N 2 , CO, SiO 2 -aerogel, H 2 O, and C 6 H 6 . The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab

  9. On the high-temperature combustion of n-butanol: Shock tube data and an improved kinetic model

    KAUST Repository

    Vasu, Subith S.

    2013-11-21

    The combustion of n-butanol has received significant interest in recent years, because of its potential use in transportation applications. Researchers have extensively studied its combustion chemistry, using both experimental and theoretical methods; however, additional work is needed under specific conditions to improve our understanding of n-butanol combustion. In this study, we report new OH time-history data during the high-temperature oxidation of n-butanol behind reflected shock waves over the temperature range of 1300-1550 K and at pressures near 2 atm. These data were obtained at Stanford University, using narrow-line-width ring dye laser absorption of the R1(5) line of OH near 306.7 nm. Measured OH time histories were modeled using comprehensive n-butanol literature mechanisms. It was found that n-butanol unimolecular decomposition rate constants commonly used in chemical kinetic models, as well as those determined from theoretical studies, are unable to predict the data presented herein. Therefore, an improved high-temperature mechanism is presented here, which incorporates recently reported rate constants measured in a single pulse shock tube [C. M. Rosado-Reyes and W. Tsang, J. Phys. Chem. A 2012, 116, 9825-9831]. Discussions are presented on the validity of the proposed mechanism against other literature shock tube experiments. © 2013 American Chemical Society.

  10. Condensed matter at high shock pressures

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-07-12

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.

  11. Shock tube measurements of the branching ratios of propene + OH -> products

    KAUST Repository

    Khaled, Fathi; Badra, Jihad Ahmad; Giri, Binod; Farooq, Aamir

    2014-01-01

    in a shock tube behind reflected shock conditions over the temperature range of 812 K – 1460 K and pressures near 1 atm. The reaction progress was followed by monitoring OH radical near 306.7 nm using UV laser absorption. The first experimental

  12. Shock tube Multiphase Experiments

    Science.gov (United States)

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  13. The effects of area contraction on the performance of UNITEN's shock tube: Numerical study

    International Nuclear Information System (INIS)

    Mohsen, A M; Yusoff, M Z; Al-Falahi, A

    2013-01-01

    Numerical study into the effects of area contraction on shock tube performance has been reported in this paper. The shock tube is an important component of high speed fluid flow test facility was designed and built at the Universiti Tenaga Nasional (UNITEN). In the above mentioned facility, a small area contraction, in form of a bush, was placed adjacent to the diaphragm section to facilitate the diaphragm rupturing process when the pressure ratio across the diaphragm increases to a certain value. To investigate the effects of the small area contraction on facility performance, numerical simulations were conducted at different operating conditions (diaphragm pressure ratios P 4 /P 1 of 10, 15, and 20). A two-dimensional time-accurate Navier-Stokes CFD solver was used to simulate the transient flow in the facility with and without area contraction. The numerical results show that the facility performance is influenced by area contraction in the diaphragm section. For instance, when operating the facility with area contraction using diaphragm pressure ratio (P 4 /P 1 ) of 10, the shock wave strength and shock wave speed decrease by 18% and 8% respectively.

  14. Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Wook; Kim, Tae Ho; Kim, Heuy Dong [Andong Nat’l Univ., Andong (Korea, Republic of)

    2017-07-15

    The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

  15. Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes

    Science.gov (United States)

    Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.

    2018-01-01

    Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.

  16. The shock tube as wave reactor for kinetic studies and material systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, K.A. [Indian Institute of Technology, Chennai (India). Department of Mechanical Engineering; Roth, P. [Gerhard Mercator Universitat, Duisberg (Germany). Institut fur Verbrennung und Gasdynamik

    2002-07-01

    Several important reviews of shock tube kinetics have appeared earlier, prominent among them being 'Shock Tube Technique in Chemical Kinetics' by Belford and Strehlow (Ann Rev Phys Chem 20 (1969) 247), 'Chemical Reaction of Shock Waves' by Wagner (Proceedings of the Eighth International Shock Tube Symposium (1971) 4/1), 'Shock Tube and Shock Wave Research' by Bauer and Lewis (Proceedings of the 11th International Symposium on Shock Tubes and Waves (1977) 269), 'Shock Waves in Chemistry' edited by Assa Lifshitz (Shock Waves in Chemistry, 1981) and 'Shock Tube Techniques in Chemical Kinetics' by Wing Tsang and Assa Lifshitz (Annu Rev Phys Chem 41 (1990) 559). A critical analysis of the different shock tube techniques, their limitations and suggestions to improve the accuracy of the data produced are contained in these reviews. The purpose of this article is to present the current status of kinetic research with emphasis on the diagnostic techniques. Selected studies on homogeneous and dispersed systems are presented to bring out the versatility of the shock tube technique. The use of the shock tube as high temperature wave reactor for gas phase material synthesis is also highlighted. (author)

  17. Frictional pressure drop of high pressure steam-water two-phase flow in internally helical ribbed tubes

    International Nuclear Information System (INIS)

    Tingkuan, C.; Xuanzheng, C.

    1987-01-01

    It is well known that the internally helical ribbed tubes are effective in suppressing the dry-out in boiling tubes at high pressures, so they are widely used as furnace water wall tubes in modern large steam power boilers. Design of the boilers requires the data on frictional pressure drop characteristics of the ribbed tubes, but they are not sufficient now. This paper describes the experimental results on the adiabatic frictional pressure drop in both horizontal ribbed tubes with measured mean inside diameter of 11.69 mm and 35.42 mm at high pressure from 10 to 21 MPa, mass flow rate from 350 to 3800 kg/m/sup 2/s and steam quality from 0 to 1 in our high pressure electrically heated water loop. Simultaneously, both smooth tubes under the same conditions for comparison. Based on the tests the correlation for determining the frictional pressure drop of internally ribbed tubes are proposed

  18. Shock Tube Ignition Delay Data Affected by Localized Ignition Phenomena

    KAUST Repository

    Javed, Tamour; Badra, J.; Jaasim, Mohammed; Es-sebbar, Et-touhami; Labastida, M.F.; Chung, Suk-Ho; Im, Hong G.; Farooq, Aamir

    2016-01-01

    Shock tubes have conventionally been used for measuring high-temperature ignition delay times ~ O(1 ms). In the last decade or so, the operating regime of shock tubes has been extended to lower temperatures by accessing longer observation times

  19. Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture

    International Nuclear Information System (INIS)

    Janardhanraj, S.; Jagadeesh, G.

    2016-01-01

    A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.

  20. Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanraj, S.; Jagadeesh, G., E-mail: jaggie@aero.iisc.ernet.in [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2016-08-15

    A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.

  1. Acoustic waves in shock tunnels and expansion tubes

    Science.gov (United States)

    Paull, A.; Stalker, R. J.

    1992-01-01

    It is shown that disturbances in shock and expansion tubes can be modelled as lateral acoustic waves. The ratio of sound speed across the driver-test gas interface is shown to govern the quantity of noise in the test gas. Frequency 'focusing' which is fundamental to centered unsteady expansions is discussed and displayed in centerline pitot pressure measurements.

  2. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.; Badra, Jihad; Javed, Tamour; Alabbad, Mohammed; Bokhumseen, Nehal; Gaillard, Patrick; Babiker, Hassan; Farooq, Aamir; Sarathy, Mani

    2015-01-01

    work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range

  3. Some techniques and results from high-pressure shock-wave experiments utilizing the radiation from shocked transparent materials

    International Nuclear Information System (INIS)

    McQueen, R.G.; Fritz, J.N.

    1981-01-01

    It has been known for many years that some transparent materials emit radiation when shocked to high pressures. This property was used to determine the temperature of shocked fused and crystal quartz, which in turn allowed the thermal expansion of SiO 2 at high pressure and also the specific heat to be calculated. Once the radiative energy as a function of pressure is known for one material it is shown how this can be used to determine the temperature of other transparent materials. By the nature of the experiments very accurate shock velocities can be measured and hence high quality equation of state data obtained. Some techniques and results are presented on measuring sound velocities from symmetrical impact of nontransparent materials using radiation emitting transparent analyzers, and on nonsymmetrical impact experiments on transparent materials. Because of special requirements in the later experiments, techniques were developed that lead to very high-precision shock-wave data. Preliminary results, using these techniques are presented for making estimates of the melting region and the yield strength of some metals under strong shock conditions

  4. Generation of high pressure shocks relevant to the shock-ignition intensity regime

    Czech Academy of Sciences Publication Activity Database

    Batani, D.; Antonelli, L.; Atzeni, S.; Badziak, J.; Baffigi, F.; Chodukowski, T.; Consoli, F.; Cristoforetti, G.; De Angelis, R.; Dudžák, Roman; Folpini, G.; Giuffrida, L.; Gizzi, L.A.; Kalinowska, Z.; Koester, P.; Krouský, Eduard; Krůs, Miroslav; Labate, L.; Levato, Tadzio; Maheut, Y.; Malka, G.; Margarone, Daniele; Marocchino, A.; Nejdl, Jaroslav; Nicolai, Ph.; O’Dell, T.; Pisarczyk, T.; Renner, Oldřich; Rhee, Y.-J.; Ribeyre, X.; Richetta, M.; Rosinski, M.; Sawicka, Magdalena; Schiavi, A.; Skála, Jiří; Šmíd, Michal; Spindloe, Ch.; Ullschmied, Jiří; Velyhan, Andriy; Vinci, T.

    2014-01-01

    Roč. 21, č. 3 (2014), 032710-032710 ISSN 1070-664X R&D Projects: GA MŠk(CZ) LC528; GA MŠk LM2010014 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : High-pressure shocks * shock ignition * inertial confinement fusion * PALS laser Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 2.142, year: 2014 http://dx.doi.org/10.1063/1.4869715

  5. Anisotropic deformation of Zr–2.5Nb pressure tube material at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R.W.L., E-mail: fongr@aecl.ca [Fuel and Fuel Channel Safety Branch, Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario (Canada)

    2013-09-15

    Zr–2.5Nb alloy is used for the pressure tubes in CANDU® reactor fuel channels. In reactor, the pressure tube normally operates at 300 °C and experiences a primary coolant fluid internal pressure of approximately 10 MPa. Manufacturing and processing procedures generate an anisotropic state in the pressure tube which makes the tube stronger in the hoop (transverse) direction than in the axial (longitudinal) direction. This anisotropy condition is present for temperatures less than 500 °C. During postulated accident conditions where the material temperature could reach 1000 °C, it might be assumed that the high temperature and subsequent phase change would reduce the inherent anisotropy, and thus affect the deformation behaviour (ballooning) of the pressure tube. From constant-load, rapid-temperature-ramp, uniaxial deformation tests, the deformation rate in the longitudinal direction of the tube behaves differently than the deformation rate in the transverse direction of the tube. This anisotropic mechanical behaviour appears to persist at temperatures up to 1000 °C. This paper presents the results of high-temperature deformation tests using longitudinal and transverse specimens taken from as-received Zr–2.5Nb pressure tubes. It is shown that the anisotropic deformation behaviour observed at high temperatures is largely due to the stable crystallographic texture of the α-Zr phase constituent in the material that was previously observed by neutron diffraction measurements during heating at temperatures up to 1050 °C. The deformation behaviour is also influenced by the phase transformation occurring at high temperatures during heating. The effects of texture and phase transformation on the anisotropic deformation of as-received Zr–2.5Nb pressure tube material are discussed in the context of the tube ballooning behaviour. Because of the high temperatures in postulated accident scenarios, any irradiation damage will be annealed from the pressure tube material

  6. Miniature shock tube for laser driven shocks.

    Science.gov (United States)

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  7. New light sources on the basis of electromagnetic shock T and H tubes

    International Nuclear Information System (INIS)

    Basov, Yu. G.; Sereda, N.I.; Skvortsov, B.V.; Sysun, V.V.

    Experimental investigation of plasma light emission was carried out on electromagnetic shock tubes filled with xenon to initial pressure of 10-100 mm Hg. T - and H- discharge devices were connected to the low-inductive discharge circuit (C=12 μF, L=0.43 μH, U=10 - 30 kV). The discharge growth was observed with a high-speed photorecorder. In the course of the investigation lighting parameters of the devices were measured as a function of xenon initial pressure and discharge energy

  8. Shock Tube as an Impulsive Application Device

    Directory of Open Access Journals (Sweden)

    Soumya Ranjan Nanda

    2017-01-01

    Full Text Available Current investigations solely focus on application of an impulse facility in diverse area of high-speed aerodynamics and structural mechanics. Shock tube, the fundamental impulse facility, is specially designed and calibrated for present objectives. Force measurement experiments are performed on a hemispherical test model integrated with the stress wave force balance. Similar test model is considered for heat transfer measurements using coaxial thermocouple. Force and heat transfer experiments demonstrated that the strain gauge and thermocouple have lag time of 11.5 and 9 microseconds, respectively. Response time of these sensors in measuring the peak load is also measured successfully using shock tube facility. As an outcome, these sensors are found to be suitable for impulse testing. Lastly, the response of aluminum plates subjected to impulsive loading is analyzed by measuring the in-plane strain produced during deformation. Thus, possibility of forming tests in shock is also confirmed.

  9. Tube Plugging Criteria for the High-pressure Heaters of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungnam; Cho, Nam-Cheoul; Lee, Kuk-hee [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, a method to establish the tube plugging criteria of BOP heat exchangers is introduced and the tube plugging criteria for the high pressure heaters of a nuclear power plant. This method relies on the similar plugging criteria used in the steam generator tubes. Power generation field urges nuclear power plants to reduce operating and maintaining costs to remain competitive. To reduce the cost by means of preventing the lowering thermal efficiency, the inspection of balance-of-plant heat exchanger, which was treated as not important work, becomes important. The tubing materials and tube thickness of heat exchangers in nuclear power plants are selected to withstand system temperature, pressure, and corrosion. But tubes have experienced leaks and failures and plugged based upon eddy current testing (ET) results. There are some problems for plugging the heat exchanger tubes since the criterion and its basis are not clearly described. For this reason, the criteria for the tube wall thickness are addressed in order to operate the heat exchangers in nuclear power plant without trouble during the cycle. The feed water heater is a kind of heat exchanger which raises the temperature of water supplied from the condenser. The heat source of high-pressure heaters is the extraction steam from the high-pressure turbine and moisture separator re-heater. If the tube wall of the heater is broken, the feed water flowing inside the tube intrudes to shell side. This forces the turbine to be stop in order to protect it. There are many codes and standards to be referred for calculating the minimum thickness of the heat exchanger tube in the designing stage. However, the codes and standards related to show the tube plugging criteria may not exist currently. A method to establish the tube plugging criteria of BOP heat exchangers is introduced and the tube plugging criteria for the high pressure heaters of Ulchin NPP No. 3 and 4. This method relies on the similar plugging

  10. Pressure tube type research reactor

    International Nuclear Information System (INIS)

    Ueda, Hiroshi.

    1976-01-01

    Object: To prevent excessive heat generation due to radiation of a pressure tube vessel. Structure: A pressure tube encasing therein a core comprises a dual construction comprising inner and outer tubes coaxially disposed. High speed cooling water is passed through the inner tube for cooling. In addition, in the outer periphery of said outer tube there is provided a forced cooling tube disposed coaxially thereto, into which cooling fluid, for example, such as moderator or reflector is forcibly passed. This forced cooling tube has its outer periphery surrounded by the vessel into which moderator or reflector is fed. By the provision of the dual construction of the pressure tube and the forced cooling tube, the vessel may be prevented from heat generation. (Ikeda, J.)

  11. Fuel-coolant interaction in a shock tube with initially-established film boiling

    International Nuclear Information System (INIS)

    Sharon, A.; Bankoff, S.G.

    1979-01-01

    A new mode of thermal interaction has been employed, in which liquid metal is melted in a crucible within a shock tube; the coolant level is raised to overflow the crucible and establish subcooled film boiling with known bulk metal temperature; and a pressure shock is then initiated. With water and lead-tin alloy an initial splash of metal may be obtained after the vapor film has collapsed, due primarily to thermal interaction, followed by a successive cycle of bubble growth and collapse. To obtain large interactions, the interfacial contact temperature must exceed the spontaneous nucleation temperature of the coolant. Other cutoff behavior is observed with respect to the initial system pressure and temperatures and with the shock pressure and rise time. Experiments with butanol and lead-tin alloy show only relatively mild interactions. Qualitative explanations are proposed for the different behaviors of the two liquids

  12. Numerical simulations of a nonequilibrium argon plasma in a shock-tube experiment

    Science.gov (United States)

    Cambier, Jean-Luc

    1991-01-01

    A code developed for the numerical modeling of nonequilibrium radiative plasmas is applied to the simulation of the propagation of strong ionizing shock waves in argon gas. The simulations attempt to reproduce a series of shock-tube experiments which will be used to validate the numerical models and procedures. The ability to perform unsteady simulations makes it possible to observe some fluctuations in the shock propagation, coupled to the kinetic processes. A coupling mechanism by pressure waves, reminiscent of oscillation mechanisms observed in detonation waves, is described. The effect of upper atomic levels is also briefly discussed.

  13. The rates of production of CO and CO2 from the combustion of pulverized coal particles in a shock tube

    NARCIS (Netherlands)

    Commissaris, F.A.C.M.; Banine, V.Y.; Roekaerts, D.J.E.M.; Veefkind, A.

    1998-01-01

    This work presents some results of experiments on coal combustion in a shock tube, as well as a time-dependent model of the boundary layer of a single, burning char particle under similar conditions. The partial pressure of O2 in a shock tube was varied between 0 and 10 bar, with gas temperatures

  14. A composite model for a class of electric-discharge shock tubes

    Science.gov (United States)

    Elkins, R. T.; Baganoff, D.

    1973-01-01

    A gasdynamic model is presented and analyzed for a class of shock tubes that utilize both Joule heating and electromagnetic forces to produce high-speed shock waves. The model consists of several stages of acceleration in which acceleration to sonic conditions is achieved principally through heating, and further acceleration of the supersonic flow is obtained principally through use of electromagnetic forces. The utility of the model results from the fact that it predicts a quasi-steady flow process, mathematical analysis is straightforward, and it is even possible to remove one or more component stages and still have the model related to a possible shock-tube flow. Initial experiments have been performed where the electrical discharge configuration and current level were such that Joule heating was the dominant form of energy addition present. These experiments indicate that the predictions of the model dealing with heat addition correspond quite closely to reality. The experimental data together with the theory show that heat addition to the flowing driver gas after diaphragm rupture (approach used in the model) is much more effective in producing high-speed shock waves than heating the gas in the driver before diaphragm rupture, as in the case of the arc-driven shock tube.

  15. The computation of pressure waves in shock tubes by a finite difference procedure

    International Nuclear Information System (INIS)

    Barbaro, M.

    1988-09-01

    A finite difference solution of one-dimensional unsteady isentropic compressible flow equations is presented. The computer program has been tested by solving some cases of the Riemann shock tube problem. Predictions are in good agreement with those presented by other authors. Some inaccuracies may be attributed to the wave smearing consequent of the finite-difference treatment. (author)

  16. A strong shock tube problem calculated by different numerical schemes

    Science.gov (United States)

    Lee, Wen Ho; Clancy, Sean P.

    1996-05-01

    Calculated results are presented for the solution of a very strong shock tube problem on a coarse mesh using (1) MESA code, (2) UNICORN code, (3) Schulz hydro, and (4) modified TVD scheme. The first two codes are written in Eulerian coordinates, whereas methods (3) and (4) are in Lagrangian coordinates. MESA and UNICORN codes are both of second order and use different monotonic advection method to avoid the Gibbs phenomena. Code (3) uses typical artificial viscosity for inviscid flow, whereas code (4) uses a modified TVD scheme. The test problem is a strong shock tube problem with a pressure ratio of 109 and density ratio of 103 in an ideal gas. For no mass-matching case, Schulz hydro is better than TVD scheme. In the case of mass-matching, there is no difference between them. MESA and UNICORN results are nearly the same. However, the computed positions such as the contact discontinuity (i.e. the material interface) are not as accurate as the Lagrangian methods.

  17. Annular gap measurement between pressure tube and calandria tube by eddy current technique

    International Nuclear Information System (INIS)

    Bhole, V.M.; Rastogi, P.K.; Kulkarni, P.G.

    1992-01-01

    In pressurised heavy water reactor (PHWR) major distinguishing feature is that there are number of identical fuel channels in the reactor core. Each channel consists of pressure tube of Zr-2.5 Nb or zircaloy-2 through which high temperature, high pressure primary coolant is passing. The pressure tube contains fuel. Surrounding the pressure tube there is low pressure, cool heavy water (moderator). The moderator is thermally separated from coolant by the tube which is nominally concentric with pressure tube called calandria tube. There are four garter springs in the annular gap between pressure tube and calandria tube. During the life of the reactor there are number of factors by which the pressure tube sags, most important factors are irradiation creep, thermal creep, fuel load etc. Because of the sag of pressure tube it can touch the calandria tube resulting in formation of cold spot. This leads to hydrogen concentration at that spot by which the material at that place becomes brittle and can lead to catastrophic failure of pressure tube. There is no useful access for measurement of annular gap either through the gas annular space or from exterior of calandria tube. So the annular gap was measured from inside surface of pressure tube which is accessible. Eddy current technique was used for finding the gap. The paper describe the details of split coil design of bobbin probe, selection of operating point on normalised impedance diagram by choosing frequency. Experimental results on full scale mock up, and actual gap measurement in reactor channel, are also given. (author). 7 figs

  18. Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

    Directory of Open Access Journals (Sweden)

    Julia Patzsch

    2017-05-01

    Full Text Available Mesoscopic, nanoporous carbon tubes were synthesized by a combination of the Stoeber process and the use of electrospun macrosized polystyrene fibres as structure directing templates. The obtained carbon tubes have a macroporous nature characterized by a thick wall structure and a high specific surface area of approximately 500 m²/g resulting from their micro- and mesopores. The micropore regime of the carbon tubes is composed of turbostratic graphitic areas observed in the microstructure. The employed templating process was also used for the synthesis of silicon carbide tubes. The characterization of all porous materials was performed by nitrogen adsorption at 77 K, Raman spectroscopy, infrared spectroscopy, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM as well as transmission electron microscopy (TEM. The adsorption of carbon dioxide on the carbon tubes at 25 °C at pressures of up to 30 bar was studied using a volumetric method. At 26 bar, an adsorption capacity of 4.9 mmol/g was observed. This is comparable to the adsorption capacity of molecular sieves and vertically aligned carbon nanotubes. The high pressure adsorption process of CO2 was found to irreversibly change the microporous structure of the carbon tubes.

  19. High-temperature shock tube and modeling studies on the reactions of methanol with D-atoms and CH3-radicals.

    Science.gov (United States)

    Peukert, S L; Michael, J V

    2013-10-10

    The shock tube technique has been used to study the hydrogen abstraction reactions D + CH3OH → CH2O + H + HD (A) and CH3 + CH3OH → CH2O + H + CH4 (B). For reaction A, the experiments span a T-range of 1016 K ≤ T ≤ 1325 K, at pressures 0.25 bar ≤ P ≤ 0.46 bar. The experiments on reaction B, CH3 + CH3OH, cover a T-range of 1138 K ≤ T ≤ 1270 K, at pressures around 0.40 bar. Reflected shock tube experiments, monitoring the depletion of D-atoms by applying D-atom atomic resonance absorption spectrometry (ARAS), were performed on reaction A using gas mixtures of C2D5I and CH3OH in Kr bath gas. C2D5I was used as precursor for D-atoms. For reaction B, reflected shock tube experiments monitoring H-atom formation with H-ARAS, were carried out using gas mixtures of diacetyl ((CH3CO)2) and CH3OH in Kr bath gas. (CH3CO)2 was used as the source of CH3-radicals. Detailed reaction models were assembled to fit the D-atom and H-atom time profiles in order to obtain experimental rate constants for reactions A and B. Total rate constants from the present experiments on D + CH3OH and CH3 + CH3OH can be represented by the Arrhenius equations kA(T) = 1.51 × 10(-10) exp(-3843 K/T) cm(3) molecules(-1) s(-1) (1016 K ≤ T ≤ 1325 K) and kB(T) = 9.62 × 10(-12) exp(-7477 K/T) cm(3) molecules(-1) s(-1) (1138 K ≤ T ≤ 1270 K). The experimentally obtained rate constants were compared with available rate data from the literature. The results from quantum chemical studies on reaction A were found to be in good agreement with the present results. The present work represents the first direct experimental study on these bimolecular reactions at combustion temperatures and is important to the high-temperature oxidation of CH3OH.

  20. Pressure tube type reactors

    International Nuclear Information System (INIS)

    Komada, Masaoki.

    1981-01-01

    Purpose: To increase the safety of pressure tube type reactors by providing an additional ECCS system to an ordinary ECCS system and injecting heavy water in the reactor core tank into pressure tubes upon fractures of the tubes. Constitution: Upon fractures of pressure tubes, reduction of the pressure in the fractured tubes to the atmospheric pressure in confirmed and the electromagnetic valve is operated to completely isolate the pressure tubes from the fractured portion. Then, the heavy water in the reactor core tank flows into and spontaneously recycles through the pressure tubes to cool the fuels in the tube to prevent their meltdown. By additionally providing the separate ECCS system to the ordinary ECCS system, fuels can be cooled upon loss of coolant accidents to improve the safety of the reactors. (Moriyama, K.)

  1. N Reactor pressure tube 1350 postirradiation examination

    International Nuclear Information System (INIS)

    Cook, D.J.

    1977-01-01

    The N Reactor pressure tubes were fabricated from Zircaloy-2 primarily due to the excellent corrosion resistance, low neutron absorption, and high strength properties of this alloy. Irradiation damage mechanisms increase the strength and decrease the ductility of the Zircaloy-2. Irradiation data available at the time the tubes were installed indicated that fast neutron irradiation damage mechanisms would not decrease the ductility to unacceptable levels over the estimated plant life of 25 to 30 years. However, because the tubes are a primary coolant system component and only limited data are available on irradiation effects at high fluences, a Postirradiation Examination (PIE) program was developed to assure that service factors do not compromise pressure tube integrity essential to reactor safety. The PIE program requires that a pressure tube be periodically removed from the reactor for destructive testing. The N Reactor Technical Specifications specify that the frequency of pressure tube removal and examination be based upon the previous PIE test results. Four pressure tubes were examined before tube 1350, and the test results were summarized in individual reports. PIE results on tube 1350 were summarized along with the test results on the previous four tubes in a previous report. The purpose of this report is to present in detail the results on PIE of pressure tube 1350, and, in particular, document the technique by which the fracture toughness of the pressure tube was determined

  2. Pressure tube reactor

    International Nuclear Information System (INIS)

    Susuki, Akira; Murata, Shigeto; Minato, Akihiko.

    1993-01-01

    In a pressure tube reactor, a reactor core is constituted by arranging more than two units of a minimum unit combination of a moderator sealing pipe containing a calandria tube having moderators there between and a calandria tube and moderators. The upper header and a lower header of the calandria tank containing moderators are communicated by way of the moderator sealing tube. Further, a gravitationally dropping mechanism is disposed for injecting neutron absorbing liquid to a calandria gas injection portion. A ratio between a moderator volume and a fuel volume is defined as a function of the inner diameter of the moderator sealing tube, the outer diameter of the calandria tube and the diameter of fuel pellets, and has no influence to intervals of a pressure tube lattice. The interval of the pressure tube lattice is enlarged without increasing the size of the pressure tube, to improve production efficiency of the reactor and set a coolant void coefficient more negative, thereby enabling to improve self controllability and safety. Further, the reactor scram can be conducted by injecting neutron absorbing liquid. (N.H.)

  3. Pressure tube reactor

    International Nuclear Information System (INIS)

    Seki, Osamu; Kumasaka, Katsuyuki.

    1988-01-01

    Purpose: To remove the heat of reactor core using a great amount of moderators at the periphery of the reactor core as coolants. Constitution: Heat of a reactor core is removed by disposing a spontaneous recycling cooling device for cooling moderators in a moderator tank, without using additional power driven equipments. That is, a spontaneous recycling cooling device for cooling the moderators in the moderator tank is disposed. Further, the gap between the inner wall of a pressure tube guide pipe disposed through the vertical direction of a moderator tank and the outer wall of a pressure tube inserted through the guide pipe is made smaller than the rupture distortion caused by the thermal expansion upon overheating of the pressure tube and greater than the minimum gap required for heat shiels between the pressure tube and the pressure tube guide pipe during usual operation. In this way, even if such an accident as can not using a coolant cooling device comprising power driven equipment should occur in the pressure tube type reactor, the rise in the temperature of the reactor core can be retarded to obtain a margin with time. (Kamimura, M.)

  4. High pressure multiple shock response of aluminum

    International Nuclear Information System (INIS)

    Lawrence, R.J.; Asay, J.R.

    1977-01-01

    It is well known that both dynamic yield strength and rate-dependent material response exert direct influence on the development of surface and interface instabilities under conditions of strong shock loading. A detailed understanding of these phenomena is therefore an important aspect of the analysis of dynamic inertial confinement techniques which are being used in such applications as the generation of controlled thermonuclear fusion. In these types of applications the surfaces and interfaces under consideration can be subjected to cyclic loading characterized by shock pressures on the order of 100 GPa or more. It thus becomes important to understand how rate effects and material strength differ from the values observed in the low pressure regime where they are usually measured, as well as how they are altered by the loading history

  5. A strong shock tube problem calculated by different numerical schemes

    International Nuclear Information System (INIS)

    Lee, W.H.; Clancy, S.P.

    1996-01-01

    Calculated results are presented for the solution of a very strong shock tube problem on a coarse mesh using (1) MESA code, (2) UNICORN code, (3) Schulz hydro, and (4) modified TVD scheme. The first two codes are written in Eulerian coordinates, whereas methods (3) and (4) are in Lagrangian coordinates. MESA and UNICORN codes are both of second order and use different monotonic advection method to avoid the Gibbs phenomena. Code (3) uses typical artificial viscosity for inviscid flow, whereas code (4) uses a modified TVD scheme. The test problem is a strong shock tube problem with a pressure ratio of 10 9 and density ratio of 10 3 in an ideal gas. For no mass-matching case, Schulz hydro is better than TVD scheme. In the case of mass-matching, there is no difference between them. MESA and UNICORN results are nearly the same. However, the computed positions such as the contact discontinuity (i.e. the material interface) are not as accurate as the Lagrangian methods. copyright 1996 American Institute of Physics

  6. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    International Nuclear Information System (INIS)

    Bershader, D.; Hanson, R.

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles

  7. Experimental validation of GASDECOM for High Heating Value Processed Gas mixtures (58 MJ/m3) by specialized shock tube

    International Nuclear Information System (INIS)

    Botros, K.K.; Geerligs, J.; Carlson, L.; Reed, M.

    2013-01-01

    One of the fundamental requirements of the design of pipelines is the control of propagating ductile fracture, in which the Battelle two-curve method still forms the basis of the analytical framework used throughout the industry. The GASDECOM (GAS DECOMpression) tool is typically used for calculating decompression wave speed, which is one of these two curves. It uses the BWRS (Benedict–Webb–Rubin–Starling) equation of state to idealize the decompression process as isentropic and one-dimensional. While this equation of state was developed and validated against a quite restricted range of gas compositions, GASDECOM continues to perform relatively well for compositions slightly outside the original range of BWRS. The present research was focused on examining the performance of GASDECOM for mixture compositions up to a High (gross) Heating Value (HHV) of 58 MJ/m 3 . Four tests were conducted using a specialized high pressure shock tube (42 m long, I.D. = 38.1 mm) to experimentally determine the decompression wave speeds and compare them to the predictions by GASDECOM. Two tests were conducted on a gas mixture of HHV = 52 MJ/m 3 and the other two on even richer gas mixture of HHV = 58 MJ/m 3 , all were from nominal initial pressures of 15 MPa and initial temperatures of 40 °C. The results from these tests show that decompression wave speeds are consistent with predictions of GASDECOM for gases of HHV typical of the previously validated range of BWRS. Predictions of the saturation pressure represented by the plateau pressure in the decompression wave speed curve were also in good agreement with measurements despite the fact that they occurred close to the critical point of the respective mixture compositions. -- Highlights: • Performance of GASDECOM for mixture up to HHV of 58 MJ/m3 was examined. • Experiments were conducted using a specialized high pressure shock. • Results show that decompression speeds are consistent with predictions of GASDECOM.

  8. Two and dimensional heat analysis inside a high pressure electrical discharge tube

    International Nuclear Information System (INIS)

    Aghanajafi, C.; Dehghani, A. R.; Fallah Abbasi, M.

    2005-01-01

    This article represents the heat transfer analysis for a horizontal high pressure mercury steam tube. To get a more realistic numerical simulation, heat radiation at different wavelength width bands, has been used besides convection and conduction heat transfer. The analysis for different gases with different pressure in two and three dimensional cases has been investigated and the results compared with empirical and semi empirical values. The effect of the environmental temperature on the arc tube temperature is also studied

  9. Sensitive Mid-IR Laser Sensor Development and Mass Spectrometric Measurements in Shock Tube and Flames

    KAUST Repository

    Alquaity, Awad

    2016-11-01

    With global emission regulations becoming stringent, development of new combustion technologies that meet future emission regulations is essential. In this vein, this dissertation presents the application of sensitive diagnostic tools to validate and improve chemical kinetic mechanisms that play a fundamental role in the design of new combustion technologies. First, a novel high sensitivity laser-based sensor with a wide frequency tuning range (900 – 1000 cm-1) was developed utilizing pulsed cavity ringdown spectroscopy (CRDS) technique. The novel laser-based sensor was illustrated by measuring trace amounts of multiple combustion intermediates, namely ethylene, propene, allene, and 1-butene in a static cell at ambient conditions. Subsequently, pulsed CRDS technique was utilized to develop an ultra-fast, high sensitivity diagnostic to monitor trace concentrations of ethylene in shock tube pyrolysis experiments. This diagnostic represented the first ever successful application of CRDS technique to transient species measurements in a shock tube. The high sensitivity and fast time response (10μs) diagnostic may be utilized for measuring other key neutrals and radicals which are crucial in the oxidation chemistry of practical fuels. Secondly, a quadrupole mass spectrometer (QMS) was employed to measure relative cation mole fractions in atmospheric and low-pressure (30 Torr) flames of methane/oxygen diluted in argon. Lean, stoichiometric and rich flames were 4 examined to evaluate the dependence of ion chemistry on flame stoichiometry. Spatial distribution of cations was compared with predictions of an existing ion chemistry model. Based on the extensive measurements carried out in this work, modifications were suggested to improve the ion chemistry model to enhance the fidelity of such mechanisms. In-depth understanding of flame ion chemistry is vital to model the interaction of flames with electric fields and thereby pave the way to enable active combustion control

  10. A study on impulsive sound attenuation for a high-pressure blast flow field

    International Nuclear Information System (INIS)

    Kang, Kuk Jeong; Ko, Sung Ho; Lee, Dong Soo

    2008-01-01

    The present work addresses a numerical study on impulsive sound attenuation for a complex high-pressure blast flow field; these characteristics are generated by a supersonic propellant gas flow through a shock tube into an ambient environment. A numerical solver for analyzing the high pressure blast flow field is developed in this study. From numerical simulations, wave dynamic processes (which include a first precursor shock wave, a second main propellant shock wave, and interactions in the muzzle blasts) are simulated and discussed. The pressure variation of the blast flow field is analyzed to evaluate the effect of a silencer. A live firing test is also performed to evaluate four different silencers. The results of this study will be helpful in understanding blast wave and in designing silencers

  11. A study on impulsive sound attenuation for a high-pressure blast flow field

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kuk Jeong [Agency for Defence Development, Daejeon (Korea, Republic of); Ko, Sung Ho; Lee, Dong Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2008-01-15

    The present work addresses a numerical study on impulsive sound attenuation for a complex high-pressure blast flow field; these characteristics are generated by a supersonic propellant gas flow through a shock tube into an ambient environment. A numerical solver for analyzing the high pressure blast flow field is developed in this study. From numerical simulations, wave dynamic processes (which include a first precursor shock wave, a second main propellant shock wave, and interactions in the muzzle blasts) are simulated and discussed. The pressure variation of the blast flow field is analyzed to evaluate the effect of a silencer. A live firing test is also performed to evaluate four different silencers. The results of this study will be helpful in understanding blast wave and in designing silencers

  12. Dynamic pressure sensitivity determination with Mach number method

    Science.gov (United States)

    Sarraf, Christophe; Damion, Jean-Pierre

    2018-05-01

    sensor thereby calibrated can be used in a comparison measurement process. At high frequencies the most important component of the uncertainty in this method is due to actual shock tube complex effects not already functionalized nowadays or thought not to be functionalized in this kind of direct method. After a brief review of both methods and a brief review of the determination of the transfer function of pressure transducers, and the budget of associated uncertainty for the dynamic calibration of a pressure transducer in gas, this paper presents a comparison of the results obtained with the ‘ideal shock tube’ and the ‘collective standard’ methods.

  13. Physics of IED blast shock tube simulations for mTBI research

    NARCIS (Netherlands)

    Mediavilla Varas, J.; Philippens, M.M.G.M.; Meijer, S.R.; Berg, A.C. van den; Sibma, P.C.; Bree, J.L.M.J. van; Vries, D.V.W.M. de

    2011-01-01

    Shock tube experiments and simulations are conducted with a spherical gelatin filled skull- brain surrogate, in order to study the mechanisms leading to blast induced mild traumatic brain injury. A shock tube including sensor system is optimized to simulate realistic impro-vised explosive device

  14. The influence of peak shock stress on the high pressure phase transformation in Zr

    International Nuclear Information System (INIS)

    Cerreta, E K; Addessio, F L; Bronkhorst, C A; Brown, D W; Escobedo, J P; Fensin, S J; Gray, G T III; Lookman, T; Rigg, P A; Trujillo, C P

    2014-01-01

    At high pressures zirconium is known to undergo a phase transformation from the hexagonal close packed (HCP) alpha phase to the simple hexagonal omega phase. Under conditions of shock loading, a significant volume fraction of high-pressure omega phase is retained upon release. However, the hysteresis in this transformation is not well represented by equilibrium phase diagrams and the multi-phase plasticity under shock conditions is not well understood. For these reasons, the influence of peak shock stress and temperature on the retention of omega phase in Zr has been explored. VISAR and PDV measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to quantify the volume fraction of retained omega phase and qualitatively understand the kinetics of this transformation. In turn, soft recovered specimens with varying volume fractions of retained omega phase have been utilized to understand the contribution of omega and alpha phases to strength in shock loaded Zr.

  15. Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube

    Science.gov (United States)

    Zhou, Guangzhao; Xu, Kun; Liu, Feng

    2018-01-01

    The flow in a shock tube is extremely complex with dynamic multi-scale structures of sharp fronts, flow separation, and vortices due to the interaction of the shock wave, the contact surface, and the boundary layer over the side wall of the tube. Prediction and understanding of the complex fluid dynamics are of theoretical and practical importance. It is also an extremely challenging problem for numerical simulation, especially at relatively high Reynolds numbers. Daru and Tenaud ["Evaluation of TVD high resolution schemes for unsteady viscous shocked flows," Comput. Fluids 30, 89-113 (2001)] proposed a two-dimensional model problem as a numerical test case for high-resolution schemes to simulate the flow field in a square closed shock tube. Though many researchers attempted this problem using a variety of computational methods, there is not yet an agreed-upon grid-converged solution of the problem at the Reynolds number of 1000. This paper presents a rigorous grid-convergence study and the resulting grid-converged solutions for this problem by using a newly developed, efficient, and high-order gas-kinetic scheme. Critical data extracted from the converged solutions are documented as benchmark data. The complex fluid dynamics of the flow at Re = 1000 are discussed and analyzed in detail. Major phenomena revealed by the numerical computations include the downward concentration of the fluid through the curved shock, the formation of the vortices, the mechanism of the shock wave bifurcation, the structure of the jet along the bottom wall, and the Kelvin-Helmholtz instability near the contact surface. Presentation and analysis of those flow processes provide important physical insight into the complex flow physics occurring in a shock tube.

  16. Shock-tube study of the decomposition of tetramethylsilane using gas chromatography and high-repetition-rate time-of-flight mass spectrometry.

    Science.gov (United States)

    Sela, P; Peukert, S; Herzler, J; Fikri, M; Schulz, C

    2018-04-25

    The decomposition of tetramethylsilane was studied in shock-tube experiments in a temperature range of 1270-1580 K and pressures ranging from 1.5 to 2.3 bar behind reflected shock waves combining gas chromatography/mass spectrometry (GC/MS) and high-repetition-rate time-of-flight mass spectrometry (HRR-TOF-MS). The main observed products were methane (CH4), ethylene (C2H4), ethane (C2H6), and acetylene (C2H2). In addition, the formation of a solid deposit was observed, which was identified to consist of silicon- and carbon-containing nanoparticles. A kinetics sub-mechanism with 13 silicon species and 20 silicon-containing reactions was developed. It was combined with the USC_MechII mechanism for hydrocarbons, which was able to simulate the experimental observations. The main decomposition channel of TMS is the Si-C bond scission forming methyl (CH3) and trimethylsilyl radicals (Si(CH3)3). The rate constant for TMS decomposition is represented by the Arrhenius expression ktotal[TMS → products] = 5.9 × 1012 exp(-267 kJ mol-1/RT) s-1.

  17. Surface instabilities in shock loaded granular media

    Science.gov (United States)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to

  18. Shock response of porous metals: characterization of pressure field

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Hao Pengcheng; Dong Yinfeng; Wei Xijun; Zhu Jianshi

    2012-01-01

    Shock wave reaction on porous metals is numerically simulated. When the pressure threshold is low, the increasing rate of high-pressure area gives roughly the propagation velocity of the compressive waves in the porous material. and the wave front in the condensed pressure map is nearly a plane: with the increasing of pressure threshold. more low-pressure-spots appear in the high-pressure background, and neighboring spots may coalesce, consequently, the topology of the pressure Turing pattern may change. The deviation from linearity of the increasing rate of high-pressure area is a pronounced effect of porous material under shock. The stronger the initial shock, the more pronounced the porosity effects. When the initial yield of material becomes higher, the material shows more elastic behaviors and the less porous effects, compressive and tension waves propagate more quickly, and the porous material becomes less compressible. (authors)

  19. Effects of high shock pressures and pore morphology on hot spot mechanisms in HMX

    Science.gov (United States)

    Springer, H. K.; Tarver, C. M.; Bastea, S.

    2017-01-01

    The shock initiation and detonation behavior of heterogeneous solid explosives is governed by its microstructure and reactive properties. New additive manufacturing techniques offer unprecedented control of explosive microstructures previously impossible, enabling us to develop novel explosives with tailored shock sensitivity and detonation properties. Since microstructure-performance relationships are not well established for explosives, there is little material design guidance for these manufacturing techniques. In this study, we explore the effects of high shock pressures (15-38 GPa) with long shock durations and different pore morphologies on hot spot mechanisms in HMX. HMX is chosen as the model material because we have experimental data on many of the chemical-thermal-mechanical properties required for pore collapse simulations. Our simulations are performed using the multi-physics arbitrary Lagrangian Eulerian finite element hydrocode, ALE3D, with Cheetah-based models for the unreacted and the product equation-of-states. We use a temperature-dependent specific heat with the unreacted equation-of-state and a temperature-dependent viscosity model to ensure accurate shock temperatures for subsequent chemistry. The Lindemann Law model is used for shock melting in HMX. In contrast to previous pore collapse studies at lower shock pressures (≤10 GPa) in HMX and shorter post-collapse burning times, our calculations show that shock melting occurs above 15 GPa due to higher bulk heating and a prominent elongated ("jet-like") hot spot region forms at later times. The combination of the elongated, post-collapse hot spot region and the higher bulk heating with increasing pressure dramatically increases the growth rate of reaction. Our calculations show that the reaction rate, dF/dt, increases with increasing shock pressure. We decompose the reaction rate into ignition ((dF/dt)ig) and growth ((dF/dt)gr) phases to better analyze our results. We define the ignition phase

  20. SPECIAL PURPOSE SHOCK TUBE for BLAST ASSESSMENT

    Data.gov (United States)

    Federal Laboratory Consortium — This device is a specially designed shock tube for testing fabric samples in a controlled environment. The device determines the appropriate types of sensors to be...

  1. Pressure Measurements on a Deforming Surface in Response to an Underwater Explosion in a Water-Filled Aluminum Tube

    Directory of Open Access Journals (Sweden)

    G. Chambers

    2001-01-01

    Full Text Available Experiments have been conducted to benchmark DYSMAS computer code calculations for the dynamic interaction of water with cylindrical structures. Small explosive charges were suspended using hypodermic needle tubing inside Al tubes filled with distilled water. Pressures were measured during shock loading by tourmaline crystal, carbon resistor and ytterbium foil gages bonded to the tube using a variety of adhesives. Comparable calculated and measured pressures were obtained for the explosive charges used, with some gages surviving long enough to record results after cavitation with the tube wall.

  2. Pressure tube rupture in a closed tank

    International Nuclear Information System (INIS)

    Khater, H.A.; Hadaller, G.I.; Stern, F.

    1985-06-01

    A study has been prepared on the feasibility of conducting pressure tube/calandria tube rupture tests in a closed tank, simulating a scaled-down calandria vessel. The study includes: i) a review of previous work, ii) an analytical investigation of the scaling problem of the calandria vessel and relevant in-core structures, iii) selection of a method for initiating pressure tube/calandria tube rupture, iv) a set of specifications for the test assembly, v) general arrangement drawings, vi) a proposal for a test matrix, vii) a survey and evaluation of existing facilities which could provide the required high pressure, temperature and fluid inventory, and viii) a cost estimate for the detailed design and construction, instrumentation, data acquisition and reduction, testing and reporting. The study concludes that it is both technically and practically feasible to conduct pressure tube rupture tests in a closed tank

  3. Shock-induced borehole waves and fracture effects

    NARCIS (Netherlands)

    Fan, H.; Smeulders, D.M.J.

    2012-01-01

    We perform wave experiments using a vertical shock tube setup. Shock waves are generated by the rupture of a thin membrane. In the test section the incident pressure waves generate borehole-guided waves along water-saturated samples. The tube is equipped with side wall gages and a mobile pressure

  4. Shock-Tube Measurement of Acetone Dissociation Using Cavity-Enhanced Absorption Spectroscopy of CO.

    Science.gov (United States)

    Wang, Shengkai; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2015-07-16

    A direct measurement for the rate constant of the acetone dissociation reaction (CH3COCH3 = CH3CO + CH3) was conducted behind reflected shock wave, utilizing a sub-ppm sensitivity CO diagnostic achieved by cavity-enhanced absorption spectroscopy (CEAS). The current experiment eliminated the influence from secondary reactions and temperature change by investigating the clean pyrolysis of <20 ppm acetone in argon. For the first time, the acetone dissociation rate constant (k1) was directly measured over 5.5 orders of magnitude with a high degree of accuracy: k1 (1004-1494 K, 1.6 atm) = 4.39 × 10(55) T(-11.394) exp(-52 140K/T) ± 24% s(-1). This result was seen to agree with most previous studies and has bridged the gap between their temperature and pressure conditions. The current work also served as an example demonstration of the potential of using the CEAS technique in shock-tube kinetics studies.

  5. Flow instability research on steam generator with straight double-walled heat transfer tube for FBR. Pressure drop under high pressure condition

    International Nuclear Information System (INIS)

    Liu, Wei; Tamai, Hidesada; Yoshida, Hiroyuki; Takase, Kazuyuki; Hayafune, Hiroki; Futagami, Satoshi; Kisohara, Naoyuki

    2008-01-01

    For the Steam Generator (SG) with straight double-walled heat transfer tube that used in sodium cooled Faster Breeder Reactor, flow instability is one of the most important items need researching. As the first step of the research, thermal hydraulics experiments were performed under high pressure condition in JAEA with using a straight tube. Pressure drop, heat transfer coefficients and void fraction data were derived. This paper evaluates the pressure drop data with TRAC-BF1 code. The Pffan's correlation for single phase flow and the Martinelli-Nelson's two-phase flow multiplier are found can be well predicted the present pressure drop data under high pressure condition. (author)

  6. High pressure thimble/guide tube seal fitting with built-in low pressure seal especially suitable for facilitated and more efficient nuclear reactor refueling service

    International Nuclear Information System (INIS)

    Bhatt, P.N.; Blaushield, R.M.

    1991-01-01

    This patent describes a HP/LP seal arrangement for an elongated guide tube and an elongated thimble disposed therein. The guide tube and thimble extending outwardly from the core of a nuclear reactor to a seal table where the guide tube is welded to the seal table to provide a high pressure seal relative thereto. It comprises: a tubular seal fitting disposed in alignment with the guide tube with the thimble extending therethrough on the low pressure side of the seal table; first high pressure sealing means coupling one end of the fitting to an end of the guide tube to prevent leakage from within the guide tube; inwardly facing thread means disposed adjacent the other and outer end of the seal fitting; a nut having an opening through which the thimble extends and further having outwardly facing threading in mating engagement with the fitting thread means; the fitting having a seal seat spaced longitudinally inwardly from the thread means and facing the fitting outer end and further disposed annularly about the inner surface of the fitting; deformable ring seal means; second releasable high pressure sealing means coupling the thimble to the outer end portion of the guide tube

  7. Shock-wave induced mechanoluminescence: A new technique for studying effects of shock pressure on crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P.; Parganiha, S.; Sonwane, V.D. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chhattisgarh (India); Jha, Piyush, E-mail: piyushjha22@rediffmail.com [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chhattisgarh (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India)

    2016-10-15

    The impact of a projectile propelled to velocities in the range of 0.5–2.5 km/s on to a target (X-cut quartz crystal) produces shock waves travelling at velocity of nearly 10 km/s in target, in which intense mechanoluminescence (ML) pulses of microsecond duration are produced, both in compression and post-compression conditions. The piezoelectric field produced due to surface charges of fractured target, causes band bending and subsequently, the free charge carriers are generated in the respective bands and the emission of ML occurs. The ML appears after a delay time t{sub th} whose value decreases with increasing value of the shock pressure. Initially, the ML intensity increases with the shock pressure because of the creation of more surfaces; however, for higher values of the shock pressure, the ML intensity tends to attain a saturation value because of the hardening of the crystals due to the creation of small crystallites in which the creation of new surfaces becomes difficult. The ratio between peak ML intensity in the uncompressed region and the maximum ML intensity in the compressed region decreases with increasing shock pressure because more defects produced at high pressure generate higher barrier for the relaxation of blocked cracks under compression. The expressions derived for characteristics of shock-induced ML are able to explain satisfactorily the experimental results. Shock-wave velocity, shock pressure, transit time, lifetime of electrons in conduction band, etc. can be determined by the shock-induced ML.As such, the shock-induced ML provides a new optical technique for the studies of materials under shock pressure.

  8. Laser-Doppler vibrating tube densimeter for measurements at high temperatures and pressures

    International Nuclear Information System (INIS)

    Aida, Tsutomu; Yamazaki, Ai; Akutsu, Makoto; Ono, Takumi; Kanno, Akihiro; Hoshina, Taka-aki; Ota, Masaki; Watanabe, Masaru; Sato, Yoshiyuki; Smith, Richard L. Jr.; Inomata, Hiroshi

    2007-01-01

    A laser-Doppler vibrometer was used to measure the vibration of a vibrating tube densimeter for measuring P-V-T data at high temperatures and pressures. The apparatus developed allowed the control of the residence time of the sample so that decomposition at high temperatures could be minimized. A function generator and piezoelectric crystal was used to excite the U-shaped tube in one of its normal modes of vibration. Densities of methanol-water mixtures are reported for at 673 K and 40 MPa with an uncertainty of 0.009 g/cm 3

  9. Experimental Study of Shock Generated Compressible Vortex Ring

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.; Krothapalli, Anjaneyulu

    2000-11-01

    Formation of a compressible vortex ring and generation of sound associated with it is studied experimentally. Impulse of a shock wave is used to generate a vortex ring from the open end of a shock-tube. Vortex ring formation process has been studied in details using particle image Velocimetry (PIV). As the shock wave exits the tube it diffracts and expands. A circular vortex sheet forms at the edge and rolls up into a vortex ring. Far field microphone measurement shows that the acoustic pressure consists of a spike due to shock wave followed by a low frequency pressure wave of decaying nature, superimposed with high frequency pressure wave. Acoustic waves consist of waves due to expansion, waves formed in the tube during diaphragm breakage and waves associated with the vortex ring and shear-layer vortices. Unsteady evolution of the vortex ring and shear-layer vortices in the jet behind the ring is studied by measuring the velocity field using PIV. Corresponding vorticity field, circulation around the vortex core and growth rate of the vortex core is calculated from the measured velocity field. The velocity field in a compressible vortex ring differs from that of an incompressible ring due to the contribution from both shock and vortex ring.

  10. Pressure tube reactors

    International Nuclear Information System (INIS)

    Natori, Hisahide.

    1981-01-01

    Purpose: To improve the electrical power generation efficiency in a pressure tube reactor in which coolants and moderators are separated by feedwater heating with heat generated in heavy water and by decreasing the amount of steams to be extracted from the turbine. Constitution: A heat exchanger and a heavy water cooler are additionally provided to a conventional pressure tube reactor. The heat exchanger is disposed at the pre-stage of a low pressure feedwater heater series. High temperature heavy water heated in the core is passed through the primary side of the exchanger, while feedwater is passed through the secondary side. The cooler is disposed on the downstream of the heat exchanger in the flowing direction of the heavy water, in which heavy water from the heat exchanger is passed through the primary side and the auxiliary equipment cooling water is sent to the secondary side thereof. Accordingly, since extraction of heating steams is no more necessary, the steam can be used for the rotation of the turbine, and the electrical power generation efficiency can be improved. (Seki, T.)

  11. A theoretical and shock tube kinetic study on hydrogen abstraction from phenyl formate.

    Science.gov (United States)

    Ning, Hongbo; Liu, Dapeng; Wu, Junjun; Ma, Liuhao; Ren, Wei; Farooq, Aamir

    2018-06-12

    The hydrogen abstraction reactions of phenyl formate (PF) by different radicals (H/O(3P)/OH/HO2) were theoretically investigated. We calculated the reaction energetics for PF + H/O/OH using the composite method ROCBS-QB3//M06-2X/cc-pVTZ and that for PF + HO2 at the M06-2X/cc-pVTZ level of theory. The high-pressure limit rate constants were calculated using the transition state theory in conjunction with the 1-D hindered rotor approximation and tunneling correction. Three-parameter Arrhenius expressions of rate constants were provided over the temperature range of 500-2000 K. To validate the theoretical calculations, the overall rate constants of PF + OH → Products were measured in shock tube experiments at 968-1128 K and 1.16-1.25 atm using OH laser absorption. The predicted overall rate constants agree well with the shock tube data (within 15%) over the entire experimental conditions. Rate constant analysis indicates that the H-abstraction at the formic acid site dominates the PF consumption, whereas the contribution of H-abstractions at the aromatic ring increases with temperature. Additionally, comparisons of site-specific H-abstractions from PF with methyl formate, ethyl formate, benzene, and toluene were performed to understand the effects of the aromatic ring and side-chain substituent on H-abstraction rate constants.

  12. Characterization of magnetically impelled arc butt welded T11 tubes for high pressure applications

    Directory of Open Access Journals (Sweden)

    R. Sivasankari

    2015-09-01

    Full Text Available Magnetically impelled arc butt (MIAB welding is a pressure welding process used for joining of pipes and tubes with an external magnetic field affecting arc rotation along the tube circumference. In this work, MIAB welding of low alloy steel (T11 tubes were carried out to study the microstructural changes occurring in thermo-mechanically affected zone (TMAZ. To qualify the process for the welding applications where pressure could be up to 300 bar, the MIAB welds are studied with variations of arc current and arc rotation time. It is found that TMAZ shows higher hardness than that in base metal and displays higher weld tensile strength and ductility due to bainitic transformation. The effect of arc current on the weld interface is also detailed and is found to be defect free at higher values of arc currents. The results reveal that MIAB welded samples exhibits good structural property correlation for high pressure applications with an added benefit of enhanced productivity at lower cost. The study will enable the use of MIAB welding for high pressure applications in power and defence sectors.

  13. Equations of state and melting curve of boron carbide in the high-pressure range of shock compression

    Energy Technology Data Exchange (ETDEWEB)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Shakhrai, D. V. [Russian Academy of Sciences, Institute for Problems in Chemical Physics (Russian Federation)

    2017-03-15

    We have constructed the equations of state for crystalline boron carbide B{sub 11}C (C–B–C) and its melt under high dynamic and static pressures. A kink on the shock adiabat for boron carbide has been revealed in the pressure range near 100 GPa, and the melting curve with negative curvature in the pressure range 0–120 GPa has been calculated. The results have been used for interpreting the kinks on the shock adiabat for boron carbide in the pressure range of 0–400 GPa.

  14. A soap film shock tube to study two-dimensional compressible flows

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.Y.; Chen, Y.M.; Chang-Jian, S.K. [Dept. of Mechanical Engineering, Da-Yeh University Chang-Hwa (Taiwan)

    2001-07-01

    A new experimental approach to the study of the two-dimensional compressible flow phenomena is presented. In this technique, a variety of compressible flows were generated by bursting plane vertical soap films. An aureole and a ''shock wave'' preceding the rim of the expanding hole were clearly observed using traditional high-speed flash photography and a fast line-scan charge coupled device (CCD) camera. The moving shock wave images obtained from the line-scan CCD camera were similar to the x-t diagrams in gas dynamics. The moving shock waves cause thickness jumps and induce supersonic flows. Photographs of the supersonic flows over a cylinder and a wedge are presented. The results suggest clearly the feasibility of the ''soap film shock tube''. (orig.)

  15. Flooding of a large, passive, pressure-tube LWR

    Energy Technology Data Exchange (ETDEWEB)

    Hejzlar, P.; Todreas, N.E.; Driscoll, M.J. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-09-01

    A reactor concept has been developed which can survive LOCA without scram and without replenishing primary coolant inventory. The proposed concept is a pressure tube type reactor similar to CANDU reactors, but differing in three key aspects: (1) a solid SiC-coated graphite fuel matrix is used in place of fuel pin bundles, (2) the heavy water coolant in the pressure tubes is replaced by light water, and (3) the calandria tank contains a low pressure gas instead of heavy water moderator. The gas displaces the light water from the calandria during normal operation, while during loss of coolant or loss of heat sink accidents, it allows passive calandria flooding. This paper describes the thermal hydraulic characteristics of the gravity driven calandria flooding process. Flooding the calandria space with light water is a unique and very important feature of the proposed pressure-tube LWR concept. The flooding of the top row of fuel channels must be accomplished fast enough so that none of the critical components of the fuel channel exceed their design limits. The flooding process has been modeled and shown to be rapid enough to maintain all components within their design limits. Two other considerations are important. The thermal shock experienced by the calandria and pressure tubes has been evaluated and shown to be within acceptable bounds. Finally, although complete flooding renders the reactor deeply subcritical, various steam/water densities can be hypothesized to be present during the flooding process which could cause reactivity to increase from the initially voided calandria case. One such hypothesis which leads to the maximum possible density of the steam/water mixture in the still unflooded calandria space is entrainment from the free surface. It is shown that the steam/water mixture density yielding the maximum reactivity peak cannot be achieved by entrainment because it exceeds thermohydraulically attainable densities of steam/water by an order of magnitude.

