WorldWideScience

Sample records for high-pressure gas-scintillation-proportional counter

  1. A primary scintillation gated high pressure position sensitive gas scintillation proportional counter (HPGSPC) for applications to x-ray astronomy

    International Nuclear Information System (INIS)

    Giarrusso, S.; Manzo, G.; Re, S.

    1985-01-01

    The authors describe a new instrument for x-ray astronomy. The instrument, based on a high pressure (5 atm.), xenon filled, position sensitive Gas Scintillation Proportional counter (HPGSPC) is expected to feature an energy resolution better than 4% at 60 keV, an angular resolution of approximately 20 arc-minutes over the full energy range (4 to 100 keV) and a field of view (FOV) of up to 30x30 degrees. A prototype flight unit of the gas cell on which the instrument is based is presently under technological development in the framework of the SAX project

  2. An integrated photosensor readout for gas proportional scintillation counters

    International Nuclear Information System (INIS)

    Lopes, J.A.M.; Santos, J.M.F. dos; Conde, C.A.N.

    1996-01-01

    A xenon gas proportional scintillation counter has been instrumented with a novel photosensor that replaces the photomultiplier tube normally used to detect the VUV secondary scintillation light. In this implementation, the collection grid of a planar gas proportional scintillation counter also functions as a multiwire proportional chamber to amplify and detect the photoelectrons emitted by a reflective CsI photocathode in direct contact with the xenon gas. This integrated concept combines greater simplicity, compactness, and ruggedness (no optical window is used) with low power consumption. An energy resolution of 12% was obtained for 59.6 keV x-rays

  3. Light yield as a function of gas pressure and electric field in gas scintillation proportional counters

    International Nuclear Information System (INIS)

    Favata, F.; Smith, A.; Bavdaz, M.; Kowalski, T.Z.

    1990-01-01

    We have investigated the dependence of the scintillation light output for Xe on gas pressure in the range 0.14-1.4 bar, using a gas scintillation proportional counter, in different experimental configurations. We have compared our work with that of previous workers, and have shown that both our results and the results of previous authors are compatible with the intrinsic light output being independent of gas pressure, with any observed dependence being a pure experimental effect due to the spectral response of the various UV detectors used. We also use our experimental data for determining the ratio between the cross section of the Xe 2 ** +Xe→Xe 2 * +Xe reaction and the rate of the Xe 2 ** →2Xe+γ UV reaction. (orig.)

  4. Gas scintillation proportional counters for x-ray synchrotron applications

    International Nuclear Information System (INIS)

    Smith, A.; Bavdaz, M.

    1992-01-01

    Gas scintillation proportional counters (GSPCs) as x-ray detectors provide some advantages and disadvantages compared with proportional counters. In this paper the various configurations of xenon filled GSPC are described including both imaging and nonimaging devices. It is intended that this work be used to configure a GSPC for a particular application and predict its general performance characteristics. The general principles of operation are described and the performance characteristics are then separately considered. A high performance, imaging, driftless GSPC is described in which a single intermediate window is used between the PMT and gas cell

  5. Risetime discrimination applied to pressurized Xe gas proportional counter for hard x-ray detection

    International Nuclear Information System (INIS)

    Fujii, Masami; Doi, Kosei

    1978-01-01

    A high pressure Xe proportional counter has been developed for hard X-ray observation. This counter has better energy-resolving power than a NaI scintillation counter, and the realization of large area is relatively easy. This counter is constructed with a cylindrical aluminum tube, and this tube can be used at 40 atmospheric pressure. The detection efficiency curves were obtained in relation to gas pressure. It is necessary to reduce impurities in the Xe gas to increase the energy-resolving power of the counter. The increase of gas pressure made the resolving power worse. The characteristics of the counter were stable for at least a few months. The wave form discrimination was applied to reduce the background signals such as pulses caused by charged particles and gamma-ray. This method has been used for normal pressure counter, and in the present study, it was applied for the high pressure counter. It was found that the discrimination method was able to be applied to this case. (Kato, T.)

  6. Energy resolution limitations in a gas scintillation proportional counter

    International Nuclear Information System (INIS)

    Simons, D.G.; de Korte, P.A.J.; Peacock, A.; Bleeker, J.A.M.

    1985-01-01

    An investigation is made of the factors limiting the energy resolution of a gas scintillation proportional counter (GSPC). Several of these limitations originate in the drift region of such a counter and data is presented, giving a quantitative description of those effects. Data is also presented of a GSPC without a drift region, that therefore largely circumvents most of those degrading factors. The results obtained so far indicate that in that detector the limitation to the resolution is most probably due to cleanliness of the gas. Further research is underway in order to assess quantitatively the limiting factors in such a driftless GSPC

  7. A pill-box design, flow type, gas scintillation proportional counter

    International Nuclear Information System (INIS)

    Garg, S.P.; Sharma, R.C.; Bhati, S.; Somasundaram, S.

    1982-01-01

    A gas scintillation proportional counter of 'pill-box' design operated with argon + 2.5% nitrogen gas in continuous flow, has been developed. An energy resolution of 1.6% is obtained for 239 Pu α-particles emitted from a mixed nuclide source of 239 Pu- 241 Am- 244 Cm and injected into the counter parallel to the anode. The risetime of the scintillation pulse is found to be less than 0.5 μs. Measurements have been made of charge and light gain factors as a function of anode voltage. It is found that for a given anode voltage, the scintillation pulse amplitude increases sharply with the addition of nitrogen to argon and reaches a maximum at about 2.5% and then decreases slowly, whereas the charge pulse amplitude reduces monotonically. Nitrogen improvement factors with the addition of 2.5% nitrogen to argon are found to be different for two photomultipliers with different photocathode responses. The improvement in energy resolution as a result of addition of nitrogen to argon is discussed. Comments are made on the intrinsic energy resolution capabilities of such a counter. (orig.)

  8. Proportional gas scintillation detectors and their applications

    International Nuclear Information System (INIS)

    Petr, I.

    1978-01-01

    The principle is described of a gas proportional scintillation detector and its function. Dependence of Si(Li) and xenon proportional detectors energy resolution on the input window size is given. A typical design is shown of a xenon detector used for X-ray spetrometry at an energy of 277 eV to 5.898 keV and at a gas pressure of 98 to 270 kPa. Gas proportional scintillation detectors show considerable better energy resolution than common proportional counters and even better resolution than semiconductor Si(Li) detectors for low X radiation energies. For detection areas smaller than 25 mm 2 Si(Li) detectors show better resolution, especially for higher X radiation energies. For window areas 25 to 190 mm 2 both types of detectors are equal, for a window area exceeding 190 mm 2 the proportional scintillation detector has higher energy resolution. (B.S.)

  9. Feasibility studies of high-pressureproportional counter for absolute activity measurement

    International Nuclear Information System (INIS)

    Hino, Y.; Kawada, Y.

    1988-01-01

    A high-pressure proportional counter system is constructed. The high pressure 4πβ counter system constructed is made of aluminum and is divided into two 2π counters. The gas pressure is controlled with a pressure regulator and very fine leak valves to keep the balance of a stable pressure and constant flow rate. Investigation of characteristics of th counter shows that there is an almost linear relation between voltage and pressure. The linearlity of gas gain of this counter to the electron energies is measured with different gas pressures. Quite good linear gas multiplication is obtained at 0.9 MPa. Another investigation is made of application of to activity measurement of 109 Cd. When the gas pressure is over 0.5 MPa, the proportion of collected conversion electrons to absolute activity comes to a constant value of 96 %. This is quite good agreement with the decay data of 96.4 % conversion electron emission rate. The study indicated many excellent features for activity measurement. Especially the efficiency variation technique is good for automatic data acquisition with a programmable high voltage supplier. Moreover, since it is possible to obtain absolute activity with only one sample, it will be quite useful for limited samples experiments. (N.K.)

  10. Investigations of X-ray response of single wire anode Ar-N2 flow type gas scintillation proportional counters

    International Nuclear Information System (INIS)

    Garg, S.P.; Sharma, R.C.

    1984-01-01

    The X-ray response of single wire anode gas scintillation proportional counters of two different geometries operated with argon+nitrogen gases in continuous flow has been investigated with wire anodes of diameters 25 μm to 1.7 mm. An energy resolution of 19% is obtained for 5.9 keV X-rays entering the counter perpendicular to the anode in pill-box geometry with 25 μm diameter anode. With cylindrical geometry counters energy obtained at 5.9 keV are 18%, 24% and 33% for 50 μm, 0.5 mm and 1.7 mm diameter anodes respectively. An analysis of the observed resolution shows that the contribution from photon counting statistics to the relative variance of scintillation pulses even for X-rays in Ar-N 2 single wire anode gas scintillation proportional counters is small and is not a limiting factor. The energy resolution with thicker anodes, where the contribution from the variance of the charge multiplication factor also has been minimised, is found to deteriorate mainly by the interaction in the scintillation production region. Comments are made on the possibility of improvement in energy resolution by suppression of pulses due to such interactions with the help of the pulse risetime discrimination technique. (orig.)

  11. The performance of the curved grid gas proportional scintillation counter in X-ray spectrometry

    International Nuclear Information System (INIS)

    Santos, J.M.F. dos; Bento, A.C.S.S.M.; Conde, C.A.N.

    1994-01-01

    The performance of a curved grid gas proportional scintillation counter filled with xenon at 1100 mbar and having a 25 mm diameter window is evaluated for X-rays in the 1-11 keV energy range. Energy resolutions of 8.0% were obtained for a 5.9 keV parallel X-ray beam entering the detector through the full size window. The variation of the energy resolution with the X-ray energy is studied and X-ray fluorescence spectra for samples like industrial coal, painted porcelain and car lubrication oil, are presented. (orig.)

  12. A gas proportional scintillation counter for use in large area detector systems without photomultipliers

    International Nuclear Information System (INIS)

    Baruch, J.E.F.; Brooke, G.; Kellermann, E.W.; Bateman, J.E.; Connolly, J.F.

    1978-03-01

    The properties of a prototype gas proportional scintillation detector, for use in large numbers, are examined. The detector is designed to focus a light signal, which is proportional to ionisation loss, into a fibre optic lightguide. It is shown that a single charged particle traversing the detector produces enough light out of the lightguide to be seen by a TV camera. Problems of lifetime and large scale detector production are discussed. Properties of saturation, linearity, position sensitivity, and operating limits are examined. It is shown that an array of gas proportional scintillation detectors when used with fibre optic lightguides and TV camera readout could offer significant improvements in cost per area and reliability over a scintillator plus photomultiplier or a wire proportional chamber array. (author)

  13. A gas proportional scintillation counter for use in large area detector systems without photomultipliers

    International Nuclear Information System (INIS)

    Baruch, J.E.F.; Brooke, G.; Kellerman, E.W.; Bateman, J.E.; Connolly, J.F.

    1979-01-01

    The properties of a prototype gas proportional scintillation (GPS) detector module are described. The module (25X25X14cm 3 ) is intended to form the basic unit of large area (up to approximately 100 m 2 ) calorimetric cosmic ray burst detector. Ionisation from particle tracks in the module is collected onto a point electrode where the GPS signal is generated. A concave mirror focusses this point source onto the end of a fibre optic light guide. In the proposed large area detector these fibres are brought together onto a low light level TV camera which performs the readout. The prototype module has demonstrated an adequate light output for the detection of single muons by such a readout system and also permitted the investigation of the main operating parameters (gas mixture, EHT, pressure, etc) and operational requirements such as proportionality and long term stability. (Auth.)

  14. Low-pressure, multistep, multiwire proportional counter for the time-of-flight isochronous spectrometer

    International Nuclear Information System (INIS)

    Vieira, D.J.

    1985-01-01

    A low-pressure, multistep, multiwire proportional counter (MSMWPC) has been developed for the characterization and testing of the time-of-flight isochronous (TOFI) spectrometer and its associated secondary-beam transport line. This type of counter was selected because of its high sensitivity, large dynamic range, and good position (0.2 mm FWHM) and timing (180 ps FWHM) resolution. Furthermore, because the counter operates at low gas pressures (1-10 torr) and high electric-field strengths, which enable short collection times, it can be used as a transmission counter with thin gas-isolation windows and it can operate at high counting rates. Here the authors discuss the basic operating principle of the MSMWPC, describe the technical details of the detector and signal processing, and report on the performance they have measured for alpha particles and fission fragments

  15. A gaseous scintillation counter filled with He3 for neutron spectrometry

    International Nuclear Information System (INIS)

    Baldin, S.A.; Matveev, V.V.

    1962-01-01

    The paper describes a gas plant and gaseous scintillation counter, and gives the results of experiments on the recording and spectrometry of neutron beams using a gaseous scintillation counter filled with a mixture of 10% xenene and 90% helium-3 at an overall pressure of 20 ata. Data are given on the design of the gas plant, which makes it possible to operate the counter continuously over long periods of time, as well as providing the required gas mixtures at overall pressures of up to 60 atm and ensuring constant freedom of the gas from contamination. In addition, the paper presents the results of research on the counter's energy resolution and linearity at different energy levels and indicates its efficiency in gamma fields of intensity up to 3 r/h; the possibility of extending the working energy-range of gaseous scintillation counters filled with helium-3 is also considered. (author) [fr

  16. The x-ray spectrum of the Cygnus Loop measured with Gas Scintillation Proportional Counters

    International Nuclear Information System (INIS)

    Tsunemi, Hiroshi; Manabe, Makoto; Yamashita, Koujun; Koyama, Katsuji.

    1988-01-01

    We report the results of an observation of the whole Cygnus Loop performed with the Gas Scintillation Proportional Counters (GSPC) on board the Tenma satellite. Line emissions around 1.9 keV and 2.5 keV, probably originating from silicon and sulfur Kα line blends, were detected. The continuum spectrum in the energy range 1-3 keV can be represented by a thermal bremsstrahlung spectrum with a temperature of 7 x 10 6 K. This is the highest value for the Cygnus Loop reported so far. The Tenma data were also combined with those from a sounding rocket flight performed previously, in which a similar detector system was employed. Thus, we obtain a wide-band X-ray spectrum for the whole Cygnus Loop with the best energy resolution reported so far. The combined data could not be fitted by a single temperature component in the thermal collisional ionization equilibrium (CIE) model or a single-temperature nonequilibrium ionization (NEI) model. A good fit is obtained if at least two temperature components are included in both the CIE and NEI models. However, only the NEI model allows a self consistent interpretation. Taking into account the emission measures for both components, we can conclude that the low-temperature, high-density component arises mainly from the shell region and that the high-temperature, low-density component arises from the interior of the shell. (author)

  17. Preliminary results from a high-pressure imaging spectroscopic proportional counter

    International Nuclear Information System (INIS)

    Hall, C.J.; Bazzano, A.; Lewis, R.A.; Parker, B.; Ubertini, P.; Worgan, J.S.

    1992-01-01

    A new type of high-pressure proportional counter, with both spatial resolution and spectroscopic capabilities is being jointly developed by the Istituto di Astrofisica Spaziale (CNR), Frascati, Italy and the SERC Daresbury Laboratory, Warrington, UK. The characteristics of the detector can be optimized for the particular requirement of the experiment, either for x-ray astronomy observations from space, or for the high count rate applications associated with a synchrotron light source. In its baseline configuration, the detector is filled to 5 bar with a xenon/quench gas mixture and will be sensitive over the energy range 5 keV to 150 keV (2.5 to 0.08 A). The positional resolution will range from 500 μm at the lower energies to around 1 mm at the higher end of the energy range. The current prototype has a sensitive area of 200x200 mm. The final version is hoped to have an area closer to 425x425 mm. The very small photon absorption length in the higher pressure gas allows the parallax effect, a feature of 1 atmosphere detectors, to be greatly reduced. The timing resolution (150 ns) of the detector enables both a high-rate capability and the possibility of the escape gate technique to achieve higher spectral resolution at energies > the Xe K edge. Preliminary results are presented showing the spectral and positional resolution for the prototype detector

  18. A comparison between the measurements of Kr-85 in environmental samples by liquid scintillation and proportional counters

    International Nuclear Information System (INIS)

    Heras Iniquez, M.C.; Perez Garcia, M.M.

    1983-01-01

    The most used methods for the measurement of Kr-81 beta-activity after their concentration and aisolation are the liquid scintillation counting and the proportional counter. In this work the beta activity of concentrated and aisolated Kr-85 samples measured in collaboration with the Max-Planck Institut fur Kernphyslk, Aussenstelle Freiburg. Samples taken both In Madrid and Frelburg are measured by proportional counters in the Max-Planck lnstitut, Freibury and by liquid scintillation counting in JEN, Madrid. The comparison of both measurements do not show appreciable discrepancy between the results obtained to both techniques. (Author)

  19. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Gómez-Cadenas, J J; Borges, F I G; Conde, C A N; Fernandes, L M P; Freitas, E D C; Cebrián, S; Dafni, T; Gómez, H; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.

  20. Development of proportional counters using photosensitive gases and liquids

    International Nuclear Information System (INIS)

    Anderson, D.F.

    1984-10-01

    An introduction to the history and to the principle of operation of wire chambers using photosensitive gases and liquids is presented. Their use as light sensors coupled to Gas Scintillation Proportional Counters and BaF 2 , as well as their use in Cherenkov Ring imaging, is discussed in some detail. 42 references, 21 figures

  1. Design of a hybrid gas proportional counter with CdTe guard counters for sup 1 sup 4 C dating system

    CERN Document Server

    Zhang, L; Hinamoto, N; Nakazawa, M; Yoshida, K

    2002-01-01

    Nowadays uniform, low-cost and large-size compound semiconductor detectors are available up to several square centimeters. We are trying to combine this technology with conventional gas detectors to upgrade an anticoincidence type proportional counter, Oeschger-type thin wall counter of 2.2 l, used for a sup 1 sup 4 C dating facility at the University of Tokyo. In order to increase the ratio of the signal to the background for smaller quantity of samples less than 1 g, an effective approach is to minimize the detector volume at higher gas pressure. However, the anticoincidence function suffers from such a small volume. Therefore we designed a new active wall gas counter of 0.13 l counting volume using CdTe compound semiconductor detectors as the wall of the gas proportional counter to perform anticoincidence. Simulation study showed that at noise thresholds less than 70 keV, the wall counters can reject above 99.8% of events arising from outer gamma rays. Measured noise levels of CdTe detectors were smaller t...

  2. Demand-type gas supply system for rocket borne thin-window proportional counters

    Science.gov (United States)

    Acton, L. W.; Caravalho, R.; Catura, R. C.; Joki, E. G.

    1977-01-01

    A simple closed loop control system has been developed to maintain the gas pressure in thin-window proportional counters during rocket flights. This system permits convenient external control of detector pressure and system flushing rate. The control system is activated at launch with the sealing of a reference volume at the existing system pressure. Inflight control to plus or minus 2 torr at a working pressure of 760 torr has been achieved on six rocket flights.

  3. Nitrogen large area proportional counter with gas regeneration

    International Nuclear Information System (INIS)

    Leidner, L.; Sadri, E.

    1984-10-01

    A nitrogen large area proportional chamber with gas regeneration is introduced to measure alpha and beta/gamma activites. In contrast to the flow counters used till now the new detector is independent of an external gas supply. The gas amplification factor of nitrogen keeps constant up to an impurity of 2% of O 2 . Oxygen diffusing through unavoidable leakages into the counting gas is removed by an activated catalyzer using low temperature copper oxidation. Humidty is adsorbed by a molecular sieve. The closed counter consists of three components: the actual detector, a gas purification cartridge and a gas circulating pump. Finally, the report describes long run experiments being carried out with prototypes. (orig./HP) [de

  4. High-pressure 3He gas scintillation neutron spectrometer

    International Nuclear Information System (INIS)

    Derzon, M.S.; Slaughter, D.R.; Prussin, S.G.

    1985-10-01

    A high-pressure, 3 He-Xe gas scintillation spectrometer has been developed for neutron spectroscopy on D-D fusion plasmas. The spectrometer exhibits an energy resolution of (121 +- 20 keV) keV (FWHM) at 2.5 MeV and an efficiency of (1.9 +- 0.4) x 10 -3 (n/cm 2 ) -1 . The contribution to the resolution (FWHM) from counting statistics is only (22 +- 3 keV) and the remainder is due predominantly to the variation of light collection efficiency with location of neutron events within the active volume of the detector

  5. Properties of high pressure nitrogen-argon and nitrogen-xenon gas scintillators

    International Nuclear Information System (INIS)

    Tornow, W.; Huck, H.; Koeber, H.J.; Mertens, G.

    1976-01-01

    Investigations of scintillation light output and energy resolution have been made at pressures up to 90 atm in gaseous mixtures of nitrogen with both argon and xenon by stopping of 210 Po-alpha particles. In the absence of a wavelength shifter, the N 2 -Ar mixtures gave a maximum pulse height at a ratio of nitrogen to argon partial pressures rsub(N 2 /Ar) approximately =0.2. However, when using the wavelength shifter diphenyl stilbene (DPS), the measured light output was much larger at lower values of rsub(N 2 /Ar), whereas for rsub(N 2 /Ar)>0.2 pulse height and energy resolution of the studied N 2 -Ar mixtures were roughly indentical with and without DPS. The N 2 -Xe gas mixtures exhibited a similar dependence of pulse height and energy resolution to that of the N 2 -Ar mixtures employing DPS, but the pulse height was larger by a factor of about 7. A 40 atm 50% N 2 -50% Xe gas scintillator showed an energy resolution ΔE/E=0.25, while an 80 atm 75% N 2 -25% Xe scintillator gave ΔE/E=0.6. The pulse height from the 80 atm N 2 -Xe scintillator was smaller by a factor of about 240 than the pulse height from a 20 atm pure Xe gas scintillator, but larger by a factor of about 20 than the pulse height from a 75 atm pure N 2 gas scintillator. The N 2 -Xe mixtures showed a remarkable increase of light output as the temperature of the gas was descreased. (Auth.)

  6. A new type of a gas scintillating chamber

    International Nuclear Information System (INIS)

    Khoury, H.J.

    1981-01-01

    In a previous paper (H.J. Khoury - thesis - 1978) the author has described a new type of a gas scintillating chamber, in which the light emitted by excitation of the gas, due to the passage of a charged incoming particle, has its intensity increased by the action of an applied electric field. New experiments are described which contribute to a deeper understanding of the phenomena involved in the scintillating chamber due to the nature of the gas, the electric field and spatial distribution, etc.. The behaviour of the gas scintillation counter is studied both in the proportional region and in the region of limited proportionality. It is shown that by the use of a suitable gas mixture and applied electric field, the resolution of an alpha particle spectrum is considerably increased and values up to 0,9% can be attained. (Author) [pt

  7. High pressure gas scintillation drift chambers with wave-shifter fiber readout

    International Nuclear Information System (INIS)

    Parsons, A.; Edberg, T.K.; Sadoulet, B.; Weiss, S.; Wilkerson, J.; Hurley, K.; Lin, R.P.

    1990-01-01

    The authors present results from a prototype high pressure xenon gas scintillation drift chamber using a novel wave-shifter fiber readout scheme. They have measured the primary scintillation light yield to be one photon per 76 ± 12 eV deposited energy. They present initial results of our chamber for the two-interaction separation (< 4 mm in the drift direction, ∼ 7 mm orthogonal to the drift); for the position resolution (< 400 μm rms in the plane orthogonal to the drift direction); and for the energy resolution (ΔE/E < 6% FWHM at 122 keV)

  8. Some aspects of the use of proton recoil proportional counters for fast neutron personnel dosimeters

    International Nuclear Information System (INIS)

    Yule, T.J.; Bennett, E.F.

    1984-01-01

    Gas-filled proton recoil proportional counters have been used extensively for the measurement of neutron spectra in degraded fission-spectrum environments. Some considerations relating to the use of these counters for personnel dosimetry are here described. High sensitivity and good accuracy in the determination of dose-equivalent can be obtained if relatively high pressure hydrogen-filled proportional counters are used as the active element in a dosimeter system

  9. Proportional counter end effects eliminator

    International Nuclear Information System (INIS)

    Meekins, J.F.

    1976-01-01

    An improved gas-filled proportional counter which includes a resistor network connected between the anode and cathode at the ends of the counter in order to eliminate ''end effects'' is described. 3 Claims, 2 Drawing Figures

  10. Position sensitive proportional counter for measurement of tritium labelled gas movement

    International Nuclear Information System (INIS)

    Mori, Chizuo; Nakamoto, Makihiko; Uritani, Akira; Watanabe, Tamaki

    1984-01-01

    A position sensitive proportional counter of a charge division type with a single resistive anode wire was constructed for the measurement of the movement of 3 H labelled gas which is flowing or diffusing in a pipe. The introduction of resistors between the anode wire and pre-amplifiers brought a uniform detection efficiency for 3 H β-rays throughout the counter. The position resolution was 3.1 mm FWHM. Detection efficiency was almost 100% uniformly over about 700 mm in the total anode length of 740 mm. The movement of 3 H labelled gas could be measured effectively. (author)

  11. Tritium assay in hydrogen gas by proportional counter with magnetic tape recording

    International Nuclear Information System (INIS)

    Grabczak, J.

    1982-03-01

    Analytical procedure is discussed concerning routine tritium activity determination in water samples based on hydrogen production from the water sample and radioactivity measurement by gas proportional counting. The method was found to be fully comparable to the widely adopted technique of liquid scintillation counting with electrolytic enrichment

  12. X-ray polarimetry with a conventional gas proportional counter through rise-time analysis

    CERN Document Server

    Hayashida, K; Tsunemi, H; Torii, K; Murakami, H; Ohno, Y; Tamura, K

    1999-01-01

    We have performed an experiment on the signal rise time of a Xe gas proportional counter using a polarized X-ray beam of synchrotron orbital radiation with energies from 10 to 40 keV. When the counter anode is perpendicular to the electric vector of the incident X-ray photons, the average rise time becomes significantly longer than that for the parallel case. This indicates that the conventional gas proportional counters are useful for X-ray polarimetry. The moderate modulation contrast of this rise-time polarimeter (M=0.1 for 10 keV X-rays and M=0.35 for 40 keV X-rays), with capability of the simultaneous measuring X-ray energies and the timing, would be useful for applications in X-ray astronomy and in other fields.

  13. Proportional counter system for radiation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, M; Okudera, S

    1970-11-21

    A gas such as Xe or Kr employed in counter tubes is charged into the counter tube of a gas-flow type proportional counter for radiation measurement and into a vessel having a volume larger than that of the counter tube. The vessel communicates with the counter tube to circulate the gas via a pump through both the vessel and tube during measurement. An organic film such as a polyester synthetic resin film is used for the window of the counter tube to measure X-rays in the long wavelength range. Accordingly, a wide range of X-rays can be measured including both long and short wavelengths ranges by utilizing only one counter tube, thus permitting the gases employed to be effectively used.

  14. High-pressure 3He-Xe gas scintillators for simultaneous detection of neutrons and gamma rays over a large energy range

    International Nuclear Information System (INIS)

    Tornow, W.; Esterline, J.H.; Leckey, C.A.; Weisel, G.J.

    2011-01-01

    We report on features of high-pressure 3 He-Xe gas scintillators which have not been sufficiently addressed in the past. Such gas scintillators can be used not only for the efficient detection of low-energy neutrons but at the same time for the detection and identification of γ-rays as well. Furthermore, 3 He-Xe gas scintillators are also very convenient detectors for fast neutrons in the 1-10 MeV energy range and for high-energy γ-rays in the 7-15 MeV energy range. Due to their linear pulse-height response and self calibration via the 3 He(n,p) 3 H reaction, neutron and γ-ray energies can easily be determined in this high-energy regime.

  15. Interfacing a gas proportional counter with a mass spectrometer: Simultaneous display of GC/MS and radiocarbon data

    International Nuclear Information System (INIS)

    Peterson, G.S.; Laemmerhirt, D.F.; Weaver, A.

    1985-01-01

    To facilitate the location of pesticides and monitor their metabolism in environmental and biological systems, carbon-14 labelling of the parent compound is used. Detection of the radiolabel is achieved using a gas proportional counter, while identification of the labelled components is most easily accomplished with mass spectrometry. However, when these two operations are performed separately, correlation of the information is awkward, at best. Since each is a destructive detector, simultaneous monitoring of the outposts requires an effluent splitter. The complete system consists of a variable splitter, which allows control of the ratio of the GC effluent to the two instruments, and signal processing circuitry for simultaneous recording and storage of radiocarbon and mass spectral data. Modifications to a Finnigan GC/MS and Gas Proportional Counter included a high temperature GC effluent splitter with glass-lined connecting tubing, and a data interface, including analog to digital and serial to parallel conversions with optical isolation between the gas proportional counter and the computer. The splitter restricted the flow to the mass spectrometer, preventing flow completely in the closed position. The split was adjusted to maximize flow to the mass spectrometer using the vacuum as a rough guide (1.0 x 10 -5 torr in EI, 7.5 x 10 -5 torr in CI). A heated transfer line between the transfer oven and gas proportional counter prevented condensation of eluting components prior to radiocarbon detection

  16. High-pressure {sup 3}He-Xe gas scintillators for simultaneous detection of neutrons and gamma rays over a large energy range

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W., E-mail: tornow@tunl.duke.edu [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Esterline, J.H. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Leckey, C.A. [Department of Physics, The College of William and Mary, Williamsburg, VA 23187 (United States); Weisel, G.J. [Department of Physics, Penn State Altoona, Altoona, PA 16601 (United States)

    2011-08-11

    We report on features of high-pressure {sup 3}He-Xe gas scintillators which have not been sufficiently addressed in the past. Such gas scintillators can be used not only for the efficient detection of low-energy neutrons but at the same time for the detection and identification of {gamma}-rays as well. Furthermore, {sup 3}He-Xe gas scintillators are also very convenient detectors for fast neutrons in the 1-10 MeV energy range and for high-energy {gamma}-rays in the 7-15 MeV energy range. Due to their linear pulse-height response and self calibration via the {sup 3}He(n,p){sup 3}H reaction, neutron and {gamma}-ray energies can easily be determined in this high-energy regime.

  17. Multiple scattering effects in fast neutron polarization experiments using high-pressure helium-xenon gas scintillators as analyzers

    International Nuclear Information System (INIS)

    Tornow, W.; Mertens, G.

    1977-01-01

    In order to study multiple scattering effects both in the gas and particularly in the solid materials of high-pressure gas scintillators, two asymmetry experiments have been performed by scattering of 15.6 MeV polarized neutrons from helium contained in stainless steel vessels of different wall thicknesses. A monte Carlo computer code taking into account the polarization dependence of the differential scattering cross sections has been written to simulate the experiments and to calculate corrections for multiple scattering on helium, xenon and the gas containment materials. Besides the asymmetries for the various scattering processes involved, the code yields time-of-flight spectra of the scattered neutrons and pulse height spectra of the helium recoil nuclei in the gas scintillator. The agreement between experimental results and Monte Carlo calculations is satisfactory. (Auth.)

  18. Improvement of a gas scintillation proportional counter

    International Nuclear Information System (INIS)

    Luo Zhiping; Liu Liye; Ma Jizeng; Chen Baowei; Iimoto, Takeshi; Kosako, Toshiso

    2008-01-01

    A prototype GSPC without the gas purification system was developed in China Institute for Radiation Protection (CIRP). Xenon filled GSPC has many advantages, including high energy resolution, large detection area, ability for implementing position sensitive detection, etc. It may find a wide application in low energy X-ray and γ-ray fields, e.g., astronomy X-ray detection, medical imaging. Further applications in neutron and charged heavy particle detection are also possible. Several tests for 241 Am and 55 Fe have been carried out to check out its preliminary performance. Currently the energy resolution is still far from expectation, nevertheless, the concept is proved to be promising and the experimental results suggest the way for further improvements. The possible ways for improvement of the detector performance are discussed in conclusion. This work was funded by National Natural Science Foundation of China. (author)

  19. Comparative measurements between a Li-6 glass and a He-3 high-pressure gas scintillator

    International Nuclear Information System (INIS)

    Priesmeyer, H.G.; Fischer, P.; Harz, U.; Soldner, B.

    1983-01-01

    The He-3 high-pressure gas scintillation neutron detector commercially available as LND 800, has been compated to a Li-6 glass scintillator type NE 912. (n,γ) pulse height discrimination capabilities and neutron detection efficiencies have been determined. The objective of these measurements was to try to improve the Kiel Fast-Chopper TOF detector system by using a gasscintillator, which could cover the neutron beam geometry and by which gamma ray background contributions could be reduced. The time response always meets the requirements of a chopper experiment, but the neutron detection efficiency of the Li-6 glasses now used had to be maintained. (orig./HP) [de

  20. PEP quark search proportional chambers

    Energy Technology Data Exchange (ETDEWEB)

    Parker, S I; Harris, F; Karliner, I; Yount, D [Hawaii Univ., Honolulu (USA); Ely, R; Hamilton, R; Pun, T [California Univ., Berkeley (USA). Lawrence Berkeley Lab.; Guryn, W; Miller, D; Fries, R [Northwestern Univ., Evanston, IL (USA)

    1981-04-01

    Proportional chambers are used in the PEP Free Quark Search to identify and remove possible background sources such as particles traversing the edges of counters, to permit geometric corrections to the dE/dx and TOF information from the scintillator and Cerenkov counters, and to look for possible high cross section quarks. The present beam pipe has a thickness of 0.007 interaction lengths (lambdasub(i)) and is followed in both arms each with 45/sup 0/ <= theta <= 135/sup 0/, ..delta..phi=90/sup 0/ by 5 proportional chambers, each 0.0008 lambdasub(i) thick with 32 channels of pulse height readout, and by 3 thin scintillator planes, each 0.003 lambdasub(i) thick. Following this thin front end, each arm of the detector has 8 layers of scintillator (one with scintillating light pipes) interspersed with 4 proportional chambers and a layer of lucite Cerenkov counters. Both the calculated ion statistics and measurements using He-CH/sub 4/ gas in a test chamber indicate that the chamber efficiencies should be >98% for q=1/3. The Landau spread measured in the test was equal to that observed for normal q=1 traversals. One scintillator plane and thin chamber in each arm will have an extra set of ADC's with a wide gate bracketing the normal one so timing errors and tails of earlier pulses should not produce fake quarks.

  1. A nuclear proportional counter

    International Nuclear Information System (INIS)

    1973-01-01

    The invention relates to a nuclear proportional counter comprising in a bulb filled with a low-pressure gas, a wire forming an anode and a cathode, characterized in that said cathode is constituted by two plane plates parallel to each other and to the anode wire, and in that two branches of a circuit are connected to the anode wire end-portions, each branch comprising a pre-amplifier, a measuring circuit consisting of a differentiator-integrator-differentiator amplifier and a zero detector, one of the branches comprising an adjustable delay circuit, both branches jointly attacking a conversion circuit for converting the pulse duration into amplitudes said conversion circuit being followed by a multi-channel analyzer, contingently provided with a recorder [fr

  2. Comprehensive applications of the gas flow proportional counters for radiological surveillance

    International Nuclear Information System (INIS)

    Babu, D.A.R.; Raman, Anand; Ashokkumar, P.; Sharma, D.N.

    2008-01-01

    Gas Flow Proportional Counters (GFPC) have been developed indigenously for various radiation protection applications. These detectors can be fabricated for 2 inches diameter filter paper sample counting applications to large area (∼1500 cm 2 ) detectors for surface contamination applications. Thin entrance windows allow non penetrating type of radiations like alpha and low energy beta particles, Efficiencies (for alpha and beta radiations) are comparable to conventional detectors used to measure these radiations. Poor gamma efficiency ( 2 /γ ratio, a high figure of merit and enables efficient gamma background rejection. These detectors are quite suitable for Indian environmental conditions. Three systems have been developed and successfully incorporated in to the radiation surveillance program at various nuclear facilities. The systems based on GFPC detectors include: a) Multiple sample gross alpha counting system; b) Laundry monitoring system; c) Alpha hand contamination monitoring system. The first of these enables simultaneous gross alpha counting of five air activity filter paper samples. The area of the detector surface is optimized to cover the 2 inches sized filter paper samples routinely used for the purpose. Five numbers of GFPC 's are arranged sequentially coupled to five individual amplifiers - micro controller modules to process the signal from the five counters. The laundry monitor which is micro controller based system consists of four large area multiwire GFPC detectors (700 cm 2 sensitive area) used to monitor alpha contamination of decontaminated laundry, Each detector uses a charge sensitive preamplifier coupled to I 2 C counter. The alpha hand monitoring system consists of four large area multiwire gas flow proportional detectors (330 cm 2 sensitive area each). A micro controller-based module is employed to initiate the counting process automatically when the hands are inserted in to the suitably designed window slots and provides audio and

  3. {sup 10}B multi-grid proportional gas counters for large area thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, K. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, T. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Birch, J. [Linköping University, SE-581, 83 Linköping (Sweden); Buffet, J. C.; Correa, J. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Hall-Wilton, R. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Hultman, L. [Linköping University, SE-581, 83 Linköping (Sweden); Höglund, C. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Linköping University, SE-581, 83 Linköping (Sweden); Guérard, B., E-mail: guerard@ill.fr [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Jensen, J. [Linköping University, SE-581, 83 Linköping (Sweden); Khaplanov, A. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Kirstein, O. [Linköping University, SE-581, 83 Linköping (Sweden); Piscitelli, F.; Van Esch, P. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Vettier, C. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden)

    2013-08-21

    {sup 3}He was a popular material in neutrons detectors until its availability dropped drastically in 2008. The development of techniques based on alternative convertors is now of high priority for neutron research institutes. Thin films of {sup 10}B or {sup 10}B{sub 4}C have been used in gas proportional counters to detect neutrons, but until now, only for small or medium sensitive area. We present here the multi-grid design, introduced at the ILL and developed in collaboration with ESS for LAN (large area neutron) detectors. Typically thirty {sup 10}B{sub 4}C films of 1 μm thickness are used to convert neutrons into ionizing particles which are subsequently detected in a proportional gas counter. The principle and the fabrication of the multi-grid are described and some preliminary results obtained with a prototype of 200 cm×8 cm are reported; a detection efficiency of 48% has been measured at 2.5 Å with a monochromatic neutron beam line, showing the good potential of this new technique.

  4. Scintillation counter based radiation dosimeter

    International Nuclear Information System (INIS)

    Shin, Jeong Hyun

    2009-02-01

    The average human exposure per year is about 240mrem which is come from Radon and human body and terrestrial and cosmic radiation and man-made source. Specially radiation exposure through air from environmental radiation sources is 80mrem/yr(= 0.01mR/hr) which come from Terrestrial and cosmic radiation. Radiation dose is defined as energy deposit/mass. There are two major methods to detect radiation. First method is the energy integration using Air equivalent material like GM counter wall material. Second method is the spectrum to dose conversion method using NaI(Tl), HPGe. These two methods are using generally to detect radiation. But these methods are expensive. So we need new radiation detection method. The research purpose is the development of economical environmental radiation dosimeter. This system consists of Plastic/Inorganic scintillator and Si photo-diode based detector and counting based circuitry. So count rate(cps) can be convert to air exposure rate(R/hr). There are three major advantages in this system. First advantages is no high voltage power supply like GM counter. Second advantage is simple electronics. Simple electronics system can be achieved by Air-equivalent scintillation detector with Al filter for the same detection efficiency vs E curve. From former two advantages, we can know the most important advantages of the this system. Third advantage is economical system. The price of typical GM counter is about $1000. But the price of our system is below $100 because of plastic scintillator and simple electronics. The role of scintillation material is emitting scintillation which is the flash of light produced in certain materials when they absorb ionizing radiation. Plastic scintillator is organic scintillator which is kind of hydrocarbons. The special point are cheap price, large size production(∼ton), moderate light output, fast light emission(ns). And the role of Al filter is equalizing counting efficiency of air and scintillator for

  5. Count rate effect in proportional counters

    International Nuclear Information System (INIS)

    Bednarek, B.

    1980-01-01

    A new concept is presented explaining changes in spectrometric parameters of proportional counters which occur due to varying count rate. The basic feature of this concept is that the gas gain of the counter remains constant in a wide range of count rate and that the decrease in the pulse amplitude and the detorioration of the energy resolution observed are the results of changes in the shape of original current pulses generated in the active volume of the counter. In order to confirm the validity of this statement, measurements of the gas amplification factor have been made in a wide count rate range. It is shown that above a certain critical value the gas gain depends on both the operating voltage and the count rate. (author)

  6. A versatile gas-flow proportional counter for Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bibicu, I., E-mail: bibicu@infim.ro [National Institute for Materials Physics (Romania); Nicolescu, G. [IFIN-HH, National Institute of Physics and Nuclear Engineering (Romania); Cretu, C. [Transylvania University, Physics Department (Romania)

    2009-07-15

    This article presents a versatile gas-flow proportional counter for surface and transmission Moessbauer spectroscopy, suitable for studies with {sup 57}Fe, {sup 119}Sn and {sup 151}Eu isotopes. The main advantages obtained by new design are: (1) the height of the detection volume can be changed in large limits from 0 to 38 mm, (2) the detection volume can be choose symmetrical or not in respect with anode plan, (3) the anode replacement is easily (4) and different anode configuration can be used. The characteristics of the detector, operating at room temperature, are reported.

  7. A comparison between the measurements of Kr-85 in environmental samples by liquid scintillation and proportional counters; Comparacion de resultados de la medida radiactiva del Kr-85 ambiental por centelleo liquido y contadores proporcionales

    Energy Technology Data Exchange (ETDEWEB)

    Heras, M. C.; Perez, M. M.

    1983-07-01

    The most used methods for the measurement of Kr-81 beta-activity after their concentration and aisolation are the liquid scintillation counting and the proportional counter. In this work the beta activity of concentrated and aisolated Kr-85 samples measured in collaboration with the Max-Planck Institut fur Kernphyslk, Aussenstelle Freiburg. Samples taken both In Madrid and Frelburg are measured by proportional counters in the Max-Planck lnstitut, Freibury and by liquid scintillation counting in JEN, Madrid. The comparison of both measurements do not show appreciable discrepancy between the results obtained to both techniques. (Author)

  8. Novel concept for neutron detection: proportional counter filled with 10B nanoparticle aerosol

    Science.gov (United States)

    Amaro, F. D.; Monteiro, C. M. B.; dos Santos, J. M. F.; Antognini, A.

    2017-01-01

    The high neutron detection efficiency, good gamma-ray discrimination and non-toxicity of 3He made of proportional counters filled with this gas the obvious choice for neutron detection, particularly in radiation portal monitors (RPM), used to control the illicit transport of nuclear material, of which neutron detectors are key components. 3He is very rare and during the last decade this gas has become increasingly difficult to acquire. With the exception of BF3, which is toxic, no other gas can be used for neutron detection in proportional counters. We present an alternative where the 3He atoms are replaced by nanoparticles made of another neutron sensitive material, 10B. The particles are dispersed in a gaseous volume, forming an aerosol with neutron sensitive properties. A proportional counter filled with such aerosol was exposed to a thermal neutron beam and the recorded response indicates that the neutrons have interacted with the particles in the aerosol. This original technique, which transforms a standard proportional gas mixture into a neutron sensitive aerosol, is a breakthrough in the field of radiation detection and has the potential to become an alternative to the use of 3He in proportional counters. PMID:28181520

  9. High resolution time-of-flight measurements in small and large scintillation counters

    International Nuclear Information System (INIS)

    D'Agostini, G.; Marini, G.; Martellotti, G.; Massa, F.; Rambaldi, A.; Sciubba, A.

    1981-01-01

    In a test run, the experimental time-of-flight resolution was measured for several different scintillation counters of small (10 x 5 cm 2 ) and large (100 x 15 cm 2 and 75 x 25 cm 2 ) area. The design characteristics were decided on the basis of theoretical Monte Carlo calculations. We report results using twisted, fish-tail, and rectangular light- guides and different types of scintillator (NE 114 and PILOT U). Time resolution up to approx. equal to 130-150 ps fwhm for the small counters and up to approx. equal to 280-300 ps fwhm for the large counters were obtained. The spatial resolution from time measurements in the large counters is also reported. The results of Monte Carlo calculations on the type of scintillator, the shape and dimensions of the light-guides, and the nature of the external wrapping surfaces - to be used in order to optimize the time resolution - are also summarized. (orig.)

  10. Reduction of degraded events in miniaturized proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R.; Kirsten, T. (Max Planck Inst. fuer Kernphysik, Heidelberg (Germany))

    1991-11-15

    A method to reduce the number of degraded events in miniaturized proportional counters is described. A shaping of the outer cathode leads to a more uniform gas gain along the counter axis. The method is useful in situations in which the total number of decay events is very low. The effects leading to degraded events are studied theoretically and experimentally. The usefulness of the method is demonstrated by using it for the proportional counter of the GALLEX solar neutrino experiment. (orig.).

  11. On timing properties of the SRPO-304 proportional counters

    International Nuclear Information System (INIS)

    Gusev, A.A.; Pugacheva, G.I.

    1979-01-01

    Data of measurements of the signal delay time and the time of development of the discharge in a proportional counter filled with 90% Xe + 10% CH 4 mixture at 0.3 atm are presented. The measurements were carried out on muons of cosmic rays. Signal delay distribution for the proportional counter are given relative to the time of passage through it of a charged particle. The data obtained shows that the average delay time is 0.8 μs when a particle passes near the counter centre, whereas when it passes near its side wall the average delay time is 1.5 μs. The investigation of the discharge development time distribution was carried out for two values of the discriminator threshold: 6 and 20 keV. It was determined that the discharge development time distribution depends but little on the place of particle passage in a counter. The average discharge development time is 1.5 μs, with the maximum time beina 4.3 μs. It is shown that the resolution time of logical circuits will be near 4 μs when the counter is combined with scintillation detectors

  12. Cerenkov counting and Cerenkov-scintillation counting with high refractive index organic liquids using a liquid scintillation counter

    International Nuclear Information System (INIS)

    Wiebe, L.I.; Helus, F.; Maier-Borst, W.

    1978-01-01

    18 F and 14 C radioactivity was measured in methyl salicylate (MS), a high refractive index hybrid Cherenkov-scintillation generating medium, using a liquid scintillation counter. At concentrations of up to 21.4%, in MS, dimethyl sulfoxide (DMSO) quenched 14 C fluorescence, and with a 10-fold excess of DMSO over MS, 18 F count rates were reduced below that for DMSO alone, probably as a result of concentration-independent self-quenching due to 'dark-complex' formation. DMSO in lower concentrations did not reduce the counting efficiency of 18 F in MS. Nitrobenzene was a concentration-dependent quencher for both 14 C and 18 F in MS. Chlorobenzene (CB) and DMSO were both found to be weak Cherenkov generators with 18 F. Counting efficiencies for 18 F in MS, CB, and DMSO were 50.3, 7.8 and 4.3% respectively in the coincidence counting mode, and 58.1, 13.0 and 6.8% in the singles mode. 14 C efficiencies were 14.4 and 22.3% for coincidence and singles respectively, and 15.3 and 42.0% using a modern counter designed for coincidence and single photon counting. The high 14 C and 18 F counting efficiency in MS are discussed with respect to excitation mechanism, on the basis of quench and channels ratios changes observed. It is proposed that MS functions as an efficient Cherenkov-scintillation generator for high-energy beta emitters such as 18 F, and as a low-efficiency scintillator for weak beta emitting radionuclides such as 14 C. (author)

  13. Study of micro pixel photon counters for a high granularity scintillator-based hadron calorimeter

    International Nuclear Information System (INIS)

    D'Ascenzo, N.; Eggemann, A.; Garutti, E.

    2007-11-01

    A new Geiger mode avalanche photodiode, the Micro Pixel Photon Counter (MPPC), was recently released by Hamamatsu. It has a high photo-detection efficiency in the 420 nm spectral region. This product can represent an elegant candidate for the design of a high granularity scintillator based hadron calorimeter for the International Linear Collider. In fact, the direct readout of the blue scintillation photons with a MPPC is a feasible techological solution. The readout of a plastic scintillator by a MPPC, both mediated by the traditional wavelength shifting fiber, and directly coupled, has been systematically studied. (orig.)

  14. Numerical determination of the amplification of a cylindrical proportional counter operating at low pressure. Application to nano-dosimetry

    International Nuclear Information System (INIS)

    Moutarde, Cyrille

    1994-01-01

    This work is devoted to a study of proportional counters used to measure the energy deposition in micrometer biological sites. Tissue equivalent gas filling improve typical operating mode of those counters. Specially, the extension of the multiplication zone becomes important at low pressures. A Monte Carlo simulation has been used to study the behaviour of an electron swarm in the sensitive volume. The calculations show that electrons are not in equilibrium with the applied electric field in this geometry. The influence of the gradient field and the rotation of the electrons around the anode wire has been studied carefully. The importance of non-equilibrium effects on the theoretical amplification calculated through the ionisation coefficient has been confirmed by experimental investigations. The statistical fluctuations of multiplication process has been calculated by the determination of avalanche spectra at the anode. Resolution of an ultra-miniature counter have been calculated to improve technological limitations of experimental nanodosimetry. (author) [fr

  15. Calibration of proportional counters in microdosimetry

    International Nuclear Information System (INIS)

    Varma, M.N.

    1982-01-01

    Many microdosimetric spectra for low LET as well as high LET radiations are measured using commercially available (similar to EG and G) Rossi proportional counters. This paper discusses the corrections to be applied to data when calibration of the counter is made using one type of radiation, and then the counter is used in a different radiation field. The principal correction factor is due to differences in W-value of the radiation used for calibration and the radiation for which microdosimetric measurements are made. Both propane and methane base tissue-equivalent (TE) gases are used in these counters. When calibrating the detectors, it is important to use the correct stopping power value for that gas. Deviations in y-bar/sub F/ and y-bar/sub D/ are calculated for 60 Co using different extrapolation procedures from 0.15 keV/μm to zero event size. These deviations can be as large as 30%. Advantages of reporting microdosimetric parameters such as y-bar/sub F/ and y-bar/sub D/ above a certain minimum cut-off are discussed

  16. Cerenkov counting and Cerenkov-scintillation counting with high refractive index organic liquids using a liquid scintillation counter

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L I; Helus, F; Maier-Borst, W [Deutsches Krebsforschungszentrum, Heidelberg (Germany, F.R.). Inst. fuer Nuklearmedizin

    1978-06-01

    /sup 18/F and /sup 14/C radioactivity was measured in methyl salicylate (MS), a high refractive index hybrid Cherenkov-scintillation generating medium, using a liquid scintillation counter. At concentrations of up to 21.4%, in MS, dimethyl sulfoxide (DMSO) quenched /sup 14/C fluorescence, and with a 10-fold excess of DMSO over MS, /sup 18/F count rates were reduced below that for DMSO alone, probably as a result of concentration-independent self-quenching due to 'dark-complex' formation. DMSO in lower concentrations did not reduce the counting efficiency of /sup 18/F in MS. Nitrobenzene was a concentration-dependent quencher for both /sup 14/C and /sup 18/F in MS. Chlorobenzene (CB) and DMSO were both found to be weak Cherenkov generators with /sup 18/F. Counting efficiencies for /sup 18/F in MS, CB, and DMSO were 50.3, 7.8 and 4.3% respectively in the coincidence counting mode, and 58.1, 13.0 and 6.8% in the singles mode. /sup 14/C efficiencies were 14.4 and 22.3% for coincidence and singles respectively, and 15.3 and 42.0% using a modern counter designed for coincidence and single photon counting. The high /sup 14/C and /sup 18/F counting efficiency in MS are discussed with respect to excitation mechanism, on the basis of quench and channels ratios changes observed. It is proposed that MS functions as an efficient Cherenkov-scintillation generator for high-energy beta emitters such as /sup 18/F, and as a low-efficiency scintillator for weak beta emitting radionuclides such as /sup 14/C.

  17. Improvements to well scintillation counters

    International Nuclear Information System (INIS)

    Farukhi, M.R.; Mataraza, G.A.; Wimer, O.D.

    1977-01-01

    This invention relates to the field of ionising radiation detection. It concerns in particular scintillation detectors of the type that is commonly used in conjunction with a photomultiplier tube and that is used for monitoring radiation, for instance in the clinical measurements of isotopes. This invention enables well scintillation counters to be made, characterised by a high efficiency in measuring the thindown rate of radio-pharmaceutical solutions and to resolve the distribution of energy emanating from the radioactive source. It particularly consists in improving the uniformity of the luminous efficiency, the quality of the resolution and the efficiency whilst improving the reception of light [fr

  18. Secondary emission scintillation counter for microdosimetry at the nanometer level

    International Nuclear Information System (INIS)

    Goldhagen, P.

    1987-01-01

    The secondary emission scintillation (SES) counter is a device designed to count the positive ions of charged-particle tracks in gas volumes simulating sites in tissue with diameters of the order of 1 nanometer. Based on suggestions by H.H. Rossi and A.M. Kellerer, the basic idea of the device was developed by A. Kosiara, M. Biavati, and R.D. Colvett in the late 1970s. The device was substantially modified in 1982, but work on it was suspended before the new version could be tested, in order to devote full-time effort to rebuilding RARAF. Work resumed on the SES counter in 1986. A diagram of the prototype SES counter now being tested is shown. A weak electric field in the cylindrical collection region of the device drifts ions from a track to a small region (less than 1 mm) of high electric field where they are accelerated by several kilovolts onto a dynode, producing secondary electrons. The secondary electrons are then accelerated onto a plastic scintillator, and the resulting light is detected by a photomultiplier. The passage of a charged particle is established by a solid state detector, which triggers electronics detecting coincidences and measuring the timing and amplitude of pulses from the photomultiplier

  19. Ideal response function of a 3He proportional counter to thermal neutrons determined by different length counters

    International Nuclear Information System (INIS)

    Takeda, Naoto; Kudo, Katsuhisa; Kobayashi, Katsuhei; Yoshimoto, Takaaki

    2000-01-01

    The relative gas multiplication along the cylindrical axis of three 3 He proportional counters with different length were measured by using a thermal neutron beam at the Kyoto University Reactor and an ideal response function by taking into account the difference of pulse height spectra were measured by different length counters. The three 3 He proportional counters (model type of P4-0806, P4-0806 and P4-0808 manufactured by Reuter-Stokes) prepared for relative gas multiplication measurements had identical structure having cylindrical outer shells of 304 stainless steel except for different sensitive lengths of 10 cm, 15 cm and 20 cm, respectively. All counters were filled with 400 kPa of 3 He gas and 200 kPa of Ar gas. The pulse height distributions were measured by moving the counter in the direction of it's cylindrical axis perpendicular to the thermal neutron beam. The measured pulse heights corresponding to the full energy peaks at various entrance points were normalized to that of the whole counter irradiation. The results as a function of the distance from the bottom edge of the stainless steel cylinder are shown. The total transition region of gas gain corresponded to about 23 %, 15 % and 10 % of each nominal sensitive region corresponding to shot, middle and long counters. The ideal pulse height spectrum (dots) obtained by using proportional counters of 10 cm and 20 cm in nominal sensitive length to thermal neutron beam is shown in the paper in comparison to simulated one which was calculated assuming the constant gain within the sensitive region and zero gas gain outside the sensitive regions. The simulation realized the ideal response function fairly well. (S.Y.)

  20. On the use of single large-area photodiodes in scintillation counters

    International Nuclear Information System (INIS)

    Morrell, C.

    1989-12-01

    The compilation of this review was originally intended to assess the possibility of using photodiode-based scintillation counters in fluorescence EXAFS (or FLEXAFS) systems as a low-cost alternative to photomultiplier-based counters. The X-ray energies encountered in FLEXAFS experiments range from a few keV to a few tens of keV, and detectors are required to have some energy resolution and/or high count-rate capability in order to optimize the quality of data collected. The results presented in the reviewed literature imply strongly that photodiodes do not compete successfully with photomultipliers in scintillation counting systems for X-ray energies below the order of 100keV, at least at the present stage of photodiode technology. Nevertheless it is likely that there are other applications requiring X-ray detectors for which a photodiode-based scintillation counter may be perfectly adequate, and it is therefore felt that such a review is still useful. In addition, large-area single photodiodes have much to offer as X-ray detectors in their own right, and several of the considerations regarding their use in scintillation counters are highly relevant to this application. (author)

  1. Calibration of an ultra-low-background proportional counter for measuring 37Ar

    International Nuclear Information System (INIS)

    Seifert, A.; Aalseth, C. E.; Bonicalzi, R. M.; Bowyer, T. W.; Day, A. R.; Fuller, E. S.; Haas, D. A.; Hayes, J. C.; Hoppe, E. W.; Humble, P. H.; Keillor, M. E.; LaFerriere, B. D.; Mace, E. K.; McIntyre, J. I.; Merriman, J. H.; Miley, H. S.; Myers, A. W.; Orrell, J. L.; Overman, C. T.; Panisko, M. E.

    2013-01-01

    An ultra-low-background proportional counter design has been developed at Pacific Northwest National Laboratory (PNNL) using clean materials, primarily electro-chemically-purified copper. This detector, along with an ultra-low-background counting system (ULBCS), was developed to complement a new shallow underground laboratory (30 meters water-equivalent) at PNNL. The ULBCS design includes passive neutron and gamma shielding, along with an active cosmic-veto system. This system provides a capability for making ultra-sensitive measurements to support applications like age-dating soil hydrocarbons with 14 C/ 3 H, age-dating of groundwater with 39 Ar, and soil-gas assay for 37 Ar to support On-Site Inspection (OSI). On-Site Inspection is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclides created by an underground nuclear explosion are valuable signatures of a Treaty violation. For OSI, the 35-day half-life of 37 Ar, produced from neutron interactions with calcium in soil, provides both high specific activity and sufficient time for inspection before decay limits sensitivity. This work describes the calibration techniques and analysis methods developed to enable quantitative measurements of 37 Ar samples over a broad range of proportional counter operating pressures. These efforts, along with parallel work in progress on gas chemistry separation, are expected to provide a significant new capability for 37 Ar soil gas background studies

  2. New proportional counter assembly in Gliwice 14C laboratory

    International Nuclear Information System (INIS)

    Moscicki, W.; Zastawny, A.

    1977-01-01

    The design and parameters are described of a proportional counter for low level counting. The cathode tube 80 mm in diameter and 30 cm in length is made of pure copper. The anode is a tungsten wire 0.05 mm in diameter. The cathode tube is surrounded by a cylindrical ring container with mercury. The total volume of the counter is 1.5 l and it is filled with carbon dioxide. At a pressure of 1 at of CO 2 the counter background is 4.20+-0.05 cpm and contemporary 14 C net effect 10.22+-0.10 cpm; at a pressure of 2 at of CO 2 the background is 4.40+-0.05 cpm and the contemporary 14 C net effect 20.53+-10 cpm. The efficiency of the proportional counter is 88% in both cases. (J.B.)

  3. Proportional counter with a wire-anode lying on the dielectric surface

    International Nuclear Information System (INIS)

    Strelkov, A.V.

    1983-01-01

    Proportional coUnter with wire-anode lying on the dielectric surface is described. The result of the accumulation of charges on the dielectric surface immediately near the wire-anode surface is that such a counter possesses electrostatic memory relative to distribution of the gas amplification coefficient along the anode. SUch a distribution can be received for example by means of irradiation by the neutrons or the γ-rays. The disposition of the wire-anode on the convex dielectric surface allows one to make the ring-shaped counters or the nonplane proportional chambers practically of any profile. However, the energy resolution of the counter with anode on the dielectric is worse than the resolution of counter with free anode particularly at the large gas amplification coefficient

  4. Proton recoil spectra in spherical proportional counters calculated with finite element and Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Benmosbah, M. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Groetz, J.E. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: jegroetz@univ-fcomte.fr; Crovisier, P. [Service de Protection contre les Rayonnements, CEA Valduc, 21120 Is/Tille (France); Asselineau, B. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN, Cadarache BP3, 13115 St Paul-lez-Durance (France); Truffert, H.; Cadiou, A. [AREVA NC, Etablissement de la Hague, DQSSE/PR/E/D, 50444 Beaumont-Hague Cedex (France)

    2008-08-11

    Proton recoil spectra were calculated for various spherical proportional counters using Monte Carlo simulation combined with the finite element method. Electric field lines and strength were calculated by defining an appropriate mesh and solving the Laplace equation with the associated boundary conditions, taking into account the geometry of every counter. Thus, different regions were defined in the counter with various coefficients for the energy deposition in the Monte Carlo transport code MCNPX. Results from the calculations are in good agreement with measurements for three different gas pressures at various neutron energies.

  5. Neutron spectrometry with proton recoil proportional counters at the research and measurement reactor Braunschweig - status of the technique

    International Nuclear Information System (INIS)

    Knauf, K.; Wittstock, J.

    1987-07-01

    This status report is concerned with the facilities set up for neutron spectrometry at the Research and Measurement Reactor Braunschweig, based on proton recoil proportional counters. Cylindrical counters for irradiation by a neutron beam normal to the counter wire and commercial spherical counters are employed. They can be filled with hydrogen or a hydrogeneous gas up to a pressure of 1 MPa depending on their use. The filling method and the electronic pulse processing are described. The pulse analysis system includes a pulse shape discrimination branch in order to separate γ-ray induced pulses. Finally, experimental investigations with spherical counters are discussed regarding the region of proportionality and the influence of the counter voltage on the shape of the response function. (orig./HP) [de

  6. Scintillating fiber tracking at high luminosities using Visible Light Photon counter readout

    International Nuclear Information System (INIS)

    Atac, M.

    1995-11-01

    This paper reviews the research work on the Visible Light Photon Counters (VLPC) that have been developed for the scintillating fiber tracking at high luminosity colliders and high rate fixed target experiments. The devices originated from the joint work between UCLA and Rockwell International Science Center. The VLPCs are capable of counting photons very efficiently down to a single photon level with high avalanche gain, producing pulses at very high rates with very short rise times. Due to small gain dispersions they can be used in counting photons with high quantum efficiencies, therefore they are excellent devices for charged particle tracking using small diameter scintillating plastic fibers. In this paper, fiber tracking for the CDF and D0 upgrades and a possible usage of the VLPC readout for the experiment E803 at Fermilab will be discussed

  7. A proportional counter for efficient backscatter Moessbauer effect spectroscopy

    International Nuclear Information System (INIS)

    Pawlowski, Z.; Marzec, J.; Cudny, W.; Holnicka, J.; Walentek, J.

    1979-01-01

    The authors present a novel gas-tight proportional counter with flat beryllium windows for backscatter Moessbauer spectroscopy. The krypton-filled counter has a geometry that approaches 2π and a resolution of 12% fwhm for the 14.4 keV line of 57 Fe, and is easy to manufacture. (Auth.)

  8. Hydrogen high pressure proportional drift detector

    International Nuclear Information System (INIS)

    Arefiev, A.; Balaev, A.

    1983-01-01

    The design and operation performances of a proportional drift detector PDD are described. High sensitivity of the applied PAD makes it possible to detect the neutron-proton elastic scattering in the energy range of recoil protons as low as 1 keV. The PDD is filled with hydrogen up to the pressure at 40 bars. High purity of the gas is maintained by a continuously operating purification system. The detector has been operating for several years in a neutron beam at the North Area of the CERN SPS

  9. Multi-level modelling of the response of the ultraminiature proportional counter: gas gain phenomena and pulse height spectra

    International Nuclear Information System (INIS)

    Olko, P.; Moutarde, C.; Segur, P.

    1995-01-01

    The ultraminiature proportional counters, UMC, unique radiation detectors for monitoring high intensity therapy fields, designed by Kliauga and operated at Columbia University (USA), have yielded a number of pulse height distributions for photons, neutrons and ions at simulated diameters of 5-50 nm. Monte Carlo calculations of the gas gain in such a counter questioned the possibility of achieving proportionally at such low simulated diameters. The response of the UMC has now been modelled taking into account both fluctuations of energy deposited in the counter volume and its calculated gas gain. Energy deposition was calculated using the MOCA-14, MOCA-8 and TRION codes, whereby distributions of ionisations d(j) after irradiations with 137 Cs, 15 MeV neutrons and 7 MeV.amu -1 deuterons were obtained. Monte Carlo calculations of electron avalanches in UMC show that the size of the single-electron avalanche P(n) reaching the anode depends strongly on the location of the primary ionisation within the counter volume. Distributions of the size of electron avalanches for higher numbers of primary ionisations, P *j (n), were obtained by successive convolutions of P(n). Finally, the counter response was obtained by weighting P *j (n) over d(j) distributions. On comparing the measured and calculated spectra it was concluded that the previously proposed single-electron peak calibration method might not be valid for the UMC due to the excessive width and overlap of electron avalanche distributions. Better agreement between the measured and calculated spectra is found if broader electron avalanche distributions than those used in the present calculations, are assumed. (author)

  10. Needle counter

    International Nuclear Information System (INIS)

    Fujita, Yuzo

    1977-01-01

    Needle counter had been devised by Geiger about 60 years ago before the present GM counter appeared. It is suitable for the detection of weak radiation because it is limited in effective volume, if the background due to mainly cosmic ray is proportional to the effective volume of the counter. Recently the very low β detector having a needle counter as the main detector has been developed. It showed highly excellent performance in the measurements of small area samples, about ten times sensitive as compared with other detectors. The counter is installed in the very low radiation measuring well at Nokogiriyama, Chiba Prefecture, using a NaI scintillator as its guard counter. D. H. Wilkinson first treated a gas amplification counter theoretically and quantitatively. The authors have obtained good results in the comparison with the experiments of the counter using a generalized form of Wilkinson theory. The findings obtained through this study seem to be applicable to the electrode arrangement which is important for the counter design. It was found that the excellent rise time of induced pulses in a gas amplification counter was achieved in larger amplification factor and smaller convolution effect. In the detection of charged particles with small obstructing capability such as γ ray, faster rise time and higher pulses can be obtained with needle counters than wire counters. (Wakatsuki, Y.)

  11. New-generation large-area muon scintillation counters with wavelength shifter fiber readout for CDF II

    International Nuclear Information System (INIS)

    Artikov, A.; Budagov, Yu.; Chirikov-Zorin, I.

    2006-01-01

    New scintillation counters have been designed and constructed for upgrading of the CDF detector at the Fermilab Tevatron. A novel light collection technique using wavelength shifting fibers, together with a high-quality polystyrene-based scintillator UPS 923A, has resulted in compact counters with good and stable light collection efficiency over their lengths extending up to 320 cm. Design, construction and performance of counters are presented. Properties of the fibers and the scintillator, such as light output, light attenuation, decay time and long-term stability, are investigated. It is found that the polystyrene-based scintillator, unlike the polyvinyltoluene-based one, has better properties adequate for long-term experiments

  12. Xenon-based Penning mixtures for proportional counters

    International Nuclear Information System (INIS)

    Ramsey, B.D.; Agrawal, P.C.; National Aeronautics and Space Administration, Huntsville, AL

    1989-01-01

    The choice of quench gas can have a significant effect on the gas gain and energy resolution of gas-filed proportional counters. Details are given on the performance obtained with a variety of quench additives of varying ionization potentials for use in xenon-filled systems. It is confirmed that optimum performance is obtained when the ionization potential is closely matched to the first metastable level of xenon (8.3 eV) as is the case with xenon + trimethylamine and xenon + dimethylamine. For these mixtures the Penning effect is at its strongest. (orig.)