  16. A quantitative methodology for reactor vessel pressurized thermal shock decision making

    International Nuclear Information System (INIS)

    Ackerson, D.S.; Balkey, K.R.; Meyer, T.A.; Ofstun, R.P.; Rupprecht, S.D.; Sharp, D.R.

    1983-01-01

    The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). Previous reactor vessel integrity concerns have led to changes in vessel and plant system design and to operating procedures, and increased attention to the PTS issue is causing consideration of further modifications. Events such as excess feedwater, loss of normal feedwater, and steam generator tube rupture have led to significant primary system cooldowns. Each of these cooldown transients occurred concurrently with a relatively high primary system pressure. Considerations of these and other postulated cooldown events has drawn attention to the impact of operator action and control system effects on reactor vessel PTS. A methodology, which couples event sequence analysis with probabilistic fracture mechanics analyses, was developed to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation. (orig./RW)

  17. Evolution of wave patterns and temperature field in shock-tube flow

    Science.gov (United States)

    Kiverin, A. D.; Yakovenko, I. S.

    2018-05-01

    The paper is devoted to the numerical analysis of wave patterns behind a shock wave propagating in a tube filled with a gaseous mixture. It is shown that the flow inside the boundary layer behind the shock wave is unstable, and the way the instability develops fully corresponds to the solution obtained for the boundary layer over a flat plate. Vortical perturbations inside the boundary layer determine the nonuniformity of the temperature field. In turn, exactly these nonuniformities define the way the ignition kernels arise in the combustible mixture after the reflected shock interaction with the boundary layer. In particular, the temperature nonuniformity determines the spatial limitations of probable ignition kernel position relative to the end wall and side walls of the tube. In the case of low-intensity incident shocks the ignition could start not farther than the point of first interaction between the reflected shock wave and roller vortices formed in the process of boundary layer development. Proposed physical mechanisms are formulated in general terms and can be used for interpretation of the experimental data in any systems with a delayed exothermal reaction start. It is also shown that contact surface thickening occurs due to its interaction with Tollmien-Schlichting waves. This conclusion is of importance for understanding the features of ignition in shock tubes operating in the over-tailored regime.

  18. Measurements of Pressure of Extracorporeal Shock Wave Lithotripter Using Pressure-Sensitive Papers

    Science.gov (United States)

    Inose, Naoto; Ide, Masao

    1993-05-01

    This paper describes measurements of pressures at the focal region of the extracorporeal shock wave lithotripter (ESWL) using pressure-sensitive papers. At the focal region of ESWL, ordinary hydrophones are quickly damaged, because of very high pressures. Recently, measurements of pressure at the focal region of ESWL using pressure-sensitive paper have been advised. Therefore, we have studied the effectiveness of pressure-sensitive papers in the measurement of high acoustic pressures at the focal region of ESWL.

  19. Method of repairing pressure tube type reactors

    International Nuclear Information System (INIS)

    Asada, Takashi.

    1983-01-01

    Purpose: To enable to re-start the reactor operation in a short time, upon occurrence of failures in a pressure tube, as well as directly examine the cause for the failures in the pressure tube. Method: The pressure tube reactor main body comprises a calandria tank of a briquette form, pressure tubes, fuel assemblies and an iron-water shielding body. If failure is resulted to a pressure tube, the reactor operation is at first shutdown and nuclear fuel assemblies are extracted to withdraw from the pressure tube. Then, to an inlet pipe way and an outlet pipeway connected to the failed pressure tube, are attached plugs by means of welding or the like at the appropriate position where the radiation exposure dose is lower and the repairing work can be performed with ease. The pressure tube is disconnected to withdraw from the inlet pipeway and the outlet pipeway and, instead, radiation shielding plug tube is inserted and shield cooling device is actuated if required, wherein the reactor is actuated to re-start the operation. (Yoshino, Y.)

  20. Experimental Study of the Effect of Water Mist Location On Blast Overpressure Attenuation in A Shock Tube

    Science.gov (United States)

    Mataradze, Edgar; Chikhradze, Nikoloz; Bochorishvili, Nika; Akhvlediani, Irakli; Tatishvili, Dimitri

    2017-12-01

    Explosion protection technologies are based on the formation of a shock wave mitigation barrier between the protection site and the explosion site. Contemporary protective systems use water mist as an extinguishing barrier. To achieve high effectiveness of the protective system, proper selection of water mist characteristics is important. The main factors defining shock wave attenuation in water mist include droplet size distribution, water concentration in the mist, droplet velocity and geometric properties of mist. This paper examines the process of attenuation of shock waves in mist with droplets ranging from 25 to 400 microns under different conditions of water mist location. Experiments were conducted at the Mining Institute with the use of a shock tube to study the processes of explosion suppression by a water mist barrier. The shock tube consists of a blast chamber, a tube, a system for the dosed supply of water, sensors, data recording equipment, and a process control module. Shock wave overpressure reduction coefficient was studied in the shock tube under two different locations of water mist: a) when water mist is created in direct contact with blast chamber and b) the blast chamber and the mist are separated by air space. It is established that in conditions when the air space distance between the blast chamber and the mist is 1 meter, overpressure reduction coefficient is 1.5-1.6 times higher than in conditions when water mist is created in direct contact with blast chamber.

  1. Tolerance of Artemia to static and shock pressure loading

    Science.gov (United States)

    Fitzmaurice, B. C.; Appleby-Thomas, G. J.; Painter, J. D.; Ono, F.; McMillan, P. F.; Hazael, R.; Meersman, F.

    2017-10-01

    Hydrostatic and hydrodynamic pressure loading has been applied to unicellular organisms for a number of years due to interest from food technology and extremophile communities. There is also an emerging interest in the response of multicellular organisms to high pressure conditions. Artemia salina is one such organism. Previous experiments have shown a marked difference in the hatching rate of these organisms after exposure to different magnitudes of pressure, with hydrostatic tests showing hatching rates at pressures up to several GPa, compared to dynamic loading that resulted in comparatively low survival rates at lower pressure magnitudes. In order to begin to investigate the origin of this difference, the work presented here has focussed on the response of Artemia salina to (quasi) one-dimensional shock loading. Such experiments were carried out using the plate-impact technique in order to create a planar shock front. Artemia cysts were investigated in this manner along with freshly hatched larvae (nauplii). The nauplii and cysts were observed post-shock using optical microscopy to detect motility or hatching, respectively. Hatching rates of 18% were recorded at pressures reaching 1.5 GPa, as determined with the aid of numerical models. Subjecting Artemia to quasi-one-dimensional shock loading offers a way to more thoroughly explore the shock pressure ranges these organisms can survive.

  2. Endotracheal tube cuff pressure monitoring during neurosurgery - Manual vs. automatic method

    Directory of Open Access Journals (Sweden)

    Mukul Kumar Jain

    2011-01-01

    Full Text Available Background: Inflation and assessment of the endotracheal tube cuff pressure is often not appreciated as a critical aspect of endotracheal intubation. Appropriate endotracheal tube cuff pressure, endotracheal intubation seals the airway to prevent aspiration and provides for positive-pressure ventilation without air leak. Materials and Methods: Correlations between manual methods of assessing the pressure by an experienced anesthesiologists and assessment with maintenance of the pressure within the normal range by the automated pressure controller device were studied in 100 patients divided into two groups. In Group M, endotracheal tube cuff was inflated manually by a trained anesthesiologist and checked for its pressure hourly by cuff pressure monitor till the end of surgery. In Group C, endotracheal tube cuff was inflated by automated cuff pressure controller and pressure was maintained at 25-cm H 2 O throughout the surgeries. Repeated measure ANOVA was applied. Results: Repeated measure ANOVA results showed that average of endotracheal tube cuff pressure of 50 patients taken at seven different points is significantly different (F-value: 171.102, P-value: 0.000. Bonferroni correction test shows that average of endotracheal tube cuff pressure in all six groups are significantly different from constant group (P = 0.000. No case of laryngomalacia, tracheomalacia, tracheal stenosis, tracheoesophageal fistula or aspiration pneumonitis was observed. Conclusions: Endotracheal tube cuff pressure was significantly high when endotracheal tube cuff was inflated manually. The known complications of high endotracheal tube cuff pressure can be avoided if the cuff pressure controller device is used and manual methods cannot be relied upon for keeping the pressure within the recommended levels.

  3. Contrastive Analysis and Research on Negative Pressure Beam Tube System and Positive Pressure Beam Tube System for Mine Use

    Science.gov (United States)

    Wang, Xinyi; Shen, Jialong; Liu, Xinbo

    2018-01-01

    Against the technical defects of universally applicable beam tube monitoring system at present, such as air suction in the beam tube, line clogging, long sampling time, etc., the paper analyzes the current situation of the spontaneous combustion fire disaster forecast of mine in our country and these defects one by one. On this basis, the paper proposes a research thought that improving the positive pressure beam tube so as to substitute the negative pressure beam tube. Then, the paper introduces the beam tube monitoring system based on positive pressure technology through theoretical analysis and experiment. In the comparison with negative pressure beam tube, the paper concludes the advantage of the new system and draws the conclusion that the positive pressure beam tube is superior to the negative pressure beam tube system both in test result and test time. At last, the paper proposes prospect of the beam tube monitoring system based on positive pressure technology.

  4. Shock tube and modeling study of 2,7-dimethyloctane pyrolysis and oxidation

    KAUST Repository

    Li, Sijie; Sarathy, Mani; Davidson, David Frank; Hanson, Ronald Kenneth; Westbrook, Charles K.

    2015-01-01

    High molecular weight iso-paraffinic molecules are found in conventional petroleum, Fischer-Tropsch (FT), and other alternative hydrocarbon fuels, yet fundamental combustion studies on this class of compounds are lacking. In the present work, ignition delay time measurements in 2,7-dimethyloctane/air were carried out behind reflected shock waves using conventional and constrained reaction volume (CRV) methods. The ignition delay time measurements covered the temperature range 666-1216K, pressure range 12-27atm, and equivalence ratio of 0.5 and 1. The ignition delay time temperatures span the low-, intermediate- and high-temperature regimes for 2,7-dimethyloctane (2,7-DMO) oxidation. Clear evidence of negative temperature coefficient behavior was observed near 800K. Fuel time-history measurements were also carried out in pyrolysis experiments in mixtures of 2000ppm 2,7-DMO/argon at pressures near 16 and 35atm, and in the temperature range of 1126-1455K. Based on the fuel removal rates, the overall 2,7-DMO decomposition rate constant can be represented with k =4.47×105 exp(-23.4[kcal/mol]/RT) [1/s]. Ethylene time-history measurements in pyrolysis experiments at 16atm are also provided. The current shock tube dataset was simulated using a novel chemical kinetic model for 2,7-DMO. The reaction mechanism includes comprehensive low- and high-temperature reaction classes with rate constants assigned using established rules. Comparisons between the simulated and experimental data show simulations reproduce the qualitative trends across the entire range of conditions tested. However, the present kinetic modeling simulations cannot quantitatively reproduce a number of experimental data points, and these are analyzed herein.

  5. Shock tube and modeling study of 2,7-dimethyloctane pyrolysis and oxidation

    KAUST Repository

    Li, Sijie

    2015-05-01

    High molecular weight iso-paraffinic molecules are found in conventional petroleum, Fischer-Tropsch (FT), and other alternative hydrocarbon fuels, yet fundamental combustion studies on this class of compounds are lacking. In the present work, ignition delay time measurements in 2,7-dimethyloctane/air were carried out behind reflected shock waves using conventional and constrained reaction volume (CRV) methods. The ignition delay time measurements covered the temperature range 666-1216K, pressure range 12-27atm, and equivalence ratio of 0.5 and 1. The ignition delay time temperatures span the low-, intermediate- and high-temperature regimes for 2,7-dimethyloctane (2,7-DMO) oxidation. Clear evidence of negative temperature coefficient behavior was observed near 800K. Fuel time-history measurements were also carried out in pyrolysis experiments in mixtures of 2000ppm 2,7-DMO/argon at pressures near 16 and 35atm, and in the temperature range of 1126-1455K. Based on the fuel removal rates, the overall 2,7-DMO decomposition rate constant can be represented with k =4.47×105 exp(-23.4[kcal/mol]/RT) [1/s]. Ethylene time-history measurements in pyrolysis experiments at 16atm are also provided. The current shock tube dataset was simulated using a novel chemical kinetic model for 2,7-DMO. The reaction mechanism includes comprehensive low- and high-temperature reaction classes with rate constants assigned using established rules. Comparisons between the simulated and experimental data show simulations reproduce the qualitative trends across the entire range of conditions tested. However, the present kinetic modeling simulations cannot quantitatively reproduce a number of experimental data points, and these are analyzed herein.

  6. Transfer of a cold atmospheric pressure plasma jet through a long flexible plastic tube

    International Nuclear Information System (INIS)

    Kostov, Konstantin G; Prysiazhnyi, Vadym; Honda, Roberto Y; Machida, Munemasa

    2015-01-01

    This work proposes an experimental configuration for the generation of a cold atmospheric pressure plasma jet at the downstream end of a long flexible plastic tube. The device consists of a cylindrical dielectric chamber where an insulated metal rod that serves as high-voltage electrode is inserted. The chamber is connected to a long (up to 4 m) commercial flexible plastic tube, equipped with a thin floating Cu wire. The wire penetrates a few mm inside the discharge chamber, passes freely (with no special support) along the plastic tube and terminates a few millimeters before the tube end. The system is flushed with Ar and the dielectric barrier discharge (DBD) is ignited inside the dielectric chamber by a low frequency ac power supply. The gas flow is guided by the plastic tube while the metal wire, when in contact with the plasma inside the DBD reactor, acquires plasma potential. There is no discharge inside the plastic tube, however an Ar plasma jet can be extracted from the downstream tube end. The jet obtained by this method is cold enough to be put in direct contact with human skin without an electric shock. Therefore, by using this approach an Ar plasma jet can be generated at the tip of a long plastic tube far from the high-voltage discharge region, which provides the safe operation conditions and device flexibility required for medical treatment. (paper)

  7. General Physical Problems Related to MHD. Shock Tubes. Introduction to Papers in Section 1-b

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-10-15

    The papers which will be considered here are Nos. SM-74/26, 134, 172, 182 and 219. Each of the five papers will be discussed in turn, but before beginning this discussion, some general comments concerning shock tube studies of MHD generator plasmas seem in order. There is little doubt that the shock tube is an excellent facility-for the study of the basic processes which occur in the bulk of the plasma. It provides a large flow of uniform plasma with well-controlled properties. Because of the very short operating times, the materials problems, which plague continuously operating facilities, are eliminated. Depending upon the mode of operation of the shock tube, the gas dynamic conditions of an MHD generator may also be simulated more or less well. Three different modes have been used by the authors of the present papers. Abbas and Howatson have carried out their measurements in the driver plasma of an electrical shock tube. Both Zauderer and Mori, Kawada, Yamamoto and Imani have used the more conventional technique of experimenting in the plasma produced by the incident shock. Louis uses the plasma produced by reflection of the shock wave from the tube-end as a plasma source for the MHD channel.

  8. Hydrogen oxidation at high pressure and intermediate temperatures: experiments and kinetic modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2015-01-01

    was varied from very oxidizing to strongly reducing conditions. The results supplement high-pressure data from RCM (900–1100 K) and shock tubes (900–2200 K). At the reducing conditions ( U = 12), oxidation started at 748–775 K while it was shifted to 798–823 K for stoichiometric and oxidizing conditions ( U...

  9. Operating performance of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Price, E.G.

    1989-04-01

    The performance of Zircaloy-2 and Zr-2.5 Nb pressure tubes in CANDU reactors is reviewed. The accelerated hydriding of Zircaloy-2 in reducing water chemistries can lower the toughness of this material and it is essential that defect-initiating phenomena, such as hydride blister formation from pressure tube to calandria tube contact, be prevented. Zr-2.5 Nb pressure tubes are performing well with low rates of hydrogen pick-up and good retention of material properties

  10. Delayed hydrogen cracking of zirconium alloy pressure tubes

    International Nuclear Information System (INIS)

    Jackman, A.H.; Dunn, J.T.

    1976-10-01

    After several years of almost continuous service, Pickering Units 3 and 4 have both experienced long outages to replace cracked pressure tubes. This report summarizes the status of the investigation into the cause of the cracks as of May 1976. The basic cause of the cracking was the presence of very high residual tensile stresses in the pressure tubes due to improper rolling procedures. These residual stresses are being reduced to acceptable levels by local stress relieving techniques at Bruce G.S. and in future reactors improvements in rolling procedures and changes in pressure tube specifications will prevent a recurrence of this problem. (author)

  11. Bifurcation parameters of a reflected shock wave in cylindrical channels of different roughnesses

    Science.gov (United States)

    Penyazkov, O.; Skilandz, A.

    2018-03-01

    To investigate the effect of bifurcation on the induction time in cylindrical shock tubes used for chemical kinetic experiments, one should know the parameters of the bifurcation structure of a reflected shock wave. The dynamics and parameters of the shock wave bifurcation, which are caused by reflected shock wave-boundary layer interactions, are studied experimentally in argon, in air, and in a hydrogen-nitrogen mixture for Mach numbers M = 1.3-3.5 in a 76-mm-diameter shock tube without any ramp. Measurements were taken at a constant gas density behind the reflected shock wave. Over a wide range of experimental conditions, we studied the axial projection of the oblique shock wave and the pressure distribution in the vicinity of the triple Mach configuration at 50, 150, and 250 mm from the endwall, using side-wall schlieren and pressure measurements. Experiments on a polished shock tube and a shock tube with a surface roughness of 20 {μ }m Ra were carried out. The surface roughness was used for initiating small-scale turbulence in the boundary layer behind the incident shock wave. The effect of small-scale turbulence on the homogenization of the transition zone from the laminar to turbulent boundary layer along the shock tube perimeter was assessed, assuming its influence on a subsequent stabilization of the bifurcation structure size versus incident shock wave Mach number, as well as local flow parameters behind the reflected shock wave. The influence of surface roughness on the bifurcation development and pressure fluctuations near the wall, as well as on the Mach number, at which the bifurcation first develops, was analyzed. It was found that even small additional surface roughness can lead to an overshoot in pressure growth by a factor of two, but it can stabilize the bifurcation structure along the shock tube perimeter.

  12. Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance

    International Nuclear Information System (INIS)

    Erfani, Rasool; Zare-Behtash, Hossein; Kontis, Konstantinos

    2012-01-01

    Interest in plasma actuators as active flow control devices is growing rapidly due to their lack of mechanical parts, light weight and high response frequency. Although the flow induced by these actuators has received much attention, the effect that the external flow has on the performance of the actuator itself must also be considered, especially the influence of unsteady high-speed flows which are fast becoming a norm in the operating flight envelopes. The primary objective of this study is to examine the characteristics of a dielectric barrier discharge (DBD) plasma actuator when exposed to an unsteady flow generated by a shock tube. This type of flow, which is often used in different studies, contains a range of flow regimes from sudden pressure and density changes to relatively uniform high-speed flow regions. A small circular shock tube is employed along with the schlieren photography technique to visualize the flow. The voltage and current traces of the plasma actuator are monitored throughout, and using the well-established shock tube theory the change in the actuator characteristics are related to the physical processes which occur inside the shock tube. The results show that not only is the shear layer outside of the shock tube affected by the plasma but the passage of the shock front and high-speed flow behind it also greatly influences the properties of the plasma. (paper)

  13. Diaphragmless shock wave generators for industrial applications of shock waves

    Science.gov (United States)

    Hariharan, M. S.; Janardhanraj, S.; Saravanan, S.; Jagadeesh, G.

    2011-06-01

    The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 ± 0.2%. This system shows much promise for automation in an industrial environment.

  14. Neutron radiography of irradiated zircaloy coupons of pressure tubes from PHWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Gangotra, S; Ouseph, P M; Tamhane, A B; Singh, H N; Sahoo, K C [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.

    1994-12-31

    The Indian Pressurised Heavy Water Reactors (PHWR`s) are of CANDU type, consisting of 304 zircaloy-2 pressure tubes. These pressure tubes contain the fuel bundles, where the heat is generated and is removed by the heavy water flowing through these pressure tubes at high temperature and pressure. These pressure tubes are surrounded by the calandria tubes, and are separated from them by a pair of garter springs. Over a period of time, as a result of the irradiation creep and assisted by the displacement of the garter springs, the hot pressure tube may come in contact with the cold calandria tube. This would result in the hydrogen migrating to the cold contact location and formation of hydride blisters. These blisters could eventually rupture the pressure tube by the DHC (delayed hydrogen cracking) mechanism. 2 refs., 2 figs.

  15. Side-Pinch Effect of a Magnetically Driven Shock Tube with Parallel Plate Electrodes

    DEFF Research Database (Denmark)

    Chang, C. T.; Korsbech, Uffe C C; Mondrup, K.

    1969-01-01

    To study the possible effect of the side pinch on the steady-state current and the steady-state shock speed of a magnetically driven shock tube, a semiempirical model is formulated. The time history of the current, the radial and the translational motion of the current-carrying region are expressed...... by three interacting nonlinear equations with five adjustable parameters describing the variation of the electric circuit elements, the geometry of the shock tube, and the initial running conditions. Within the range of practical interest for values of the parameters investigated, computational results...

  16. Tensile properties of quadruple melted Zr-2.5Nb pressure tubes evaluated from pressure tube offcuts

    International Nuclear Information System (INIS)

    Shah, Priti Kotak; Dubey, J.S.; Anantharaman, S.

    2013-12-01

    Rajasthan Atomic Power Station-2 (RAPS-2) is the first Pressurised Heavy Water Reactor (PHWR) in India having quadruple melted Zr-2.5Nb pressure tubes. Front-end and back-end off-cuts of sixteen pressure tubes were selected for studying the mechanical properties in axial and transverse directions of the tube. Tension tests were carried out at room temperature and at 300℃ using miniature tensile test specimens. The report presents the experimental details and discusses the base line tensile property data for the quadruple melted pressure tubes of RAPS-2. This data will be useful for the reactor life management. (author)

  17. Inferring Pre-shock Acoustic Field From Post-shock Pitot Pressure Measurement

    Science.gov (United States)

    Wang, Jian-Xun; Zhang, Chao; Duan, Lian; Xiao, Heng; Virginia Tech Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Linear interaction analysis (LIA) and iterative ensemble Kalman method are used to convert post-shock Pitot pressure fluctuations to static pressure fluctuations in front of the shock. The LIA is used as the forward model for the transfer function associated with a homogeneous field of acoustic waves passing through a nominally normal shock wave. The iterative ensemble Kalman method is then employed to infer the spectrum of upstream acoustic waves based on the post-shock Pitot pressure measured at a single point. Several test cases with synthetic and real measurement data are used to demonstrate the merits of the proposed inference scheme. The study provides the basis for measuring tunnel freestream noise with intrusive probes in noisy supersonic wind tunnels.

  18. Shock tubes and waves; Proceedings of the Sixteenth International Symposium, Rheinisch-Westfaelische Technische Hochschule, Aachen, Federal Republic of Germany, July 26-31, 1987

    Science.gov (United States)

    Groenig, Hans

    Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.

  19. High temperature deformation behavior of gradually pressurized zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Suzuki, Motoye

    1982-03-01

    In order to obtain preliminary perspectives on fuel cladding deformation behavior under changing temperature and pressure conditions in a hypothetical loss-of-coolant accident of PWR, a Zircaloy-4 tube burst test was conducted in both air and 99.97% Ar atomospheres. The tubes were directly heated by AC-current and maintained at various temperatures, and pressurized gradually until rupture occurred. Rupture circumferential strains were generally larger in Ar gas than in air and attained a maximum around 1100 K in both atmospheres. Some tube tested in air produced axially-extended long balloons, which proved not to be explained by such properties or ideas as effect of cooling on strain rate, superplasticity, geometrical plastic instability and stresses generated by surface oxide layer. A cause of the long balloon may be obtained in the anisotropy of the material structure. But even a qualitative analysis based on this property can not be made due to insufficient data of the anisotropy. (author)

  20. Development of Zirconium alloys (for pressure tubes)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Choo, Ki Nam; Jung, Chung Hwan; Yim, Kyong Soo; Kim, Sung Soo; Baek, Jong Hyuk; Jeong, Yong Hwan; Kim, Kyong Ho; Cho, Hae Dong [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Hwang, S. K.; Kim, M. H. [Inha Univ., Incheon (Korea, Republic of); Kwon, S. I [Korea Univ., Seoul (Korea, Republic of); Kim, I. S. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1997-09-01

    The objective of this research is to set up the basic technologies for the evaluation of pressure tube integrity and to develop improved zirconium alloys to prevent pressure tube failures due to DHC and hydride blister caused by excessive creep-down of pressure tubes. The experimental procedure and facilities for characterization of pressure tubes were developed. The basic research related to a better understanding of the in-reactor performances of pressure tubes leads to noticeable findings for the first time : the microstructural effect on corrosion and hydrogen pick-up behavior of Zr-2.5Nb pressure tubes, texture effect on strength and DHC resistance and enhanced recrystallization by Fe in zirconium alloys and etc. Analytical methodology for the assessment of pressure tubes with surface flaws was set up. A joint research is being under way with AECL to determine the fracture toughness of O-8 at the EOL (End of Life) that had been quadruple melted and was taken out of the Wolsung Unit-1 after 10 year operation. In addition, pressure tube with texture controlled is being made along with VNINM in Russia as a joint project between KAERI and Russia. Finally, we succeeded in developing 4 different kinds of zirconium alloys with better corrosion resistance, low hydrogen pickup fraction and higher creep strength. (author). 121 refs., 65 tabs., 260 figs

  1. Sensitive Mid-IR Laser Sensor Development and Mass Spectrometric Measurements in Shock Tube and Flames

    KAUST Repository

    Alquaity, Awad

    2016-01-01

    CRDS technique was utilized to develop an ultra-fast, high sensitivity diagnostic to monitor trace concentrations of ethylene in shock tube pyrolysis experiments. This diagnostic represented the first ever successful application of CRDS technique

  2. Pressure loss characteristics of LSTF steam generator heat-transfer tubes. Pressure loss increase due to tube internal instruments

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro

    1994-11-01

    The steam generator of the Large-Scale Test Facility (LSTF) includes 141 heat-transfer U-tubes with different lengths. Six U-tubes among them are furnished with 15 or 17 probe-type instruments (conduction probe with a thermocouple; CPT) protuberant into the primary side of the U-tubes. Other 135 U-tubes are not instrumented. This results in different hydraulic conditions between the instrumented and non-instrumented U-tubes with the same length. A series of pressure loss characteristics tests was conducted at a test apparatus simulating both types of U-tube. The following pressure loss coefficient (K CPT ) was reduced as a function of Reynolds number (Re) from these tests under single-phase water flow conditions. K CPT =0.16 5600≤Re≤52820, K CPT =60.66xRe -0.688 2420≤Re≤5600, K CPT =2.664x10 6 Re -2.06 1371≤Re≤2420. The maximum uncertainty is 22%. By using these results, the total pressure loss coefficients of full length U-tubes were estimated. It is clarified that the total pressure loss of the shortest instrumented U-tube is equivalent to that of the middle-length non-instrumented U-tube and also that a middle-length instrumented U-tube is equivalent to the longest non-instrumented U-tube. Concludingly. it is important to take account of the CPT pressure loss mentioned above in estimation of fluid behavior at the non-instrumented U-tubes either by using the LSTF experiment data from the CPT-installed U-tubes or by using any analytical codes. (author)

  3. TEM examination of irradiated zircaloy-2 pressure tube material

    International Nuclear Information System (INIS)

    Srivastava, D.; Tewari, R.; Dey, G.K.; Sharma, B.P.; Sah, D.N.; Banerjee, Suparna; Sahoo, K.C.

    2005-09-01

    In the present work, microstructure of the zircaloy-2 pressure tube material irradiated in the Indian Pressurized Heavy Water RAPP-1. Reactor (PHWR) has been examined for the first time using transmission electron microscope (TEM). The samples were obtained from a zircaloy-2 pressure tube, which had been in operation in the high flux region of Rajasthan Atomic Power Station Unit -1, for a period for 6.77 effective full power years (EFPYs) and expected to have a cumulative radiation damage of about 3 dpa. In this study irradiated microstructure has been characterized and compared it with the microstructure of the unirradiated pressure tube samples. The effect of irradiation on the hydriding behaviour is also studied. (author)

  4. Studies on the propagation of relativistic plasma waves in high density plasmas produced by hypersonic ionizing shock waves

    International Nuclear Information System (INIS)

    Williams, R.L.; Johnson, J.A. III

    1993-01-01

    The feasibility of using an ionizing shock wave to produce high density plasmas suitable for the propagation large amplitude relativistic plasma waves is being investigated. A 20 kv arc driven shock tube of coaxial geometry produces a hypersonic shock wave (10 p > 10 17 cm -3 ). The shock can be made to reflect off the end of the tube, collide with its wake, and thus increase the plasma density further. After reflecting, the plasma is at rest. The shock speed is measured using piezoelectric pressure probes and the ion density is measured using laser induced fluorescence (LIF) techniques on argon 488.0 nm and 422.8 nm lines. The future plans are to excite large amplitude relativistic plasma waves in this plasma by either injecting a short pulse laser (Laser Wake Field Scheme), two beating lasers (Plasma Beat Wave Scheme), or a short bunch of relativistic electrons (Plasma Wake Field Scheme). Results of recent computational and theoretical studies, as well as initial experimental measurements on the plasma using LIF, are reported. Implications for the application of high density plasmas produced in this way to such novel schemes as the plasma wave accelerator, photon accelerator, plasma wave undulator, and also plasma lens, are discussed. The effect of plasma turbulence is also discussed

  5. Bulging of pressure tubes at hot spots under LOCA conditions

    International Nuclear Information System (INIS)

    Manu, C.; Shewfelt, R.S.W.; Wright, A.C.D.; Aboud, R.; Lau, J.H.K.; Sanderson, D.B.

    1996-01-01

    During certain postulated loss-of-coolant accidents (LOCA) in a CANDU reactor, some fuel channels can become highly voided within a very short time. Although the pressure tubes are heated mainly by convection and thermal radiation during the LOCA transient, additional heat flow occurs through the bearing pads that are in contact with the pressure tribe. This contact can lead to local hot spots and associated thermal stresses in the pressure tube wall. The two factors that affects the behavior of the pressure tubes during LOCA conditions are the internal pressure and the local heating. Although the effect of internal pressure and of axially uniform temperature has been studied elsewhere, the effect of the local heating on the pressure tube behavior has not been modelled before. This paper shows that the bulging of a pressure tube at a hot spot is the result of the thermal stresses that are developed in a pressure tube during a LOCA transient. To isolate the local heating effect from the internal pressure, a series of single-effect experiments was performed. In these experiments, sections of a CANDU pressure tube were subjected to local heating only. The thermal profile and the local deformation were measured function of time. To quantify the effect of the thermal stresses on the bulging of pressure tubes at hot spots and to develop numerical tools that can predict such bulging, finite element analyses were performed rising the ABAQUS finite element computer code. Use of the measured thermal profiles in the ABAQUS finite element analysis, resulted in very good agreement between the predicted and measured displacements. (author)

  6. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    International Nuclear Information System (INIS)

    Krishnan, S.; Bhasin, V.; Mahajan, S.C.

    1997-01-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300 degrees C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered

  7. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S.; Bhasin, V.; Mahajan, S.C. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  8. Selected reading on introduction to pressure tube technology

    International Nuclear Information System (INIS)

    Causey, A.R.; Coleman, C.E.; Ells, C.E.

    1981-10-01

    Four lectures on pressure tube technology were presented at Sheridan Park, Ontario, on 1981 June 1. The titles were 'Pressure Tubes and Their Operational Environment', 'Fabrication, Inspection and Properties of Current Production Pressure Tubes', 'In-Reactor Deformation of Fuel Channels', and 'Potential Failure Modes in Pressure Tubes'. This report lists the references used in preparing the lectures. It is intended to provide a starting point in reading for people who need to become familiar with pressure tube technology but have little prior knowledge of the topic

  9. Database for Pressure Tube Diameter and Operation Data of Wolsong NPP

    International Nuclear Information System (INIS)

    Jung, Jong Yeob; Kim, W. Y.; Bae, J. H.; Park, J. H.

    2010-12-01

    Pressure tube of CANDU reactor which is a long cylindrical shape of its diameter about 10 cm and length of about 6m, can be expanded toward both radial and axial directions due to irradiation under the high pressure and temperature condition. As the irradiation period increases, the radial expansion due to creep of the pressure tube increases. The radial expansion of the pressure tube comes out the reduction of the coolability and it results in the power deration. The objectives of the current work is to establish the database for the measured diametral data of pressure tube and operational data from Wolsong NPP as a preliminary work of developing the prediction model for pressure tube diameter. In order to develop the database, measured data for total 86 channels were collected from Wolsong NPP 1, 2, 3 and 4 and analyzed. Based on the provided data, the operational conditions such as an axial temperature and a pressure of the channel and neutron fluxes were derived. All data were analysed to derive the correlation between the pressure tube diameter and the other operational parameters

  10. The cracking of pressure tubes in the Pickering reactor

    International Nuclear Information System (INIS)

    Ross-Ross, P.A.

    1978-01-01

    Small cracks in 17 of the 390 pressure tubes in Unit 3 of the 2056 MW (electrical) Pickering Generating Station and of 52 tubes in Unit 4, resulted in each of these units being out of service for many months. The cracks originated at areas of extremely high residual tensile stress produced by improper positioning of the rolling tool used during construction to join the pressure tube to its end-fitting. The mechanism of failure was delayed hydrogen cracking. (author)

  11. Optimal Design of Shock Tube Experiments for Parameter Inference

    KAUST Repository

    Bisetti, Fabrizio; Knio, Omar

    2014-01-01

    We develop a Bayesian framework for the optimal experimental design of the shock tube experiments which are being carried out at the KAUST Clean Combustion Research Center. The unknown parameters are the pre-exponential parameters and the activation

  12. High-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    Science.gov (United States)

    Tracy, S. J.; Smith, R. F.; Wicks, J. K.; Fratanduono, D. E.; Gleason, A. E.; Bolme, C.; Speziale, S.; Appel, K.; Prakapenka, V. B.; Fernandez Panella, A.; Lee, H. J.; MacKinnon, A.; Eggert, J.; Duffy, T. S.

    2017-12-01

    The behavior of silicon carbide (SiC) under shock loading was investigated through a series of time-resolved pump-probe x-ray diffraction (XRD) measurements. SiC is found at impact sites and has been put forward as a possible constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but crystal structure information was not obtained. We have carried out an in situ XRD study of shock-compressed SiC using the Matter in Extreme Conditions instrument of the Linac Coherent Light Source. The femtosecond time resolution of the x-ray free electron laser allows for the determination of time-dependent atomic arrangements during shock loading and release. Two high-powered lasers were used to generate ablation-driven compression waves in the samples. Time scans were performed using the same drive conditions and nominally identical targets. For each shot in a scan, XRD data was collected at a different probe time after the shock had entered the SiC. Probe times extended up to 40 ns after release. Scans were carried out for peak pressures of 120 and 185 GPa. Our results demonstrate that SiC transforms directly from the ambient tetrahedrally-coordinated phase to the octahedral B1 structure on the nanosecond timescale of laser-drive experiments and reverts to the tetrahedrally coordinated ambient phase within nanoseconds of release. The data collected at 120 GPa exhibit diffraction peaks from both compressed ambient phase and transformed B1 phase, while the data at 185 GPa show a complete transformation to the B1 phase. Densities determined from XRD peaks are in agreement with an extrapolation of previous continuum data as well as theoretical predictions. Additionally, a high degree of texture was retained in both the high-pressure phase as well as on back transformation. Two-dimensional fits to the XRD data reveal details of the

  13. Effect of back-pressure forcing on shock train structures in rectangular channels

    Science.gov (United States)

    Gnani, F.; Zare-Behtash, H.; White, C.; Kontis, K.

    2018-04-01

    The deceleration of a supersonic flow to the subsonic regime inside a high-speed engine occurs through a series of shock waves, known as a shock train. The generation of such a flow structure is due to the interaction between the shock waves and the boundary layer inside a long and narrow duct. The understanding of the physics governing the shock train is vital for the improvement of the design of high-speed engines and the development of flow control strategies. The present paper analyses the sensitivity of the shock train configuration to a back-pressure variation. The complex characteristics of the shock train at an inflow Mach number M = 2 in a channel of constant height are investigated with two-dimensional RANS equations closed by the Wilcox k-ω turbulence model. Under a sinusoidal back-pressure variation, the simulated results indicate that the shock train executes a motion around its mean position that deviates from a perfect sinusoidal profile with variation in oscillation amplitude, frequency, and whether the pressure is first increased or decreased.

  14. Shock tube measurements of the branching ratios of propene + OH -> products

    KAUST Repository

    Khaled, Fathi

    2014-07-25

    Absolute rate coefficients for the reaction of OH radical with propene (C3H6) and five deutrated isotopes, propene-1-d1 (CDHCHCH3), propene-1,1-d2 (CD2CHCH3), propene-2-d1 (CH2CDCH3), propene-3,3,3-d3 (CH2CHCD3), and propene-d6 (C3D6), were measured in a shock tube behind reflected shock conditions over the temperature range of 812 K – 1460 K and pressures near 1 atm. The reaction progress was followed by monitoring OH radical near 306.7 nm using UV laser absorption. The first experimental measurements for the branching ratio of the title reaction are reported and compared with theoretical calculations. The allylic H atom abstraction of propene by OH radicals was found to be the most dominant reaction pathway followed by propen-1-yl and propen-2-yl channels over the entire temperature range of this study which is in line with theoretical predictions. Arrhenius parameters for various site-specific rate coefficients are provided for kinetic modeling.

  15. Measurement of high-pressure shock waves in cryogenic deuterium-tritium ice layered capsule implosions on NIF.

    Science.gov (United States)

    Robey, H F; Moody, J D; Celliers, P M; Ross, J S; Ralph, J; Le Pape, S; Berzak Hopkins, L; Parham, T; Sater, J; Mapoles, E R; Holunga, D M; Walters, C F; Haid, B J; Kozioziemski, B J; Dylla-Spears, R J; Krauter, K G; Frieders, G; Ross, G; Bowers, M W; Strozzi, D J; Yoxall, B E; Hamza, A V; Dzenitis, B; Bhandarkar, S D; Young, B; Van Wonterghem, B M; Atherton, L J; Landen, O L; Edwards, M J; Boehly, T R

    2013-08-09

    The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.

  16. Molten fuel/coolant interaction studies: some results obtained with the Windscale small shock tube rig

    International Nuclear Information System (INIS)

    Higham, E.J.; Vaughan, G.J.

    1978-02-01

    Experiments are described in which water has been brought into contact with various molten metals in a shock tube, thus simulating the fall of coolant into molten uranium dioxide in a postulated reactor accident. Impact velocities of the water on to the molten material were in the range 5 to 7 m/s. Shock-pulse pressures in the water column after impact and particle size distributions of the dispersed resolidified material that was recovered were measured. The proportion of dispersed material and the size of the shock pulse (by comparison with that expected from water hammer alone) have been used as criteria for the occurrence of a molten fuel/coolant interaction and such interactions of varying degrees of violence have been found for water/aluminium, water/bismuth, water/tin, over a range of temperatures from 350 0 C to 950 0 C, for water/boric oxide, but not for water/magnesium. (author)

  17. N Reactor pressure tube 2566 postirradiation examination

    International Nuclear Information System (INIS)

    Scott, K.V.

    1978-01-01

    Pressure tube 2566 was removed from N Reactor in July, 1977 to initiate the postirradiation examination program required by the Technical Specifications. Destructive examination of the pressure tube, after a maximum accumulated fluence of 4.6 x 10 21 n/cm 2 (E > 1 MeV), was conducted at the Hanford Engineering Development Laboratory to determine the effects of reactor service on the mechanical properties and hydrogen absorption and corrosion characteristics of the pressure tube. Tube 2566 is the sixth tube removed for destructive examination since the initial reactor startup. Evaluation of test results reveal that no significant detrimental changes have occurred in the parameters studied, since the last tube was removed in 1974

  18. Numerical results from a study of LiH: the proposed standard material for the high pressure shock experiment

    International Nuclear Information System (INIS)

    Rogers, F.J.

    1975-01-01

    It is proposed to send a high pressure shock wave through a layer of LiH and then into a sample of high Z-material, resulting in a reflected shock wave back into the LiH. If the Hugoniot and some reflected Hugoniots for LiH are known the EOS of the sample can be obtained from the ''impedance matching method.'' The theory and its range of validity are described

  19. Experimental Shock Transformation of Gypsum to Anhydrite: A New Low Pressure Regime Shock Indicator

    Science.gov (United States)

    Bell, Mary S.; Zolensky, Michael E.

    2011-01-01

    The shock behavior of gypsum is important in understanding the Cretaceous/Paleogene event and other terrestrial impacts that contain evaporite sediments in their targets (e.g., Mars Exploration Rover Spirit detected sulfate at Gusev crater, [1]). Most interest focuses on issues of devolatilization to quantify the production of SO2 to better understand its role in generating a temporary atmosphere and its effects on climate and biota [2,3]. Kondo and Ahrens [4] measured induced radiation emitted from single crystal gypsum shocked to 30 and 40 GPa. They observed greybody emission spectra corresponding to temperatures in the range of 3,000 to 4,000 K that are a factor of 2 to 10 times greater than calculated pressure-density energy equation of state temperatures (Hugoniot) and are high enough to melt gypsum. Chen et al. [5] reported results of shock experiments on anhydrite, gypsum, and mixtures of these phases with silica. Their observations indicated little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another report of shock experiments on calcite, anhydrite, and gypsum, Badjukov et al. [6] observed only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa but have not experimentally shocked gypsum in a step-wise manner to constrain possible incipient transformation effects. Schmitt and Hornemann [7] shock loaded anhydrite and quartz to a peak pressure of 60 GPa and report the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggested that recrystallization of anhydrite grains is the result of a solid-state transformation. They concluded that significant decomposition of anhydrite requires shock pressures higher than 60 GPa. Gupta et al. [8

  20. Modelling of pressure tube Quench using PDETWO

    International Nuclear Information System (INIS)

    Parlatan, Y.; Lei, Q.M.; Kwee, M.

    2004-01-01

    Transient two-dimensional heat conduction calculations have been carried out to determine the time-dependent temperature distribution in an overheated pressure tube during quenching with water. The purpose of the calculations is to provide input for evaluation of thermal (secondary) stresses in the pressure tube due to quench. The quench phenomenon in pressure tubes could occur in several hypothetical accident scenarios, including incidents involving intermittent buoyancy-induced flow during outages. In these scenarios, there will be two (radial and axial) or three dimensional temperature gradients, resulting in thermal stresses in the pressure tube, as the water front reaches and starts to cool down the hot pressure tube. The transient, two-dimensional heat conduction equation in the pressure tube during quench is solved using a FORTRAN package called PDETWO, available in the open literature for solving time-dependent coupled systems of non-linear partial differential equations over a two-dimensional rectangular region. This routine is based on finite difference solution of coupled, non-linear partial differential equations. Temperature gradient in the circumferential gradient is neglected for conservatism and convenience. The advancing water front is not modelled explicitly, and assumed to be at a uniform temperature and moving at a constant velocity inferred from experimental data. For outer surface and both ends of the pressure tube in the axial direction, a zero-heat flux boundary condition is assumed, while for the inner surface a moving water-quench front is assumed by appropriately varying the fluid temperature and the heat transfer coefficient. The pressure tube is assumed to be at a uniform temperature of 400 o C initially, to represent conditions expected during an intermittent buoyancy-influenced flow scenario. The results confirm the expectations that axial temperature gradients and associated heat fluxes are small in comparison with those in the

  1. Shock Wave Dynamics in Weakly Ionized Plasmas

    Science.gov (United States)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  2. Pressure vessels and methods of sealing leaky tubes disposed in pressure vessels

    International Nuclear Information System (INIS)

    Larson, G.C.

    1980-01-01

    This invention relates to pressure vessels and to methods of sealing leaky tubes in them and is especially applicable to pressure vessels in the form of sheet-and-tube type heat exchangers constructed with a large number of relatively small diameter tubes grouped in a bundle. To seal off a leaky tube in such a heat exchanger an explosive activated plug in the form of a hollow metal body is used, inserted at each end of the tube to be sealed. Using the arrangement of pressure vessel and associated tube sheets and the explosive activated plug method of sealing a leaky tube as described in this invention it is claimed that distortion of the adjacent tubes and the tube sheets is reduced when the explosive activated plugs are detonated. (U.K.)

  3. Pressure thermal shock analysis for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Galik, G.; Kutis, V.; Jakubec, J.; Paulech, J.; Murin, J.

    2015-01-01

    The appearance of structural weaknesses within the reactor pressure vessel or its structural failure caused by crack formation during pressure thermal shock processes pose as a severe environmental hazard. Coolant mixing during ECC cold water injection was simulated in a detailed CFD analysis. The temperature distribution acting on the pipe wall internal surface was calculated. Although, the results show the formation of high temperature differences and intense gradients, an additional structural analysis is required to determine the possibility of structural damage from PTS. Such an analysis will be the subject of follow-up research. (authors)

  4. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.

    2015-10-01

    The demand for fuels with high anti-knock quality has historically been rising, and will continue to increase with the development of downsized and turbocharged spark-ignition engines. Butanol isomers, such as 2-butanol and tert-butanol, have high octane ratings (RON of 105 and 107, respectively), and thus mixed butanols (68.8% by volume of 2-butanol and 31.2% by volume of tert-butanol) can be added to the conventional petroleum-derived gasoline fuels to improve octane performance. In the present work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range of 800-1200K. Next, 10vol% and 20vol% of mixed butanols (MB) were blended with two different toluene/n-heptane/iso-octane (TPRF) fuel blends having octane ratings of RON 90/MON 81.7 and RON 84.6/MON 79.3. These MB/TPRF mixtures were investigated in the shock tube conditions similar to those mentioned above. A chemical kinetic model was developed to simulate the low- and high-temperature oxidation of mixed butanols and MB/TPRF blends. The proposed model is in good agreement with the experimental data with some deviations at low temperatures. The effect of mixed butanols addition to TPRFs is marginal when examining the ignition delay times at high temperatures. However, when extended to lower temperatures (T < 850K), the model shows that the mixed butanols addition to TPRFs causes the ignition delay times to increase and hence behaves like an octane booster at engine-like conditions. © 2015 The Combustion Institute.

  5. Propagating Structure Of A Microwave Driven Shock wave Inside A Tube

    International Nuclear Information System (INIS)

    Shimada, Yutaka; Shibata, Teppei; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Arakawa, Yoshihiro

    2010-01-01

    The thrust generation process of a microwave rocket is similar to a pulse detonation engine, and understanding the interactions between microwave plasma and shock waves is important. Shadowgraph images of the microwave plasma generated in a tube under atmospheric air were taken. The observed plasma and shock wave were propagating one-dimensionally at constant velocity inside the tube. In order to understand the flow field inside the rocket, one-dimensional CFD analysis was conducted. With the change of microwave power density, the structure of the flow field was classified into two regimes: Microwave Supported Combustion (MSC), and Microwave Supported Detonation (MSD). The structure of the MSD was different from the structure of a chemical detonation, which implied the existence of a preheating in front of the shock wave. Furthermore, the flight performance was estimated by calculating the momentum coupling coefficient. It was confirmed that the efficiency was nearly constant in the MSD regime, with the increase of microwave power density.

  6. Optimal Design of Shock Tube Experiments for Parameter Inference

    KAUST Repository

    Bisetti, Fabrizio

    2014-01-06

    We develop a Bayesian framework for the optimal experimental design of the shock tube experiments which are being carried out at the KAUST Clean Combustion Research Center. The unknown parameters are the pre-exponential parameters and the activation energies in the reaction rate expressions. The control parameters are the initial mixture composition and the temperature. The approach is based on first building a polynomial based surrogate model for the observables relevant to the shock tube experiments. Based on these surrogates, a novel MAP based approach is used to estimate the expected information gain in the proposed experiments, and to select the best experimental set-ups yielding the optimal expected information gains. The validity of the approach is tested using synthetic data generated by sampling the PC surrogate. We finally outline a methodology for validation using actual laboratory experiments, and extending experimental design methodology to the cases where the control parameters are noisy.

  7. 21 CFR 868.5860 - Pressure tubing and accessories.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pressure tubing and accessories. 868.5860 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5860 Pressure tubing and accessories. (a) Identification. Pressure tubing and accessories are flexible or rigid devices intended to...

  8. Improvement of an installation to generate shock waves

    Energy Technology Data Exchange (ETDEWEB)

    1974-04-29

    An installation to generate a shock wave in a fluid layer is described. A water projectile is moved at a high velocity. It leaves behind an underpressure in which the adjacent water implodes, therby generating the desired shock wave. The installation is characterized by a tube-shaped hull in which a piston can move freely. One side of the hull is connected to the pressure-generator chamber of the piston. (6 claims)

  9. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    International Nuclear Information System (INIS)

    Sriram, R; Jagadeesh, G; Ram, S N; Hegde, G M; Nayak, M M

    2015-01-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg −1 ) and 8.67 (total enthalpy 1.6 MJ kg −1 ), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone. (paper)

  10. Some characteristics of the digitization pulses from high pressure neon-helium flash tubes

    International Nuclear Information System (INIS)

    Chan, D.S.K.; Leung, S.K.; Ng, L.K.

    1979-01-01

    Characteristics of the digitization output pulses from high pressure neon-helium flash tubes were studied under various operation conditions using square ultra-high voltage pulses. Properties reported by previous workers were compared. Two discharge mechanisms, the Townsend avalanche discharge and the streamer discharge, were observed to occur in sequence in some events. The output waveforms for both discharge mechanisms were studied in detail. The charge induced on a detecting probe was also estimated from the measured data. (Auth.)

  11. Experimental particle acceleration by water evaporation induced by shock waves

    Science.gov (United States)

    Scolamacchia, T.; Alatorre Ibarguengoitia, M.; Scheu, B.; Dingwell, D. B.; Cimarelli, C.

    2010-12-01

    Shock waves are commonly generated during volcanic eruptions. They induce sudden changes in pressure and temperature causing phase changes. Nevertheless, their effects on flowfield properties are not well understood. Here we investigate the role of gas expansion generated by shock wave propagation in the acceleration of ash particles. We used a shock tube facility consisting of a high-pressure (HP) steel autoclave (450 mm long, 28 mm in internal diameter), pressurized with Ar gas, and a low-pressure tank at atmospheric conditions (LP). A copper diaphragm separated the HP autoclave from a 180 mm tube (PVC or acrylic glass) at ambient P, with the same internal diameter of the HP reservoir. Around the tube, a 30 cm-high acrylic glass cylinder, with the same section of the LP tank (40 cm), allowed the observation of the processes occurring downstream from the nozzle throat, and was large enough to act as an unconfined volume in which the initial diffracting shock and gas jet expand. All experiments were performed at Pres/Pamb ratios of 150:1. Two ambient conditions were used: dry air and air saturated with steam. Carbon fibers and glass spheres in a size range between 150 and 210 μm, were placed on a metal wire at the exit of the PVC tube. The sudden decompression of the Ar gas, due to the failure of the diaphragm, generated an initial air shock wave. A high-speed camera recorded the processes between the first 100 μsec and several ms after the diaphragm failure at frame rates ranging between 30,000 and 50,000 fps. In the experiments with ambient air saturated with steam, the high-speed camera allowed to visualize the condensation front associated with the initial air shock; a maximum velocity of 788 m/s was recorded, which decreases to 524 m/s at distance of 0.5 ±0.2 cm, 1.1 ms after the diaphragm rupture. The condensation front preceded the Ar jet front exhausting from the reservoir, by 0.2-0.5 ms. In all experiments particles velocities following the initial

  12. Creation of ultra-high-pressure shocks by the collision of laser-accelerated disks: experiment and theory

    International Nuclear Information System (INIS)

    Rosen, M.D.; Phillion, D.W.; Price, R.H.; Campbell, E.M.; Obenschain, S.P.; Whitlock, R.R.; McLean, E.A.; Ripin, B.H.

    1983-01-01

    We have used the SHIVA laser system to accelerate carbon disks to speeds in excess of 100 km/sec. The 3KJ/3 ns pulse, on a 1 mm diameter spot of a single disk produced a conventional shock of about 5 MB. The laser energy can, however, be stored in kinetic motion of this accelerated disk and delivered (reconverted to thermal energy) upon impact with another carbon disk. This collision occurs in a time much shorter than the 3 ns pulse, thus acting as a power amplifier. The shock pressures measured upon impact are estimated to be in the 20 MB range, thus demonstrating the amplification power of this colliding disk technique in creating ultra-high pressures. Theory and computer simulations of this process will be discussed, and compared with the experiment

  13. Shock-induced synthesis of high temperature superconducting materials

    Science.gov (United States)

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  14. Pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Whitman, G.D.; McCulloch, R.W.

    1982-01-01

    The primary objective of the ORNL pressurized-thermal-shock (PTS) experiments is to verify analytical methods that are used to predict the behavior of pressurized-water-reactor vessels under these accident conditions involving combined pressure and thermal loading. The criteria on which the experiments are based are: scale large enough to attain effective flaw border triaxial restraint and a temperature range sufficiently broad to produce a progression from frangible to ductile behavior through the wall at a given time; use of materials that can be completely characterized for analysis; stress states comparable to the actual vessel in zones of potential flaw extension; range of behavior to include cleavage initiation and arrest, cleavage initiation and arrest on the upper shelf, arrest in a high K/sub I/ gradient, warm prestressing, and entirely ductile behavior; long and short flaws with and without stainless steel cladding; and control of loads to prevent vessel burst, except as desired. A PTS test facility is under construction which will enable the establishment and control of wall temperature, cooling rate, and pressure on an intermediate test vessel (ITV) in order to simulate stress states representative of an actual reactor pressure vessel

  15. Vortex ring formation at the open end of a shock tube: A particle image velocimetry study

    Science.gov (United States)

    Arakeri, J. H.; Das, D.; Krothapalli, A.; Lourenco, L.

    2004-04-01

    The vortex ring generated subsequent to the diffraction of a shock wave from the open end of a shock tube is studied using particle image velocimetry. We examine the early evolution of the compressible vortex ring for three-exit shock Mach numbers, 1.1, 1.2, and 1.3. For the three cases studied, the ring formation is complete at about tUb/D=2, where t is time, Ub is fluid velocity behind shock as it exits the tube and D is tube diameter. Unlike in the case of piston generated incompressible vortex rings where the piston velocity variation with time is usually trapezoidal, in the shock-generated vortex ring case the exit fluid velocity doubles from its initial value Ub before it slowly decays to zero. At the end of the ring formation, its translation speed is observed to be about 0.7 Ub. During initial formation and propagation, a jet-like flow exists behind the vortex ring. The vortex ring detachment from the tailing jet, commonly referred to as pinch-off, is briefly discussed.

  16. Geometric theory of flexible and expandable tubes conveying fluid: equations, solutions and shock waves

    OpenAIRE

    Gay-Balmaz, François; Putkaradze, Vakhtang

    2018-01-01

    We present a theory for the three-dimensional evolution of tubes with expandable walls conveying fluid. Our theory can accommodate arbitrary deformations of the tube, arbitrary elasticity of the walls, and both compressible and incompressible flows inside the tube. We also present the theory of propagation of shock waves in such tubes and derive the conservation laws and Rankine-Hugoniot conditions in arbitrary spatial configuration of the tubes, and compute several examples of particular sol...

  17. Failure maps for internally pressurized Zr-2.5% Nb pressure tubes with circumferential temperature variations

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1986-01-01

    During some postulated loss-of-coolant accidents, the pressure tube temperature may rise before the internal pressure drops, causing the pressure tube to balloon. The temperature around the pressure tube circumference would likely be nonuniform, producing localized deformation that could possibly cause failure. The computer program, GRAD, was used to determine the circumferential temperature distribution required to cause an internally pressurized Zr-2.5% Nb pressure tube to fail before coming into full contact with its calandria tube. These results were used to construct failure maps. 7 refs

  18. Development of heat treated Zr-2.5% Nb alloy tubes for pressure tubes

    International Nuclear Information System (INIS)

    Saibaba, N.; Jha, S.K.; Tonpe, S.

    2011-01-01

    Zr-2.5% Nb alloy is the candidate material for pressure tubes of Pressurized Heavy Water Reactors (PHWR), and are manufactured in cold working condition while heat treated pressure tubes are used in RBMK and FUGEN type of reactors. The diametral creep of these tubes is the life limiting factor. This paper presents the extensive work carried out for the optimization of process parameters to manufacture heat treated Zr-2.5% Nb pressure tubes. Extensive dilactometry study was carried out to establish the transus temperature for the alloy and the effect of soaking temperature and cooling rate on the microstructure was characterized. On the basis of the study, water quenching (at 883 deg C) in the a b region with 20-25% primary a phase was selected, further cold worked, aged and finally autoclaved. Mechanical properties of the finished tubes were found to be comparable to the cold worked route. Large number of full sized tubes of about 700 - 800 mm long was produced to establish the repeatability. (author)

  19. Shock wave propagation in neutral and ionized gases

    International Nuclear Information System (INIS)

    Podder, N. K.; Wilson IV, R. B.; Bletzinger, P.

    2008-01-01

    Preliminary measurements on a recently built shock tube are presented. Planar shock waves are excited by the spark discharge of a capacitor, and launched into the neutral argon or nitrogen gas as well as its ionized glow discharge in the pressure region 1-17 Torr. For the shock wave propagation in the neutral argon at fixed capacitor charging voltage, the shock wave velocity is found to increase nonlinearly at the lower pressures, reach a maximum at an intermediate pressure, and then decrease almost linearly at the higher pressures, whereas the shock wave strength continues to increase at a nonlinear rate over the entire range of pressure. However, at fixed gas pressure the shock wave velocity increases almost monotonically as the capacitor charging voltage is increased. For the shock wave propagation in the ionized argon glow, the shock wave is found to be most influenced by the glow discharge plasma current. As the plasma current is increased, both the shock wave propagation velocity and the dispersion width are observed to increase nonlinearly

  20. Optimal Design and Model Validation for Combustion Experiments in a Shock Tube

    KAUST Repository

    Long, Quan

    2014-01-06

    We develop a Bayesian framework for the optimal experimental design of the shock tube experiments which are being carried out at the KAUST Clean Combustion Center. The unknown parameters are the pre-exponential parameters and the activation energies in the reaction rate functions. The control parameters are the initial hydrogen concentration and the temperature. First, we build a polynomial based surrogate model for the observable related to the reactions in the shock tube. Second, we use a novel MAP based approach to estimate the expected information gain in the proposed experiments and select the best experimental set-ups corresponding to the optimal expected information gains. Third, we use the synthetic data to carry out virtual validation of our methodology.

  1. Decontamination and recycle of zirconium pressure tubes from Pressurized Heavy Water Reactor

    International Nuclear Information System (INIS)

    Gantayet, L.M.; Verma, R.; Remya Devi, P.S.; Banerjee, S.; Kotak, V.; Raha, A.; Sandeep, K.C.; Joshi, Shreeram W.; Lali, A.M.