  13. A study of time over threshold (TOT) technique for plastic scintillator counter

    International Nuclear Information System (INIS)

    Wu Jinjie; Chinese Academy of Sciences, Beijing; Heng Yuekun; Sun Zhijia; Wu Chong; Yang Guian; Jiang Chun Hua; Zhao Yuda

    2008-01-01

    A new charge measurement method, time over threshold (TOT), has been used in some gas detectors lately. Here TOT is studied for TOF system, made of plastic scintillator counter, which can simplify the electronics of the system. The signal characteristics are measured and analyzed with a high quality oscilloscope, including noise, pedestal, signal amplitude, total charge, rise time and the correlation between them. The TOT and charge are related and can be fitted by some empirical formula. The charge measurement resolution by TOT is given and this will help the design of TOF electronics. (authors)

  14. Avalanche localization and its effects in proportional counters

    International Nuclear Information System (INIS)

    Fischer, J.; Okuno, H.; Walenta, A.H.

    1977-11-01

    Avalanche development around the anode wire in a gas proportional counter is investigated. In the region of proportional gas amplification, the avalanche is found to be well localized on one side of the anode wire, where the electrons arrive along the field lines from the point of primary ionization. Induced signals on electrodes surrounding the anode wire are used to measure the azimuthal position of the avalanche on the anode wire. Practical applications of the phenomena such as left-right assignment in drift chambers and measurement of the angular direction of the primary ionization electrons drifting towards the anode wire are discussed

  15. Proton-recoil proportional counter tests at TREAT

    International Nuclear Information System (INIS)

    Fink, C.L.; Eichholz, J.J.; Burrows, D.R.; DeVolpi, A.

    1979-01-01

    A methane filled proton-recoil proportional counter will be used as a fission neutron detector in the fast-neutron hodoscope. To provide meaningful fuel-motion information the proportional counter should have: a linear response over a wide range of reactor powers background ratio (the number of high energy neutrons detected must be maximized relative to low energy neutrons, and gamma ray sensitivity must be kept small); and a detector efficiency for fission neutrons above 1 MeV of approximately 1%. In addition, it is desirable that the detector and the associated amplifier/discriminator be capable of operating at counting rates in excess of 500 kHz. This paper reports on tests that were conducted on several proportional counters at the TREAT reactor

  16. The Origins of Scintillator Non-Proportionality

    Science.gov (United States)

    Moses, W. W.; Bizarri, G. A.; Williams, R. T.; Payne, S. A.; Vasil'ev, A. N.; Singh, J.; Li, Q.; Grim, J. Q.; Choong, W.-S.

    2012-10-01

    Recent years have seen significant advances in both theoretically understanding and mathematically modeling the underlying causes of scintillator non-proportionality. The core cause is that the interaction of radiation with matter invariably leads to a non-uniform ionization density in the scintillator, coupled with the fact that the light yield depends on the ionization density. The mechanisms that lead to the luminescence dependence on ionization density are incompletely understood, but several important features have been identified, notably Auger-like processes (where two carriers of excitation interact with each other, causing one to de-excite non-radiatively), the inability of excitation carriers to recombine (caused either by trapping or physical separation), and the carrier mobility. This paper reviews the present understanding of the fundamental origins of scintillator non-proportionality, specifically the various theories that have been used to explain non-proportionality.

  17. Proportional counter with uniform electric field with Penning's mixture

    International Nuclear Information System (INIS)

    Pawlowski, Z.; Marzec, J.; Zaremba, K.

    1984-01-01

    Some calculations are given and the design of proportional counters with a homogeneous electric field filled with Penning's mixtures, which ensure the best energy resolution is described. The counters with mixtures of Ne+Ar, Ne+CH 4 , Ne+CO 2 and Ar+C 2 H 2 have been checked. The admixtures (Ar, CH 4 , CO 2 , C 2 H 2 ) constitute from 0.1 to 2%, with pressure from 125 Tr to 760 Torr. The best energy resolution has been obtained for the mixture of Ne+1%CH 4 at the pressure of 190 Torr

  18. Scintillation Counters

    Science.gov (United States)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  19. Designing an optimally proportional inorganic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai, E-mail: jai.singh@cdu.edu.au [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia); Koblov, Alexander [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia)

    2012-09-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  20. Designing an optimally proportional inorganic scintillator

    International Nuclear Information System (INIS)

    Singh, Jai; Koblov, Alexander

    2012-01-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  1. Gas-multiplication factor of a proportional counter operated at low temperature described with the Diethorn, Rose-Korff and townsend expressions

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Kazuko; Nakanishi, Akio; Kobayashi, Takayuki [Shiga Univ. of Medical Science, Otsu (Japan)

    1996-07-01

    In the present work, the gas-multiplication factor is expressed with the Rose-Korff and Townsend methods as well as with the Diethorn method. A proportional counter with helium or neon works only at low temperature. This is discussed in terms of the number of electrons emitted when an ion is neutralized at the cathode of the counter. (J.P.N.)

  2. Study and construction of a new type of gaseous scintillator

    International Nuclear Information System (INIS)

    Khoury, H.J.

    1978-01-01

    The characteristics and constructional details of a new type of gas scintillation counter is presented. It is shown that using an electric field in a cylindrical geometry and operating the counter in a proportional region, the number of photons due to the excitation of rare gas (argon) during the passage of an ionising primary particle, is considerably increased. The effect of the intensity of applied eletric field is discussed and it is shown that the use of suitable electric field improves the resolution of scintillation counter. The use of several Waveshifters for shifting the ultraviolet component of photon spectrum into the sensitive region of the photomultiplier tube is discussed and the experimental results are presented. A source of Am 241 was used to verify the influence of electric field on alpha spectra. (Author) [pt

  3. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    Science.gov (United States)

    Schell, W. R.; Vives-Batlle, J.; Yoon, S. R.; Tobin, M. J.

    1999-02-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min [1, 2]. This paper presents the design features, operational methods, calibration, and detector applications.

  4. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    International Nuclear Information System (INIS)

    Schell, W.R.; Vives-Batlle, J.; Yoon, S.R; Tobin, M.J.

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min . This paper presents the design features, operational methods, calibration, and detector applications

  5. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    CERN Document Server

    Schell, W R; Yoon, S R; Tobin, M J

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min . This paper presents the design features, opera...

  6. Solid scintillator 'Ready Cap' for measurement with a liquid scintillation counter

    International Nuclear Information System (INIS)

    Ijiri, Kenichi; Endo, Masashi; Nogawa, Norio; Tsuda, Shoko; Nakamura, Aiko; Morikawa, Naotake; Osaki, Susumu.

    1990-01-01

    'Ready Cap', a small plastic container coated with solid scintillator has recently been introduced (Beckman Instruments, Inc.). Pulse height spectra and counting efficiencies obtained with a liquid scintillator and Ready Cap using a liquid scintillation counter were compared for 15 different radionuclides. For radionuclides emitting low-energy β-rays or characteristic X-rays, the spectra for Ready Cap shifted toward the higher energy side compared with the spectra for the liquid scintillator. This tendency was reversed for the nuclides emitting higher-energy β-radiations ( 36 Cl and 32 P). Generally, counting efficiencies both in Ready Cap and in liquid scintillator increased with increase in the energy of β- or X-rays. For some nuclides, Ready Cap gave higher counting efficiencies and for others it gave lower values than in the liquid scintillator. However, the differences were not large within each nuclide. The use of Ready Cap is recommended for measurements of radionuclides when liquid scintillation cocktails have no means of waste disposal under the present Japanese radioisotope regulation. (author)

  7. Pulse triggering mechanism of air proportional counters

    International Nuclear Information System (INIS)

    Aoyama, T.; Mori, T.; Watanabe, T.

    1983-01-01

    This paper describes the pulse triggering mechanism of a cylindrical proportional counter filled with air at atmospheric pressure for the incidence of β-rays. Experimental results indicate that primary electrons created distantly from the anode wire by a β-ray are transformed into negative ions, which then detach electrons close to the anode wire and generate electron avalanches thus triggering pulses, while electrons created near the anode wire by a β-ray directly trigger a pulse. Since a negative ion pulse is triggered by a single electron detached from a negative ion, multiple pulses are generated by a large number of ions produced by the incidence of a single β-ray. It is therefore necessary not to count pulses triggered by negative ions but to count those by primary electrons alone when use is made of air proportional counters for the detection of β-rays. (orig.)

  8. The high pressure gas Cerenkov counter at the Omega Facility.

    CERN Multimedia

    1975-01-01

    The high-pressure gas Cerenkov was used to measure reactions as pion (or kaon)- hydrogen --> forward proton - X. It was built by the Ecole Polytechnique (Palaiseu). Here Peter Sonderegger and Patrick Fleury,

  9. Calibration of the neutron scintillation counter threshold

    International Nuclear Information System (INIS)

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.

    1978-01-01

    A method for calibrating the threshold of a neutron counter in the form of a 10x10x40 cm plastic scintillator is described. The method is based on the evaluation of the Compton boundary of γ-spectrum from the discrimination curve of counter loading. The results of calibration using 60 Co and 24 Na γ-sources are given. In order to eValuate the Compton edge rapidly, linear extrapolation of the linear part of the discrimination curve towards its intersection with the X axis is recommended. Special measurements have shown that the calibration results do not practically depend on the distance between the cathode of a photomultiplier and the place where collimated γ-radiation of the calibration source reaches the scintillator

  10. Single channel analog pulse processor Asic for gas proportional counters and SI detector

    International Nuclear Information System (INIS)

    Chandratre, V.B.; Sarkar, Soumen; Kataria, S.K.; Viyogi, Y.P.

    2005-01-01

    The paper presents the design and development of a single channel pulse processor in short Singleplex ASIC targeted for gas proportional counters/Si detectors. The design is optimized for the dynamic range of +500 fC to -500 fC with provision for externally adjusted pole-zero cancellation. A dedicated filter based on the de-convolution principle is used for the cancellation of the long hyperbolic signal tail produced by the slow drift of ions, typical in gas proportional with the filter time constants derived from the actual detector input signal shape. The pole-zero adjustment can be done by external dc voltage to achieve perfect base-line recovery to 1% after 5 μs. The simulated 0 pf noise is 500 e - rms for the peaking time of 1.2 μs with noise slope of 7e - -. The gain is 3.4 mv/fC over the entire linear dynamic range with power dissipation of 13 mW. This design is a modified version of Indiplex chip with features dynamic range equal gain on both polarities with nearly same noise and serves as diagnostic chip for Indiplex. The chip can be used for radiation monitoring instruments. (author)

  11. Manual calibration of liquid scintillation counter using the channel ratio technique

    International Nuclear Information System (INIS)

    Moussa, H.M.; Townsend, L.; Miller, L.F.

    1999-01-01

    The objectives of this activity are to introduce students to liquid scintillation counting and to calibrate the counter using the sample channel ratio technique. This is accomplished by using quenched standards set for 14 C and tritium ( 3 H) to generate a quench correction curve for the scintillation solution. It is a good method for students to gain a detailed understanding of issues important to manual calibration of a liquid scintillation counter, and results can be compared with a built-in automatic method

  12. Position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Kopp, M.K.

    1980-01-01

    A position-sensitive proportional counter circuit uses a conventional (low-resistance, metal-wire anode) counter for spatial resolution of an ionizing event along the anode, which functions as an RC line. A pair of preamplifiers at the anode ends act as stabilized active-capacitance loads, each comprising a series-feedback, low-noise amplifier and a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction of handling of the anodes, and stabilizes the anode resistivity at high count rates (>10 6 counts/sec). (author)

  13. 39Ar/Ar measurements using ultra-low background proportional counters

    International Nuclear Information System (INIS)

    Hall, Jeter; Aalseth, Craig E.; Bonicalzi, Ricco M.; Brandenberger, Jill M.; Day, Anthony R.; Humble, Paul H.; Mace, Emily K.; Panisko, Mark E.; Seifert, Allen

    2016-01-01

    Age-dating groundwater and seawater using the 39 Ar/Ar ratio is an important tool to understand water mass-flow rates and mean residence time. Low-background proportional counters developed at Pacific Northwest National Laboratory use mixtures of argon and methane as counting gas. We demonstrate sensitivity to 39 Ar by comparing geological (ancient) argon recovered from a carbon dioxide gas well and commercial argon. The demonstrated sensitivity to the 39 Ar/Ar ratio is sufficient to date water masses as old as 1000 years. - Highlights: • 39 Ar/Ar age dating is important for understanding environmental water migration. • Ultra low background proportional counters have been developed. • 39 Ar is detected in atmospheric argon at a rate of 70.3 counts per day. The demonstrated background is 166 counts per day. • Age dating is possible for water with underground residence time of up to 1000 years.

  14. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    International Nuclear Information System (INIS)

    Schell, W.R.; Tobin, M.J.; Vives-Batlle, J.; Yoon, S.R.

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min. This paper presents the design features, operational methods, calibration, and detector applications. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Novel determination of protein, fat, and lactose of milk by liquid scintillation counter

    International Nuclear Information System (INIS)

    Noble, R.C.; Shand, J.H.; West, I.G.

    1981-01-01

    A method for routine determination of protein, fat, and lactose contents of milk is based on the ability of a scintillation counter to measure coloration or opalescence through attenuation of photons emitted from sealed miniature carbon-14 and hydrogen-3 radioactive standards. A series of simplified and accurate analytical procedures enable full advantage to be taken of the automatic facilities on the modern liquid scintillation counter. The methods provide several advantages over existing procedures. Accuracy of quantification was high as assessed by comparing the results with those derived by recommended Kjeldahl, Gerber, and colorimetric procedures for protein, fat, and lactose determinations, respectively

  16. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    Science.gov (United States)

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-07

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  17. Dead zone characteristics of a gas counter

    International Nuclear Information System (INIS)

    Nohtomi, Akihiro; Sakae, Takeji; Matoba, Masaru; Koori, Norihiko.

    1990-01-01

    The dead zone was recently defined as the product of dead length and dead time in order to describe the characteristics of the self-quenching streamer (SQS) mode of a gas counter. Investigation of the dead zone characteristics has been extended for the proportional and GM modes, and the measured dead zone has been compared with that of the SQS mode. Accurate values for the dead zone could be determined by means of a newly developed method with a pulse interval time to amplitude converter. Each operation mode indicates distinct dead zone characteristics. Properties of gas counters for high counting rates may be improved on the basis of measurements of the dead zone. (author)

  18. A 4π scintillation counter-optical spark chamber system for neutral particles

    International Nuclear Information System (INIS)

    Demarzo, C.; Distante, A.; Guerriero, L.; Niccolini, C.; Posa, F.; Walder, F.; Chen, G.T.Y.; Fletcher, C.R.; Lanou, R.E. Jr.; Thornton, R.K.; Barton, D.S.; Lyons, T.; Marx, M.; Rosenson, L.; Thern, R.

    1975-01-01

    The authors describe a scintillation counter-optical spark chamber system developed for the detection of high energy gamma rays and neutrons. They describe the system components and their use in two completed experiments. (Auth.)

  19. Process for the automatic compensation of spectral displacement based on quenching processes in a liquid scintillation counter

    International Nuclear Information System (INIS)

    Nather, R.E.

    1978-01-01

    In measurements in a liquid scintillation counter, the tritium or C 14 isotope to be examined is situated in a scintillator solution. It is excited according to the energy of the β particle to emit light. An electrical signal is proportional to the light signal, and from the former, selective counting in the β spectrum can be undertaken in an impulse height analyser. The influence of the quenching effects by colour quenching or chemical quenching would reduce the gain of the counter. To compensate for the displacement of the spectrum, the required adjustment of a system parameter is carried out by calibration with a sample of low quenching effect. The calibration process is directly set for the energy end-point of the spectrum. Well known processes can be used to determine the quenching effect of the quenching represented by the sample. For example, the system parameters can be the discriminator level of the counter window. (DG) 891 HP [de

  20. A helium gas scintillator active target for photoreaction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Al Jebali, Ramsey; Annand, John R.M.; Buchanan, Emma; Gardner, Simon; Hamilton, David J.; Livingston, Kenneth; McGeorge, John C.; MacGregor, Ian J.D.; MacRae, Roderick; Reiter, Andreas J.H.; Rosner, Guenther; Sokhan, Daria; Strandberg, Bruno [University of Glasgow, School of Physics and Astronomy, Glasgow, Scotland (United Kingdom); Adler, Jan-Olof; Fissum, Kevin; Schroeder, Bent [University of Lund, Department of Physics, Lund (Sweden); Akkurt, Iskender [Sueleyman Demirel University, Fen-Edebiyat Faculty, Isparta (Turkey); Brudvik, Jason; Hansen, Kurt; Isaksson, Lennart; Lundin, Magnus [MAX IV Laboratory, PO Box 118, Lund (Sweden); Middleton, Duncan G. [Universitaet Tuebingen, Kepler Centre for Astro and Particle Physics, Physikalisches Institut, Tuebingen (Germany); Sjoegren, Johan [University of Glasgow, School of Physics and Astronomy, Glasgow, Scotland (United Kingdom); MAX IV Laboratory, PO Box 118, Lund (Sweden)

    2015-10-15

    A multi-cell He gas scintillator active target, designed for the measurement of photoreaction cross sections, is described. The target has four main chambers, giving an overall thickness of 0.103 g/cm{sup 3} at an operating pressure of 2 MPa. Scintillations are read out by photomultiplier tubes and the addition of small amounts of N{sub 2} to the He, to shift the scintillation emission from UV to visible, is discussed. First results of measurements at the MAX IV Laboratory tagged-photon facility show that the target has a timing resolution of around 1 ns and can cope well with a high-flux photon beam. The determination of reaction cross sections from target yields relies on a Monte Carlo simulation, which considers scintillation light transport, photodisintegration processes in {sup 4}He, background photon interactions in target windows and interactions of the reaction-product particles in the gas and target container. The predictions of this simulation are compared to the measured target response. (orig.)

  1. Coincidence measurements with the use of detectors measuring the energy of the radiances (proportional meters and scintillation counter); Mesures de coincidences avec utilisation de detecteurs mesurant l'energie des rayonnements (compteurs proportionnels et compteur a scintillations)

    Energy Technology Data Exchange (ETDEWEB)

    Sartory, M [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    In the setting of the realization of a set of installations permitting of the measures of coincidences between sorted radiances according to their energies, an installation understanding a proportional counter and a scintillation counter has been constructed and optimized. It has been used to do some measures of coincidences between X{sub K} photons and photons {gamma} issued at the time of the radioactive transformation of the selenium 75 (electronic capture). The efficiency of the proportional meter has been determined roughly. Besides, a proportional counter of solid angle neighboring of 4{pi} was able to achieve measures of coincidences while only doing one selection of amplitudes: indeed, the simultaneity of the detection of two radiances appear by an impulse whose amplitude is the sum of the amplitudes of the impulses resulting from each of the studied radiations. This method, applied to the coincidences between X-rays, permitted to bring the information on the diagram of decay of the arsenic 73. Besides, the coefficient of internal conversion of a consecutive transition to this decay has been valued. (author) [French] Dans le cadre de la realisation d'une serie de montages permettant des mesures de coincidences entre rayonnements tries d'apres leurs energies, un montage comprenant un compteur proportionnel et un compteur a scintillations a ete construit et mis au point. Il a ete utilise pour effectuer quelques mesures de coincidences entre photons X{sub K} et photons {gamma} emis lors de la transformation radioactive du selenium 75 (capture electronique). L'efficacite du compteur proportionnel a ete approximativement determinee. De plus, un compteur proportionnel d'angle solide voisin de 4{pi} a pu etre utilise pour realiser des mesures de coincidences en n'effectuant qu'une selection d'amplitudes: en effet, la simultaneite de la detection de deux rayonnements se manifeste par une impulsion dont l'amplitude est la somme des amplitudes des impulsions

  2. Construction and calibration studies of the SAPHIR scintillation counters

    International Nuclear Information System (INIS)

    Kostrewa, D.

    1988-03-01

    For the scintillation counter system of the SAPHIR detector at the stretcher ring ELSA in Bonn 50 time of flight counters and 12 trigger counters have been built. Each of them has two photomultipliers, one at each side. A laser calibration system with a pulsed nitrogen laser as central light source to monitor these photomultipliers has been optimized. It was used to adjust the photomultipliers and to test their long and short time instabilities. (orig.)

  3. Use of the small gas proportional counters for the carbon-14 measurement of very small samples

    International Nuclear Information System (INIS)

    Sayre, E.V.; Harbottle, G.; Stoenner, R.W.; Otlet, R.L.; Evans, G.V.

    1981-01-01

    Two recent developments are: the first is the mass-spectrometric separation of 14 C and 12 C ions, followed by counting of the 14 C, while the second is the extension of conventional proportional counter operation, using CO 2 as counting gas, to very small counters and samples. Although the second method is slow (months of counting time are required for 10 mg of carbon) it does not require operator intervention and many samples may be counted simultaneously. Also, it costs only a fraction of the capital expense of an accelerator installation. The development, construction and operation of suitable small counters are described, and results of three actual dating studies involving milligram scale carbon samples will be given. None of these could have been carried out if conventional, gram-sized samples had been needed. New installations, based on the use of these counters, are under construction or in the planning stages. These are located at Brookhaven Laboratory, the National Bureau of Standards (USA) and Harwell (UK). The Harwell installation, which is in advanced stages of construction, will be described in outline. The main significance of the small-counter method is, that although it will not suffice to measure the smallest (much less than 10 mg) or oldest samples, it will permit existing radiocarbon laboratories to extend their capability considerably, in the direction of smaller samples, at modest expense

  4. Position sensitive proportional counters as focal plane detectors

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.

    1979-01-01

    The rise time and charge division techniques for position decoding with RC-line proportional counters are reviewed. The advantages that these detectors offer as focal plane counters for nuclear spectroscopy performed with magnetic spectrographs are discussed. The theory of operation of proportional counters as position sensing devices is summarized, as well as practical aspects affecting their application. Factors limiting the position and energy resolutions obtainable with a focal plane proportional counter are evaluated and measured position and energy loss values are presented for comparison. Detector systems capable of the multiparameter measurements required for particle identification, background suppression and ray-tracing are described in order to illustrate the wide applicability of proportional counters within complex focal plane systems. Examples of the use of these counters other than with magnetic spectrographs are given in order to demonstrate their usefulness in not only nuclear physics but also in fields such as solid state physics, biology, and medicine. The influence of the new focal plane detector systems on future magnetic spectrograph designs is discussed. (Auth.)

  5. Direct measurement of gaseous activities by diffusion-in long proportional counter method

    International Nuclear Information System (INIS)

    Yoshida, M.; Yamamoto, T.; Wu, Y.; Aratani, T.; Uritani, A.; Mori, C.

    1993-01-01

    Direct measurement of gaseous activities by the diffusion-in long proportional counter method (DLPC method) was studied. The measuring time without end effect was estimated by observing the behavior of 37 Ar in the counter and was long enough to carry out the accurate activity measurement. The correction for wall effect was also examined on the basis of the measured and calculated correction factors. Among the tested gases of methane, P10 gas and propane, P10 gas was made clear to be a suitable counting gas for the DLPC method because of good diffusion properties and small wall effect. This method is quite effective for standardization of gaseous activities used for tracer experiments and calibration works of radioactive gas monitoring instruments. (orig.)

  6. Determination of optimum shape and dimensions of anode high-voltage isolators for gaseous proportional counters

    International Nuclear Information System (INIS)

    Jelen, K.; Jagusztyn, W.

    1975-01-01

    The influence of the shape and dimensions of the high-voltage anode-to-cathods isolator on the regularity of the electrostatic field distribution along the anode of a cylindrical gaseous proportional counter is studied. For a counter of fixed dimensions, the length and diameter of the glass isolators were optimized to disrupt as little as possible the regularity of the field distribution in the active volume of the counter. Results of calculations are in agreement with experimental data. The obtained results provide a basis for obtaining a correct ratio of the active volume of the counter to its total volume. (author)

  7. A lens-coupled scintillation counter in cryogenic environment

    International Nuclear Information System (INIS)

    Stoykov, A; Scheuermann, R; Amato, A; Bartkowiak, M; Konter, J A; Rodriguez, J; Sedlak, K

    2011-01-01

    In this work we present an elegant solution for a scintillation counter to be integrated into a cryogenic system. Its distinguishing feature is the absence of a continuous light guide coupling the scintillation and the photodetector parts, operating at cryogenic and room temperatures respectively. The prototype detector consists of a plastic scintillator with glued-in wavelength-shifting fiber located inside a cryostat, a Geiger-mode Avalanche Photodiode (G-APD) outside the cryostat, and a lens system guiding the scintillation light re-emitted by the fiber to the G-APD through optical windows in the cryostat shields. With a 0.8 mm diameter multiclad fiber and a 1 mm active area G-APD the coupling efficiency of the 'lens light guide' is about 50%. A reliable performance of the detector down to 3 K is demonstrated.

  8. Test of a large size acrylic scintillation counter

    International Nuclear Information System (INIS)

    Bertino, M.; De Zorzi, G.; Zanello, D.

    1984-01-01

    We have tested the behaviour of an acrylic scintillator measuring the attenuation length and the time resolution of a 7.8 m long counter. On a small sample the photon yield relative to the NE 110 plastic has been measured. (orig.)

  9. A theory of timing in scintillation counters based on maximum likelihood estimation

    International Nuclear Information System (INIS)

    Tomitani, Takehiro

    1982-01-01

    A theory of timing in scintillation counters based on the maximum likelihood estimation is presented. An optimum filter that minimizes the variance of timing is described. A simple formula to estimate the variance of timing is presented as a function of photoelectron number, scintillation decay constant and the single electron transit time spread in the photomultiplier. The present method was compared with the theory by E. Gatti and V. Svelto. The proposed method was applied to two simple models and rough estimations of potential time resolution of several scintillators are given. The proposed method is applicable to the timing in Cerenkov counters and semiconductor detectors as well. (author)

  10. Pulse formation of gas-filled counter

    International Nuclear Information System (INIS)

    Iwatani, Kazuo; Teshima, Kazunori; Shizuma, Kiyoshi; Hasai, Hiromi

    1991-01-01

    The pulse formation of gas-filled counter has been calculated by simple models for the proportional and self-quenching streamer (SQS) modes. Calculated pulse shapes of counter output have accurately reproduced the observed ones for both modes. As a result, it is shown that the special density distribution of ion pairs in a streamer can be estimated with the rising part of observed pulse shape, using the model. (author)

  11. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  12. The scintillation counter system at the SAPHIR detector

    International Nuclear Information System (INIS)

    Bour, D.

    1989-10-01

    The scintillation-counters system of the SAPHIR-detector at the stretcher accelerator ELSA in Bonn consists of 64 counters. It supplies a fast hadronic trigger and is utilizised for the particle identification by time of flight measurements. Prototypes of the counters (340x21.25 x 6.0 cm 3 ) had been tested. The contribution to the resolution of the time of flight measurement was measured to σ=125 ps, the effective light velocity to 17.5 ns/cm and the attenuation length of 7.8 m. A pion kaon separation is possible up to a momentum of 1 GeV/c with time of flight measurement. With the first photon-beam at SAPHIR the counters were tested, first triggers were obtained and evaluated. (orig.) [de

  13. Applications of commercial liquid scintillation counters to radon-222 and radium-226 analyses

    International Nuclear Information System (INIS)

    Gesell, T.F.; Prichard, H.M.; Haygood, J.R.

    1978-01-01

    The ubiquitous commerical liquid scintillation counter offers automatic sample processing, automatic data recording and the prospect of multiple users. With these features in mind we have explored a number of applications of liquid scintillation counters to environmental and health physics problems. One application, the analysis of radon in water has been described elsewhere and is only briefly reviewed. A method for measuring radon in air, two methods for measuring radium in water, and a technique for leak testing radium needles have also been investigated. An ordinary glass scintillation vial is readily converted into a miniature scintillation flask by coating the inside surface with a thin layer in ZnS:Ag phosphor. The lower limit detection is high, about 2 pCi/1 for a 1 hour count, but these flasks have proved to be useful in situations where a larger number of samples must be taken in environments with relatively high levels of radon. One technique for the detection of radium in water uses liquid-liquid extraction to concentrate radon into an organic scintillation fluid, the other involves passing the water sample through an ion exchange resin and then sealing the resin and scintillation fluid in a vial. Both techniques offer the prospect of easy and inexpensive analyses with limits of detection at or below 0.5 pCi/1. Radium needles can be leak tested by placing them in vials containing toluene for a few minutes, adding fluor to the toluene and counting. Preliminary data regarding these several methods are given

  14. Measurement of the activity of electron capturing isotopes

    International Nuclear Information System (INIS)

    Szoerenyi, A.

    1980-01-01

    In order to measure precisely the activity of electron capturing isotopes, an equipment was constructed for the detection the X-photons, the Auger- and the conversing electrons by a high-pressure, gas-flow 4π proportional counter. The proportional counter and the NaI(Tl) scintillation counter are placed in a common lead-shielding, thus, the equipment is suited for the measurement of radioisotopes decaying in coincidence. The structure of the proportional counter and of the pressure-control system are detailed. As an example, the energy spectra of a 109 Cd solution, taken at different pressures, are published. At a pressure of 1.1 MPa the 3 peaks are well separated. The results of an international test, in which the radioactivity of a 57 Co sample was determined, are published, too. (L.E.)

  15. Quench gases for xenon- (and krypton-)filled proportional counters

    International Nuclear Information System (INIS)

    Ramsey, B.D.; Agrawal, P.C.

    1988-01-01

    Xenon-filled proportional counters are used extensively in astronomy, particularly in the hard X-ray region. The choice of quench gas can have a significant effect on the operating characteristics of the instrument although the data necessary to make the choice are not easily obtainable. We present results which detail the performance obtained from both cylindrical and parallel field geometries for a wide variety of readily available, ultrahigh or research grade purity, quench gases. (orig.)

  16. Test of long scintillating counter prototypes for CDF-II

    International Nuclear Information System (INIS)

    Budagov, Yu.; Chirikov-Zorin, I.; Pukhov, O.; Incagli, M.; Leone, S.; Menzione, A.; Pauletta, G.; Tokar, S.

    2000-01-01

    New type long (up to 3 m) scintillating counter prototypes, developed for CDF-II, have been tested. The shift-spectrum fiber ribbons were used for light collection, and modern ultra compact photomultipliers R5600 were used for light detection. The efficiency for m.i.p. was excellent for all prototypes. The light yield from the far end of the counters was found to be more than 20 photoelectrons

  17. Development of a drift tissue equivalent proportional counter for radiation protection personnel dosimetry

    International Nuclear Information System (INIS)

    Bordy, J.M.

    1992-04-01

    A new multicellular geometry for proportional counter has been developed. It is made of several drift regions which are some holes drilled in the cathode in front of anodes wires. The present work is made of 3 parts: 1) A theoretical evaluation of the multicellular counter characteristics: the sensitivity increases by a factor 15 vs the Tinelli Merlin-Gerin counter; the chord length distribution study shows the possibility to use a Dirac function for the dosimetry calculations; a tissue equivalent gas mixture based on argon and propane is designed. 2) The production of a monocellular prototype made of a hole and a needle shaped anode. 3) An experimental study of the prototype electrical characteristics and a computation of the electrical field in the counter. The focalization and the electron drift into the hole, the proportional operating mode are shown. Irradiations in front of photon and neutron sources verify these results

  18. Some recent developments in nuclear charged particle detectors

    International Nuclear Information System (INIS)

    Stelzer, H.

    1980-08-01

    The latest developments of large-area, position sensitive gas-filled ionization chambers are described. Multi-wire-proportional chambers as position-sensing and parallel-plate-avalanche counters as time-sensing detectors at low pressure (5 torr) have proven to be useful and reliable instruments in heavy ion physics. Gas (proportional) scintillation counters, used mainly for x-ray spectroscopy, have recently been applied as particle detectors. Finally, a brief description of a large plastic scintillator spectrometer, the Plastic Ball, is given and some of the first test and calibration data are shown

  19. Use of tissue equivalent proportional counters to characterize radiation quality on the space shuttle

    International Nuclear Information System (INIS)

    Braby, L.A.; Conroy, T.J.; Elegy, D.C.; Brackenbush, L.W.

    1992-04-01

    Tissue equivalent proportional counters (TEPC) are essentially cavity ionization chambers operating at low pressure and with gas gain. A small, battery powered, TEPC spectrometer, which records lineal energy spectra at one minute intervals, has been used on several space shuttle missions. The data it has collected clearly show the South Atlantic anomaly and indicate a mean quality factor somewhat higher than expected. An improved type of instrument has been developed with sufficient memory to record spectra at 10 second intervals, and with increased resolution for low LET events. This type of instrument will be used on most future space shuttle flights and in some international experiments

  20. Measuring techniques for environmental sup 3 H, sup 14 C and sup 222 Rn by liquid scintillation counter

    Energy Technology Data Exchange (ETDEWEB)

    Takata, Shigeru; Saito, Masaaki (Tokyo Metropolitan Isotope Research Center (Japan))

    1991-02-01

    Measuring techniques for environmental {sup 3}H, {sup 14}C and {sup 222}Rn with a liquid scintillation counter have been studied. {sup 3}H in environmental water was enriched by electrolysis and measured with a low background liquid scintillation counter. By this technique, {sup 3}H concentration of ground water, river water, sea water and rain water at Tokyo was founded to be 0.1 {approx} 2.5 Bq/1. {sup 14}C in taurine and ethyl-alcohol was measured directly liquid scintillation counter. By this {sup 14}C measuring, natural products, contain low level {sup 14}C, were distinguished from synthesised products contain no {sup 14}C. {sup 222}Rn in toluene extracted from environmental water or air was measured by scintillation pulse interval analysis method. By this technique, {sup 222}Rn was able to be measured under very low background counting rate, 0.03cpm, and high efficiency. (author).

  1. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    Olson, R.E.; Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  2. Direct measurement of radioactive carbon in Vietnamese vodkas by Liquid Scintillation Counter

    International Nuclear Information System (INIS)

    Hattori, Takamitsu

    2014-01-01

    From the view point of applying to laboratory exercise of radioactivity measurement by a Liquid Scintillation Counter (LSC), Vietnamese vodkas have specific features as measurement samples, for example, they are colorless, have high ethanol content, and only very few organic materials are included. Investigation was made to make sure that the Vietnamese vodkas are appropriate or not as a measurement sample for the LSC exercise. Direct measurements of 14 C without any chemical pre-treatment were made on both radioactive concentrations and specific activities of three kinds of Vietnamese vodka and also pure ethanol reagent. The LSC measurements reveal that estimated 14 C concentration is proportional to ethanol content in samples and that specific activity of 14 C shows good agreement among the Vietnamese vodkas and pure ethanol, as well as the reference value of 0.25 Bq/g of Carbon. Thus the conclusion is derived that the Vietnamese vodkas can be applied with high accuracy to the LSC exercise as measurement samples. (author)

  3. Rate dependent image distortions in proportional counters

    International Nuclear Information System (INIS)

    Trow, M.W.; Bento, A.C.; Smith, A.

    1994-01-01

    The positional linearity of imaging proportional counters is affected by the intensity distribution of the incident radiation. A mechanism for this effect is described, in which drifting positive ions in the gas produce a distorting electric field which perturbs the trajectories of the primary electrons. In certain cases, the phenomenon causes an apparent improvement of the position resolution. We demonstrate the effect in a detector filled with a xenon-argon-CO 2 mixture. The images obtained are compared with the results of a simulation. If quantitative predictions for a particular detector are required, accurate values of the absolute detector gain, ion mobility and electron drift velocity are needed. ((orig.))

  4. Use of proportional gas scintillator in absolute measurements of alpha-gamma emitter activities

    International Nuclear Information System (INIS)

    Tobias, C.C.B.

    1987-01-01

    The absolute activity of U-235 contained in a U 3 O 8 sample was measured utilizing a sum-coincidence circuit which selects only the alpha particles which are simultaneous with the 143 KeV and 186 KeV gamma radiations from the Th-231 (product nucleus). The alpha particles were detected by means of a new type of a gas scintillating chamber, in which the light emitted by excitation of the gas atoms, due to the passage of a charged incoming particle, has its intensity increased by the action of an applied electric field. The gamma radiations were detected by means of a NaI(Tl) 1'' x 1 1/2'' scintillation detector. The value obtained for the half-life of U-235 was compared with the data available from various observers which used different experimental techniques. It is shown tht the results, are in excellent agreement with the best international data available on the subject and that, therefore, the sum-coincidence technique constitutes an important method for such measurements. (Author) [pt

  5. Study and construction of an air proportional counter for superficial alpha contamination

    International Nuclear Information System (INIS)

    Cabral, T.S.

    1991-01-01

    Some properties of the proportional counters such as the working principle and the process of the gaseous multiplication are presented. Besides that, the project of Multiwire Proportional Counters is shown, which was tested with anodic wires of different diameters and with windows of several thicknesses. Operational characteristics of the detector were determined with the quoted variations. The chamber was normally operated by atmospheric pressure, but there were also made surveys on its behavior with oxygen, nitrogen and mixture of both. The performance of the chamber with a variations of temperature and relative humidity is analysed, because that is one of the biggest problems faced when measure of field are being made with this kind of detector. (author)

  6. X-ray proportional counter for the Viking Lander

    International Nuclear Information System (INIS)

    Glesius, F.L.; Kroon, J.C.; Castro, A.J.; Clark, B.C.

    1978-01-01

    A set of four sealed proportional counters with optimized energy response is employed in the X-ray fluorescence spectrometer units aboard the two Viking Landers. The instruments have provided quantitative elemental analyses of soil samples taken from the Martian surface. This paper discusses the design and development of these miniature proportional counters, and describes their performance on Mars

  7. CAMAC-system for calibration and control of experimental apparatus with scintillation counters

    International Nuclear Information System (INIS)

    Petrov, A.G.; Sinaev, A.N.

    1977-01-01

    The CAMAC-system is described, connected to the minicomputer PH-2116C, for calibration and control of an experiment on pion scattering on He-nuclei performed with a streamer chamber triggered by a scintillation hodoscope. The following operations are performed: -delay calibration in telescope and hodoscope tracts involving 22 scintillation counters; -control of relative efficiency of hodoscope counters and other parameters of the experiments; -control of HV supply of photomultipliers; -control of the currents of magnets and lenses of the muon track of the synchrocyclotron; -measurement of pulse-hight spectra from a Cherenkov counter to determine the beam composition. The working programs are initiated and the dialogue with the computer is carried out using an alphanumerical display connected to the PH-2116C via a CAMAC interface

  8. Measurements of electron attachment by oxygen molecule in proportional counter

    Energy Technology Data Exchange (ETDEWEB)

    Tosaki, M., E-mail: tosaki.mitsuo.3v@kyoto-u.ac.jp [Radioisotope Research Center, Kyoto University, Kyoto 606-8501 (Japan); Kawano, T. [National Institute for Fusion Science, 322-6 Oroshi, Toki 509-5292 (Japan); Isozumi, Y. [Radioisotope Research Center, Kyoto University, Kyoto 606-8501 (Japan)

    2013-11-15

    We present pulse height measurements for 5-keV Auger electrons from a radioactive {sup 55}Fe source mounted at the inner cathode surface of cylindrical proportional counter, which is operated with CH{sub 4} admixed dry air or N{sub 2}. A clear shift of the pulse height has been observed by varying the amount of the admixtures; the number of electrons, created in the primary ionization by Auger electrons, is decreased by the electron attachment of the admixtures during their drift from the place near the source to the anode wire. The large gas amplification (typically 10{sup 4}) in the secondary ionization of proportional counter makes it possible to investigate a small change in the number of primary electrons. The electron attenuation cross-section of O{sub 2} has been evaluated by analyzing the shifts of the pulse height caused by the electron attachment to dry air and N{sub 2}.

  9. Identification of irradiated spices with aid of scintillation counter

    International Nuclear Information System (INIS)

    Uusheimo, K.

    1989-08-01

    The aim off the work was to determine how one can identify gamma-irradiated spices with aid of a scintillation counter (LKB/Wallac 1219 RackBeta Spectral) by chemiluminescence measurements. Even though scintillation counters are more sensitive than real luminometers they have not been capable in identifying the irradiated spices after contact with photosensitizer like luminol, isoluminol and lucigenin presumably because the actual chemiluminescence reaction took place before the sample vial reached the measuring range. Whereas it was noticed that the identification of pure, dry allspice, black pepper, white peppar and cardemom was possible without any solutions when there were also present similar unirradiated spices. The identification was possible even after 23 weeks duration depending on the dose of the irradiation (10 kGy or 50 kGy) and the weight of the samples (1 g or 9 g). The duration of the investigation was 23 weeks

  10. Computer simulation of gain fluctuations in proportional counters

    International Nuclear Information System (INIS)

    Demir, Nelgun; Tapan, . Ilhan

    2004-01-01

    A computer simulation code has been developed in order to examine the fluctuation in gas amplification in wire proportional counters which are common in detector applications in particle physics experiments. The magnitude of the variance in the gain dominates the statistical portion of the energy resolution. In order to compare simulation and experimental results, the gain and its variation has been calculated numerically for the well known Aleph Inner Tracking Detector geometry. The results show that the bias voltage has a strong influence on the variance in the gain. The simulation calculations are in good agreement with experimental results. (authors)

  11. A scintillation detector for measuring inert gas beta rays

    International Nuclear Information System (INIS)

    Shi Hengchang; Yu Yunchang

    1989-10-01

    The inert gas beta ray scintillation detector, which is made of organic high polymers as the base and coated with compact fluorescence materials, is a lower energy scintillation detector. It can be used in the nuclear power plant and radioactive fields as a lower energy monitor to detect inert gas beta rays. Under the conditions of time constant 10 minutes, confidence level is 99.7% (3σ), the intensity of gamma rays 2.6 x 10 -7 C/kg ( 60 Co), and the minimum detectable concentration (MDC) of this detector for 133 Xe 1.2 Bq/L. The measuring range for 133 Xe is 11.1 ∼ 3.7 x 10 4 Bq/L. After a special measure is taken, the device is able to withstand 3 x 10 5 Pa gauge pressure. In the loss-of-cooolant-accident, it can prevent the radioactive gas of the detector from leaking. This detector is easier to be manufactured and decontaminated

  12. Neutron dosimetry using proportional counters with tissue equivalent walls

    International Nuclear Information System (INIS)

    Kerviller, H. de

    1965-01-01

    The author reminds the calculation method of the neutron absorbed dose in a material and deduce of it the conditions what this material have to fill to be equivalent to biological tissues. Various proportional counters are mode with walls in new tissue equivalent material and filled with various gases. The multiplication factor and neutron energy response of these counters are investigated and compared with those obtained with ethylene lined polyethylene counters. The conditions of working of such proportional counters for neutron dosimetry in energy range 10 -2 to 15 MeV are specified. (author) [fr

  13. A helium-3 proportional counter technique for estimating fast and intermediate neutrons

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nakazawa, Masaharu; Sekiguchi, Akira; Wakabayashi, Hiroaki.

    1976-11-01

    3 He proportional counter was employed to determine the fast and intermediate neutron spectra of wide energy region. The mixed gas ( 3 He, Kr) type counter response and the spectrum unfolding code were prepared and applied to some neutron fields. The counter response calculation was performed by using the Monte Carlo code, paying regards to dealing of the particle range calculation of the mixed gas. An experiment was carried out by using the van de Graaff accelerator to check the response function. The spectrum unfolding code was prepared so that it may have the function of automatic evaluation of the higher energy spectrum's effect to the pulse hight distribution of the lower energy region. The neutron spectra of the various neutron fields were measured and compared with the calculations such as the discrete ordinate Sn calculations. It became clear that the technique developed here can be applied to the practical use in the neutron energy range from about 150 KeV to 5 MeV. (auth.)

  14. Scintillation counter and wire chamber front end modules for high energy physics experiments

    International Nuclear Information System (INIS)

    Baldin, Boris; DalMonte, Lou

    2011-01-01

    This document describes two front-end modules developed for the proposed MIPP upgrade (P-960) experiment at Fermilab. The scintillation counter module was developed for the Plastic Ball detector time and charge measurements. The module has eight LEMO 00 input connectors terminated with 50 ohms and accepts negative photomultiplier signals in the range 0.25...1000 pC with the maximum input voltage of 4.0 V. Each input has a passive splitter with integration and differentiation times of ∼20 ns. The integrated portion of the signal is digitized at 26.55 MHz by Analog Devices AD9229 12-bit pipelined 4-channel ADC. The differentiated signal is discriminated for time measurement and sent to one of the four TMC304 inputs. The 4-channel TMC304 chip allows high precision time measurement of rising and falling edges with ∼100 ps resolution and has internal digital pipeline. The ADC data is also pipelined which allows deadtime-less operation with trigger decision times of ∼4 (micro)s. The wire chamber module was developed for MIPP EMCal detector charge measurements. The 32-channel digitizer accepts differential analog signals from four 8-channel integrating wire amplifiers. The connection between wire amplifier and digitizer is provided via 26-wire twist-n-flat cable. The wire amplifier integrates input wire current and has sensitivity of 275 mV/pC and the noise level of ∼0.013 pC. The digitizer uses the same 12-bit AD9229 ADC chip as the scintillator counter module. The wire amplifier has a built-in test pulser with a mask register to provide testing of the individual channels. Both modules are implemented as a 6Ux220 mm VME size board with 48-pin power connector. A custom europack (VME) 21-slot crate is developed for housing these front-end modules.

  15. Count rate effect in proportional counters

    International Nuclear Information System (INIS)

    Bednarek, B.

    1980-01-01

    A critical evaluaton is presented of the actual state of investigations and explanations of the resolution and pulse height changes resulted in proportional counters from radiation intensity variations. (author)

  16. The Micro Trench Gas Counter

    International Nuclear Information System (INIS)

    Schmitz, J.

    1991-07-01

    A novel design is presented for a gas avalanche chamber with micro-strip gas readout. While existing gaseous microstrip detectors (Micro-strip Gas Counters, Knife edge chambers) have a minimum anode pitch of the order of 100 μm, the pitch of the discussed Micro Trench Gas Counter goes down to 30-50 μm. This leads to a better position resolution and two track separation, and a higher radiation resistivity. Its efficiency and signal speed are expected to be the same as the Microstrip Gas Counter. The energy resolution of the device is expected to be equal to or better than 10 percent for the 55 Fe peak. Since the anode strip dimensions are larger than those in a MSGC, the device may be not as sensitive to discharges and mechanical damage. In this report production of the device is briefly described, and predictions on its operation are made based on electric field calculations and experience with the Microstrip Gas Counter. The authors restrict themselves to the application in High Energy Physics. (author). 10 refs.; 9 figs

  17. High efficiency scintillation detectors

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1976-01-01

    A scintillation counter consisting of a scintillation detector, usually a crystal scintillator optically coupled to a photomultiplier tube which converts photons to electrical pulses is described. The photomultiplier pulses are measured to provide information on impinging radiation. In inorganic crystal scintillation detectors to achieve maximum density, optical transparency and uniform activation, it has been necessary heretofore to prepare the scintillator as a single crystal. Crystal pieces fail to give a single composite response. Means are provided herein for obtaining such a response with crystal pieces, such means comprising the combination of crystal pieces and liquid or solid organic scintillator matrices having a cyclic molecular structure favorable to fluorescence. 8 claims, 6 drawing figures

  18. Output pulse-shapes of position-sensitive proportional counters using high resistance single wire

    International Nuclear Information System (INIS)

    Iwatani, Kazuo; Nishiyama, Fumitaka; Hasai, Hiromi

    1980-01-01

    The measurements and model analysis of the output pulse-shapes from a single wire proportional counter (SWPC) which has a high resistance anode are described. The characteristics of the observed pulse-shapes are determined by only one parameter which is a function of anode resistance and load resistance and they are reproduced by a simple model. Using this model, the methods for position read-out are discussed in a systematical way. (author)

  19. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

    Science.gov (United States)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

    2014-01-01

    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  20. A multiwire proportional counter for very high counting rates

    International Nuclear Information System (INIS)

    Barbosa, A.F.; Guedes, G.P.; Tamura, E.; Pepe, I.M.; Oliveira, N.B.

    1997-12-01

    Preliminary measurements in a proportional counter with two independently counting wires showed that counting rates up to 10 6 counts/s per wire can be reached without critical loss in the true versus measured linearity relation. Results obtained with a detector containing 30 active wires (2 mm pitch) are presented. To each wire is associated a fast pre-amplifier and a discriminator channel. Global counting rates in excess to 10 7 events/s are reported. Data acquisition systems are described for 1D (real time) and 2D (off-line) position sensitive detection systems. (author)

  1. Non-Proportionality of Electron Response and Energy Resolution of Compton Electrons in Scintillators

    Science.gov (United States)

    Swiderski, L.; Marcinkowski, R.; Szawlowski, M.; Moszynski, M.; Czarnacki, W.; Syntfeld-Kazuch, A.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.

    2012-02-01

    Non-proportionality of light yield and energy resolution of Compton electrons in three scintillators (LaBr3:Ce, LYSO:Ce and CsI:Tl) were studied in a wide energy range from 10 keV up to 1 MeV. The experimental setup was comprised of a High Purity Germanium detector and tested scintillators coupled to a photomultiplier. Probing the non-proportionality and energy resolution curves at different energies was obtained by changing the position of various radioactive sources with respect to both detectors. The distance between both detectors and source was kept small to make use of Wide Angle Compton Coincidence (WACC) technique, which allowed us to scan large range of scattering angles simultaneously and obtain relatively high coincidence rate of 100 cps using weak sources of about 10 μCi activity. The results are compared with those obtained by direct irradiation of the tested scintillators with gamma-ray sources and fitting the full-energy peaks.

  2. Study on the neutron dosimetric characteristics of Tissue Equivalent Proportional Counter

    Energy Technology Data Exchange (ETDEWEB)

    Nunomiya, T.; Kim, E.; Kurosawa, T.; Taniguchi, S.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Tsujimura, N.; Momose, T.; Shinohara, K. [Japan Nuclear Cycle Development Inst., Environment and Safety Division, Tokai Works, Tokai, Ibaraki (Japan)

    1999-03-01

    The neutron dosimetric characteristics of TEPC (Tissue Equivalent Proportional Counter) has been investigated under a cooperative study between Tohoku University and JNC since 1997. This TEPC is a spherical, large volume, single-wire proportional counter (the model LETSW-5, manufactured by Far West Technology, Inc.) and filled with a tissue equivalent gas in a spherical detector of the A-150 tissue equivalent plastic. The TEPC can measure the spectra of absorbed dose in LET and easily estimate the tissue equivalent dose to neutron. This report summarizes the dosimetric characteristics of TEPC to the monoenergetic neutrons with energy from 8 keV to 15 MeV. It is found that TEPC can estimate the ambient dose equivalent, H*(10), with an accuracy from 0.9 to 2 to the neutron above 0.25 MeV and TEPC has a good counting efficiency enough to measure neutron doses with low dose rate at the stray neutron fields. (author)

  3. Scintillation counter: photomultiplier tube alignment

    International Nuclear Information System (INIS)

    Olson, R.E.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into the sample receiving zone. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (auth)

  4. Scintillation counter, maximum gamma aspect

    International Nuclear Information System (INIS)

    Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  5. Polyethylene vials for liquid scintillation counters produced by the National Materials Research Institute

    International Nuclear Information System (INIS)

    Fiser, B.; Lukas, D.

    1984-01-01

    The properties were tested of polyethylene vials for liquid scintillation counters manufactured by the National Materials Research Institute. Liquid scintillation counter ISOCAP 300 by Nuclear Chicago was used for measuring. For unquenched samples, channel A was set up to 0.5-3.6 keV and channel B to 0.5-18 keV. The scintillation solution was prepared of toluene, 4 g PPO, 0.15 g POPOP per 1 l of toluene. CCl 4 was used as the quenching agent. Radioactive samples were prepared from 20 μl of standard solution of [ 3 H]-toluene with specific activity of 349 Bq/g. All measurements were made using a 7 ml scintillation solution into which radioactivity and possibly quenching agents were added. Potassium-free glass vials by SKLO UNION Teplice and thin-walled polyethylene vials by Nuclear Chicago were used for comparison. The background was measured, as were the time dependences of weight losses of the scintillation solution and carbon tetrachloride from the counting vials, changes in efficiency in channel B with time, changes in SCR with time and changes in the quenching curve with time. (E.S.)

  6. DEVELOPMENT OF HETEROGENEOUS PROPORTIONAL COUNTERS FOR NEUTRON DOSIMETRY.

    Science.gov (United States)

    Forouzan, Faezeh; Waker, Anthony J

    2018-01-10

    The use of a custom-made cylindrical graphite proportional counter (Cy-GPC) along with a cylindrical tissue equivalent proportional counter (TEPC) for neutron-gamma mixed-field dosimetry has been studied in the following steps: first, the consistency of the gamma dose measurement between the Cy-TEPC and the Cy-GPC was investigated over a range of 20 keV (X-ray) to 0.661 MeV (Cs-137 gamma ray). Then, with both the counters used simultaneously, the neutron and gamma ray doses produced by a P385 Neutron Generator (Thermo Fisher Scientific) together with a Cs-137 gamma source were determined. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. A multiwire proportional counter for very high counting rates

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, A F; Guedes, G P [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Tamura, E [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Pepe, I M; Oliveira, N B [Bahia Univ., Salvador, BA (Brazil). Inst. de Fisica

    1997-12-01

    Preliminary measurements in a proportional counter with two independently counting wires showed that counting rates up to 10{sup 6} counts/s per wire can be reached without critical loss in the true versus measured linearity relation. Results obtained with a detector containing 30 active wires (2 mm pitch) are presented. To each wire is associated a fast pre-amplifier and a discriminator channel. Global counting rates in excess to 10{sup 7} events/s are reported. Data acquisition systems are described for 1D (real time) and 2D (off-line) position sensitive detection systems. (author) 13 refs., 6 figs.

  8. Study of light collection uniformity dependence on reflector type in a large scintillation counter

    International Nuclear Information System (INIS)

    Astvatsaturov, R.G.; Ivanov, V.I.; Knapik, E.; Kramarenko, V.A.; Malakhov, A.I.; Khachaturyan, M.N.

    1977-01-01

    An investigation of the way to improve uniformity of light collection onto photoelectric multiplier photocathode, for the 100x10x2 cm scintillation counter, has been undertaken. Pulse amplitude versus the point, particles strike a scintillator, relationship, has been demonstrated for several types of reflectors. Used as reflectors were: white papar, aluminium foil, black papar and a combination of above reflectors. Experimental data analysis shows, that the combination of reflectors with different reflection coefficient, provides a means for 1,5 time improvement of counter light collection uniformity, with no impairment of amplitude characteristics

  9. Operation of gas electron multiplier (GEM) with propane gas at low pressure and comparison with tissue-equivalent gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    De Nardo, L., E-mail: laura.denardo@unipd.it [University of Padova, Physics and Astronomy Department and PD-INFN, via Marzolo 8, I-35131 Padova (Italy); Farahmand, M., E-mail: majid.farahmand@rivm.nl [Centre for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), PO Box 1, NL-3720 BA Bilthoven (Netherlands)

    2016-05-21

    A Tissue-Equivalent Proportional Counter (TEPC), based on a single GEM foil of standard geometry, has been tested with pure propane gas at low pressure, in order to simulate a tissue site of about 1 µm equivalent size. In this work, the performance of GEM with propane gas at a pressure of 21 and 28 kPa will be presented. The effective gas gain was measured in various conditions using a {sup 244}Cm alpha source. The dependence of effective gain on the electric field strength along the GEM channel and in the drift and induction region was investigated. A maximum effective gain of about 5×10{sup 3} has been reached. Results obtained in pure propane gas are compared with gas gain measurements in gas mixtures commonly employed in microdosimetry, that is propane and methane based Tissue-Equivalent gas mixtures.

  10. Calibration of a low background gas-flow proportional counter to estimate "2"3"4Th activity in coastal waters

    International Nuclear Information System (INIS)

    Cuesta, E.; Lozano, R.L.; Miguel, E.G. San; Casas-Ruiz, M.; Bolívar, J.P.

    2016-01-01

    This paper relates the calibration of a low background gas-flow proportional counter. This calibration has been used to determine low activity of "2"3"4Th in coastal water samples. Two methods were used to prepare calibration samples: Evaporation and Electrodeposition. First method was rejected due to the lack of reproducibility because the different geometry adopted by the drops of tracer once dried on the disk. On the contrary, through the second method, similar efficiencies were obtained in all detectors with an average of 0.401±0.004. In this paper, the whole procedure to obtain "2"3"4Th activity in dissolution as well as in particulate matter has been detailed, and all the algorithms needed to calculate activities and efficiencies are shown. Finally, two experiments have been designed in order to validate the calibration of the beta counter and the method to determine "2"3"4Th in coastal waters with high concentration of particulate matter. - Highlights: • This paper shows a Home-made calibration using two methods to prepare calibration samples. • The algorithms needed to obtain Th-234 activity concentrations are described in full detail. • This is the first time Th-234 has been determined in water samples from Huelva Estuary.

  11. Radiocarbon dating methods using benzene liquid scintillation

    International Nuclear Information System (INIS)

    Togashi, Shigeko; Matsumoto, Eiji

    1983-01-01

    The radiocarbon dating method using benzene liquid scintillation is reported in detail. The results of measurement of NBS oxalic acid agree with the recommended value, indicating that isotopic fractionation during benzene synthesis can be negligible. Ten samples which have been already measured by gas counter are dated by benzene liquid scintillation. There is no significant difference in age for the same sample between benzene liquid scintillation and gas counters. It is shown that quenching has to be corrected for the young sample. Memory effect in stainless steel reaction vessel can be removed by using an exchangeable inner vessel and by baking it in the air. Using this method, the oldest age that can be measured with 2.3 g carbon is 40,000 years B.P. (author)

  12. Position-sensitive proportional counter with low-resistance metal-wire anode

    International Nuclear Information System (INIS)

    Kopp, M.K.

    1980-01-01

    A position-sensitive proportional counter circuit is provided which uses a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counther. A pair of specially designed activecapacitance preamplifiers terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, lownoise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at te anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates

  13. Safety regulation on high-pressure gas and gas business

    International Nuclear Information System (INIS)

    Kim, Du Yeoung; An, Dae Jun

    1978-09-01

    This book is divided into two parts. The first part introduces safety regulation on high-pressure gas, enforcement ordinance on safety regulation about high-pressure gas and enforcement regulation on safety regulation about high-pressure gas. The second part indicates regulations on gas business such as general rules, gas business gas supplies, using land, supervision, supple mentary rules and penalty. It has two appendixes on expected questions and questions during last years.

  14. Very large area multiwire spectroscopic proportional counters

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; Mastropietro, M.; La Padula, C.D.; Patriarca, R.; Polcaro, V.F.

    1981-01-01

    As a result of a five year development program, a final prototype of a Very Large Area Spectroscopic Proportional Counter (VLASPC), to be employed in space borne payloads, was produced at the Istituto di Astrofisica Spaziale, Frascati. The instrument is the last version of a new generation of Multiwire Spectroscopic Proportional Counters (MWSPC) succesfully employed in many balloon borne flights, devoted to hard X-ray astronomy. The sensitive area of this standard unit is 2700 cm 2 with an efficiency higher than 10% in the range 15-180 keV (80% at 60 keV). The low cost and weight make this new type of VLASPC competitive with Nal arrays, phoswich and GSPC detectors in terms of achievable scientific results. (orig.)

  15. Very large area multiwire spectroscopic proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; Mastropietro, M.; La Padula, C.D.; Patriarca, R.; Polcaro, V.F. (Istituto di Astrofisica Spaziale, Frascati (Italy))

    1981-07-01

    As a result of a five year development program, a final prototype of a Very Large Area Spectroscopic Proportional Counter (VLASPC), to be employed in space borne payloads, was produced at the Istituto di Astrofisica Spaziale, Frascati. The instrument is the last version of a new generation of Multiwire Spectroscopic Proportional Counters (MWSPC) successfully employed in many balloon borne flights, devoted to hard X-ray astronomy. The sensitive area of this standard unit is 2700 cm/sup 2/ with an efficiency higher than 10% in the range 15-180 keV (80% at 60 keV). The low cost and weight make this new type of VLASPC competitive with Nal arrays, phoswich and GSPC detectors in terms of achievable scientific results.

  16. Detection of environmental radioactive contamination levels using a liquid-scintillation counter

    International Nuclear Information System (INIS)

    Calisto, W.; Kun, A.; Campos, E.

    1981-01-01

    A high-efficiency LS-100 C liquid scintillation counter was used to detect low levels of environmental activity. Different concentrations of primary scintillator were tested and these established the most suitable values. Work was carried out at the same time to find conditions which would ensure a low background and high efficiency. To reduce the sample volume used, various types of chelating agents were utilized: 8-hydroxyquinoline (oxine), tannic acid, cupferron, dimethylglioxime and beta-naphthol. These were tested at pH levels of 1, 6 and 11. Measurements were performed by means of the Cerenkov effect using substances with differing refraction indices - 26% sodium chloride, water, glycerine, carbon bisulphide, nitrobenzene, benzyl alcohol and toluene. Finally, work was done on comparing spectra obtained by Cerenkov radiation and by 90 Sr and 90 Y beta radiation respectively. Clearly differentiated zones were obtained, thus making it possible to distinguish one isotope from another in an equilibrium solution. (author)

  17. Improving the performance of X-ray proportional counters by using field transistor preamplifiers

    International Nuclear Information System (INIS)

    Kalinina, N.I.; Mel'ttser, L.V.; Pan'kin, V.V.

    1972-01-01

    The possibility of using low-noise field-effect transistors with the n-channel in preamplifiers for x-ray proportional counters constitutes the object of this article. The operation of the preamplifier assembled according to the scheme of the voltage amplifier and charge-sensitive preamplifier has been studied. The use of the field-effect transistor with the n-channel in preamplifiers for proportional counters allows to improve significantly the energy resolution and operation at reduced voltage and at high loads. Notably good results have been obtained when constructing the circuit of the premplifier with the field-effect transistor on the charge-sensitive principle. The use of home-produced field-effect transistors makes it possible to construct detectors of roentgen radiometric instruments to measure light element content with proportional counters at reduced voltage

  18. Solid gas reaction phase diagram under high gas pressure

    International Nuclear Information System (INIS)

    Ishizaki, K.

    1992-01-01

    This paper reports that to evaluate which are the stable phases under high gas pressure conditions, a solid-gas reaction phase diagram under high gas pressure (HIP phase diagram) has been proposed by the author. The variables of the diagram are temperature, reactant gas partial pressure and total gas pressure. Up to the present time the diagrams have been constructed using isobaric conditions. In this work, the stable phases for a real HIP process were evaluated assuming an isochoric condition. To understand the effect of the total gas pressure on stability is of primary importance. Two possibilities were considered and evaluated, those are: the total gas pressure acts as an independent variable, or it only affects the fugacity values. The results of this work indicate that the total gas pressure acts as an independent variable, and in turn also affects the fugacity values

  19. Determination of total alpha and beta activity in water for human consumption by LSC(Liquid Scintillation Counter)

    International Nuclear Information System (INIS)

    2013-01-01

    The Ordinance Brazilian of Ministry of Health (MS 2914/2011) establishes the standards for quality of water intended for human consumption, being limits values of 5.0 Bq/L for gross alpha, and 1.0 Bq/L for gross beta radioactivity. The liquid scintillation spectrometry (LSC) technique has been presented as an alternative to conventional procedure using gas flow proportional counter. The present work shows a review of the methods for determination of gross alpha and gross beta in water by using LSC. Between the factors that influence the accuracy and repeatability of the analytical results we can highlight: thermal preconcentration, type of the acid and calibration standard. A procedure was established and carried out to samples of the National Program of Intercomparison of Radionuclides in Environmental Samples for evaluation of its performance. The gross alpha and gross beta analysis in samples of the public water supplies in the Metropolitan Region of Goiania, state of Goias was carried out. The results are consistent with the guideline values form the Ministry of Health concerning radioactivity. (author)

  20. Gaseous Multiplication factor measurements on low pressure ethylene

    International Nuclear Information System (INIS)

    Hevia Vives, Alberto

    2008-01-01

    The present investigation consists of a study of a Proportional Counter considered as a fundamental part of an Absolute Neutron Dosimeter developed for the Chilean Nuclear Energy Commission. The proportional counter consists of a Polyethylene Cathode of approximately 5 cm in diameter and an Anode consisting of a central wire of 5 μm in diameter. The proportional counter is biased at 650 V. The gas pressure ranges from 12 to 36 Torr of pure Ethylene. The work comes up as a need to obtain gas gain curves (Gas Multiplication Factors) for the proportional counter operated in the conditions as mentioned. This is a consequence of the scarcity of the existing information referred to Ethylene for the range of bias and gas pressure required in this case. Likewise, the research involved in this study contributed with useful information for the institution involved in the design and construction of the neutron dosimeter, as well as for the scientific community through the publication of this work. The results were obtained by using the above-mentioned Neutron Dosimeter but instead of using recoil protons by fast neutrons, the measurements were completed by directly using a 241 Am alpha particle source installed inside the dosimeter. The analysis of results as well as a detailed study of the pulse shapes provided by the proportional counter was performed by using the well-known MathCAD software. This software contains a text interface that includes symbolic and numeric calculations. Results of the research show that for the high Reduced Electric Fields ( Sa > 1500 Volts/cmTorr) used throughout the present work, Townsend law is still valid. This law states that the Multiplication Factors may be considered as dependent on the Reduced Electric Field instead of depending on the bias and gas pressure separately

  1. Alpha–beta monitoring system based on pair of simultaneous Multi-Wire Proportional Counters

    Energy Technology Data Exchange (ETDEWEB)

    Wengrowicz, U.; Amidan, D. [Department of Nuclear Engineering, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel); NRC-Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel); Orion, I. [Department of Nuclear Engineering, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2016-08-11

    A new approach for a simultaneous alpha–beta Multi-wire Proportional Counter (MWPC) is presented. The popular approach for alpha–beta monitoring systems consists of a large area MWPC using noble gas flow such as Argon Methane. This method of measurement is effective but requires large-scale and expensive maintenance due to the needs of gas flow control and periodic replacements. In this work, a pair of simultaneous MWPCs for alpha–beta measuring is presented. The developed detector consists of a sealed gas MWPC sensor for beta particles, behind a free air alpha sensor. This approach allows effective simultaneous detection and discrimination of both alpha and beta radiation without the maintenance cost noble gas flow required for unsealed detectors.

  2. Multi-element proportional counter for radiation protection measurements

    International Nuclear Information System (INIS)

    Kliauga, P.; Rossi, H.H.; Johnson, G.

    1988-01-01

    This article discusses design modifications of a multi-element proportional counter. The original counter exhibited poor resolution, as measured by the width of the event-size spectrum for low-energy photons. It was also suspected that the field inside each volume was not sufficiently symmetric. Results of the modifications showed that a dramatic improvement in resolution could be obtained in the chamber with tissue-equivalent septa if their potentials were adjusted to obtain optimal resolution. The full width at half maximum then approached, although it did not equal, that of a standard spherical counter

  3. Gamma-ray scintillation counter hodoscope for the experiment S140

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The experiment S140 was set-up in the East Hall (beam p14) by the CERN-Munich-Cracow Collaboration to study the production by negative kaons of a neutral meson associated to a Lambda. Here, the liquid hydrogen target (inside the horizontal black tube) is withdrawn from the surrounding cylindrical gamma-ray-measuring scintillation counter hodoscope.

  4. Physical properties of the TOF (time of flight) scintillation counters of DELPHI

    International Nuclear Information System (INIS)

    Benlloch, J.M.; Castillo, M.V.; Ferrer, A.; Fuster, J.; Higon, E.; Llopis, A.; Salt, J.; Sanchez, E.; Sanchis, E.; Silvestre, E.; Cuevas, J.