    2009-01-01

    An ion exchange process has been developed for decontamination of zirconium pressure tubes from Pressurized Heavy Water Reactor and recycling of neutronically improved zirconium. Distribution coefficient, equilibrium isotherm, kinetic and breakthrough data were used to develop the separation process. Effect of gamma radiation on indigenous resins was also studied to assess their suitability in high radiation field. (author)

  2. High density turbulent plasma processes from a shock tube. Final performance report

    International Nuclear Information System (INIS)

    Johnson, J.A. III.

    1997-01-01

    A broad-based set of measurements has begun on high density turbulent plasma processes. This includes determinations of new plasma physics and the initiation of work on new diagnostics for collisional plasmas as follows: (1) A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of prompt relaminarization or of any systematic influence of end-wall material thermal conductivities on the turbulence parameters. (2) Point fluorescence emissions and averaged spectral line evolutions in turbulent plasmas produced in both the primary and the reflected shock wave flows exhibit ergodicity in the standard turbulence parameters. The data show first evidence of a reverse energy cascade in the collisional turbulent plasma. This suggests that the fully turbulent environment can be described using a stationary state formulation. In these same data, the author finds compelling evidence for a turbulent Stark effect on neutral emission lines in these data which is associated with evidence of large coherent structures and dominant modes in the Fourier analyses of the fluctuations in the optical spectra. (3) A neutral beam generator has been assembled by coupling a Colutron Ion Gun to a charge exchange chamber. Beam-target collisions where the target species is neutral and the beam is either singly charged or neutral have been performed using argon as the working gas. Spectral analysis of the emission shows specific radiative transitions characteristic of both Ar I and Ar II, indicating that some ionization of the target gas results. Gas and plasma parameters such as density, pressure, temperature and flow velocity and their fluctuations can now be followed in real time by spectroscopic analysis of carefully chosen radiative emissions

  3. Probabilistic integrity assessment of pressure tubes in an operating pressurized heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Young-Jin; Park, Heung-Bae [KEPCO E and C, 188 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-870 (Korea, Republic of); Lee, Jung-Min; Kim, Young-Jin [School of Mechanical Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon-si, Gyeonggi-do 440-746 (Korea, Republic of); Ko, Han-Ok [Korea Institute of Nuclear Safety, 34 Gwahak-ro, Yuseong-gu, Daejeon-si 305-338 (Korea, Republic of); Chang, Yoon-Suk, E-mail: yschang@khu.ac.kr [Department of Nuclear Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2012-02-15

    Even though pressure tubes are major components of a pressurized heavy water reactor (PHWR), only small proportions of pressure tubes are sampled for inspection due to limited inspection time and costs. Since the inspection scope and integrity evaluation have been treated by using a deterministic approach in general, a set of conservative data was used instead of all known information related to in-service degradation mechanisms because of inherent uncertainties in the examination. Recently, in order that pressure tube degradations identified in a sample of inspected pressure tubes are taken into account to address the balance of the uninspected ones in the reactor core, a probabilistic approach has been introduced. In the present paper, probabilistic integrity assessments of PHWR pressure tubes were carried out based on accumulated operating experiences and enhanced technology. Parametric analyses on key variables were conducted, which were periodically measured by in-service inspection program, such as deuterium uptake rate, dimensional change rate of pressure tube and flaw size distribution. Subsequently, a methodology to decide optimum statistical distribution by using a robust method adopting a genetic algorithm was proposed and applied to the most influential variable to verify the reliability of the proposed method. Finally, pros and cons of the alternative distributions comparing with corresponding ones derived from the traditional method as well as technical findings from the statistical assessment were discussed to show applicability to the probabilistic assessment of pressure tubes.

  4. Investigation of Heat Transfer to a Flat Plate in a Shock Tube.

    Science.gov (United States)

    1987-12-01

    2 Objectives and Scope . . . . . .. .. .. .... 5 11. Theory ............... ....... 7 Shock Tube Principles........... 7 Boundary Layer Theory ...in *excess of theory , but the rounded edge flat plate exhibited data which matched or was less than what theory predicted for each Mach number tested...normal shock advancing along an infinite flat plate. For x< Ugt there is a region of interaction between the downstream influence of the leading edge

  5. Application of the VAW tube digester for metallurgical pressure-leaching processes

    International Nuclear Information System (INIS)

    Kaempf, F.; Pietsch, H.B.

    1978-01-01

    Problems associated with the treatment of complex and refractory ores or concentrates, as well as those related to environmental factors, have led to increased interest in hydrometallurgy under elevated temperatures and pressures. Pressure leaching can be carried out in vertical, horizontal or spherical autoclaves equipped with mechanical agitators. If high throughput capacities are catered for, the division of a conventional plant into several units is inevitable. By contrast, the VAW (Vereinigte Aluminium-Werke Aktiengesellschaft) tube digester enables hydrometallurgical processes to be carried out under pressure and at a high temperature with the use of a basically simple technology, extremely high specific throughput and improved thermal economics being achieved. The advantages of the tube digester over vessel autoclaves are described, and details of laboratory investigations into the applicability of tube digesters to various metallurgical applications are given. Test results are given for the leaching of refractory uranium ores. (author)

  6. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    International Nuclear Information System (INIS)

    Kuznetsov, E A; Poniaev, S A

    2015-01-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux. (paper)

  7. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    Science.gov (United States)

    Kuznetsov, E. A.; Poniaev, S. A.

    2015-12-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.

  8. Performance of pressure tubes in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, D.; Griffiths, M.; Bickel, G.; Buyers, A.; Coleman, C.; Nordin, H.; St Lawrence, S. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The pressure tubes in CANDU reactors typically operate for times up to about 30 years prior to refurbishment. The in-reactor performance of Zr-2.5Nb pressure tubes has been evaluated by sampling and periodic inspection. This paper describes the behavior and discusses the factors controlling the behaviour of these components. The Zr–2.5Nb pressure tubes are nominally extruded at 815{sup o}C, cold worked nominally 27%, and stress relieved at 400 {sup o}C for 24 hours, resulting in a structure consisting of elongated grains of hexagonal close-packed alpha-Zr, partially surrounded by a thin network of filaments of body-centred-cubic beta-Zr. These beta-Zr filaments are meta-stable and contain about 20% Nb after extrusion. The stress-relief treatment results in partial decomposition of the beta-Zr filaments with the formation of hexagonal close-packed alpha-phase particles that are low in Nb, surrounded by a Nb-enriched beta-Zr matrix. The material properties of pressure tubes are determined by variations in alpha-phase texture, alpha-phase grain structure, network dislocation density, beta-phase decomposition, and impurity concentration that are a function of manufacturing variables. The pressure tubes operate at temperatures between 250 {sup o}C and 310 {sup o}C with coolant pressures up to about 11 MPa in fast neutron fluxes up to 4 x 10{sup 17} n·m{sup -2}·s{sup -1} (E > 1 MeV) and the properties are modified by these conditions. The properties of the pressure tubes in an operating reactor are therefore a function of both manufacturing and operating condition variables. The ultimate tensile strength, fracture toughness, and delayed hydride-cracking properties (velocity (V) and threshold stress intensity factor (K{sub IH})) change with irradiation, but all reach a nearly limiting value at a fluence of less than 10{sup 25} n·m{sup -2} (E > 1 MeV). At this point the ultimate tensile strength is raised about 200 MPa, toughness is reduced by about 50%, V increases

  9. Generation of sub-gigabar-pressure shocks by a hyper-velocity impact in the collider driven by laser-induced cavity pressure

    Science.gov (United States)

    Badziak, J.; Kucharik, M.; Liska, R.

    2018-02-01

    The generation of high-pressure shocks in the newly proposed collider in which the projectile impacting a solid target is driven by the laser-induced cavity pressure acceleration (LICPA) mechanism is investigated using two-dimensional hydrodynamic simulations. The dependence of parameters of the shock generated in the target by the impact of a gold projectile on the impacted target material and the laser driver energy is examined. It is found that both in case of low-density (CH, Al) and high-density (Au, Cu) solid targets the shock pressures in the sub-Gbar range can be produced in the LICPA-driven collider with the laser energy of only a few hundreds of joules, and the laser-to-shock energy conversion efficiency can reach values of 10 - 20 %, by an order of magnitude higher than the conversion efficiencies achieved with other laser-based methods used so far.

  10. Probable causes of damage of heat-exchange tubes of low-pressure-exchanges of PND-3 type and repair methods

    Science.gov (United States)

    Trifonov, N. N.; Esin, S. B.; Nikolaenkova, E. K.; Sukhorukov, Yu. G.; Svyatkin, F. A.; Sintsova, T. G.; Modestov, V. S.

    2017-08-01

    The structures of low-pressure heaters (LPH), which are installed at nuclear power plants with the K-1000-60/1500 type turbine plants are considered. It was revealed that only the PND-3 type low-pressure heaters have the damages of the heat exchange tubes. For a short operation life, the number of the damaged heat-exchange tubes of PND-3 is approximately 50 pcs for Kalinin NPP and 100-150 pcs for Balakovo NPP. The low-pressure heaters were manufactured at AO Ural Plant of Chemical Machine-Building "Uralkhimmash," OAO Taganrog Boiler-Making Works "Krasny Kotelshchik," and Vitkovice Machinery Group, but the damage nature of the heat-exchange tubes is identical for all PND-3. The damages occur in the place of passage of the heat exchange tubes through the first, the second, and the third partitions over the lower tube plate (the first path of the turbine condensate). Hydraulic shocks can be one of the possible causes of the damage of the heat-exchange tubes of PND-3. The analysis of the average thermal and dynamic loads of the tube systems of PND-1-PND-4 revealed that PND-3 by the thermal power are loaded 1.4-1.6 times and by the dynamic effects are loaded 1.8-2.0 times more than the remaining LPHs. Another possible cause of damage can be the cascaded drain of the separate into PND-4 and then through the drainage heat exchange into PND-3. An additional factor can be the structure of the condensate drainage unit. The advanced system of the heating steam flow and pumping scheme of the separate drain using the existing drainage pumps of PND-3 for K-1000-60/1500 turbine plants for Balakovo and Kalinin NPPs were proposed. The considered decisions make it possible to reduce the flow rate of the heating steam condensate from PND-3 into PND-4 and the speed of the heating steam in the tube space of PND-3 and eliminate the occurrence of hydraulic shocks and damages of the heat exchanger tubes.

  11. Sample summary report for ARG 1 pressure tube sample

    International Nuclear Information System (INIS)

    Belinco, C.

    2006-01-01

    The ARG 1 sample is made from an un-irradiated Zr-2.5% Nb pressure tube. The sample has 103.4 mm ID, 112 mm OD and approximately 500 mm length. A punch mark was made very close to one end of the sample. The punch mark indicates the 12 O'clock position and also identifies the face of the tube for making all the measurements. ARG 1 sample contains flaws on ID and OD surface. There was no intentional flaw within the wall of the pressure tube sample. Once the flaws are machined the pressure tube sample was covered from outside to hide the OD flaws. Approximately 50 mm length of pressure tube was left open at both the ends to facilitate the holding of sample in the fixtures for inspection. No flaw was machined in this zone of 50 mm on either end of the pressure tube sample. A total of 20 flaws were machined in ARG 1 sample. Out of these, 16 flaws were on the OD surface and the remaining 4 on the ID surface of the pressure tube. The flaws were characterized in to various groups like axial flaws, circumferential flaws, etc

  12. Control of adverse effects of explosive blasting in mines by using shock tube (non-electric) initiation systems and its future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P.D. [Maharashtra Explosives Ltd., Nagpur (India)

    2000-04-01

    Every kind of blasting in mines produces some adverse effects on environment, such as ground vibration, noise, fly rock etc. Presently, for restricting these adverse effects, use of shock tube (non-electric) initiation systems are gaining momentum. There are some inherent shortcomings of this initiation system regarding chances of misfires. This paper discusses the various adverse effects of blasting, advantages of shock tube initiation system and the shortcomings of shock tube initiation system regarding chances of misfire and how misfire arises out of failure of shock tube initiation system is different and more dangerous than the misfire occurring due to failure of conventional system (with detonating fuse and cord relays). 1 tab.

  13. Shock ignition of high gain inertial fusion capsules

    International Nuclear Information System (INIS)

    Schurtz, G.; Ribeyre, X.; Lebel, E.; Casner, A.

    2010-01-01

    Complete text of publication follows. Inertial Confinement Fusion relies on the compression of small amounts of an equimolar mix of Deuterium and Tritium (DT) up to volumic masses of several hundreds of g/cm 3 . Such high densities are obtained by means of the implosion of a spherical shell made of cryogenic DT fuel. In the conventional scheme a hot spot is formed in the central part of the pellet at the end of the implosion. If the pressure of this hot spot is large enough (several hundreds of Gbars), thermonuclear heating occurs with a characteristic time shorter than the hydrodynamic confinement time and the target self ignites. Since the central hot spot pressure results from the conversion of the shell kinetic energy into thermal energy, the threshold for the ignition of a given mass of DT is a direct function of the implosion velocity. Typical implosion velocities for central self ignition are of the order of 400 km/s. Such high velocities imply both a strong acceleration of the shell and the use of large aspect ration shells in order to optimize the hydrodynamic efficiency of the implosion, at least in direct drive. These two features strongly enhance the risk of shell beak up at time of acceleration under the Rayleigh-Taylor instability. Furthermore the formation of the hot spot may itself the unstable, this reducing its effective mass. High compression may be achieved at much lower velocities, thus reducing the energy budget and enhancing the implosion safety, but the corresponding fuel assembly requires an additional heating in order to reach ignition. This heating may be obtained from a 70-100 kJ laser pulse, delivered in 10-15 ps (Fast Ignition). An alternative idea is to boost up the central pressure of a target imploded at a sub-ignition velocity by means of a convergent strong shock launched at the end of the compression phase. This Shock Ignition (SI) concept has been suggested in 1983 by Scherbakov et al. More recently, R. Betti et al. developed

  14. Shock-induced decomposition of a high density glass (ZF6)

    Science.gov (United States)

    Zhou, Xianming; Liu, Xun; Li, Jiabo; Li, Jun; Cao, Xiuxia

    2011-07-01

    The dynamic high-pressure behavior of a high density glass (ZF6) was investigated in this study. The Hugoniot data, shock temperature (TH) and release sound velocity (C) of ZF6 were measured by a time-resolved multi-channel pyrometer in the shock pressure (PH) range of 50-170 GPa. The Hugoniot data is in accord with the Los Alamos Scientific Laboratory (LASL) shock Hugoniot data and shows a good linearity over 21 GPa. Polymorphic phase transitions were identified by the kinks in the measured TH-PH and C-PH relationships. The onset pressures of the transformations are ˜75 and ˜128 GPa, respectively. A thermodynamic calculation suggests that the phase transition at 75 GPa is its disproportionation to massicot (high pressure phase of PbO) and melted silica while the transition at 128 GPa is from the melting of massicot.

  15. In situ sampling for pressure tube deuterium concentration

    International Nuclear Information System (INIS)

    Harrington, A.J.; Kittmer, C.A.

    1988-01-01

    The present method of assessing the useful life of pressure tubes in CANDU (CANada Deuterium Uranium) reactors requires the periodic removal and examination of a tube. Special tooling was developed at Atomic Energy of Canada Limited (AECL) to obtain a sample of material from a pressure tube without removing the tube from the reactor. The sampling tool concept has been successfully used by Ontario Hydro during scheduled outages at the Pickering Nuclear Generating Station (PNGS). (author)

  16. Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves

    KAUST Repository

    Hanson, Ronald K.

    2013-09-01

    We report a constrained-reaction-volume strategy for conducting kinetics experiments behind reflected shock waves, achieved in the present work by staged filling in a shock tube. Using hydrogen-oxygen ignition experiments as an example, we demonstrate that this strategy eliminates the possibility of non-localized (remote) ignition in shock tubes. Furthermore, we show that this same strategy can also effectively eliminate or minimize pressure changes due to combustion heat release, thereby enabling quantitative modeling of the kinetics throughout the combustion event using a simple assumption of specified pressure and enthalpy. We measure temperature and OH radical time-histories during ethylene-oxygen combustion behind reflected shock waves in a constrained reaction volume and verify that the results can be accurately modeled using a detailed mechanism and a specified pressure and enthalpy constraint. © 2013 The Combustion Institute.

  17. Method of reactivity control in pressure tube reactor

    International Nuclear Information System (INIS)

    Fukumura, Nobuo.

    1988-01-01

    Purpose: To provide a method of controlling reactivity in a pressure tube reactor at high conversion ratio intended for high burn-up degree. Method: Control tubes are inserted in heavy water moderator. Light water is filled in the tubes at the initial burning stage. Along with the advance of the burning, the light water is gradually removed and replaced with gases of less reactive nuclear reactivity with neutrons such as air or gaseous carbon dioxide. The tubes are made of less neutron absorbing material such as aluminum. By filling light water, infinite multiplication factor is reduced to suppress the reactivity at the initial burning stage. As light water is gradually removed and replaced with air, etc., it provides an effect like that elimination of heavy water moderator to increase the conversion ratio. Accordingly, nuclear fission materials are produced additionally by so much to extend the burn-up degree. In this way, it can provide excellent effect in realizing high burn-up ratio and high conversion ratio. (Kamimura, M.)

  18. Modelling of oxidation and hydriding behaviour of Zircaloy-2 pressure tubes in PHWR

    International Nuclear Information System (INIS)

    Sah, D.N.; Sunil Kumar; Khan, K.B.

    2002-01-01

    A computer model named DOCTOR (Deuteriding of Coolant Tubes during Operation of Reactor) has been developed for predicting the axial profile of oxide thickness and hydrogen (Deuterium) concentration in PHWR pressure tubes. This model is applicable to single channel or full core analysis. The main source of hydrogen is considered to be oxidation of pressure tube on the i.d. surface by high temperature coolant water. Three stages of oxidation is considered namely, pre- transition, post transition and accelerated. Oxidation rate is considered to be dependent on channel power, axial power/flux distribution, coolant temperature and pre-existing oxide thickness at the location. The kinetics parameters for oxidation model are derived from the actual measurement of oxide thickness on a number of pressure tubes examined in PIE Division. The input data required for the model are: channel power, channel power factor, axial flux distribution, coolant inlet temperature, critical oxide thickness, hydrogen pick up fraction, initial hydrogen in the material and time of operation (efpy). The model calculates the oxide layer thickness on the inside surface of the pressure tube along the length. The amount of hydrogen picked up by the pressure tube is calculated from the oxide thickness using hydrogen pick up fraction determined from the PIE data. The pressure tube length is divided into a number of axial segments for calculation. The temperature and fast neutron flux assumed to be constant in a given segment. The axial temperature profile calculated from the axial power profile in the channel is used for calculating the oxidation rate at various locations in the pressure tube. The model has been validated with PIE data of hydrogen equivalent measurement on a number of irradiated Zircaloy-2 pressure tubes of various PHWRs. The performance of the model in predicting the axial profile of hydrogen in the pressure tubes has been found to be good. (author)

  19. Precision tubes for high-pressure diesel injection lines; Praezisrohre fuer Hochdruck-Dieseleinspritzleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagedorn, M.; Lechtenfeld, U.; Zaremba, A. [Mannesmann Praezisrohr GmbH, Hamm (Germany)

    2008-03-15

    The requirements on diesel injection lines raise because of increasing customers demands and more rigid environmental laws. In this context higher injection pressures effect both aspects positively. One important condition for increasing pressure levels is the economical provision of suitable injection lines. To reach this aim, Mannesmann Praezisrohr GmbH developed precision tubes for injection lines, which are fulfilling these increasing requirements. (orig.)

  20. Ballooning of CANDU pressure tube in local thermal transients

    International Nuclear Information System (INIS)

    Mihalache, Maria; Ionescu, Viorel

    2008-01-01

    In certain LOCA scenarios for the CANDU fuel channel, the ballooning of the pressure tube and contact with the calandria tube can occur. After the contact moment, a radial heat transfer from cooling fluid to moderator takes place through the contact area. If the temperature of channel walls increases, the contact area is drying and the heat transfer becomes inefficiently. In INR-Pitesti the DELOCA code was developed to simulate the mechanical behaviour of pressure tube during pre-contact transition, and mechanical and thermal behaviour of pressure tube and calandria tube after occurrence of the contact between the two tubes. The code contains few models: thermal creep of Zr-2.5%Nb alloy, the heat transfer by conduction through the cylindrical walls, channel failure criteria and calculus of heat transfer at the calandria tube - moderator interface. This code evaluates the contact and channel failure moments. This paper gives a DELOCA code description and the fuel channel behaviour analysis, in transient temperature conditions of the pressure tube, using the materials properties, time and temperature dependencies of these properties as obtained in the different laboratories of the world and in the INR - Pitesti in the last years. DELOCA computer code simulated the fuel channel response to the constant heating rates of inside pressure tube surface. The paper presents contact temperature and time dependencies on the heating rate, and the appropriate fitting functions. (authors)

  1. Method of detecting leakage from sealing attached to pressure tube

    International Nuclear Information System (INIS)

    Tomomatsu, Ken-ichi; Hayashi, Ken-ichi.

    1990-01-01

    The present invention provides a detection method for measuring the amount of water leaked from sealings attached to the lower end of a pressure tube. That is, the lower end of the pressure tube is sealed only by a metal sealing. A capturing vessel is placed under the pressure tube for capturing the leaked water dropping from the lower end of the pressure tube and the weight of the leaked water is measured on every capturing vessels to determine the amount of the leaked water. The leakage detection method based on the weight measurement has higher accuracy compared with a conventional volume measuring method using a water level gauge as described below. For example, if the volume of the captured water is 10cc, an error of about 0.1cc is caused by the volume measuring method using the water level gauge, whereas if 10g (10cc) weight of water is measured by using an accurate balance, error is only about 10 -4 g (10 -4 cc). Accordingly, the method of the present invention can measure at an accuracy about 1000 times as high as the conventional method. (I.S.)

  2. Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube at high Re

    International Nuclear Information System (INIS)

    Li Zhihui; Jiang Peixue

    2008-01-01

    Convection heat transfer during the upward flow of CO 2 at supercritical pressures in a vertical circular tube (d in = 2 mm) at high Reynolds numbers was investigated experimentally, and the effects of heat fluxes, mass fluxes, inlet temperatures, pressures, buoyancy and thermal acceleration on the convection heat transfer was analyzed. The results show that the tube wall temperature occurs abnormally distribution for high heat-fluxes with upward flow. The degree of deteriorated heat transfer increases with increasing heat flux. Increasing of the mass flux delays the occurrence of the deterioration of heat transfer and weakens the deterioration of heat transfer down-stream section. The inlet temperature strongly influences the heat transfer. The deterioration degree of heat transfer decreases with increasing pressure. (authors)

  3. CFD analysis of multiphase coolant flow through fuel rod bundles in advanced pressure tube nuclear reactors

    International Nuclear Information System (INIS)

    Catana, A.; Turcu, I.; Prisecaru, I.; Dupleac, D.; Danila, N.

    2010-01-01

    The key component of a pressure tube nuclear reactor core is pressure tube filled with a stream of fuel bundles. This feature makes them suitable for CFD thermal-hydraulic analysis. A methodology for CFD analysis applied to pressure tube nuclear reactors is presented in this paper, which is focused on advanced pressure tube nuclear reactors. The complex flow conditions inside pressure tube are analysed by using the Eulerian multiphase model implemented in FLUENT CFD computer code. Fuel rods in these channels are superheated but the liquid is under high pressure, so it is sub-cooled in normal operating conditions on most of pressure tube length. In the second half of pressure tube length, the onset of boiling occurs, so the flow consists of a gas liquid mixture, with the volume of gas increasing along the length of the channel in the direction of the flow. Limited computer resources enforced us to use CFD analysis for segments of pressure tube. Significant local geometries (junctions, spacers) were simulated. Main results of this work are: prediction of main thermal-hydraulic parameters along pressure tube including CHF evaluation through fuel assemblies. (authors)

  4. Chemical kinetics modeling of the influence of molecular structure on shock tube ignition delay

    International Nuclear Information System (INIS)

    Westbrook, C.K.; Pitz, W.J.

    1985-07-01

    The current capabilities of kinetic modeling of hydrocarbon oxidation in shock waves are discussed. The influence of molecular size and structure on ignition delay times are stressed. The n-paraffin fuels from CH 4 to n-C 5 H 12 are examined under shock tube conditions, as well as the branched chain fuel isobutane, and the computed results are compared with available experimental data. The modeling results show that it is important in the reaction mechanism to distinguish between abstraction of primary, secondary and tertiary H atom sites from the fuel molecule. This is due to the fact that both the rates and the product distributions of the subsequent alkyl radical decomposition reactions depend on which H atoms were abstracted. Applications of the reaction mechanisms to shock tube problems and to other practical problems such as engine knock are discussed

  5. Shock tube/laser absorption studies of the decomposition of methyl formate

    KAUST Repository

    Ren, Wei; Lam, Kingyiu; Pyun, Sunghyun; Farooq, Aamir; Davidson, David Frank; Hanson, Ronald Kenneth

    2013-01-01

    Reaction rate coefficients for the major high-temperature methyl formate (MF, CH3OCHO) decomposition pathways, MF → CH3OH + CO (1), MF →CH2O+CH2O (2), and MF→ CH4 + CO2 (3), were directly measured in a shock tube using laser absorption of CO (4.6 μm), CH2O (306 nm) and CH4 (3.4 μm). Experimental conditions ranged from 1202 to 1607 K and 1.36 to 1.72 atm, with mixtures varying in initial fuel concentration from 0.1% to 3% MF diluted in argon. The decomposition rate coefficients were determined by monitoring the formation rate of each target species immediately behind the reflected shock waves and modeling the species time-histories with a detailed kinetic mechanism [12]. The three measured rate coefficients can be well-described using two-parameter Arrhenius expressions over the temperature range in the present study: k1 = 1.1 × 1013 exp(-29556/T, K) s -1, k2 = 2.6 × 1012 exp(-32052/T, K) s-1, and k3 = 4.4 × 1011 exp(-29 078/T, K) s-1, all thought to be near their high-pressure limits. Uncertainties in the k1, k2 and k3 measurements were estimated to be ±25%, ±35%, and ±40%, respectively. We believe that these are the first direct high-temperature rate measurements for MF decomposition and all are in excellent agreement with the Dooley et al. [12] mechanism. In addition, by also monitoring methanol (CH3OH) and MF concentration histories using a tunable CO2 gas laser operating at 9.67 and 9.23 μm, respectively, all the major oxygen-carrying molecules were quantitatively detected in the reaction system. An oxygen balance analysis during MF decomposition shows that the multi-wavelength laser absorption strategy used in this study was able to track more than 97% of the initial oxygen atoms in the fuel. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  6. Rejection index for pressure tubes

    International Nuclear Information System (INIS)

    Mitchell, A.B.; Meneley, D.

    1989-10-01

    The objective of the present study was to establish a set of criteria (or Rejection Index) which could be used to decide whether a zirconium-2 1/2 w/o niobium pressure tube in a CANDU reactor should be removed from service due to in-service degradation. A critique of key issues associated with establishing a realistic rejection index was prepared. Areas of uncertainty in available information were identified and recommendations for further analysis and laboratory testing made. A Rejection Index based on the following limits has been recommended: 1) Limits related to design intent and normal operation: any garter spring must remain within the tolerance band specified for its design location; the annulus gas system must normally be operated in a circulating mode with a procedure in place for purging to prevent accumulation of deuterium. It must remain sensitive to leaks into any part of the systems; and pressure tube dimensions and distortions must be limited to maintain the fuel channels within the original design intent; 2) Limits related to defect tolerance: adequate time margins between occurrence of a leaking crack and unstable failure must be demonstrated for all fuel channels; long lap-type flaws are unacceptable; crack-like defects of any size are unacceptable; and score marks, frat marks and other defects with contoured profiles must fall below certain depth, length and stress intensity limits; and 3) Limits related to property degradation: at operating temperature each pressure tube must be demonstrated to have a critical length in excess of a stipulated value; the maximum equivalent hydrogen level in any pressure tube should not exceed a limit which should be defined taking into account the known history of that tube; the maximum equivalent hydrogen level in any rolled joint should not exceed a limit which is presently recommended as 200 ppm equivalent hydrogen; and the maximum diametral creep strain should be limited to less than 5%

  7. Time-dependent leak behavior of flawed Alloy 600 tube specimens at constant pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Chi Bum, E-mail: bahn@anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Majumdar, Saurin [Argonne National Laboratory, Argonne, IL 60439 (United States); Harris, Charles [United States Nuclear Regulatory Commission, Rockville, MD 20852 (United States)

    2011-10-15

    Leak rate testing has been performed using Alloy 600 tube specimens with throughwall flaws. Some specimens have shown time-dependent leak behavior at constant pressure conditions. Fractographic characterization was performed to identify the time-dependent crack growth mechanism. The fracture surface of the specimens showed the typical features of ductile fracture, as well as the distinct crystallographic facets, typical of fatigue crack growth at low {Delta}K level. Structural vibration appears to have been caused by the oscillation of pressure, induced by a high-pressure pump used in a test facility, and by the water jet/tube structure interaction. Analyses of the leak behaviors and crack growth indicated that both the high-pressure pump and the water jet could significantly contribute to fatigue crack growth. To determine whether the fatigue crack growth during the leak testing can occur solely by the water jet effect, leak rate tests at constant pressure without the high-pressure pump need to be performed. - Highlights: > Leak rate of flawed Alloy 600 tubing increased at constant pressure condition. > Fractography revealed two cases: ductile tearing and crystallographic facets. > Crystallographic facets are typical features of fatigue crack growth at low {Delta}K. > Fatigue source could be water jet-induced vibration and/or high-pressure pump pulsation.

  8. Tube-in-shell heat exchangers

    International Nuclear Information System (INIS)

    Richardson, J.

    1976-01-01

    Tube-in-shell heat exchangers normally comprise a bundle of parallel tubes within a shell container, with a fluid arranged to flow through the tubes in heat exchange with a second fluid flowing through the shell. The tubes are usually end supported by the tube plates that separate the two fluids, and in use the tube attachments to the tube plates and the tube plates can be subject to severe stress by thermal shock and frequent inspection and servicing are required. Where the heat exchangers are immersed in a coolant such as liquid Na such inspection is difficult. In the arrangement described a longitudinally extending central tube is provided incorporating axially spaced cylindrical tube plates to which the opposite ends of the tubes are attached. Within this tube there is a tubular baffle that slidably seals against the wall of the tube between the cylindrical tube plates to define two co-axial flow ducts. These ducts are interconnected at the closed end of the tube by the heat exchange tubes and the baffle comprises inner and outer spaced walls with the interspace containing Ar. The baffle is easily removable and can be withdrawn to enable insertion of equipment for inspecting the wall of the tube and tube attachments and to facilitate plugging of defective tubes. Cylindrical tube plates are believed to be superior for carrying pressure loads and resisting the effects of thermal shock. Some protection against thermal shock can be effected by arranging that the secondary heat exchange fluid is on the tube side, and by providing a thermal baffle to prevent direct impingement of hot primary fluid on to the cylindrical tube plates. The inner wall of the tubular baffle may have flexible expansible region. Some nuclear reactor constructions incorporating such an arrangement are described, including liquid metal reactors. (U.K.)

  9. Remotised sliver sample removal from irradiated pressure tube

    Energy Technology Data Exchange (ETDEWEB)

    Rupani, B B; Sharma, B S.V.G.; Shyam, T V; Sinha, R K [Bhabha Atomic Research Centre, Bombay (India). Reactor Engineering Div.

    1994-12-31

    The life of irradiated pressure tubes of Pressurised Heavy Water Reactor (PHWR) can be assessed by analysing hydrogen content in sliver samples of pressure tube material. The sample can be obtained in the form of small slivers by scraping at any specified locations within the bore of the pressure tube of operating reactor. A tool namely Hydride Scraping Tool (HST) has been developed to obtain very thin slivers of hydride bearing samples from irradiated pressure tube. In order to save man-rem consumption during scraping operation, a feeding mechanism has also been designed and developed for axial positioning of scraping tool in the channel remotely. This paper covers general details about constructional features of the scraping tool, feeding mechanism and their control system. It also highlights the operational salient features and capabilities of the system. Possible applications of the feeding mechanism in other fields are also indicated. (author). 4 figs.

  10. Remotised sliver sample removal from irradiated pressure tube

    International Nuclear Information System (INIS)

    Rupani, B.B.; Sharma, B.S.V.G.; Shyam, T.V.; Sinha, R.K.

    1994-01-01

    The life of irradiated pressure tubes of Pressurised Heavy Water Reactor (PHWR) can be assessed by analysing hydrogen content in sliver samples of pressure tube material. The sample can be obtained in the form of small slivers by scraping at any specified locations within the bore of the pressure tube of operating reactor. A tool namely Hydride Scraping Tool (HST) has been developed to obtain very thin slivers of hydride bearing samples from irradiated pressure tube. In order to save man-rem consumption during scraping operation, a feeding mechanism has also been designed and developed for axial positioning of scraping tool in the channel remotely. This paper covers general details about constructional features of the scraping tool, feeding mechanism and their control system. It also highlights the operational salient features and capabilities of the system. Possible applications of the feeding mechanism in other fields are also indicated. (author). 4 figs

  11. Pressure Tube and Pressure Vessel Reactors; certain comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Margen, P H; Ahlstroem, P E; Pershagen, B

    1961-04-15

    In a comparison between pressure tube and pressure vessel type reactors for pressurized D{sub 2}O coolant and natural uranium, one can say that reactors of these two types having the same net electrical output, overall thermal efficiency, reflected core volume and fuel lattice have roughly the same capital cost. In these circumstances, the fuel burn-up obtainable has a significant influence on the relative economics. Comparisons of burn-up values made on this basis are presented in this report and the influence on the results of certain design assumptions are discussed. One of the comparisons included is based on the dimensions and ratings proposed for CANDU. Moderator temperature coefficients are compared and differences in kinetic behaviour which generally result in different design philosophies for the two types are mentioned, A comparison of different methods of obtaining flux flattening is presented. The influence of slight enrichment and other coolants, (boiling D{sub 2}O and gases) on the comparison between pressure tube and pressure vessel designs is discussed and illustrated with comparative designs for 400 MW electrical output. This paper was presented at the EAES Enlarged Symposium on Heterogeneous Heavy Water Power Reactors, Mallorca, October 10 - 14, 1960.

  12. Pressure Tube and Pressure Vessel Reactors; certain comparisons

    International Nuclear Information System (INIS)

    Margen, P.H.; Ahlstroem, P.E.; Pershagen, B.

    1961-04-01

    In a comparison between pressure tube and pressure vessel type reactors for pressurized D 2 O coolant and natural uranium, one can say that reactors of these two types having the same net electrical output, overall thermal efficiency, reflected core volume and fuel lattice have roughly the same capital cost. In these circumstances, the fuel burn-up obtainable has a significant influence on the relative economics. Comparisons of burn-up values made on this basis are presented in this report and the influence on the results of certain design assumptions are discussed. One of the comparisons included is based on the dimensions and ratings proposed for CANDU. Moderator temperature coefficients are compared and differences in kinetic behaviour which generally result in different design philosophies for the two types are mentioned, A comparison of different methods of obtaining flux flattening is presented. The influence of slight enrichment and other coolants, (boiling D 2 O and gases) on the comparison between pressure tube and pressure vessel designs is discussed and illustrated with comparative designs for 400 MW electrical output. This paper was presented at the EAES Enlarged Symposium on Heterogeneous Heavy Water Power Reactors, Mallorca, October 10 - 14, 1960

  13. Planar shock focusing through perfect gas lens: First experimental demonstration

    International Nuclear Information System (INIS)

    Biamino, Laurent; Mariani, Christian; Jourdan, Georges; Houas, Lazhar; Vandenboomgaerde, Marc; Souffland, Denis

    2014-01-01

    When a shock wave crosses an interface between two materials, this interface becomes unstable and the Richtmyer-Meshkov instability develops. Such instability has been extensively studied in the planar case, and numerous results were presented during the previous workshops. But the Richtmyer-Meshkov (Richtmyer, 1960, 'Taylor Instability in Shock Acceleration of Compressible Fluids,' Commun. Pure Appl. Math., 13(2), pp. 297-319; Meshkov, 1969, 'Interface of Two Gases Accelerated by a Shock Wave,' Fluid Dyn., 4(5), pp. 101-104) instability also occurs in a spherical case where the convergence effects must be taken into account. As far as we know, no conventional (straight section) shock tube facility has been used to experimentally study the Richtmyer-Meshkov instability in spherical geometry. The idea originally proposed by Dimotakis and Samtaney (2006, 'Planar Shock Cylindrical Focusing by a Perfect-Gas Lens,' Phys. Fluid., 18(3), pp. 031705-031708) and later generalized by Vandenboomgaerde and Aymard (2011, 'Analytical Theory for Planar Shock Focusing Through Perfect Gas Lens and Shock Tube Experiment Designs,' Phys. Fluid., 23(1), pp. 016101-016113) was to retain the flexibility of a conventional shock tube to convert a planar shock wave into a cylindrical one through a perfect gas lens. This can be done when a planar shock wave passes through a shaped interface between two gases. By coupling the shape with the impedance mismatch at the interface, it is possible to generate a circular transmitted shock wave. In order to experimentally check the feasibility of this approach, we have implemented the gas lens technique on a conventional shock tube with the help of a convergent test section, an elliptic stereo lithographed grid, and a nitrocellulose membrane. First experimental sequences of Schlieren images have been obtained for an incident shock wave Mach number equal to 1.15 and an air/SF_6-shaped interface. Experimental results indicate that the shock that moves

  14. Development of technology on the material surveillance of CANDU pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Kye Hoh; Han, Jung Hoh; Lee, Duk Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-05-01

    Material degradation of pressure tubes, which are the most important components in CANDU fuel channel, can only be evaluated by removing and examining them(material surveillance). This study aimed at establishment of overall evaluation technology including the evaluation of the material degradation for the integrity of pressure tubes of Wolsung units. Material tests for pressure tubes were performed as follows; (1) Evaluation on life limiting factors of pressure tubes (2) Review on leak-before-break and integrity maintenance technology of pressure tubes (3) Survey on selection criteria for tubes to be inspected and on related regulations for material surveillance (4) Analysis of material surveillance test procedure (5) Basic examinations of Wolsung unit 1 pressure tube material(TEM, texture, chemical component etc) (6) Manufacture of test equipments and test (DHCV, hydriding, grip and tensile specimen etc). 23 figs, 6 tabs, 59 refs. (Author).

  15. Development of technology on the material surveillance of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Noh, Kye Hoh; Han, Jung Hoh; Lee, Duk Hyun

    1995-05-01

    Material degradation of pressure tubes, which are the most important components in CANDU fuel channel, can only be evaluated by removing and examining them(material surveillance). This study aimed at establishment of overall evaluation technology including the evaluation of the material degradation for the integrity of pressure tubes of Wolsung units. Material tests for pressure tubes were performed as follows; (1) Evaluation on life limiting factors of pressure tubes (2) Review on leak-before-break and integrity maintenance technology of pressure tubes (3) Survey on selection criteria for tubes to be inspected and on related regulations for material surveillance (4) Analysis of material surveillance test procedure (5) Basic examinations of Wolsung unit 1 pressure tube material(TEM, texture, chemical component etc) (6) Manufacture of test equipments and test (DHCV, hydriding, grip and tensile specimen etc). 23 figs, 6 tabs, 59 refs. (Author)

  16. On high-pressure melting of tantalum

    Science.gov (United States)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  17. A technique to simulate a tube break in a high-pressure gas/cooling water heat exchanger - HTR2008-58161

    International Nuclear Information System (INIS)

    Antwerpen, H. J. V.; Mulder, E. J.

    2008-01-01

    The gas cycles of most High Temperature Gas-Cooled Reactors (HTR's) reject heat to water at some stage. In the helium/water heat exchangers of HTR's with direct Brayton cycles, the helium is usually at a much higher pressure than the water. If the pressure boundary between the helium and the water fails inside the heat exchanger. the effect on the rest of the water system has to be established in order to do a proper system design. This can be done most efficiently by using a system simulation code, however, very few system simulation codes has the capability to do gas/liquid interface tracking as required for this problem. This study describes a calculation method with which a gas/liquid heat exchanger tube rupture can be calculated in a simulation code without interface tracking. The course of events after tube rupture is described and appropriate calculation models derived. A mathematical model for a pressure relief valve (PRV) was also created. The calculation models were implemented in the system simulation software Flownex and used to study a tube rupture on a 5000 kPa helium/water heat exchanger. The assembled calculation network solved stable and within reasonable time. The simulation provided insight into the course of events following the tube break. It was shown that the acceleration of water out of the helium cooler, by choked-flow helium, caused the main pressure pulses during the event. The maximum pressure in the water loop occurs on the opposite side of the helium cooler due to constructive interference of the initial pressure wave with itself. It was also shown that by changing only pipe lengths, the system could become prone to severe oscillations after a tube rupture event. (authors)

  18. Approximating a free-field blast environment in the test section of an explosively driven conical shock tube

    Science.gov (United States)

    Stewart, J. B.

    2018-02-01

    This paper presents experimental data on incident overpressures and the corresponding impulses obtained in the test section of an explosively driven 10° (full angle) conical shock tube. Due to the shock tube's steel walls approximating the boundary conditions seen by a spherical sector cut out of a detonating sphere of energetic material, a 5.3-g pentolite shock tube driver charge produces peak overpressures corresponding to a free-field detonation from an 816-g sphere of pentolite. The four test section geometries investigated in this paper (open air, cylindrical, 10° inscribed square frustum, and 10° circumscribed square frustum) provide a variety of different time histories for the incident overpressures and impulses, with a circumscribed square frustum yielding the best approximation of the estimated blast environment that would have been produced by a free-field detonation.

  19. Development of delayed hydride cracking resistant-pressure tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Kim, S. S.; Yim, K. S

    2000-10-01

    For the first time, we demonstrate that the pattern of nucleation and growth of a DHC crack is governed by the precipitation of hydrides so that the DHC velocity and K{sub IH} are determined by an angle of the cracking plane and the hydride habit plane 10.7. Since texture controls the distribution of the 10.7 habit plane in Zr-2.5Nb pressure tube, we draw a conclusion that a textural change in Zr-2.5Nb tube from a strong tangential texture to the radial texture shall increase the threshold stress intensity factor, K{sub IH}, and decrease the delayed hydride cracking velocity. This conclusion is also verified by a complimentary experiment showing a linear dependence of DHCV and K{sub IH} with an increase in the basal component in the cracking plane. On the basis of the study on the DHC mechanism and the effect of manufacturing processes on the properties of Zr-2.5Nb tube, we have established a manufacturing procedure to make pressure tubes with improved DHC resistance. The main features of the established manufacturing process consist in the two step-cold pilgering process and the intermediate heat treatment in the {alpha} + {beta} phase for Zr-2.5Nb alloy and in the {alpha} phase for Zr-1Nb-1.2Sn-0.4Fe alloy. The manufacturing of DHC resistant-pressure tubes of Zr-2.5Nb and Zr-1N-1.2Sn-0.4Fe was made in the ChMP zirconium plant in Russia under a joint research with Drs. Nikulina and Markelov in VNIINM (Russia). Zr-2.5Nb pressure tube made with the established manufacturing process has met all the specification requirements put by KAERI. Chracterization tests have been jointly conducted by VNIINM and KAERI. As expected, the Zr-2.5Nb tube made with the established procedure has improved DHC resistance compared to that of CANDU Zr-2.5Nb pressure tube used currently. The measured DHC velocity of the Zr-2.5Nb tube meets the target value (DHCV <5x10{sup -8} m/s) and its other properties also were equivalent to those of the CANDU Zr-2.5Nb tube used currently. The Zr-1Nb-1

  20. Shock wave interaction with turbulence: Pseudospectral simulations

    International Nuclear Information System (INIS)

    Buckingham, A.C.

    1986-01-01

    Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs

  1. Advanced NDE (ANDE) and its application for pressure tube inspections in OPG reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jarron, D.; Trelinski, M.; Kretz, S. [Ontario Power Generation, Ajax, Ontario (Canada)]. E-mail: don.jarron@opg.com; mike.trelinski@opg.com; steve.kretz@opg.com

    2006-07-01

    Periodic and in-service inspections of CANDU fuel channels are essential for the proper assessment of the structural integrity of these vital components. The arrival of new delivery devices for fuel channel inspections (Universal Delivery Machine) has driven new methods for gathering and analyzing NDE data. The Advanced Non-Destructive Examination (ANDE) system has been designed and field implemented as a high speed data acquisition system to meet the requirements of the CSA N285.4 code. It was built from the solid foundation of CIGAR experience and uses cutting edge hardware and software to attain high speed data collection enabling relatively quick inspection of a large number of fuel channels. The capabilities of the ANDE inspection system include: Surface and volumetric inspection of pressure tube by ultrasonics; Flaw characterization by ultrasonics; Pressure tube diameter measurements; Pressure tube thickness measurements; Garter Spring location by Eddy Current; Garter Spring location by ultrasonics; Pressure tube sag measurement. In addition to the above, selected flaws/areas of a pressure tube can be replicated using a two plate ANDE replica tool. At the heart of the inspection system is a set of twelve ultrasonic probes positioned in such a way that the inspected areas are examined from various angles and directions and by various ultrasonic wave modes (shear and longitudinal). High frequency ultrasound used for the examinations allows for reliable detection of small flaws. Separate sensors have been installed on the inspection head for Garter Spring location and sag measurements. (author)

  2. Advanced pressure tube sampling tools

    International Nuclear Information System (INIS)

    Wittich, K.C.; King, J.M.

    2002-01-01

    Deuterium concentration is an important parameter that must be assessed to evaluate the Fitness for service of CANDU pressure tubes. In-reactor pressure tube sampling allows accurate deuterium concentration assessment to be made without the expenses associated with fuel channel removal. This technology, which AECL has developed over the past fifteen years, has become the standard method for deuterium concentration assessment. AECL is developing a multi-head tool that would reduce in-reactor handling overhead by allowing one tool to sequentially sample at all four axial pressure tube locations before removal from the reactor. Four sets of independent cutting heads, like those on the existing sampling tools, facilitate this incorporating proven technology demonstrated in over 1400 in-reactor samples taken to date. The multi-head tool is delivered by AECL's Advanced Delivery Machine or other similar delivery machines. Further, AECL has developed an automated sample handling system that receives and processes the tool once out of the reactor. This system retrieves samples from the tool, dries, weighs and places them in labelled vials which are then directed into shielded shipping flasks. The multi-head wet sampling tool and the automated sample handling system are based on proven technology and offer continued savings and dose reduction to utilities in a competitive electricity market. (author)

  3. MEASUREMENTS OF SHOCK WAVE FORCE IN SHOCK TUBE WITH INDIRECT METHODS

    Directory of Open Access Journals (Sweden)

    Mario Dobrilović

    2005-12-01

    Full Text Available Tests have been conducted at the “Laboratory for testing of civil explosives, detonators, electrical detonators and pyrotechnical materials”, Department for mining and geotechnics of the Faculty of mining, geology and petroleum engineering, University of Zagreb with the purpose of designing a detonator that would unite advantages of a non-electric system and the precision in regulation of time delay in electronic initiation system. Sum of energy released by the wave force in shock tube is a pre-condition for operation of the new detonator, and measurement of wave force is the first step in determining the sum of energy. The sum of energy is measured indirectly, based on two principles: movement sensors and strain.

  4. Performance data of the new free-piston shock tunnel T5 at GALCIT

    Science.gov (United States)

    Hornung, H.; Sturtevant, B.; Belanger, J.; Sanderson, S.; Brouillette, M.; Jenkins, M.

    1992-01-01

    A new free piston shock tunnel has been constructed at the Graduate Aeronautical Laboratories at Caltec. Compression tube length is 30 m and diameter 300 mm. Shock tube length is 12 m and diameter 90 mm. Piston mass is 150 kg and maximum diaphragm burst pressure is 130 MPa. Special features of this facility are that the pressure in the driver gas is monitored throughout the compression process until well after diaphragm rupture, and that the diaphragm burst pressure can be measured dynamically. An analysis of initial performance data including transient behavior of the flow over models is presented.

  5. Microstructural examination of irradiated zircaloy-2 pressure tube material

    International Nuclear Information System (INIS)

    Srivastava, D.; Tewari, R.; Dey, G.K.; Sah, D.N.; Banerjee, S.

    2005-01-01

    Irradiation induced microstructural changes in Zr alloys strongly influence the creep, growth and mechanical properties of pressure tube material. Since dimensional changes and mechanical property degradation can limit the life of pressure tube, it is essential to study and develop an understanding of the microstructure produced by neutron irradiation, by examining samples taken from the irradiated components. In the present work, an effort has been made to examine, microstructure of the Zircaloy-2 pressure tube material irradiated in the Indian Pressurized Heavy Water Reactor (PHWR). The present work is a first step towards a comprehensive program of characterization of microstructure of reactor materials after irradiation to different fluence levels in power reactors. In this study, samples from a Zircaloy-2 pressure tube, which had been in operation in the high flux region of Rajasthan Atomic Power Station Unit 1, for a period for 6.77 effective full power years (EFPYs), have been prepared and examined. The samples selected from the tube are expected to have a cumulative radiation damage of about 3 dpa. Samples prepared from the off cuts of RAPS-1 pressure tubes were also studied for examining the unirradiated microstructure of the material. The samples were examined in a 200kV JEOL 2000 FX microscope. This paper presents the distinct features observed in irradiated sample and a comprehensive comparison of the microstructures of the unirradiated and irradiated material. The effect of annealing on the annihilation of the defects generated during irradiation has been also studied. The bright field micrographs revealed that microstructure of the irradiated samples was different in many respects from the microstructure of the unirradiated samples. The presence of defect structure in the form of loops etc could be seen in the irradiated sample. These loops were mostly c-type loops lying in the basal plane. The dissolution and redistribution of the precipitates were

  6. Shock tube experiments on nitromethane and Promotion of chemical reactions by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Seljeskog, Morten

    2002-06-01

    This dissertation was undertaken to study two different subjects both related to molecular decomposition by applying a shock tube and non-thermal plasma to decompose selected hydrocarbons. The first approach to molecular decomposition concerned thermal decomposition and oxidation of highly diluted nitromethane (NM) in a shock tube. Reflected shock tube experiments on NM decomposition, using mixtures of 0.2 to 1.5 vol% NM in nitrogen or argon were performed over the temperature range 850-1550 K and pressure range 190-900 kPa, with 46 experiments diluted in nitrogen and 44 diluted in argon. By residual error analysis of the measured decomposition profiles it was found that NM decomposition (CH{sub 3}NO{sub 2} + M {yields} CH{sub 3} + NO{sub 2} + M, where M = N{sub 2} /Ar) corresponds well to a law of first order. Arrhenius expressions corresponding to NM diluted either in N{sub 2} or in Ar were found as k{sub N2} = 10{sup 17.011} * exp(- 182.6 kJ/mole / R*T) and k{sub Ar} = 10{sup 17.574}*exp(-207 kJ/mole / R*T ) , respectively. A new reaction mechanism was then proposed, based on new experimental data for NM decomposition both in Ar and N{sub 2} and on three previously developed mechanisms. The new mechanism predicts well the decomposition of NM diluted in both N{sub 2} and Ar within the pressure and temperature range covered by the experiments. In parallel to, and following the decomposition experiments, oxidative experiments on the ignition delay times of NM/O{sub 2}/Ar mixtures were investigated over high temperature and low to high pressure ranges. These experiments were carried out with eight different mixtures of gaseous NM and oxygen diluted in argon, with pressures ranging between 44.3-600 kPa, and temperatures ranging between 842-1378 K. The oxidation experiments were divided into different categories according to the type of decomposition signals achieved. For signals with and without emission, the apparent quasi

  7. Innovation in pressure tube life assessment

    International Nuclear Information System (INIS)

    Guler, B.; Kalenchuk, D.; Celovsky, A.

    2003-01-01

    The hydrogen equivalent concentration and the rate of hydrogen ingress (in particular, deuterium) in pressure tubes are important parameters that must be assessed to determine the fitness-for-service of CANDU reactors. This paper presents the latest refinement in a process referred to as 'Pressure Tube Sampling', which is the only fully qualified and proven method that allows accurate determination of both the hydrogen equivalent concentration and the rate deuterium ingress without performing an expensive fuel channel removal. Pressure Tube Sampling has evolved over the past fifteen years during which over 2,300 samples have been obtained from CANDU reactors around the globe. In-reactor sampling is the standard method for determining the hydrogen equivalent concentrations and deuterium ingress rates in CANDU reactors. Over the past fifteen years, continual improvements in the Pressure Tube Sampling process have resulted in: the capability to obtain circumferential and axial samples, reduced 'on-face' time, reduced cost, reduced dose to workers, and improved analysis accuracy. Most recently, the new Multi-Head Sampling Tool (MHST) has been developed that continues this trend by using one tool to sample at all four axial pressure tube locations in a single visit to the fuel channel, thereby further improving efficiency. In 2001 October, the MHST was successfully deployed at Wolsong 1 by AECL for Korea Hydro and Nuclear Power. The tool was delivered using their Advanced Delivery Machine (ADM) and a total of sixteen samples were obtained from four channels. A significant saving in time was achieved with a rate of one channel (four samples) being sampled every 2 1/2 hours. For a typical 10-channel campaign, this could equate to a 2 to 3 days time/saving, which is significant in terms of outage schedule, cost, and worker dose. This paper provides a description of some of the latest innovations, with specific details on site application, performance, and end results

  8. Comparisons of Air Radiation Model with Shock Tube Measurements

    Science.gov (United States)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  9. Optimal Design and Model Validation for Combustion Experiments in a Shock Tube

    KAUST Repository

    Long, Quan; Kim, Daesang; Tempone, Raul; Bisetti, Fabrizio; Farooq, Aamir; Knio, Omar; Prudhomme, Serge

    2014-01-01

    in the reaction rate functions. The control parameters are the initial hydrogen concentration and the temperature. First, we build a polynomial based surrogate model for the observable related to the reactions in the shock tube. Second, we use a novel MAP based

  10. Simulation and analysis of the thermal and deformation behaviour of `as-received` and `hydrided` pressure tubes used in the circumferential temperature distribution experiments (end of life/pressure tube behaviour)

    Energy Technology Data Exchange (ETDEWEB)

    Muir, W C; Bayoumi, M H [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    It is postulated that in-reactor pressure tubes may be subjected to radiation damage and dissolved deuterium which could change the pressure tube characteristics and lead to different behaviour than that of as-received pressure tubes under large LOCA (loss of coolant) conditions. A hydrided pressure tube was used to study the effect of dissolved hydrogen on thermal-mechanical behaviour. In the experiment, simulating an in-reactor (hydrided) pressure tube with circumferential differential temperature under boil-off conditions, the pressure tube ballooned into contact with the calandria tube. The pressure tube used in this experiment was hydrided in a furnace to a nominal value of 200 {mu}g/g dissolved hydrogen. This test was a repeat of the first supplementary boil-off test (S-5-1) which used an as-received pressure tube. The objective of this paper is to analyze the results obtained from the simulation of this Boil-Off test using the SMARTT computer code and to examine the effect of hydriding on the thermal and ballooning behaviour of the pressure tube by comparison with the results obtained from test S-5-1. A discussion of the results obtained from this comparison is presented together with an analysis of their application to the analysis of pressure tube behaviour in CANDU reactors. (author). 13 refs., 1 tab., 16 figs.

  11. Simulation and analysis of the thermal and deformation behaviour of 'as-received' and 'hydrided' pressure tubes used in the circumferential temperature distribution experiments (end of life/pressure tube behaviour)

    International Nuclear Information System (INIS)

    Muir, W.C.; Bayoumi, M.H.

    1995-01-01

    It is postulated that in-reactor pressure tubes may be subjected to radiation damage and dissolved deuterium which could change the pressure tube characteristics and lead to different behaviour than that of as-received pressure tubes under large LOCA (loss of coolant) conditions. A hydrided pressure tube was used to study the effect of dissolved hydrogen on thermal-mechanical behaviour. In the experiment, simulating an in-reactor (hydrided) pressure tube with circumferential differential temperature under boil-off conditions, the pressure tube ballooned into contact with the calandria tube. The pressure tube used in this experiment was hydrided in a furnace to a nominal value of 200 μg/g dissolved hydrogen. This test was a repeat of the first supplementary boil-off test (S-5-1) which used an as-received pressure tube. The objective of this paper is to analyze the results obtained from the simulation of this Boil-Off test using the SMARTT computer code and to examine the effect of hydriding on the thermal and ballooning behaviour of the pressure tube by comparison with the results obtained from test S-5-1. A discussion of the results obtained from this comparison is presented together with an analysis of their application to the analysis of pressure tube behaviour in CANDU reactors. (author). 13 refs., 1 tab., 16 figs

  12. Tube micro-fouling, boiling and steam pressure after chemical cleaning

    International Nuclear Information System (INIS)

    Hu, M.H.

    1998-01-01

    This paper presents steam pressure trends after chemical cleaning of steam generator tubes at four plants. The paper also presents tube fouling factor that serves as an objective parameter to assess tubing boiling conditions for understanding the steam pressure trend. Available water chemistry data helps substantiate the concept of tube micro-fouling, its effect on tubing boiling, and its impact on steam pressure. All four plants experienced a first mode of decreasing steam pressure in the post-cleaning operation. After 3 to 4 months of operation, the decreasing trend stopped for three plants and then restored to a pre-cleaning value or better. The fourth plant is soil in decreasing trend after 12 months of operation. Dissolved chemicals, such as silica, titanium can precipitate on tube surface. The precipitate micro-fouling can deactivate or eliminate boiling nucleation sites. Therefore, the first phase of the post-cleaning operation suffered a decrease in steam pressure or an increase in fouling factor. It appears that micro fouling by magnetite deposit can activate or create more bubble nucleation sites. Therefore, the magnetite deposit micro-fouling results in a decrease in fouling factor, and a recovery in steam pressure. Fully understanding the boiling characteristics of the tubing at brand new, fouled and cleaned conditions requires further study of tubing surface conditions. Such study should include boiling heat transfer tests and scanning electronic microscope examination. (author)

  13. Shock interaction with a two-gas interface in a novel dual-driver shock tube

    Science.gov (United States)

    Labenski, John R.

    Fluid instabilities exist at the interface between two fluids having different densities if the flow velocity and density gradient are anti-parallel or if a shock wave crosses the boundary. The former case is called the Rayleigh-Taylor (R-T) instability and the latter, the Richtmyer-Meshkov (R-M) instability. Small initial perturbations on the interface destabilize and grow into larger amplitude structures leading to turbulent mixing. Instabilities of this type are seen in inertial confinement fusion (ICF) experiments, laser produced plasmas, supernova explosions, and detonations. A novel dual-driver shock tube was used to investigate the growth rate of the R-M instability. One driver is used to create an argon-refrigerant interface, and the other at the opposite end of the driven section generates a shock to force the interface with compressible flows behind the shock. The refrigerant gas in the first driver is seeded with sub-micron oil droplets for visualization of the interface. The interface travels down the driven section past the test section for a fixed amount of time. A stronger shock of Mach 1.1 to 1.3 drives the interface back past the test section where flow diagnostics are positioned. Two schlieren systems record the density fluctuations while light scattering detectors record the density of the refrigerant as a function of position over the interface. A pair of digital cameras take stereo images of the interface, as mapped out by the tracer particles under illumination by a Q-switched ruby laser. The amount of time that the interface is allowed to travel up the driven section determines the interaction time as a control. Comparisons made between the schlieren signals, light scattering detector outputs, and the images quantify the fingered characteristics of the interface and its growth due to shock forcing. The results show that the interface has a distribution of thickness and that the interaction with a shock further broadens the interface. The

  14. Electrical conductivity of hydrogen shocked to megabar pressures

    International Nuclear Information System (INIS)

    Weir, S.T.; Nellis, W.J.; Mitchell, A.C.