    1990-01-01

    In this paper we report the physical properties of the time of flight (TOF) scintillator counters used for the DELPHI Experiment at CERN. We discuss the different choices studied for the wrapping of the counters in order to obtain best efficiencies for light transmission. A very good agreement of the performances of the counters has been found with the results of an original Monte Carlo program. The main characteristics of the TOF counters of DELPHI are: an effective light attenuation length of 135 cm, effective light speed of 15.91 cm/ns, a time resolution of 1.2 ns, and an efficiency for detection of minimum ionizing particles of 99.9%. (orig.)

  5. Gas electron multiplier (GEM) operation with tissue-equivalent gases at various pressures

    International Nuclear Information System (INIS)

    Farahmand, M.; Bos, A.J.J.; Eijk, C.W.E. van

    2003-01-01

    We have studied the operation of two different Gas Electron Multiplier (GEM) structures in both methane and propane based Tissue-Equivalent (TE) gases at different pressures varying from 0.1 to 1 atm. This work was motivated to explore the possibility of using a GEM for a new type of Tissue Equivalent Proportional Counter. In methane based TE gas, a maximum safe GEM gain of 1.5x10 3 has been reached while in propane based TE gas this is 6x10 3 . These maxima have been reached at different gas pressures depending on GEM structure and TE gas. Furthermore, we observed a decrease of the GEM gain in time before it becomes stable. Charge up/polarisation effects can explain this

  6. Safety supervision on high-pressure gas regulations

    International Nuclear Information System (INIS)

    Lee, Won Il

    1991-01-01

    The first part lists the regulation on safety supervision of high-pressure gas, enforcement ordinance on high-pressure gas safety supervision and enforcement regulations about high-pressure gas safety supervision. The second part indicates safety regulations on liquefied petroleum gas and business, enforcement ordinance of safety on liquefied petroleum gas and business, enforcement regulation of safety supervision over liquefied petroleum gas and business. The third part lists regulation on gas business, enforcement ordinance and enforcement regulations on gas business. Each part has theory and explanation for questions.

  7. Imaging micro-well proportional counters fabricated with masked UV laser ablation

    CERN Document Server

    Deines-Jones, P; Crawford, H; Hunter, S D

    2002-01-01

    The micro-well detector is a gas-proportional counter similar to the CAT (Bartol et al., J. Phys. III 6 (1996) 337) and WELL detectors (Bellazzini et al., Nucl. Instr. and Meth. A 423 (1999) 125). The micro-well is a cylindrical hole formed in the polymer substrate of commercially fabricated copper-clad flexible printed circuit board by UV laser ablation. The micro-wells are drilled at GSFC's UV laser-ablation facility. The cathode is a metal annulus that surrounds the opening of the well. The anode is a metal pad that fills the bottom of the well. Advantages of this topology include intrinsic two-dimensional sensing, thick robust electrodes, and large localized image charge on the cathodes. We have fabricated 5 cmx5 cm micro-well detectors with segmented anodes (1-d) and with both anodes and cathodes segmented (2-d), and have demonstrated: - stable, proportional operation at gas gains in excess of 30,000 in Ar- and Xe-based gases; - FWHM energy resolution of 20% at 6 keV in P-10; - preliminary 1-d spatial re...

  8. Proton-recoil proportional-counter array for neutron-image construction

    International Nuclear Information System (INIS)

    Fink, C.L.; Eichholz, J.J.; DeVolpi, A.

    1984-01-01

    The fuel-motion measurement capability of the fast-neutron hodoscope has been upgraded by the addition of a 360-detector proton-recoil proportional-counter array, which detects high-energy fission neutrons. The current sensitive amplifier/discriminator module for each detector fits into a 12.7 by 12.7 by 102 mm package and cost less than $100 per module. It has a 50 ns rise time, a noise level of 100 nA, and a deadtime per event of 200 ns. Provision has been provided for the independent adjustment of the input current versus discriminator voltage for each module. The new proportional-counters cost approximately $400 each. Each detector has been tested to have the same gain versus voltage response. A space-charge model relating count-rate changes to space-charge effects has also been developed. The new detector array has been operational for approximately two years and has become the main detector system in fuel-motion analysis. It has significantly improved the linearity, stability, count-rate capability, and setup ease of the hodoscope

  9. Space charge effect in SQS transition in a gas counter

    International Nuclear Information System (INIS)

    Ohgaki, Hideaki; Kametani, Hitoshi; Fujita, Yasuyuki; Uozumi, Yuusuke; Ijiri, Hidenobu; Matoba, Masaru; Sakae, Takeji; Koori, Norihiko

    1990-01-01

    Systematic investigation of the gas multiplication characteristics in the transition region from proportional to SQS mode in a cylindrical proportional counter has been performed. The property of saturation of the gas multiplication factor can be reproduced using the effective electric field which is corrected for the space charge related to the positive ion density in the avalanche. Photon-mediated gas multiplication can explain the large jump phenomenon of the SQS transition. It is shown that the effective electric field in the avalanche becomes almost zero near the anode surface (Meek's streamer condition) at the 50% transition voltage and the region of its maximum moves slightly away from the anode surface. (orig.)

  10. Optimization of simultaneous tritium–radiocarbon internal gas proportional counting

    Energy Technology Data Exchange (ETDEWEB)

    Bonicalzi, R. M.; Aalseth, C. E.; Day, A. R.; Hoppe, E. W.; Mace, E. K.; Moran, J. J.; Overman, C. T.; Panisko, M. E.; Seifert, A.

    2016-03-01

    Specific environmental applications can benefit from dual tritium and radiocarbon measurements in a single compound. Assuming typical environmental levels, it is often the low tritium activity relative to the higher radiocarbon activity that limits the dual measurement. In this paper, we explore the parameter space for a combined tritium and radiocarbon measurement using a methane sample mixed with an argon fill gas in low-background proportional counters of a specific design. We present an optimized methane percentage, detector fill pressure, and analysis energy windows to maximize measurement sensitivity while minimizing count time. The final optimized method uses a 9-atm fill of P35 (35% methane, 65% argon), and a tritium analysis window from 1.5 to 10.3 keV, which stops short of the tritium beta decay endpoint energy of 18.6 keV. This method optimizes tritium counting efficiency while minimizing radiocarbon beta decay interference.

  11. Position-sensitive proportional counters using resistance-capacitance position encoding

    International Nuclear Information System (INIS)

    Kopp, M.K.; Borkowski, C.J.

    1975-12-01

    A new method was developed for encoding the position of individual photons, neutrons, or charged particles in proportional counters by using the distributed RC line characteristics of these counters. The signal processing is described and guidelines for the design and operation of these position sensitive proportional counters (PSPCs) are given. Using these guidelines, several prototypic PSPCs were constructed to improve the spatial resolution and shorten the signal processing time; for example, the intrinsic spatial uncertainty was reduced to 28 μ fwhm for alpha particles and 100 μ fwhm for low-energy x rays (2 to 6 keV). Also, the signal processing time was reduced to 0.6 μsec without seriously degrading the spatial resolution. These results have opened new fields of application of the RC position encoding method in imaging distributions of photons, charged particles, or neutrons in nuclear medicine, physics, and radiography

  12. Miniature proportional counter for compression measurements of laser-fusion targets

    International Nuclear Information System (INIS)

    Lane, S.M.; Dellis, J.H.; Bennett, C.K.; Campbell, E.M.

    1981-10-01

    Direct drive laser fusion targets consisting of DT gas encapsulated in glass microshells produce 14.1 MeV neutrons that can interact with silicon-28 nuclei in the glass to produce a 2.2 minute aluminum-28 activity. From the number of 28 Al nuclei created and the neutron yield, the compressed glass areal density can be found. To determine the number of activated atoms created, we collect approximately one-half of the target debris on a thin metal foil which is transferred to our beta-gamma coincidence detector. This detector consists of a 25 cm x 25 cm NaI(Tl) crystal having a 5 cm x 15 cm well. We have recently built a miniature proportional counter that fits into this well and is used to detect beta particles. It is constructed of .025 cm thick copper and has nine separate chambers through which methane flows. The coincidence background is 0.14 cpm and the measured beta efficiency is 45%. We are now building a .0125 cm thick counter made of aluminum having a predicted efficiency of > 90%

  13. Semiconductor high-energy radiation scintillation detector

    International Nuclear Information System (INIS)

    Kastalsky, A.; Luryi, S.; Spivak, B.

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability

  14. An array of low-background 3He proportional counters for theSudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Amsbaugh, J.F.; Anaya, J.M.; Banar, J.; Bowles, T.J.; Browne,M.C.; Bullard, T.V.; Burritt, T.H.; Cox-Mobrand, G.A.; Dai, X.; H.Deng,X.; Di Marco, M.; Doe, P.J.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Earle, E.D.; Elliott, S.R.; Esch, E.-I.; Fergani, H.; Formaggio, J.A.; Fowler, M.M.; Franklin, J.E.; Geissbuehler, P.; Germani, J.V.; Goldschmidt, A.; Guillian, E.; Hallin, A.L.; Harper, G.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heise, J.; Hime, A.; Howe, M.A.; Huang, M.; Kormos, L.L.; Kraus, C.; Krauss, C.B.; Law, J.; Lawson, I.T.; Lesko,K.T.; Loach, J.C.; Majerus, S.; Manor, J.; McGee, S.; Miknaitis, K.K.S.; Miller, G.G.; Morissette, B.; Myers, A.; Oblath, N.S.; O' Kee, H.M.; Ollerhead, R.W.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Reitzner,S.D.; Rielage, K.; Robertson, R.G.H.; Skensved, P.; Smith, A.R.; Smith,M.W.E.; Steiger, T.D.; Stonehill,L.C.; Thornewell, P.M.; Tolich, N.; VanDevender, B.A.; VanWechel, T.D.; Wall, B.L.; Tseung, H.W.C.; Wendland,J.; West, N.; Wilhelmy, J.B.; Wilkerson, J.F.; Wouters, J.M.

    2007-02-01

    An array of Neutral-Current Detectors (NCDs) has been builtin order to make a unique measurement of the total active ux of solarneutrinos in the Sudbury Neutrino Observatory (SNO). Data in the thirdphase of the SNO experiment were collected between November 2004 andNovember 2006, after the NCD array was added to improve theneutral-current sensitivity of the SNO detector. This array consisted of36 strings of proportional counters lled with a mixture of 3He and CF4gas capable of detecting the neutrons liberated by the neutrino-deuteronneutral current reaction in the D2O, and four strings lled with a mixtureof 4He and CF4 gas for background measurements. The proportional counterdiameter is 5 cm. The total deployed array length was 398 m. The SNO NCDarray is the lowest-radioactivity large array of proportional countersever produced. This article describes the design, construction,deployment, and characterization of the NCD array, discusses theelectronics and data acquisition system, and considers event signaturesand backgrounds.

  15. The background of external γ radiation in the proportional counters in SAGE experiment

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Gorbachev, V.V.

    2003-01-01

    The influence of external γ radiation on the process of 71 Ge-decay counting in proportional counters in SAGE experiment of solar neutrino flux measurement is examined. One determines the systematic error of SAGE result, connected with radon decays inside the air volume surrounding the counters, and the background counting rate of proportional counters from γ radiation of passive and active shield [ru

  16. Pulse-duration discrimination for increasing counting characteristic plateau and for improving counting rate stability of a scintillation counter

    International Nuclear Information System (INIS)

    Kuz'min, M.G.

    1977-01-01

    For greater stability of scintillation counters operation, discussed is the possibility for increasing the plateau and reducing its slope. Presented is the circuit for discrimination of the signal pulses from input pulses of a photomultiplier. The counting characteristics have been measured with the scintillation detectors being irradiated by different gamma sources ( 60 Co, 137 Cs, 241 Am) and without the source when the scintillation detector is shielded by a tungsten cylinder with a wall thickness of 23 mm. The comparison has revealed that discrimination in duration increase the plateau and reduces its slope. Proceeding from comparison of the noise characteristics, the relationship is found between the noise pulse number and gamma radiation energy. For better stability of the counting rate it is suggested to introduce into the scintillation counter the circuit for duration discrimination of the output pulses of a photomultiplier

  17. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device.

    Science.gov (United States)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n) 3 He and D(d,n) 3 He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9 Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  18. Space-charge effects of the proportional counters in a multiple-ionization chamber

    International Nuclear Information System (INIS)

    Mang, M.

    1993-01-01

    At the ALADIN spectrometer of the GSI in october 1991 for the first time the new multiple ionization chamber was applied, in the two anode planes of which are additional multiwire-proportional counters. The proportional counters are required in order to make the detection of light fragments (Z 4 gold projectiles per second by these positive space charges the homogeneous electric field of the MUSIC is disturbed. This effect is especially strong in the beam plane. As consequence of the space charge additionally electrons are focused on the proportional counter so that their amplitudes in dependence on the beam intensity increase up to the 2.5-fold. Furthermore the y coordinate is falsified, because the electrons are diverted to the medium plane. On the measurement of the x coordinate this diversion has with maximally 0.1% only a small influence. These space-charge effects can be qualitatively described by a schematic model, which assumes a stationary positive space charge. Additionally for the proportional counters, which are not in the beam plane, their resolution was determined. In these counters the space-charge effects are small, because essentially fewer particles are registrated than in the medium MWPC's. By this charges of fragments with Z<10 could be separated. The charge resolution amounted at lithium 0.8 charge units. The position resolution of the proportional counters in y direction was determined to less than 8 mm. The detection probability of the fragments amounts for lithium 90% and from boron all fragments are detected

  19. Direct current stabilization of scintillation counters used for uranium prospecting

    International Nuclear Information System (INIS)

    Fraser, H.J.

    1976-01-01

    A simple system for stabilizing a scintillation counter is described which uses a dc light source (a green light emitting diode) to illuminate the photo-cathode of the photomultiplier used to detect γ-induced light pulses from the scintillator. Basically, the photomultiplier anode current due to the light emitting diode light is held constant by an automatic control loop acting on the eht voltage to keep the gain of the photomultiplier tube constant. However, because the temperature coefficient of the scintillator does not in general match that of the light emitting diode, further compensation is required to achieve constant γ pulse gain. This is provided by adding to the control circuit a current derived from the light emitting diode voltage which is an excellent measure of temperature; the use of this technique results in gain constancy to within +-1% in the 10-50 0 C ambient temperature range. Noise and countrate limitations are discussed and it is concluded that the system is generally applicable to uranium prospecting equipment. (Auth.)

  20. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    Science.gov (United States)

    Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.

    2015-12-01

    The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.

  1. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, C., E-mail: csunil11@gmail.com [Accelerator Radiation Safety Section, Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tyagi, Mohit [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Biju, K.; Shanbhag, A.A.; Bandyopadhyay, T. [Accelerator Radiation Safety Section, Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-12-11

    The scarcity and the high cost of {sup 3}He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am–Be neutron source shows promise of being used as rem counter.

  2. Set of counts by scintillations for atmospheric samplings; Ensemble de comptages par scintillations pour prelevements atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Appriou, D.; Doury, A.

    1962-07-01

    The author reports the development of a scintillation-based counting assembly with the following characteristics: a photo-multiplier with a wide photo-cathode, a thin plastic scintillator for the counting of beta + alpha (and possibility of mounting an alpha scintillator), a relatively small own motion with respect to activities to be counted, a weakly varying efficiency. The authors discuss the counting objective, present equipment tests (counter, proportional amplifier and pre-amplifier, input drawer). They describe the apparatus operation, discuss the selection of scintillators, report the study of the own movement (electron-based background noise, total background noise, background noise reduction), discuss counts (influence of the external source, sensitivity to alpha radiations, counting homogeneity, minimum detectable activity) and efficiencies.

  3. Counter-diffusion and -permeation of deuterium and hydrogen through metals

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname; Tanabe,; Tetsuo, [Nagoya Univ. (Japan)

    1998-03-01

    The first experiments for counter-diffusion and -permeation of deuterium and hydrogen through palladium were performed. Deuterium permeation rates against D{sub 2} pressure were measured under the condition where hydrogen permeated to opposite direction by supplying H{sub 2} gas at the permeated side of D{sub 2}. It was found that not a small amount of deuterium was clearly permeated even if the deuterium pressure was much smaller than the hydrogen pressure. Deuterium permeation rate was gradually reduced by increasing the counter H permeation. The deuterium permeation rate under the counter H permeation is well represented by a simple model in which the ratio of the deuterium permeation rates with and without the counter H permeation was proportional to the fractional concentration of deuterium in the bulk. As increasing the hydrogen counter flow, however, the deuterium permeation rate deviates from the model. This means that adsorption (absorption) of D{sub 2} from gas phase is inhibited and surface recombination of deuterium is blocked by hydrogen. (author)

  4. Background of external γ radiation in the proportional counters of the SAGE experiment

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Gorbachev, V.V.

    2003-01-01

    The effect of external γ radiation on the process of counting 71 Ge decays in the proportional counters of the SAGE experiment measuring the solar-neutrino flux is considered. The systematic uncertainty in the SAGE result due to radon decays inside the air volume surrounding the counters is estimated. The background counting rate in the proportional counters that is caused by γ radiation from the enclosing shield is also determined

  5. Pulse-shape discrimination in IAEA tritium proportional counters

    International Nuclear Information System (INIS)

    Florkowski, T.

    1981-01-01

    Two systems of pulse-shape discrimination (PSD) for the reduction of background in low-level proportional counters were tested. A tentative conclusion is drawn that both PSD systems, although they decrease slightly the meson background, do not bring improvement in the analytical accuracy

  6. Automation of a Beckman liquid scintillation counter for data capture and data-base management

    International Nuclear Information System (INIS)

    Neil, W.; Irwin, T.J.; Yang, J.J.

    1988-01-01

    A software package for the automation of a Beckman LS9000 liquid scintillation counter is presented. The package provides effective on-line data capture (with a Perkin Elmer 3230 32-bit minicomputer), data-base management, audit trail and archiving facilities. Key features of the package are rapid and flexible data entry, background subtraction, half-life correction, ability to queue several sample sets pending scintillation counting, and formatted report generation. A brief discussion is given on the development of customized data processing programs. (author)

  7. The suppression of destructive sparks in parallel plate proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Cockshott, R.A.; Mason, I.M.

    1984-02-01

    The authors find that high energy background events produce localised sparks in parallel plate counters when operated in the proportional mode. These sparks increase dead-time and lead to degradation ranging from electrode damage to spurious pulsing and continuous breakdown. The problem is particularly serious in low energy photon detectors for X-ray astronomy which are required to have lifetimes of several years in the high radiation environment of space. For the parallel plate imaging detector developed for the European X-ray Observatory Satellite (EXOSAT) they investigate quantitatively the spark thresholds, spark rates and degradation processes. They discuss the spark mechanism, pointing out differences from the situation in spark chambers and counters. They show that the time profile of the sparks allows them to devise a spark suppression system which reduces the degradation rate by a factor of ''200.

  8. Performance of microstrip proportional counters for x-ray astronomy on spectrum-roentgen-gamma

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; BAHNSEN, A; Christensen, Finn Erland

    1991-01-01

    DSRI will provide a set of four imaging proportional counters for the Danish-Soviet X-ray telescopes XSPECT/SODART. The sensor principle is based on the novel micro-strip proportional counter (MSPC), where the strip electrodes are deposited by photolithography onto a rigid substrate. The MSPC off...

  9. The acetone bandpass detector for inverse photoemission: operation in proportional and Geiger–Müller modes

    Science.gov (United States)

    Thiede, Christian; Niehues, Iris; Schmidt, Anke B.; Donath, Markus

    2018-06-01

    Inverse photoemission is the most versatile experimental tool to study the unoccupied electronic structure at surfaces of solids. Typically, the experiments are performed in the isochromat mode with bandpass photon detectors. For gas-filled counters, the bandpass behavior is realized by the combination of the photoionization threshold of the counting gas as the high-pass filter and the ultraviolet transmission cutoff of an alkaline earth fluoride entrance window as the low-pass filter. The transmission characteristics of the entrance window determine the optical bandpass. The performance of the counter depends on the composition of the detection gas and the fill-gas pressure, the readout electronics and the counter geometry. For the well-known combination of acetone and CaF2, the detector can be operated in proportional and Geiger–Müller modes. In this work, we review aspects concerning the working principles, the counter construction and the read-out electronics. We identify optimum working parameters and provide a step-by-step recipe how to build, install and operate the device.

  10. Absolute determination of radiation bursts and of proportional counters space charge effect through the influence method

    International Nuclear Information System (INIS)

    Rios, I.J.; Mayer, R.E.

    2016-01-01

    When proportional counters are employed in charge integration mode to determine the magnitude of a radiation pulse, so intense that individual detection events take place in a time too short to produce individual output pulses, mostly in pulsed neutron sources, the strong build-up of positive space charge reduces the electric multiplication factor of the proportional detector. Under such conditions the ensuing measurement underestimates the amount of radiation that interacted with the detector. If the geometric characteristics, the filling gas pressure and the voltage applied to that detector are known, it becomes possible to apply an analytical correction method to the measurement. In this article we present a method that allows to determine the absolute value of the detected radiation burst without the need to know the characteristics of the employed detectors. It is necessary to employ more than one detector, taking advantage of the Influence Method. The “Influence Method” is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015 [1,2]). Its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016 [3]) and the extension for multiple detectors in (Rios and Mayer 2016 [4]). - Highlights: • Absolute determination of radiation burst. • Proportional counters space charge effect. • Radiation measurements on pulsed devices.

  11. The Optimum Condition For Determination Of Radioactivity Of Pest Insects Labelled with P-32 By Using Liquid scintillation Counter

    International Nuclear Information System (INIS)

    Yarianto, S.; Susilo, Budi; Sutrisno, Singgih

    2002-01-01

    Tracer technique is needed in the control programe of pest insects especially for determining of its direction and dispersal. Radioisotopes of P-32 is frecuently used for labeling of pest insects. Liquid Scintillation Counter can be used effectively for measuring radioactivity of pest insects labelled by P-32. Optilnization of liquid compositions that consist of solvents. primary scintillation PPO and secondary scintillation POPOP were determined by examination of their compositions. Based on the research result obtained, composition of scintillator which had the highest efficiency. consists of P-Xylene solvent. primary scintillation PPO (5 g/l ) and secondary scintillation POPOP (0.5 g/l)

  12. The assessment of external photon dose rate in the vicinity of nuclear power stations. An intercomparison of different monitoring systems

    DEFF Research Database (Denmark)

    Thompson, I.M.G.; Bøtter-Jensen, L.; Lauterbach, U.

    1993-01-01

    Four environmental dose rate instruments having different detectors, a high pressure ionisation chamber, a Geiger-Muller counter, a proportional counter and a scintillation counter, were used to make continuous measurements over a four month period of the air kerma rate at a location close to a n...

  13. Digital signal processing for 3He proportional counters

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Kawarabayashi, Jun; Kurahashi, Tomohiko; Iguchi, Tetsuo; Nakazawa, Masaharu

    1994-01-01

    Numerical analysis of individual pulses from 3 He proportional counters has been performed. A parametric approach has been used for the identification of a charge particle track direction. Using area parameters, a clear separation of events was observed for the wall effect on a triton and a proton, respectively. ((orig.))

  14. Development of a C-14 detector and measurement of delta C-14 in dated tree rings grown in 1043 to 1055

    International Nuclear Information System (INIS)

    Oona, H.

    1979-01-01

    A proportional counter was constructed from plastic scintillator for measuring the C-14 contents in dendrochronologically dated tree ringas. The tree rings were individually converted to methane which, at one atmosphere pressure, was used as the counter gas. The wall, being a scintillator, serves as the 4π anti-coincidence shell for rejection of natural radioactivity in the material housing the proportional counter and penetrating cosmic ray muons. The output of the proportional counter, which is in anti-coincidence with the scintillation is recorded with a pulse height analyzer. After background subtraction, it yields the beta-decay spectrum of C-14 in the methane-filled proportional counter. The count rate obtained from the 5.5 liter effective volume counter for each year's sample is then referenced to a standard traceable to the National Bureau of Standards, and after corrections due to isotopic fracionation are applied, the ΔC-14 for each sample is determined. The fluctuations in the ΔC-14 are inspected, and used as an estimate for the energy content in the γ-ray burst of the Crab Nebula in 1054 A.D. Fluctuations due possibly to solar flares, neutron flux, cosmic ray muons, and sample preparation restrict the energy estimate to an upper limit of less than or equal to 10 50 ergs

  15. Performance of multiclad scintillating and clear waveguide fibers read out with visible light photon counters

    Energy Technology Data Exchange (ETDEWEB)

    Baumbaugh, B. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Erdman, J. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Gaskell, D. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Lu, Q. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Marchant, J. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Ruchti, R. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Wayne, M. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Cooper, C. (Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)); Hinson, J. (Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)); Koltick, D.S. (Department of Physics, Purdue University, West Lafayette, IN 47907 (United State

    1994-06-15

    Measurements have been made of the performance of scintillating fibers read out with visible light photon counters (VLPCs). The light yields of single-clad and multiclad scintillating fibers have been compared. The experiment consisted of 3 m long scintillating fibers of 830 [mu]m diameter optically coupled to 8 m long waveguide fibers of 965 [mu]m diameter read out with HISTE-IV VLPCs. For the case of multiclad scintillating fiber and waveguide, an average of 6.2 photoelectrons was detected from the far end of the scintillating fiber if the fiber end was unmirrored, and 10.2 photoelectrons if the fiber end was mirrored. With this substantial photoelectron yield, minimum-ionizing tracks can be easily detected in fiber arrays, and excellent performance characteristics are expected for the fiber trackers designed for the D0 experiment at the Fermilab Tevatron Collider and the SDC experiment at the SSC Laboratory. ((orig.))

  16. Excitonic processes and their contribution to non-proportionality observed in the light yield of inorganic scintillators

    International Nuclear Information System (INIS)

    Singh, J.; Koblov, A.

    2013-01-01

    Using the derived expression for the light yield in a scintillator, the influence of linear radiative and non-radiative (quenching) rates on the non-proportionality in light yield is studied. It is found that if the excitation created within the electron track initiated by a γ-photon incident on a scintillator, remains mainly excitonic, then non-proportionality can be minimized by inventing a scintillator material with linear radiative rate > 10 7 s -1 , linear quenching rate 6 s -1 and track radius ≥ 70 nm along with maintaining the rates of other non-linear processes as discovered earlier. If one can increase the linear radiative rate to 10 9 s -1 , then the non-proportionality can be eliminated at a track radius > 20 nm. (authors)

  17. Proportional counter response calculations for gallium solar neutrino detectors

    International Nuclear Information System (INIS)

    Kouzes, R.T.; Reynolds, D.

    1989-01-01

    Gallium bases solar neutrino detectors are sensitive to the primary pp reaction in the sun. Two experiments using gallium, SAGE in the Soviet Union and GALLEX in Europe, are under construction and will produce data by 1989. The radioactive /sup 71/Ge produced by neutrinos interacting with the gallium detector material, is chemically extracted and counted in miniature proportional counters. A number of calculations have been carried out to simulate the response of these counters to the decay of /sup 71/Ge and to background events

  18. Quenching the scintillation in CF4 Cherenkov gas radiator

    International Nuclear Information System (INIS)

    Blake, T.; D'Ambrosio, C.; Easo, S.; Eisenhardt, S.; Fitzpatrick, C.; Forty, R.; Frei, C.; Gibson, V.; Gys, T.; Harnew, N.; Hunt, P.; Jones, C.R.; Lambert, R.W.; Matteuzzi, C.; Muheim, F.; Papanestis, A.; Perego, D.L.; Piedigrossi, D.; Plackett, R.; Powell, A.

    2015-01-01

    CF 4 is used as a Cherenkov gas radiator in one of the Ring Imaging Cherenkov detectors at the LHCb experiment at the CERN Large Hadron Collider. CF 4 is well known to have a high scintillation photon yield in the near and far VUV, UV and in the visible wavelength range. A large flux of scintillation photons in our photon detection acceptance between 200 and 800 nm could compromise the particle identification efficiency. We will show that this scintillation photon emission system can be effectively quenched, consistent with radiationless transitions, with no significant impact on the photons resulting from Cherenkov radiation

  19. First results of a simultaneous measurement of tritium and 14C in an ultra-low-background proportional counter for environmental sources of methane

    Energy Technology Data Exchange (ETDEWEB)

    Mace, Emily K.; Aalseth, Craig E.; Day, Anthony R.; Hoppe, Eric W.; Keillor, Martin E.; Moran, James J.; Panisko, Mark E.; Seifert, Allen; Tatishvili, Gocha; Williams, Richard M.

    2016-02-01

    Abstract Simultaneous measurement of tritium and 14C would provide an added tool for tracing organic compounds through environmental systems and is possible via beta energy spectroscopy of sample-derived methane in internal-source gas proportional counters. Since the mid-1960’s atmospheric tritium and 14C have fallen dramatically as the isotopic injections from above-ground nuclear testing have been diluted into the ocean and biosphere. In this work, the feasibility of simultaneous tritium and 14C measurements via proportional counters is revisited in light of significant changes in both the atmospheric and biosphere isotopics and the development of new ultra-low-background gas proportional counting capabilities for small samples (roughly 50 cc methane). A Geant4 Monte Carlo model of a Pacific Northwest National Laboratory (PNNL) proportional counter response to tritium and 14C is used to analyze small samples of two different methane sources to illustrate the range of applicability of contemporary simultaneous measurements and their limitations. Because the two methane sources examined were not sample size limited, we could compare the small-sample measurements performed at PNNL with analysis of larger samples performed at a commercial laboratory. The dual-isotope simultaneous measurement is well matched for methane samples that are atmospheric or have an elevated source of tritium (i.e. landfill gas). For samples with low/modern tritium isotopics (rainwater), commercial separation and counting is a better fit.

  20. On the counting rate-dependent amplitude shifts in proportional counters

    International Nuclear Information System (INIS)

    Mahesh, K.

    1976-01-01

    The presence of a positive ion cloud near the anode wire, which has been believed to be the cause of the observed counting rate-dependent peak shifts in proportional counters, does not explain various exhibited features of these shifts. The possibility of other mechanisms involved is, therefore, examined. The columnar recombination of primary ions in the counter is considered to explain the origin of the shifts and their observed features. (Auth.)

  1. Proportional Counter Calibration and Analysis for 12C + p Resonance Scattering

    Science.gov (United States)

    Nelson, Austin; Rogachev, Grigory; Uberseder, Ethan; Hooker, Josh; Koshchiy, Yevgen

    2014-09-01

    Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Funded by DOE and NSF-REU Program; Grant No. PHY-1263281.

  2. Alpha scintillation radon counting

    International Nuclear Information System (INIS)

    Lucas, H.F. Jr.

    1977-01-01

    Radon counting chambers which utilize the alpha-scintillation properties of silver activated zinc sulfide are simple to construct, have a high efficiency, and, with proper design, may be relatively insensitive to variations in the pressure or purity of the counter filling. Chambers which were constructed from glass, metal, or plastic in a wide variety of shapes and sizes were evaluated for the accuracy and the precision of the radon counting. The principles affecting the alpha-scintillation radon counting chamber design and an analytic system suitable for a large scale study of the 222 Rn and 226 Ra content of either air or other environmental samples are described. Particular note is taken of those factors which affect the accuracy and the precision of the method for monitoring radioactivity around uranium mines

  3. A high-pressure MWPC detector for crystallography

    DEFF Research Database (Denmark)

    Ortuno-Prados, F.; Bazzano, A.; Berry, A.

    1999-01-01

    The application of the Multi-Wire Proportional Counter (MWPC) as a potential detector for protein crystallography and other wide-angle diffraction experiments is presented. Electrostatic problems found with our large area MWPC when operated at high pressure are discussed. We suggest that a solution...

  4. The application of a microstrip gas counter to energy-dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Veloso, J.F.C.A.; Santos, J.M.F. dos; Conde, C.A.N.

    1996-01-01

    Performance characteristics of a microstrip gas counter operated as a x-ray fluorescence spectrometer are reported. Gas amplification as a function of microstrip anode-cathode voltage was measured, and the breakdown threshold voltage was determined in pure xenon. The detector temporal stability and the effect of gas purity were assessed. Energy resolution and linearity, detection efficiency, and uniformity of spatial response in the 2- to 60-keV x-ray energy range were determined from the pulse-height distributions of the fluorescence x-ray spectra induced in a variety of single- and multi-element sample materials. Energy resolution similar to conventional proportional counters was achieved at 6 keV

  5. A model for the operation of helium-filled proportional counter at low temperatures near 4.2 K

    International Nuclear Information System (INIS)

    Masaoka, Sei; Katano, Rintaro; Kishimoto, Shunji; Isozumi, Yasuhito

    2000-01-01

    In order to understand the operation of helium-filled proportional counter (HFPC) from the standpoint of fundamental atomic and molecular processes, we have surveyed previous works on collision processes in discharged helium gas. By analyzing gas gain curve, after-pulses and discharge current experimentally observed at 4.2 K, the electron avalanche and the secondary electron emission from cathode have been related to the collision processes in helium. A simplified model for the HFPC operation at low temperatures near 4.2 K has been constructed with the related processes

  6. Efficiency calibration of a liquid scintillation counter for 90Y Cherenkov counting

    International Nuclear Information System (INIS)

    Vaca, F.; Garcia-Leon, M.

    1998-01-01

    In this paper a complete and self-consistent method for 90 Sr determination in environmental samples is presented. It is based on the Cherenkov counting of 90 Y with a conventional liquid scintillation counter. The effects of color quenching on the counting efficiency and background are carefully studied. A working curve is presented which allows to quantify the correction in the counting efficiency depending on the color quenching strength. (orig.)

  7. Set of counts by scintillations for atmospheric samplings

    International Nuclear Information System (INIS)

    Appriou, D.; Doury, A.