    1993-08-01

    The properties of ultra-high pressure hydrogen have been the subject of much experimental and theoretical study. Of particular interest is the pressure-induced insulator-to-metal transition of hydrogen which, according to recent theoretical calculations, is predicted to occur by band-overlap in the pressure range of 1.5-3.0 Mbars on the zero temperature isotherm. Extremely high pressures are required for metallization since the low-pressure band gap is about 15 eV. Recent static-pressure diamond anvil cell experiments have searched for evidence of an insulator-to-metal transition, but no conclusive evidence for such a transition has yet been supplied. Providing conclusive evidence for hydrogen metallization is difficult because no technique has yet been developed for performing static high-pressure electrical conductivity experiments at megabar pressures. The authors report here on electrical conductivity experiments performed on H 2 and D 2 multi-shocked to megabar pressures. Electrical conductivities of dense fluid hydrogen at these pressures and temperatures reached are needed for calculations of the magnetic fields of Jupiter and Saturn, the magnetic fields being generated by convective dynamos of hot, dense, semiconducting fluid hydrogen. Also, since electrical conduction at the pressure-temperature conditions being studied is due to the thermal excitation of charge carriers across the electronic band gap, these experiments yield valuable information on the width of the band gap at high densities

  15. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    Science.gov (United States)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  16. The local response of elastic tubes and shells to spherical pressure pulse loading

    International Nuclear Information System (INIS)

    Thompson, J.J.; Holy, Z.J.

    1977-01-01

    This paper develops a formulation and numerical solution technique for calculating the peak transient stresses developed in tubes or shells with external and internal acoustic media, as a result of shock loadings which may be represented as originating from external or internal point symmetric or dipole sources. The field of application is intended to be the local peak response of the cylindrical fuel cans, core barrels, pressure vessels, pipes and containment shells of Nuclear Reactor Technology, subjected to transient pressure shock loadings for a variety of operational or accident conditions, which cannot adequately be described as one dimensional plane shocks, for which elastic shell responses have been presented by other workers. The work reported here concerns the basic problem of an infinite static fluid filled hollow cylinder of arbitrary thickness, in an infinite static fluid medium, with a source at an arbitrary internal or external radial location. An acoustic model is used, with acoustic damping due to radiation as the only possible damping mechanism. The formulation and solution technique is based on the availability of the multi-dimensional Fast Fourier Transform algorithm. The basic result is the representation, in cylindrical co-ordinates, of the two dimensional (time and axial co-ordinate) Fourier Transform of the infinite medium frequency response function for outgoing waves from a point symmetrical source, as a series of azimuthal Fourier harmonics, from which the result for a dipole source of arbitrary orientation follows. Where possible numerical results will be presented

  17. Propagation of atmospheric-pressure ionization waves along the tapered tube

    Science.gov (United States)

    Xia, Yang; Wang, Wenchun; Liu, Dongping; Yan, Wen; Bi, Zhenhua; Ji, Longfei; Niu, Jinhai; Zhao, Yao

    2018-02-01

    Gas discharge in a small radius dielectric tube may result in atmospheric pressure plasma jets with high energy and density of electrons. In this study, the atmospheric pressure ionization waves (IWs) were generated inside a tapered tube. The propagation behaviors of IWs inside the tube were studied by using a spatially and temporally resolved optical detection system. Our measurements show that both the intensity and velocity of the IWs decrease dramatically when they propagate to the tapered region. After the taper, the velocity, intensity, and electron density of the IWs are improved with the tube inner diameter decreasing from 4.0 to 0.5 mm. Our analysis indicates that the local gas conductivity and surface charges may play a role in the propagation of the IWs under such a geometrical constraint, and the difference in the dynamics of the IWs after the taper can be related to the restriction in the size of IWs.

  18. High density turbulent plasma processes from a shock tube

    International Nuclear Information System (INIS)

    Oyedeji, O.; Johnson, J.A. III

    1991-01-01

    We have finished the first stages of our experimental and theoretical investigations on models for energy and momentum transport and for photon-particle collision processes in a turbulent quasi-stationary high density plasma. The system is explored by beginning to determine the turbulence phenomenology associated with an ionizing shock wave. The theoretical underpinnings are explored for phonon particle collisions by determining the collisional redistribution function, using Lioville Space Green's Function, which will characterize the inelastic scattering of the radiation from one frequency to another. We have observed that a weak magnetic field tends to increase the apparent random-like behaviors in a collisional turbulent plasma. On the theoretical side, we have been able to achieve a form for the collisional redistribution function. It remains to apply these concepts to a stationary turbulent plasma in the reflected ionizing shock wave and to exercise the implications of evaluations of the collisional redistribution function for such a system when it is probed by a strong radiation source. These results are discussed in detail in the publications, which have resulted from the this effort, cited at the end of the report

  19. Tensile strength of Zr-2.5 Nb pressure tubes: A statistical study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Priti Kotak, E-mail: pritik@barc.gov.in [Senior Scientist, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Dubey, J.S.; Datta, D.; Shriwastaw, R.S.; Rath, B.N.; Singh, R.N. [Senior Scientist, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Anantharaman, S. [Head, Post Irradiation Examination Division, Bhabha Atomic Research Centre, Mumbai (India); Chakravartty, J.K. [Director, Materials Group, Bhabha Atomic Research Centre, Mumbai (India)

    2015-12-15

    Highlights: • Tensile properties in axial and transverse direction for a number of Indian Zr-2.5 Nb PHWR pressure tubes. • Distribution of tensile properties of double-melted and quadruple-melted pressure tubes. • Tensile properties at front-end and back-end of the quadruple melted pressure tubes at room temperature and at 300 °C. - Abstract: In order to get an idea of the statistical variation in the tensile properties of the double-melted as well as quadruple melted Zr-2.5 Nb pressure tubes (PTs) and also the variation in tensile properties between the two ends of the pressure tubes, tension tests were carried out on around 50 pressure tube off-cuts. Longitudinal and transverse tensile specimens were prepared from these off-cuts of pressure tubes of double-melted and quadruple melted types. For quadruple melted pressure tubes the specimens were tested from both front-end and back-end off-cuts. Miniature flat tensile specimens having 1.8 mm width and 1.5 mm thickness and 7.6 mm gauge length were prepared from the pressure tube off-cuts without any flattening treatment. Tension tests were carried out in a screw-driven machine at room temperature and 300 °C for both front-end and back-end off-cuts of each of 16 pressure tubes. In general the transverse specimens showed higher yield strength (YS) and ultimate tensile strength (UTS) compared to the longitudinal specimens. Transverse specimens showed less strain hardening compared to the longitudinal specimens. The axial specimens showed higher uniform (UE) and total elongation (TE) compared to the transverse specimens. Double-melted pressure tubes showed relatively higher strength and lower elongation and larger standard deviation compared to the quadruple melted pressure tubes. Mean values of tensile properties showed that back-end off-cuts were relatively stronger and less ductile compared to the front-end off-cuts.

  20. Spatiotemporal evolution of a laser-induced shock wave measured by the background-oriented schlieren technique

    Science.gov (United States)

    Tagawa, Yoshiyuki; Yamamoto, Shota; Kameda, Masaharu

    2014-11-01

    We investigate the spatiotemporal evolution of a laser-induced shock wave in a liquid filled thin tube. In order to measure pressure distribution at shock front, we adopt the background-oriented schlieren (BOS) technique. This technique provides two- or three-dimensional pressure field in a small region with a simple setup. With an ultra high-speed video camera and a laser stroboscope, we successfully capture the spatial evolution of the shock every 0.2 μs. We find an angular variation of the pressure at the shock front. The maximum pressure is in the direction of the laser shot while the minimum value is in the perpendicular direction. We compare the temporal evolution of the pressure measured by BOS technique with those obtained by another method, i.e. pressure estimation from the shock front position. Overall trend from both methods show a good agreement. The pressure from the shock front position exists between the maximum and minimum values from BOS technique. It indicates that our quantification method can measure more detailed pressure field in two- or three-dimensions. Our results might be used for the efficient generation systems for the microjet, which can be applicable for needle free injection devices.

  1. Flash photolysis-shock tube studies

    Energy Technology Data Exchange (ETDEWEB)

    Michael, J.V. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Even though this project in the past has concentrated on the measurement of thermal bimolecular reactions of atomic species with stable molecules by the flash or laser photolysis-shock tube (FP- or LP-ST) method using atomic resonance absorption spectrometry (ARAS) as the diagnostic technique, during the past year the authors have concentrated on studies of the thermal decompositions of selected chlorocarbon molecules. These studies are necessary if the degradation of chlorine containing organic molecules by incineration are to be understood at the molecular level. Clearly, destruction of these molecules will not only involve abstraction reactions, when possible, but also thermal decomposition followed by secondary reactions of the initially formed atoms and radicals. Studies on the thermal decomposition of CH{sub 3}Cl are complete, and the curve-of-growth for Cl-atom atomic resonance absorption has been determined. The new thermal decomposition studies are similar to those already reported for CH{sub 3}Cl.

  2. Development of rolled joints for zirconium-2.5 wt % niobium pressure tubes

    International Nuclear Information System (INIS)

    Madhusoodanan, K.; Sinha, R.K.; Samuel, K.A.; Joeman, V.

    1992-01-01

    Due to its higher strength and lower deuterium pick-up rate, as compared to the existing cold worked zircaloy-2 material, cold worked zirconium-2.5 wt% niobium (Zr-2.5%Nb) alloy is to be used as the pressure tube material in all forthcoming Indian PHWRs starting with KAPP-2. These pressure tubes, which carry the fuel bundles are to be joined to the S.S 403 end-fittings through rolled joints. Since the new pressure tubes have a lower wall thickness and higher room temperature yield stress, than zircaloy-2 tubes the design parameters of the rolled joint had to be developed afresh. Further, since Zr-2.5%Nb is susceptible to delayed hydride cracking, it is necessary to limit the residual stress near the rolled joint to a minimum. Since the high residual stress is due to the initial assembly clearance between the pressure tube and end-fitting, a modified rolled joint had to be developed, referred to as zero clearance rolled joint. This paper provides details of the work carried out at Reactor Engineering Division of Bhabha Atomic Research Centre, Bombay towards the development of the design of the rolled joint as well as the tooling and procedures required for achieving zero-clearance fit-ups at site. The requirements to be met by the Zr-2.5% Nb pressure tubes for achieving acceptable rolled joints are highlighted. (author). 5 refs., 6 figs., 3 tabs

  3. The jumps of physical quantities at fast shocks under pressure anisotropy: theory versus observations at the bow shock

    International Nuclear Information System (INIS)

    Vogl, D.F.

    2000-10-01

    The interaction of the solar wind with magnetized planets leads to the formation of the so-called magnetosphere, a cavity generated by the geomagnetic field. The supersonic, superalfvenic, and magnetized solar wind flow interacting with blunt bodies produces a detached bow shock, separating the solar wind from the magnetosheath, the region between the shock wave and the magnetopause. On approach to a planetary obstacle, the solar wind becomes subsonic at the bow shock and then flows past the planet in the magnetosheath. At the bow shock, the plasma parameters and the magnetic field strength change from upstream to downstream, i.e., an increase of plasma density, temperature, pressure, and magnetic field strength, and a decrease of the velocity across the shock. In this PhD thesis we mainly concentrate on the variations of all physical quantities across the bow shock taking into account pressure anisotropy, which is an important feature in space plasma physics and observed by various spacecraft missions in the solar wind as well as in the magnetosheath. Dealing with anisotropic plasma conditions, one has to introduce the so-called pressure tensor, characterized by two scalar pressures, the pressure perpendicular (P p erp) and the pressure parallel (P p arallel) with respect to the magnetic field and in general one speaks of anisotropic conditions for P p erp is not P p arallel. Many spacecraft observations of the solar wind show P p arallel > P p erp, whereas observations of the magnetosheath show the opposite case, P p arallel p erp. Therefore, dissipation of kinetic energy into thermal energy plays an important role in studying the variations of the relevant physical quantities across the shock. It has to be mentioned that planetary bow shocks are good examples for fast MHD shock waves. Therefore, the basic equations for describing the changes across the shock can be obtained by integrating the MHD equations in conservative form. We note that these equations, the

  4. Application of Deformable Templates for Recognizing Tracks Detected with High Pressure Drift Tubes

    International Nuclear Information System (INIS)

    Baginyan, S.; Baranov, S.; Glazov, A.; Ososkov, G.

    1994-01-01

    The modification of the deformable template method (DTM) application to the problem of track finding and track parameter determination for data detected with high pressure drift tubes (HPDT) in the design of ATLAS for the muon spectrometer experiment is proposed. Our DTM applications consist of two parts, according to two stages of the study. The first part relates to the stage of HPDT study on the CERN muon beam (BEAM-TEST) with the simplest one-prong events without noise signals, where the main obstacle is the left-right ambiguities for each tube. In the second part more complicated HPDT data are to be handled with noise signals. It was shown that the suggested DTM development solves the problem of track recognition and track parameter determination for both noiseless and noise data. Results are obtained on the real beam test data and on data simulating the muon spectrometer on the basis of HPDT. 14 refs., 10 figs

  5. Miniature piezoresistive solid state integrated pressure sensors

    Science.gov (United States)

    Kahng, S. K.

    1980-01-01

    The characteristics of silicon pressure sensors with an ultra-small diaphragm are described. The pressure sensors utilize rectangular diaphragm as small as 0.0127 x 0.0254 cm and a p-type Wheatstone bridge consisting of diffused piezoresistive elements, 0.000254 cm by 0.00254 cm. These sensors exhibit as high as 0.5 MHz natural frequency and 1 mV/V/psi pressure sensitivity. Fabrication techniques and high frequency results from shock tube testing and low frequency comparison with microphones are presented.

  6. A software tool for evaluation of hydrogen ingress in CANDU pressure tubes

    International Nuclear Information System (INIS)

    Mihalache, Maria; Vasile, Radu; Deaconu, Mariea

    2009-01-01

    The prediction of hydrogen isotopes concentration into the body and in the rolled joints of operating pressure tubes as a function of reactor hot hours is very important in many fitness-for-service assessments and end of life estimates. The rolled joints are high stress zones with potential for delayed hydride cracking. Predictive models for assessing the long-term deuterium ingress in both body and rolled joint of the pressure tubes have been implemented in a software tool, ROHID, developed in INR-Pitesti. ROHID is a PC-based Windows application with a user-friendly interface that predicts the equivalent hydrogen ingress for Zr-2.5Nb pressure tubes. It uses colour-coded reactor core maps to display the predicted deuterium concentration as a function of time for selected axial locations. Plots of deuterium versus axial location and time for individual pressure tubes are also available. Also, the software tool can predict the exceeding of hydrogen terminal solid solubility (HTSS) from hydrides during precipitation and dissolving processes as a function of time and axial location. (authors)

  7. On the low pressure shock initiation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine based plastic bonded explosives

    Science.gov (United States)

    Vandersall, Kevin S.; Tarver, Craig M.; Garcia, Frank; Chidester, Steven K.

    2010-05-01

    In large explosive and propellant charges, relatively low shock pressures on the order of 1-2 GPa impacting large volumes and lasting tens of microseconds can cause shock initiation of detonation. The pressure buildup process requires several centimeters of shock propagation before shock to detonation transition occurs. In this paper, experimentally measured run distances to detonation for lower input shock pressures are shown to be much longer than predicted by extrapolation of high shock pressure data. Run distance to detonation and embedded manganin gauge pressure histories are measured using large diameter charges of six octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) based plastic bonded explosives (PBX's): PBX 9404; LX-04; LX-07; LX-10; PBX 9501; and EDC37. The embedded gauge records show that the lower shock pressures create fewer and less energetic "hot spot" reaction sites, which consume the surrounding explosive particles at reduced reaction rates and cause longer distances to detonation. The experimental data is analyzed using the ignition and growth reactive flow model of shock initiation in solid explosives. Using minimum values of the degrees of compression required to ignite hot spot reactions, the previously determined high shock pressure ignition and growth model parameters for the six explosives accurately simulate the much longer run distances to detonation and much slower growths of pressure behind the shock fronts measured during the shock initiation of HMX PBX's at several low shock pressures.

  8. Scramjet test flow reconstruction for a large-scale expansion tube, Part 2: axisymmetric CFD analysis

    Science.gov (United States)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2017-11-01

    This paper presents the second part of a study aiming to accurately characterise a Mach 10 scramjet test flow generated using a large free-piston-driven expansion tube. Part 1 described the experimental set-up, the quasi-one-dimensional simulation of the full facility, and the hybrid analysis technique used to compute the nozzle exit test flow properties. The second stage of the hybrid analysis applies the computed 1-D shock tube flow history as an inflow to a high-fidelity two-dimensional-axisymmetric analysis of the acceleration tube. The acceleration tube exit flow history is then applied as an inflow to a further refined axisymmetric nozzle model, providing the final nozzle exit test flow properties and thereby completing the analysis. This paper presents the results of the axisymmetric analyses. These simulations are shown to closely reproduce experimentally measured shock speeds and acceleration tube static pressure histories, as well as nozzle centreline static and impact pressure histories. The hybrid scheme less successfully predicts the diameter of the core test flow; however, this property is readily measured through experimental pitot surveys. In combination, the full test flow history can be accurately determined.

  9. Operating envelope to minimize probability of fractures in Zircaloy-2 pressure tubes

    International Nuclear Information System (INIS)

    Azer, N.; Wong, H.

    1994-01-01

    The failure mode of primary concern with Candu pressure tubes is fast fracture of a through-wall axial crack, resulting from delayed hydride crack growth. The application of operating envelopes is demonstrated to minimize the probability of fracture in Zircaloy-2 pressure tubes based on Zr-2.5%Nb pressure tube experience. The technical basis for the development of the operating envelopes is also summarized. The operating envelope represents an area on the pressure versus temperature diagram within which the reactor may be operated without undue concern for pressure tube fracture. The envelopes presented address both normal operating conditions and the condition where a pressure tube leak has been detected. The examples in this paper are prepared to illustrate the methodology, and are not intended to be directly applicable to the operation of any specific reactor. The application of operating envelopes to minimized the probability of fracture in 80 mm diameter Zircaloy-2 pressure tubes has been discussed. Both normal operating and leaking pressure tube conditions have been considered. 3 refs., 4 figs

  10. Pressurized thermal shock program sponsored by EPRI

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.

    1983-01-01

    The potential for long term neutron embrittlement of reactor vessels has been recognized for a number of years. Reactor vessel thermal shock is not a new concern, but with a growing number of plants approaching their mid-lives, it is a concern that must be understood and dealt with. Recent attention has focused on the performance of vessels during overcooling transients. This concern was designated as Unresolved Safety Issue A-49 by the Nuclear Regulatory Commission in December 1981. The USNRC staff has identified eight overcooling events of concern in U.S. PWRs. The concern is currently limited to Pressurized Water Reactors. The Electric Power Research Institute (EPRI) has supported research on reactor vessel integrity for a number of years and has supported an extensive effort on reactor vessel pressurized thermal shock (PTS) over the last three years. In addition, EPRI has developed a linked set of computer codes to simulate the pressurized thermal shock transients and assess the integrity of the nuclear reactor vessels for various overcooling transients. This paper focuses on the integrated analysis approach being used by EPRI in performing such analysis. (orig.)

  11. Comparison of evaluation method for planar flaw in pressure tube

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Kim, Hyung Nam; Yoo, Hyun Joo; Hwang, Won Gul

    2009-01-01

    CSA N285.4-94 requires the periodic inservice inspection and surveillance of pressure tubes in operating CANDU nuclear power reactors. If the inspection results reveal a flaw exceeding the acceptance criteria of the Code, the flaw must be evaluated to determine if the pressure is acceptable for continued service. Currently, the flaw evaluation methodology and acceptance criteria specified in CSA N285.8-05, 'Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors'. The Code is applicable to zirconium alloy pressure tubes. The evaluation methodology for a crack-like flaw is similar to that of FFSG(Fitness For Service Guideline for Zirconium alloy pressure in operation CANDU) used now. The object of this paper is to address the fracture initiation and plastic collapse evaluation for the planar flaw as it applies to the pressure tube on Wolsong NPP.

  12. Remote ultrasonic characterisation of an irradiated pressure tube from RAPS-II

    Energy Technology Data Exchange (ETDEWEB)

    Gangotra, S; Muralidhar, S; Raut, S D; Ouseph, P M; Ghosh, J K; Sahoo, K C [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.

    1994-12-31

    The Rajasthan Atomic Power Station Unit-2 (RAPS-2) has reached a stage of operation where the contacting pressure tubes are suspect to failure as a result of irradiation creep and displacement of the garter springs, the hot pressure tube coming in contact with the cold calandria tube. To study and assess the safety of these pressure tubes, two channels believed to be in contact with the calandria tubes, have been removed from the reactor for detailed full length post irradiation examination. Some of the test results are presented. 2 refs., 3 figs., 1 tab.

  13. Pressurized-thermal-shock experiments with thick vessels

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1986-01-01

    Information is provided on the series of pressurized-thermal-shock experiments at the Oak Ridge National Laboratory, motivated by a concern for the behavior of flaws in reactor pressure vessels having welds or shells exhibiting low upper-shelf Charpy impact energies, approx. 68J or less

  14. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    International Nuclear Information System (INIS)

    Cheong, Y. M.; Kim, Y. S.; Gong, U. S.; Kwon, S. C.; Kim, S. S.; Choo, K.N.

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described

  15. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Y M; Kim, Y S; Gong, U S; Kwon, S C; Kim, S S; Choo, K N

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described.

  16. The development of an auto-sealing system using an electrically shrinkable tube under a low-pressure condition

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Yoshihiro; Kitagawa, Takao [NKK Corp, Tsu, Mie (Japan); Shoji, Norio [NKK Corp., Yokohama (Japan); Namioka, Toshiyuki [Nippon Kokan Koji Corp., Yokohama (Japan). Research and Development Dept.; Komura, Minoru [Nitto Denko Corp., Fukaya, Saitama (Japan)

    1997-04-01

    This article describes the development of a system to create high quality, automatic sealing of field joints of polyethylene coated pipelines. The system uses a combination of an electrically heated shrinkable tube and a low-pressure chamber. The self-heating shrinkable tube includes electric heater wires that heat when connected to electricity. A method was developed to eliminate air trapped between the tube and the steel pipe by shrinking the tube under a low-pressure condition. The low-pressure condition was automatic and easily attained by using a vacuum chamber. It was verified that the system produced high quality sealing of the field joints.

  17. A technique of taking samples from inside the pressure tube along the axis of the fuel channel

    International Nuclear Information System (INIS)

    Gyongyosi, T.

    2005-01-01

    Full text: The ageing process through its complex mechanisms affects in time more or less the component parts, the systems and the structures of the nuclear power plant. For CANDU type nuclear power plant the main component part in operation is the pressure tube, made from Zr - 2,5% Nb alloy, used in extreme hard operation conditions (static and dynamic loading from high pressure and temperature and high neutron flux). The pressure tube endures, in time, changing of the material and of the geometry. Additionally, the excessive hydrogen uptake initiates the Delayed Hydride Cracking (DHC) mechanism on the pressure tubes. For checking the evolution of the hydride / deuteration phenomena in the material of the pressure tube and especially to establish the real lifetime as compared to design lifetime it is useful to initiate, develop and apply a technology and a complex equipment for taking samples directly from inside the pressure tube, this enabling the determination of the hydrogen content. In the paper are showed briefly: - the evolution in time of the techniques for axial taking of the samples from inside of the pressure tube used in the CANDU 6 NPP; - the reasons that determined us to develop one of these technologies; - the technological facilities needed to apply it. (author)

  18. A technique of taking samples from inside the pressure tube along the axis of the fuel channel

    International Nuclear Information System (INIS)

    Gyongyosi, T.

    2005-01-01

    The ageing process through its complex mechanisms affects in time more or less the component parts, the systems and the structures of the nuclear power plant. For CANDU type nuclear power plant the main component part in operation is the pressure tube, made from Zr - 2,5% Nb alloy, used in extreme hard operation conditions (static and dynamic loading from high pressure and temperature and high neutron flux). The pressure tube endures, in time, changing of the material and of the geometry. Additionally, the excessive hydrogen uptake initiates the Delayed Hydride Cracking (DHC) mechanism on the pressure tubes. For checking the evolution of the hydride/deuteration phenomena in the material of the pressure tube and especially to establish the real lifetime as compared to design lifetime it is useful to initiate, develop and apply a technology and a complex equipment for taking samples directly from inside the pressure tube, this enabling the determination of the hydrogen content. In the paper are showed briefly: - the evolution in time of the techniques for axial taking of the samples from inside of the pressure tube used in the CANDU 6 NPP; - the reasons that determined us to develop one of these technologies; - the technological facilities needed to apply it. (author)

  19. Shock pressure estimation in basement rocks of the Chicxulub impact crater using cathodoluminescence spectroscopy of quartz

    Science.gov (United States)

    Tomioka, N.; Tani, R.; Kayama, M.; Chang, Y.; Nishido, H.; Kaushik, D.; Rae, A.; Ferrière, L.; Gulick, S. P. S.; Morgan, J. V.

    2017-12-01

    The Chicxulub impact structure, located in the northern Yucatan Peninsula, Mexico, was drilled by the joint IODP-ICDP Expedition 364 in April-May 2016. This expedition is the first attempt to obtain materials from the topographic peak ring within the crater previously identified by seismic imaging. A continuous core was successfully recovered from the peak ring at depths between 505.7 and 1334.7 mbsf. Uplifted, fractured, and shocked granitic basement rocks forming the peak ring were found below, in the impact breccia and impact melt rock unit (747.0-1334.7 mbsf; Morgan et al. 2016). In order to constrain impact crater formation, we investigated shock pressure distribution in the peak-ring basement rocks. Thin sections of the granitic rocks were prepared at intervals of 60 m. All the samples contains shocked minerals, with quartz grains frequently showing planar deformation features (PDFs). We determined shock pressures based on the cathodoluminescence (CL) spectroscopy of quartz. The strong advantage of the CL method is its applicability to shock pressure estimation for individual grains for both quartz and diaplectic SiO2 glass with high-spatial resolution ( 1 μm) (Chang et al. 2016). CL spectra of quartz shows a blue emission band caused by shock-induced defect centers, where its intensity increases with shock pressure. A total of 108 quartz grains in ten thin sections were analyzed using a scanning electron microscope with a CL spectrometer attached (an acceleration voltage of 15 kV and a beam current of 2 nA were used). Natural quartz single crystals, which were experimentally shocked at 0-30 GPa, were used for pressure calibration. CL spectra of all the quartz grains in the basement rocks showed broad blue emission band at the wavelength range of 300-500 nm and estimated shock pressures were in the range of 15-20 GPa. The result is consistent with values obtained from PDFs analysis in quartz using the universal stage (Ferrière et al. 2017; Rae et al. 2017

  20. Experimental Insights into the Mechanisms of Particle Acceleration by Shock Waves

    Science.gov (United States)

    Scolamacchia, T.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The generation of shock waves is common during explosive volcanic eruptions. Particles acceleration following shock wave propagation has been experimentally observed suggesting the potential hazard related to this phenomenon. Experiments and numerical models focused on the dynamics of formation and propagation of different types of shock waves when overpressurized eruptive mixtures are suddenly released in the atmosphere, using a pseudo-gas approximation to model those mixtures. Nevertheless, the results of several studies indicated that the mechanism of coupling between a gas and solid particles is valid for a limited grain-size range, which at present is not well defined. We are investigating particle acceleration mechanisms using a vertical shock tube consisting of a high-pressure steel autoclave (450 mm long, 28 mm in diameter), pressurized with argon, and a low-pressure 140 mm long acrylic glass autoclave, with the same internal diameter of the HP reservoir. Shock waves are generated by Ar decompression at atmospheric pressures at Pres/Pamb 100:1 to 150:1, through the failure of a diaphragm. Experiments were performed either with empty autoclave or suspending solid analogue particles 150 μm in size inside the LP autoclave. Incident Mach number varied from 1.7 to 2.1. Absolute and relative pressure sensors monitored P histories during the entire process, and a high-speed camera recorded particles movement at 20,000 to 30,000 fps. Preliminary results indicate pressure multiplication at the contact between shock waves and the particles in a time lapse of 100s μs, suggesting a possible different mechanism with respect to gas-particle coupling for particle acceleration.

  1. An improved method to experimentally determine temperature and pressure behind laser-induced shock waves at low Mach numbers

    International Nuclear Information System (INIS)

    Hendijanifard, Mohammad; Willis, David A

    2011-01-01

    Laser-matter interactions are frequently studied by measuring the propagation of shock waves caused by the rapid laser-induced material removal. An improved method for calculating the thermo-fluid parameters behind shock waves is introduced in this work. Shock waves in ambient air, induced by pulsed Nd : YAG laser ablation of aluminium films, are measured using a shadowgraph apparatus. Normal shock solutions are applied to experimental data for shock wave positions and used to calculate pressure, temperature, and velocity behind the shock wave. Non-dimensionalizing the pressure and temperature with respect to the ambient values, the dimensionless pressure and temperature are estimated to be as high as 90 and 16, respectively, at a time of 10 ns after the ablation pulse for a laser fluence of F = 14.5 J cm -2 . The results of the normal shock solution and the Taylor-Sedov similarity solution are compared to show that the Taylor-Sedov solution under-predicts pressure when the Mach number of the shock wave is small. At a fluence of 3.1 J cm -2 , the shock wave Mach number is less than 3, and the Taylor-Sedov solution under-predicts the non-dimensional pressure by as much as 45%.

  2. Numerical calculation of two phase flow in a shock tube

    International Nuclear Information System (INIS)

    Rivard, W.C.; Travis, J.R.; Torrey, M.D.

    1976-01-01

    Numerical calculations of the dynamics of initially saturated water-steam mixtures in a shock tube demonstrate the accuracy and efficiency of a new solution technique for the transient, two-dimensional, two-fluid equations. The dependence of the calculated results on time step and cell size are investigated. The effects of boiling and condensation on the flow physics suggest the merits of basic fluid dynamic measurements for the determination and evaluation of mass exchange models

  3. High temperature ceramic-tubed reformer

    Science.gov (United States)

    Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.

    1990-03-01

    The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.

  4. An improved model to predict nonuniform deformation of Zr-2.5 Nb pressure tubes

    International Nuclear Information System (INIS)

    Lei, Q.M.; Fan, H.Z.

    1997-01-01

    Present circular pressure-tube ballooning models in most fuel channel codes assume that the pressure tube remains circular during ballooning. This model provides adequate predictions of pressure-tube ballooning behaviour when the pressure tube (PT) and the calandria tube (CT) are concentric and when a small (<100 degrees C) top-to-bottom circumferential temperature gradient is present on the pressure tube. However, nonconcentric ballooning is expected to occur under certain postulated CANDU (CANada Deuterium Uranium) accident conditions. This circular geometry assumption prevents the model from accurately predicting nonuniform pressure-tube straining and local PT/CT contact when the pressure tube is subjected to a large circumferential temperature gradient and consequently deforms in a noncircular pattern. This paper describes an improved model that predicts noncircular pressure-tube deformation. Use of this model (once fully validated) will reduce uncertainties in the prediction of pressure-tube ballooning during a postulated loss-of-coolant accident (LOCA) in a CANDU reactor. The noncircular deformation model considers a ring or cross-section of a pressure tube with unit axial length to calculate deformation in the radial and circumferential directions. The model keeps track of the thinning of the pressure-tube wall as well as the shape deviation from a reference circle. Such deviation is expressed in a cosine Fourier series for the lateral symmetry case. The coefficients of the series for the first m terms are calculated by solving a set of algebraic equations at each time step. The model also takes into account the effects of pressure-tube sag or bow on ballooning, using an input value of the offset distance between the centre of the calandria tube and the initial centre of the pressure tube for determining the position radius of the pressure tube. One significant improvement realized in using the noncircular deformation model is a more accurate prediction in

  5. Universal treatment of plumes and stresses for pressurized thermal shock evaluations

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Angelini, S.; Yan, H.

    1991-01-01

    Thermally-induced stresses in a reactor pressure vessel wall, as a result of high-pressure safety injection, are an essential component of integrated risk analyses of pressurized thermal shock transients. Limiting cooldowns arise when this injection occurs under stagnated loop conditions which, in turn, correspond to a rather narrow range (in size) of small-break loss-of-coolant accidents. Moreover, at these conditions, the flow is thermally stratified, and in addition to the global cooldown, one must be concerned about the additional cooling potential due to the downcomer plumes formed by the cold streams pouring out of the cold legs. In the Nuclear Regulatory Commission's Integrated Pressurized Thermal Shock (IPTS) study, this stratification was calculated with the codes REMIX/NEWMIX. A comprehensive comparison with all available experimental data has currently been compiled. The stress analysis using this input was carried out at Oak Ridge National Laboratory using a one-dimensional approximation with the intent to conservatively bound the magnitude of thermal stresses

  6. Delayed hydrogen cracking test design for pressure tubes

    International Nuclear Information System (INIS)

    Haddad, Roberto; Loberse, Antonio N.; Yawny, Alejandro A.; Riquelme, Pablo

    1999-01-01

    CANDU nuclear power stations pressure tubes of alloy Zr-2,5 % Nb present a cracking phenomenon known as delayed hydrogen cracking (DHC). This is a brittle fracture of zirconium hydrides that are developed by hydrogen due to aqueous corrosion on the metal surface. This hydrogen diffuses to the crack tip where brittle zirconium hydrides develops and promotes the crack propagation. A direct current potential decay (DCPD) technique has been developed to measure crack propagation rates on compact test (CT) samples machined from a non irradiated pressure tube. Those test samples were hydrogen charged by cathodic polarization in an acid solution and then pre cracked in a fatigue machine. This technique proved to be useful to measure crack propagation rates with at least 1% accuracy for DHC in pressure tubes. (author)

  7. Full length channel Pressure Tube sagging under completely voided full length pressure tube of an Indian PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Negi, Sujay, E-mail: negi.sujay@gmail.com [Indian Institute of Technology, Roorkee 247667 (India); Kumar, Ravi, E-mail: ravikfme@gmail.com [Indian Institute of Technology, Roorkee 247667 (India); Majumdar, P., E-mail: pmajum@barc.gov.in [Bhabha Atomic Research Centre, Mumbai 400085 (India); Mukopadhyay, D., E-mail: dmukho@barc.gov.in [Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2017-03-15

    Highlights: • At 16 kW/m input, thermal stability was attained at 595 °C, without PT-CT contact. • At 20 kW/m step input, PT-CT contact occurred at 637 °C near bottom-center of the tube. • PT integrity was maintained throughout the experiment. - Abstract: An experimental investigation was conducted to simulate the sagging behavior of a full length Pressure Tube of a channel of 220 MWe Indian PHWR. The investigation aimed to recreate a condition resembling Loss of Coolant Accident (LOCA) with Emergency Core Cooling System (ECCS) failure in a nuclear power plant. A full length channel assembly immersed in moderator was subjected to electrical resistance heating of Pressure Tube (PT) to simulate the residual heat after shutting down of reactor. The temperature of PT started rising and the contact between PT and CT was established at the center of the tube where average bottom temperature was 637 °C. The integrity of PT was maintained throughout the experiment and the PT heat up was arrested on contact with the CT due to transfer of heat to the moderator.

  8. Moderator mixing after a pressure tube failure

    International Nuclear Information System (INIS)

    MacKinnon, J.C.; Fortman, R.A.; Hadaller, G.I.

    1997-01-01

    During a guaranteed shutdown state (GSS) in a CANDU reactor, there must be sufficient negative reactivity to ensure subcriticality in the event of a process failure. In one of the acceptable states, the reactor is kept subcritical by a high concentration of a neutron-absorbing chemical (the poison gadolinium nitrate) dissolved in the moderator (i.e., the moderator is guaranteed overpoisoned). A postulated accident scenario which is considered as a part of reactor safety analysis is the rupture of a fuel channel (i.e., a pressure tube/calandria tube break) when the reactor is in a GSS. If one of the channels in the core breaks (requiring a simultaneous failure of both the pressure tube and the surrounding calandria tube), coolant from the primary heat transport system will be discharged into the moderator, causing an associated displacement of fluid through relief ducts at the top of the calandria vessel. The incoming (unpoisoned) coolant may mix quickly with the moderator, or may mix slowly while displacing poisoned moderator through the relief ducts. The effectiveness of mixing generally depends on the break location, the coolant discharge rate and the moderator circulation. If an in-core loss of coolant accident occurred while the reactor is in this overpoisoned state, it must be guaranteed that even with the dilution of the poison by the incoming coolant the reactor will remain subcritical on both a local and global basis. This paper presents an overview of an experimental program in progress at the Moderator Test Facility at Stern Laboratories to investigate coolant/poison mixing for a simulated in-core fishmouth pressure tube/calandria tube rupture. The nominal system conditions investigated are of a reactor in a GSS, with coolant in the primary heat transport system at the same temperature as the heavily poisoned moderator, i.e., a depressurised 'cold' state. The results presented are those obtained during the commissioning of the modified Test Facility. The

  9. In-situ Raman spectroscopy and high-speed photography of a shocked triaminotrinitrobenzene based explosive

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Amans, C.; Hébert, P., E-mail: philippe.hebert@cea.fr; Doucet, M. [CEA, DAM, Le RIPAULT, F-37620 Monts (France); Resseguier, T. de [Institut P' , UPR CNRS 3346, ENSMA, Université de Poitiers, F-86961 Futuroscope, Chasseneuil (France)

    2015-01-14

    We have developed a single-shot Raman spectroscopy experiment to study at the molecular level the initiation mechanisms that can lead to sustained detonation of a triaminotrinitrobenzene-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamond anvil cell. Our shock data indicate the role of temperature effects. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Reflectivity measurements under shock compression show that this opacity is due to a broadening of the absorption spectrum over the entire visible region.

  10. Effects of explosion-generated shock waves in ducts

    International Nuclear Information System (INIS)

    Busby, M.R.; Kahn, J.E.; Belk, J.P.

    1976-01-01

    An explosion in a space causes an increase in temperature and pressure. To quantify the challenge that will be presented to essential components in a ventilation system, it is necessary to analyze the dynamics of a shock wave generated by an explosion, with attention directed to the propagation of such a wave in a duct. Using the equations of unsteady flow and shock tube theory, a theoretical model has been formulated to provide flow properties behind moving shock waves that have interacted with various changes in duct geometry. Empirical equations have been derived to calculate air pressure, temperature, Mach number, and velocity in a duct following an explosion

  11. Inert medium (helium) irradiation testing of pressure tube samples

    International Nuclear Information System (INIS)

    Ancuta, M.; Radu, V.; Stefan, V.; Preda, M.

    2001-01-01

    Irradiation tests currently performed in C-5 capsule aim at obtaining data and information concerning behavior to irradiation of pressure tubes of CANDU type fuel channel, to evidence the factors limiting operation life span. A calculation code for analysis and prediction of pressure tube behavior should be based upon periodical inspection results, post irradiation examination of the removed from reactor pressure tubes as well as on the experimental results obtained with materials subjected to irradiation conditions identical with the operational ones. Mechanical behavior analysis should focus both complex thermal-mechanical type stresses and mechanical properties alteration under irradiation. The experimental results should be applied: - to evaluate the irradiation effects upon mechanical properties of Zr-2.5% Nb exposed to fluences up to 10 21 n·cm -2 ; - to gather data concerning the real stress / real deformation characteristic from which characteristic quantities can be deduced as, for instance, elasticity modulus, plasticity modulus, exponent of stress term in the Tsu-Berteles relation, to be used within the CANTUP simulation code describing pressure tube behavior, currently developed at INR Pitesti; - to develop prediction methods of pressure tube behavior and merging with in-service inspection procedure in order to forecast the life span and the proper timing for replacement before major failures occur. The samples irradiated in C-5 capsule were extracted from the ends of Zr-2.5% Nb pressure tubes resulting from Cernavoda NPP Unit 1. The samples for tensile tests were extracted on longitudinal and transversal directions of the pressure tube. The tests were carried out under following conditions: - test environment temperature, 260 - 280 deg.C; - testing medium, helium at 1 - 6 b pressure; - neutron flux (E n > 1 MeV), 1 - 2 · 10 13 ncm -2 s -1 ; - neutron fluence (E n > 1 MeV), 4 · 10 20 ncm -2 . The following characteristics were obtained from tensile

  12. Development of Evaluation Technology of the Integrity of HWR Pressure Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. M.; Kim, Y. S.; Im, K. S.; Kim, K. S.; Ahn, S. B

    2007-06-15

    Zr-2.5Nb pressure tubes are one of the most critical structural components governing the lifetime of the heavy water reactors to carry fuel bundles and heavy coolant water inside. Since they are being degraded during their operation in reactors due to dimensional changes caused by creep and irradiation growth, neutron irradiation and delayed hydride cracking, it is required to evaluate their degradation by conducting material testing and examinations on the highly irradiated pressure tubes in hot cells and to keep tracking of their degradation behavior with operation time, which are the aim of this project.

  13. Spatial distribution of cavitation-shock-pressure around a jet-flow gate-valve

    International Nuclear Information System (INIS)

    Oba, Risaburo; Takayama, Kazuyoshi; Ito, Yukio; Miyakura, Hideto; Nozaki, Satoru; Ishige, Tadashi; Sonoda, Shuji; Sakamoto, Kenji.

    1987-01-01

    To make clear the mechanism of cavitation erosion, the spatial distribution of cavitation shock pressures were quantitatively measured by a pressure sensitive sheet in the 1/10 scale model of a jet-flow gate-valve, for various valve-openings and cavitation numbers. The dynamic pressure response of the sheet was corrected by the shock wave generated from detonation explosives. It is made clear that the erosive shock pressures are distributed in a limited part of the whole cavitation region, and the safety region without the fatal cavitation erosion is defined. (author)

  14. Experiments of draining and filling processes in a collapsible tube at high external pressure

    Science.gov (United States)

    Flaud, P.; Guesdon, P.; Fullana, J.-M.

    2012-02-01

    The venous circulation in the lower limb is mainly controlled by the muscular action of the calf. To study the mechanisms governing the venous draining and filling process in such a situation, an experimental setup, composed by a collapsible tube under external pressure, has been built. A valve preventing back flows is inserted at the bottom of the tube and allows to model two different configurations: physiological when the fluid flow is uni-directional and pathological when the fluid flows in both directions. Pressure and flow rate measurements are carried out at the inlet and outlet of the tube and an original optical device with three cameras is proposed to measure the instantaneous cross-sectional area. The experimental results (draining and filling with physiological or pathological valves) are confronted to a simple one-dimensional numerical model which completes the physical interpretation. One major observation is that the muscular contraction induces a fast emptying phase followed by a slow one controlled by viscous effects, and that a defect of the valve decreases, as expected, the ejected volume.

  15. AMPTRACT: an algebraic model for computing pressure tube circumferential and steam temperature transients under stratified channel coolant conditions

    International Nuclear Information System (INIS)

    Gulshani, P.; So, C.B.

    1986-10-01

    In a number of postulated accident scenarios in a CANDU reactor, some of the horizontal fuel channels are predicted to experience periods of stratified channel coolant condition which can lead to a circumferential temperature gradient around the pressure tube. To study pressure tube strain and integrity under stratified flow channel conditions, it is, necessary to determine the pressure tube circumferential temperature distribution. This paper presents an algebraic model, called AMPTRACT (Algebraic Model for Pressure Tube TRAnsient Circumferential Temperature), developed to give the transient temperature distribution in a closed form. AMPTRACT models the following modes of heat transfer: radiation from the outermost elements to the pressure tube and from the pressure to calandria tube, convection between the fuel elements and the pressure tube and superheated steam, and circumferential conduction from the exposed to submerged part of the pressure tube. An iterative procedure is used to solve the mass and energy equations in closed form for axial steam and fuel-sheath transient temperature distributions. The one-dimensional conduction equation is then solved to obtain the pressure tube circumferential transient temperature distribution in a cosine series expansion. In the limit of large times and in the absence of convection and radiation to the calandria tube, the predicted pressure tube temperature distribution reduces identically to a parabolic profile. In this limit, however, radiation cannot be ignored because the temperatures are generally high. Convection and radiation tend to flatten the parabolic distribution

  16. On the Unsteadiness of a Transitional Shock Wave-Boundary Layer Interaction Using Fast-Response Pressure-Sensitive Paint

    Science.gov (United States)

    Lash, E. Lara; Schmisseur, John

    2017-11-01

    Pressure-sensitive paint has been used to evaluate the unsteady dynamics of transitional and turbulent shock wave-boundary layer interactions generated by a vertical cylinder on a flat plate in a Mach 2 freestream. The resulting shock structure consists of an inviscid bow shock that bifurcates into a separation shock and trailing shock. The primary features of interest are the separation shock and an upstream influence shock that is intermittently present in transitional boundary layer interactions, but not observed in turbulent interactions. The power spectral densities, frequency peaks, and normalized wall pressures are analyzed as the incoming boundary layer state changes from transitional to fully turbulent, comparing both centerline and outboard regions of the interaction. The present study compares the scales and frequencies of the dynamics of the separation shock structure in different boundary layer regimes. Synchronized high-speed Schlieren imaging provides quantitative statistical analyses as well as qualitative comparisons to the fast-response pressure sensitive paint measurements. Materials based on research supported by the U.S. Office of Naval Research under Award Number N00014-15-1-2269.

  17. Non-destructive testing of high pressure fibre reinforced composites tubes by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, L. [Qualitaetszentrum Dortmund (Germany); Monstadt, H.; Boedecker, T. [EFMT, Bochum (Germany)

    1995-12-31

    For new applications of fibre reinforced composites, new non-destructive testing methods are required which on the one hand can be used as a quality testing method and on the other hand as an in-service inspection method during the life of a product. Special attention should be paid to the defect sensitivity and to a detailed classification of visible defects. Defining a detectable standard, comparable investigations were carried out using the Ultra Fast Scanner which is located at the Entwicklungs- und Forschungszentrum fuer Mikrotherapie gGmbH (EFMT) and the industrial scanner of the Qualitaetszentrum Dortmund GmbH u. Co. KG (QZ-DO). The investigation object is a high pressure tube which is made up of three different diameter structures. There can be distinguished between three types of tube layers. Digital image processing has been used to get more information form measured data. We developed two different types of digital image filters: A SIGMA and a Contrast Sensitive Weights (CSW) image filter and made a comparative study. (orig./RHM)

  18. Shock unsteadiness in a thrust optimized parabolic nozzle

    Science.gov (United States)

    Verma, S. B.

    2009-07-01

    This paper discusses the nature of shock unsteadiness, in an overexpanded thrust optimized parabolic nozzle, prevalent in various flow separation modes experienced during start up {(δ P0 /δ t > 0)} and shut down {(δ P0/δ t The results are based on simultaneously acquired data from real-time wall pressure measurements using Kulite pressure transducers, high-speed schlieren (2 kHz) of the exhaust flow-field and from strain-gauges installed on the nozzle bending tube. Shock unsteadiness in the separation region is seen to increase significantly just before the onset of each flow transition, even during steady nozzle operation. The intensity of this measure ( rms level) is seen to be strongly influenced by relative locations of normal and overexpansion shock, the decrease in radial size of re-circulation zone in the back-flow region, and finally, the local nozzle wall contour. During restricted shock separation, the pressure fluctuations in separation region exhibit periodic characteristics rather than the usually observed characteristics of intermittent separation. The possible physical mechanisms responsible for the generation of flow unsteadiness in various separation modes are discussed. The results are from an experimental study conducted in P6.2 cold-gas subscale test facility using a thrust optimized parabolic nozzle of area-ratio 30.

  19. Shock Tube and Ballistic Range Facilities at NASA Ames Research Center

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.

  20. Shock Tube/Laser Absorption Studies of Jet Fuels at Low Temperatures (600-1200K)

    Science.gov (United States)

    2013-08-27

    Davidson, Ronald K. Hanson. A second-generation aerosol shock tube and its use in studying ignition delay times of large biodiesel surrogates, 28th... Biodiesel Surrogate behind Reflected Shock Waves,” 8th US National Combustion Meeting, Paper 070RK-0008 Park City, UT 5/2013.   These  studies provide...www.elsevier .com/locate / fuel 1. Introduction Normal alkanes have been widely used as fuels and are major components of many commercial transportation fuels

  1. Tracheal tube and laryngeal mask cuff pressure during anaesthesia - mandatory monitoring is in need

    DEFF Research Database (Denmark)

    Rokamp, K.Z.; Secher, N.H.; Møller, Ann

    2010-01-01

    ABSTRACT: BACKGROUND: To prevent endothelium and nerve lesions, tracheal tube and laryngeal mask cuff pressure is to be maintained at a low level and yet be high enough to secure air sealing. METHOD: In a prospective quality-control study, 201 patients undergoing surgery during anaesthesia (without...... the use of nitrous oxide) were included for determination of the cuff pressure of the tracheal tubes and laryngeal masks. RESULTS: In the 119 patients provided with a tracheal tube, the median cuff pressure was 30 (range 8 - 100) cm H2O and the pressure exceeded 30 cm H2O (upper recommended level) for 54...... patients. In the 82 patients provided with a laryngeal mask, the cuff pressure was 95 (10 - 121) cm H2O and above 60 cm H2O (upper recommended level) for 56 patients and in 34 of these patients, the pressure exceeded the upper cuff gauge limit (120 cm H2O). There was no association between cuff pressure...

  2. Strain measurements during pressurized thermal shock experiment

    International Nuclear Information System (INIS)

    Tarso Vida Gomes, P. de; Julio Ricardo Barreto Cruz; Tanius Rodrigues Mansur; Denis Henrique Bianchi Scaldaferri; Miguel Mattar Neto

    2005-01-01

    For the life extension of nuclear power plants, the residual life of most of their components must be evaluated along all their operating time. Concerning the reactor pressure vessel, the pressurized thermal shock (PTS) is a very important event to be considered. For better understanding the effects of this kind of event, tests are made. The approach described here consisted of building a simplified in-scale physical model of the reactor pressure vessel, submitting it to the actual operating temperature and pressure conditions and provoking a thermal shock by means of cold water flow in its external surface. To conduct such test, the Nuclear Technology Development Center (CDTN) has been conducting several studies related to PTS and has also built a laboratory that has made possible the simulation of the PTS loading conditions. Several cracks were produced in the external surface of the reactor pressure vessel model. Strain gages were fixed by means of electrical discharge welding over the cracks regions in both external and internal surfaces. The temperature was monitored in 10 points across the vessel wall. The internal pressure was manually controlled and monitored using a pressure transducer. Two PTS experiments were conducted and this paper presents the strain measurement procedures applied to the reactor pressure vessel model, during the PTS, using strain gages experimental methodology. (authors)

  3. Effect of tubing condensate on non-invasive positive pressure ventilators tested under simulated clinical conditions.

    Science.gov (United States)

    Hart, Diana Elizabeth; Forman, Mark; Veale, Andrew G

    2011-09-01

    Water condensate in the humidifier tubing can affect bi-level ventilation by narrowing tube diameter and increasing airflow resistance. We investigated room temperature and tubing type as ways to reduce condensate and its effect on bi-level triggering and pressure delivery. In this bench study, the aim was to test the hypothesis that a relationship exists between room temperature and tubing condensate. Using a patient simulator, a Res-med bi-level device was set to 18/8 cm H(2)O and run for 6 h at room temperatures of 16°C, 18°C and 20°C. The built-in humidifier was set to a low, medium or high setting while using unheated or insulated tubing or replaced with a humidifier using heated tubing. Humidifier output, condensate, mask pressure and triggering delay of the bi-level were measured at 1 and 6 h using an infrared hygrometer, metric weights, Honeywell pressure transducer and TSI pneumotach. When humidity output exceeded 17.5 mg H(2)O/L, inspiratory pressure fell by 2-15 cm H(2)O and triggering was delayed by 0.2-0.9 s. Heating the tubing avoided any such ventilatory effect whereas warmer room temperatures or insulating the tubing were of marginal benefit. Users of bi-level ventilators need to be aware of this problem and its solution. Bi-level humidifier tubing may need to be heated to ensure correct humidification, pressure delivery and triggering.

  4. Refractive index of r-cut sapphire under shock pressure range 5 to 65 GPa

    International Nuclear Information System (INIS)

    Cao, Xiuxia; Li, Jiabo; Li, Jun; Li, Xuhai; Xu, Liang; Wang, Yuan; Zhu, Wenjun; Meng, Chuanmin; Zhou, Xianming

    2014-01-01

    High-pressure refractive index of optical window materials not only can provide information on electronic polarizability and band-gap structure, but also is important for velocity correction in particle-velocity measurement with laser interferometers. In this work, the refractive index of r-cut sapphire window at 1550 nm wavelength was measured under shock pressures of 5–65 GPa. The refractive index (n) decreases linearly with increasing shock density (ρ) for shock stress above the Hugoniot elastic limit (HEL): n = 2.0485 (± 0.0197) − 0.0729 (± 0.0043)ρ, while n remains nearly a constant for elastic shocks. This behavior is attributed to the transition from elastic (below HEL) to heterogeneous plastic deformation (above HEL). Based on the obtained refractive index-density relationship, polarizability of the shocked sapphire was also obtained

  5. Acquired tracheoesophageal fistula due to high intracuff pressure

    Directory of Open Access Journals (Sweden)

    Hameed Akmal

    2008-01-01

    Full Text Available High-compliance endotracheal tube cuffs are used to prevent gas leak and also pulmonary aspiration in mechanically ventilated patients. However, the use of the usual cuff inflation volumes may cause tracheal damage and lead to tracheoesophageal fistula. Tracheostomy tube cuffs seal against the tracheal wall and prevent leakage of air around the tube, assuring that the tidal volume is delivered to the lungs. In the past, high-pressure cuffs were used, but these contributed to tracheal injury and have been replaced by high-volume, low-pressure cuffs. For long-term applications, some newer tubes have low-profile (tight to shaft cuffs that facilitate the tracheostomy tube changes by eliminating the lip that forms when standard cuffs are deflated.

  6. Shock tube studies of methyl butanoate pyrolysis with relevance to biodiesel

    KAUST Repository

    Farooq, Aamir

    2012-11-01

    Methyl butanoate pyrolysis and decomposition pathways were studied in detail by measuring concentration time-histories of CO, CO 2, CH 3, and C 2H 4 using shock tube/laser absorption methods. Experiments were conducted behind reflected shock waves at temperatures of 1200-1800K and pressures near 1.5atm using mixtures of 0.1%, 0.5%, and 1% methyl butanoate in Argon. A novel laser diagnostic was developed to measure CO in the ν 1 fundamental vibrational band near 4.56μm using a new generation of quantum-cascade lasers. Wavelength modulation spectroscopy with second-harmonic detection (WMS-2f) was used to measure CO 2 near 2752nm. Methyl radical was measured using UV laser absorption near 216nm, and ethylene was monitored using IR gas laser absorption near 10.53μm. An accurate methyl butanoate model is critical in the development of mechanisms for larger methyl esters, and the measured time-histories provide kinetic targets and strong constraints for the refinement of the methyl butanoate reaction mechanism. Measured CO mole fractions reach plateau values that are the same as the initial fuel mole fraction at temperatures higher than 1500K over the maximum measurement time of 2ms or less. Two recent kinetic mechanisms are compared with the measured data and the possible reasons for this 1:1 ratio between MB and CO are discussed. Based on these discussions, it is expected that similar CO/fuel and CO 2/fuel ratios for biodiesel molecules, particularly saturated components of biodiesel, should occur. © 2012 The Combustion Institute.

  7. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    Czech Academy of Sciences Publication Activity Database

    Badziak, J.; Rosinski, M.; Krouský, Eduard; Kucharik, M.; Liska, R.; Ullschmied, Jiří

    2015-01-01

    Roč. 22, č. 3 (2015), s. 1-11, č. článku 032709. ISSN 1070-664X R&D Projects: GA MŠk(CZ) LD14089; GA MŠk LM2010014 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma * ultra-high-pressure shocks * laser-induced cavity pressure acceleration Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.207, year: 2015

  8. Pressure distribution over tube surfaces of tube bundle subjected to two phase cross flow

    International Nuclear Information System (INIS)

    Sim, Woo Gun

    2013-01-01

    Two phase vapor liquid flows exist in many shell and tube heat exchangers such as condensers, evaporators and nuclear steam generators. To understand the fluid dynamic forces acting on a structure subjected to a two phase flow, it is essential to obtain detailed information about the characteristics of a two phase flow. The characteristics of a two phase flow and the flow parameters were introduced, and then, an experiment was performed to evaluate the pressure loss in the tube bundles and the fluid dynamic force acting on the cylinder owing to the pressure distribution. A two phase flow was pre mixed at the entrance of the test section, and the experiments were undertaken using a normal triangular array of cylinders subjected to a two phase cross flow. The pressure loss along the flow direction in the tube bundles was measured to calculate the two phase friction multiplier, and the multiplier was compared with the analytical value. Furthermore, the circular distributions of the pressure on the cylinders were measured. Based on the distribution and the fundamental theory of two phase flow, the effects of the void fraction and mass flux per unit area on the pressure coefficient and the drag coefficient were evaluated. The drag coefficient was calculated by integrating the measured pressure coefficient and the drag coefficient were evaluated. The drag coefficient was calculated by integrating the measured pressure on the tube by a numerical method. It was found that for low mass fluxes, the measured two phase friction multipliers agree well with the analytical results, and good agreement for the effect of the void fraction on the drag coefficients, as calculated by the measured pressure distributions, is shown qualitatively, as compared to the existing experimental results

  9. A statistical approach to the prediction of pressure tube fracture toughness

    International Nuclear Information System (INIS)

    Pandey, M.D.; Radford, D.D.

    2008-01-01

    The fracture toughness of the zirconium alloy (Zr-2.5Nb) is an important parameter in determining the flaw tolerance for operation of pressure tubes in a nuclear reactor. Fracture toughness data have been generated by performing rising pressure burst tests on sections of pressure tubes removed from operating reactors. The test data were used to generate a lower-bound fracture toughness curve, which is used in defining the operational limits of pressure tubes. The paper presents a comprehensive statistical analysis of burst test data and develops a multivariate statistical model to relate toughness with material chemistry, mechanical properties, and operational history. The proposed model can be useful in predicting fracture toughness of specific in-service pressure tubes, thereby minimizing conservatism associated with a generic lower-bound approach

  10. Development of Zr-2.5Nb pressure tubes for Advanced CANDU Reactor

    International Nuclear Information System (INIS)

    Bickel, G.A.; Griffiths, M.; Douchant, A.; Douglas, S.; Woo, O.T.; Buyers, A.