    1962-01-01

    The author reports the development of a scintillation-based counting assembly with the following characteristics: a photo-multiplier with a wide photo-cathode, a thin plastic scintillator for the counting of beta + alpha (and possibility of mounting an alpha scintillator), a relatively small own motion with respect to activities to be counted, a weakly varying efficiency. The authors discuss the counting objective, present equipment tests (counter, proportional amplifier and pre-amplifier, input drawer). They describe the apparatus operation, discuss the selection of scintillators, report the study of the own movement (electron-based background noise, total background noise, background noise reduction), discuss counts (influence of the external source, sensitivity to alpha radiations, counting homogeneity, minimum detectable activity) and efficiencies

  8. Scintillator counters with multi-pixel avalanche photodiode readout for the ND280 detector of the T2K experiment

    International Nuclear Information System (INIS)

    Mineev, O.; Afanasjev, A.; Bondarenko, G.; Golovin, V.; Gushchin, E.; Izmailov, A.; Khabibullin, M.; Khotjantsev, A.; Kudenko, Yu.; Kurimoto, Y.; Kutter, T.; Lubsandorzhiev, B.; Mayatski, V.; Musienko, Yu.; Nakaya, T.; Nobuhara, T.; Shaibonov, B.A.J.; Shaikhiev, A.; Taguchi, M.; Yershov, N.; Yokoyama, M.

    2007-01-01

    The Tokai-to-Kamioka (T2K) experiment is a second generation long baseline neutrino oscillation experiment which aims at a sensitive search for ν e appearance. The main design features of the T2K near neutrino detectors located at 280m from the target are presented, and the scintillator counters are described. The counters are readout via WLS fibers embedded into S-shaped grooves in the scintillator from both ends by multi-pixel avalanche photodiodes operating in a limited Geiger mode. Operating principles and results of tests of photosensors with a sensitive area of 1mm 2 are presented. A time resolution of 1.75ns, a spatial resolution of 9.9-12.4cm, and a detection efficiency for minimum ionizing particles of more than 99% were obtained for scintillator detectors in a beam test

  9. Determination of dose equivalent with tissue-equivalent proportional counters

    International Nuclear Information System (INIS)

    Dietze, G.; Schuhmacher, H.; Menzel, H.G.

    1989-01-01

    Low pressure tissue-equivalent proportional counters (TEPC) are instruments based on the cavity chamber principle and provide spectral information on the energy loss of single charged particles crossing the cavity. Hence such detectors measure absorbed dose or kerma and are able to provide estimates on radiation quality. During recent years TEPC based instruments have been developed for radiation protection applications in photon and neutron fields. This was mainly based on the expectation that the energy dependence of their dose equivalent response is smaller than that of other instruments in use. Recently, such instruments have been investigated by intercomparison measurements in various neutron and photon fields. Although their principles of measurements are more closely related to the definition of dose equivalent quantities than those of other existing dosemeters, there are distinct differences and limitations with respect to the irradiation geometry and the determination of the quality factor. The application of such instruments for measuring ambient dose equivalent is discussed. (author)

  10. A broad band X-ray imaging spectrophotometer for astrophysical studies

    Science.gov (United States)

    Lum, Kenneth S. K.; Lee, Dong Hwan; Ku, William H.-M.

    1988-01-01

    A broadband X-ray imaging spectrophotometer (BBXRIS) has been built for astrophysical studies. The BBXRIS is based on a large-imaging gas scintillation proportional counter (LIGSPC), a combination of a gas scintillation proportional counter and a multiwire proportional counter, which achieves 8 percent (FWHM) energy resolution and 1.5-mm (FWHM) spatial resolution at 5.9 keV. The LIGSPC can be integrated with a grazing incidence mirror and a coded aperture mask to provide imaging over a broad range of X-ray energies. The results of tests involving the LIGSPC and a coded aperture mask are presented, and possible applications of the BBXRIS are discussed.

  11. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120\\,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  12. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Science.gov (United States)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120 GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions, reflective coating mixtures, and fiber diameters. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R&D program.

  13. Methods of calculus for neutron spectrometry in proportional counters

    International Nuclear Information System (INIS)

    Butragueno, J.L.; Blazquez, J.B.; Barrado, J.M.

    1976-01-01

    Response functions for cylindrical proportional counters with hidrogenated gases have been determined, taking in account only wall effect, by means of two independent calculus methods. One of them is a Montecarlo application and the other one analytical at all. Results of both methods have been compared. (author) [es

  14. Methods of calculus for neutron spectrometry in proportional counters

    International Nuclear Information System (INIS)

    Butragueno Casado, J.L.; Blazquez Martinez, J.B.; Barrado Menendez, J.M.

    1976-01-01

    Response functions for cylindrical proportional counters with hydrogenated gases have been determined, taking in account only wall effect, by means of two independent calculus methods. One of them is a Monte Carlo application and the other one analytica at all. Results of both methods have been compared. (Author)

  15. A CMOS integrated timing discriminator circuit for fast scintillation counters

    International Nuclear Information System (INIS)

    Jochmann, M.W.

    1998-01-01

    Based on a zero-crossing discriminator using a CR differentiation network for pulse shaping, a new CMOS integrated timing discriminator circuit is proposed for fast (t r ≥ 2 ns) scintillation counters at the cooler synchrotron COSY-Juelich. By eliminating the input signal's amplitude information by means of an analog continuous-time divider, a normalized pulse shape at the zero-crossing point is gained over a wide dynamic input amplitude range. In combination with an arming comparator and a monostable multivibrator this yields in a highly precise timing discriminator circuit, that is expected to be useful in different time measurement applications. First measurement results of a CMOS integrated logarithmic amplifier, which is part of the analog continuous-time divider, agree well with the corresponding simulations. Moreover, SPICE simulations of the integrated discriminator circuit promise a time walk well below 200 ps (FWHM) over a 40 dB input amplitude dynamic range

  16. Helium-filled proportional counter and its operation mechanism at low temperatures

    CERN Document Server

    Isozumi, Y; Kishimoto, S

    2002-01-01

    The operation mechanism of helium-filled proportional counter (HFPC) at about 4.2 K is explained. Unstable behavior of HFPC is caused by releasing secondary-electron from the cathode by four kinds of active particles such as He sub n sup + , non-resonance photon from excited helium atom, non-resonance photon from He sub 2 sup * (A sup 1 Su sup +) and He sub 2 sup m (a sup 3 Su sup +). On experiments of HFPC behavior at low temperature, the following facts were observed; 1) main charge formation process in the electron avalanche is direct ionization by electron without Hornbeck-Molnar process. Accordingly, the gas amplification factor becomes small at low temperature. 2) Stable helium cation is He sub 2 sup + at room temperature, but cluster at low temperature. Large after-pulse is observed in output signal depends on cluster ion. The probability of secondary-electron emission decreased. The gas gain increased with increasing anode voltage. 3) By decreasing reaction rate of atom and molecule collision at low t...

  17. Photon and neutron dose discrimination using low pressure proportional counters with graphite and A150 walls

    International Nuclear Information System (INIS)

    Kylloenen, J.; Lindborg, L.

    2005-01-01

    Full text: The determination of both the low- and high-LET components of ambient dose equivalent in mixed fields is possible with microdosimetric methods. With the multiple-event microdosimetric variance covariance method the sum of those components are directly obtained also in pulsed beams. However, if the value of each dose component is needed a more extended analysis is required. The use of a graphite walled proportional detector in combination with a tissue-equivalent proportional counter in combination with the variance covariance method was here investigated. MCNP simulations were carried out for relevant energies to investigate the photon and neutron responses of the two detectors. The combined graphite and TEPC system, the Sievert instrument, was used for measurements at IRSN, Cadarache, in the workplace calibration fields of CANEL+, SIGMA, a Cf-252 and a moderated Cf(D 2 O,Cd) radiation field. The response of the instrument in various monoenergetic neutron fields is also known from measurements at PTB. The instrument took part in the measurement campaigns in workplace fields in the nuclear industry organized within the EVIDOS contract. The results are analyzed and the method of using a graphite detector compared with alternative methods of analysis is discussed. (author)

  18. Evaluation of B10Plus+* proportional detectors for neutron coincidence counting

    Energy Technology Data Exchange (ETDEWEB)

    Beddingfield, David H.; Yoon, Seokryung [International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, (Austria)

    2015-07-01

    GE-Reuter-Stokes (GERS) has developed a new line of neutron proportional counters, the B10Plus+* proportional counter. The detector design is intended to serve as a cost-effective alternative to traditional {sup 3}He proportional counters in a variety of applications. The detector is a hybrid design 10B-lined tube optimized with the addition of a small quantity of 3He gas to improve the detector performance and efficiency. As a demonstration of the B10Plus+* detector, GERS has constructed a Uranium Neutron Collar (UNCL) system consisting of B-10Plus+* proportional counters. GERS has designed and built a demonstration UNCL system intended to match the performance of a Type-I UNCL design in Pressurized Water Reactor (PWR) geometry operating in thermal mode. GERS offered their system on loan to the International Atomic Energy Agency (IAEA) Safeguards Division of Technical and Scientific Services for an assessment of the detector technology and the demonstration system. We have characterized the demonstration UNCL system and compared its performance with a traditional Type-I UNCL design in regular use by the IAEA. This paper summarizes our findings and observations during the characterization and testing activity. (authors)

  19. Reduction of the ionization loss distribution width of several simultaneous relativistic particles traversing a scintillation counter

    CERN Document Server

    Aderholz, M; Matthewson, R; Lehraus, I no 1; Matthewson, R no 1; Aderholz, M no 1

    1975-01-01

    A Poisson distribution of number of electrons at the input stages of a photomultiplier has been folded into a Landau-Symon distribution of ionization losses in a plastic scintillator and a distribution of the smallest value out of n detectors was derived analytically for m simultaneous particles. A group of four identical scintillation counters was constructed and the smallest of the four output pulses was used for selective triggering of the bubble chamber flash with the greater precision engendered by the considerably reduced distribution width. (22 refs).

  20. Scintillation counter with MRS APD light readout

    International Nuclear Information System (INIS)

    Akindinov, A.; Bondarenko, G.; Golovin, V.; Grigoriev, E.; Grishuk, Yu.; Mal'kevich, D.; Martemiyanov, A.; Ryabinin, M.; Smirnitskiy, A.; Voloshin, K.

    2005-01-01

    START, a high-efficiency and low-noise scintillation detector for ionizing particles, was developed for the purpose of creating a high-granular system for triggering cosmic muons. Scintillation light in START is detected by MRS APDs (Avalanche Photo-Diodes with Metal-Resistance-Semiconductor Structure), operated in the Geiger mode, which have 1mm 2 sensitive areas. START is assembled from a 15x15x1cm 3 scintillating plastic plate, two MRS APDs and two pieces of wavelength-shifting optical fiber stacked in circular coils inside the plastic. The front-end electronic card is mounted directly on the detector. Tests with START have confirmed its operational consistency, over 99% efficiency of MIP registration and good homogeneity. START demonstrates a low intrinsic noise of about 10 -2 Hz. If these detectors are to be mass-produced, the cost of a mosaic array of STARTs is estimated at a moderate level of 2-3kUSD/m 2

  1. Gas Control System for HEAO-B

    Science.gov (United States)

    Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.

    1978-01-01

    The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.

  2. A multi purpose 4 π counter spherical ionization chamber type

    International Nuclear Information System (INIS)

    Calin, Marian Romeo; Calin, Adrian Cantemir

    2004-01-01

    A pressurized ionization chamber detector able to measure radioactive sources in internal 2π or 4π geometry was built in order to characterize alpha and beta radioactive sources, i.e. to calibrate these sources by relative method and to test the behavior of gas mixtures in pressurized-gas radiation detectors. The detector we made is of spherical shape and works by collecting in a uniform electric field the ionization charges resulting from the interaction of ionizing radiation with gas in the sensitive volume of the chamber. An ionizing current proportional to the activity of the radioactive source to be measured is obtained. In this paper a gas counter with a spherical symmetry is described. This detector can work in a very satisfactory manner, either as a flow counter or as a ionization chamber reaching in the latter case a good α pulse height resolution, even with large emitting sources. Calculations are made in order to find the dependence of the pulse shape on the direction of emission of an α-particle by a point source in the chamber (finite track). A good agreement is found between these calculations and the experimental tests performed, which show that this dependence can be employed in high efficiency measurements of angular α-γ correlations. (authors)

  3. Identification of relativistic charged particles by means of ionisation energy loss in proportional counters

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1978-12-01

    A method is described of obtaining a useful degree of improvement in the particle discrimination capability of multiwire proportional counters. The normal multiple sampling technique using a suitable bias to combat the small magnitude of the relativistic rise in the ionization energy loss and the wide pulse height distributions obtained in thin gas counters requires a large number of samples for useful discrimination. In the method reported, this number is reduced by suppressing the delta ray contribution to the total charge pulse from the anode wire. A monte carlo model convoluting the 'delta ray suppressed' data from a one sample detector shows that when it is required to separate pions and electrons at 1 GeV/C with a detection efficiency for the electron of 90%, a 'suppressor' circuit can achieve a pion rejection ratio of 250:1 with 82 samples, whereas the truncated mean approach (lowest 70% of samples) requires 100 samples. (UK)

  4. Optimization of simultaneous tritium–radiocarbon internal gas proportional counting

    Energy Technology Data Exchange (ETDEWEB)

    Bonicalzi, R.M. [Seattle Central College, 1701 Broadway, Seattle, WA 98122 (United States); Aalseth, C.E.; Day, A.R.; Hoppe, E.W. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352 (United States); Mace, E.K., E-mail: Emily.Mace@pnl.gov [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352 (United States); Moran, J.J.; Overman, C.T.; Panisko, M.E.; Seifert, A. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352 (United States)

    2016-03-21

    Specific environmental applications can benefit from dual tritium and radiocarbon measurements in a single compound. Assuming typical environmental levels, it is often the low tritium activity relative to the higher radiocarbon activity that limits the dual measurement. In this paper, we explore the parameter space for a combined tritium and radiocarbon measurement using a natural methane sample mixed with an argon fill gas in low-background proportional counters of a specific design. We present an optimized methane percentage, detector fill pressure, and analysis energy windows to maximize measurement sensitivity while minimizing count time. The final optimized method uses a 9-atm fill of P35 (35% methane, 65% argon), and a tritium analysis window from 1.5 to 10.3 keV, which stops short of the tritium beta decay endpoint energy of 18.6 keV. This method optimizes tritium-counting efficiency while minimizing radiocarbon beta-decay interference. - Highlights: • Use of a single compound (methane) for dual tritium and radiocarbon measurements. • Optimized analysis window for simultaneous tritium and radiocarbon measurement. • Allows for optimization of tritium counting in the presence of radiocarbon.

  5. Quenching the scintillation in CF{sub 4} Cherenkov gas radiator

    Energy Technology Data Exchange (ETDEWEB)

    Blake, T. [Department of Physics, University of Warwick, Coventry (United Kingdom); D' Ambrosio, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Easo, S. [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Eisenhardt, S. [School of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Fitzpatrick, C. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Forty, R.; Frei, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Gibson, V. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Gys, T. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Harnew, N.; Hunt, P. [Department of Physics, University of Oxford, Oxford (United Kingdom); Jones, C.R. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Lambert, R.W. [Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam (Netherlands); Matteuzzi, C. [Sezione INFN di Milano Bicocca, Milano (Italy); Muheim, F. [School of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Papanestis, A., E-mail: antonis.papanestis@stfc.ac.uk [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Perego, D.L. [Sezione INFN di Milano Bicocca, Milano (Italy); Università di Milano Bicocca, Milano (Italy); Piedigrossi, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Plackett, R. [Imperial College London, London (United Kingdom); Powell, A. [Department of Physics, University of Oxford, Oxford (United Kingdom); and others

    2015-08-11

    CF{sub 4} is used as a Cherenkov gas radiator in one of the Ring Imaging Cherenkov detectors at the LHCb experiment at the CERN Large Hadron Collider. CF{sub 4} is well known to have a high scintillation photon yield in the near and far VUV, UV and in the visible wavelength range. A large flux of scintillation photons in our photon detection acceptance between 200 and 800 nm could compromise the particle identification efficiency. We will show that this scintillation photon emission system can be effectively quenched, consistent with radiationless transitions, with no significant impact on the photons resulting from Cherenkov radiation.

  6. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J. M., E-mail: lewisj@ufl.edu; Kelley, R. P.; Jordan, K. A. [Nuclear Engineering Program, University of Florida, Gainesville, Florida 32611 (United States); Murer, D. [Arktis Radiation Detectors Ltd., 8045 Zurich (Switzerland)

    2014-07-07

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure {sup 4}He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the {sup 4}He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  7. Stabilization of the photomultiplier gain of a liquid scintillation counter

    International Nuclear Information System (INIS)

    Alkhazov, I.D.; Dmitriev, V.D.; Kuznetsov, A.V.; Malkin, L.Z.; Petrov, B.F.; Sheremet'ev, A.K.; Shpakov, V.I.

    1987-01-01

    A stabilization system of photomultiplier gain, where light-emitting diode flashes have been used to obtain a reference signal, is described. The diode is placed just in the liquid scintilllator volume. The stabilization system contains several (according to the number of photomultipliers) identical channels, which of them consists of a colorimeter, a control trigger and an integrator with an operational amplifier. Increase of photomultiplier stability is reached by changing voltage of photomultiplier power according to the reference signal amplitude. The level of background and efficiency of neutron detection by a scintillation counter are unchanged when using the stabilization system for 10 days of measurements

  8. New procedure for the determination of radium in water by extraction of radon and application of integral counting with a liquid scintillation counter

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, K [Tokyo Metropolitan Univ. (Japan). Faculty of Science; Murakami, Y [Kitasato Univ. (Japan). School of Hygienic Sciences

    1981-05-01

    A new Ra determination method is devised, storing the sample in a glass bottle with a Teflon stopper in an upside-down position, extracting Rn with liquid scintillator solution and combining integral counting with a liquid scintillation counter. This method realizes a high sensitivity of 5 x 10/sup -13/ Ci Ra, eliminates the tedious procedure of transferring Rn through the vacuum system to the detector and makes possible repeated determinations of Ra on the same sample without any further chemical treatment except extraction.

  9. A Monte Carlo Model for Neutron Coincidence Counting with Fast Organic Liquid Scintillation Detectors

    International Nuclear Information System (INIS)

    Gamage, Kelum A.A.; Joyce, Malcolm J.; Cave, Frank D.

    2013-06-01

    Neutron coincidence counting is an established, nondestructive method for the qualitative and quantitative analysis of nuclear materials. Several even-numbered nuclei of the actinide isotopes, and especially even-numbered plutonium isotopes, undergo spontaneous fission, resulting in the emission of neutrons which are correlated in time. The characteristics of this i.e. the multiplicity can be used to identify each isotope in question. Similarly, the corresponding characteristics of isotopes that are susceptible to stimulated fission are somewhat isotope-related, and also dependent on the energy of the incident neutron that stimulates the fission event, and this can hence be used to identify and quantify isotopes also. Most of the neutron coincidence counters currently used are based on 3 He gas tubes. In the 3 He-filled gas proportional-counter, the (n, p) reaction is largely responsible for the detection of slow neutrons and hence neutrons have to be slowed down to thermal energies. As a result, moderator and shielding materials are essential components of many systems designed to assess quantities of fissile materials. The use of a moderator, however, extends the die-away time of the detector necessitating a larger coincidence window and, further, 3 He is now in short supply and expensive. In this paper, a simulation based on the Monte Carlo method is described which has been performed using MCNPX 2.6.0, to model the geometry of a sector-shaped liquid scintillation detector in response to coincident neutron events. The detection of neutrons from a mixed-oxide (MOX) fuel pellet using an organic liquid scintillator has been simulated for different thicknesses of scintillators. In this new neutron detector, a layer of lead has been used to reduce the gamma-ray fluence reaching the scintillator. The effect of lead for neutron detection has also been estimated by considering different thicknesses of lead layers. (authors)

  10. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    Energy Technology Data Exchange (ETDEWEB)

    Tarifeño-Saldivia, Ariel, E-mail: atarifeno@cchen.cl, E-mail: atarisal@gmail.com; Pavez, Cristian; Soto, Leopoldo [Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago (Chile); Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Santiago (Chile); Departamento de Ciencias Fisicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Republica 220, Santiago (Chile); Mayer, Roberto E. [Instituto Balseiro and Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and Universidad Nacional de Cuyo, San Carlos de Bariloche R8402AGP (Argentina)

    2014-01-15

    This paper introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. This methodology is to be applied when single neutron events cannot be resolved in time by nuclear standard electronics, or when a continuous current cannot be measured at the output of the counter. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from the detection of the burst of neutrons. The model is developed and presented in full detail. For the measurement of fast neutron yields generated from plasma focus experiments using a moderated proportional counter, the implementation of the methodology is herein discussed. An experimental verification of the accuracy of the methodology is presented. An improvement of more than one order of magnitude in the accuracy of the detection system is obtained by using this methodology with respect to previous calibration methods.

  11. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    International Nuclear Information System (INIS)

    Tarifeño-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo; Mayer, Roberto E.

    2014-01-01

    This paper introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. This methodology is to be applied when single neutron events cannot be resolved in time by nuclear standard electronics, or when a continuous current cannot be measured at the output of the counter. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from the detection of the burst of neutrons. The model is developed and presented in full detail. For the measurement of fast neutron yields generated from plasma focus experiments using a moderated proportional counter, the implementation of the methodology is herein discussed. An experimental verification of the accuracy of the methodology is presented. An improvement of more than one order of magnitude in the accuracy of the detection system is obtained by using this methodology with respect to previous calibration methods

  12. Fundamentals of gas counters

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1994-01-01

    The operation of gas counters used for detecting radiation is explained in terms of the four fundamental physical processes which govern their operation. These are 1) conversion of neutral radiation into charged particles, 2) ionization of the host gas by a fast charge particle 3) transport of the gas ions to the electrodes and 4) amplification of the electrons in a region of enhanced electric field. Practical implications of these are illustrated. (UK)

  13. Calibration of a liquid scintillation counter to assess tritium levels in various samples

    CERN Document Server

    Al-Haddad, M N; Abu-Jarad, F A

    1999-01-01

    An LKB-Wallac 1217 Liquid Scintillation Counter (LSC) was calibrated with a newly adopted cocktail. The LSC was then used to measure tritium levels in various samples to assess the compliance of tritium levels with the recommended international levels. The counter was calibrated to measure both biological and operational samples for personnel and for an accelerator facility at KFUPM. The biological samples include the bioassay (urine), saliva, and nasal tests. The operational samples of the light ion linear accelerator include target cooling water, organic oil, fomblin oil, and smear samples. Sets of standards, which simulate various samples, were fabricated using traceable certified tritium standards. The efficiency of the counter was obtained for each sample. The typical range of the efficiencies varied from 33% for smear samples down to 1.5% for organic oil samples. A quenching curve for each sample is presented. The minimum detectable activity for each sample was established. Typical tritium levels in bio...

  14. Absolute measurement of the activity of 222Rn using a proportional counter

    International Nuclear Information System (INIS)

    Busch, Ingo; Greupner, Heinz; Keyser, Uwe

    2002-01-01

    A measuring set-up comprising a proportional counter of calculable 222 Rn efficiency and quantifiable active volume (δ V 222 Rn efficiency is determined by computer simulation of the measured α-spectra. The procedures necessary for absolute measurements by means of the counter are described, and the suitability of the counter for absolute measurements of the 222 Rn activity is proved by experiments. Thus, a new method for the realization of the unit of activity of 222 Rn is obtained, which is independent of the unit of activity of 226 Ra

  15. Test use of 'Ready Cap' for radiation measurement with a liquid scintillation counter

    International Nuclear Information System (INIS)

    Kato, Takahisa; Saito, Kazumi; Kurihara, Norio

    1989-01-01

    We tested the performance of 'Ready Cap' which can be used in place of liquid scintillation cocktails to measure the activity of 3 H and 14 C with a liquid scintillation counter, and observed satisfactory results on counting efficiencies for these nuclides. We could correct color-quenching with Ready Cap either by a method of the gravity-center of β-ray spectrum or by an external standard method that uses the external irradiation from bottom of the sample. Although there are several problems such as limitation of the maximum sample volumes (<200 μl) and sample preparation procedures (drying the sample solution), we can conveniently employ Ready Cap in some aspects of activity counting because of the easy disposal procedure of the radioactive waste resulting from it. (author)

  16. Characteristics of proportional counters used in X-ray radiometric analysis

    International Nuclear Information System (INIS)

    Mamikonyan, S.V.; Martishchenko, L.G.; Mel'ttser, L.V.

    1972-01-01

    Counters with extended (up to 10 cm 2 ) apertres have been described and the results obtained are presented. CPM-15 and CPM-16 counters are intended for sensoring and spectral analysis of X-rays in the range of 2.5 to 23 and 2.5 to 15 keV, respectively. The only difference is in the gas composition. The CPM-15 counter is filled with 90 per cent xenon plus 10 per cent methane used as a quenching dopant. The CPM-16 is filled with 90 per cent argon and 10 per cent methane. The life time is 10 10 pulses at 1800 V for CPM-16 and at 2200 V for CPM-15

  17. Experimental dead time corrections for a linear position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Yelon, W.B.; Tompson, C.W.; Mildner, D.F.R.; Berliner, R.; Missouri Univ., Columbia

    1984-01-01

    Two simple counters included in the charge-digitization circuitry of a position-sensitive proportional counter using the charge division method for position encoding have enabled us to determine the dead time losses for the system. An interesting positional dependence of the dead time tau is observed, which agrees with a simple model. The system enables us to correct the experimental data for dead time and to be indifferent to the relatively slow analog-to-digital converters used in the system. (orig.)

  18. Gas Gain Measurement Of GEM-Foil In Argon-Carbon Dioxide Mixture

    International Nuclear Information System (INIS)

    Nguyen Ngoc Duy; Vuong Huu Tan; Le Hong Khiem

    2011-01-01

    Nuclear reaction measurement with radioactive beam at low energy plays an important role in nuclear astrophysics and nuclear structure. The trajectory of particle beams can be obtained by using an active gas target, multiple-sampling and tracking proportional chamber (MSTPC), as a proportional counter. Because of intensity of low energy radioactive beam, in the stellar reaction such as (α, p), (p, α), it is necessary to increase the gain for the counter. In this case, a gas electrons multiplier (GEM) foil will be used, so the proportional counter is called GEM-MSTPC. The efficient gas gain of GEM foils which relates to foil thickness and operating pressure was investigated with two type of the foils, 400 μm and 200 μm, in Argon (70%) + Carbon dioxide (30%) mixture. (author)

  19. Dual-chamber/dual-anode proportional counter incorporating an intervening thin-foil solid neutron converter

    International Nuclear Information System (INIS)

    Boatner, Lynn A.; Neal, John S.; Blackston, Matthew A.; Kolopus, James A.; Ramey, Joanne O.

    2012-01-01

    A dual-chamber/dual-anode gas proportional counter utilizing thin solid 6 LiF or 10 B neutron converters coated on a 2-micon-thick Mylar film that is positioned between the two counter chambers and anodes has been designed, fabricated, and tested using a variety of fill gases—including naturally abundant helium. In this device, neutron conversion products emitted from both sides of the coated converter foil are detected—rather than having half of the products absorbed in the wall of a conventional tube-type counter where the solid neutron converter is deposited on the tube wall. Geant4-based radiation transport calculations were used to determine the optimum neutron converter coating thickness for both isotopes. Solution methods for applying these optimized-thickness coatings on a Mylar film were developed that were carried out at room temperature without any specialized equipment and that can be adapted to standard coating methods such as silk screen or ink jet printing. The performance characteristics of the dual-chamber/dual-anode neutron detector were determined for both types of isotopically enriched converters. The experimental performance of the 6 LiF-converter-based detector was described well by modeling results from Geant4. Additional modeling studies of multiple-foil/multiple-chamber/anode configurations addressed the basic issue of the relatively longer absorption range of neutrons versus the shorter range of the conversion products for 6 LiF and 10 B. Combined with the experimental results, these simulations indicate that a high-performance neutron detector can be realized in a single device through the application of these multiple-foil/solid converter, multiple-chamber detector concepts.

  20. Activity measurement of tritium in biological samples by azeotropic distillation liquid scintillation counter

    International Nuclear Information System (INIS)

    Wu Zongmei; Zheng Xiaomin

    1994-01-01

    The authors introduced a method of extracting tissue free water tritium (TFWT) in biological samples by azeotropic distillation with toluene and of measuring its activity by liquid scintillation counter. Measured TFWT recovery ratios of pine needles (fresh), green vegetables, radish, milk, meat, rice are 0.90, 0.95, 0.95, 0.85, 0.53 and 0.90; and the activities of TFWT are 1.8, 3.2, 1.8, 4.0, 3.3 and 2.7 Bq/L, respectively

  1. Determination of thoron and radon ratio by liquid scintillation spectrometry

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Nakanishi, T.; Nakahara, H.

    2006-01-01

    A portable liquid scintillation counter was applied for the analysis of alpha-ray energy spectrum to determine the ratio of 220 Rn/ 222 Rn in fumarolic gas in the field. A surface-polished vial was developed, by which a Gaussian distribution could be approximated for the alpha-ray energy spectra and the peak areas of the nuclides could be estimated independently, because of the wide FWHM in the liquid scintillation pulse. A fumarolic gas sample was collected in Mt. Kamiyama (Hakoneyama geothermal field in Japan) having low 220 Rn/ 222 Rn ratio of 2.20 ± 0.13. (author)

  2. High-pressure gas-breakthrough apparatus and a procedure for determining the gas-breakthrough pressure of compacted clay

    International Nuclear Information System (INIS)

    Hume, H.B.

    1997-08-01

    Gas may be produced in a nuclear fuel waste disposal vault. Given that the vault will be sealed with clay-based materials, the fate of the gas is uncertain. Therefore, an instrument was previously built to measure the pressure required to pass gas through compacted clay materials (a gas-breakthrough apparatus). However, the 10 MPa pressure limit of the apparatus was insufficient to test compacted buffer material at the density proposed in the Canadian concept for nuclear fuel waste disposal. Therefore, a high-pressure (50 Wa) gas-breakthrough apparatus was designed, constructed and installed. This report describes the components of the apparatus and the materials and procedures that are used for the gas-breakthrough tests. (author)

  3. Measurement of Ra-226 in building materials, with a Na I (Tl) scintillation counter

    International Nuclear Information System (INIS)

    Vallejo, L.R.; Fuenteseca, J.W.; Rivera, C.A.; Aros, F.H.

    1992-01-01

    Ra-226 concentration in building materials is determined using gamma-ray spectrometry. Ra-226 contained in sundry materials employed in the construction of dwelling houses and public buildings in Antofagasta city is determined by counting the Pb-214 peaks at 295 KeV and 352 keV, and the Bi-214 peak at 609 keV recorded by means of a 7.5-cm Nal (TI) scintillation counter. (author)

  4. The study of the influence of helium on the counter's measurement properties

    International Nuclear Information System (INIS)

    Guan Rui; Weng Kuiping; Ren Xingbi

    2009-04-01

    In measurement of tritium by the proportional counter, methane is usually used as counter gas. Gas samples have been made with helium and methane in the proportion of concentration and measured to study the influence of helium on the counter's measurement properties. Then gas sample with tritium and helium has been measured, and the result is according with anticipation. The experiment has showed that the plateau curve of counter could be changed by helium, but the influence could be ignored when helium concentration less 10%. (authors)

  5. High pressure gas reinjection unit

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    Nuovo Pignone has built for gas reinjection at Ekofisk the highest pressure injection unit to date: suction pressure 246 bar, discharge 647 bar, for 5.7 million cu m/day of natural gas, and driven by a GE MS 5001 gas turbine of 24,000 hp. The barrel-type compressor has been used already in Algeria at Hassi Messaoud. Full scale tests have shown that the unit is satisfactory; special attention being paid to the stability of the rotor. Air cooled heat exchangers were used in the test loop to cool the discharge gas; at Ekofisk, heat exchangers with sea water will be used. The valves in the test loop were of a special, low- noise type. Vibrations of the rotor system and changes in gas pressure monitored, showing that a pressure of 680 bars can be achieved without instability. Economic considerations lead to preference for rotary compressors driven by gas turbines for similar applications in the exploitation of oil fields. A graph of the characteristics of the unit is given.

  6. Numerical modeling of working of a multicellular proportional counter aimed to individual dosimetry of neutrons

    International Nuclear Information System (INIS)

    Bordy, J.M.; Barthe, J.; Boutruche, B.

    1993-01-01

    The use of a personal dosimeter imposes severe constraints, particularly for tension of polarization and tolerable dimensions. That why a numerical modeling of this detector working is an appreciable help for conception. It allows to determine quickly the influence of modification of different parameters (nature and pressure of gas, dimension of electrodes, dimension of channels, tension of polarization,...) without having to make new prototypes. The aim of this report is to give some numerical results got with a multicellular counter with a cylindrical geometry. 6 figs

  7. A suspended boron foil multi-wire proportional counter neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.

    2014-12-11

    Three natural boron foils, approximately 1.0 cm in diameter and 1.0 µm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the {sup 10}B(n,α){sup 7}Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal–neutron detection efficiency for enriched {sup 10}B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.

  8. A suspended boron foil multi-wire proportional counter neutron detector

    Science.gov (United States)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.

    2014-12-01

    Three natural boron foils, approximately 1.0 cm in diameter and 1.0 μm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the 10B(n,α)7Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal-neutron detection efficiency for enriched 10B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.

  9. High temperature, high pressure gas loop - the Component Flow Test Loop (CFTL)

    International Nuclear Information System (INIS)

    Gat, U.; Sanders, J.P.; Young, H.C.

    1984-01-01

    The high-pressure, high-temperature, gas-circulating Component Flow Test Loop located at Oak Ridge National Laboratory was designed and constructed utilizing Section III of the ASME Boiler and Pressure Vessel Code. The quality assurance program for operating and testing is also based on applicable ASME standards. Power to a total of 5 MW is available to the test section, and an air-cooled heat exchanger rated at 4.4 MW serves as heat sink. The three gas-bearing, completely enclosed gas circulators provide a maximum flow of 0.47 m 3 /s at pressures to 10.7 MPa. The control system allows for fast transients in pressure, power, temperature, and flow; it also supports prolonged unattended steady-state operation. The data acquisition system can access and process 10,000 data points per second. High-temperature gas-cooled reactor components are being tested

  10. Large Area X-ray Proportional Counter (LAXPC) Instrument on AstroSat and Some Preliminary Results from its performance in the orbit

    OpenAIRE

    Agrawal, P. C.; Yadav, J. S.; Antia, H. M.; Dedhia, Dhiraj; Shah, P.; Chauhan, Jai Verdhan; Manchanda, R. K.; Chitnis, V. R.; Gujar, V. M.; Katoch, Tilak; Kurhade, V. N.; Madhwani, P.; Manojkumar, T. K.; Nikam, V. A.; Pandya, A. S.

    2017-01-01

    Large Area X-ray Propositional Counter (LAXPC) instrument on AstroSat is aimed at providing high time resolution X-ray observations in 3 to 80 keV energy band with moderate energy resolution. To achieve large collecting area, a cluster of three co-aligned identical LAXPC detectors, is used to realize an effective area in access of about 6000 cm2 at 15 keV. The large detection volume of the LAXPC detectors, filled with xenon gas at about 2 atmosphere pressure, results in detection efficiency g...

  11. EXAFS measurements under high pressure conditions using a combination of a diamond anvil cell and synchrotron radiation

    International Nuclear Information System (INIS)

    Sueno, Shigeho; Nakai, Izumi; Imafuku, Masayuki; Morikawa, Hideki; Kimata, Mitsuyoshi; Ohsumi, Kazumasa; Nomura, Masaharu; Shimomura, Osamu.

    1986-01-01

    EXAFS spectra for Fe, Co, Ni K-edges were successfully measured under high pressure conditions using a combination of a set of normal 1/8 carat diamond anvils, synchrotron radiation and a scintillation counter. A newly developed motor controlled goniometer stage was used for adjusting the position of a miniature diamond anvil cell. On the measurement of Cr and Mn spectra, specially designed thinner diamond anvil was necessary. EXAFS analysis of bis(dimethylglyoximato)nickel(II) at pressures from 1 atm to 5.6 GPa was made. (author)

  12. Errors in estimating neutron quality factor using lineal energy distributions measured in tissue-equivalent proportional counters

    International Nuclear Information System (INIS)

    Borak, T.B.; Stinchcomb, T.G.

    1982-01-01

    Neutron dose equivalent is obtained from quality factors which are defined in terms of LET. It is possible to estimate the dose averaged quality factor, antiQ, directly from distributions in lineal energy, y, that are measured in tissue-equivalent proportional counters. This eliminates a mathematical transformation of the absorbed dose from D(y) to D(L). We evaluate the inherent error in computing Q from D(y) rather than D(L) for neutron spectra below 4 MeV. The effects of neutron energy and simulated tissue diameters within a gas cavity are examined in detail. (author)

  13. Cerenkov counters at the Omega Facility

    CERN Multimedia

    1975-01-01

    P. Petroff on the left. Here one sees both the gas Cerenkov counters sitting in front of the magnet to select forward emitted particles. The smaller one, working at high pressure, sits nearest to the Omega magnet (see photo 7505073X), the other (see photo 7505071X) works at atmospheric pressure.

  14. Measurement of tissue free water tritium in biological samples by liquid scintillation counter

    International Nuclear Information System (INIS)

    Wu Zongmei; Zheng Xiaomin

    1993-01-01

    The authors introduced a method of extracting tissue free water tritium (TFWT) by the azeotropic distribution with toluene and of measuring the activity of the TFWT in biological samples by liquid scintillation counter. The TFWT recovery ratio of pine needles (fresh), green vegetables, radish, rice, pork (muscle) and milk is 0.90, 0.95, 0.96, 0.90, 0.52 and 0.85, and TFWT activity is 1.8, 3.2, 1.8, 2.7, 3.3 and 4.0 Bq/L-H 2 O, respectively

  15. Signal shaping and tail cancellation for gas proportional detectors at high counting rates

    International Nuclear Information System (INIS)

    Boie, R.A.; Hrisoho, A.T.; Rehak, P.

    1982-01-01

    A low noise, wide bandwidth preamplifier and signal processing filter were developed for high counting rate proportional counters. The filter consists of a seven pole Gaussian integrator with symmetrical weighting function and continuously variable shaping time, tausub(s), of 8-50 ns (fwhm) preceded by a second order pole/zero circuit which cancels the long (1/t) tails of the chamber signals. The preamplifier is an optimized common base input design with 2 ns rise time and an equivalent noise input charge < 2000 r.m.s. electrons, when connected to a chamber with 10 pF capacitance and at a filtering time, tausub(s), of 10 ns. (orig.)

  16. Investigation of the Pulse Height Distribution of Boron Trifluoride Proportional Counters

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I Oe; Malmskog, S

    1962-08-15

    The report describes a theoretical and experimental investigation of the factors that determine the pulse height distribution of BF{sub 3}, proportional counters irradiated by thermal neutrons. The branching ratio of the {sup 10}B (n,{alpha}) {sup 7}Li reaction for thermal neutrons has been measured.

  17. High-Z Nanoparticle/Polymer Nanocomposites for Gamma-Ray Scintillation Detectors

    Science.gov (United States)

    Liu, Chao

    An affordable and reliable solution for spectroscopic gamma-ray detection has long been sought after due to the needs from research, defense, and medical applications. Scintillators resolve gamma energy by proportionally converting a single high-energy photon into a number of photomultiplier-tube-detectable low-energy photons, which is considered a more affordable solution for general purposes compared to the delicate semiconductor detectors. An ideal scintillator should simultaneously exhibit the following characteristics: 1) high atomic number (Z) for high gamma stopping power and photoelectron production; 2) high light yield since the energy resolution is inversely proportional to the square root of light yield; 3) short emission decay lifetime; and 4) low cost and scalable production. However, commercial scintillators made from either inorganic single crystals or plastics fail to satisfy all requirements due to their intrinsic material properties and fabrication limitations. The concept of adding high-Z constituents into plastic scintillators to harness high Z, low cost, and fast emission in the resulting nanocomposite scintillators is not new in and of itself. Attempts have been made by adding organometallics, quantum dots, and scintillation nanocrystals into the plastic matrix. High-Z organometallics have long been used to improve the Z of plastic scintillators; however, their strong spin-orbit coupling effect entails careful triplet energy matching using expensive triplet emitters to avoid severe quenching of the light yield. On the other hand, reported quantum dot- and nanocrystal-polymer nanocomposites suffer from moderate Z and high optical loss due to aggregation and self-absorption at loadings higher than 10 wt%, limiting their potential for practical application. This dissertation strives to improve the performance of nanoparticle-based nanocomposite scintillators. One focus is to synthesize transparent nanocomposites with higher loadings of high

  18. Theoretical analysis of stack gas emission velocity measurement by optical scintillation

    International Nuclear Information System (INIS)

    Yang Yang; Dong Feng-Zhong; Ni Zhi-Bo; Pang Tao; Zeng Zong-Yong; Wu Bian; Zhang Zhi-Rong

    2014-01-01

    Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously. (general)

  19. On the ionization scintillation calorimeter based on KMgF3 crystal

    International Nuclear Information System (INIS)

    Buzulutskov, A.F.

    1990-01-01

    The development of the ionization scintillation calorimeter, using KMgF 3 crystals and high efficiency photocathodes, is proposed. Some characteristics of such calorimeter are compared with those of the high pressure gas one. 6 refs.; 2 figs.; 2 tabs

  20. Application of the finite-difference approximation to electrostatic problems in gaseous proportional counters

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.; Urbanczyk, K.M.

    1975-01-01

    The basic principles of the finite-difference approximation applied to the solution of electrostatic field distributions in gaseous proportional counters are given. Using this method, complicated two-dimensional electrostatic problems may be solved, taking into account any number of anodes, each with its own radius, and any cathode shape. A general formula for introducing the anode radii into the calculations is derived and a method of obtaining extremely accurate (up to 0.1%) solutions is developed. Several examples of potential and absolute field distributions for single rectangular and multiwire proportional counters are calculated and compared with exact results according to Tomitani, in order to discuss in detail errors of the finite-difference approximation. (author)

  1. Response of a carbon-walled proportional counter to 14 MeV neutrons

    International Nuclear Information System (INIS)

    Lewis, K.D.

    1982-01-01

    The response of a carbon-walled spherical proportional counter filled with a methane-based tissue-equivalent gas mixture at low pressure and irradiated with 14 MeV neutrons is first measured experimentally and is then calculated theoretically by using an analytical model. The model, called the CISS model, is derived from a consideration of four basic modes of interaction of charged particles generated in neutron-nucleus reactions with the spherical cavity of the detector. Since several quantities which have application in neutron dosimetry, radiation protection, and radiation biology make direct use of such spectra, it is desirable to have the ability to theoretically predict what is expected experimentally. Thus, a comparison between the two response curves is made. The discrepancy between them is investigated by considering several physical phenomena occurring within the detector wall which tend to distort the experimental response curve. In particular, the C(n,n',3α) reaction occurring in the detector wall gives rise to multiple events, originating from a single neutron interaction in the wall simultaneously strike the detector cavity, and are recorded as a single larger event in an experimental spectra. In the analytic model, the simultaneous entry of two charged particles into the cavity is scored as two separate smaller events, uncorrelated in their production. In this work, an effort is made to modify the analytic model prediction of the response curve by correcting for the multiple events which occur. Finally, the CISS model is used to compute mass stopping power corrections for this inhomogeneous detector

  2. Proceedings of the symposium on measurements of neutron energy spectra using recoil proton proportional counters

    International Nuclear Information System (INIS)

    Urabe, Itsumasa

    1986-01-01

    This is a report of the symposium on measurements of neutron energy spectra using recoil proton proportional counters held at the Research Reactor Institute of Kyoto University on January 27 in 1986. An energy resolution, wall effects of response functions, n · γ discrimination methods and other fundamental properties of recoil proton counters are discussed for a new development of an application of this counter. (author)

  3. Nuclear Forensics and Radiochemistry: Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-08

    Radiation detection is necessary for isotope identification and assay in nuclear forensic applications. The principles of operation of gas proportional counters, scintillation counters, germanium and silicon semiconductor counters will be presented. Methods for calibration and potential pitfalls in isotope quantification will be described.

  4. Nuclear Forensics and Radiochemistry: Radiation Detection

    International Nuclear Information System (INIS)

    Rundberg, Robert S.

    2017-01-01

    Radiation detection is necessary for isotope identification and assay in nuclear forensic applications. The principles of operation of gas proportional counters, scintillation counters, germanium and silicon semiconductor counters will be presented. Methods for calibration and potential pitfalls in isotope quantification will be described.

  5. Sounding experiments of high pressure gas discharge

    International Nuclear Information System (INIS)

    Biele, Joachim K.

    1998-01-01

    A high pressure discharge experiment (200 MPa, 5·10 21 molecules/cm 3 , 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm 3 ) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm 3 ) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at the combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved

  6. Study and full simulation of ten different gases on sealed Multi-Wire Proportional Counter (MWPC) by using Garfield and Maxwell codes

    International Nuclear Information System (INIS)

    Shohani, M. Ebrahimi; Golgoun, S.M.; Aminipour, M.; Shabani, A.; Mazoochi, A.R.; Akbari, R. Maghsoudi; Mohammadzadeh, M.; Davarpanah, M.R.; Sardari, D.; Sadeghi, M.; Mofrad, F. Babapour; Jafari, A.

    2016-01-01

    In this research gas sealed Multi-Wire Proportional Counter (MWPC) including blades between anode wires and beta particles of "9"0Sr with 196 keV mean energy were considered. Ten different gases such as Noble gases mixtures with methane and several other pure gases were studied. In this type of detector, by using Garfield and Maxwell codes and for each of the gases, variation of different parameters such as first Townsend, electron attachment coefficients with variable electric field and their effects on pulse height or collected charge and in turn on Signal to Noise Ratio (SNR) were studied. Also the effect of anode voltage and its diameter and the pressure of gas on the pulse height were studied. Results show that Garfield and Maxwell codes can be used to study and improve the design of other gaseous detectors. - Highlights: • Simulation of different gases that is applicable for various gas detectors. • Two simulation codes were used and analyzed their results for beta particle. • Different detector parameters were studied (SNR, first Townsend, electron attachment coefficients, anode voltage and etc.). • The effect of blade in the detector were assessed. • The codes are useful for design and improvement of detector.

  7. A large multi-cell threshold gas Cerenkov counter

    International Nuclear Information System (INIS)

    Declais, Y.; Aubert, J.J.; Bassompierre, G.; Payre, P.; Thenard, J.M.; Urban, L.

    1980-08-01

    A large multi-cell threshold gas Cerenkov counter consisting of 78 cells has been built for use in a high energy muon scattering experiment at CERN (European Muon Collaboration). It is used with neon, nitrogen or a mixture of those two gases, allowing the pion threshold to be varied between 6 and 20 GeV/c. The sensitive region of the counter has a length of 4.0 m and entrance and exit windows of 1.1 x 2.4 m 2 and 2.4 x 5.0 m 2 , respectively

  8. Scintillation counting apparatus

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1978-01-01

    Apparatus is described for the accurate measurement of radiation by means of scintillation counters and in particular for the liquid scintillation counting of both soft beta radiation and gamma radiation. Full constructional and operating details are given. (UK)

  9. Whole body counters: types, performance and uses

    International Nuclear Information System (INIS)

    Jales, R.L.C.

    1983-01-01

    The present monograph deals with Whole Counters, since its definition, evolution, performance, clinical indications and results. Scintillation crystals detection systems were described as well as scintillant solutions, plastic scintillations, and gaseous detectors, including its interplay forms and basal characteristics. Geometric arrangements of standard chair, arc and hammock, arrangements with scintillant solutions and plastic scintillations, as well as special geometric arrangements were equally commented. Clinic and experimental studies were also dealt with Whole Body Counters, giving examples with potassium, iron vitamin B 12 and albumin. (author)

  10. An extended parametrization of gas amplification in proportional wire chambers

    International Nuclear Information System (INIS)

    Beingessner, S.P.; Carnegie, R.K.; Hargrove, C.K.

    1987-01-01

    It is normally assumed that the gas amplification in proportional chambers is a function of Townsend's first ionization coefficient, α, and that α is a function of the anode surface electric field only. Experimental measurements are presented demonstrating the breakdown of the latter assumption for electric fields, X, greater than about 150 V/cm/Torr on the anode wire surface for a gas mixture of 80/20 argon/methane. For larger values of X, the parametrization of the proportional gas gain data requires an additional term related to the gradient of the electric field near the wire. This extended gain parametrization remains valid until the onset of nonproportional contributions such as positive ion space charge saturation effects. Furthermore, deviations of the data from this parametrization are used to measure the onset of these space charge effects. A simple scaling dependence of the gain data on the product of pressure and wire radius over the whole proportional range is also demonstrated. (orig.)

  11. Proportional counter with a uniform electric field in the zone of avalanche multiplication of electrons

    International Nuclear Information System (INIS)

    Marzec, J.; Pawlowski, Z.

    1982-01-01

    The work describes the construction of a proportional counter with a uniform electric field in the zone of avalanche multiplication of electrons. It has been shown that in this counter filled with Penning's mixtures Ne+Ar+CO 2 , Ne+CH 4 and Ar+C 2 H 2 , much higher resolutions are obtained than in typical cylindrical counters. In the counter described filled with a mixture of Ne+1%CH 4 , a resolution of fwhm=10.5% has been obtained for E=5.9 keV. (orig.)

  12. Absolute calibration of TFTR helium proportional counters

    International Nuclear Information System (INIS)

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Loughlin, M.

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments

  13. Scintillating fiber detector performance, detector geometries, trigger, and electronics issues for scintillating fiber tracking

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.

    1994-06-01

    Scintillating Fiber tracking technology has made great advances and has demonstrated great potential for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation fluors available make them very promising for use at high luminosity experiments at today's and tomorrow's colliding and fixed target experiments where high rate capability is essential. This talk will discuss the current state of Scintillating fiber performance and current Visual Light Photon Counter (VLPC) characteristics. The primary topic will be some of the system design and integration issues which should be considered by anyone attempting to design a scintillating fiber tracking system which includes a high speed tracking trigger. Design. constraints placed upon the detector system by the electronics and mechanical sub-systems will be discussed. Seemingly simple and unrelated decisions can have far reaching effects on overall system performance. SDC and DO example system designs will be discussed

  14. Linear position sensitive neutron detector using fiber optic encoded scintillators

    International Nuclear Information System (INIS)

    Davidson, P.L.; Wroe, H.

    1983-01-01

    A linear position sensitive slow neutron detector with 3 mm resolution is described. It uses the fiber optic coding principle in which the resolution elements are separate pieces of lithium loaded glass scintillator each coupled by means of flexible polymer optical fibers to a unique combination of 3 photo multipliers (PM's) out of a bank of 12. A decoder circuit repsponds to a triple coincidence between PM outputs and generates a 12 bit work which identifies the scintillator element which stopped the incident neutron. Some details of the construction and decoding electronics are given together with test results obtained using a laboratory isotope neutron source and a monochomated, collimated neutron beam from a reactor. The count rate in the absence of neutron sources is 2 to 3 c min - 1 per element; the element to element variation in response to a uniform flux is a few percent for 95% of the elements; the resolution as measured by a 1 mm wide prode neutron beam is 3 mm; the relative long term stability is about 0.1% over 3 days and the detection efficiency measured by comparison with an end windowed, high pressure gas counter is about 65% at a neutron wavelength of 0.9A 0

  15. Proportional counter with a uniform electric field in the zone of avalanche multiplication of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Marzec, J.; Pawlowski, Z. (Politechnika Warszawska (Poland). Inst. Radioelektroniki)

    1982-09-15

    The work describes the construction of a proportional counter with a uniform electric field in the zone of avalanche multiplication of electrons. It has been shown that in this counter filled with Penning's mixtures Ne+Ar+CO/sub 2/, Ne+CH/sub 4/ and Ar+C/sub 2/H/sub 2/, much higher resolutions are obtained than in typical cylindrical counters. In the counter described filled with a mixture of Ne+1%CH/sub 4/, a resolution of fwhm=10.5% has been obtained for E=5.9 keV.

  16. Azimuthal spread of the avalanche in proportional chambers

    International Nuclear Information System (INIS)

    Okuno, H.; Fischer, J.; Radeka, V.; Walenta, A.H.

    1978-10-01

    The angular distribution of the avalanche around the anode wire in the gas proportional counter is determined by measuring the distribution of positive ions arriving on cathode strips surrounding the anode wire for each single event. The shape and width of the distribution depend on such factors as the gas gain, the anode diameter, the counting gas and the primary ionization density. Effects of these factors are studied systematically, and their importance for practical counter applications is discussed

  17. MCNP modelling of the wall effects observed in tissue-equivalent proportional counters.

    Science.gov (United States)

    Hoff, J L; Townsend, L W

    2002-01-01

    Tissue-equivalent proportional counters (TEPCs) utilise tissue-equivalent materials to depict homogeneous microscopic volumes of human tissue. Although both the walls and gas simulate the same medium, they respond to radiation differently. Density differences between the two materials cause distortions, or wall effects, in measurements, with the most dominant effect caused by delta rays. This study uses a Monte Carlo transport code, MCNP, to simulate the transport of secondary electrons within a TEPC. The Rudd model, a singly differential cross section with no dependence on electron direction, is used to describe the energy spectrum obtained by the impact of two iron beams on water. Based on the models used in this study, a wall-less TEPC had a higher lineal energy (keV.micron-1) as a function of impact parameter than a solid-wall TEPC for the iron beams under consideration. An important conclusion of this study is that MCNP has the ability to model the wall effects observed in TEPCs.

  18. CWRU multiwire proportional counter readout system

    International Nuclear Information System (INIS)

    Bevington, P.R.; Leskovec, R.A.

    1977-01-01

    An electronic system is described which translates pulses from individual wires of multiwire proportional counters into binary addresses indicating the location of the wires in the chambers. The system combines a fast (<100 ns) serial scan of an event buffer with parallel encoding to provide fast transfer of addresses (250 ns per hit). The buffer has provision for disabling the input less than 40 ns after detection of an event to suppress recording of multiple hits caused by individual events. The encoder can digitize the address of every hit encountered or just the first addresses of contiguous hits. The system includes a coincidence trigger for determining whether timing criteria have been satisfied between chambers and with external devices. Events which do not meet the coincidence criteria are typically reset within 400 ns. The addresses are transferred to a computer interface through CAMAC modules. Multiple buffering permits further data acquisition during CAMAC transfer cycles. (Auth.)

  19. Fabrication of preamplifier for proportional counter

    International Nuclear Information System (INIS)

    Lotfi, Y.; Yazdanpanah, M.; Talebi, B.; Mohammadi, A.; Etaati, Gh.

    2002-01-01

    We have tried to describe techniques of preamplifier fabrication for proportional counter. At first electronic circuit of preamplifier has been analyzed by means of Or cad 9.1. Then we assembled the circuit. Thereafter essential and standard parameters of preamplifier has been measured and compared with foreign made one, according to IEEE standard method. (IEEE Std 301-1988) Specification for our preamplifier is: 1. Rise time of output plus: 25 nsec. 2. Fall time of output pulse: 50μ sec. 3. Charge sensitive: 46.3 mV/pc. 4. Average noise: 500 ion pair (rms) 5. Count R ate L imit: 9.14*10 10 Count/sec. 6. Resolution: %1.3 7. Spectrum of Bf3 detector to 300μ Ci Am-Be source for this preamplifier is the same as foreign one. On the Whole comparison of this preamplifier with the foreign one shows that their parameters similarity is about %95

  20. Set-up of proportional counter L2 for 14C measurements with improved precision

    International Nuclear Information System (INIS)

    Goslar, T.; Pazdur, A.; Pazdur, M.F.; Walanus, A.; Zastawny, A.

    1990-01-01

    Radiocarbon dating with improved precision denotes determination of conventional radiocarbon dates with accuracy equal to ca ± 25 yr. The paper presents some fundamental data concerning construction and design of the proportional counter L2, the results of calibration of the counter, including detailed information on changes of the background counting rate. The counter L2 enables dating of samples up to 50 000 yr. For samples younger than 3000 yr the error of dating is equal to ca ± 25 yr. 4 figs., 1 tab., 9 refs. (author)

  1. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    International Nuclear Information System (INIS)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander; Clausen, Sønnik

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1–200 bar and temperature range 300–1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients of a CO_2–N_2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated spectra, as well as published experimental data. - Highlights: • A ceramic gas cell designed for gas measurements up to 1300 K and 200 bar. • The first recorded absorption spectrum of CO_2 at 1000 K and 101 bar is presented. • Voigt profiles might suffice in the modeling of radiation from CO_2 in combustion.

  2. Development of new type boron-coating proportional counter and its experimental investigation and simulation calculation

    International Nuclear Information System (INIS)

    Zhang Zixia; Wei Zhiyong; Fang Meihua; Qiang Peng; Zhu Li; Chen Guoyun

    2015-01-01

    Three materials wherein suitable proportion of isotope enriched 10 B powder, 1, 2-ethylene dichloride and formvar resin were blended to make 10 B neutron sensitive coating by oneself. A new type proportional counter that coated with 10 B neutron sensitive coating was made. Furthermore, in order to increase the character and quality of the neutron detector, a set of 14 annulus epoxy sheets which were sided with 10 B film were placed in the tube. A series performance tests were done by 241 Am-Be neutron source. The tests of 3.7 × 10 9 Bq 211 Am-Be neutron source show that the plateau length of detector is 150 V from 750 V to 900 V, while the plateau slope is 8.2%/100 V. When the working voltage is 800 V, the count rate of new type boron-coating proportional counter is 50 s -1 . The level of sensitivity is 0.71 cm 2 . Compared with the detector only coated with 10 B film in the inner walls of detector, neutron sensitivity area of the new detector increases to 3.15 times. The results show that the plateau length increases from 80 V to 150 V, and the plateau slope is improved from 12.4%/100 V to 7.58%/100 V, while the neutron sensitivity increases to 2.63 times. Using Geant4 software based on Monte Carlo method, this paper presented the response and detection efficiency of new type boron-coating proportional counter, which was covered with φ55 mm × 250 mm cylinder high density polyethylene moderator material. The simulation results of Geant4 are in agreement with the results of 241 Am-Be neutron source experiment. It shows the reliability of simulation application. (authors)

  3. High pressure gas driven liquid metal MHD homopolar generator

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki

    1988-01-01

    A liquid metal MHD homopolar generator is proposed to be used as a high repetition rate pulsed power supply. In the generator, the thermal energy stored in a high pressure gas (He) reservoir is rapidly converted into kinetic energy of a rotating liquid metal (NaK) cylinder which is contracted by a gas driven annular free piston. The rotational kinetic energy is converted into electrical energy by making use of the homopolar generator principle. The conversion efficiency is calculated to be 47% in generating electrical energy of 20 kJ/pulse (1.7 MW peak power) at a repetition rate of 7 Hz. From the viewpoint of energy storage, the high pressure gas reservoir with a charging pressure of 15 MPa is considered to ''electrically'' store the energy at a density of 10 MJ/m 3 . (author)

  4. Development of extruded resistive plastic tubes for proportional chamber cathodes

    International Nuclear Information System (INIS)

    Kondo, K.

    1982-01-01

    Carbon mixed plastic tubes with resistivity of 10 3 approx. 10 4 Ωcm have been molded with an extrusion method and used for the d.c. cathode of a proportional counter and a multi-wire proportional chamber. The signal by gas multiplication was picked up from a strip r.f. cathode set outside the tube. The characteristics of the counter in the proportional and limited streamer modes have been studied

  5. Diffractive Photon Dissociation in a High Pressure Hydrogen Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Gregory Roy [Rockefeller Univ., New York, NY (United States)

    1983-11-01

    We have performed an experiment at the Tagged Photon Facility of Fermilab to study the diffraction dissociation of high energy photons on hydrogen y + p -+ x + p in the region 0.02 < $\\mid t \\mid$ < 0.1 $(GeV/c)^2$, $M_x$ $^2/s$ < 0.1. In this process, incident photons whose energies range from 70 to 140 GeV transform coherently to massive hadronic states in the mass range M < 5 GeV/c 2 • x We measure the inclusive differential cross section$\\frac{d^20}{dt dM_x ^2}$) The behavior of this cross section, especially when compared to the corresponding cross sections for the diffraction dissociation of incident hadrons (pions, kaons, and protons), reveals some fundamental characteristics of photon hadronic interactions. We use the Recoil Technique to determine the missing mass, $M_x$, and the square of the 4-momentum transfer, t. The recoil detector, TREAD, is a cylindrical time projection chamber filled with high pressure hydrogen gas which serves both as the target and as the drift medium for the ionization track created by recoil protons. The ionization drifts up to 75 cm in a high axial electric field. Concentric sense wires mounted on endplates sample different parts of the track, yielding the polar angle of the recoil. The energy of the recoil is determined by stopping the proton in scintillation counters located inside the high pressure vessel....

  6. Status of timing with plastic scintillation detectors

    International Nuclear Information System (INIS)

    Moszynski, M.; Bengtson, B.

    1979-01-01

    Timing properties of scintillators and photomultipliers as well as theoretical and experimental studies of time resolution of scintillation counters are reviewed. Predictions of the theory of the scintillation pulse generation processes are compared with the data on the light pulse shape from small samples, in which the light pulse shape depends only on the composition of the scintillator. For larger samples the influence of the light collection process and the self-absorption process on the light pulse shape are discussed. The data on rise times, fwhm's, decay times and light yield of several commercial scintillators used in timing are collected. The next part of the paper deals with the properties of photomultipliers. The sources of time uncertainties in photomultipliers as a spread of the initial velocity of photoelectrons, emission of photoelectrons under different angles and from different points at the photocathode, the time spread and the gain dispersion introduced by electron photomultiplier are reviewed. The experimental data on the time jitter, single electron response and photoelectron yield of some fast photomultipliers are collected. As the time resolution of the timing systems with scintillation counters depends also on time pick-off units, a short presentation of the timing methods is given. The discussion of timing theories is followed by a review of experimental studies of the time resolution of scintillation counters. The paper is ended by an analysis of prospects on further progress of the subnanosecond timing with scintillation counters. (Auth.)

  7. 49 CFR 192.197 - Control of the pressure of gas delivered from high-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Control of the pressure of gas delivered from high-pressure distribution systems. 192.197 Section 192.197 Transportation Other Regulations Relating to... STANDARDS Design of Pipeline Components § 192.197 Control of the pressure of gas delivered from high...

  8. Development of nuclear counting system for plateau high voltage scintillation detector test facilities

    International Nuclear Information System (INIS)

    Sarizah Mohamed Nor; Siti Hawa Md Zain; Muhd Izham Ahmad; Izuhan Ismail

    2010-01-01

    Nuclear counter system is a system monitoring and analysis of radioactivity used in scientific and technical research and development in the Malaysian Nuclear Agency. It consists of three basic parts, namely sensors, signal conditioning and monitoring. Nuclear counter system set up for use in the testing of nuclear detectors using radioactive sources such as 60 Co and 137 Cs and other radioactive sources. It can determine the types of scintillation detectors and the equivalent function properly, always operate in the range plateau high voltage and meet the specifications. Hence, it should be implemented on all systems in the Nuclear Nuclear counter Malaysia and documented as Standard Working Procedure (SWP) is a reference to the technicians, trainees IPTA / IPTS and related workers. (author)

  9. Data transfer from Beckman LS 5800 liquid scintillation counters to IBM personal computers.

    Science.gov (United States)

    Maan, A C

    1985-09-01

    This communication describes a short routine in BASICA for the IBM-PC, written to collect data from a Beckman liquid scintillation counter. In the form presented here the routine converts incoming bytes into separate lines and saves these lines in a file. There are many possible applications for further use of the data in these files. A few suggestions are given as to the format in which data can be stored and how to process these data automatically after all samples have been counted. The only hardware needed is an asynchronous communications adapter for the IBM-PC and an RS232 cable.

  10. Discovery of high energy electrons in the radiation belt by devices with gas Cherenkov counters

    International Nuclear Information System (INIS)

    Kirillov-Ugryumov, V.G.; Galper, A.M.; Dmitrenko, V.V.

    1986-01-01

    A detailed study of the trapped electrons was undertaken with Bulgary-1300 satellite, the orbit altitude and the inclination being proportional900 km and 81 0 , respectively. The instrument axis in this case was perpendicular to the orbit plane. A scintillation-Cherenkov telescope, Electron, with parameters similar to that of Elena was used. (orig./HSI)

  11. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    International Nuclear Information System (INIS)

    Prasad, D N; Ayyappan, R; Kamble, L P; Singh, J P; Muralikrishna, L V; Alex, M; Balagi, V; Mukhopadhyay, P K

    2008-01-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm 2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ∼1 x 10 -5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mmx160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face and diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6x10 -9 m bar ltr/sec in vacuum mode and 2x10 -7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5x10 -5 mbar, the new valve achieved vacuum 7.4x10 -6 mbar in the same time under the same conditions

  12. A gaseous scintillation counter filled with He{sup 3} for neutron spectrometry; Compteur a scintillateur gazeux rempli de {sup 3}He pour la spectrometrie des flux de neutrons; Gazovyj stsintillyatsionnyj schetchik napolnennyj He{sup 3} dlya spektrometrii potokov nejtronov; Contador de centelleador gaseoso cargado con helio-3 para la espectrometria neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Baldin, S A; Matveev, V V

    1962-04-15

    The paper describes a gas plant and gaseous scintillation counter, and gives the results of experiments on the recording and spectrometry of neutron beams using a gaseous scintillation counter filled with a mixture of 10% xenene and 90% helium-3 at an overall pressure of 20 ata. Data are given on the design of the gas plant, which makes it possible to operate the counter continuously over long periods of time, as well as providing the required gas mixtures at overall pressures of up to 60 atm and ensuring constant freedom of the gas from contamination. In addition, the paper presents the results of research on the counter's energy resolution and linearity at different energy levels and indicates its efficiency in gamma fields of intensity up to 3 r/h; the possibility of extending the working energy-range of gaseous scintillation counters filled with helium-3 is also considered. (author) [French] FLes auteurs decrivent un compteur a scintillateur gazeux ainsi que les resultats des experiences d'enregistrement et de spectrometrie des flux de neutrons qui ont ete faites au moyen d'un compteur a scintillateur gazeux rempli d'un melange de 10% de xenon et de 90% d'helium-3 sous une pression de 20 atmospheres. Ils exposent les donnees relatives a la construction d'un appareillage qui assure le fonctionnement ininterrompu du compteur durant un laps de temps prolonge, l'obtention des melanges de gaz indispensables sous une pression totale de 60 atmospheres et l'epuration continue du gaz. En outre, ils examinent les resultats de l'etude du pouvoir de resolution en energie et de la linearite du compteur en fonction de l'energie, le fonctionnement du compteur dans les champs de rayonnement gamma d'une intensite allant jusqu'a 3 r/h, ainsi que la possibilite d'elargir la gamme d'energie dans laquelle on peut employer des compteurs a scintillateurs gazeux de {sup 3}He. (author) [Spanish] En esta memoria se describe un aparato de suministro de gas y un contador de centelleador

  13. Response matrix of a multisphere neutron spectrometer with an 3 He proportional counter

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Mercado S, G.A.