    2010-01-01

    In an Advanced CANDU Reactor (ACR), pressure tubes of cold-worked Zr-2.5Nb materials will be used in the reactor core to contain the fuel bundles and the light water coolant. They will be subjected to higher temperature, pressure and flux than that in a CANDU reactor. In order to ensure that these tubes will perform acceptably over their 30-year design life in such an environment, a manufacturing process has been developed to produce 6.5 mm thick ACR pressure tubes with optimized chemical composition, improved mechanical properties and in-reactor behaviour. The test and examination results show that, when compared with current in-service pressure tubes, the mechanical properties of ACR pressure tubes are significantly improved. Based on previous experience with CANDU reactor pressure tubes an assessment of the grain structure and texture indicates that the in-reactor creep deformation will be improved also. Analysis of the distribution of texture parameters from a trial batch of 26 tubes shows that the variability is reduced relative to tubes fabricated in the past. This reduction in variability together with a shift to a coarser grain structure will result in a reduction in diametral creep design limits and thus a longer economic life for the fuel channels of the advanced CANDU reactor. (author)

  11. Effects of arm elevation on radial artery pressure: a new method to distinguish hypovolemic shock and septic shock from hypotension.

    Science.gov (United States)

    Xie, Zhiyi; Zhang, Zhenyu; Xu, Yuan; Zhou, Hua; Wu, Sheng; Wang, Zhong

    2018-06-01

    In this prospective observational study, we investigated the variability in radial artery invasive blood pressure associated with arm elevation in patients with different hemodynamic types. We carried out a prospective observational study using data from 73 general anesthesia hepatobiliary postoperative adult patients admitted to an ICU over a 1-year period. A standard procedure was used for the arm elevation test. The value of invasive radial arterial pressure was recorded at baseline, and 30 and 60 s after the arm had been raised from 0° to 90°. We compared the blood pressure before versus after arm elevation, and between hemodynamically stable, hypovolemic shock, and septic shock patient groups. In all 73 patients, systolic arterial pressure (SAP) decreased, diastolic arterial pressure (DAP) increased, and pulse pressure (PP) decreased at 30 and 60 s after arm elevation (Ppressure (MAP) was unchanged (P>0.05). On comparing 30 and 60 s, there was no significant difference in SAP, DAP, PP, or MAP (P>0.05). In 40 hemodynamically stable patients, SAP and PP decreased, and DAP and MAP increased significantly at 30 and 60 s after arm elevation compared with baseline (P0.05). In 17 patients with septic shock, SAP, PP, and MAP decreased significantly versus baseline at 30 and 60 s (P0.05). Comparison of the absolute value of pressure change of septic shock patients at 30 s after raising the arm showed that SAP, DAP, and MAP changes were significantly lower compared with those in hypovolemic shock and hemodynamically stable patients (Parm elevation of SAP. The best cut-off point for the SAP change value was -5 mmHg or less, with a sensitivity of 94.12%, a specificity of 80.36%, a positive likelihood ratio of 4.79 (95% CI: 2.8-8.2), and a negative likelihood ratio of 0.073 (95% CI: 0.01-0.5). Our study shows that hypovolemic shock and septic shock patients have significantly different radial artery invasive blood pressure changes in an arm elevation test

  12. The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube.

    Science.gov (United States)

    Painter, Page R

    2008-07-29

    The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV). The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery. An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC) for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube. For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for more than fifty years is analyzed and shown to yield

  13. A Shock Tube Study of the CO + OH Reaction Near the Low-Pressure Limit

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2016-01-01

    Rate coefficients for the reaction between carbon monoxide and hydroxyl radical were measured behind reflected shock waves over 700 – 1230 K and 1.2 – 9.8 bar. The temperature/pressure conditions correspond to the predicted low-pressure limit of this reaction, where the channel leading to carbon dioxide formation is dominant. The reaction rate coefficients were inferred by measuring the formation of carbon dioxide using quantum cascade laser absorption near 4.2 µm. Experiments were performed under pseudo-first order conditions with tert-butyl hydroperoxide (TBHP) as the OH precursor. Using ultraviolet laser absorption by OH radicals, the TBHP decomposition rate was measured to quantify potential facility effects under extremely dilute conditions used here. The measured CO + OH rate coefficients are provided in Arrhenius form for three different pressure ranges: kCO+OH (1.2 – 1.6 bar) = 9.14 x 10-13 exp(-1265/T) cm3 molecule-1 s-1 kCO+OH (4.3 – 5.1 bar) = 8.70 x 10-13 exp(-1156/T) cm3 molecule-1 s-1 kCO+OH (9.6 – 9.8 bar) = 7.48 x 10-13 exp(-929/T) cm3 molecule-1 s-1 The measured rate coefficients are found to be lower than the master equation modeling results by Weston et al. [J. Phys. Chem. A, 117 (2013) 821] at 819 K and in closer agreement with the expression provided by Joshi and Wang [Int. J. Chem. Kinet., 38 (2006) 57].

  14. A Shock Tube Study of the CO + OH Reaction Near the Low-Pressure Limit

    KAUST Repository

    Nasir, Ehson Fawad

    2016-05-16

    Rate coefficients for the reaction between carbon monoxide and hydroxyl radical were measured behind reflected shock waves over 700 – 1230 K and 1.2 – 9.8 bar. The temperature/pressure conditions correspond to the predicted low-pressure limit of this reaction, where the channel leading to carbon dioxide formation is dominant. The reaction rate coefficients were inferred by measuring the formation of carbon dioxide using quantum cascade laser absorption near 4.2 µm. Experiments were performed under pseudo-first order conditions with tert-butyl hydroperoxide (TBHP) as the OH precursor. Using ultraviolet laser absorption by OH radicals, the TBHP decomposition rate was measured to quantify potential facility effects under extremely dilute conditions used here. The measured CO + OH rate coefficients are provided in Arrhenius form for three different pressure ranges: kCO+OH (1.2 – 1.6 bar) = 9.14 x 10-13 exp(-1265/T) cm3 molecule-1 s-1 kCO+OH (4.3 – 5.1 bar) = 8.70 x 10-13 exp(-1156/T) cm3 molecule-1 s-1 kCO+OH (9.6 – 9.8 bar) = 7.48 x 10-13 exp(-929/T) cm3 molecule-1 s-1 The measured rate coefficients are found to be lower than the master equation modeling results by Weston et al. [J. Phys. Chem. A, 117 (2013) 821] at 819 K and in closer agreement with the expression provided by Joshi and Wang [Int. J. Chem. Kinet., 38 (2006) 57].

  15. Thermal-hydraulic instabilities in pressure tube graphite - moderated boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling channels in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  16. Thermal-hydraulic instabilities in pressure tube graphite-moderated boiling water reactors

    International Nuclear Information System (INIS)

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling charmers in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement

  17. Experimental Investigation of Reynolds Number Effects on Test Quality in a Hypersonic Expansion Tube

    Science.gov (United States)

    Rossmann, Tobias; Devin, Alyssa; Shi, Wen; Verhoog, Charles

    2017-11-01

    Reynolds number effects on test time and the temporal and spatial flow quality in a hypersonic expansion tube are explored using high-speed pressure, infrared optical, and Schlieren imaging measurements. Boundary layer models for shock tube flows are fairly well established to assist in the determination of test time and flow dimensions at typical high enthalpy test conditions. However, the application of these models needs to be more fully explored due to the unsteady expansion of turbulent boundary layers and contact regions separating dissimilar gasses present in expansion tube flows. Additionally, expansion tubes rely on the development of a steady jet with a large enough core-flow region at the exit of the acceleration tube to create a constant velocity region inside of the test section. High-speed measurements of pressure and Mach number at several locations within the expansion tube allow for the determination of an experimental x-t diagram. The comparison of the experimentally determined x-t diagram to theoretical highlights the Reynolds number dependent effects on expansion tube. Additionally, spatially resolved measurements of the Reynolds number dependent, steady core-flow in the expansion tube viewing section are shown. NSF MRI CBET #1531475, Lafayette College, McCutcheon Foundation.

  18. Central venous pressure and shock index predict lack of hemodynamic response to volume expansion in septic shock: a prospective, observational study.

    Science.gov (United States)

    Lanspa, Michael J; Brown, Samuel M; Hirshberg, Eliotte L; Jones, Jason P; Grissom, Colin K

    2012-12-01

    Volume expansion is a common therapeutic intervention in septic shock, although patient response to the intervention is difficult to predict. Central venous pressure (CVP) and shock index have been used independently to guide volume expansion, although their use is questionable. We hypothesize that a combination of these measurements will be useful. In a prospective, observational study, patients with early septic shock received 10-mL/kg volume expansion at their treating physician's discretion after brief initial resuscitation in the emergency department. Central venous pressure and shock index were measured before volume expansion interventions. Cardiac index was measured immediately before and after the volume expansion using transthoracic echocardiography. Hemodynamic response was defined as an increase in a cardiac index of 15% or greater. Thirty-four volume expansions were observed in 25 patients. A CVP of 8 mm Hg or greater and a shock index of 1 beat min(-1) mm Hg(-1) or less individually had a good negative predictive value (83% and 88%, respectively). Of 34 volume expansions, the combination of both a high CVP and a low shock index was extremely unlikely to elicit hemodynamic response (negative predictive value, 93%; P = .02). Volume expansion in patients with early septic shock with a CVP of 8 mm Hg or greater and a shock index of 1 beat min(-1) mm Hg(-1) or less is unlikely to lead to an increase in cardiac index. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Use of CATHENA to model calandria-tube/moderator heat transfer after pressure-tube/calandria-tube ballooning contact

    International Nuclear Information System (INIS)

    Fan, H.Z.; Bilanovic, Z.; Nitheanandan, T.

    2004-01-01

    A study was performed to assess the effect of the calandria-tube/moderator heat transfer after pressure-tube/calandria tube ballooning contact using CATHENA. Results of this study indicated that the analytical tool, CATHENA, can be applied for pool boiling heat transfer on the external surface of a large diameter tube, such as the calandria tube used in CANDU reactors. The methodology in such CANDU-generic study can be used to simulate the tube surface with multiple boiling regimes and to assess the benefits of closely coupling thermalhydraulics modelling and fuel/fuel channel behaviour modelling. CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a one-dimensional, two-fluid thermalhydraulic simulation code designed by AECL to analyse two-phase flow and heat transfer in piping networks. The detailed heat transfer package in CATHENA allows a connection to be established from the multiple solid surfaces of tubes to the surrounding large amount of moderator water, which acts as a heat sink during a postulated loss of coolant event. The generalized heat transfer package within CATHENA allows the tube walls to be divided into several layers in the radial direction and several sectors in the circumferential direction, to account for heat transfer conditions in these two directions. The CATHENA code with the generalized heat transfer package is capable of capturing key pool-boiling phenomena such as nucleate, transition and film boiling heat transfer as well as an ability to model the rewet phenomenon to some extent. A CATHENA input model was generated and used in simulations of selected contact boiling experiment test cases. The transient wall temperatures have been calculated in different portions of the calandria tube. By using this model an adequate agreement was achieved between CATHENA calculation and experimental measurement The CATHENA code enables one to investigate the transient and local thermal-mechanical behaviour of the calandria tube

  20. Condensation shocks in high momentum two-phase flows in condensing injectors

    International Nuclear Information System (INIS)

    Anand, G.; Christensen, R.N.

    1993-01-01

    This study presents a phenomenological and mathematical model of condensation shocks in high momentum two-phase flows in condensing injectors. The characteristics of the shock were related to the mode of vapor bubble collapse. Using cavitation terminology, the bubble collapse can be classified as inertially controlled or thermally controlled. Inertial bubble collapse occurs rapidly whereas, a thermally controlled collapse results in a significantly longer collapse time. The interdependence between the bubble collapse mode and the momentum and pressure of the flow, was analyzed in this study. For low-temperature-high-velocity flows a steep pressure rise with complete condensation was obtained. For a high-temperature-low velocity flow with noncondensables, low pressure recovery with incomplete condensation was observed. These trends are in agreement with previous experimental observations

  1. Consequences of pressure tube rupture on in-core components

    International Nuclear Information System (INIS)

    Hill, P.G.; Hauptmann, E.G.; Lee, V.

    1982-12-01

    An investigation has been made of the consequences of pressure tube rupture in calandria vessels of heavy water cooled and moderated reactors. The study included a review of previous experimental and analytical work, as well as supplementary investigations carried out to examine the validity of previous assumptions and findings. The central questions considered were: the possibility of a propagating pressure tube failure; damage to the calandria vessel; and damage to the shut-off-rod guide tubes of the reactor shut-down system. The results of the investigation do not indicate mechanisms of sufficient strength to cause propagating failure in a well-designed, well-operated reactor following a tube burst under normal operating conditions. However, not all the details of the physical processes involved in a tube burst have been revealed by existing experimental and analytical work

  2. Handbook of Supersonic Aerodynamics. Section 18. Shock Tubes

    Science.gov (United States)

    1959-12-01

    u) a 2 p. The ab-ve concept is illustrated in Fig. 2.1-1. Consider a piston held by a peg in the duct as shown. At t = 0 the peg is released and the...8217a.. L..- LaL 142 Performance of Simple Constant-Area Shock Tubes Fig. 2.1-1 peg (B) (A) Piston 7 t /PB> PA T T o - Duct of Uniform Cross-Section...3.679 3 4358 3. 100 3 5876 3.825 1 3350 2622 1 4700 3.663 2 4800 3.034 4 5893 3.794-3.819 3 4105 2576 3 4798 3.65b 3 5000 3.062 2 b140 3.815 1 4280 2574 2

  3. Structural integrity evaluations of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Radu, Vasile

    2003-01-01

    The core of a CANDU-6 pressurized heavy water reactor consists of some hundred horizontal pressure tubes that are manufactured from a Zr-2.5%Nb alloy and which contain the fuel bundles. These tubes are susceptible to a damaging phenomenon known as Delayed Hydride Cracking (DHC). The Zr-2.5%Nb alloy is susceptible to DHC phenomenon when there is diffusion of hydrogen atoms to a service-induced flaws, followed by the hydride platelets formation on the certain crystallographic planes in the matrix material. Finally, the development of hydride regions at the flaw-tip will happened. These hydride regions are able to fracture under stress-temperature conditions (DHC initiation) and the cracks can extend and grow by DHC mechanism. Some studies have been focused on the potential to initiate DHC at the blunt flaws in a CANDU reactor pressure tube and a methodology for structural integrity evaluation was developed. The methodology based on the Failure Assessment Diagrams (FAD's) consists in an integrated graphical plot, where the fracture failure and plastic collapse are simultaneously evaluated by means of two non-dimensional variables (K r and L r ). These two variables represent the ratio of the applied value of either stress or stress intensity factor and the resistance parameter of corresponding magnitude (yield stress or fracture toughness, respectively). Once the plotting plane is determined by the variables K r and L r , the procedure defines a critical failure line that establishes the safe area. The paper will demonstrate the possibility to perform structural integrity evaluations by means of Failure Assessment Diagrams for flaws occurring in CANDU pressure tubes. (author)

  4. An accurate calibration method for high pressure vibrating tube densimeters in the density interval (700 to 1600) kg . m-3

    International Nuclear Information System (INIS)

    Sanmamed, Yolanda A.; Dopazo-Paz, Ana; Gonzalez-Salgado, Diego; Troncoso, Jacobo; Romani, Luis

    2009-01-01

    A calibration procedure of vibrating tube densimeters for density measurement of liquids in the intervals (700 to 1600) kg . m -3 , (283.15 to 323.15) K, and (0.1 to 60) MPa is presented. It is based on the modelization of the vibrating tube as a thick-tube clamped at one end (cantilever) whose stress and thermal behaviour follows the ideas proposed in the Forced Path Mechanical Calibration model (FPMC). Model parameters are determined using two calibration fluids with densities certified at atmospheric pressure (dodecane and tetracholoroethylene) and a third one with densities known as a function of pressure (water). It is applied to the Anton Paar 512P densimeter, obtaining density measurements with an expanded uncertainty less than 0.2 kg . m -3 in the working intervals. This accuracy comes from the combination of several factors: densimeter behaves linearly in the working density interval, densities of both calibration fluids cover that interval and they have a very low uncertainty, and the mechanical behaviour of the tube is well characterized by the considered model. The main application of this method is the precise measurement of high density fluids for which most of the calibration procedures are inaccurate.

  5. Experiment on the effects of contact between the pressure tube and the fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y; Fujii, Y [Electric Power Development Co. Ltd., Tokyo (Japan); Kato, K [Hitachi Ltd., Ibaraki (Japan). Hitachi Works

    1996-12-31

    The Advanced Thermal Reactor (ATR) is a pressure tube type reactor in which the fuel assembly is located close to the pressure tube. The ATR has a structure which is such that the thermal stretch of the fuel pin is not limited by the spacer if the fuel pin dries out. Accordingly. it is not thought that the fuel pin contacts the pressure tube due to large transformations around the Design Based Event (DBE). Nevertheless, the safety margin must be kept in case the over-DBE. We have confirmed in this experiment that the temperature of the pressure tube does not increase to the critical level when the fuel pin contacts the pressure tube and the functions of the pressure tube are maintained as a pressure boundary. Further, we analyzed the safety margin of the pressure tube using the data from this experiment and from code analysis. (author). 10 tabs., 32 figs.

  6. Highlights of the metallurgical behaviour of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Price, E.G.

    1984-10-01

    This paper is an overview of the service induced metallurgical changes that take place in Zircaloy-2 and Zr-2.5 wt. percent Nb pressure tubes in CANDU reactors. It incorporates the findings of an evaluation program, that followed a significant pressure tube failure at Ontario Hydro's Pickering Nuclear Generating Station, and also provides valid reasons for continued confidence in the current CANDU design

  7. Boiling on a tube bundle: heat transfer, pressure drop and flow patterns

    International Nuclear Information System (INIS)

    Agostini, F.

    2008-07-01

    The complexity of the two-phase flow in a tube bundle presents important problems in the design and understanding of the physical phenomena taking place. The working conditions of an evaporator depend largely on the dynamics of the two-phase flow that in turn influence the heat exchange and the pressure drop of the system. A characterization of the flow dynamics, and possibly the identification of the flow pattern in the tube bundle, is thus expected to lead to a better understanding of the phenomena and to reveal on the mechanisms governing the tube bundle. Therefore, the present study aims at providing further insights into two-phase bundle flow through a new visualization system able to provide for the first time a view of the flow in the core of a tube bundle. In addition, the measurement of the light attenuation of a laser beam through the two-phase flow and measurement of the high frequency pressure fluctuations with a piezo-electric pressure transducer are used to characterize the flow. The design and the validation of this new instrumentation also provided a method for the detection of dry-out in tube bundles. This was achieved by a laser attenuation technique, flow visualization, and estimation of the power spectrum of the pressure fluctuation. The current investigation includes results for two different refrigerants, R134a and R236fa, three saturations temperatures T sat = 5, 10 and 15 °C, mass velocities ranging from 4 to 40 kg/sm² in adiabatic and diabatic conditions (several heat fluxes). Measurement of the local heat transfer coefficient and two-phase frictional pressure drop were obtained and utilized to improve the current prediction methods. The heat transfer and pressure drop data were supported by extensive characterization of the two-phase flow, which was to improve the understanding of the two-phase flow occurring in tube bundles. (author)

  8. DHC velocity comparison of CANDU Zr-2.5Nb pressure tube for the difference of test environments

    International Nuclear Information System (INIS)

    Cho, S. Y.; Kim, Y. S.; Oh, D. Z.; Yim, K. S.; Yim, Y. W.

    2001-01-01

    Zr-2.5Nb Pressure tube was used in the distilled water under high temperature and pressure. However, the evaluation of DHCV for pressure tube was limited in the air until now. Therefore, it was necessary for DHCV both in the air and in the distilled water under high temperature and pressure to evaluate. In advance, new DHC equipment simulating the real operating condition in the distilled water under high temperature and pressure was developed and DHCV test was conducted by this equipment. The test was carried out under simulated condition using distilled water of 250 .deg. C, 86bar and this result was compared with of DHCV in the air of 250 .deg. C. DHCV of the distilled water was ranged from 8.42x10 -8 to 9.92x 10 -8 m/s and the average value was 9.01x 10 -8 m/s. As compared with the air condition, it was found that characteristics of DHCV was not affected by the distilled water of high temperature and pressure. At the same temperature, DHCV of the irradiated pressure tube was faster than that of test result

  9. Experimental and numerical investigations of shock wave propagation through a bifurcation

    Science.gov (United States)

    Marty, A.; Daniel, E.; Massoni, J.; Biamino, L.; Houas, L.; Leriche, D.; Jourdan, G.

    2018-02-01

    The propagation of a planar shock wave through a split channel is both experimentally and numerically studied. Experiments were conducted in a square cross-sectional shock tube having a main channel which splits into two symmetric secondary channels, for three different shock wave Mach numbers ranging from about 1.1 to 1.7. High-speed schlieren visualizations were used along with pressure measurements to analyze the main physical mechanisms that govern shock wave diffraction. It is shown that the flow behind the transmitted shock wave through the bifurcation resulted in a highly two-dimensional unsteady and non-uniform flow accompanied with significant pressure loss. In parallel, numerical simulations based on the solution of the Euler equations with a second-order Godunov scheme confirmed the experimental results with good agreement. Finally, a parametric study was carried out using numerical analysis where the angular displacement of the two channels that define the bifurcation was changed from 90° , 45° , 20° , and 0° . We found that the angular displacement does not significantly affect the overpressure experience in either of the two channels and that the area of the expansion region is the important variable affecting overpressure, the effect being, in the present case, a decrease of almost one half.

  10. Assessment and management of ageing of major nuclear power plant components important to safety: CANDU pressure tubes

    International Nuclear Information System (INIS)

    1998-08-01

    The report documents the current practices for assessment and management of the ageing of the pressure tubes in CANDU reactors and Indian PHWTRs. Chapter headings are: fuel channel and pressure tube description, design basis for the fuel channel and pressure tube, degradation mechanisms and ageing concerns for pressure tubes, inspection and monitoring methods for pressure tubes,assessment methods and fitness-for-service guidelines for pressure tubes, mitigation methods for pressure tubes, and pressure tube ageing management programme

  11. Fiber-optic coupled pressure transducer

    International Nuclear Information System (INIS)

    Tallman, C.R.; Wingate, F.P.; Ballard, E.O.

    1979-01-01

    A fiber-optic coupled pressure transducer was developed for measurement of pressure transients produced by fast electrical discharges in laser cavities. A detailed description of the design and performance will be given. Shock tube performance and measurements in direct electrical discharge regions will be presented

  12. Development and performance of inspection equipment for pressure tubes in Fugen

    International Nuclear Information System (INIS)

    Naruo, Kazuteru; Tanimoto, Ken-ichi; Ohta, Takeo; Nakamura, Takahisa; Imaizumi, Kiyoshi.

    1984-01-01

    The pressure tubes of Fugen are the important equipment as the many tubes compose the core, and since they are made of Zr-2.5% Nb alloy which has been used for the first time in Japan, they have become the object of monitoring (the follow-up investigation of the change of inside diameter, the presence of defects and so on) in addition to the in-service inspection. In this paper, on the inspection equipment for pressure tubes, that has been developed independently by the Power Reactor and Nuclear Fuel Development Corp. in order to carry out the ISI and monitoring, the course of development and the construction and the performance are reported, and the results of having used it for the fourth regular inspection of Fugen are described. The 10-year plan of the ISI and monitoring of pressure tubes is shown. The core of Fugen is composed of 224 pressure tubes, therefore, the inspection is carried out by sampling inspection. The monitoring is carried out on four tubes for the follow-up investigation and one tube that shows the severest operation history at the time of inspection. The equipment performs ultrasonic flaw detection, the measurement of inside diameter and the visual inspection of internal surface. (Kako, I.)

  13. Convective heat transport of high-pressure flows inside active, thick walled-tubes with isothermal outer surfaces: usage of Nusselt correlation equations for an inactive, thin walled-tube

    Energy Technology Data Exchange (ETDEWEB)

    Campo, Antonio [Idaho State Univ., Nuclear Engineering Dept., Pocatello, ID (United States); Sanchez, Alejo [Universidad de los Andes, Depto. de Ingenieria Mecanica, Merida (Venezuela)

    1998-03-01

    A semi-analytical analysis was conducted for the prediction of the mean bulk- and interface temperatures of gaseous and liquid fluids moving laminarly at high pressures inside thick-walled metallic tubes. The outer surfaces of the tubes are isothermal. The central goal of this article is to critically examine the thermal response of this kind of in-tube flows utilizing two versions of the 1-D lumped model: one is differential-numerical while the other is differential-algebraic. For the former, the local Nusselt number characterizing an inactive, isothermal tube was taken from correlation equations reported in the heat transfer literature. For the latter, a streamwise-mean Nusselt number associated with an active, isothermal tube was taken from standard correlation equations that appear in text-books on basic heat transfer. For the two different versions of the 1-D lumped model tested, the computed results consistently demonstrate that the differential-algebraic, provides accurate estimates of both the mean bulk- and the interface temperatures when compared with those temperature results computed with formal 2-D differential models. (author)

  14. Evaluation of Fatigue Crack Initiation for Volumetric Flaw in Pressure Tube

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Yoo, Hyun Joo

    2005-01-01

    CAN/CSA.N285.4-94 requires the periodic inservice inspection and surveillance of pressure tubes in operating CANDU nuclear power reactors. If the inspection results reveal a flaw exceeding the acceptance criteria of the Code, the flaw must be evaluated to determine if the pressure is acceptable for continued service. Currently, the flaw evaluation methodology and acceptance criteria specified in CSA-N285.05-2005, 'Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors'. The Code is applicable to zirconium alloy pressure tubes. The evaluation methodology for a crack-like flaw is similar to that of ASME B and PV Sec. XI, 'Inservice Inspection of Nuclear Power Plant Components'. However, the evaluation methodology for a blunt volumetric flaw is described in CSA-N285.05-2005 code. The object of this paper is to address the fatigue crack initiation evaluation for the blunt volumetric flaw as it applies to the pressure tube at Wolsong NPP

  15. Flooding of a large, passive, pressure-tube light water reactor

    International Nuclear Information System (INIS)

    Hejzlar, P.; Todreas, N.E.; Driscoll, M.J.

    1997-01-01

    A reactor concept has been developed which can survive loss of coolant accidents without scram and without replenishing primary coolant inventory, while maintaining safe temperature limits on the fuel and pressure tubes. The proposed concept is a pressure tube type reactor of similar design to CANDU reactors, but differing in three key aspects. First, a solid SiC-coated graphite fuel matrix is used in place of fuel pin bundles to enable the dissipation of decay heat from the fuel in the absence of primary coolant. Second, the heavy water coolant in the pressure tubes is replaced by light water, which also serves as the moderator. Finally, the calandria tank, surrounded by a graphite reflector, contains a low pressure gas instead of heavy water moderator, and this normally-voided calandria is connected to a light water heat sink. The cover gas displaces the light water from the calandria during normal operation, while during loss of coolant or loss of heat sink accidents it allows passive calandria flooding. Calandria flooding also provides redundant and diverse reactor shutdown. This paper describes the thermal hydraulic characteristics of the passively initiated, gravity driven calandria flooding process. Flooding the calandria space with light water is a unique and very important feature of the proposed pressure-tube light water reactor (PTLWR) concept. The flooding of the top row of fuel channels must be accomplished fast enough so that in the total loss of coolant, none of the critical components of the fuel channel, i.e. the pressure tube, the calandria tube, the matrix and the fuel, exceed their design limits. The flooding process has been modeled and shown to be rapid enough to maintain all components within their design limits. (orig.)

  16. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  17. High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, G. [LANL; Sandberg, R. L. [LANL; Lalone, B. M. [NSTec; Marshall, B. R. [NSTec; Grover, M. [NSTec; Stevens, G. D. [NSTec; Udd, E. [Columbia Gorge Research

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  18. High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems

    Science.gov (United States)

    Rodriguez, G.; Sandberg, R. L.; Lalone, B. M.; Marshall, B. R.; Grover, M.; Stevens, G.; Udd, E.

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  19. Transferability of decompression wave speed measured by a small-diameter shock tube to full size pipelines and implications for determining required fracture propagation resistance

    International Nuclear Information System (INIS)

    Botros, K.K.; Geerligs, J.; Rothwell, Brian; Carlson, Lorne; Fletcher, Leigh; Venton, Philip

    2010-01-01

    The control of propagating ductile (or tearing) fracture is a fundamental requirement in the fracture control design of pipelines. The Battelle two-curve method developed in the early 1970s still forms the basis of the analytical framework used throughout the industry. GASDECOM is typically used for calculating decompression speed, and idealizes the decompression process as isentropic and one-dimensional, taking no account of frictional effects. While this approximation appears not to have been a major issue for large-diameter pipes and for moderate pressures (up to 12 MPa), there have been several recent full-scale burst tests at higher pressures and smaller diameters for which the measured decompression velocity has deviated progressively from the predicted values, in general towards lower velocities. The present research was focused on determining whether pipe diameter was a major factor that could limit the applicability of frictionless models such as GASDECOM. Since potential diameter effects are primarily related to wall friction, which in turn is related to the ratio of surface roughness-to-diameter, an experimental approach was developed based on keeping the diameter constant, at a sufficiently small value to allow for an economical experimental arrangement, and varying the internal roughness. A series of tests covering a range of nominal initial pressures from 10 to 21 MPa, and involving a very lean gas and three progressively richer compositions, were conducted using two specialized high-pressure shock tubes (42 m long, I.D. = 38.1 mm). The first is honed to an extremely smooth surface finish, in order to minimize frictional effects and better simulate the behaviour of larger-diameter pipelines, while the second has a higher internal surface roughness. The results show that decompression wave speeds in the rough tube are consistently slower than those in the smooth tube under the same conditions of mixture composition and initial pressure and temperature

  20. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhitao [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332-0826 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Banishev, Alexandr A.; Christensen, James; Dlott, Dana D. [School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N., E-mail: naresh.thadhani@mse.gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Xiao, Pan [LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Zhou, Min [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States)

    2016-07-28

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  1. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    International Nuclear Information System (INIS)

    Kang, Zhitao; Banishev, Alexandr A.; Christensen, James; Dlott, Dana D.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N.; Xiao, Pan; Zhou, Min

    2016-01-01

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  2. Pressure drop-flow rate curves for single-phase steam in Combustion Engineering type steam generator U-tubes during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Fynan, Douglas A.; Ahn, Kwang-Il, E-mail: kiahn@kaeri.re.kr

    2016-12-15

    Highlights: • Pressure drop-flow rate curves for superheated steam in U-tubes were generated. • Forward flow of hot steam is favored in the longer and taller U-tubes. • Reverse flow of cold steam is favored in short U-tubes. • Steam generator U-tube bundle geometry and tube diameter are important. • Need for correlation development for natural convention heat transfer coefficient. - Abstract: Characteristic pressure drop-flow rate curves are generated for all row numbers of the OPR1000 steam generators (SGs), representative of Combustion Engineering (CE) type SGs featuring square bend U-tubes. The pressure drop-flow rate curves are applicable to severe accident natural circulations of single-phase superheated steam during high pressure station blackout sequences with failed auxiliary feedwater and dry secondary side which are closely related to the thermally induced steam generator tube rupture event. The pressure drop-flow rate curves which determine the recirculation rate through the SG tubes are dependent on the tube bundle geometry and hydraulic diameter of the tubes. The larger CE type SGs have greater variation of tube length and height as a function of row number with forward flow of steam favored in the longer and taller high row number tubes and reverse flow favored in the short low row number tubes. Friction loss, natural convection heat transfer coefficients, and temperature differentials from the primary to secondary side are dominant parameters affecting the recirculation rate. The need for correlation development for natural convection heat transfer coefficients for external flow over tube bundles currently not modeled in system codes is discussed.

  3. Shock Compression of Liquid Noble Gases to Multi-Mbar Pressures

    Science.gov (United States)

    Root, Seth

    2011-10-01

    The high pressure - high temperature behavior of noble gases is of considerable interest because of their use in z-pinch liners for fusion studies and for understanding astrophysical and planetary evolution. However, our understanding of the equation of state (EOS) of the noble gases at extreme conditions is limited. A prime example of this is the liquid xenon Hugoniot. Previous EOS models rapidly diverged on the Hugoniot above 1 Mbar because of differences in the treatment of the electronic contribution to the free energy. Similar divergences are observed for krypton EOS. Combining shock compression experiments and density functional theory (DFT) simulations, we can determine the thermo-physical behavior of matter under extreme conditions. The experimental and DFT results have been instrumental to recent developments in planetary astrophysics and inertial confinement fusion. Shock compression experiments are performed using Sandia's Z-Accelerator to determine the Hugoniot of liquid xenon and krypton in the Mbar regime. Under strong pressure, krypton and xenon undergo an insulator to metal transition. In the metallic state, the shock front becomes reflective allowing for a direct measurement of the sample's shock velocity using laser interferometry. The Hugoniot state is determined using a Monte Carlo analysis method that accounts for systematic error in the standards and for correlations. DFT simulations at these extreme conditions show good agreement with the experimental data - demonstrating the attention to detail required for dealing with elements with relativistic core states and d-state electrons. The results from shock compression experiments and DFT simulations are presented for liquid xenon to 840 GPa and for liquid krypton to 800 GPa, decidedly increasing the range of known behavior of both gases. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company

  4. Pressure heat pumping in the orifice pulse-tube refrigerator

    International Nuclear Information System (INIS)

    Boer, P.C.T. de

    1996-01-01

    The mechanism by which heat is pumped as a result of pressure changes in an orifice pulse-tube refrigerator (OPTR) is analyzed thermodynamically. The thermodynamic cycle considered consists of four steps: (1) the pressure is increased by a factor π 1 due to motion of a piston in the heat exchanger at the warm end of the regenerator; (2) the pressure is decreased by a factor π 2 due to leakage out of the orifice; (3) the pressure is further decreased due to motion of the piston back to its original position; (4) the pressure is increased to its value at the start of the cycle due to leakage through the orifice back into the pulse tube. The regenerator and the heat exchangers are taken to be perfect. The pressure is assumed to be uniform during the entire cycle. The temperature profiles of the gas in the pulse tube after each step are derived analytically. Knowledge of the temperature at which gas enters the cold heat exchanger during steps 3 and 4 provides the heat removed per cycle from this exchanger. Knowledge of the pressure as a function of piston position provides the work done per cycle by the piston. The pressure heat pumping mechanism considered is effective only in the presence of a regenerator. Detailed results are presented for the heat removed per cycle, for the coefficient of performance, and for the refrigeration efficiency as a function of the compression ratio π 1 and the expansion ratio π 2 . Results are also given for the influence on performance of the ratio of specific heats. The results obtained are compared with corresponding results for the basic pulse-tube refrigerator (BPTR) operating by surface heat pumping

  5. Nuclear power - replacement of pressure tubes in CANDU reactors

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The CANDU pressure tube reactor is an effective electricity generator. While most units have been built in Canada, units are successfully operated in Argentina and Korea as well as India and Pakistan, which have early versions of the same concept. Units are also under construction in Korea and Romania. The main constructional components of a CANDU core are the calandria vessel, the fuel channels and the reactivity control mechanisms. The fuel channel, in particular the pressure tubes, see an environment comprising high flux, high temperature water at high pressures, which induces changes in the properties and dimensions of the channel components. From the first, fuel channels were designed to be replaced because of the difficulty in predicting the behaviour of zirconium alloys in such service over a long period of time. In fact some phenomena, that were not known at the time of the earliest designs, have led to unacceptable changes in the properties of the channels and these early reactors have had to be retubed at half their intended life. These deficiencies have been corrected in the latest designs and fuel channels in reactors that have commenced operation over the last 10 years, are predicted to reach the intended 30 years life before replacement is necessary. The changing of fuel channels, the details and experience of which are explained, has been shown to be an effective way of refurbishing the CANDU reactor, extending its lifetime a further 25-30 years. (author)

  6. Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimental and numerical investigation.

    Science.gov (United States)

    Zhu, Feng; Wagner, Christina; Dal Cengio Leonardi, Alessandra; Jin, Xin; Vandevord, Pamela; Chou, Clifford; Yang, King H; King, Albert I

    2012-03-01

    A combined experimental and numerical study was conducted to determine a method to elucidate the biomechanical response of a head surrogate physical model under air shock loading. In the physical experiments, a gel-filled egg-shaped skull/brain surrogate was exposed to blast overpressure in a shock tube environment, and static pressures within the shock tube and the surrogate were recorded throughout the event. A numerical model of the shock tube was developed using the Eulerian approach and validated against experimental data. An arbitrary Lagrangian-Eulerian (ALE) fluid-structure coupling algorithm was then utilized to simulate the interaction of the shock wave and the head surrogate. After model validation, a comprehensive series of parametric studies was carried out on the egg-shaped surrogate FE model to assess the effect of several key factors, such as the elastic modulus of the shell, bulk modulus of the core, head orientation, and internal sensor location, on pressure and strain responses. Results indicate that increasing the elastic modulus of the shell within the range simulated in this study led to considerable rise of the overpressures. Varying the bulk modulus of the core from 0.5 to 2.0 GPa, the overpressure had an increase of 7.2%. The curvature of the surface facing the shock wave significantly affected both the peak positive and negative pressures. Simulations of the head surrogate with the blunt end facing the advancing shock front had a higher pressure compared to the simulations with the pointed end facing the shock front. The influence of an opening (possibly mimicking anatomical apertures) on the peak pressures was evaluated using a surrogate head with a hole on the shell of the blunt end. It was revealed that the presence of the opening had little influence on the positive pressures but could affect the negative pressure evidently.

  7. Middle Ear Pressure Regulation - Complementary Action of the Mastoid and Eustachian Tube

    DEFF Research Database (Denmark)

    Gaihede, Michael; Dirckx, Joris J J; Jacobsen, Henrik

    2010-01-01

    , MEP counter-regulation presented as Eustachian tube openings with steep and fast pressure changes toward 0 Pa, whereas in others, gradual and slow pressure changes presented related to the mastoid; these changes sometimes crossed 0 Pa into opposite pressures. In many cases, combinations...... to continuous regulation of smaller pressures, whereas the tube was related to intermittent regulation of higher pressures....

  8. Middle Ear Pressure Regulation - Complementary Action of the Mastoid and Eustachian Tube

    DEFF Research Database (Denmark)

    Gaihede, Michael; Jacobsen, Henrik; Tveterås, Kjell

    , MEP counter-regulation presented as Eustachian tube openings with steep and fast pressure changes toward 0 Pa, whereas in others, gradual and slow pressure changes presented related to the mastoid; these changes sometimes crossed 0 Pa into opposite pressures. In many cases, combinations...... to continuous regulation of smaller pressures, whereas the tube was related to intermittent regulation of higher pressures....

  9. Advances in high pressure science and technology: proceedings of the fourth national conference on high pressure science and technology

    International Nuclear Information System (INIS)

    Yousuf, Mohammad; Subramanian, N.; Govinda Rajan, K.

    1997-09-01

    The proceedings of the fourth National Conference on High Pressure Science and Technology covers a wide area of research and development activities in the field of high pressure science and technology, broadly classified into the following themes: mechanical behaviour of materials; instrumentation and methods in high pressure research; pressure calibration, standards and safety aspects; phase transitions; shock induced reactions; mineral science, geophysics, geochemistry and planetary sciences; optical, electronic and transport properties; synthesis of materials; soft condensed matter physics and liquid crystals; computational methods in high pressure research. Papers relevant to INIS are indexed separately

  10. Kinetics of the Thermal Decomposition of Tetramethylsilane behind the Reflected Shock Waves in a Single Pulse Shock Tube (SPST) and Modeling Study

    Science.gov (United States)

    Parandaman, A.; Sudhakar, G.; Rajakumar, B.

    Thermal reactions of Tetramethylsilane (TMS) diluted in argon were studied behind the reflected shock waves in a single-pulse shock tube (SPST) over the temperature range of 1085-1221 K and pressures varied between 10.6 and 22.8 atm. The stable products resulting from the decomposition of TMS were identified and quantified using gas chromatography and also verified with Fourier Transform Infrared (FTIR) spectrometer. The major reaction products are methane (CH4) and ethylene (C2H4). The minor reaction products are ethane (C2H6) and propylene (C3H6). The initiation of mechanism in the decomposition of TMS takes plays via the Si-C bond scission by ejecting the methyl radicals (CH3) and trimethylsilyl radicals ((CH3)3Si). The measured temperature dependent rate coefficient for the total decomposition of TMS was to be ktotal = 1.66 ×1015 exp (-64.46/RT) s-1 and for the formation of CH4 reaction channel was to be k = 2.20 × 1014 exp (-60.15/RT) s-1, where the activation energies are given in kcal mol-1. A kinetic scheme containing 17 species and 28 elementary reactions was used for the simulation using chemical kinetic simulator over the temperature range of 1085-1221 K. The agreement between the experimental and simulated results was satisfactory.

  11. The examination of the ruptured Zircaloy-2 pressure tube from Pickering NGS Unit 2

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Smith, A.D.; Baskin, C.C.

    1985-07-01

    On 1983 August 01 a Zircaloy-2 pressure tube in Pickering NGS Unit 2 ruptured. All the fuel channel components, the fuel bundles, pressure tube, end fittings, garter springs and calandria tubes were shipped to Chalk River Nuclear Laboratories for examination to determine the cause of the rupture. The examination showed that the rupture initiated at a series of hydride blisters on the outside surface of the pressure tube. The blisters formed because of the garter spring spacers between the pressure tube and calandria tube was about one metre out of position. This allowed the horizontal pressure tube to sag by creep and touch the cool calandria tube. The resulting thermal gradients in the pressure tube concentrated the hydrogen and deuterium at the cool zones and blisters of solid hydride formed. Cracks initiated at several of the blisters and linked together to form a partial through wall critical crack which initiated the final rupture. The video presentation shows how the examination of the fuel channel components was conducted in underwater bays and shielded cells and explains the sequence of events that caused the rupture

  12. Effects of shock pressure on 40Ar-39Ar radiometric age determinations

    International Nuclear Information System (INIS)

    Davis, P.K.

    1977-01-01

    The relation of shock to the drop in the 40 *Ar/ 39 *Ar ratio seen at high release temperatures in some neutron-irradiated lunar samples is investigated through measurements of the 40 *Ar/ 39 *Ar ratio in gas samples released by stepwise heating of rock samples previously subjected to shock, either in the laboratory or in nature. Explosives were used to shock solid pieces and powder of a basalt from a diabase dike in Liberia to calculated pressures of 65, 150 and 270 kbar. These, an unshocked sample of the powder, two naturally shocked samples from the Brent impact crater in Canada, one unshocked sample from near the crater, and appropriate monitors were irradiated. Ar from stepwise heating was analyzed. The unshocked basalt shows a good 40 *Ar/ 39 *Ar plateau at age 198 +-9 m.y. in agreement with a previous result of 186 +- 2 m.y. The shocked samples contain varying amounts of implanted atmospheric Ar, the isotopes of which have experienced mass fractionation. This effect is small enough in four samples so that the linearity of their graphs of 39 *Ar/ 40 Ar vs 36 Ar/ 40 Ar is evidence of a plateau. The ages of these samples are then 201 +- 10, 205 +- 12 and 201 +-9 m.y. It appears that the shock has had little effect on the 40 Ar- 39 Ar age spectrum, although the release patterns of the 39 *Ar are shifted downward by the order of 200 0 C. Shock implantation of Ar was at lower shock pressure, in the presence of less Ar, and into a less porous material than previously demonstrated. The Brent Crater samples do not all show good plateaus, but do indicate an age of 420 m.y. for the crater event and 795 +- 24 m.y. for the rock formation, in agreement with previous results. None of the 40 *Ar/ 39 *Ar profiles shows a drop at high temperature, but a possible role of shock implantation of Ar is indicated in the production of this effect. Further experiments are suggested. (author)

  13. Analysis of Reactor Pressurized Thermal Shock Conditions Considering Upgrading of Systems Important to Safety

    International Nuclear Information System (INIS)

    Mazurok, A.S; Vyshemirskyij, M.P.

    2015-01-01

    The paper analyzes conditions of pressurized thermal shock on the reactor pressure vessel taking into account upgrading of the emergency core cooling system and primary overpressure protection system. For representative accident scenarios, calculation and comparative analysis was carried out. These scenarios include a small leak from the hot leg and PRZ SV stuck opening with re closure after 3600 sec and 3 SG heat transfer tube rupture. The efficiency of mass flow control by valves on the pump head (emergency core cooling systems) and cold overpressure protection (primary overpressure protection system) was analyzed. The thermal hydraulic model for RELAP5/Mod3.2 code with detailed downcomer (DC) model and changes in accordance with upgrades was used for calculations. Detailed (realistic) modeling of piping and equipment was performed. The upgrades prevent excessive primary cooling and, consequently, help to preserve the RPV integrity and to avoid the formation of a through crack, which can lead to a severe accident

  14. On random pressure pulses in the turbine draft tube

    Science.gov (United States)

    Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Tsoy, M. A.

    2017-04-01

    The flow in the conical part of the hydroturbine draft tube undergoes various instabilities due to deceleration and flow swirling at off-design operation points. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope induces periodical low-frequency pressure oscillations in the draft tube. Interaction of rotational (asynchronous) mode of disturbances with the elbow can bring to strong oscillations in the whole hydrodynamical system. Recent researches on flow structure in the discharge cone in a regime of free runner had revealed that helical-like vortex rope can be unstable itself. Some coils of helix close to each other and reconnection appears with generation of a vortex ring. The vortex ring moves toward the draft tube wall and downstream. The present research is focused on interaction of vortex ring with wall and generation of pressure pulses.

  15. Numerical Study of Shock-Cylinder Banks Interactions

    International Nuclear Information System (INIS)

    Wang, S.P.; Anderson, M.H.; Oakley, J.G.; Bonazza, R.

    2003-01-01

    A numerical parametric study of shock-cylinder banks interactions is presented using a high resolution Euler solver. Staggered cylinder banks of five rows are chosen with the purpose of modeling IFE reactor cooling tube banks. The effect of the aspect ratio of the intercylinder pitch to the distance between successive cylinder rows on the vertical pressure forces acting on the cylinders with different geometries is investigated. Preliminary results show that the largest vertical force develops on the cylinders of the second or third row. This peak pressure force increases with decreasing values of the aspect ratio. It is shown that an increasing second force peak also appears on the successive rows, starting with the second one, with decreasing aspect ratio. It is also observed that the force on the last-row cylinders basically decreases to the level of that on the first row. The results are useful for the optimal design of the cooling tubes system of IFE reactors

  16. Documentation of probabilistic fracture mechanics codes used for reactor pressure vessels subjected to pressurized thermal shock loading: Parts 1 and 2. Final report

    International Nuclear Information System (INIS)

    Balkey, K.; Witt, F.J.; Bishop, B.A.

    1995-06-01

    Significant attention has been focused on the issue of reactor vessel pressurized thermal shock (PTS) for many years. Pressurized thermal shock transient events are characterized by a rapid cooldown at potentially high pressure levels that could lead to a reactor vessel integrity concern for some pressurized water reactors. As a result of regulatory and industry efforts in the early 1980's, a probabilistic risk assessment methodology has been established to address this concern. Probabilistic fracture mechanics analyses are performed as part of this methodology to determine conditional probability of significant flaw extension for given pressurized thermal shock events. While recent industry efforts are underway to benchmark probabilistic fracture mechanics computer codes that are currently used by the nuclear industry, Part I of this report describes the comparison of two independent computer codes used at the time of the development of the original U.S. Nuclear Regulatory Commission (NRC) pressurized thermal shock rule. The work that was originally performed in 1982 and 1983 to compare the U.S. NRC - VISA and Westinghouse (W) - PFM computer codes has been documented and is provided in Part I of this report. Part II of this report describes the results of more recent industry efforts to benchmark PFM computer codes used by the nuclear industry. This study was conducted as part of the USNRC-EPRI Coordinated Research Program for reviewing the technical basis for pressurized thermal shock (PTS) analyses of the reactor pressure vessel. The work focused on the probabilistic fracture mechanics (PFM) analysis codes and methods used to perform the PTS calculations. An in-depth review of the methodologies was performed to verify the accuracy and adequacy of the various different codes. The review was structured around a series of benchmark sample problems to provide a specific context for discussion and examination of the fracture mechanics methodology

  17. Upstream pressure variations associated with the bow shock and their effects on the magnetosphere

    International Nuclear Information System (INIS)

    Fairfield, D.H.; Baumjohann, W.; Paschmann, G.; Luehr, H.; Sibeck, D.G.

    1990-01-01

    Magnetic field enhancements and depressions on the time scales of minutes were frequently observed simultaneously by the AMPTE CCE, GOES 5, and GOES 6 spacecraft in the subsolar magnetosphere. The source of these perturbations has been detected in the high time resolution AMPTE IRM measurements of the kinetic pressure of the solar wind upstream of the bow shock. It is argued that these upstream pressure variations are not inherent in the solar wind but rather are associated with the bow shock. This conclusion follows from the facts that (1) the upstream field strength and the density associated with the perturbations are highly correlated with each other whereas these quantities tend to be anticorrelated in the undisturbed solar wind, and (2) the upstream perturbations occur within the foreshock or at its boundary. The results imply a mode of interaction between the solar wind and the magnetosphere whereby density changes produced in the foreshock subsequently convect through the bow shock and impinge on the magnetosphere. Also velocity decreases deep within the foreshock sometimes reach many tens of kilometers per second and may be associated with further pressure variations as a changing interplanetary field direction changes the foreshock geometry. Upstream pressure perturbations should create significant effects on the magnetopause and at the foot of nearby field lines that lead to the polar cusp ionosphere

  18. Brittle-fracture potential of irradiated Zircaloy-2 pressure tubes

    Science.gov (United States)

    Huang, F. H.

    1993-12-01

    Neutron irradiation can degrade the fracture toughness of Zircaloy-2 and may cause highly irradiated reactor components of this material to fail in a brittle manner. The effects of radiation embrittlement on the structural integrity of N Reactor pressure tubes are studied by performing KIc and JIc fracture toughness testing on samples cut from the Zircaloy-2 tubes periodically removed from the reactor. A fluence of 6 × 10 25n/ m2 ( E > 1 MeV) reduced the fracture toughness of the material by 40 to 50%. The fracture toughness values appear to saturate at 260°C with fluences above 3 × 10 25n/ m2 ( E > 1 MeV), but continue to decline with increasing fluence at temperatures below 177°C. Present and previous results obtained from irradiated pressure tubes indicate that the brittle-fracture potential of Zircaloy-2 increases with decreasing temperature and increasing fluence. Fractographic examinations of the fracture surfaces of irradiated samples reveal that circumferential hydride formation significantly influenced fracture morphology by providing sites for easy crack nucleation and leaving deep cracks. However, the deep cracks created at the hydride platelets in specimens containing less than 220 ppm hydrogen are not believed to be the major cause of degradation in postirradiation fracture toughness.

  19. Measurement and analysis of pressure tube elongation in the Douglas Point reactor

    International Nuclear Information System (INIS)

    Causey, A.R.; MacEwan, S.R.; Jamieson, H.C.; Mitchell, A.B.

    1980-02-01

    Elongations of zirconium alloy pressure tubes in CANDU reactors, which occur as a result of neutron-irradiation-induced creep and growth, have been measured over the past 6 years, and the consequences of thses elongations have recently been analysed. Elongation rates, previously deduced from extensive measurements of elongations of cold-worked Zircaloy-2 pressure tubes in the Pickering reactors, have been modified to apply to the pressure tubes in the Douglas Point (DP) reactor by taking into account measured diffences in texture and dislocation density. Using these elongation rates, and structural data unique to the DP reactor, the analysis predicts elongation behaviour which is in good agreement with pressure tube elongations measured during the ten years of reactor operation. (Auth)

  20. Boiling on a tube bundle: heat transfer, pressure drop and flow patterns

    International Nuclear Information System (INIS)

    Royen Van, E.

    2011-11-01

    The complexity of two-phase flow boiling on a tube bundle presents many challenges to the understanding of the physical phenomena taking place. It is important to quantify these numerous heat flow mechanisms in order to better describe the performance of tube bundles as a function of the operational conditions. In the present study, the bundle boiling facility at the Laboratory of Heat and Mass Transfer (LTCM) was modified to obtain high-speed videos to characterise the two-phase regimes and some bubble dynamics of the boiling process. It was then used to measure heat transfer on single tubes and in bundle boiling conditions. Pressure drop measurements were also made during adiabatic and diabatic bundle conditions. New enhanced boiling tubes from Wolverine Tube Inc. (Turbo-B5) and the Wieland-Werke AG (Gewa-B5) were investigated using R134a and R236fa as test fluids. The tests were carried out at saturation temperatures T sat of 5 °C and 15 °C, mass flow rates from 4 to 35 kg/m 2 s and heat fluxes from 15 to 70 kW/m 2 , typical of actual operating conditions. The flow pattern investigation was conducted using visual observations from a borescope inserted in the middle of the bundle. Measurements of the light attenuation of a laser beam through the intertube two-phase flow and local pressure fluctuations with piezo-electric pressure transducers were also taken to further help in characterising the complex flow. Pressure drop measurements and data reduction procedures were revised and used to develop new, improved frictional pressure drop prediction methods for adiabatic and diabatic two-phase conditions. The physical phenomena governing the enhanced tube evaporation process and their effects on the performance of tube bundles were investigated and insight gained. A new method based on a theoretical analysis of thin film evaporation was used to propose a new correlating parameter. A large new database of local heat transfer coefficients were obtained and then

  1. Delayed hydride cracking and elastic properties of Excel, a candidate CANDU-SCWR pressure tube material

    International Nuclear Information System (INIS)

    Pan, Z.L.

    2010-01-01

    Excel, a Zr alloy which contains 3.5%Sn, 0.8%Nb and 0.8%Mo, shows high strength, good corrosion resistance, excellent creep-resistance and dimension stability and thus is selected as a candidate pressure tube material for CANDU-SCWR. In the present work, the delayed hydride cracking properties (K IH and the DHC growth rates), the hydrogen solubility and elastic modulus were measured in the irradiated and unirradiated Excel pressure tube material. (author)

  2. Path Dependency of High Pressure Phase Transformations

    Science.gov (United States)

    Cerreta, Ellen

    2017-06-01

    At high pressures titanium and zirconium are known to undergo a phase transformation from the hexagonal close packed (HCP), alpha-phase to the simple-hexagonal, omega-phase. Under conditions of shock loading, the high-pressure omega-phase can be retained upon release. It has been shown that temperature, peak shock stress, and texture can influence the transformation. Moreover, under these same loading conditions, plastic processes of slip and twinning are also affected by similar differences in the loading path. To understand this path dependency, in-situ velocimetry measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to qualitatively understand the kinetics of transformation, quantify volume fraction of retained omega-phase and characterize the shocked alpha and omega-phases. Together the work described here can be utilized to map the non-equilibrium phase diagram for these metals and lend insight into the partitioning of plastic processes between phases during high pressure transformation. In collaboration with: Frank Addesssio, Curt Bronkhorst, Donald Brown, David Jones, Turab Lookman, Benjamin Morrow, Carl Trujillo, Los Alamos National Lab.; Juan Pablo Escobedo-Diaz, University of New South Wales; Paulo Rigg, Washington State University.

  3. Design of experiments and equipment to test the ballooning characteristics of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Forrest, C.F.; Stern, F.; Hart, R.G.

    1992-01-01

    Experiments have been planned and an apparatus has been designed to enable creep testing of end-of-life pressure tube specimens in a LOCA environment. Effects that could be studied include: annealing of irradiation damage during transient heating; effects of hydride blisters on pressure tube ballooning strains; and, effects of uniformly-distributed hydrogen content on pressure tube ballooning strains. The proposed experimental program will consist of separate effects creep tests on pressure tube sections under transient heating conditions

  4. Experimental Study on Peak Pressure of Shock Waves in Quasi-Shallow Water

    Directory of Open Access Journals (Sweden)

    Zhenxiong Wang

    2015-01-01

    Full Text Available Based on the similarity laws of the explosion, this research develops similarity requirements of the small-scale experiments of underwater explosions and establishes a regression model for peak pressure of underwater shock waves under experimental condition. Small-scale experiments are carried out with two types of media at the bottom of the water and for different water depths. The peak pressure of underwater shock waves at different measuring points is acquired. A formula consistent with the similarity law of explosions is obtained and an analysis of the regression precision of the formula confirms its accuracy. Significance experiment indicates that the influence of distance between measuring points and charge on peak pressure of underwater shock wave is the greatest and that of water depth is the least within the range of geometric parameters. An analysis of data from experiments with different media at the bottom of the water reveals an influence on the peak pressure, as the peak pressure of a shock wave in a body of water with a bottom soft mud and rocks is about 1.33 times that of the case where the bottom material is only soft mud.

  5. Variation of Pressure Waveforms in Measurements of Extracorporeal Shock Wave Lithotripter

    Science.gov (United States)

    Inose, Naoto; Ide, Masao

    1993-05-01

    In this paper, we describe measurement of variation in pressure waveforms of the acoustic field of an extra-corporeal shock-wave lithotripter (ESWL). Variations in the measured acoustic fields and pressure waveform of an underwater spark-gap-type ESWL with an exhausted spark plug electrode have been reported by researchers using crystal sensors. If the ESWL spark plugs become exhausted, patients feel pain during kidney, biliary stone disintegration. We studied the relationship between exhaustion of electrodes and the variation of pressure waveforms and shock-wave fields of the ESWL using a newly developed hydrophone.

  6. High-energy air shock study in steel and grout pipes

    International Nuclear Information System (INIS)

    Glenn, H.D.; Kratz, H.R.; Keough, D.D.; Duganne, D.A.; Ruffner, D.J.; Swift, R.P.; Baum, D.

    1979-01-01

    Voitenko compressors are used to generate 43 mm/μs air shocks in both a steel and a grout outlet pipe containing ambient atmospheric air. Fiber-optic ports provide diaphragm burst times, time-of-arrival (TOA) data, and velocities for the shock front along the 20-mm-ID exit pipes. Pressure profiles are obtained at higher enthalpy shock propagation than ever before and at many locations along the exit pipes. Numerous other electronic sensors and postshot observations are described, as well as experimental results. The primary objectives of the experiments are as follows: (1) provide a data base for normalization/improvement of existing finite-difference codes that describe high-energy air shocks and gas propagation; (2) obtain quantitative results on the relative attenuation effects of two very different wall materials for high-energy air shocks and gas flows. The extensive experimental results satisfy both objectives

  7. Failure analysis of glass-ceramic insulators of shock tested vacuum (neutron) tubes

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    Eight investigative techniques were used to examine the glass-ceramic insulators in vacuum (neutron) tubes. The insulators were extracted from units that had been subjected to low temperature mechanical shock tests. Two of the three units showed reduced neutron output after these tests and an insulator on one of these two was cracked completely through which probably occurred during shock testing. The objective of this study was to determine if any major differences existed between the insulators of these tubes. After eight analyses, it was concluded that no appreciable differences existed. It appeared that cracking of the one glass-ceramic sample was initiated at inner-sleeve interface voids. For this sample, the interface void density was much higher than is presently acceptable. All insulators were made with glass-ceramic having a Na 2 O content of 4.6 wt%. An increased Na 2 O content will cause an increase in the coefficient of expansion and will reduce the residual stress level since the molybdenum has a higher coefficient of thermal expansion than the insulator. Thus, it is believed that a decrease in interface voids and an increase in Na 2 O should aid in reduced cracking of the insulator during these tests

  8. Ignition during hydrogen release from high pressure into the atmosphere

    Science.gov (United States)

    Oleszczak, P.; Wolanski, P.

    2010-12-01

    The first investigations concerned with a problem of hydrogen jet ignition, during outflow from a high-pressure vessel were carried out nearly 40 years ago by Wolanski and Wojcicki. The research resulted from a dramatic accident in the Chorzow Chemical Plant Azoty, where the explosion of a synthesis gas made up of a mixture composed of three moles of hydrogen per mole of nitrogen, at 300°C and 30 MPa killed four people. Initial investigation had excluded potential external ignition sources and the main aim of the research was to determine the cause of ignition. Hydrogen is currently considered as a potential fuel for various vehicles such as cars, trucks, buses, etc. Crucial safety issues are of potential concern, associated with the storage of hydrogen at a very high pressure. Indeed, the evidence obtained nearly 40 years ago shows that sudden rupture of a high-pressure hydrogen storage tank or other component can result in ignition and potentially explosion. The aim of the present research is identification of the conditions under which hydrogen ignition occurs as a result of compression and heating of the air by the shock wave generated by discharge of high-pressure hydrogen. Experiments have been conducted using a facility constructed in the Combustion Laboratory of the Institute of Heat Engineering, Warsaw University of Technology. Tests under various configurations have been performed to determine critical conditions for occurrence of high-pressure hydrogen ignition. The results show that a critical pressure exists, leading to ignition, which depends mainly on the geometric configuration of the outflow system, such as tube diameter, and on the presence of obstacles.

  9. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures

    Science.gov (United States)

    Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.

    1992-01-01

    Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.

  10. Performance evaluation of reactor operated zircaloy-2 pressure tubes of RAPS-1

    International Nuclear Information System (INIS)

    Chatterjee, S.; Ramadasan, E.; Balakrishnan, K.S.; Bahl, J.K.

    1992-01-01

    Detailed post irradiation examination was carried out on pressure tube sections from E-10, F-9 and F-10 locations of RAPS-1 after an in-reactor residence equivalent to 3.6 effective full power years. The F-10 pressure tube was studied in detail on sections obtained from one end to the other, whereas in the case of E-9 and F-9 pressure tubes only the end sections were examined. The studies carried out were visual examination, metallography, hydrogen i.e. H(D) analysis and mechanical testing at 300 C. Microstructural observations revealed uniform and random hydride/deuteride platelet distribution and absence of blisters or hydride segregation. The H(D) content in the F-10 pressure tube was found to vary in the range 6-12 ppm. The typical H(D) content in the three tubes was around 1 ppm. The H(D) pick-up evaluated from the observed oxide layer thickness was 8 ppm. Longitudinal tensile specimens fabricated from the F-10 pressure tube section and tested at 300 C exhibited increase in yield strength and tensile strength of 39% and 30% respectively. The residual uniform elongation was typically 1.8%. The observed changes in the tensile properties were found to be lower than those reported on unstressed specimens irradiated to similar neutron fluences. The observed hydrogen content and tensile properties obtained in F-10 pressure tube would not be detrimental under normal reactor operating conditions. (author). 10 refs., 4 figs., 2 tabs., 1 annexure

  11. First Research Coordination Meeting on Prediction of Axial and Radial Creep in HWR Pressure Tubes. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    Pressure tube deformation is a critical aging issue in operating Heavy Water Reactors (HWRs). According to the service year, horizontal pressure tubes have three kinds of deformation: diametral creep leading to the flow bypass and the penalty to critical heat flux for fuel rods, longitudinal creep leading to the interference of feeder pipes and/or with fuelling machine, and sagging leading to the interference with in-core components and potential contact between the pressure tube and calandria tube. The CRP scope includes the establishment of a database for pressure tube deformation, microstructure characterization of pressure tube materials collected from HWRs currently operating in Member States and development of a prediction model for pressure tube deformation

  12. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    International Nuclear Information System (INIS)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models

  13. A study on the critical heat flux for annuli and round tubes under low pressure conditions

    International Nuclear Information System (INIS)

    Park, Jae Wook

    1997-02-01

    This study aims to reveal the characteristics of the critical heat flux (CHF) of internally heated concentric annuli and vertical round tubes in low-pressure and low-flow (LPLF) conditions. Although many efforts have been devote to the subject of the CHF during the last forty years, the information on the CHF phenomenon for LPLF conditions is still very limited. The applicable ranges of the CHF correlations for annuli and round tubes are concentrate on the operating conditions of nuclear power plant (NPP), namely high-pressure and high-flow (HPHF) conditions. these facts promoted to collect the reliable CHF data for LPLF conditions for both annuli and round tubes. The critical heat flux data for vertical flow boiling of water in annuli and round tubes at low pressures and low mass fluxes show the following trends: The observed CHF mechanism for annuli was changed in the order of flooding, churn-to-annular flow transition, and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. The observed parametric trends for annuli are consistent with the previous understanding except that the CHF for downward flow is considerably lower (up to 40%) than that for upward flow. The critical quality is much lower than that for round tubes at the same inlet conditions. The observed parametric trends for round tubes are generally consistent with the previous understanding except for system pressure an tube diameter effect. For the system pressure effect, it is observed that the pressure effect is complicated but not so large, whereas the existing CHF correlations do not present the parametric trend exactly. For tube diameter effect, the decreasing trends of CHF with respect to tube diameter was the general understanding so far, but in this region the CHF show a increasing trend of tube diameter. The prediction and the parametric trend analyses are performed by two view points, I.e., for fixed inlet conditions and for local

  14. Status and Plans for work on pressure tube creep at AECL

    International Nuclear Information System (INIS)

    Bickel, Grant A.

    2013-01-01

    AECL research goals: • Develop empirical models to: – regress out operating conditions/extrinsic factors – rank relative strain behavior of measured in-service pressure tubes; • Correlate the ranked strains to manufacturing variables and the microstructure to: – Develop mechanistic insights – Optimize manufacturing/microstructure for improved pressure tube performance

  15. Gamma sensitivity of pressurized drift tubes

    International Nuclear Information System (INIS)

    Baranov, S.A.; Bojko, I.R.; Shelkov, G.A.; Ignatenko, M.A.

    1995-01-01

    Using a set of commonly used radioactive sources, the efficiency of pressurized drift tubes for gammas with energy from 5.9 keV up to 1.3 MeV has been measured. The tube was made of aluminium and filled with Ar, 15%CO 2 and 2.5%iC 4 H 10 gas mixture at 3 atm. The measured efficiency is compared with the results of the calculations in the frame of our simple model as well as with that of the Monte Carlo simulation using GEANT code. The results of our calculations are in agreement with experimental data, while GEANT simulation tends to give lower efficiency in the energy range of 200 keV γ <1300 keV. The average efficiency of the tube in the field of ATLAS gamma background is about 0.45%. 8 refs., 7 figs., 1 tab

  16. Refrigerant charge, pressure drop, and condensation heat transfer in flattened tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M J; Newell, T A; Chato, J C [University of Illinois, Urbana, IL (United States). Dept. of Mechanical and Industrial Engineering; Infante Ferreira, C A [Delft University of Technology (Netherlands). Laboratory for Refrigeration and Indoor Climate Control

    2003-06-01

    Horizontal smooth and microfinned copper tubes with an approximate diameter of 9 mm were successively flattened in order to determine changes in flow field characteristics as a round tube is altered into a flattened tube profile. Refrigerants R134a and R410A were investigated over a mass flux range from 75 to 400 kg m{sup -2} s{sup -}2{sup 1} and a quality range from approximately 10-80%. For a given refrigerant mass flow rate, the results show that a significant reduction in refrigerant charge is possible. Pressure drop results show increases of pressure drop at a given mass flux and quality as a tube profile is flattened. Heat transfer results indicate enhancement of the condensation heat transfer coefficient as a tube is flattened. Flattened tubes with an 18{sup o} helix angle displayed the highest heat transfer coefficients. Smooth tubes and axial microfin tubes displayed similar levels of heat transfer enhancement. Heat transfer enhancement is dependent on the mass flux, quality and tube profile. (author)

  17. Interaction of a CO2 laser beam with a shock-tube plasma

    International Nuclear Information System (INIS)

    Box, S.J.C.; John, P.K.; Byszewski, W.W.

    1977-01-01

    The results of experimental investigations of the interaction of a CO 2 laser beam with plasma produced in an electromagnetic shock tube are presented. The interaction was investigated in two different configurations: with the laser beam perpendicular to the direction of propagation of the shock wave and with the laser beam parallel to the direction of the shock wave. The laser energy was 0.3 J in a 180-nsec pulse. The plasma density was in the range 10 17 --10 18 cm -3 and temperature was around 2 eV. Spectroscopic methods were used in the measurement of density and temperature. Direct observation of the path of the laser beam through the plasma was made by an image-convertor camera in conjunction with a narrow-band interference filter. The propagation of the laser through the plasma and energy absorption are discussed. The observed maximum increase in electron temperature due to the laser in the first configuration was 0.4 eV and the estimated temperature increase in the second configuration was about 2 eV

  18. Replacement of a cracked pressure tube in Bruce GS unit 2

    International Nuclear Information System (INIS)

    Dunn, J.T.

    1982-06-01

    In 1982 February, a primary heat transport system leak was detected in the annulus gas system by on-line instrumentation. The source of the leak was found to be a small axial crack in the pressure tube of fuel channel X-14. This fuel channel was removed and replaced by station maintenance staff, and the unit was returned to service five weeks after it had been shut down. The cracked pressure tube was sent to Chalk River Nuclear Laboratories for examination, and the crack was found to be very similar to those found in Pickering GS units 3 and 4 in 1974-75. It was caused by delayed hydride cracking during the period of high residual stress between the time of rolling and the pre-service stress relief

  19. Electric gun: a new method for generating shock pressures in excess of 1 TPa

    International Nuclear Information System (INIS)

    Steinberg, D.; Chau, H.; Dittbenner, G.; Weingart, R.

    1978-01-01

    By combining the electrically-driven, flying-plate, high-explosive initiator with well-known gas-gun technology, a novel method of generating and measuring shock pressures greater than 1 TPa has been developed. Called the electric gun, this system is competitive with laser or nuclear-driven, shock-wave, equation-of-state experiments in the 1 to 5 TPa range. Compared to those other methods, it has the advantage of simplicity, high precision, and low cost. In addition, its small size and low total energy allow it to be easily contained for experiments with toxic materials

  20. Heat transfer test in a tube using CO2 at supercritical pressures

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Kim, Hyungrae; Song, Jin Ho; Cho, Bong Hyun; Bae, Yoon Yeong

    2005-01-01

    Heat transfer test facility, which is named as SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt Generation), has been constructed in KAERI for the study of heat transfer and pressure drop characteristics in a single tube, single rod and rod bundle at supercritical CO 2 conditions. The tests with supercritical water are difficult it terms of cost and effort, since the critical pressure and temperature of water are as high as 22.12 MPa and 374.14degC. As a substitute for water, CO 2 is selected for the test since the critical pressure and temperature of CO 2 are 7.38 MPa and 31.05degC that are much lower than those of water. This paper describes the design characteristics of the SPHINX and the experimental investigations on the heat transfer and pressure drop of a vertical single tube with an inside diameter of 4.4 mm with upward flow of supercritical CO 2 . The geometry of the single tube is the same as that of Kyushu University test performed with Freon (R22) for the direct comparison of a medium effect. The tests were performed with various heat and mass fluxes at a given pressure. The range of mass flux is 400∼1200 kg/m 2 s and the heat flux is chosen up to 150 kW/m 2 . The selected pressure are 7.75, 8.12, and 8.85 MPa. The test results are investigated and compared with the previous tests. (author)

  1. Delayed hydride cracking in irradiated Zr-2.5 % Nb pressure tubes

    International Nuclear Information System (INIS)

    Cirimello, Pablo; Coronel, Pascual; Haddad, Roberto; Lafont, Claudio; Mizrahi, Rafael

    2003-01-01

    Pressure tubes in CANDU nuclear power plants are made of Zr-2.5 % Nb alloy, which is susceptible to a cracking process called Delayed Hydride Cracking (DHC). Measurement of DHC velocity on irradiated pressure tubes is essential to assure the validity of the Leak Before Break criterion. This work was performed on samples from two pressure tubes taken out of the Embalse NPP in 1995, belonging to fuel channels A-14 and L-12. DHC velocity in the axial direction was measured at 211 C degrees for samples taken from different axial positions, which allowed to study its dependence on fast neutron fluency and irradiation temperature. Non-irradiated material was also tested. It was found that DHC velocity results for the tested material were similar to those obtained for a great number of tubes irradiated in other CANDU plants. (author)

  2. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beach, N. J.; Knapp, S. M. M.; Landis, C. R., E-mail: landis@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53719 (United States)

    2015-10-15

    The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from −90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor to be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.

  3. Pressure relief experiments on a cyclindrical carbon brick tube

    International Nuclear Information System (INIS)

    Lang, H.; Weise, H.J.; Ennen, P.

    1978-08-01

    Pressure relief experiments have been carried out on a carbon brick tube. The outer diameter of the specimen was 580 mm, the inner diameter 280 mm, the length 800 mm. The experiments were made with helium at the temperature of the environment. The measurements were carried out in the pressure range from 15 upto 39 bar. The pressure loss was measured dependent on the initial pressure and on time at 5 positions uniformly distributed over the thickness of the tube wall and in the pressure vessel. The maximum pressure transients occurred amounted to approximately 60 bar/second. The maximum overpressure with respect to the environment which occurred in the carbon brick during the relief experiments was about 3.3 bar. The measurements distinctly showed the presence and the effects of inhomogeneities in the sample material. No damages or changes in the carbon brick, which could be regarded as a consequence of the experiments, were found. (orig./GSC) [de

  4. Measurement of mass flux in high temperature high pressure steam-water two-phase flow using a combination of Pitot tubes and a gamma densitometer

    International Nuclear Information System (INIS)

    Chan, A.M.C.; Bzovey, D.

    1990-01-01

    The design and calibration of a two-phase mass-flux measurement device making use of a Pitot-tube rake and a gamma densitometer are described. Five Pitot tubes and three chordal void-fraction measurements are used. Similar devices have been reported previously. The present device is designed for easy operation and simple data interpretation for both axisymmetric and non-axisymmetric flows under high pressure transient two-phase flow conditions. The device was calibrated using a vertical two-phase flow loop as well as a model-scale pump loop in horizontal orientation. Good agreement between the measured two-phase mass fluxes and the single-phase values was obtained in both cases. (orig.)

  5. The elevated temperature and thermal shock fracture toughnesses of nuclear pressure vessel steel

    International Nuclear Information System (INIS)

    Hirano, Kazumi; Kobayashi, Hideo; Nakazawa, Hajime; Nara, Atsushi.

    1979-01-01

    Thermal shock experiments were conducted on nuclear pressure vessel steel A533 Grade B Class 1. Elastic-plastic fracture toughness tests were carried out within the same high temperature range of the thermal shock experiment and the relation between stretched zone width, SZW and J-integral was clarified. An elastic-plastic thermal shock fracture toughness value. J sub(tsc) was evaluated from a critical value of stretched zone width, SZW sub(tsc) at the initiation of thermal shock fracture by using the relation between SZW and J. The J sub(tsc) value was compared with elastic-plastic fracture toughness values, J sub( ic), and the difference between the J sub(tsc) and J sub( ic) values was discussed. The results obtained are summarized as follows; (1) The relation between SZW and J before the initiation of stable crack growth in fracture toughness test at a high temperature can be expressed by the following equation regardless of test temperature, SZW = 95(J/E), where E is Young's modulus. (2) Elevated temperature fracture toughness values ranging from room temperature to 400 0 C are nearly constant regardless of test temperature. It is confirmed that upper shelf fracture toughness exists. (3) Thermal shock fracture toughness is smaller than elevated temperature fracture toughness within the same high temperature range of thermal shock experiment. (author)

  6. [Characterizing the passive opening of the eustachian tube in a hypo-/hyperbaric pressure chamber].

    Science.gov (United States)

    Meyer, M F; Mikolajczak, S; Luers, J C; Lotfipour, S; Beutner, D; Jumah, M D

    2013-09-01

    Beside arbitrary and not arbitrary active pressure equalization systems there is a passive equalization system via the Eustachian tube (ET) at pressure difference between the epipharyngeal space and the middle ear. Aim of this study was to characterize this passive equalization system in a hypobaric/hyperbaric pressure chamber by continuously measuring the tympanic impedance. In contrast to other studies, which are measured only in a hypobaric pressure chamber it is possible to include participants with Eustachian tube dysfunction (ETD). Following a fixed pressure profile 39 participants were exposed to phases of pressure rising and decompression. By continuously measuring the tympanic impedance in the pressure chamber it was possible to measure data of the Eustachian Tube opening Pressure (ETOP), Eustachian Tube closing pressure (ETCP) and Eustachian Tube opening duration (ETOD). In addition it was possible to characterize the gradient of pressure during decompression, while the ET was open. Beside the measurement of the arithmetic average of the ETOP (30.2 ± 15.1 mbar), ETCP (9.1 ± 7.7 mbar) and ETOD (0.65 ± 0.38 s) it was obvious that there are recurrent samples of pressure progression during the phase of tube opening. Generally it is possible to differentiate between the type of complete opening and partial opening. The fundamental characterization of the action of the passive tube opening, including the measurement of the ETOP, ETCP and ETOD, is a first step in understanding the physiological and pathophysiological function of the ET. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Delayed hydride cracking in Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Domizzi, Gladys; Vigna, Gustavo L.

    2007-01-01

    Zr-2.5 Nb alloy from CANDU pressure tubes are prone to failure by hydrogen intake. One of the degradation mechanisms is delayed hydride cracking, which is characterized by the velocity of cracking. In this work, we study the effect of beta zirconium phase transformation over delayed hydride cracking velocity in Zr-2.5 Nb alloy from pressure tubes. Acoustic emission technique was used for cracking detection. (author) [es

  8. Pressurized Thermal Shock Analysis for OPR1000 Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    The study provides a brief understanding of the analysis procedure and techniques using ANSYS, such as the acceptance criteria, selection and categorization of events, thermal analysis, structural analysis including fracture mechanics assessment, crack propagation and evaluation of material properties. PTS may result from instrumentation and control malfunction, inadvertent steam dump, and postulated accidents such as smallbreak (SB) LOCA, large-break (LB) LOCA, main steam line break (MSLB), feedwater line breaks and steam generator overfill. In this study our main focus is to consider only the LB LOCA due to a cold leg break of the Optimized Power Reactor 1000 MWe (OPR1000). Consideration is given as well to the emergency core cooling system (ECCS) specific sequence with the operating parameters like pressure, temperature and time sequences. The static structural and thermal analysis to investigate the effects of PTS on RPV is the main motivation of this study. Specific surface crack effects and its propagation is also considered to measure the integrity of the RPV. This study describes the procedure for pressurized thermal shock analysis due to a loss of coolant accidental condition and emergency core cooling system operation for reactor pressure vessel.. Different accidental events that cause pressurized thermal shock to nuclear RPV that can also be analyzed in the same way. Considering the limitations of low speed computer only the static analysis is conducted. The modified LBLOCA phases and simplified geometry can is utilized to analyze the effect of PTS on RPV for general understanding not for specific specialized purpose. However, by integrating the disciplines of thermal and structural analysis, and fracture mechanics analysis a clearer understanding of the total aspect of the PTS problem has resulted. By adopting the CFD, thermal hydraulics, uncertainties and risk analysis for different type of accidental conditions, events and sequences with proper

  9. High-pressure mechanical instability in rocks.

    Science.gov (United States)

    Byerlee, J D; Brace, W F

    1969-05-09

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  10. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. I - Pressure distribution

    Science.gov (United States)

    Messiter, A. F.

    1980-01-01

    Asymptotic solutions are derived for the pressure distribution in the interaction of a weak normal shock wave with a turbulent boundary layer. The undisturbed boundary layer is characterized by the law of the wall and the law of the wake for compressible flow. In the limiting case considered, for 'high' transonic speeds, the sonic line is very close to the wall. Comparisons with experiment are shown, with corrections included for the effect of longitudinal wall curvature and for the boundary-layer displacement effect in a circular pipe.

  11. Pressure tube replacement in Pickering NGS A units 1 and 2

    International Nuclear Information System (INIS)

    Irvine, H.S.; Bennett, E.J.; Talbot, K.H.

    1986-10-01

    Being able to technically and economically replace the most radioactive components (excluding the nuclear fuel) in operating reactors will help to ensure the ongoing acceptance of nuclear power as a viable energy source for the future. Ontario Hydro is well along the path to meeting the above objective for its CANDU-PHW reactors. Following the failure of a Zircaloy-II pressure tube in unit 2 of Pickering NGS A in August, 1983, Ontario Hydro has embarked on a program to replace all Zircaloy-II pressure tubes in units 1 and 2 at Pickering. This program integrates the in-house research, design, construction, and operating skills of a large utility (Ontario Hydro) with the skills of a national nuclear organization (Atomic Energy of Canada Limited) and the private engineering sector of the Canadian nuclear industry. The paper describes the background to the pressure tube failure in Pickering unit 2 and to the efforts incurred in understanding the failure mechanism and how similar failures are not expected for the zirconium-niobium pressure tube material used in all other large CANDU-PHW units after units 1 and 2 of Pickering NGS A. The tooling developed for the pressure tube replacement program is described as well as the organization to undertake the program in an operating nuclear station. The retubing of units 1 and 2 at Pickering NGS A is nearing a successful completion and shows the benefits of being able to integrate the various skills required for this success. Pressure tube replacement in a CANDU-PHW reactor is equivalent to replacement of the reactor vessel in a LWR. The fact that this replacement can be done economically and with acceptable radiation dose to workers augurs well for the continued viability of the use of nuclear energy for the benefit of mankind. (author)

  12. Benchmark of WIMS-IST against MCNP for CANDU pressure tube fast fluxes

    International Nuclear Information System (INIS)

    Donders, R.E.; Douglas, S.R.

    2002-01-01

    Pressure tube fast-flux data in CANDU are currently calculated using the multi-group neutron transport code WIMS-IST. In this study, the WIMS-IST fast flux calculations are benchmarked against MCNP calculations (a Monte Carlo particle transport code), over the range of fuel burnup and coolant density in CANDU. The comparison shows good agreement between WIMS and MCNP, with WIMS fast fluxes being 1.5% to 4% lower than the MCNP values. The difference is smallest for fresh fuel, and increases with burnup. The fast flux gradient across the pressure tube (factor of 1.23 from inner edge to outer edge) is accurately calculated by WIMS. When reporting fast fluxes in pressure tubes, these are generally given as >1.000 MeV fluxes. For WIMS, this requires an extra conversion step, since the WIMS ENDF/B libraries do not have a group boundary at 1 MeV. The conversion step is based on a fictitious isotope ONEMEV in the WIMS nuclear data library. The conversion factor in WIMS was found to be about one percent too high. When providing >1 MeV fluxes from WIMS, this partially compensates for the slight under prediction of the fast flux. Pressure tube >1 MeV fluxes from WIMS are therefore 0.5% to 3% lower than MCNP values. To obtain accurate fast flux data, neutron transport calculations must be performed on a critical cell. For this study, all calculations were performed with radial albedo boundary conditions giving a critical cell. This required the use of an albedo version of MCNP, developed at AECL. (author)

  13. High-pressure polymorphs in Yamato-790729 L6 chondrite and their significance for collisional conditions

    Science.gov (United States)

    Kato, Yukako; Sekine, Toshimori; Kayama, Masahiko; Miyahara, Masaaki; Yamaguchi, Akira

    2017-12-01

    Shock pressure recorded in Yamato (Y)-790729, classified as L6 type ordinary chondrite, was evaluated based on high-pressure polymorph assemblages and cathodoluminescence (CL) spectra of maskelynite. The host-rock of Y-790729 consists mainly of olivine, low-Ca pyroxene, plagioclase, metallic Fe-Ni, and iron-sulfide with minor amounts of phosphate and chromite. A shock-melt vein was observed in the hostrock. Ringwoodite, majorite, akimotoite, lingunite, tuite, and xieite occurred in and around the shock-melt vein. The shock pressure in the shock-melt vein is about 14-23 GPa based on the phase equilibrium diagrams of high-pressure polymorphs. Some plagioclase portions in the host-rock occurred as maskelynite. Sixteen different CL spectra of maskelynite portions were deconvolved using three assigned emission components (centered at 2.95, 3.26, and 3.88 eV). The intensity of emission component at 2.95 eV was selected as a calibrated barometer to estimate shock pressure, and the results indicate pressures of about 11-19 GPa. The difference in pressure between the shock-melt vein and host-rock might suggest heterogeneous shock conditions. Assuming an average shock pressure of 18 GPa, the impact velocity of the parent-body of Y-790729 is calculated to be 1.90 km s-1. The parent-body would be at least 10 km in size based on the incoherent formation mechanism of ringwoodite in Y-790729.

  14. Endotracheal tube cuff pressures during general anaesthesia while using air versus a 50% mixture of nitrous oxide and oxygen as inflating agents

    Directory of Open Access Journals (Sweden)

    Jesni Joseph Manissery

    2007-01-01

    Full Text Available The present study was aimed at assessing the efficacy of filling a 50% mixture of nitrous oxide : oxygen (50%N 2 O:O 2 in the endotracheal tube cuff to provide stable cuff pressures during general anaesthesia with 67%N 2 O. The endotracheal tube cuff pressures with air (control as the inflating agent in the tubes were found to have a total mean pressure of 62.60±12.33 at the end of one hour of general anaesthesia. When comparing the endotracheal tube cuff pressures in the Mallinckrodt tubes with that of the Portex tubes, with air as the inflating agent, the Portex tubes showed a significantly lower cuff pressures at the end of one hour. The endotracheal tube cuff pressures with 50%N 2 O:O 2 as the inflating agent showed a total mean pressure of 27.63 ± 3.221 at the end of one hour of general anaesthesia. This indicates that inflation of the cuff of the endotracheal tubes with a 50%N 2 O:O 2 rather than air maintains a stable intra cuff pressure. Therefore, the method of using a 50%N 2 O:O 2 for filling endotracheal tube cuff can be adopted for endotracheal tubes with high-volume, low-pressure cuffs to prevent both excessive cuff pressure and disruption of cuff seal, during general anaesthesia lasting up to one hour.

  15. Shock-tube study of fusion plasma-wall interactions

    International Nuclear Information System (INIS)

    Gross, R.A.; Tien, J.K.; Jensen, B.; Panayotou, N.F.; Feinberg, B.

    1977-01-01

    Theoretical and experimental studies have been made of phenomena which occur when a hot (T 1 approximately equal to 6 x 10 6 0 K), dense (n approximately equal to 10 16 cm -3 ), deuterium plasma containing a transverse magnetic field is brought into sudden contact with a cold metal wall. These studies are motivated by the need to understand plasma and metallurgical conditions at the first-wall of a fusion reactor. Experiments were carried out in the Columbia high energy electromagnetic shock tube. Computational simulation was used to investigate the detailed physics of the fusion plasma boundary layer which develops at the wall. The rate of energy transfer from the plasma to the wall was calculated and conditions under which surface melting occurs are estimated. Experimental measurements of plasma-wall heat transfer rates up to 3 x 10 5 watts/cm 2 were obtained and agreement with computed values are good. Fusion reactor first-wall materials have been exposed to 6.0 x 10 21 eV cm -2 (1,000 shots) of deuterium plasma bombardment. Scanning electron micrograph photographs show preferential erosion at grain boundaries, formation of deuterium surface blisters, and evidence of local surface melting. Some cracking is observed along grain boundaries, and a decrease in tensile ductiity is measured

  16. Advances in high pressure research in condensed matter: proceedings of the international conference on condensed matter under high pressures

    International Nuclear Information System (INIS)

    Sikka, S.K.; Gupta, Satish C.; Godwal, B.K.

    1997-01-01

    The use of pressure as a thermodynamic variable for studying condensed matter has become very important in recent years. Its main effect is to reduce the volume of a substance. Thus, in some sense, it mimics the phenomena taking place during the cohesion of solids like pressure ionization, modifications in electronic properties and phase changes etc. Some of the phase changes under pressure lead to synthesis of new materials. The recent discovery of high T c superconductivity in YBa 2 Cu 3 O 7 may be indirectly attributed to the pressure effect. In applied fields like simulation of reactor accident, design of inertial confinement fusion schemes and for understanding the rock mechanical effects of shock propagation in earth due to underground nuclear explosions, the pressure versus volume relations of condensed matter are a vital input. This volume containing the proceedings of the International Conference on Condensed Matter Under High Pressure covers various aspects of high pressure pertaining to equations of state, phase transitions, electronic, optical and transport properties of solids, atomic and molecular studies, shock induced reactions, energetic materials, materials synthesis, mineral physics, geophysical and planetary sciences, biological applications and food processing and advances in experimental techniques and numerical simulations. Papers relevant to INIS are indexed separately

  17. Sounding experiments of high pressure gas discharge

    International Nuclear Information System (INIS)

    Biele, Joachim K.

    1998-01-01

    A high pressure discharge experiment (200 MPa, 5·10 21 molecules/cm 3 , 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm 3 ) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm 3 ) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at the combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved

  18. Pressurized Thermal Shock, Pts

    International Nuclear Information System (INIS)

    Boyd, C.

    2008-01-01

    Pressurized Thermal Shock (Pts) refers to a condition that challenges the integrity of the reactor pressure vessel. The root cause of this problem is the radiation embrittlement of the reactor vessel. This embrittlement leads to an increase in the reference temperature for nil ductility transition (RTNDT). RTNDT can increase to the point where the reactor vessel material can loose fracture toughness during overcooling events. The analysis of the risk of having a Pts for a specific plant is a multi-disciplinary problem involving probabilistic risk analysis (PRA), thermal-hydraulic analysis, and ultimately a structural and fracture analysis of the vessel wall. The PRA effort involves the postulation of overcooling events and ultimately leads to an integrated risk analysis. The thermal-hydraulic effort involves the difficult task of predicting the system behavior during a postulated overcooling scenario with a special emphasis on predicting the thermal and mechanic loadings on the reactor pressure vessel wall. The structural and fracture analysis of the reactor vessel wall relies on the thermal-hydraulic conditions as boundary conditions. The US experience has indicated that medium and large diameter primary system breaks dominate the risk of Pts along with scenarios that involve a stuck open valve (and associated system cooldown) that recloses resulting in system re-pressurization while the vessel wall is cool.

  19. Calandria cooling structure in pressure tube reactor

    International Nuclear Information System (INIS)

    Hyugaji, Takenori; Sasada, Yasuhiro.

    1976-01-01

    Purpose: To contrive the structure of a heavy water distributing device in a pressure tube reactor thereby to reduce the variation in the cooling function thereof due to the welding deformation and installation error. Constitution: A heating water distributing plate is provided at the lower part of the upper tubular plate of a calandria tank to form a heavy water distributing chamber between both plates and a plurality of calandria tubes. Heavy water which has flowed in the upper part of the heavy water distributing plate from the heavy water inlet nozzle flows down through gaps formed around the calandria tubes, whereby the cooling of the calandria tank and the calandria tubes is carried out. In the above described calandria cooling structure, a heavy water distributing plate support is provided to secure the heavy water distributing plate and torus-shaped heavy water distributing rings are fixed to holes formed in the heavy water distributing plate penetrating through the calandria tubes thereby to form torus-shaped heavy water outlet ports each having a space. (Seki, T.)

  20. MEASUREMENT OF ENDOTRACHEAL TUBE CUFF PRESSURE IN MECHANICALLYVENTILATED PATIENTS ON ARRIVAL TO INTENSIVE CARE UNIT - A CROSS-SECTIONAL STUDY

    Directory of Open Access Journals (Sweden)

    Arun Kumar Ajjappa

    2017-04-01

    Full Text Available BACKGROUND The monitoring of Endotracheal Tube (ETT cuff pressure in intubated patients on arrival to intensive care unit is very essential. The cuff pressure must be within an optimal range of 20-30cm H2O ensuring ventilation with no complications related to cuff overinflation and underinflation. This can be measured with a cuff pressure manometer. The aim of the study is to measure the endotracheal tube cuff pressure in patients on arrival to intensive care unit and to identify prevalence of endotracheal cuff underinflation and overinflation. MATERIALS AND METHODS A cross-sectional study was done on mechanically-ventilated patients who were intubated in casualty (emergency department on arrival to intensive care unit in S.S. Institute of Medical Sciences and Research Centre, Davangere. About 50 critically-ill patients intubated with a high volume, low pressure endotracheal tube were included in the study. An analogue manometer was used to measure the endotracheal tube cuff pressure. It was compared with the recommended level. The settings of mechanical ventilation, endotracheal tube size and peak airway pressure were recorded. RESULTS It was found that the mean cuff pressure was 64.10 cm of H2O with a standard deviation of 32.049. Of the measured cuff pressures, only 2% had pressures within an optimal range (20-30cm of H2O. 88% had cuff pressures more than 30cm of H2O. The mean peak airway pressure found to be 20.50cm of H2O with a Standard Deviation (SD of 5.064. CONCLUSION This study is done to emphasise the importance of cuff pressure measurement in all mechanically-ventilated patients as cuff pressure is found to be high in most of the patients admitted to intensive care unit. Complications of overinflation and underinflation can only be prevented if the acceptable cuff pressures are achieved.

  1. Energetic materials under high pressures and temperatures: stability, polymorphism and decomposition of RDX

    International Nuclear Information System (INIS)

    Dreger, Z A

    2012-01-01

    A recent progress in understanding the response of energetic crystal of cyclotrimethylene trinitramine (RDX) to high pressures and temperatures is summarized. The optical spectroscopy and imaging studies under static compression and high temperatures provided new insight into phase diagram, polymorphism and decomposition mechanisms at pressures and temperatures relevant to those under shock compression. These results have been used to aid the understanding of processes under shock compression, including the shock-induced phase transition and identification of the crystal phase at decomposition. This work demonstrates that studies under static compression and high temperatures provide important complementary route for elucidating the physical and chemical processes in shocked energetic crystals.

  2. Simulations of fill tube effects on the implosion of high-foot NIF ignition capsules

    International Nuclear Information System (INIS)

    Dittrich, T R; Hurricane, O A; Berzak-Hopkins, L F; Callahan, D A; Casey, D T; Clark, D; Dewald, E L; Doeppner, T; Haan, S W; Hammel, B A; Harte, J A; Hinkel, D E; Kozioziemski, B J; Kritcher, A L; Ma, T; Nikroo, A; Pak, A E; Parham, T G; Park, H-S; Patel, P K

    2016-01-01

    Encouraging results have been obtained using a strong first shock during the implosion of carbon-based ablator ignition capsules. These “high-foot” implosion results show that capsule performance deviates from 1D expectations as laser power and energy are increased. A possible cause of this deviation is the disruption of the hot spot by jets originating in the capsule fill tube. Nominally, a 10 μm outside diameter glass (SiO 2 ) fill tube is used in these implosions. Simulations indicate that a thin coating of Au on this glass tube may lessen the hotspot disruption. These results and other mitigation strategies will be presented. (paper)

  3. Simulations of fill tube effects on the implosion of high-foot NIF ignition capsules

    Science.gov (United States)

    Dittrich, T. R.; Hurricane, O. A.; Berzak-Hopkins, L. F.; Callahan, D. A.; Casey, D. T.; Clark, D.; Dewald, E. L.; Doeppner, T.; Haan, S. W.; Hammel, B. A.; Harte, J. A.; Hinkel, D. E.; Kozioziemski, B. J.; Kritcher, A. L.; Ma, T.; Nikroo, A.; Pak, A. E.; Parham, T. G.; Park, H.-S.; Patel, P. K.; Remington, B. A.; Salmonson, J. D.; Springer, P. T.; Weber, C. R.; Zimmerman, G. B.; Kline, J. L.

    2016-05-01

    Encouraging results have been obtained using a strong first shock during the implosion of carbon-based ablator ignition capsules. These “high-foot” implosion results show that capsule performance deviates from 1D expectations as laser power and energy are increased. A possible cause of this deviation is the disruption of the hot spot by jets originating in the capsule fill tube. Nominally, a 10 μm outside diameter glass (SiO2) fill tube is used in these implosions. Simulations indicate that a thin coating of Au on this glass tube may lessen the hotspot disruption. These results and other mitigation strategies will be presented.

  4. Some engineering aspects of the investigation into the cracking of pressure tubes in the Pickering reactors

    International Nuclear Information System (INIS)

    Ross-Ross, P.A.; Towgood, G.R.; Hunter, T.A.

    1976-01-01

    In August 1974, Pickering Unit 3 (514 MWe) was shutdown for a period of 8 months because of cracks in 17 of the 390 pressure tubes. The cracks were a result of incorrect installation procedures during construction. Improper positioning of the rolling tool used to join the Zr-2.5 wt% Nb pressure tube to the end fitting produced very high residual tensile stresses. High stresses in combination with periods with the tubes cold caused the cracking. Crack propagation was by fracture of hydrides which are brittle when cold. Subsequent investigation confirmed that properly rolled joints are not susceptible to such cracking. The resources of Canadian industry, Ontario Hydro and Atomic Energy of Canada were coordinated to find engineering solutions to the crack program. The defective tubes were removed from reactor, thoroughly examined to identify the cause of the cracks, and thoroughly tested to prove safety. Non-destructive techniques were quickly adopted for inspection of tubes in Pickering. Tools and procedures for retubing the 17 channels were prepared and Pickering Unit 3 was returned to service at the end of March 1975. (author)

  5. Leakage Characteristics of Dual-Cannula Fenestrated Tracheostomy Tubes during Positive Pressure Ventilation: A Bench Study

    Directory of Open Access Journals (Sweden)

    Thomas Berlet

    2016-01-01

    Full Text Available This study compared the leakage characteristics of different types of dual-cannula fenestrated tracheostomy tubes during positive pressure ventilation. Fenestrated Portex® Blue Line Ultra®, TRACOE® twist, or Rüsch® Traceofix® tracheostomy tubes equipped with nonfenestrated inner cannulas were tested in a tracheostomy-lung simulator. Transfenestration pressures and transfenestration leakage rates were measured during positive pressure ventilation. The impact of different ventilation modes, airway pressures, temperatures, and simulated static lung compliance settings on leakage characteristics was assessed. We observed substantial differences in transfenestration pressures and transfenestration leakage rates. The leakage rates of the best performing tubes were <3.5% of the delivered minute volume. At body temperature, the leakage rates of these tracheostomy tubes were <1%. The tracheal tube design was the main factor that determined the leakage characteristics. Careful tracheostomy tube selection permits the use of fenestrated tracheostomy tubes in patients receiving positive pressure ventilation immediately after stoma formation and minimises the risk of complications caused by transfenestration gas leakage, for example, subcutaneous emphysema.

  6. Apparatus for reducing shock and overpressure

    Science.gov (United States)

    Walter, C.E.

    1975-01-28

    An apparatus for reducing shock and overpressure is particularly useful in connection with the sequential detonation of a series of nuclear explosives under ground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accomodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure. (10 claims)

  7. High Pressure In Situ X-ray Diffraction Study of MnO to 120 GPa and Comparison with Shock Compression Experiment

    Science.gov (United States)

    Yagi, Takehiko; Kondo, Tadashi; Syono, Yasuhiko

    1997-07-01

    In order to clarify the nature of the phase transformation in MnO observed at around 90 GPa by shock compression experiment (Syono et al., this symposium), high pressure in situ x-ray experiments were carried out up to 120 GPa. Powdered sample was directly compressed in Mao-Bell type diamond anvil and x-ray experiments were carried out using angle dispersive technique by combining synchrotron radiation and imaging plate detector. Distortion of the B1 structured phase into hexagonal unit cell was observed from 25-40 GPa, which continues to increase up to 90 GPa. At around 90 GPa, discontinuous change of the diffraction was observed. This new phase cannot be explained by a simple B2 structure and the analysis of this phase is in progress. This high pressure phase has metallic appearance, which reverses to transparent MnO on release of pressure.

  8. Study of creep collapse of tubes subject to external pressure at elevated temperature

    International Nuclear Information System (INIS)

    Takikawa, N.

    1982-01-01

    Intermediate heat exchanger (IHX) tubes of VHTR form the boundary between the primary and secondary coolants of the reactor. The tubes are subject to external pressures at a postulated secondary coolant depressurization accident, which might lead to creep collapse. Therefore, it is necessary to ensure the integrity against creep collapse by analysis. The objective of this work is to study a simplified analytical method for predicting collapse time of a curved tube subjected to an external pressure. The study is made based on the comparison of experimental collapse time of curved and straight tubes. Creep collapse tests were conducted under an elevated temperature and an external pressure. Test results showed that curved tubes had longer collapse time than straight tubes with the same cross sectional ovality. The simplified analytical method for a curved tube is proposed in this report, which is to compute collapse time of a straight tube with the same ovality. And in this method the computed time is considered as collapse time of the curved tube. The above test results show that this simplified method gives the conservative collapse time. And it is confirmed by additional IHX tube tests that the method is applicable to creep collapse analysis of IHX tubes

  9. UV laser-driven shock-wave experiments at ultrahigh-pressures up to 5 TPa

    Energy Technology Data Exchange (ETDEWEB)

    Cottet, F.; Hallouin, M.; Romain, J.P. (GRECO ILM, Laboratoire d' Enegetique et Detonique, ENSMA, 86 - Poitiers (France)); Fabbro, R.; Faral, B. (GRECO ILM, Laboratoire de Physique des Milieux Ionises, Ecole Polytechnique, 91 - Palaiseau (France))

    1984-11-01

    Laser-driven shock pressures up to 5 TPa at 0.26 ..mu..m wavelenth have been evaluated from measurements of shock velocity through thin metallic foils (Al, Au, Cu) by streak camera records of shock luminosity at the near face of the foil.

  10. UV laser-driven shock-wave experiments at ultrahigh-pressures up to 5 TPa

    International Nuclear Information System (INIS)

    Cottet, F.; Hallouin, M.; Romain, J.P.; Fabbro, R.; Faral, B.

    1984-01-01

    Laser-driven shock pressures up to 5 TPa at 0.26 μm wavelenth have been evaluated from measurements of shock velocity through thin metallic foils (Al, Au, Cu) by streak camera records of shock luminosity at the near face of the foil

  11. Characterizing shock waves in hydrogel using high speed imaging and a fiber-optic probe hydrophone

    Science.gov (United States)

    Anderson, Phillip A.; Betney, M. R.; Doyle, H. W.; Tully, B.; Ventikos, Y.; Hawker, N. A.; Roy, Ronald A.

    2017-05-01

    The impact of a stainless steel disk-shaped projectile launched by a single-stage light gas gun is used to generate planar shock waves with amplitudes on the order of 102MPa in a hydrogel target material. These shock waves are characterized using ultra-high-speed imaging as well as a fiber-optic probe hydrophone. Although the hydrogel equation of state (EOS) is unknown, the combination of these measurements with conservation of mass and momentum allows us to calculate pressure. It is also shown that although the hydrogel behaves similarly to water, the use of a water EOS underpredicts pressure amplitudes in the hydrogel by ˜10 % at the shock front. Further, the water EOS predicts pressures approximately 2% higher than those determined by conservation laws for a given value of the shock velocity. Shot to shot repeatability is controlled to within 10%, with the shock speed and pressure increasing as a function of the velocity of the projectile at impact. Thus the projectile velocity may be used as an adequate predictor of shock conditions in future work with a restricted suite of diagnostics.

  12. Miniaturised Prandtl tube with integrated pressure sensors for micro-thruster plume characterisation

    NARCIS (Netherlands)

    Dijkstra, Marcel; Ma, Kechun; de Boer, Meint J.; Groenesteijn, Jarno; Lötters, Joost Conrad; Wiegerink, Remco J.

    2014-01-01

    A miniaturised Prandtl-tube sensor incorporating a 6 mm long 40 μm diameter microchannel with integrated pressure sensors has been realised. The sensor has been designed for the characterisation of rarefied plume flow from a MEMS-based monopropellant propulsion system for high-accuracy attitude

  13. Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance

    International Nuclear Information System (INIS)

    Romain, J P; Bonneau, F; Dayma, G; Boustie, M; Resseguier, T de; Combis, P

    2002-01-01

    Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm -2 . The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence -2 , the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface

  14. Shock-resistant gamma-ray detector tube

    International Nuclear Information System (INIS)

    1979-01-01

    A simple durable scintillation detector is described which, it is claimed, offers a solution to the shock resistance problems encountered when gamma detectors are used for deep bore hole well logging or in space vehicles. The shock resistant detector consists of an elongate sodium iodide scintillation crystal and rigid metal container with a round glass optical window at one end of the container and a metal end closure cap at the opposite end. An elastic rubber compression pad is provided between the end cap and the scintillation crystal to bias the crystal axially toward the glass window. An extension transparent silicone rubber light pipe of substantial axial thickness permanently couples the optical window to the crystal while allowing substantial movement under high g forces. (U.K.)

  15. High pressure mechanical seal

    Science.gov (United States)

    Babel, Henry W. (Inventor); Anderson, Raymond H. (Inventor)

    1996-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After compression, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as measured using the Helium leak test.

  16. Increases of heat shock proteins and their mRNAs at high hydrostatic pressure in a deep-sea piezophilic bacterium, Shewanella violacea.

    Science.gov (United States)

    Sato, Hiroshi; Nakasone, Kaoru; Yoshida, Takao; Kato, Chiaki; Maruyama, Tadashi

    2015-07-01

    When non-extremophiles encounter extreme environmental conditions, which are natural for the extremophiles, stress reactions, e.g., expression of heat shock proteins (HSPs), are thought to be induced for survival. To understand how the extremophiles live in such extreme environments, we studied the effects of high hydrostatic pressure on cellular contents of HSPs and their mRNAs during growth in a piezophilic bacterium, Shewanella violacea. HSPs increased at high hydrostatic pressures even when optimal for growth. The mRNAs and proteins of these HSPs significantly increased at higher hydrostatic pressure in S. violacea. In the non-piezophilic Escherichia coli, however, their mRNAs decreased, while their proteins did not change. Several transcriptional start sites (TSSs) for HSP genes were determined by the primer extension method and some of them showed hydrostatic pressure-dependent increase of the mRNAs. A major refolding target of one of the HSPs, chaperonin, at high hydrostatic pressure was shown to be RplB, a subunit of the 50S ribosome. These results suggested that in S. violacea, HSPs play essential roles, e.g., maintaining protein complex machinery including ribosomes, in the growth and viability at high hydrostatic pressure, and that, in their expression, the transcription is under the control of σ(32).

  17. Evaluation of techniques for inspection and diagnostics of HWR pressure tubes

    International Nuclear Information System (INIS)

    Choi, Jong-Ho

    2008-01-01

    Efficient and accurate inspection and diagnostic techniques for various reactor components and systems, especially pressure tubes for Heavy Water Reactors (HWRs), are an important factor in assuring reliable and safe plant operation. To foster international collaboration in the efficient and safe use of nuclear power, the IAEA conducted a Coordinated Research Project (CRP) on Inter-comparison of Techniques for HWR Pressure Tube Inspection and Diagnostics. The objective of the CRP was to inter-compare inspection and diagnostic techniques, in use and being developed, for structural integrity assessment of HWR pressure tubes. During the first phase of the CRP, participants investigated the capability of different techniques to detect and characterize flaws. During the second phase, participants collaborated to determine the hydrogen concentration and to detect and characterize hydride blisters in zirconium alloy pressure tubes. Eight organizations from six countries, which operate HWRs, have participated in this CRP, Most of the techniques examined are well established and many of them are regularly used during in-service inspection of pressure tubes. The inter-comparison of these techniques provides a platform for identifying a particular technique (or a set of techniques), which is more accurate and reliable as compared to others for a specified task. The CRP also witnessed some new methodologies, which can be implemented on in-service inspection tools. These new techniques could complement the existing ones to overcome their limitations, thereby improving the reliability and accuracy of in-service inspection. This CRP also identified future areas of research and development. (author)

  18. Boiling heat transfer and dryout in helically coiled tubes under different pressure conditions

    International Nuclear Information System (INIS)

    Chung, Young-Jong; Bae, Kyoo-Hwan; Kim, Keung Koo; Lee, Won-Jae

    2014-01-01

    Highlights: • Heat transfer characteristics and dryout for helically coiled tube are performed. • A boiling heat transfer tends to increase with a pressure increase. • Dryout occurs at high quality test conditions investigated. • Steiner–Taborek’s correlation is predicted well based on the experimental results. - Abstract: A helically coiled once-through steam generator has been used widely during the past several decades for small nuclear power reactors. The heat transfer characteristics and dryout conditions are important to optimal design a helically coiled steam generator. Various experiments with the helically coiled tubes are performed to investigate the heat transfer characteristics and occurrence condition of a dryout. For the investigated experimental conditions, Steiner–Taborek’s correlation is predicted reasonably based on the experimental results. The pressure effect is important for the boiling heat transfer correlation. A boiling heat transfer tends to increase with a pressure increase. However, it is not affected by the pressure change at a low power and low mass flow rate. Dryout occurs at high quality test conditions investigated because a liquid film on the wall exists owing to a centrifugal force of the helical coil

  19. Optimization of drift gases for accuracy in pressurized drift tubes

    CERN Document Server

    Kirchner, J J; Dinner, A R; Fidkowski, K J; Wyatt, J H

    2001-01-01

    Modern detectors such as ATLAS use pressurized drift tubes to minimize diffusion and achieve high coordinate accuracy. However, the coordinate accuracy depends on the exact knowledge of converting measured times into coordinates. Linear space-time relationships are best for reconstruction, but difficult to achieve in the $E \\propto \\frac{1}{r}$ field. Previous mixtures, which contained methane or other organic quenchers, are disfavored because of ageing problems. From our studies of nitrogen and carbon dioxide, two mixtures with only small deviations from linearity were determined and measured. Scaling laws for different pressures and magnetic fields are also given.

  20. Optimization of drift gases for accuracy in pressurized drift tubes

    International Nuclear Information System (INIS)

    Kirchner, J.J.; Becker, U.J.; Dinner, R.B.; Fidkowski, K.J.; Wyatt, J.H.

    2001-01-01

    Modern detectors such as ATLAS use pressurized drift tubes to minimize diffusion and achieve high coordinate accuracy. However, the coordinate accuracy depends on the exact knowledge of converting measured times into coordinates. Linear space-time relationships are best for reconstruction, but difficult to achieve in the E∝1/r field. Previous mixtures, which contained methane or other organic quenchers, are disfavored because of ageing problems. From our studies of nitrogen and carbon dioxide, two mixtures with only small deviations from linearity were determined and measured. Scaling laws for different pressures and magnetic fields are also given

  1. Eccentric pressurized tube for measuring creep rupture

    International Nuclear Information System (INIS)

    Schwab, P.R.

    1981-01-01

    Creep rupture is a long term failure mode in structural materials that occurs at high temperatures and moderate stress levels. The deterioration of the material preceding rupture, termed creep damage, manifests itself in the formation of small cavities on grain boundaries. To measure creep damage, sometimes uniaxial tests are performed, sometimes density measurements are made, and sometimes the grain boundary cavities are measured by microscopy techniques. The purpose of the present research is to explore a new method of measuring creep rupture, which involves measuring the curvature of eccentric pressurized tubes. Theoretical investigations as well as the design, construction, and operation of an experimental apparatus are included in this research

  2. Deadly pressure pneumothorax after withdrawal of misplaced feeding tube

    DEFF Research Database (Denmark)

    Andresen, Erik Nygaard; Frydland, Martin; Usinger, Lotte

    2016-01-01

    BACKGROUND: Many patients have a nasogastric feeding tube inserted during admission; however, misplacement is not uncommon. In this case report we present, to the best of our knowledge, the first documented fatality from pressure pneumothorax following nasogastric tube withdrawal. CASE PRESENTATION......, but our patient died less than an hour after withdrawal. The autopsy report stated that cause of death was tension pneumothorax, which developed following withdrawal of the misplaced feeding tube. CONCLUSIONS: The indications for insertion of nasogastric feeding tubes are many and the procedure...... is considered harmless; however, if the tube is misplaced there is good reason to be cautious on removal as this can unmask puncture of the pleura eliciting pneumothorax and, as this case report shows, result in an ultimately deadly tension pneumothorax....

  3. Applied pressure-dependent anisotropic grain connectivity in shock consolidated MgB{sub 2} samples

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Wataru [Graduate School of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511 (Japan); Takenaka, Kenta [Graduate School of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511 (Japan); Kondo, Tadashi [Graduate School of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511 (Japan); Tamaki, Hideyuki [Graduate School of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511 (Japan); Matsuzawa, Hidenori [Graduate School of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511 (Japan)]. E-mail: matuzawa@mx3.nns.ne.jp; Kai, Shoichiro [Advanced Materials and Process Development Group, Explosive Division, Asahi Kasei Chemicals Corporation, Oita 870-0392 (Japan); Kakimoto, Etsuji [Advanced Materials and Process Development Group, Explosive Division, Asahi Kasei Chemicals Corporation, Oita 870-0392 (Japan); Takano, Yoshihiko [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Minehara, Eisuke [FEL Laboratory, Tokai Site, Japan Atomic Energy Research Institute, Shirakata-shirane 2-4, Tokai, Ibaraki 319-1195 (Japan)

    2006-09-15

    Three different cylindrical MgB{sub 2} bulk samples were prepared by the underwater shock consolidation method in which shock waves of several GPa, generated by detonation of explosives, were applied to a metallic cylinder containing commercially available MgB{sub 2} powders with no additives. Resistivity anisotropy of the samples increased with shock pressure. The highest- and medium-pressure applied samples had finite resistivities in the radial direction for the whole temperature range down to 12 K, whereas their axial and azimuthal resistivities dropped to zero at 32-35 K. By contrast, the lowest-pressure applied sample was approximately isotropic with a normal-state resistivity of {approx}40 {mu}{omega} cm, an onset temperature of {approx}38.5 K, and a transition width of {approx}4.5 K. These extremely anisotropic properties would have resulted from the distortion of grain boundaries and grain cores, caused by the shock pressures and their repeated bouncing.

  4. Leak Detection of High Pressure Feedwater Heater Using Empirical Models

    International Nuclear Information System (INIS)

    Lee, Song Kyu; Kim, Eun Kee; Heo, Gyun Young; An, Sang Ha

    2009-01-01

    Even small leak from tube side or pass partition within the high pressure feedwater heater (HPFWH) causes a significant deficiency in its performance. Plant operation under the HPFWH leak condition for long time will result in cost increase. Tube side leak within HPFWH can produce the high velocity jet of water and it can cause neighboring tube failures. However, most of plants are being operated without any information for internal leaks of HPFWH, even though it is prone to be damaged under high temperature and high pressure operating conditions. Leaks from tubes and/or pass partition of HPFWH occurred in many nuclear power plants, for example, Mihama PS-2, Takahama PS-2 and Point Beach Nuclear Plant Unit 1. If the internal leaks of HPFWH are monitored, the cost can be reduced by inexpensive repairs relative to loss in performance and moreover plant shutdown as well as further tube damages can be prevented

  5. Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance

    CERN Document Server

    Romain, J P; Dayma, G; Boustie, M; Resseguier, T D; Combis, P

    2002-01-01

    Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm sup - sup 2. The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence <1.4 J cm sup - sup 2 , the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface.

  6. Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J P [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Bonneau, F [Departement de Physique Theorique et Appliquee CEA/DAM Ile de France, BP 12, 91680 Bruyeres le Chatel (France); Dayma, G [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Boustie, M [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Resseguier, T de [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Combis, P [Departement de Physique Theorique et Appliquee CEA/DAM Ile de France, BP 12, 91680 Bruyeres le Chatel (France)

    2002-11-11

    Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm{sup -2}. The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence <1.4 J cm{sup -2}, the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface.

  7. Conservatism in methodologies for moderator subcooling sufficiency for fuel channel integrity upon pressure tube and calandria tube contact

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L., E-mail: LSun@nbpower.com [Point Lepreau Generating Station, Lepreau, NB, (Canada)

    2015-07-01

    During a postulated large LOCA event in CANDU reactors, the pressure tube may balloon to contact with its surrounding calandria tube to transfer heat to the moderator. To confirm the integrity of the fuel channel in this case, many experiments have been performed in the last three decades. Based on the extant database of the pressure tube/calandria tube (PT/CT) contact, an analytical methodology was developed by Canadian Nuclear Industry to determine the sufficiency of moderator subcooling for fuel channel integrity. At the same time a semi-empirical methodology with an idea of Equivalent Moderator Subcooling (EMS) was also developed to judge the sufficiency of the moderator. In this work, some discussions were made over the two methodologies on their conservatism and it is demonstrated that the analytical approach is over conservative comparing with the EMS methodology. By using the EMS methodology, it is demonstrated that applying glass-peened calandria tubes, the requirement to moderator subcooling can be reduced by 10{sup o}C from that for smooth calandria tubes. (author)

  8. Holographic NDE of pressure tubes for Cirene nuclear reactor

    International Nuclear Information System (INIS)

    Di Chirico, G.; Pirodda, L.; Villani, A.

    1985-01-01

    Pressure tubes for CIRENE nuclear reactor can be subjected to fretting corrosion of the inner walls. The resulting marks exhibit different geometries, whose influence on the structural behaviour of the tubes has been evaluated by means of a real time holographic technique. The paper shows the results of this investigation. Position and shape of internal defects have been directly visualized by observing holographic fringe distorsions on the outside surface of the tubes. Furthermore, through the fringe patterns, circumferential stress values have also been obtained. (Author) [pt

  9. PIV tracer behavior on propagating shock fronts

    International Nuclear Information System (INIS)

    Glazyrin, Fyodor N; Mursenkova, Irina V; Znamenskaya, Irina A

    2016-01-01

    The present work was aimed at the quantitative particle image velocimetry (PIV) measurement of a velocity field near the front of a propagating shock wave and the study of the dynamics of liquid tracers crossing the shock front. For this goal, a shock tube with a rectangular cross-section (48  ×  24 mm) was used. The flat shock wave with Mach numbers M  =  1.4–2.0 propagating inside the tube channel was studied as well as an expanding shock wave propagating outside the channel with M  =  1.2–1.8 at its main axis. The PIV imaging of the shock fronts was carried out with an aerosol of dioctyl sebacate (DEHS) as tracer particles. The pressures of the gas in front of the shock waves studied ranged from 0.013 Mpa to 0.1 MPa in the series of experiments. The processed PIV data, compared to the 1D normal shock theory, yielded consistent values of wake velocity immediately behind the plain shock wave. Special attention was paid to the blurring of the velocity jump on the shock front due to the inertial particle lag and peculiarities of the PIV technique. A numerical algorithm was developed for analysis and correction of the PIV data on the shock fronts, based on equations of particle-flow interaction. By application of this algorithm, the effective particle diameter of the DEHS aerosol tracers was estimated as 1.03  ±  0.12 μm. A number of different formulations for particle drag were tested with this algorithm, with varying success. The results show consistency with previously reported experimental data obtained for cases of stationary shock waves. (paper)

  10. Boussignac continuous positive airway pressure for weaning with tracheostomy tubes

    NARCIS (Netherlands)

    Dieperink, Willem; Aarts, Leon P. H. J.; Rodgers, Michael G. G.; Delwig, Hans; Nijsten, Maarten W. N.

    2008-01-01

    Background: In patients who are weaned with a tracheostomy tube ( TT), continuous positive airway pressure ( CPAP) is frequently used. Dedicated CPAP systems or ventilators with bulky tubing are usually applied. However, CPAP can also be effective without a ventilator by the disposable Bous-signac

  11. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  12. Use of Z pinch radiation sources for high pressure shock wave studies

    International Nuclear Information System (INIS)

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Trott, W.M.; Chandler, G.A.; Holland, K.G.; Fleming, K.J.; Trucano, T.G.

    1998-01-01

    Recent developments in pulsed power technology demonstrate use of intense radiation sources (Z pinches) for driving planar shock waves in samples with spatial dimensions larger than possible with other radiation sources. Initial indications are that the use of Z pinch sources can be used to produce planar shock waves in samples with diameters of a few millimeters and thicknesses approaching one half millimeter. These dimensions allow increased accuracy of both shock velocity and particle velocity measurements. The Z pinch radiation source uses imploding metal plasma induced by self-magnetic fields applied to wire arrays to produce high temperature x-ray environments in vacuum hohlraum enclosures. Previous experiments have demonstrated that planar shock waves can be produced with this approach. A photograph of a wire array located inside the vacuum hohlraum is shown here. Typically, a few hundred individual wires are used to produce the Z pinch source. For the shock wave experiments being designed, arrays of 120 to 240 tungsten wires with a diameter of 40 mm and with individual diameters of about 10 microm are used. Preliminary experiments have been performed on the Z pulsed radiation source to demonstrate the ability to obtain VISAR measurements in the Z accelerator environment. Analysis of these results indicate that another effect, not initially anticipated, is an apparent change in refractive index that occurs in the various optical components used in the system. This effect results in an apparent shift in the frequency of reflected laser light, and causes an error in the measured particle velocity. Experiments are in progress to understand and minimize this effect

  13. High pressure microwave discharge for electrodeless Xe-lamp

    International Nuclear Information System (INIS)

    Kudela, J.; Kando, M.

    1998-01-01

    Preliminary results are presented of the investigation into the high pressure Xe microwave discharge in bent tubes, sustained by electromagnetic surface wave. The research was aimed to help with the design of a new generation of high intensity light sources with generally more complex shapes than those commonly used. The results show that the electromagnetic surface wave can effectively sustain discharge in tubes with various bending radii within the large pressure range. The curved shapes of discharge tubes improve the cooling of the lamp which is one of the major technological difficulties. It was shown that under relatively lower powers and higher gas pressures (100 Torr) the discharge exhibits a streamer-like filamentation and the branching of filaments. The phenomena of the effective sustaining of the discharge by surface wave propagation along curved plasma columns will be investigated in more detail by measurements of the profiles of surface wave electric and magnetic field intensities. (author)

  14. Shock waves in helium at low temperatures

    International Nuclear Information System (INIS)

    Liepmann, H.W.; Torczynski, J.R.

    1986-01-01

    Results are reported from studies of the properties of low temperature He-4 using shock waves as a probe. Ideal shock tube theory is used to show that sonic speeds of Mach 40 are attainable in He at 300 K. Viscosity reductions at lower temperatures minimize boundary layer effects at the side walls. A two-fluid model is described to account for the phase transition which He undergoes at temperatures below 2.2 K, after which the quantum fluid (He II) and the normal compressed superfluid (He I) coexist. Analytic models are provided for pressure-induced shocks in He I and temperature-induced shock waves (called second sound) which appear in He II. The vapor-fluid interface of He I is capable of reflecting second and gasdynamic sound shocks, which can therefore be used as probes for studying phase transitions between He I and He II. 17 references

  15. Studies on micro-structures at vapor-liquid interfaces of film boiling on hot liquid surface at arriving of a shock pressure

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Lee, S. [Tokyo Inst. of Tech. (Japan)

    1998-01-01

    In vapor explosions, a pressure wave (shock wave) plays a fundamental role in the generation, propagation and escalation of the explosion. Transient volume change by rapid heat flow from a high temperature liquid to a low temperature volatile one and phase change generate micro-scale flow and the pressure wave. One of key issues for the vapor explosion is to make clear the mechanism to support the explosive energy release from hot drop to cold liquid. According to our observations by an Image Converter Camera, growth rate of vapor film around a hot tin drop became several times higher than that around a hot Platinum tube at the same conditions when a pressure pulse collapsed the film. The thermally induced fragmentation was followed by the explosive growth rate of the hot drop. In the previous report, we have proposed that the interface instability and fragmentation model in which the fine Taylor instability of vapor-liquid interface at the collapsing and re-growth phase of vapor film and the instability induced by the high pressure spots at the drop surface were assumed. In this study, the behavior of the vapor-liquid interface region at arrival of a pressure pulse was investigated by the CIPRIS code which is able to simulate dynamics of transient multi-phase interface regions. It is compared with the observation results. Through detailed investigations of these results, the mechanisms of the thermal fragmentation of single drop are discussed. (J.P.N.)

  16. High speed photography for studying the shock wave propagation at high Mach numbers through a reflection nozzle

    International Nuclear Information System (INIS)

    Zaytsev, S.G.; Lazareva, E.V.; Mikhailova, A.V.; Nikolaev-Kozlov, V.L.; Chebotareva, E.I.

    1979-01-01

    Propagation of intensive shock waves with a temperature of about 1 eV has been studied in a two-dimensional reflection nozzle mounted at the exit of a shock tube. The Toepler technique has been involved along with the interference scheme with a laser light source allowing the multiple-frame recording to be done. Density distribution in the nozzle as well as the wave pattern occurring at the shock propagation are presented. (author)

  17. Pressure Amplification Off High Impedance Barriers in DDT

    Energy Technology Data Exchange (ETDEWEB)

    Heatwole, Eric Mann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Broilo, Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kistle, Trevin Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Gary Robert Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-04-23

    The Deflagration-to-Detonation Transition (DDT) in one-dimensional porous explosive, where combustion in an explosive transitions to detonation, can be described by the following model. This simplified model proceeds in five steps, as follows: 1) Ignition of the explosive, surface burning. 2) Convective burning, with the flame front penetrating through the porous network of the explosive. This proceeds until the pressure grows high enough to result in choked flow in the pores restricting the convective burn. 3) The choked flow results in the formation of a high-density compact of explosive. This compact is driven into undisturbed material by the pressure of the burning explosive. See Figure1. 4) The compression of the undisturbed porous explosive by the compact leads to the ignition of a compressive burn. This builds in pressure until a supported shock forms. 5) The shock builds in pressure until detonation occurs. See Figure 2 for an overview streak of the proceeding steps.

  18. Exergoeconomic optimization of coaxial tube evaporators for cooling of high pressure gaseous hydrogen during vehicle fuelling

    International Nuclear Information System (INIS)

    Jensen, Jonas K.; Rothuizen, Erasmus D.; Markussen, Wiebke B.

    2014-01-01

    Highlights: • Three concepts of cooling hydrogen were identified. • A numerical heat transfer model of a coaxial-tube evaporator was built. • The cost of exergy destruction and capital investment cost was evaluated for a range of feasible solution. • The exergoeconomic optimum design for all three concepts was identified. • Cooling with a two-stage evaporator reduces total cost 45% compared to a one-stage evaporator. - Abstract: Gaseous hydrogen as an automotive fuel is reaching the point of commercial introduction. Development of hydrogen fuelling stations considering an acceptable fuelling time by cooling the hydrogen to −40 °C has started. This paper presents a design study of coaxial tube ammonia evaporators for three different concepts of hydrogen cooling, one one-stage and two two-stage processes. An exergoeconomic optimization is imposed to all three concepts to minimize the total cost. A numerical heat transfer model is developed in Engineer Equation Solver, using heat transfer and pressure drop correlations from the open literature. With this model the optimal choice of tube sizes and circuit numbers are found for all three concepts. The results show that cooling with a two-stage evaporator after the pressure reduction valve yields the lowest total cost, 45% lower than the highest, which is with a one-stage evaporator. The main contribution to the total cost was the cost associated with exergy destruction, the capital investment cost contributed with 5–14%. The main contribution to the exergy destruction was found to be thermally driven. The pressure driven exergy destruction accounted for 3–9%

  19. Very high Mach number shocks - Theory. [in space plasmas

    Science.gov (United States)

    Quest, Kevin B.

    1986-01-01

    The theory and simulation of collisionless perpendicular supercritical shock structure is reviewed, with major emphasis on recent research results. The primary tool of investigation is the hybrid simulation method, in which the Newtonian orbits of a large number of ion macroparticles are followed numerically, and in which the electrons are treated as a charge neutralizing fluid. The principal results include the following: (1) electron resistivity is not required to explain the observed quasi-stationarity of the earth's bow shock, (2) the structure of the perpendicular shock at very high Mach numbers depends sensitively on the upstream value of beta (the ratio of the thermal to magnetic pressure) and electron resistivity, (3) two-dimensional turbulence will become increasingly important as the Mach number is increased, and (4) nonadiabatic bulk electron heating will result when a thermal electron cannot complete a gyrorbit while transiting the shock.

  20. Recent Advances in High-Pressure Equation-of-State Capabilities

    International Nuclear Information System (INIS)

    ASAY, James R.; HALL, CLINT A.; KNUDSON, MARCUS D.

    2000-01-01

    For many scientific and programmatic applications, it is necessary to determine the shock compression response of materials to several tens of Mbar. In addition, a complete EOS is often needed in these applications, which requires that shock data be supplemented with other information, such as temperature measurements or by EOS data off the principal Hugoniot. Recent developments in the use of fast pulsed power techniques for EOS studies have been useful in achieving these goals. In particular, the Z accelerator at Sandia National Laboratories, which develops over 20 million amperes of current in 100-200 ns, can be used to produce muM-Mbar shock pressures and to obtain continuous compression data to pressures exceeding 1 Mbar. With this technique, isentropic compression data have been obtained on several materials to pressures of several hundred kbar. The technique has also been used to launch ultra-high velocity flyer plates to a maximum velocity of 14 km/s, which can be used to produce impact pressures of several Mbar in low impedance materials and over 10 Mbar in high impedance materials. The paper will review developments in both of these areas

  1. Application of automatic inspection system to nondestructive test of heat transfer tubes of primary pressurized water cooler in the high temperature engineering test reactor. Joint research

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Furusawa, Takayuki

    2001-07-01

    Heat transfer tubes of a primary pressurized water cooled (PPWC) in the high temperature engineering test reactor (HTTR) form the reactor pressure boundary of the primary coolant, therefore are important from the viewpoint of safety. To establish inspection techniques for the heat transfer tubes of the PPWC, an automatic inspection system was developed. The system employs a bobbin coil probe, a rotating probe for eddy current testing (ECT) and a rotating probe for ultrasonic testing (UT). Nondestructive test of a half of the heat transfer tubes of the PPWC was carried out by the automatic inspection system during reactor shutdown period of the HTTR (about 55% in the maximum reactor power in this paper). The nondestructive test results showed that the maximum signal-to-noise ratio was 1.8 in ECT. Pattern and phase of Lissajous wave, which were obtained for the heat transfer tube of the PPWC, were different from those obtained for the artificially defected tube. In UT echo amplitude of the PPWC tubes inspected was lower than 20% of distance-amplitude calibration curve. Thus, it was confirmed that there was no defect in depth, which was more than the detecting standard of the probes, on the outer surface of the heat transfer tubes of the PPWC inspected. (author)

  2. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.; Zhang, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, D.H. [Hunan Taohuajiang Nuclear Power Co., Ltd, Yiyang, 413000 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Z., E-mail: zhe.zhang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2017-06-15

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ{sub x} did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ{sub xa}. For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ{sub xa} and the internal pressure p{sub i}. The hoop ratcheting strain ɛ{sub θ} increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ{sub x} was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  3. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    International Nuclear Information System (INIS)

    Chen, G.; Zhang, X.; Xu, D.K.; Li, D.H.; Chen, X.; Zhang, Z.

    2017-01-01

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ x did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ xa . For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ xa and the internal pressure p i . The hoop ratcheting strain ɛ θ increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ x was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  4. Fracture toughness of irradiated Zr-2.5Nb pressure tube from Indian PHWR

    Science.gov (United States)

    Shah, Priti Kotak; Dubey, J. S.; Shriwastaw, R. S.; Dhotre, M. P.; Bhandekar, A.; Pandit, K. M.; Anantharaman, S.; Singh, R. N.; Chakravartty, J. K.

    2015-03-01

    Fracture toughness of irradiated Zr-2.5Nb alloy pressure tube, fabricated by the cold pilgering and stress relieving route, was evaluated using disk compact tension type specimens. These specimens were punched out from the irradiated pressure tube (S-07), which was in service for about 8 effective full power years of reactor operation in the Kakrapar Atomic Power Station-2 (KAPS-2). The tests were carried out remotely inside a lead shielded enclosure. Crack growth during the test was measured using the direct current potential drop technique. The irradiated pressure tube showed low fracture toughness at 25 °C. The fracture toughness increased with increase in temperature up to 250 °C but was practically unaffected with further increase in temperature up to 300 °C. This paper discusses the fracture behavior of irradiated Indian pressure tube material and compares it with other data available.

  5. Thermal behaviour of pressure tube under fully and partially voided heating conditions using 19 pin fuel element simulator

    International Nuclear Information System (INIS)

    Yadav, Ashwini K.; Kumar, Ravi; Gupta, Akhilesh; Chatterjee, B.; Mukhopadhya, D.; Lele, H.G.

    2011-01-01

    In a nuclear reactor temperature can rise drastically during LOCA due to failure of heat transportation system and subsequently leads to mechanical deformations like sagging, ballooning and breaching of pressure tube. To understand the phenomenon an experiment has been carried out using 19 pin fuel element simulator. Main purpose of the experiment was to trace temperature profiles over the pressure tube, calandria tube and clad tubes of 220 MWe Indian Pressurised Heavy Water Reactor (IPHWR). The symmetrical heating of pressure tube of 1 m length was done through resistance heating of 19 pins under 13.5 kW power using a rectifier and the variation of temperatures over the circumference of pressure tube (PT), calandria tube (CT) and clad tubes were measured. The sagging of pressure tube was initiated at 460 deg C temperature and highest temperature attained was 650 deg C. The highest temperature attained by clad tubes was 680 deg C (over outer ring) and heat is dissipated to calandria vessel mainly due to radiation and natural convection. Again to simulate partially voided conditions, asymmetrical heating of pressure was carried out by injecting 8 kW power to upper 8 pins of fuel simulator. A maximum temperature difference of 295 deg C was observed over the circumference of pressure tube which highlights the magnitude of thermal stresses and its role in breaching of pressure tube under partially voided conditions. Integrity of pressure tube was retained during both symmetrical and asymmetrical heatup conditions. (author)

  6. Stress relaxation analysis and irradiation creep and swelling in pressure tubes

    International Nuclear Information System (INIS)

    Beeston, J.M.; Burr, T.K.

    1979-01-01

    An analysis is presented of slit width test information on two pressure tubes that had been irradiated in test reactors. The analysis showed that differential swelling stresses and thermal stresses undergo relaxation. The mechanism responsible for the stress relaxation at temperatures less than 700 K was irradiation creep. Irradiation creep in thermal test reactor pressure tubes is evidently greater than it would be at equivalent conditions in fast reactors. The residual stresses observed in the slit width tests varied between 30 and 257 MPa and would act to reduce the operating stresses, thus allowing for increased service life of the tubes as compared with no stress relaxation

  7. Garter spring location of pressure tube for PHWR using eddy current testing methods

    International Nuclear Information System (INIS)

    Lee, Y. S.; Yang, D. J.; Jeong, H. K.

    2001-01-01

    There are garter springs between pressure tube and calandria tube for PHWR. If the space of these garter springs become to be changed, the sagging of tube is caused and the contact between the pressure tube and calandria tube will cause the tube to be failed. AECL has applied the eddy current testing methods using send-receive type probe for this purpose, but this study apply eddy current testing methods using bobbin differential type probe to detection of garter spring location. And we did the computer simulation using VIC-3D code and compared it with experiments results for inspection 1 ∼ 11kHz. The results was that the garter spring signal was successfully detected for every frequency, and 5 kHz was best

  8. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis

    Energy Technology Data Exchange (ETDEWEB)

    Liang, S. M., E-mail: liangsm@cc.feu.edu.tw; Yang, Z. Y. [Department of Industrial Design, Far East University, No. 49, Zhonghua Road, Xinshi District, Tainan City 744, Taiwan (China); Chang, M. H. [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, University Road, East District, Tainan City 701, Taiwan (China)

    2014-01-15

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm{sup 2} (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.

  9. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis.

    Science.gov (United States)

    Liang, S M; Chang, M H; Yang, Z Y

    2014-01-01

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm(2) (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.

  10. Experimental investigation of pressure fluctuations caused by a vortex rope in a draft tube

    International Nuclear Information System (INIS)

    Kirschner, O; Ruprecht, A; Göde, E; Riedelbauch, S

    2012-01-01

    In the last years hydro power plants have taken the task of power-frequency control for the electrical grid. Therefore turbines in storage hydro power plants often operate outside their optimum. If Francis-turbines and pump-turbines operate at off-design conditions, a vortex rope in the draft tube can develop. The vortex rope can cause pressure oscillations. In addition to low frequencies caused by the rotation of the vortex rope and the harmonics of these frequencies, pressure fluctuations with higher frequencies can be observed in some operating points too. In this experimental investigation the flow structure and behavior of the vortex rope movement in the draft tube of a model pump-turbine are analyzed. The investigation focuses on the correlation of the pressure fluctuation frequency measured at the draft tube wall with the movement of the vortex rope. The movement of the vortex rope is analyzed by the velocity field in the draft tube which was measured with particle image velocimetry. Additionally, the vortex rope movement has been analyzed with the captures of high-speed-movies from the cavitating vortex rope. Besides the rotation of the vortex rope due to pressure fluctuation with low frequencies the results of the measurement also show a correlation between the rotation of the elliptical or deformed rope cross-section and the higher frequency pressure pulsation. An approximation shows that the frequencies of the pressure fluctuation and the movement of the vortex rope are also connected with the velocity of the flow. Taking into account the size and position of the cavitating vortex core as well as the velocity at the position of the surface of the cavitating vortex core the time-period of the rotation of the vortex core can be approximated. The results show that both, the low frequency pressure fluctuation and the higher frequency pressure fluctuation are correlating with the vortex rope movement. With this estimation, the period of the higher frequency

  11. Application of pressure-sensitive paint in shock-boundary layer interaction experiments

    OpenAIRE

    Seivwright, Douglas L.

    1996-01-01

    Approved for public release; distribution is unlimited A new type of pressure transducer, pressure-sensitive paint, was used to obtain pressure distributions associated with shock-boundary layer interaction. Based on the principle of photoluminescence and the process of oxygen quenching, pressure-sensitive paint provides a continous mapping of a pressure field over a surface of interest. The data measurement and acquisition system developed for use with the photoluminescence sensor was eva...

  12. Pressure resistance of cold-shocked Escherichia coli O157:H7 in ground beef, beef gravy and peptone water.

    Science.gov (United States)

    Baccus-Taylor, G S H; Falloon, O C; Henry, N

    2015-06-01

    (i) To study the effects of cold shock on Escherichia coli O157:H7 cells. (ii) To determine if cold-shocked E. coli O157:H7 cells at stationary and exponential phases are more pressure-resistant than their non-cold-shocked counterparts. (iii) To investigate the baro-protective role of growth media (0·1% peptone water, beef gravy and ground beef). Quantitative estimates of lethality and sublethal injury were made using the differential plating method. There were no significant differences (P > 0·05) in the number of cells killed; cold-shocked or non-cold-shocked. Cells grown in ground beef (stationary and exponential phases) experienced lowest death compared with peptone water and beef gravy. Cold-shock treatment increased the sublethal injury to cells cultured in peptone water (stationary and exponential phases) and ground beef (exponential phase), but decreased the sublethal injury to cells in beef gravy (stationary phase). Cold shock did not confer greater resistance to stationary or exponential phase cells pressurized in peptone water, beef gravy or ground beef. Ground beef had the greatest baro-protective effect. Real food systems should be used in establishing food safety parameters for high-pressure treatments; micro-organisms are less resistant in model food systems, the use of which may underestimate the organisms' resistance. © 2015 The Society for Applied Microbiology.

  13. Methodologies for assessment of the service life of pressure tubes in Indian PHWRs

    International Nuclear Information System (INIS)

    Sinha, R.K.; Sharma, A.; Madhusoodanan, K.; Sinha, S.K.; Malshe, U.D.

    1997-01-01

    For estimating safe service life of pressure tubes in Indian PHWRs, analytical methodologies have been developed to evaluate creep deformation, deuterium pick-up rate, blister growth at cold spot, and operating domain required for achieving leak-before-break. The paper provides an overview of these methodologies, and results of some studies carried out towards evolution of proposed fitness-for-service criteria for a pressure tube in contact with its calandria tube. (author)

  14. Estimation of fracture toughness of Zr 2.5% Nb pressure tube of Pressurised Heavy Water Reactor using cyclic ball indentation technique

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, S., E-mail: subrata@barc.gov.in; Panwar, Sanjay; Madhusoodanan, K.; Rama Rao, A.

    2016-08-15

    Highlights: • Measurement of fracture toughness of pressure tube is required for its fitness assessment. • Pressure tube removal from the core consumes large amount of radiation for laboratory test. • A remotely operable In situ Property Measurement System (IProMS) has been designed in house. • Conventional and IProMS tests conducted on pressure tube spool pieces having different mechanical properties. • Correlation has been established between the conventional and IProMS estimated fracture properties. - Abstract: In Pressurised Heavy Water Reactors (PHWRs) fuel bundles are located inside horizontal pressure tubes made up of Zr 2.5 wt% Nb alloy. Pressure tubes undergo degradation during its service life due to high pressure, high temperature and radiation environment. Measurement of mechanical properties of degraded pressure tubes is important for assessing their fitness for further operation. Presently as per safety guidelines imposed by the regulatory body, a few pre-decided pressure tubes are removed from the reactor core at regular intervals during the planned reactor shut down to carry out post irradiation examination (PIE) in a laboratory which consumes lots of man-rem and imposes economic penalties. Hence a system is indeed felt necessary which can carry out experimental trials for measurement of mechanical properties of pressure tubes under in situ conditions. The only way to accomplish this important objective is to develop a system based on an in situ measurement technique. In the field of in situ estimation of properties of materials, cyclic ball indentation is an emerging technique. Presently, commercial systems are available for doing an indentation test either on the outside surface of a component at site or on a test piece in a laboratory. However, these systems cannot be used inside a pressure tube for carrying out ball indentation trials under in situ conditions. Considering the importance of such measurements, an In situ Property

  15. Heat transfer and pressure drop of condensation of hydrocarbons in tubes

    Science.gov (United States)

    Fries, Simon; Skusa, Severin; Luke, Andrea

    2018-03-01

    The heat transfer coefficient and pressure drop are investigated for propane. Two different mild steel plain tubes and saturation pressures are considered for varying mass flux and vapour quality. The pressure drop is compared to the Friedel-Correlation with two different approaches to determine the friction factor. The first is calculation as proposed by Friedel and the second is through single phase pressure drop investigations. For lower vapour qualities the experimental results are in better agreement with the approach of the calculated friction factor. For higher vapour qualities the experimental friction factor is more precise. The pressure drop increases for a decreasing tube diameter and saturation pressure. The circumferential temperature profile and heat transfer coefficients are shown for a constant vapour quality at varying mass fluxes. The subcooling is highest for the bottom of the tube and lowest for the top. The average subcooling as well as the circumferential deviation decreases for rising mass fluxes. The averaged heat transfer coefficients are compared to the model proposed by Thome and Cavallini. The experimental results are in good agreement with both correlations, however the trend is better described with the correlation from Thome. The experimental heat transfer coefficients are under predicted by Thome and over predicted by Cavallini.

  16. 2D modeling of moderator flow and temperature distribution around a single channel after pressure tube/calandria tube contact

    International Nuclear Information System (INIS)

    Behdadi, A.; Luxat, J.C.

    2009-01-01

    A 2D computational fluid dynamics (CFD) model has been developed to calculate the moderator velocity field and temperature distribution around a single channel inside the moderator of a CANDU reactor after a postulated ballooning deformation of the pressure tube (PT) into contact with the calandria tube (CT). Following contact between the hot PT and the relatively cold CT, there is a spike in heat flux to the moderator surrounding the CT which may lead to sustained CT dryout. This can detrimentally affect channel integrity if the CT post-dryout temperature becomes sufficiently high to result in thermal creep strain deformation. The present research is focused on establishing the limits for dryout occurrence on the CTs for the situation in which pressure tube-calandria tube contact occurs. In order to consider different location of the channels inside the calandria, both upward and downward flow directions have been analyzed. The standard κ - ε turbulence model associated with logarithmic wall function is applied to predict the effects of turbulence. The governing equations are solved by the finite element software package COMSOL. The buoyancy driven natural convection on the outer surface of a CT has been analyzed to predict the flow and temperature distribution around the single CT considering the local moderator subcooling, wall temperature and heat flux. The model also shows the effect of high CT temperature on the flow and subcooling around the CTs at higher/lower elevation depending on the flow direction in the domain. According to the flow pattern and temperature distribution, it is predicted that stable film boiling generates in the stagnation region on the cylinder. (author)

  17. Detection of pressure tube leaks relying on moisture beetles only

    International Nuclear Information System (INIS)

    Kenchington, J.M.; Choi, A.; Jin, Y.

    2004-01-01

    A major decision was made for Pickering NGS A Annulus Gas System (ACS) that detection of a pressure tube (PT) leak should be achieved by using only moisture beetles and that dew point monitors would provide 'early warning' without status to shut down the reactor. Experience with Unit 3 has shown that dew point monitoring of pressure tube leaks was particularly subject to gas leaks and surface adsorption effects. Unit 4 was the first one to be converted during the full scale pressure tube replacement programme. Because of the fundamental change in design philosophy, moisture injection tests were carried out during commissioning to demonstrate that performance matched design. In particular it was necessary to show that leak before break (LBB) would be achieved if a leak occurred in the limiting string. Units 1 and 3 have since been converted. No decision has been taken to convert Pickering B units as gas leaks are small and no significant adsorption effects are anticipated. Hence dew point monitoring will not be impaired. (author)

  18. Tensile and fracture toughness characteristics of Zr-2.5Nb pressure tube

    International Nuclear Information System (INIS)

    Jung, H. C.; Kim, Y. S.; Ahn, S. B.; Kim, S. S.; Im, K. S.

    2004-01-01

    The object of this study is to evaluate the characteristics of tensile and fracture toughness of Zr-2.5Nb pressure tube. The transverse tensile tests were performed at various temperatures and the fracture toughness tests were carried out at room temperature using the CCT (curved compact tension) specimen. These specimens were directly machined from the pressure tube retaining original curvatures. Also, the fracture toughness of two sets of Zr-2.5Nb manufactured at different time was compared. The chemical analysis and the Vicker's hardness tests were performed at two sets of Zr-2.5Nb pressure tube. The Vicker's hardness value of SET-2 containing more oxygen and carbon relatively was higher about 11 than that of SET-1

  19. Study on the manufacturing process, causes of the pressure tube failure and methods for improving its performance

    Energy Technology Data Exchange (ETDEWEB)

    You, Ho Sik; Jeong, Jin Kon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    Manufacturing processes of Zr-2.5Nb pressure tube used in CANDU reactor, effects of impurities on the properties of the pressure tube, experiences and causes of the pressure tube cracking accident and the development programs on the fuel channel at AECL have been described. Fabrication processes on the pressure tube have been explained in detail from the sponge production step to the final product. Test methods that are performed to verify the integrity of the final product have also been described. Most of the pressure tube rupture accidents were caused by DHC (Delayed Hydride Cracking). In cases of Pickering units 3 and 4 and Bruce unit 2, excessive residual stresses induced by improper rolled joint process had played a role to cause DHC. In Pickering unit 2, cracks formed by contact between pressure and calandria tubes due to the movement of garter spring were direct cause of failure. After the accidents, a lot of R and D programs on each component of the fuel channel have been carried out. The study on the improvement of manufacturing processes such as increasing cold working rate, performing the intermediate and final annealing and adding the third element like Fe, V, Cr for enhancing the pressure tube performance are on progress. To suppress hydrogen uptake into the pressure tube, the methods such as zirconia coating on the pressure tube, Cr-plating on the end fitting and placing the yttrium getter on the pressure tube are considered. Experiments on each test specimen are currently under way. Owing to such an effort, more advanced fuel channel can be installed in the next CANDU reactor. 6 tabs., 20 figs., 20 refs. (Author).

  20. Fast fracture of a zirconium alloy pressure tube: cause and implications

    International Nuclear Information System (INIS)

    Price, E.G.; Cheadle, B.A.

    1985-12-01

    The cause of the unstable fracture of a Zircaloy-2 pressure tube in the core of a CANDU reactor is reviewed. Failure was associated with the presence of brittle zones of zirconium hydride which developed as a result of thermal gradient induced hydrogen diffusion. Unstable fracture occurred when the partial thickness crack reached an unstable length and the crack ran 2 meters along the tube and terminated by circumferential tearing. The partial thickness defect initiated and propagated to an unstable length by delayed hydride cracking is high compared to fatigue progression and increases exponentially with temperature. Delayed hydride cracking can be prevented by reducing residual stresses to a minimum and by high standards of non-destructive testing that ensures freedom from unacceptable defects. Future prevention of fast fracture is based upon the inspection of a limited number of fuel channels for the presence of defects and for conditions which can cause hydride build-up together with the periodic removal of Zr-2.5wt% Nb tubes to monitor their condition

  1. Pressure tube reactor

    International Nuclear Information System (INIS)

    Matsumoto, Tomoyuki; Fujino, Michihira.

    1980-01-01

    Purpose: To equalize heavy water flow distribution by providing a nozzle for externally injecting heavy water from a vibration preventive plate to the upper portion to feed the heavy water in a pressure tube reactor and swallowing up heavy water in a calandria tank to supply the heavy water to the reactor core above the vibration preventive plate. Constitution: A moderator injection nozzle is mounted on the inner wall of a calandria tank. Heavy water is externally injected above the vibration preventive plate, and heavy water in the calandria tank is swallowed up to supply the heavy water to the core reactor above the vibration preventive plate. Therefore, the heavy water flow distribution can be equalized over the entire reactor core, and the distribution of neutron absorber dissolved in the heavy water is equalized. (Yoshihara, H.)

  2. Depressurization experiments on a plugged fibrous insulation in a horizontal pressure tube

    International Nuclear Information System (INIS)

    Lang, H.; Weise, H.J.; Ennen, P.

    1977-08-01

    Hot gas ducts for high-temperature reactors with a helium turbine are subject to additional operational loads not caused by the gas temperature. They include vibrations, caused by high gas velocities or by the sound fields emitted from the turbine, and stresses, originating from fast, short-time pressure changes. Such pressure changes occur as a rule if the generator coupled with the turbine has to be disconnected from the grid. In order to avoid no-load operation of the turbine a bypass between HP and LP side of the turbine is opened. As a consequence of this measure a sudden pressure drop occurs in the free flow cross-section causing differential pressures within the insulation. As the size of these differential pressures depends on the insulating material, the density of plugging, the kind of internals, and on the position and size of the depressurization borings, the pressure distributions in the insulation were measured on a test tube for the HP channel. (orig./RW) [de

  3. Pressurized thermal shock (PTS)

    International Nuclear Information System (INIS)

    Rosso, Ricardo D.; Ventura, Mirta A.

    2006-01-01

    In the present work, a description of Thermal Shock in Pressurized conditions (PTS), and its influence in the treatment of the integrity of the pressure vessel (RPV) of a Pressurized Water Reactor (PWR) and/or of a Heavy water Pressurized water Reactor (PHWR) is made. Generally, the analysis of PTS involves a process of three stages: a-) Modeling with a System Code of relevant thermohydraulics transients in reference with the thermal shock; b-) The local distribution of temperatures in the downcomer and the heat transference coefficients from the RPV wall to the fluid, are determined; c-) The fracture mechanical analysis. These three stages are included in this work: Results with the thermohydraulics code Relap5/mod.3, are obtained, for a LOCA scenario in the hot leg of the cooling System of the Primary System of the CAN-I reactor. The method used in obtaining results is described. A study on the basis of lumped parameters of the local evolutions of the temperature of the flow is made, in the downcomer of the reactor pressure vessel. The purpose of this study is to determine how the intensification of the stress coefficient, varies in function of the emergency injected water during the thermohydraulic transients that take place under the imposed conditions in the postulated scene. Specially, it is considered a 50 cm 2 break, located in the neighborhoods of the pressurized with the corresponding hot leg connection. This size is considered like the most critical. The method used to obtain the results is described. The fracture mechanical analysis is made. From the obtained results we confirmed that we have a simple tool of easy application in order to analyze phenomena of the type PTS in the postulated scenes by break in the cold and hot legs of the primary system. This methodology of calculus is completely independent of the used ones by the Nucleoelectrica Argentina S.A. (NASA) in the analysis of the PTS phenomena in the CAN-I. The results obtained with the adopted

  4. Set-up for steam generator tube bundle washing after explosion expanding the tubes

    International Nuclear Information System (INIS)

    Osipov, S.I.; Kal'nin, A.Ya.; Mazanenko, M.F.

    1985-01-01

    Set-up for steam generator tube bundle washing after the explosion expanding of tubes is described. Washing is accomplished by distillate. Steam is added to distillate for heating, and compersed air for preventing hydraulic shock. The set-up is equiped by control equipment. Set-up performances are presented. Time for one steam generator washing constitutes 8-12 h. High economic efficiency is realized due to the set-up introduction

  5. ELECTRON ACCELERATIONS AT HIGH MACH NUMBER SHOCKS: TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS IN VARIOUS PARAMETER REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yosuke [Department of Physics, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Amano, Takanobu; Hoshino, Masahiro, E-mail: ymatumot@astro.s.chiba-u.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Hongo 1-33, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-08-20

    Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron {beta}{sub e} (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (M{sub A} {approx} 30) with a mass ratio of M/m = 100 and {beta}{sub e} = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.

  6. Failure Pressure Estimates of Steam Generator Tubes Containing Wear-type Defects

    International Nuclear Information System (INIS)

    Yoon-Suk Chang; Jong-Min Kim; Nam-Su Huh; Young-Jin Kim; Seong Sik Hwang; Joung-Soo Kim

    2006-01-01

    It is commonly requested that steam generator tubes with defects exceeding 40% of wall thickness in depth should be plugged to sustain all postulated loads with appropriate margin. The critical defect dimensions have been determined based on the concept of plastic instability. This criterion, however, is known to be too conservative for some locations and types of defects. In this context, the accurate failure estimation for steam generator tubes with a defect draws increasing attention. Although several guidelines have been developed and are used for assessing the integrity of defected tubes, most of these guidelines are related to stress corrosion cracking or wall-thinning phenomena. As some of steam generator tubes are also failed due to fretting and so on, alternative failure estimation schemes for relevant defects are required. In this paper, three-dimensional finite element (FE) analyses are carried out under internal pressure condition to simulate the failure behavior of steam generator tubes with different defect configurations; elliptical wastage type, wear scar type and rectangular wastage type defects. Maximum pressures based on material strengths are obtained from more than a hundred FE results to predict the failure of the steam generator tube. After investigating the effect of key parameters such as wastage depth, wastage length and wrap angle, simplified failure estimation equations are proposed in relation to the equivalent stress at the deepest point in wastage region. Comparison of failure pressures predicted according to the proposed estimation scheme with some corresponding burst test data shows good agreement, which provides a confidence in the use of the proposed equations to assess the integrity of steam generator tubes with wear-type defects. (authors)

  7. Calculation of fast neutron flux in reactor pressure tubes and experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, P. C. [Canadian General Electric (Canada)

    1968-07-15

    The computer program EPITHET was used to calculate the fast neutron flux (>1 MeV) in several reactor pressure tubes and experimental facilities in order to compare the fast neutron flux in the different cases and to provide a self-consistent set of flux values which may be used to relate creep strain to fast neutron flux . The facilities considered are shown below together with the calculated fast neutron flux (>1 MeV). Fast flux 10{sup 13} n/cm{sup 2}s: NPD 1.14, Douglas Point 2.66, Pickering 2.89, Gentilly 2.35, SGHWR 3.65, NRU U-1 and U-2 3.25'' pressure tube - 19 element fuel 3.05, NRU U-1 and U-2 4.07'' pressure tube - 28 element fuel 3.18, NRU U-1 and U-2 4.07'' pressure tube - 18 element fuel 2.90, NRX X-5 0.88, PRTR Mk I fuel 2.81, PRTR HPD fuel 3.52, WR-1 2.73, Mk IV creep machine (NRX) 0.85, Mk VI creep machine (NRU) 2.04, Biaxial creep insert (NRU U-49) 2.61.

  8. Deformation of in-service pressure tubes

    International Nuclear Information System (INIS)

    Sarce, A.L.

    1993-01-01

    Candu type nuclear reactor pressure tubes suffer deformations during operation. This are consequences of irradiation growth and creep. By means of a computer code which takes into account the material microstructure, the above mentioned deformations are calculated, and results are compared with corresponding values measured at Embalse nuclear power plant. The calculations make explicit inclusion of intergranular stresses caused by an isotropy in the material. (author). 1 ref

  9. The LICPA-driven collider—a novel efficient tool for the production of ultra-high pressures in condensed media

    Science.gov (United States)

    Badziak, J.; Krousky, E.; Kucharik, M.; Liska, R.

    2016-03-01

    Generation of strong shock waves for the production of Mbar or Gbar pressures is a topic of high relevance for contemporary research in various domains, including inertial confinement fusion, laboratory astrophysics, planetology and material science. The pressures in the multi-Mbar range can be produced by the shocks generated using chemical explosions, light-gas guns, Z-pinch machines or lasers. Higher pressures, in the sub-Gbar or Gbar range are attainable only with nuclear explosions or laser-based methods. Unfortunately, due to the low efficiency of energy conversion from a laser to the shock (below a few percent), multi-kJ, multi-beam lasers are needed to produce such pressures with these methods. Here, we propose and investigate a novel scheme for generating high-pressure shocks which is much more efficient than the laser-based schemes known so far. In the proposed scheme, the shock is generated in a dense target by the impact of a fast projectile driven by the laser-induced cavity pressure acceleration (LICPA) mechanism. Using two-dimensional hydrodynamic simulations and the measurements performed at the kilojoule PALS laser facility it is shown that in the LICPA-driven collider the laser-to-shock energy conversion efficiency can reach a very high value ~ 15-20 % and, as a result, the shock pressure ~ 0.5-1 Gbar can be produced using lasers of energy market. It would open up the possibility of conducting research in high energy-density science also in small, university-class laboratories.

  10. A statistical method for draft tube pressure pulsation analysis

    International Nuclear Information System (INIS)

    Doerfler, P K; Ruchonnet, N

    2012-01-01

    Draft tube pressure pulsation (DTPP) in Francis turbines is composed of various components originating from different physical phenomena. These components may be separated because they differ by their spatial relationships and by their propagation mechanism. The first step for such an analysis was to distinguish between so-called synchronous and asynchronous pulsations; only approximately periodic phenomena could be described in this manner. However, less regular pulsations are always present, and these become important when turbines have to operate in the far off-design range, in particular at very low load. The statistical method described here permits to separate the stochastic (random) component from the two traditional 'regular' components. It works in connection with the standard technique of model testing with several pressure signals measured in draft tube cone. The difference between the individual signals and the averaged pressure signal, together with the coherence between the individual pressure signals is used for analysis. An example reveals that a generalized, non-periodic version of the asynchronous pulsation is important at low load.

  11. Fuel-element vibration and bearing pad to pressure tube fretting

    International Nuclear Information System (INIS)

    Fisher, N.J.; Taylor, C.E.; Pettigrew, M.J.

    1990-08-01

    Fuel channel operation under boiling condition results in increased flow velocities, which may lead to unacceptable fuel-element vibration and bearing pad to pressure tube fretting. The existing endurance test database does not fully cover the range of future channel operating conditions. In particular, after refuelling, some channels for future designs may operate with two-phase flow conditions outside the range of endurance test conditions. Full-scale endurance testing at realistic steam-water conditions involves substantial energy costs. Therefore, fundamental laboratory investigations were conducted to define and endurance test matrix which adequately envelops the future range of operating conditions while minimizing both the number of tests and the energy requirement of individual tests. The main focus of the laboratory investigations was to establish the relationships between: fuel channel flow conditions and fuel-element vibration; and fuel-element vibration and bearing pad to pressure tube fretting. The vibration response of a single fuel element was measured over a wide range of operating conditions covering realistic fuel channel conditions and simulated endurance testing conditions. For higher void fractions, the vibration amplitudes measured in air/water were much higher than in steam/water, while for low void fractions, the amplitudes were similar. The measured amplitudes in steam/water varied very little over the range of temperature and pressure investigated. The effects of temperature, pressure tube oxide thickness, vibration amplitude and bearing pad manufacturer on pressure tube fretting were investigated. The fretting rate is extremely temperature dependent. For vibration amplitudes about three or four times greater than expected in-reactor conditions, peak fretting rates were observed in the 225 to 286 degrees C temperature range. Fretting rates were seven times less at the higher temperatures of 300 and 315 degrees C, and the lower temperatures

  12. Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran.

    Science.gov (United States)

    Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A

    2013-02-21

    A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300-1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [ J. Phys. Chem. A 1998 , 102 ( 52 ), 10655 - 10670 ]. Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model-experiment deviations of at most a factor of 2, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species.

  13. X3 expansion tube driver gas spectroscopy and temperature measurements

    Science.gov (United States)

    Parekh, V.; Gildfind, D.; Lewis, S.; James, C.

    2018-07-01

    The University of Queensland's X3 facility is a large, free-piston driven expansion tube used for super-orbital and high Mach number scramjet aerothermodynamic studies. During recent development of new scramjet test flow conditions, experimentally measured shock speeds were found to be significantly lower than that predicted by initial driver performance calculations. These calculations were based on ideal, isentropic compression of the driver gas and indicated that loss mechanisms, not accounted for in the preliminary analysis, were significant. The critical determinant of shock speed is peak driver gas sound speed, which for a given gas composition depends on the peak driver gas temperature. This temperature may be inaccurately estimated if an incorrect fill temperature is assumed, or if heat losses during driver gas compression are significant but not accounted for. For this study, the ideal predicted peak temperature was 3750 K, without accounting for losses. However, a much lower driver temperature of 2400 K is suggested based on measured experimental shock speeds. This study aimed to measure initial and peak driver gas temperatures for a representative X3 operating condition. Examination of the transient temperatures of the driver gas and compression tube steel wall during the initial fill process showed that once the filling process was complete, the steady-state driver gas temperature closely matched the tube wall temperature. Therefore, while assuming the gas is initially at the ambient laboratory temperature is not a significant source of error, it can be entirely mitigated by simply monitoring tube wall temperature. Optical emission spectroscopy was used to determine the driver gas spectra after diaphragm rupture; the driver gas emission spectrum exhibited a significant continuum radiation component, with prominent spectral lines attributed to contamination of the gas. A graybody approximation of the continuum suggested a peak driver gas temperature of

  14. X3 expansion tube driver gas spectroscopy and temperature measurements

    Science.gov (United States)

    Parekh, V.; Gildfind, D.; Lewis, S.; James, C.

    2017-11-01

    The University of Queensland's X3 facility is a large, free-piston driven expansion tube used for super-orbital and high Mach number scramjet aerothermodynamic studies. During recent development of new scramjet test flow conditions, experimentally measured shock speeds were found to be significantly lower than that predicted by initial driver performance calculations. These calculations were based on ideal, isentropic compression of the driver gas and indicated that loss mechanisms, not accounted for in the preliminary analysis, were significant. The critical determinant of shock speed is peak driver gas sound speed, which for a given gas composition depends on the peak driver gas temperature. This temperature may be inaccurately estimated if an incorrect fill temperature is assumed, or if heat losses during driver gas compression are significant but not accounted for. For this study, the ideal predicted peak temperature was 3750 K, without accounting for losses. However, a much lower driver temperature of 2400 K is suggested based on measured experimental shock speeds. This study aimed to measure initial and peak driver gas temperatures for a representative X3 operating condition. Examination of the transient temperatures of the driver gas and compression tube steel wall during the initial fill process showed that once the filling process was complete, the steady-state driver gas temperature closely matched the tube wall temperature. Therefore, while assuming the gas is initially at the ambient laboratory temperature is not a significant source of error, it can be entirely mitigated by simply monitoring tube wall temperature. Optical emission spectroscopy was used to determine the driver gas spectra after diaphragm rupture; the driver gas emission spectrum exhibited a significant continuum radiation component, with prominent spectral lines attributed to contamination of the gas. A graybody approximation of the continuum suggested a peak driver gas temperature of

  15. Alloy synthesis using the mach stem region in an axial symmetric implosive shock: Understanding the pressure strain-temperature contributions

    Energy Technology Data Exchange (ETDEWEB)

    Staudhammer, Karl P.

    2004-01-01

    The Mach stem region in an axial symmetric shock implosion has generally been avoided in the dynamic consolidation of powders for a number of reasons. The prime reason being that the convergence of the shock waves in the cylindrical axis produce enormous pressures and concomitant temperatures that have melted tungsten. This shock wave convergence consequently results in a discontinuity in the hydro-code calculations. Dynamic deformation experiments on gold plated 304L stainless steel powders were undertaken. These experiments utilized pressures of 0.08 to 1.0 Mbar and contained a symmetric radial melt region along the central axis of the sample holder. To understand the role of deformation in a porous material, the pressure, and temperature as well as the deformation heat and associated defects must be accounted for. When the added heat of consolidation deformation exceeds the melt temperature of the 304 powders, a melt zone results that can consume large regions of the compact while still under the high-pressure pulse. As the shock wave traverses the sample and is removed in a momentum trap, its pressure/temperature are quenched. It is within this region that very high diffusion/alloying occurs and has been observed in the gold plated powders. Anomalous increases of gold diffusion into 304 stainless steel have been observed via optical microscopy, scanning electron microscopy and EDAX measurements. Values exceeding 1200 m/sec have been measured and correlated to the powder sizes, size distribution and packing density, concomitant with sample container strains ranging from 2.0% to 26%.

  16. X-ray line broadening studies on aluminum nitride, titanium carbide and titanium diboride modified by high pressure shock loading

    International Nuclear Information System (INIS)

    Morosin, B.; Graham, R.A.

    1983-01-01

    Powders of AlN, TiC and TiB 2 have been subjected to controlled shock loading with peak pressures in the samples between 14 to 27 GPa and preserved for post-shock study. Broadened x-ray diffraction peak profiles are analyzed by a simplified method and show increases in residual lattice strain and small decreases in crystallite size. Strain values range from 10 -5 to 10 -4 for TiB 2 and to values larger than 10 -3 for TiC and AlN

  17. High pressure in situ X-ray diffraction study of MnO to 137 GPa and comparison with shock compression experiment

    Science.gov (United States)

    Yagi, T.; Kondo, T.; Syono, Y.

    1998-07-01

    In order to clarify the nature of the phase transformation in MnO observed at around 90 GPa by shock compression experiment, high pressure in situ X-ray observations were carried out up to 137 GPa. Powdered sample was directly compressed in Mao-Bell type diamond anvil cell and X-ray experiments were carried out using angle dispersive technique by combining synchrotron radiation and imaging plate detector. Distortion of the B1 structured phase was observed above about 40 GPa, which continues to increase up to 90 GPa. Two discontinuous changes of the diffraction profiles were observed at around 90 GPa and 120 GPa. The nature of the intermediate phase between 90 GPa and 120 GPa is not clear yet. It is neither cesium chloride (B2) nor nickel arsenide (B8) structure. On the other hand, the diffraction profile above 120 GPa can be reasonably well explained by the B8 structure. High pressure phases above 90 GPa have metallic luster and all the transformations are reversible on release of pressure.

  18. Analysis of oligomeric transition of silkworm small heat shock protein sHSP20.8 using high hydrostatic pressure native PAGE

    Science.gov (United States)

    Fujisawa, Tetsuro; Ueda, Toshifumi; Kameyama, Keiichi; Aso, Yoichi; Ishiguro, Ryo

    2013-06-01

    The small heat shock proteins (sHSPs) solubilize thermo-denatured proteins without adenosine triphosphate energy consumption to facilitate protein refolding. sHSP20.8 is one of the silkworm (Bombyx mori) sHSPs having only one cystein in the N-terminal domain: Cys43. We report a simple measurement of oligomeric transition of sHSP20.8 using high hydrostatic pressure native polyacrylamide gel electrophoresis (high hydrostatic pressure (HP) native polyacrylamide gel electrophoresis (PAGE)). At ambient pressure under oxydative condition, the native PAGE of thermal transition of sHSP20.8 oligomer displayed a cooperative association. In contrast, HP native PAGE clearly demonstrated that sHSP20.8 dissociated at 80 MPa and 25°C, and the resultant molecular species gradually reassociated with time under that condition. In addition, the reassociation process was suppressed in the presence of the reductant. These results are consistent with the idea that sHSP20.8 oligomer temporally dissociates at the first thermo-sensing step and reassociates with the oxidation of Cys43.

  19. Investigation of forced convection heat transfer of supercritical pressure water in a vertically upward internally ribbed tube

    International Nuclear Information System (INIS)

    Wang Jianguo; Li Huixiong; Guo Bin; Yu Shuiqing; Zhang Yuqian; Chen Tingkuan

    2009-01-01

    In the present paper, the forced convection heat transfer characteristics of water in a vertically upward internally ribbed tube at supercritical pressures were investigated experimentally. The six-head internally ribbed tube is made of SA-213T12 steel with an outer diameter of 31.8 mm and a wall thickness of 6 mm and the mean inside diameter of the tube is measured to be 17.6 mm. The experimental parameters were as follows. The pressure at the inlet of the test section varied from 25.0 to 29.0 MPa, and the mass flux was from 800 to 1200 kg/(m 2 s), and the inside wall heat flux ranged from 260 to 660 kW/m 2 . According to experimental data, the effects of heat flux and pressure on heat transfer of supercritical pressure water in the vertically upward internally ribbed tube were analyzed, and the characteristics and mechanisms of heat transfer enhancement, and also that of heat transfer deterioration, were also discussed in the so-called large specific heat region. The drastic changes in thermophysical properties near the pseudocritical points, especially the sudden rise in the specific heat of water at supercritical pressures, may result in the occurrence of the heat transfer enhancement, while the covering of the heat transfer surface by fluids lighter and hotter than the bulk fluid makes the heat transfer deteriorated eventually and explains how this lighter fluid layer forms. It was found that the heat transfer characteristics of water at supercritical pressures were greatly different from the single-phase convection heat transfer at subcritical pressures. There are three heat transfer modes of water at supercritical pressures: (1) normal heat transfer, (2) deteriorated heat transfer with low HTC but high wall temperatures in comparison to the normal heat transfer, and (3) enhanced heat transfer with high HTC and low wall temperatures in comparison to the normal heat transfer. It was also found that the heat transfer deterioration at supercritical pressures was

  20. The effect of pressurization path on high pressure gas forming of Ti-3Al-2.5V at elevated temperature

    OpenAIRE

    Liu Gang; Wang Jianlong; Dang Kexin; Yuan Shijian

    2015-01-01

    High pressure gas forming is a tubular component forming technology with pressurized gas at elevated temperature, based on QPF, HMGF and Hydroforming. This process can be used to form tube blank at lower temperatures with high energy efficiency and also at higher strain rates. With Ti-3Al-2.5V Ti-alloy tube, the potential of HPGF was studied further through experiments at the elevated temperatures of 650 ∘C and 700 ∘C. In order to know the formability of the Ti-alloy tube, tensile tests were ...

  1. Statistical analysis and modelling of in-reactor diametral creep of Zr-2.5Nb pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jyrkama, Mikko I., E-mail: mjyrkama@uwaterloo.ca [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada); Bickel, Grant A., E-mail: grant.bickel@cnl.ca [Canadian Nuclear Laboratories, Chalk River Laboratories, Chalk River, ON, Canada K0J 1J0 (Canada); Pandey, Mahesh D., E-mail: mdpandey@uwaterloo.ca [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada)

    2016-04-15

    Highlights: • New and simple statistical model of pressure tube diametral creep. • Based on surveillance data of 328 pressure tubes from eight different CANDU reactors. • Uses weighted least squares (WLS) to regress out operating conditions. • The shape of the diametral creep profiles are predicted very well. • Provides insight and relative ranking of strain behaviour of in-service tubes. - Abstract: This paper presents the development of a simplified regression approach for modelling the diametral creep over time in Zr-2.5 wt% Nb pressure tubes used in CANDU reactors. The model is based on a large dataset of in-service inspection data of 328 different pressure tubes from eight different CANDU reactor units. The proposed weighted least squares (WLS) regression model is linear in time as a function of flux and temperature, with a temperature-dependent variance function. The model predicts the shape of the observed diametral creep profiles very well, and is useful not merely for prediction, but also for assessing tube-to-tube variability and manufacturing properties among the inspected tubes.

  2. Validation of the activity expansion method with ultrahigh pressure shock equations of state

    Science.gov (United States)

    Rogers, Forrest J.; Young, David A.

    1997-11-01

    Laser shock experiments have recently been used to measure the equation of state (EOS) of matter in the ultrahigh pressure region between condensed matter and a weakly coupled plasma. Some ultrahigh pressure data from nuclear-generated shocks are also available. Matter at these conditions has proven very difficult to treat theoretically. The many-body activity expansion method (ACTEX) has been used for some time to calculate EOS and opacity data in this region, for use in modeling inertial confinement fusion and stellar interior plasmas. In the present work, we carry out a detailed comparison with the available experimental data in order to validate the method. The agreement is good, showing that ACTEX adequately describes strongly shocked matter.

  3. Assessment of Blasting Performance Using Electronic Vis-à-Vis Shock Tube Detonators in Strong Garnet Biotite Sillimanite Gneiss Formations

    Science.gov (United States)

    Sharma, Suresh Kumar; Rai, Piyush

    2016-04-01

    This paper presents a comparative investigation of the shock tube and electronic detonating systems practised in bench blasting. The blast trials were conducted on overburden rocks of Garnet Biotite Sillimanite Gneiss formations in one of the largest metalliferous mine of India. The study revealed that the choice of detonating system was crucial in deciding the fragment size and its distribution within the blasted muck-piles. The fragment size and its distribution affected the digging rate of excavators. Also, the shape of the blasted muck-pile was found to be related to the degree of fragmentation. From the present work, it may be inferred that in electronic detonation system, timely release of explosive energy resulted in better overall blasting performance. Hence, the precision in delay time must be considered in designing blast rounds in such overburden rock formations. State-of-art image analysis, GPS based muck-pile profile plotting techniques were rigorously used in the investigation. The study revealed that a mean fragment size (K50) value for shock tube detonated blasts (0.55-0.59 m) was higher than that of electronically detonated blasts (0.43-0.45 m). The digging rate of designated shovels (34 m3) with electronically detonated blasts was consistently more than 5000 t/h, which was almost 13 % higher in comparison to shock tube detonated blasts. Furthermore, favourable muck-pile shapes were witnessed in electronically detonated blasts from the observations made on the dozer performance.

  4. Application of high-speed photography to hydrodynamic instability research

    International Nuclear Information System (INIS)

    Chang Lihua; Li Zuoyou; Xiao Zhengfei; Zou Liyong; Liu Jinhong; Xiong Xueshi

    2012-01-01

    High-speed photography is used to study the Rayleigh-Taylor instability of air-water interface driven by high- pressure exploding gas. Clear images illustrating the instability are obtained, along with the air bubble peak speed and turbulent mixing speed. The RM (Richtmyer-Meshkov) instability of air/SF 6 interface driven by shock wave is also researched by using high-speed Schlieren technique on the horizontal shock tube and primary experimental results are obtained, which show the change of the turbulent mixing region clearly. (authors)

  5. Prediction of pressure tube fretting-wear damage due to fuel vibration

    International Nuclear Information System (INIS)

    Yetisir, M.; Fisher, N.J.

    1997-01-01

    Fretting marks between fuel bundle bearing pads and pressure tubes have been observed at the inlet end of some Darlington Nuclear Generating Station (NGS) and Bruce NGS fuel channels. The excitation mechanisms that lead to fretting are not fully understood. In this paper, the possibility of bearing pad-to-pressure tube fretting due to turbulence-induced motion of the fuel element is investigated. Numerical simulations indicate that this mechanism by itself is not likely to cause the level of fretting experienced in Darlington and Bruce NGSs. (orig.)

  6. Analysis of stress in reactor core vessel under effect of pressure lose shock wave

    International Nuclear Information System (INIS)

    Li Yong; Liu Baoting

    2001-01-01

    High Temperature gas cooled Reactor (HTR-10) is a modular High Temperature gas cooled Reactor of the new generation. In order to analyze the safety characteristics of its core vessel in case of large rupture accident, the transient performance of its core vessel under the effect of pressure lose shock wave is studied, and the transient pressure difference between the two sides of the core vessel and the transient stresses in the core vessel is presented in this paper, these results can be used in the safety analysis and safety design of the core vessel of HTR-10. (author)

  7. Development of out-of-core concepts for a supercritical-water, pressure-tube reactor

    International Nuclear Information System (INIS)

    Diamond, W.T.

    2010-01-01

    One of the Generation IV programs at Chalk River Laboratories has as its prime focus the development of out-of-core concepts for the SuperCritical Water (SCW) pressure tube reactor under development in Canada. A number of technical issues associated with the interface of out-of-core components and the pressure tubes of a SCW pressure tube reactor are being investigated. This article focuses on several aspects of out-of-core components and layouts, building upon concepts that have been developed during the past few years. The efforts are strongly focused on concepts for a fuel channel that can be fabricated with the tight lattice pitch (typically 230 to 250 mm) that may be required for some applications such as utilization of a thorium fuel cycle. It is not practical to adapt concepts with a tight lattice pitch while using the thicker materials required for the higher temperatures and pressures required for supercritical operation. A change in lattice pitch or configuration is required to accommodate the component size increases. This presentation will cover a number of new concepts developed to produce feeders and end fittings for the harsh conditions of a SCW pressure tube reactor. These components are then developed into conceptual models of a Gen IV pressure tube reactor mounted in both horizontal and vertical orientations. Full 3-D solid models of both concepts will be demonstrated as well as a 1/10th-scale model of one face of a horizontal concept that has been built from components made with a 3-D printer. (author)

  8. Experimental studies on the deformation and rupture of thin metal plates subject to underwater shock wave loading

    Directory of Open Access Journals (Sweden)

    Chen Pengwan

    2015-01-01

    Full Text Available In this paper, the dynamic deformation and rupture of thin metal plates subject to underwater shock wave loading are studied by using high-speed 3D digital image correlation (3D-DIC. An equivalent device consist of a gas gun and a water anvil tube was used to supplying an exponentially decaying pressure in lieu of explosive detonation which acted on the panel specimen. The thin metal plate is clamped on the end of the shock tube by a flange. The deformation and rupture process of the metal plates subject to underwater shock waves are recorded by two high-speed cameras. The shape, displacement fields and strain fields of the metal plates under dynamic loading are obtained by using VIC-3D digital image correlation software. The strain gauges also were used to monitor the structural response on the selected position for comparison. The DIC data and the strain gauges results show a high level of correlation, and 3D-DIC is proven to be an effective method to measure 3D full-field dynamic response of structures under underwater impact loading. The effects of pre-notches on the failure modes of thin circular plate were also discussed.

  9. Dynamics of a Pipeline under the Action of Internal Shock Pressure

    Science.gov (United States)

    Il'gamov, M. A.

    2017-11-01

    The static and dynamic bending of a pipeline in the vertical plane under the action of its own weight is considered with regard to the interaction of the internal pressure with the curvature of the axial line and the axisymmetric deformation. The pressure consists of a constant and timevarying parts and is assumed to be uniformly distributed over the entire span between the supports. The pipeline reaction to the stepwise increase in the pressure is analyzed in the case where it is possible to determine the exact solution of the problem. The initial stage of bending determined by the smallness of elastic forces as compared to the inertial forces is introduced into the consideration. At this stage, the solution is sought in the form of power series and the law of pressure variation can be arbitrary. This solution provides initial conditions for determining the further process. The duration of the inertial stage is compared with the times of sharp changes of the pressure and the shock waves in fluids. The structure parameters are determined in the case where the shock pressure is accepted only by the inertial forces in the pipeline.

  10. Condensation heat transfer and pressure drop of R-410A in flat aluminum multi-port tubes

    Science.gov (United States)

    Kim, Nae-Hyun

    2018-02-01

    Brazed heat exchangers with aluminum flat multi-port tubes are being used as condensers of residential air-conditioners. In this study, R-410A condensation tests were conducted in four multi-port tubes having a range of hydraulic diameter (0.78 ≤ Dh ≤ 0.95 mm). The test range covered the mass flux from 100 to 400 kg/m2 s and the heat flux at 3 kW/m2, which are typical operating conditions of residential air conditioners. Results showed that both the heat transfer coefficient and the pressure drop increased as the hydraulic diameter decreased. The effect of hydraulic diameter on condensation heat transfer was much larger than the predictions of existing correlations for the range of investigation. Comparison of the data with the correlations showed that some macro-channel tube correlations and mini-channel tube correlations reasonably predicted the heat transfer coefficient. However, macro-channel correlations highly overpredicted the pressure drop data.

  11. Acceleration mechanisms flares, magnetic reconnection and shock waves

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1979-01-01

    Several mechanisms are briefly discussed for the acceleration of particles in the astrophysical environment. Included are hydrodynamic acceleration, spherically convergent shocks, shock and a density gradient, coherent electromagnetic acceleration, the flux tube origin, symmetries and instabilities, reconnection, galactic flares, intergalactic acceleration, stochastic acceleration, and astrophysical shocks. It is noted that the supernova shock wave models still depend critically on the presupernova star structure and the assumption of highly compact presupernova models for type I supernovae. 37 references

  12. Integrated probabilistic assessment for DHC initiation, growth and leak-before-break of PHWR pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Young-Jin [Power Engineering Research Institute, KEPCO Engineering and Construction, 188 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-870 (Korea, Republic of); Chang, Yoon-Suk, E-mail: yschang@khu.ac.kr [Department of Nuclear Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2014-08-15

    Highlights: • We develop an integrated approach for probabilistic assessment of PHWR pressure tube. • We examine probabilities of DHC initiation, growth, penetration and LBB failure. • The proposed approach is helpful to calculate rupture probabilities in reactor flaws even in the case of very low rupture probability. - Abstract: A few hundred zirconium alloy pressure tubes in a pressurized heavy water reactor (PHWR) serve as the nuclear fuel channel, as well as the reactor coolant pressure boundary. The pressure tubes are inspected periodically and a fitness-for-service assessment (FFSA) must be conducted if any flaw is detected in the inspection. A Canadian standard provides FFSA procedures of PHWR pressure tubes, which include probabilistic assessment for flaws considering delayed hydride cracking (DHC) and leak-before-break (LBB). In the present study, an integrated approach with detailed stepwise calculation procedures and integration methodology for probabilistic assessment of pressure tube was developed. In the first step of this approach, a probability of the DHC initiation, growth and penetration for single initial flaw is calculated. In the next step, a probability of LBB failure, which means tube rupture, for single through-wall crack (TWC) is calculated. Finally, a rupture probability for all initial flaws in a reactor can be calculated using the penetration probability for single flaw and the LBB failure probability for single TWC, as well as the predicted total number of initial flaw in the reactor.

  13. Integrated probabilistic assessment for DHC initiation, growth and leak-before-break of PHWR pressure tubes

    International Nuclear Information System (INIS)

    Oh, Young-Jin; Chang, Yoon-Suk

    2014-01-01

    Highlights: • We develop an integrated approach for probabilistic assessment of PHWR pressure tube. • We examine probabilities of DHC initiation, growth, penetration and LBB failure. • The proposed approach is helpful to calculate rupture probabilities in reactor flaws even in the case of very low rupture probability. - Abstract: A few hundred zirconium alloy pressure tubes in a pressurized heavy water reactor (PHWR) serve as the nuclear fuel channel, as well as the reactor coolant pressure boundary. The pressure tubes are inspected periodically and a fitness-for-service assessment (FFSA) must be conducted if any flaw is detected in the inspection. A Canadian standard provides FFSA procedures of PHWR pressure tubes, which include probabilistic assessment for flaws considering delayed hydride cracking (DHC) and leak-before-break (LBB). In the present study, an integrated approach with detailed stepwise calculation procedures and integration methodology for probabilistic assessment of pressure tube was developed. In the first step of this approach, a probability of the DHC initiation, growth and penetration for single initial flaw is calculated. In the next step, a probability of LBB failure, which means tube rupture, for single through-wall crack (TWC) is calculated. Finally, a rupture probability for all initial flaws in a reactor can be calculated using the penetration probability for single flaw and the LBB failure probability for single TWC, as well as the predicted total number of initial flaw in the reactor

  14. Diamonds: powerful tools for high-pressure physics

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Diamond-anvil high-pressure studies have progressed to the point where they complement shock-wave studies. Because they operate at static high pressure, they permit time-consuming procedures, such as x-ray diffraction measurements for determining crystal structure. The sample material is completely recoverable and the method is adaptable to minute advantage when dealing with rare or hazardous materials. One of our goals in investigating the high-pressure behavior of iridium was to test the theoretical prediction that iridium would exhibit a phase transformation from the face-centered cubic crystal structure at about 9 GPa. Our finding that no such transformation takes place even at pressures up to 30 GPa will need to be taken into account by physicsts working to improve solid-state theory

  15. Characterizing the active opening of the eustachian tube in a hypobaric/hyperbaric pressure chamber.

    Science.gov (United States)

    Mikolajczak, Stefanie; Meyer, Moritz Friedo; Hahn, Moritz; Korthäuer, Christine; Jumah, Masen Dirk; Hüttenbrink, Karl-Bernd; Grosheva, Maria; Luers, Jan Christoffer; Beutner, Dirk

    2015-01-01

    Active and passive opening of the Eustachian tube (ET) enables direct aeration of the middle ear and a pressure balance between middle ear and the ambient pressure. The aim of this study was to characterize standard values for the opening pressure (ETOP), the opening frequency (ETOF), and the opening duration (ETOD) for active tubal openings (Valsalva maneuver, swallowing) in healthy participants. In a hypobaric/hyperbaric pressure chamber, 30 healthy participants (19 women, 11 men; mean age, 25.57 ± 3.33 years) were exposed to a standardized profile of compression and decompression. The pressure values were recorded via continuous impedance measurement during the Valsalva maneuver and swallowing. Based on the data, standard curves were identified and the ETOP, ETOD, and ETOF were determined. Recurring patterns of the pressure curve during active tube opening for the Valsalva maneuver and for active swallowing were characterized. The mean value for the Valsalva maneuver for ETOP was 41.21 ± 17.38 mbar; for the ETOD, it was 2.65 ± 1.87 seconds. In the active pressure compensation by swallowing, the mean value for the ETOP was 29.91 ± 13.07 mbar; and for the ETOD, it was 0.82 ± 0.53 seconds. Standard values for the opening pressure of the tube and the tube opening duration for active tubal openings (Valsalva maneuver, swallowing) were described, and typical curve gradients for healthy subjects could be shown. This is another step toward analyzing the function of the tube in compression and decompression.

  16. Shock-to-detonation transition of RDX and NTO based composite high explosives: experiments and modeling

    Science.gov (United States)

    Baudin, Gerard; Roudot, Marie; Genetier, Marc

    2013-06-01

    Composite HMX and NTO based high explosives (HE) are widely used in ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside HE. Comparing to a pressed HE, a composite HE is not porous and the hot-spots are mainly located at the grain - binder interface leading to a different behavior during shock-to-detonation transition. An investigation of how shock-to-detonation transition occurs inside composite HE containing RDX and NTO is proposed in this lecture. Two composite HE have been studied. The first one is HMX - HTPB 82:18. The second one is HMX - NTO - HTPB 12:72:16. These HE have been submitted to plane sustained shock waves at different pressure levels using a laboratory powder gun. Pressure signals are measured using manganin gauges inserted at several distances inside HE. The corresponding run-distances to detonation are determined using wedge test experiments where the plate impact is performed using a powder gun. Both HE exhibit a single detonation buildup curve in the distance - time diagram of shock-to-detonation transition. This feature seems a common shock-to-detonation behavior for composite HE without porosity. This behavior is also confirmed for a RDX - HTPB 85:15 based composite HE. Such a behavior is exploited to determine the heterogeneous reaction rate versus the shock pressure using a method based on the Cauchy-Riemann problem inversion. The reaction rate laws obtained allow to compute both run-distance to detonation and pressure signals.

  17. Effects of Atwood number on shock focusing in shock-cylinder interaction

    Science.gov (United States)

    Ou, Junfeng; Ding, Juchun; Luo, Xisheng; Zhai, Zhigang

    2018-02-01

    The evolution of shock-accelerated heavy-gas cylinder surrounded by the air with different Atwood numbers (A_t=0.28, 0.50, 0.63) is investigated, concentrating on shock focusing and jet formation. Experimentally, a soap film technique is used to generate an ideal two-dimensional discontinuous gas cylinder with a clear surface, which can guarantee the observation of shock wave movements inside the cylinder. Different Atwood numbers are realized by different mixing ratios of SF_6 and air inside the cylinder. A high-speed schlieren system is adopted to capture the shock motions and jet morphology. Numerical simulations are also performed to provide more information. The results indicate that an inward jet is formed for low Atwood numbers, while an outward jet is generated for high Atwood numbers. Different Atwood numbers will lead to the differences in the relative velocities between the incident shock and the refraction shock, which ultimately results in the differences in shock competition near the downstream pole. The morphology and feature of the jet are closely associated with the position and intensity of shock focusing. The pressure and vorticity contours indicate that the jet formation should be attributed to the pressure pulsation caused by shock focusing, and the jet development is ascribed to the vorticity induction. Finally, a time ratio proposed in the previous work for determining the shock-focusing type is verified by experiments.

  18. Numerical simulation of nonequilibrium flow in high-enthalpy shock tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, M.; Men' shov, I.; Nakamura, Y

    2005-03-01

    The flow field of a nozzle starting process with thermal and chemical nonequilibrium has been simulated. This flow is produced in high enthalpy impulse facilities such as the free piston shock tunnel. The governing equations are the axisymmetric, compressible Navier-Stokes equations. In this study, Park's two-temperature model, where air consists of five species, is used for defining the thermodynamic properties of air as a driven gas. The numerical scheme employed here is the hybrid scheme of the explicit and implicit methods, which was developed in our laboratory, along with AUSM{sup +} to evaluate inviscid fluxes. In the present simulation, the Mach number of an incident shock wave is set at M{sub s}=10.0. It corresponds to a specific enthalpy, h{sub 0}, of 12 MJ/kg. The results clearly show the complicated thermal and chemical nonequilibrium flow field around the end of the shock tube section and at the nozzle inlet during the initial stage of the nozzle starting process. They also suggest that the phenomenon of nozzle melting might be associated with a flow separation at the nozzle inlet.

  19. Safety in pipeline systems. Prevention of pressure shocks and cavitation shocks; Sichere Rohrleitungssysteme. Vermeidung von Druckstoessen und Kavitationsschlaegen

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.-M. [Forschungszentrum Rossendorf, Dresden (Germany); Dudlik, Andreas; Schoenfeld, Sri Budi Handajani; Apostolidis, Alexander; Schlueter, Stefan [Fraunhofer-Institut UMSICHT, Oberhausen (Germany)

    2002-06-01

    The Fraunhofer institute UMSICHT, Oberhausen, and Rossendorf research centre FZR investigated the causes and consequences of pressure shocks and cavitation shocks and ways to prevent them. The experimental set-up and software tools were made available. New methods for preventing pressure shocks and cavitation shocks were developed, and armatures were developed on this basis which are also suited for retrofitting. [German] In Rohrleitungssystemen koennen durch instationaere Stroemungsvorgaenge gefaehrliche Betriebsbedingungen entstehen, die infolge von mehrfach erhoehtem Systemdruck und von Lasteintraegen in Halterungen Mensch und Umwelt erheblich schaedigen. Je nach Industriebranche koennen unterschiedliche betriebsbedingte Ursachen zu sog. Druckstoessen, Kavitations- und Kondensationsschlaegen fuehren, z.B. Kontaktkondensation von Dampf und Wasser oder ploetzliche Aenderung der Fluessigkeitsgeschwindigkeit. Das Fraunhofer-Institut UMSICHT in Oberhausen und das Forschungszentrum Rossendorf FZR untersuchen Ursachen, Folgen und Moeglichkeiten zur Vermeidung von Druckstoessen und Kavitationsschlaegen. Hierzu stehen Versuchsanlagen unterschiedlichen Massstabs sowie Softwaretools zur Verfuegung. Aus den Forschungsergebnissen wurden neue Methoden zur Vermeidung von Druckstoessen und Kavitationsschlaegen entwickelt. Hierbei werden neue oder vorhandene Absperrarmaturen mit einem hydraulischen Bremssystem ausgeruestet und mit einer Rueckschlagklappe kombiniert angeordnet. Das System gilt auch fuer bereits existierende Anlagen als besonders geeignet, da es keine Hilfsenergie benoetigt und sich an Aenderungen der Systemparameter Druck und Fliessgeschwindigkeit selbststaendig anpasst. (orig.)

  20. Predictive value of low tube voltage and dual-energy CT for successful shock wave lithotripsy: an in vitro study.

    Science.gov (United States)

    Largo, Remo; Stolzmann, Paul; Fankhauser, Christian D; Poyet, Cédric; Wolfsgruber, Pirmin; Sulser, Tullio; Alkadhi, Hatem; Winklhofer, Sebastian

    2016-06-01

    This study investigates the capabilities of low tube voltage computed tomography (CT) and dual-energy CT (DECT) for predicting successful shock wave lithotripsy (SWL) of urinary stones in vitro. A total of 33 urinary calculi (six different chemical compositions; mean size 6 ± 3 mm) were scanned using a dual-source CT machine with single- (120 kVp) and dual-energy settings (80/150, 100/150 Sn kVp) resulting in six different datasets. The attenuation (Hounsfield Units) of calculi was measured on single-energy CT images and the dual-energy indices (DEIs) were calculated from DECT acquisitions. Calculi underwent SWL and the number of shock waves for successful disintegration was recorded. The prediction of required shock waves regarding stone attenuation/DEI was calculated using regression analysis (adjusted for stone size and composition) and the correlation between CT attenuation/DEI and the number of shock waves was assessed for all datasets. The median number of shock waves for successful stone disintegration was 72 (interquartile range 30-361). CT attenuation/DEI of stones was a significant, independent predictor (P waves with the best prediction at 80 kVp (β estimate 0.576) (P waves ranged between ρ = 0.31 and 0.68 showing the best correlation at 80 kVp (P < 0.001). The attenuation of urinary stones at low tube voltage CT is the best predictor for successful stone disintegration, being independent of stone composition and size. DECT shows no added value for predicting the success of SWL.

  1. Twinning in Zircon: Not a High-Pressure Phenomenon

    Science.gov (United States)

    Jones, G. A.; Moser, D.; Shieh, S. R.; Barker, I.

    2017-12-01

    Microtwins in zircon are commonly found in shocked terrestrial and extraterrestrial samples and are potentially important for shock history and crater reconstruction. Twinning is easily observed with both the optical microscope and variety of electron beam techniques. Twinning as a deformation mechanism is consistent with the high strain rates generated during impact. No constitutive relationships, or even general limits on the physical conditions required for twinning in zircon are known, however. Present speculation on the critical quantity for twin formation, i.e. 10s of GPa of shock pressure (Moser et al. 2011, Timms et al., 2012), has no basis in the underlying mechanisms of twin nucleation, which are related to the motion of dislocations. This erroneous value is due to conflation of twinning sensu stricto with a phase transformation to reidite. Reidite occurs as twin-like lamellae occupying the {112} planes which are thought to be a mirror plane for twinning. We review the crystallographic theory of twinning in zircon. We then evaulate several theories on the nucleation of twins along with their necessary stresses involved. Our aim is to show that shock microtwins in zircon can be a `low pressure' shock phenomenon. This 'low pressure' hypothesis is supported by natural samples. These zircons are from the lower crust nearly 80 km from the centre of the Vredefort impact structure—the most distal zircon shock microstructures yet found in the lithosphere. Twins are present in 10% of the zircon grains greater than 50 µm in diameter. As an extensive, 'low pressure' phenomenon, twins are an easily recognized and potentially widespread record of Earth's impact history.Moser, D.E., Cupelli, C. L., Barker, I., Flowers, R. M., Mowman, J. R., Wooden, J. and Hart, R. (2011) New zircon shock phenomena and their use for dating and […] analysis of the Vredefort dome, Canadian Journal of Earth Sciences 48(2), 117-139.Timms, N.E., Reddy, S. M., Healy, D., Nemchin, A. A

  2. Measurement of gas-liquid two-phase flow around horizontal tube bundle using SF6-water. Simulating high-pressure high-temperature gas-liquid two-phase flow of PWR/SG secondary coolant side at normal pressure

    International Nuclear Information System (INIS)

    Ishikawa, Atsushi; Imai, Ryoj; Tanaka, Takahiro

    2014-01-01

    In order to improve prediction accuracy of analysis code used for design and development of industrial products, technology had been developed to create and evaluate constitutive equation incorporated in analysis code. The experimental facility for PWR/SG U tubes part was manufactured to measure local void fraction and gas-liquid interfacial velocity with forming gas-liquid upward two-phase flow simulating high-pressure high-temperature secondary coolant (water-steam) rising vertically around horizontal tube bundle. The experimental facility could reproduce flow field having gas-liquid density ratio equivalent to real system with no heating using SF6 (Sulfur Hexafluoride) gas at normal temperature and pressure less than 1 MPa, because gas-liquid density ratio, surface tension and gas-liquid viscosity ratio were important parameters to determine state of gas-liquid two-phase flow and gas-liquid density ratio was most influential. Void fraction was measured by two different methods of bi-optical probe and conductivity type probe. Test results of gas-liquid interfacial velocity vs. apparent velocity were in good agreement with existing empirical equation within 10% error, which could confirm integrity of experimental facility and appropriateness of measuring method so as to set up original constitutive equation in the future. (T. Tanaka)

  3. Fuel bundle to pressure tube fretting in Bruce and Darlington

    Energy Technology Data Exchange (ETDEWEB)

    Norsworthy, A G; Ditschun, A [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    As the fuel channel elongates due to creep, the fuel string moves relative to the inlet until the fuel pads at the inboard end eventually separate from the spacer sleeve, and the fuel resides on the burnish mark of the pressure tube. The bundle is then supported in a fashion which contributes to increased levels of vibration. Those pads which (due to geometric variation) have contact loads with the pressure tube within a certain range, vibrate, and cause significant fretting on the burnish mark, and further along at the midplane of the bundle. Inspection of the pressure tubes in Bruce A, Bruce B, and Darlington has revealed fret damage up to 0.55 mm at the burnish mark and slightly lower than this at the inlet bundle midplane. To date, all fret marks have been dealt with successfully without the need for tube replacement, but a program of work has been initiated to understand the mechanism and reduce the fretting. Such understanding is necessary to guide future design changes to the fuel bundle, to guide future inspection programs, to guide maintenance programs, and for longer term strategic planning. This paper discusses how the understanding of fretting has evolved and outlines a current hypothesis for the mechanism of fretting. The role of bundle geometry, excitation forces, and reactor conditions are reviewed, along with options under consideration to mitigate damage. (author). 4 refs., 2 tabs., 13 figs.

  4. Fuel bundle to pressure tube fretting in Bruce and Darlington

    International Nuclear Information System (INIS)

    Norsworthy, A.G.; Ditschun, A.

    1995-01-01

    As the fuel channel elongates due to creep, the fuel string moves relative to the inlet until the fuel pads at the inboard end eventually separate from the spacer sleeve, and the fuel resides on the burnish mark of the pressure tube. The bundle is then supported in a fashion which contributes to increased levels of vibration. Those pads which (due to geometric variation) have contact loads with the pressure tube within a certain range, vibrate, and cause significant fretting on the burnish mark, and further along at the midplane of the bundle. Inspection of the pressure tubes in Bruce A, Bruce B, and Darlington has revealed fret damage up to 0.55 mm at the burnish mark and slightly lower than this at the inlet bundle midplane. To date, all fret marks have been dealt with successfully without the need for tube replacement, but a program of work has been initiated to understand the mechanism and reduce the fretting. Such understanding is necessary to guide future design changes to the fuel bundle, to guide future inspection programs, to guide maintenance programs, and for longer term strategic planning. This paper discusses how the understanding of fretting has evolved and outlines a current hypothesis for the mechanism of fretting. The role of bundle geometry, excitation forces, and reactor conditions are reviewed, along with options under consideration to mitigate damage. (author). 4 refs., 2 tabs., 13 figs

  5. Investigation of shock waves in explosive blasts using fibre optic pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); MacPherson, W N [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Barton, J S [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Jones, J D C [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Tyas, A [Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Pichugin, A V [Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Hindle, A [Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Parkes, W [Scottish Microelectronics Centre, Kings Buildings, West Mains Road, Edinburgh EH9 3JF (United Kingdom); Dunare, C [Scottish Microelectronics Centre, Kings Buildings, West Mains Road, Edinburgh EH9 3JF (United Kingdom); Stevenson, T [Scottish Microelectronics Centre, Kings Buildings, West Mains Road, Edinburgh EH9 3JF (United Kingdom)

    2005-01-01

    We describe miniature all-optical pressure sensors, fabricated by wafer etching techniques, less than 1mm{sup 2} in overall cross-section with rise times in the {mu}s regime and pressure ranges typically 600 kPa. Their performance is suitable for experimental studies of the pressure-time history for test models exposed to shocks initiated by an explosive charge. The small size and fast response of the sensors promises higher quality data than has been previously available from conventional electrical sensors, with potential improvements to numerical models of blast effects. Provisional results from blast tests will be presented in which up to 6 sensors were multiplexed, embedded within test models in a range of orientations relative to the shock front.

  6. Investigation of shock waves in explosive blasts using fibre optic pressure sensors

    International Nuclear Information System (INIS)

    Watson, S; MacPherson, W N; Barton, J S; Jones, J D C; Tyas, A; Pichugin, A V; Hindle, A; Parkes, W; Dunare, C; Stevenson, T

    2005-01-01

    We describe miniature all-optical pressure sensors, fabricated by wafer etching techniques, less than 1mm 2 in overall cross-section with rise times in the μs regime and pressure ranges typically 600 kPa. Their performance is suitable for experimental studies of the pressure-time history for test models exposed to shocks initiated by an explosive charge. The small size and fast response of the sensors promises higher quality data than has been previously available from conventional electrical sensors, with potential improvements to numerical models of blast effects. Provisional results from blast tests will be presented in which up to 6 sensors were multiplexed, embedded within test models in a range of orientations relative to the shock front

  7. The effect of pressurization path on high pressure gas forming of Ti-3Al-2.5V at elevated temperature

    Directory of Open Access Journals (Sweden)

    Liu Gang

    2015-01-01

    Full Text Available High pressure gas forming is a tubular component forming technology with pressurized gas at elevated temperature, based on QPF, HMGF and Hydroforming. This process can be used to form tube blank at lower temperatures with high energy efficiency and also at higher strain rates. With Ti-3Al-2.5V Ti-alloy tube, the potential of HPGF was studied further through experiments at the elevated temperatures of 650 ∘C and 700 ∘C. In order to know the formability of the Ti-alloy tube, tensile tests were also carried out. The results show that: at the temperatures of 650 ∘C and 700 ∘C, the flow curves exhibit the power-law constitutive relation until peak stress is reached and the deformability is suitable for the HPGF process of Ti-3Al-2.5V alloy tube. The effects of pressurization path on the corner filling process and thickness profile are obvious. The high pressure inflow process can result in temperature difference between the straight wall area and corner area, which makes the thickness profile special. Besides, with the stepped pressurization path, the more constant filling rate and better thickness profile can be obtained.

  8. Pressurization rate effect on ligament rupture and burst pressures of cracked steam generator tubes

    International Nuclear Information System (INIS)

    Majumdar, S.; Kasza, K.

    2009-01-01

    The question of whether ligament rupture pressure or unstable burst pressure may vary significantly with pressurization rate at room temperature arose from the results of pressure tests by industry on tubes with machined part-throughwall notches. Slow (quasi-static) and fast 14 MPa/s (2000 psi/s) pressurization rate tests on specimens with nominally the same notch geometry appeared to show a significant effect of the rate of pressurization on the unstable burst pressure. Unfortunately, the slow and fast loading rate tests were conducted following two different test procedures, which could confound the results. The current series of tests were conducted on a variety of specimen geometries using a consistent test procedure to better establish the effect of pressurization rate on ligament rupture and burst pressures. (author)

  9. Pressurization rate effect on ligament rupture and burst pressures of cracked steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S.; Kasza, K. [Argonne National Laboratory, Nuclear Energy Division, Lemont, Illinois (United States)

    2009-07-01

    The question of whether ligament rupture pressure or unstable burst pressure may vary significantly with pressurization rate at room temperature arose from the results of pressure tests by industry on tubes with machined part-throughwall notches. Slow (quasi-static) and fast 14 MPa/s (2000 psi/s) pressurization rate tests on specimens with nominally the same notch geometry appeared to show a significant effect of the rate of pressurization on the unstable burst pressure. Unfortunately, the slow and fast loading rate tests were conducted following two different test procedures, which could confound the results. The current series of tests were conducted on a variety of specimen geometries using a consistent test procedure to better establish the effect of pressurization rate on ligament rupture and burst pressures. (author)

  10. Ductile fracture estimation of reactor pressure vessel under thermal shock

    International Nuclear Information System (INIS)

    Takahashi, Jun; Sakai, Shinsuke; Okamura, Hiroyuki

    1990-01-01

    This paper presents a new scheme for the estimation of unstable ductile fracture of a reactor pressure vessel under thermal shock conditions. First, it is shown that the bending moment applied to the cracked section can be evaluated by considering the plastic deformation of the cracked section and the thermal deformation of the shell. As the contribution of the local thermal stress to the J-value is negligible, the J-value under thermal shock can be easily evaluated by using fully plastic solutions for the cracked part. Next, the phenomena of ductile fracture under thermal shock are expressed on the load-versus-displacement diagram which enables us to grasp the transient phenomena visually. In addition, several parametrical surveys are performed on the above diagram concerning the variation of (1) thermal shock conditions, (2) initial crack length, and (3) J-resistance curve (i.e. embrittlement by neutron irradiation). (author)

  11. The EL-4 reactor. Changing of a pressure tube on a test loop

    International Nuclear Information System (INIS)

    Foulquier, H.; Clara, P.

    1964-01-01

    Right from the beginning of the EL-4 project, the research convected with the overall design of the reactor was guided by the various technical specifications resulting from a justifiable concern about the reliability. The external and internal tubes of each layer situated in the reactor block had in particular to be interchangeable. The research alone into the dismantling of the external tube, i.e in fact the pressure tube, justified a certain number of full-scale tests on a model. The tests carried out under relevant conditions on a non-irradiated structure made it possible to define a complete ranger of of positioning and un-positioning sequences at a distance for such a pressure tube. (authors) [fr

  12. Axial and transverse tensile properties Zr-2.5Nb pressure tube off-cuts

    International Nuclear Information System (INIS)

    Shah, Priti K.; Dubey, J.S.; Shriwastaw, R.S.; Balakrishnan, K.S.; Anantharaman, S.; Chakravartty, J.K.

    2011-01-01

    Zr-2.5Nb alloys in cold worked and stress relieved (CWSR) condition serves as pressure boundary for hot coolant in Indian Pressurized Heavy Water Reactor (IPHWR). Due to both microstructural and crystallographic anisotropy, the mechanical properties in general and fracture behavior in particular are anisotropic for this material. To understand the anisotropic mechanical behavior of the Zr-2.5Nb pressure tubes of IPHWRs, tension tests were carried out on the RAPS-2 and KAPS-2 pressure tube off-cuts. Off-cuts are the small pieces cut from the two ends of a pressure tube before installing it into the PHWR. Miniature flat tensile specimens (without applying any flattening treatment to the pressure tube) of both longitudinal (or axial) and transverse orientation were fabricated from the off-cuts. Tension tests were carried out both at room temperature and 300 deg C. The transverse specimens showed higher strength and lower elongation than that of the axial ones. The back-end off-cuts showed higher strength compared to front-end off-cuts along axial direction whereas the same is not true for transverse direction specimens. One typical plot obtained in the testing of one of the off-cut is shown. The paper will discuss about the importance of the work carried out, test specimens, test method and results obtained in detail

  13. Experimental and visual study on flow patterns and pressure drops in U-tubes

    International Nuclear Information System (INIS)

    Da Silva Lima, J. R.

    2011-01-01

    In single- and two-phase flow heat exchangers (in particular 'coils'), besides the straight tubes there are also many singularities, in particular the 180° return bends (also called return bends or U-bends). However, contrary to the literature concerning pressure drops and heat transfer in straight tubes, where many experimental data and predicting methods are available, only a limited number of studies concerning U-bends can be found. Neither reliable experimental data nor proven prediction methods are available. Indeed, flow structure, pressure drop and heat transfer in U-bends are an old unresolved design problem in the heat transfer industry. Thus, the present study aims at providing further insight on two-phase pressure drops and flows patterns in U-bends. Based on a new type of U-bend test section, an extensive experimental study was conducted. The experimental campaign covered five test sections with three internal diameters (7.8, 10.8 and 13.4 mm), five bend diameters (24.8, 31.7, 38.1, 54.8 and 66.1 mm), tested for three orientations (horizontal, vertical upflow and vertical downflow), two fluids (R134a and R410A), two saturation temperatures (5 and 10 °C) and mass velocities ranging from 150 to 1000 kg s -1 m -2 . The flow pattern observations identified were stratified-wavy, slug-stratified-wavy, intermittent, annular, dryout and mist flows. The effects of the U-bend on the flow patterns were also observed. A total of 5655 pressure drop data were measured at seven different locations in the test section ( straight tubes and U-bend) providing a total of almost 40,000 data points. The straight tube data were first used to improve the actual two-phase straight tube model of Moreno-Quibén and Thome. This updated model was then used to developed a two-phase U-bend pressure drop model. Based on a comparison between experimental and predicted values, it is concluded that the new two-phase frictional pressure drop model for U-bends successfully

  14. Proper Orthogonal Decomposition of Pressure Fields in a Draft Tube Cone of the Francis (Tokke) Turbine Model

    International Nuclear Information System (INIS)

    Stefan, D; Rudolf, P

    2015-01-01

    The simulations of high head Francis turbine model (Tokke) are performed for three operating conditions - Part Load, Best Efficiency Point (BEP) and Full Load using software Ansys Fluent R15 and alternatively OpenFOAM 2.2.2. For both solvers the simulations employ Realizable k-e turbulence model. The unsteady pressure pulsations of pressure signal from two monitoring points situated in the draft tube cone and one behind the guide vanes are evaluated for all three operating conditions in order to compare frequencies and amplitudes with the experimental results. The computed velocity fields are compared with the experimental ones using LDA measurements in two locations situated in the draft tube cone. The proper orthogonal decomposition (POD) is applied on a longitudinal slice through the draft tube cone. The unsteady static pressure fields are decomposed and a spatio-temporal behavior of modes is correlated with amplitude-frequency results obtained from the pressure signal in monitoring points. The main application of POD is to describe which modes are related to an interaction between rotor (turbine runner) and stator (spiral casing and guide vanes) and cause dynamic flow behavior in the draft tube. The numerically computed efficiency is correlated with the experimental one in order to verify the simulation accuracy

  15. Development of NDT techniques for the inspection of WSGHWR pressure tubes

    International Nuclear Information System (INIS)

    Gray, B.S.; Highmore, P.J.; Rudlin, J.R.; Cooper, A.G.

    1979-01-01

    The fuel for the Steam Generating Heavy Water Reactor at Winfrith Heath is contained in vertical Zircaloy pressure tubes and is cooled by boiling light water. This paper describes the development of NDT techniques for the inservice examination of the pressure tubes to provide continuing assurance of the absence of axial crack-like defects. The resultant equipment has to operate in water-filled tubes in the presence of the radiation field due to the irradiated fuel elements in adjacent tubes. Also, a layer of surface oxide on the inside of the tubes has been found to significantly affect the behaviour of a prototype inspection device. To provide adequate sensitivity in these conditions, without the occurrence of unnecessary spurious indications, a combination of techniques has been developed. This involves the use of ultrasonics in both pulse-echo and 'pitch and catch' mode together with a single frequency eddy current technique. Laboratory work using artificial defects is described and also how the development programme was modified to accommodate the results of in-reactor tests using a prototype device. Reference is also made to the development of CCTV equipment to provide a supplementary visual examination. (author)

  16. Properties of planetary fluids at high pressure and temperature

    International Nuclear Information System (INIS)

    Nellis, W.J.; Hamilton, D.C.; Holmes, N.C.; Radousky, H.B.; Ree, F.H.; Ross, M.; Young, D.A.; Nicol, M.

    1987-01-01

    In order to derive models of the interiors of Uranus, Neptune, Jupiter and Saturn, researchers studied equations of state and electrical conductivities of molecules at high dynamic pressures and temperatures. Results are given for shock temperature measurements of N 2 and CH 4 . Temperature data allowed demonstration of shock induced cooling in the the transition region and the existence of crossing isotherms in P-V space

  17. Creep collapse of thick-walled heat transfer tube subjected to external pressure at high temperature

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Kaji, Yoshiyuki; Terunuma, Isao; Nekoya, Shin-ichi; Miyamoto, Yoshiaki

    1994-09-01

    A series of creep collapse tests of thick-walled heat transfer tube were examined experimentally and analytically to confirm an analytical method for creep deformation behavior of a heat transfer tube of an intermediate heat exchanger (IHX) at a depressurization accident of secondary cooling system of HTTR (High Temperature Engineering Test Reactor). The tests were carried out using thick-walled heat transfer tubes made of Hastelloy XR at 950degC in helium gas environment. The predictions of creep collapse time obtained by a general purpose FEM-code ABAQUS were in good agreement with the experimental results. A lot of cracks were observed on the outer surface of the test tubes after the creep collapse. However, the cracks did not pass through the tube wall and, therefore, the leak tightness was maintained regardless of a collapse deformation for all tubes tested. (author)

  18. Characteristics of shock propagation in high-strength cement mortar

    Science.gov (United States)

    Wang, Zhanjiang; Li, Xiaolan; Zhang, Ruoqi

    2001-06-01

    Planar impact experiments have been performed on high-strength cement mortar to determine characteristics of shock propagation.The experiments were conducted on a light-gas gun,and permanent-magnet particle velocity gages were used to obtain the sand of 0.5 3.5mm size.A bulk density of 2.31g/cm^3,and a compressive and tensile strength of 82MPa and 7.8MPa,respectively,were determined.Three kinds of experimental techniques were used,including the reverse ballistic configuration.These techniques effectively averaged the measured dynamic compression state over a sensibly large volume of the test sample.The impact velocities were controlled over a range of approximately 80m/s to 0.83km/s.Hugoniot equation of state data were obtained for the material over a pressure range of approximately 0.2 2.0GPa,and its nonlinear constitutive relation were analyzed.The experiment results show that,in higher pressure range provided in the experiment,the shock wave in the material splits into two components of an elastic and a plastic,with the Hugoniot elastic limit 0.4 0.5GPa and the precursor velocity about 4.7km/s,and the material presents a very strong nonlinear dynamic response,and its shock amplitude will greatly decrease in propagation.

  19. An experimental study of high pressure steam condensation in a vertical tube of passive secondary condensation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Jae; No, Hee Cheon [KAIST, Taejon (Korea, Republic of)

    1998-07-01

    To investigate the physical parameters of PSCS (Passive Secondary Condensation System) which is a passive residual heat removal system of CP-1300, the high pressure condensation experiments are performed in a small scale experimental facility. The experimental parameters are the local heat flux and the transfer coefficient and the pressure drop in a condensation heat trasnfer. The film condensation heat transfer coefficients in a vertical tube are calculated from the measured wall temperature difference and compared with the analytical models. A new analytical condensation model is developed based on the annular film flow model. The present model gives marginally better results than those from the Shah model in comparison with the experimental data in the database. Also, experimental data are compared with the results of the RELAP5/MOD3.2 thermal hydraulic code. The RELAP5/MOD3.2 underpredicts the condensation heat transfer coefficients of the present experiment by 50 %.

  20. Validation of the activity expansion method with ultrahigh pressure shock equations of state

    International Nuclear Information System (INIS)

    Rogers, F.J.; Young, D.A.

    1997-01-01

    Laser shock experiments have recently been used to measure the equation of state (EOS) of matter in the ultrahigh pressure region between condensed matter and a weakly coupled plasma. Some ultrahigh pressure data from nuclear-generated shocks are also available. Matter at these conditions has proven very difficult to treat theoretically. The many-body activity expansion method (ACTEX) has been used for some time to calculate EOS and opacity data in this region, for use in modeling inertial confinement fusion and stellar interior plasmas. In the present work, we carry out a detailed comparison with the available experimental data in order to validate the method. The agreement is good, showing that ACTEX adequately describes strongly shocked matter. copyright 1997 The American Physical Society

  1. Validation of the activity expansion method with ultrahigh pressure shock equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, F.J.; Young, D.A. [Physics Department, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    1997-11-01

    Laser shock experiments have recently been used to measure the equation of state (EOS) of matter in the ultrahigh pressure region between condensed matter and a weakly coupled plasma. Some ultrahigh pressure data from nuclear-generated shocks are also available. Matter at these conditions has proven very difficult to treat theoretically. The many-body activity expansion method (ACTEX) has been used for some time to calculate EOS and opacity data in this region, for use in modeling inertial confinement fusion and stellar interior plasmas. In the present work, we carry out a detailed comparison with the available experimental data in order to validate the method. The agreement is good, showing that ACTEX adequately describes strongly shocked matter. {copyright} {ital 1997} {ital The American Physical Society}

  2. Performance of Drift-Tube Detectors at High Counting Rates for High-Luminosity LHC Upgrades

    CERN Document Server

    Bittner, Bernhard; Kortner, Oliver; Kroha, Hubert; Manfredini, Alessandro; Nowak, Sebastian; Ott, Sebastian; Richter, Robert; Schwegler, Philipp; Zanzi, Daniele; Biebel, Otmar; Hertenberger, Ralf; Ruschke, Alexander; Zibell, Andre

    2016-01-01

    The performance of pressurized drift-tube detectors at very high background rates has been studied at the Gamma Irradiation Facility (GIF) at CERN and in an intense 20 MeV proton beam at the Munich Van-der-Graaf tandem accelerator for applications in large-area precision muon tracking at high-luminosity upgrades of the Large Hadron Collider (LHC). The ATLAS muon drifttube (MDT) chambers with 30 mm tube diameter have been designed to cope with and neutron background hit rates of up to 500 Hz/square cm. Background rates of up to 14 kHz/square cm are expected at LHC upgrades. The test results with standard MDT readout electronics show that the reduction of the drift-tube diameter to 15 mm, while leaving the operating parameters unchanged, vastly increases the rate capability well beyond the requirements. The development of new small-diameter muon drift-tube (sMDT) chambers for LHC upgrades is completed. Further improvements of tracking e?ciency and spatial resolution at high counting rates will be achieved with ...

  3. THE EFFECT OF TURBULENCE INTERMITTENCE ON THE EMISSION OF SOLAR ENERGETIC PARTICLES BY CORONAL AND INTERPLANETARY SHOCKS

    International Nuclear Information System (INIS)

    Kocharov, Leon; Laitinen, Timo; Vainio, Rami

    2013-01-01

    Major solar energetic particle events are associated with shock waves in solar corona and solar wind. Fast scattering of charged particles by plasma turbulence near the shock wave increases the efficiency of the particle acceleration in the shock, but prevents particles from escaping ahead of the shock. However, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. We present the first theoretical study of accelerated particle emission from an oblique shock wave propagating through an intermittent turbulence background that consists of both highly turbulent magnetic tubes, where particles are accelerated, and quiet tubes, via which the accelerated particles can escape to the non-shocked solar wind. The modeling results imply that the presence of the fast transport channels penetrating the shock and cross-field transport of accelerated particles to those channels may play a key role in high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit

  4. THE EFFECT OF TURBULENCE INTERMITTENCE ON THE EMISSION OF SOLAR ENERGETIC PARTICLES BY CORONAL AND INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, Leon [Sodankylä Geophysical Observatory (Oulu Unit), P.O. Box 3000, University of Oulu, FI-90014 Oulu (Finland); Laitinen, Timo [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Vainio, Rami [Department of Physics, P.O. Box 64, University of Helsinki, FI-00014 Helsinki (Finland)

    2013-11-20

    Major solar energetic particle events are associated with shock waves in solar corona and solar wind. Fast scattering of charged particles by plasma turbulence near the shock wave increases the efficiency of the particle acceleration in the shock, but prevents particles from escaping ahead of the shock. However, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. We present the first theoretical study of accelerated particle emission from an oblique shock wave propagating through an intermittent turbulence background that consists of both highly turbulent magnetic tubes, where particles are accelerated, and quiet tubes, via which the accelerated particles can escape to the non-shocked solar wind. The modeling results imply that the presence of the fast transport channels penetrating the shock and cross-field transport of accelerated particles to those channels may play a key role in high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit.

  5. Measurement of impulse peak insertion loss from two acoustic test fixtures and four hearing protector conditions with an acoustic shock tube

    Science.gov (United States)

    Murphy, William J.; Fackler, Cameron J.; Berger, Elliott H.; Shaw, Peter B.; Stergar, Mike

    2015-01-01

    Impulse peak insertion loss (IPIL) was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF). Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL) were evaluated with high-level acoustic impulses created by an acoustic shock tube at levels of 134 decibels (dB), 150 dB, and 168 dB. The fixtures were identical except that the E-A-RCAL ISL fixture had ear canals that were 3 mm longer than the National Institute for Occupational Safety and Health (NIOSH) ISL fixture. Four hearing protection conditions were tested: Combat Arms earplug with the valve open, ETYPlugs® earplug, TacticalPro headset, and a dual-protector ETYPlugs earplug with TacticalPro earmuff. The IPILs measured for the E-A-RCAL fixture were 1.4 dB greater than the National Institute for Occupational Safety and Health (NIOSH) ISL ATF. For the E-A-RCAL ISL ATF, the left ear IPIL was 2.0 dB greater than the right ear IPIL. For the NIOSH ATF, the right ear IPIL was 0.3 dB greater than the left ear IPIL. PMID:26356380

  6. Pressurized-thermal-shock technology

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1991-01-01

    It was recognized at the time the original Issues on Pressurized Thermal Shock (IPTS) studies were conducted that distinct vertical plumes of cooling water form beneath the cold leg inlet nozzles during those particular transients that exhibit fluid/thermal stratification. The formation of these plumes (referred to as thermal streaming) induces a time-dependent circumferential temperature variation on the inner surface of the Reactor Pressure Vessel (RPV) wall that creates an axial stress component. This axial stress component is in addition to the axial stress components induced by time-dependent radial temperature variation through the wall thickness and the time-dependent pressure transient. This additional axial stress component will result in a larger axial stress resultant that results in a larger stress-intensity factor acting on circumferential flaws, thus reducing the fracture margin for circumferential flaws. Although this was recognized at the time of the original IPTS study, the contribution appeared to be relatively small; therefore, it was neglected. The original IPTS studies were performed with OCA-P, a computer program developed at ORNL to analyze the cleavage fracture response of a nuclear RPV subjected to PTS loading. OCA-P is a one-dimensional (1-D) finite-element code that analyzes the stresses and stress-intensity factors (axial and tangential) resulting from the pressure and the radial temperature variation through the wall thickness only. The HSST Program is investigating the potential effects of thermal-streaming-induced stresses in circumferential welds on the reactor vessel PTS analyses. The initial phase of this investigation focused on an evaluation of the available thermal-hydraulic data and analyses results. The objective for the initial phase of the investigation is to evaluate thermal-streaming behavior under conditions relevant to the operation of U.S. PWRs and chracterize any predicted thermal-streaming plumes

  7. Oxidation and deuterium uptake of Zr-2.5Nb pressure tubes in CANDU-PHW reactors

    International Nuclear Information System (INIS)

    Urbanic, V.F.; Warr, B.D.; Manolescu, A.; Chow, C.K.; Shanahan, M.W.

    1989-01-01

    Oxidation and deuterium uptake in Zr-2.5Nb pressure tubes are being monitored by destructive examination of tubes removed from commercial Canadian deuterium uranium pressurized heavy-water (CANDU-PHW) stations and by analyses of microsamples, obtained in-situ, from the inside surface of tubes in the reactor. Unlike Zircaloy-2, there is no evidence for any acceleration in the oxidation rate for exposures up to about 4500 effective full power days. Changes towards a more equilibrium microstructure during irradiation may be partly responsible for maintaining the low oxidation rate, since thermal aging treatments, producing similar microstructural changes in initially cold worked tubes, were found to improve out-reactor corrosion resistance in 589 K water. With one exception, the deuterium uptake in Zr-2.5Nb tubes has been remarkably low and no greater than 3-mg/kg deuterium per year (0.39 mg/dm 2 hydrogen per year) . The exception is the most recent surveillance tube removed from Pickering (NGS) Unit 3, which had a deuterium content near the outlet end about five times higher than that seen in the previous tube examined. Current investigations suggest that most of the uptake in that tube may have come from the gas annulus surrounding the tube where deuterium exists as an impurity, and oxidation has been insufficient to maintain a protective oxide film. Results from weight gain measurements, chemical analyses, metallography, scanning electron microscopy, and transmission electron microscopy of irradiated pressure tubes and of small coupons exposed out reactor are presented and discussed with respect to the observed corrosion and hydriding behavior of CANDU-PHW pressure tubes. (author)

  8. The effect of hydrostatic vs. shock pressure treatment on plant seeds

    Science.gov (United States)

    Mustey, Adrian; Leighs, James; Appleby-Thomas, Gareth; Wood, David; Hazael, Rachael; McMillan, Paul; Hazell, Paul

    2013-06-01

    The hydrostatic pressure and shock response of plant seeds have both been previously investigated (primarily driven by an interest in reducing bacterial contamination of crops and the theory of panspermia respectively). However, comparisons have not previously been made between these two methods of applying pressure to plant seeds. Here such a comparison has been undertaken based on the premise that any correlations in such data may provide a route to inform understanding of damage mechanisms in the seeds under test. In this work two varieties of plant seeds were subjected to hydrostatic pressure via a non-end-loaded piston cylinder set-up and shock compression via employment of a 50-mm bore, single stage gas gun using the flyer-plate technique. Results from germination tests of recovered seed samples have been compared and contrasted, and initial conclusions made regarding causes of trends in the resultant data-set.

  9. On possible structures of normal ionizing shock waves in electromagnetic shock tubes

    International Nuclear Information System (INIS)

    Liberman, M.A.; Synakh, V.S.; Zakajdakhov, V.V.; Velikovich, A.L.

    1982-01-01

    The problem of possible structures of normal ionizing shock waves is studied. On the basis of the general theory of ionizing shock waves in magnetic fields, a similarity solution of the piston problem for an impenetrable piston and a magnetic piston is described and a numerical solution of the non-stationary piston problem is obtained. It is shown that precursor photo-ionization of the neutral gas by the radiation of the shock-heated gas is the dominant factor in shaping normal ionizing shock structures. In particular, it is shown that the strong overheating of atoms and ions in shock fronts is due to the tensor form of Ohm's law in the precursor region. (author)

  10. Development of solar wind shock models with tensor plasma pressure for data analysis. Final technical report, 1 Aug 1970--31 Dec 1975

    International Nuclear Information System (INIS)

    Abraham-shrauner, B.

    1975-01-01

    The development of solar wind shock models with tensor plasma pressure and the comparison of some of the shock models with the satellite data from Pioneer 6 through Pioneer 9 are reported. Theoretically, difficulties were found in non-turbulent fluid shock models for tensor pressure plasmas. For microscopic shock theories nonlinear growth caused by plasma instabilities was frequently not clearly demonstrated to lead to the formation of a shock. As a result no clear choice for a shock model for the bow shock or interplanetary tensor pressure shocks emerged

  11. Development of Fast High-Resolution Muon Drift-Tube Detectors for High Counting Rates

    CERN Document Server

    INSPIRE-00287945; Dubbert, J.; Horvat, S.; Kortner, O.; Kroha, H.; Legger, F.; Richter, R.; Adomeit, S.; Biebel, O.; Engl, A.; Hertenberger, R.; Rauscher, F.; Zibell, A.

    2011-01-01

    Pressurized drift-tube chambers are e?cient detectors for high-precision tracking over large areas. The Monitored Drift-Tube (MDT) chambers of the muon spectrometer of the ATLAS detector at the Large Hadron Collider (LHC) reach a spatial resolution of 35 micons and almost 100% tracking e?ciency with 6 layers of 30 mm diameter drift tubes operated with Ar:CO2 (93:7) gas mixture at 3 bar and a gas gain of 20000. The ATLAS MDT chambers are designed to cope with background counting rates due to neutrons and gamma-rays of up to about 300 kHz per tube which will be exceeded for LHC luminosities larger than the design value of 10-34 per square cm and second. Decreasing the drift-tube diameter to 15 mm while keeping the other parameters, including the gas gain, unchanged reduces the maximum drift time from about 700 ns to 200 ns and the drift-tube occupancy by a factor of 7. New drift-tube chambers for the endcap regions of the ATLAS muon spectrometer have been designed. A prototype chamber consisting of 12 times 8 l...

  12. In vitro evaluation of the method effectiveness to limit inflation pressure cuffs of endotracheal tubes

    Directory of Open Access Journals (Sweden)

    Rafael de Macedo Coelho

    2016-04-01

    Full Text Available ABSTRACT BACKGROUND AND OBJECTIVE: Cuffs of tracheal tubes protect the lower airway from aspiration of gastric contents and facilitate ventilation, but may cause many complications, especially when the cuff pressure exceeds 30 cm H2O. This occurs in over 30% of conventional insufflations, so it is recommended to limit this pressure. In this study we evaluated the in vitro effectiveness of a method of limiting the cuff pressure to a range between 20 and 30 cm H2O. METHOD: Using an adapter to connect the tested tube to the anesthesia machine, the relief valve was regulated to 30 cm H2O, inflating the cuff by operating the rapid flow of oxygen button. There were 33 trials for each tube of three manufacturers, of five sizes (6.5-8.5, using three times inflation (10, 15 and 20 s, totaling 1485 tests. After inflation, the pressure obtained was measured with a manometer. Pressure >30 cm H2O or <20 cm H2O were considered failures. RESULTS: There were eight failures (0.5%, 95% CI: 0.1-0.9%, with all by pressures <20 cm H2O and after 10 s inflation (1.6%, 95% CI: 0 5-2.7%. One failure occurred with a 6.5 tube (0.3%, 95% CI: -0.3 to 0.9%, six with 7.0 tubes (2%, 95% CI: 0.4-3.6%, and one with a 7.5 tube (0.3%, 95% CI: -0.3 to 0.9%. CONCLUSION: This method was effective for inflating tracheal tube cuffs of different sizes and manufacturers, limiting its pressure to a range between 20 and 30 cm H2O, with a success rate of 99.5% (95% CI: 99.1-99.9%.

  13. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  14. Nonequilibrium effects on shock-layer radiometry during earth entry.

    Science.gov (United States)

    Arnold, J. O.; Whiting, E. E.

    1973-01-01

    Radiative enhancement factors for the CN violet and N2(+) first negative band systems caused by nonequilibrium thermochemistry in the shock layer of a blunt-nosed vehicle during earth entry are reported. The results are based on radiometric measurements obtained with the aid of a combustion-driven shock tube. The technique of converting the shock-tube measurements into predictions of the enhancement factors for the blunt-body case is described, showing it to be useful for similar applications of other shock-tube measurements.

  15. Investigation of the effect of pressure increasing in condensing heat-exchanger

    Science.gov (United States)

    Murmanskii, I. B.; Aronson, K. E.; Brodov, Yu M.; Galperin, L. G.; Ryabchikov, A. Yu.; Brezgin, D. V.

    2017-11-01

    The effect of pressure increase was observed in steam condensation in the intermediate coolers of multistage steam ejector. Steam pressure increase for ejector cooler amounts up to 1.5 kPa in the first ejector stage, 5 kPa in the second and 7 kPa in the third one. Pressure ratios are equal to 2.0, 1.3 and 1.1 respectively. As a rule steam velocities at the cooler inlets do not exceed 40…100 m/s and are subsonic in all regimes. The report presents a computational model that describes the effect of pressure increase in the cooler. The steam entering the heat exchanger tears the drops from the condensate film flowing down vertical tubes. At the inlet of heat exchanger the steam flow capturing condensate droplets forms a steam-water mixture in which the sound velocity is significantly reduced. If the flow rate of steam-water mixture in heat exchanger is greater than the sound velocity, there occurs a pressure shock in the wet steam. On the basis of the equations of mass, momentum and energy conservation the authors derived the expressions for calculation of steam flow dryness degree before and after the shock. The model assumes that droplet velocity is close to the velocity of the steam phase (slipping is absent); drops do not come into thermal interaction with the steam phase; liquid phase specific volume compared to the volume of steam is neglected; pressure shock is calculated taking into account the gas-dynamic flow resistance of the tube bundle. It is also assumed that the temperature of steam after the shock is equal to the saturation temperature. The calculations have shown that the rise of steam pressure and temperature in the shock results in dryness degree increase. For calculated flow parameters the velocity value before the shock is greater than the sound velocity. Thus, on the basis of generally accepted physics knowledge the computational model has been formulated for the effect of steam pressure rise in the condensing heat exchanger.

  16. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    Science.gov (United States)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  17. Shock-hydrodynamics experiments on the Nova laser

    International Nuclear Information System (INIS)

    Miller, P.; Peyser, T.; Stry, P.; Budil, K.; Wojtowicz, D.; Burke, E.

    1995-08-01

    We have conducted shock-induced hydrodynamics experiments using the Nova laser at Lawrence Livermore National Laboratory. The laser provides a high-enthalpy source by depositing its energy (about 22 kJ) in a small gold cavity called a Hohlraum. The Hohlraum serves as a driver section, launching very strong (M ∼ 20) shocks into millimeter-scale cylindrical ''shock tubes.'' The flow is imaged radiographically by an electronic framing camera, using a laser-generated x-ray source. Several topics have been addressed with this configuration, including shock-induced mixing at density interfaces (seeded with a variety of perturbations); the development of high-speed, shaped-charge-like jets; the effects of geometry on the planarity of the generated shocks; and shock-shock interactions which develop in the flows. This paper describes the general configuration of our experiments, presents an overview of the high-speed jet work, discusses some of our findings, and compares our results with computer simulations

  18. Effect of Ovality on Maximum External Pressure of Helically Coiled Steam Generator Tubes with a Rectangular Wear

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong In; Lim, Eun Mo; Huh, Nam Su [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Choi, Shin Beom; Yu, Je Yong; Kim, Ji Ho; Choi, Suhn [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    A structural integrity of steam generator tubes of nuclear power plants is one of crucial parameters for safe operation of nuclear power plants. Thus, many studies have been made to provide engineering methods to assess integrity of defective tubes of commercial nuclear power plants considering its operating environments and defect characteristics. As described above, the geometric and operating conditions of steam generator tubes in integral reactor are significantly different from those of commercial reactor. Therefore, the structural integrity assessment of defective tubes of integral reactor taking into account its own operating conditions and geometric characteristics, i. e., external pressure and helically coiled shape, should be made to demonstrate compliance with the current design criteria. Also, ovality is very specific characteristics of the helically coiled tube because it is occurred during the coiling processes. The wear, occurring from FIV (Flow Induced Vibration) and so on, is main degradation of steam generator tube. In the present study, maximum external pressure of helically coiled steam generator tube with wear is predicted based on the detailed 3-dimensional finite element analysis. As for shape of wear defect, the rectangular shape is considered. In particular, the effect of ovality on the maximum external pressure of helically coiled tubes with rectangular shaped wear is investigated. In the present work, the maximum external pressure of helically coiled steam generator tube with rectangular shaped wear is investigated via detailed 3-D FE analyses. In order to cover a practical range of geometries for defective tube, the variables affecting the maximum external pressure were systematically varied. In particular, the effect of tube ovality on the maximum external pressure is evaluated. It is expected that the present results can be used as a technical backgrounds for establishing a practical structural integrity assessment guideline of

  19. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    Science.gov (United States)

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  20. Microstructural studies on steam oxidised Zr-2.5%Nb pressure tube under simulated LOCA condition

    International Nuclear Information System (INIS)

    Banerjee, Suparna; Sawarn, Tapan K.; Pandit, K.M.; Anantharaman, S.; Srivastava, D.; Sah, D.N.

    2013-03-01

    Study of the microstructural evolution of Zr-2.5%Nb pressure tube material of Indian Pressurized Heavy Water Reactors (PHWRs) due to steam oxidation at high temperature (in the range 500-1050°C) was carried out on pressure tube coupons. Hydrogen pick up was less than 55 ppm in the samples oxidized at temperatures up to 850°C but high (250-400 ppm) in the samples oxidized in the β phase region (900°C and above). The microstructure of the samples oxidized above the α-Zr/β-Zr transition temperature showed from the surface inwards sequentially the presence of an oxide layer, an underlying oxygen stabilized α-Zr layer and a prior β-Zr phase containing hydride precipitates. An increase in the hardness was observed near the oxide-metal interface in the coupons oxidized above 900°C, due to formation of oxygen stabilized α-Zr layer. Higher hardness was also observed in the base metal in the samples oxidized at 1000 and 1050°C (author)