    2005-01-01

    The response matrix of a Bonner sphere spectrometer was calculated by use of the MCNP code. As thermal neutron counter, the spectrometer has a 3.2 cm-diameter 3 He-filled proportional counter which is located at the center of a set of polyethylene spheres. The response was calculated for 0, 3, 5, 6, 8, 10, 12, and 16 inches-diameter polyethylene spheres for neutrons whose energy goes from 10 -9 to 20 MeV. The response matrix was compared with a set of responses measured with several monoenergetic neutron sources. In this comparison the calculated matrix agrees with the experimental results. The matrix was also compared with the response matrix calculated for the PTB C spectrometer. Even though that calculation was carried out using a detailed model to describe the proportional counter; both matrices do agree, but small differences are observed in the bare case because of the difference in the model used during calculations. Other differences are in some spheres for 14.8 and 20 MeV neutrons, probably due to the differences in the cross sections used during both calculations. (Author) 28 refs., 1 tab., 6 figs

  14. The design and performance of a large-volume spherical CsI(Tl) scintillation counter for gamma-ray spectroscopy

    CERN Document Server

    Meng, L J; Chirkin, V M; Potapov, V N; Ivanov, O P; Ignatov, S M

    2002-01-01

    This paper presents details of the design and performance of a prototype large-volume scintillation detector used for gamma-ray spectroscopy. In this detector, a spherical CsI(Tl) scintillation crystal having a diameter of 5.7 cm was polished and packed in dry MgO powder. The scintillation light from the crystal was viewed using a single 1x1 cm sup 2 silicon PIN diode. A low-noise preamplifier was also integrated within the detector housing. The measured noise level was equivalent to approx 800 electrons (FWHM). Such a configuration provided a very good light collection efficiency, which resulted in an average of 20 electrons being generated per keV of energy deposited in the crystal. One of the key features of the detector design is that it minimises spatial variations in the light collection efficiency throughout the detector. Compared with a standard 3 in. NaI scintillation counter, this feature leads to a much-improved energy resolution, particularly for photon energies above 1 MeV. The results presented ...

  15. The miniaturized proportional counter HD-2(Fe)/(Si) for the GALLEX solar neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wink, R.; Anselmann, P.; Doerflinger, D.; Hampel, W.; Heusser, G.; Kirsten, T.; Moegel, P.; Pernicka, E.; Plaga, R.; Schlosser, C. (Max Planck Inst. fuer Kernphysik, Heidelberg (Germany))

    1993-06-01

    The miniaturized proportional counters used for the detection of [sup 71]Ge in the solar neutrino project GALLEX are characterized. We also report on the construction techniques applied to build these counters and to achieve the described performance. A very low counting background is achieved by, among other things, careful selection of the materials used for construction. The total [sup 71]Ge detection efficiency after applying cuts to reduce the background is about 66%. (orig.).

  16. Removal of impurities from environmental water samples for tritium measurement by means of liquid scintillation counter

    International Nuclear Information System (INIS)

    Sakuma, Yoichi; Noda, Mitsuyasu

    2000-01-01

    Tritium concentration in environmental water samples is usually measured by means of liquid scintillation counting. Before the counting distillation operation is necessarily required to remove impurities, which have possibility of bad influence on the measurement, from the samples. But the operation usually takes long time and it is also troublesome. If you could simplify the purification process, you would be much easily able to measure it. Then, we have studied the probability of replacement the process by filtration aiming to simplify the procedure. We prepared several environmental water samples and also several water samples added quenching materials. These samples were purified by means of the distillation and the filtration and the impurities in them were examined. The purified samples were mixed with scintillation cocktail and the tritium concentration was measured. We added small amount of tritium in the same samples and investigated their scintillation spectra and their ESCR values in order to compare the two purification methods. Two kinds of filters were used for the filtration: 0.45 μm and 0.1 μm pore sized membrane filters. The liquid scintillation counter was LB-3 produced by Aloka Co. and Ltd. The scintillation cocktail was Ultima Gold LLT made by Packard Instrument Co and Ltd. The vial was Polyvial 145 LSD made by Zinsser Analytic Co. and Ltd. As the result, there was no significant difference between the two purification methods then the filtration method is feasible instead of the distillation. (author)

  17. High luminosity operation of large solid angle scintillator arrays in Jefferson Lab Hall A

    International Nuclear Information System (INIS)

    Ran Shneor

    2003-01-01

    This thesis describes selected aspects of high luminosity operation of large solid angle scintillator arrays in Hall A of the CEBAF (Central Electron Beam Accelerator Facility) at TJNAF (Thomas Jefferson National Accelerator Facility ). CEBAF is a high current, high duty factor electron accelerator with a maximum beam energy of about 6 GeV and a maximum current of 200 (micro)A. Operating large solid angle scintillator arrays in high luminosity environment presents several problems such as high singles rates, low signal to noise ratios and shielding requirements. To demonstrate the need for large solid angle and momentum acceptance detectors as a third arm in Hall A, we will give a brief overview of the physics motivating five approved experiments, which utilize scintillator arrays. We will then focus on the design and assembly of these scintillator arrays, with special focus on the two new detector packages built for the Short Range Correlation experiment E01-015. This thesis also contains the description and results of different tests and calibrations which where conducted for these arrays. We also present the description of a number of tests which were done in order to estimate the singles rates, data reconstruction, filtering techniques and shielding required for these counters

  18. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    International Nuclear Information System (INIS)

    Tarifeño-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo; Mayer, Roberto E

    2015-01-01

    This work introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from detection of the burst of neutrons. An improvement of more than one order of magnitude in the accuracy of a paraffin wax moderated 3 He-filled tube is obtained by using this methodology with respect to previous calibration methods. (paper)

  19. A system for incubations at high gas partial pressure

    Directory of Open Access Journals (Sweden)

    Patrick eSauer

    2012-02-01

    Full Text Available High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed one MPa at in-situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in-situ conditions, but the partial pressure of dissolved gasses has to be controlled as well.We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120° C and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. The system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g. fluid-gas-rock-interactions in relation to carbon dioxide sequestration.As an application of the system we extracted organic acids from sub-bituminous coal using H2O as well as a H2O-CO2 mixture at elevated temperature (90°C and pressure (5 MPa. Subsamples were taken during the incubation and analysed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulphate reduction rate upon the addition of

  20. 2003: A centennial of spinthariscope and scintillation counting

    International Nuclear Information System (INIS)

    Kolar, Z.I.; Hollander, W. den

    2004-01-01

    In 1903 W. Crookes demonstrated in England his 'spinthariscope' for the visual observation of individual scintillations caused by alpha particles impinging upon a ZnS screen. In contrast to the analogue methods of radiation measurements in that time the spinthariscope was a single-particle counter, being the precursor of scintillation counters since. In the same period F. Giesel, J. Elster and H. Geitel in Germany also found that scintillations from ZnS represent single particle events. This paper summarises the historical events relevant to the advent of scintillation counting

  1. Quality measurement by proportional counter with B

    International Nuclear Information System (INIS)

    Onizuka, Yoshihiko; Endo, Satoru; Tanaka, Kenichi

    2005-01-01

    The dosimetry of air and the tissue-equivalent phantom made of acryl are carried out by the tissue-equivalent proportional counter (TEPC) and TEPC with wall contained B, and both results were compared. The changes of quality with distance from the beam center are determined by the frequency mean renewal energy y F (y)and the dose mean renewal energy y D (y) as indicators of quality. Both y F (y)and y D (y) of tissue-equivalent phantom are larger than air, but very large change was not observed in all distance. The dose rate is determined by y D (y), the number of events and measurement time. Change of dose rate was larger than the change of quality. The maximum value of dose rate depended on γray and neutron beam showed at the point 2 cm away from the center. (S.Y.)

  2. proportional counting chamber for large-area-coated β sources

    Indian Academy of Sciences (India)

    The system consists of a multiwire-based proportional counter with gas ... volume of the detector to avoid any loss of detection efficiency due to absorption in the entrance ... Figure 1. (a) Energy levels of 90Sr decay scheme and (b) energy distribution of β- ... High voltage is applied to the anode grid and high electric field is.

  3. Time-of-flight resolution of scintillating counters with Burle 85001 microchannel plate photomultipliers in comparison with Hamamatsu R2083

    Energy Technology Data Exchange (ETDEWEB)

    Baturin, V. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Burkert, V. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Kim, W. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)]. E-mail: wooyoung@jlab.org; Majewsky, S. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Park, K. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Popov, V. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Smith, E.S. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Son, D. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Stepanyan, S.S. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Zorn, C. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2006-06-15

    Improvements in the time resolution of the CEBAF Large Acceptance Spectrometer (CLAS) below {approx}50ps will be required for experiments using the planned upgraded accelerator facility at Jefferson Lab. The improved time resolution will allow particle identification using time-of-flight techniques to be used effectively up to the proposed operating energy of 12GeV. The challenge of achieving this time resolution over a relatively large area is compounded because the photomultipliers (PM) in the CLAS 'time-zero' scintillating counters must operate in very high magnetic fields. Therefore, we have studied the resolution of 'time-zero' prototypes with microchannel plate PMs 85001-501 from Burle. For reference and comparison, measurements were also made using the standard PMs R2083 from Hamamatsu using two timing methods. The cosmic ray method, which utilizes three identical scintillating counters (Bicron BC-408, 2x3x50cm{sup 3}) with PMs at the ends, yields {sigma}{sub R2083}=59.1+/-0.7ps. The location method of particles from a radiative source with known coordinates has been used to compare timing resolutions of R2083 and 85001-501. This method yields {sigma}{sub R2083}=59.5+/-0.7ps and it also provides an estimate of the number of primary photoelectrons. For the microchannel plate PM from Burle the method yields {sigma}{sub 85001}=130+/-4ps due to lower number of primary photoelectrons.

  4. Influence of dissolved gas and temperature on the light yield of new liquid scintillators

    CERN Document Server

    Buontempo, S; Golovkin, S V; Martellotti, G; Medvedkov, A M; Penso, G; Soloviev, A S; Vasilchenko, V G

    1999-01-01

    Sixteen new liquid scintillators, emitting green light, were studied. They are based on four solvents combined with four dopants. The influence of different gas atmospheres was studied. In particular it was shown that by keeping these liquid scintillators in vacuum or in a neutral gas, the light yield increases up to 32~\\% at 20 $^{\\circ}$C and for the best solvent-dopant combinations. The dependance of the light yield on temperature was also studied for these scintillators. In the 20--60 $^{\\circ}$C interval, some exhibit a light yield variation of $\\sim$ 3 \\% which is smaller than that of the NE 102A plastic scintillator.

  5. High-Precision Half-Life Measurements for the Superallowed Fermi β+ Emitters 14O and 18Ne

    Science.gov (United States)

    Laffoley, A. T.; Andreoiu, C.; Austin, R. A. E.; Ball, G. C.; Bender, P. C.; Bidaman, H.; Bildstein, V.; Blank, B.; Bouzomita, H.; Cross, D. S.; Deng, G.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Garrett, P.; Giovinazzo, J.; Grinyer, G. F.; Grinyer, J.; Hadinia, B.; Jamieson, D. S.; Jigmeddorj, B.; Ketelhut, S.; Kisliuk, D.; Leach, K. G.; Leslie, J. R.; MacLean, A.; Miller, D.; Mills, B.; Moukaddam, M.; Radich, A. J.; Rajabali, M. M.; Rand, E. T.; Svensson, C. E.; Tardiff, E.; Thomas, J. C.; Turko, J.; Voss, P.; Unsworth, C.

    High-precision half-life measurements, at the level of ±0.04%, for the superallowed Fermi emitters 14O and 18Ne have been performed at TRIUMF's Isotope Separator and Accelerator facility. Using 3 independent detector systems, a gas-proportional counter, a fast plastic scintillator, and a high-purity germanium array, a series of direct β and γ counting measurements were performed for each of the isotopes. In the case of 14O, these measurements were made to help resolve an existing discrepancy between detection methods, whereas for 18Ne the half-life precision has been improved in anticipation of forthcoming high-precision branching ratio measurements.

  6. X-ray diagnostic in gas discharge

    International Nuclear Information System (INIS)

    Chen Suhe; Wang Dalun; Cui Gaoxian; Wang Mei; Fu Yibei; Zhang Xinwei; Zhang Wushou

    1995-01-01

    X rays were observed when the anomalous phenomenon in the metal loaded with deuterium studied by the gas-discharge method. Therefore the X-ray energy spectra were measured by the absorption method, the specific X-ray approach and the NaI scintillation counter, while X-ray intensity was estimated by using 7 Li thermoluminescent foils. The X-ray average energy measured by the absorption method is 27.6 +- 2.1 keV, which is fitted within the error extent to 26.0 +-2.4 keV monoenergetic X rays measured by the NaI scintillation counter

  7. A Logarithmic Detection System Suitable for a 4π Array

    NARCIS (Netherlands)

    Westfall, G.D.; Yurkon, J.E.; Plicht, J. van der; Koenig, Z.M.; Jacak, B.V.; Fox, R.; Crawley, G.M.; Maier, M.R.; Hasselquist, B.E.; Tickle, R.S.; Horn, D.

    1985-01-01

    A low pressure multiwire proportional counter, a Bragg curve counter, and an array of CaF2/plastic scintillator telescopes have been developed in a geometry suitable for close packing into a 4π detector designed to study nucleus-nucleus reactions at 100-200 MeV/nucleon. The multiwire counter is

  8. Effects of interfering constituents on tritium smears

    International Nuclear Information System (INIS)

    Levi, G.D. Jr.; Cheeks, K.E.

    1993-01-01

    Tritium smears are performed by Health Protection Operations (HPO) to assess transferable contamination on work place surfaces, materials for movement outside Radiologically Controlled Areas (RCA), and product containers being shipped between facilities. Historically, gas proportional counters were used to detect transferable tritium contamination collected by smearing. Because tritium is a low-energy beta emitter, gas proportional counters do not provide the sensitivity or the counting efficiency to accurately measure the tritium activity on the smear. Liquid Scintillation Counters (LSC) provide greater counting efficiency for the low-energy beta particles along with greater reliability and reproducibility compared to gas flow proportional counters. The purpose of this technical evaluation was to determine the effects of interfering constituents such as filters, dirt and oil on the counting efficiency and tritium recoveries of tritium smears by LSC

  9. Recent improvements to RC-line encoded position-sensitive proportional counters

    International Nuclear Information System (INIS)

    Borkowski, C.J.; Kopp, M.K.

    1977-01-01

    Continuing research on the principles of position encoding with RC lines has advanced the design of position-sensitive proportional counters (PSPCs) to meet the requirements for high count rates (>10 5 counts/sec) and good spatial resolution (>10 4 spatial elements) in small-angle scattering experiments with x rays and neutrons. Low-noise preamplifiers were developed with pole-zero cancellation in the feedback circuit and modular linear amplifiers with passive RCL shaping which, compared to previous designs, reduce output saturation at high count rates approx.20 times and shorten the position signal processing time to 2 ) for low-energy ( 800 x 800 mm 2 ) for the measurement of small-angle scattering with neutrons. The method of electronic thickness discrimination was applied to change the effective thickness of an area PSPC from 12 to 2 cm whenever the molybdenum target of an x-ray generator was changed to a copper target. This thickness adjustment increased the signal-to-background ratio by a factor of approx.6 for the 8-keV photons from the copper target, while maintaining a >90% detection efficiency

  10. Measuring variation of indoor radon concentration using bare nuclear tracks detectors, scintillation counters and surface barrier detectors

    International Nuclear Information System (INIS)

    Ishak, I.; Mahat, R.H.; Amin, Y.M.

    1996-01-01

    Bare LRI 15 nuclear track detectors , scintillators counter and surface barrier detectors were used to measured the indoor radon concentration in various location within two rooms. Spatial variation of the radon concentration is caused by positioning of the door, windows, furniture, cracks in the building and also distances from floor, wall and ceiling. It is found that the change in temperature are causing radon concentration to increase at certain time of the day

  11. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  12. Gas-ion laser with gas pressure maintenance means

    International Nuclear Information System (INIS)

    Thatcher, J.B.

    1975-01-01

    A gas-ion laser is described including means to maintain the ionizable gas in the laser cavity at a rather constant pressure over an extended period of time to significantly increase the useful life of the gas-ion laser. The gas laser includes a gas makeup system having a high pressure source or storage container and a regulating valve. The valve has a permeable solid state orifice member through which the gas flows from the high pressure source to the laser cavity to replenish the gas in the laser cavity and maintain the gas pressure in the cavity rather constant. The permeable orifice member is selected from a solid state material having a permeability that is variable in relation to the magnitude of the energy applied to the orifice member. The gas-ion laser has a valve operating means such as a heater for varying the applied energy such as thermal energy to the member to regulate the gas flow. Additionally, the gas-ion laser has a valve control means that is responsive to the gas pressure in the laser cavity for controlling the valve control means to maintain the pressure at a desired level. (U.S.)

  13. Systematic studies of small scintillators for new sampling calorimeter

    International Nuclear Information System (INIS)

    Jacosalem, E.P.; Sanchez, A.L.C.; Bacala, A.M.; Iba, S.; Nakajima, N.; Ono, H.; Miyata, H.

    2007-01-01

    A new sampling calorimeter using very thin scintillators and the multi-pixel photon counter (MPPC) has been proposed to produce better position resolution for the international linear collider (ILC) experiment. As part of this R and D study, small plastic scintillators of different sizes, thickness and wrapping reflectors are systematically studied. The scintillation light due to beta rays from a collimated 90 Sr source are collected from the scintillator by wavelength-shifting (WLS) fiber and converted into electrical signals at the PMT. The wrapped scintillator that gives the best light yield is determined by comparing the measured pulse height of each 10 x 40 x 2 mm strip scintillator covered with 3M reflective mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of the 3M reflective mirror film and teflon wrapped scintillators are measured. Results show that the 3M radiant mirror film-wrapped scintillator has the greatest light yield with an average of 9.2 photoelectrons. It is observed that light yield slightly increases with scintillator length, but increases to about 100% when WLS fiber diameter is increased from 1.0 mm to 1.6 mm. The position dependence measurement along the strip scintillator showed the uniformity of light transmission from the sensor to the PMT. A dip across the strip is observed which is 40% of the maximum pulse height. The block type scintillator pulse height, on the other hand, is found to be almost proportional to scintillator thickness. (author)

  14. Improvement on the light yield of a high-Z inorganic scintillator GSO(Ce)

    CERN Document Server

    Kamae, T; Isobe, N; Kokubun, M; Kubota, A; Osone, S; Takahashi, T; Tsuchida, N; Ishibashi, H

    2002-01-01

    Cerium-doped gadolinium silicic dioxide crystal, GSO(Ce), is a high-Z non-hydroscopic scintillator that gives higher light yield than BGO, and can potentially replace NaI(Tl), CsI(Tl) and BGO in many applications. Its production cost, however, has been substantially higher than any of them, while its energy resolution has been worse than that of NaI(Tl) or CsI(Tl). The merit did not overcome these deficiencies except in limited applications. We developed a low background phoswich counter (the well-type phoswich counter) for the Hard X-ray Detector of the Astro-E project based on GSO scintillator. In the developmental work, we have succeeded in improving the light yield of GSO(Ce) by 40-50%. For energies above 500 keV, a large GSO(Ce) crystal (4.5 cmx4.5phi cm) now gives energy resolution comparable to or better than the best NaI(Tl) when read out with a phototube. With a small GSO(Ce) crystal (5x5x5 mm sup 3) and a photodiode, an energy resolution comparable to or better than the best CsI(Tl) has been obtaine...

  15. High- and low-pressure operation of the gas electron multiplier

    International Nuclear Information System (INIS)

    Bondar, A.; Buzulutskov, A.; Shekhtman, L.; Sauli, F.

    1998-01-01

    We have studied the operation of the gas electron multiplier (GEM) in gas mixtures Xe-CO 2 , Ar-CO 2 and CH 4 at different pressures varying from 0.1 to 5 atm. In Ar- and Xe-based mixtures, the maximum GEM gain considerably decreases with pressure, from a few hundreds at 1 atm to below 10 at 5 atm. Combined gain of GEM and the micro-strip gas chamber (MSGC) can exceed values of 10000 at 1 atm and 100 at 5 atm. High GEM gains, of above 1000, were obtained in CH 4 at low pressures. We have observed the effect of the avalanche confinement in GEM micro-holes, resulting in violation of the pressure scaling and in the possibility of GEM operation in pure noble gases. (author)

  16. Optimization of mass of plastic scintillator film for flow-cell based tritium monitoring: a Monte Carlo study

    International Nuclear Information System (INIS)

    Roy, Arup Singha; Palani Selvam, T.; Raman, Anand; Raja, V.; Chaudhury, Probal

    2014-01-01

    Over the years, various types of tritium-in-air monitors have been designed and developed based on different principles. Ionization chamber, proportional counter and scintillation detector systems are few among them. A plastic scintillator based, flow-cell type online tritium-in-air monitoring system was developed for online monitoring of tritium in air. The value of the scintillator mass inside the cell-volume, which maximizes the response of the detector system, should be obtained to get maximum efficiency. The present study is aimed to optimize the amount of mass of the plastic scintillator film for the flow-cell based tritium monitoring instrument so that maximum efficiency is achieved. The Monte Carlo based EGSnrc code system has been used for this purpose

  17. The accurate measurement of the disintegration rate of 55Fe using an internal liquid scintillation counter

    International Nuclear Information System (INIS)

    Botha, S.M.

    1979-01-01

    As the well-known 4πX-γ-coincidence method cannot be used directly to find the disintegration rate of 55 Fe, another method was developed in which a tracer nuclide, possessing coincident gamma radiation, was used. It was now possible to determine the disintegration rate indirectly by the coincidence method using an internal liquid scintillation counter. 54 Mn and 51 Cr which lie in the immediate vicinity of iron in the series of nuclides, are suitable tracers. They are also electron capture nuclides, but decaying to an excited state, were counted by the 4πX-γ-coincidence method. A mixed source, containing 55 Fe and the tracer, was also counted by the coincidence method so that the 4π-counting rate of 55 Fe was obtained as function of the tracer's counting efficiency. It was also essential to find a relationship between the counting efficiencies of the liquid scintillation counter for 55 Fe and the tracer. This relationship is called the effeciency function. Efficiency functions were calculated for 55 Fe and 54 Mn as well as for 55 Fe and 51 Cr. Finally the radioactive concentration of a solution of 55 Fe had been carefully determined by using 54 Mn and 51 Cr tracers. The results for the two different tracers agreed within the statistical uncertainty of 0,4%. The systematic uncertainty on the final results was estimated as 0,17%

  18. Extremely-high vacuum pressure measurement by laser ionization

    International Nuclear Information System (INIS)

    Kokubun, Kiyohide

    1991-01-01

    Laser ionization method has the very high sensitivity for detecting atoms and molecules. Hurst et al. successfully detected a single Cs atom by means of resonance ionization spectroscopy developed by them. Noting this high sensitivity, the authors have attempted to apply the laser ionization method to measure gas pressure, particularly in the range down to extremely high vacuum. At present, hot cathode ionization gauges are used for measuring gas pressure down to ultrahigh vacuum, however, those have a number of disadvantages. The pressure measurement using lasers does not have such disadvantages. The pressure measurement utilizing the laser ionization method is based on the principle that when laser beam is focused through a lens, the amount of atom or molecule ions generated in the focused space region is proportional to gas pressure. In this paper, the experimental results are presented on the nonresonant multiphoton ionization characteristics of various kinds of gases, the ion detection system with high sensitivity and an extremely high vacuum system prepared for the laser ionization experiment. (K.I.)

  19. Digital pulse-shape discrimination applied to an ultra-low-background gas-proportional counting system. First results

    International Nuclear Information System (INIS)

    Aalseth, C.E.; Day, A.R.; Fuller, E.S.; Hoppe, E.W.; Keillor, M.E.; Mace, E.K.; Myers, A.W.; Overman, C.T.; Panisko, M.E.; Seifert, A.

    2013-01-01

    A new ultra-low-background proportional counter design was recently developed at Pacific Northwest National Laboratory (PNNL). This design, along with an ultra-low-background counting system which provides passive and active shielding with radon exclusion, has been developed to complement a new shallow underground laboratory (∼30 m water-equivalent) constructed at PNNL. After these steps to mitigate dominant backgrounds (cosmic rays, external gamma-rays, radioactivity in materials), remaining background events do not exclusively arise from ionization of the proportional counter gas. Digital pulse-shape discrimination (PSD) is thus employed to further improve measurement sensitivity. In this work, a template shape is generated for each individual sample measurement of interest, a 'self-calibrating' template. Differences in event topology can also cause differences in pulse shape. In this work, the temporal region analyzed for each event is refined to maximize background discrimination while avoiding unwanted sensitivity to event topology. This digital PSD method is applied to sample and background data, and initial measurement results from a biofuel methane sample are presented in the context of low-background measurements currently being developed. (author)

  20. Assessing fugitive emissions of CH4 from high-pressure gas pipelines

    Science.gov (United States)

    Worrall, Fred; Boothroyd, Ian; Davies, Richard

    2017-04-01

    The impact of unconventional natural gas production using hydraulic fracturing methods from shale gas basins has been assessed using life-cycle emissions inventories, covering areas such as pre-production, production and transmission processes. The transmission of natural gas from well pad to processing plants and its transport to domestic sites is an important source of fugitive CH4, yet emissions factors and fluxes from transmission processes are often based upon ver out of date measurements. It is important to determine accurate measurements of natural gas losses when compressed and transported between production and processing facilities so as to accurately determine life-cycle CH4 emissions. This study considers CH4 emissions from the UK National Transmission System (NTS) of high pressure natural gas pipelines. Mobile surveys of CH4 emissions using a Picarro Surveyor cavity-ring-down spectrometer were conducted across four areas in the UK, with routes bisecting high pressure pipelines and separate control routes away from the pipelines. A manual survey of soil gas measurements was also conducted along one of the high pressure pipelines using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from these joints. When scaled up to the UK's National Transmission System pipeline length of 7600 km gives a fugitive CH4 flux of 4700 ± 2864 kt CH4/yr - this fugitive emission from high pressure pipelines is 0.016% of the annual gas supply.

  1. Development of a parallel plate proportional counter TRD with suppressed sensitivity to ionization

    International Nuclear Information System (INIS)

    Solomey, N.; Krolak, P.; Graham, G.

    1995-01-01

    The development of a Parallel Plate Proportional Counter which has a highly suppressed sensitivity to ionization but retains a good X-ray signal to noise ratio is presented. Details of the laboratory development and actual beam tests showing the e/π rejection are described. Because of its insensitivity to ionization this type of detector can be useful in an environment where the number of minimum ionizing particles are high, but uninteresting; however, the detector is very sensitive to the highly localized electron cloud from converted X-rays making it ideal as a transition radiation X-ray detector. Thus, this detector only gives a signal for charged particles above TR threshold; all other particles below this threshold produce no TR X-rays giving only a pedestal-like signal. The system's potential performance for π/p separation in the intended neutral Hyperon experiment is evaluated

  2. Liquid mixtures for scintillation counters

    International Nuclear Information System (INIS)

    Kauffmann, J.M.

    1975-01-01

    Liquid scintillators contain emulsifiers or combinations of these which can be used over a wide temperature range for a multitude of aqueous samples. These emulsifiers are block-polymerides with a nonhygroscopic center part of the chain of oxypropylene combinations recieved by addition of propylene oxide to both hydroxyl groups of a propylene-glycol nucleus and both ends of the center part of the chain terminating in hygroscopic poly(oxyethylene) groups. The length of the nonhygroscopic center part of the chain varies from about 800 to 3,000 or 4,000 in molecular weight. The hygroscopic poly(oxyethylene) end groups have a controlled length constituting about 10 to 80wt.% of the finished molecule. The most useful members of this group of co-polymerides possess a length of their poly(oxypropylene) chains corresponding to a value of y of about 15 to 56 and a length of their poly(oxyethylene)chains corresponding to values of x and z between 1 and 35 . All known fluorines can be used. With the scintillators the radioimmunoassay can also be carried through. (DG/PB) [de

  3. Determination of total alpha and beta activity in water for human consumption by LSC(Liquid Scintillation Counter); Determinacao de atividades alfa e beta total em agua para consumo humano por LSC (Contador de Cintilacao Liquida))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The Ordinance Brazilian of Ministry of Health (MS 2914/2011) establishes the standards for quality of water intended for human consumption, being limits values of 5.0 Bq/L for gross alpha, and 1.0 Bq/L for gross beta radioactivity. The liquid scintillation spectrometry (LSC) technique has been presented as an alternative to conventional procedure using gas flow proportional counter. The present work shows a review of the methods for determination of gross alpha and gross beta in water by using LSC. Between the factors that influence the accuracy and repeatability of the analytical results we can highlight: thermal preconcentration, type of the acid and calibration standard. A procedure was established and carried out to samples of the National Program of Intercomparison of Radionuclides in Environmental Samples for evaluation of its performance. The gross alpha and gross beta analysis in samples of the public water supplies in the Metropolitan Region of Goiania, state of Goias was carried out. The results are consistent with the guideline values form the Ministry of Health concerning radioactivity. (author)

  4. A liquid scintillation counter specifically designed for samples deposited on a flat matrix

    International Nuclear Information System (INIS)

    Potter, C.G.; Warner, G.T.

    1986-01-01

    A prototype liquid scintillation counter has been designed to count samples deposited as a 6x16 array on a flat matrix. Applications include the counting of labelled cells processed by a cell harvester from 96-well microtitration plates onto glass fibre filters and of DNA samples directly deposited onto nitrocellulose or nylon transfer membranes (e.g. 'Genescreen' NEN) for genetic studies by dot-blot hybridisation. The whole filter is placed in a bag with 4-12 ml of scintillant, sufficient to count all 96 samples. Nearest-neighbour intersample cross talk ranged from 0.004% for 3 H to 0.015% for 32 P. Background was 1.4 counts/min for glass fibre and 0.7 counts/min for 'Genescreen' in the 3 H channel: for 14 C the respective figures were 5.3 and 4.3 counts/min. Counting efficiency for 3 H-labelled cells on glass fibre was 54%(E 2 /B=2053) and 26% for tritiated thymidine spotted on 'Genescreen'(E 2 /B=980). Similar 14 C samples gave figures on 97%(E 2 /B=1775) and 81(E 2 B=1526) respectively. Electron emission counting from samples containing 125 I and 51 Cr was also possible. (U.K.)

  5. Development of Proportional Pressure Control Valve for Hydraulic Braking Actuator of Automobile ABS

    Directory of Open Access Journals (Sweden)

    Che-Pin Chen

    2018-04-01

    Full Text Available This research developed a novel proportional pressure control valve for an automobile hydraulic braking actuator. It also analyzed and simulated solenoid force of the control valves, and the pressure relief capability test of electromagnetic thrust with the proportional valve body. Considering the high controllability and ease of production, the driver of this proportional valve was designed with a small volume and powerful solenoid force to control braking pressure and flow. Since the proportional valve can have closed-loop control, the proportional valve can replace a conventional solenoid valve in current brake actuators. With the proportional valve controlling braking and pressure relief mode, it can narrow the space of hydraulic braking actuator, and precisely control braking force to achieve safety objectives. Finally, the proposed novel proportional pressure control valve of an automobile hydraulic braking actuator was implemented and verified experimentally.

  6. Advanced Multilayer Composite Heavy-Oxide Scintillator Detectors for High Efficiency Fast Neutron Detection

    Science.gov (United States)

    Ryzhikov, Vladimir D.; Naydenov, Sergei V.; Pochet, Thierry; Onyshchenko, Gennadiy M.; Piven, Leonid A.; Smith, Craig F.

    2018-01-01

    We have developed and evaluated a new approach to fast neutron and neutron-gamma detection based on large-area multilayer composite heterogeneous detection media consisting of dispersed granules of small-crystalline scintillators contained in a transparent organic (plastic) matrix. Layers of the composite material are alternated with layers of transparent plastic scintillator material serving as light guides. The resulting detection medium - designated as ZEBRA - serves as both an active neutron converter and a detection scintillator which is designed to detect both neutrons and gamma-quanta. The composite layers of the ZEBRA detector consist of small heavy-oxide scintillators in the form of granules of crystalline BGO, GSO, ZWO, PWO and other materials. We have produced and tested the ZEBRA detector of sizes 100x100x41 mm and greater, and determined that they have very high efficiency of fast neutron detection (up to 49% or greater), comparable to that which can be achieved by large sized heavy-oxide single crystals of about Ø40x80 cm3 volume. We have also studied the sensitivity variation to fast neutron detection by using different types of multilayer ZEBRA detectors of 100 cm2 surface area and 41 mm thickness (with a detector weight of about 1 kg) and found it to be comparable to the sensitivity of a 3He-detector representing a total cross-section of about 2000 cm2 (with a weight of detector, including its plastic moderator, of about 120 kg). The measured count rate in response to a fast neutron source of 252Cf at 2 m for the ZEBRA-GSO detector of size 100x100x41 mm3 was 2.84 cps/ng, and this count rate can be doubled by increasing the detector height (and area) up to 200x100 mm2. In summary, the ZEBRA detectors represent a new type of high efficiency and low cost solid-state neutron detector that can be used for stationary neutron/gamma portals. They may represent an interesting alternative to expensive, bulky gas counters based on 3He or 10B neutron

  7. Numerical modelling of tissue-equivalent proportional counters

    International Nuclear Information System (INIS)

    Segur, P.; Colautti, P.

    1995-01-01

    In this paper a survey is given of the various numerical techniques employed to study the transport of ionising particles inside a TEPC. The first part is devoted to the description of the general concept of particle transport calculations. Thereafter, the different methods available to study transport phenomena and energy deposition in the sensitive volume and in counter walls are described. Finally, the basic ionisation mechanisms which may occur in a counter are described, and the non-equilibrium phenomena which play an important role mainly for counters that are to be used in measurements at the nanodosemeter level are studied. (author)

  8. Ultra Low Level Tritium Analysis Method Using a Liquid Scintillation Counter

    Energy Technology Data Exchange (ETDEWEB)

    Noh, S. J.; Kim, H. J.; Kim, H.; Lim, H. J.; Lee, M. W.; Jeong, D. H.; Kim, J. K.; Kang, Y. R. [Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Nam, S. H. [Inje University, Gimhae, (Korea, Republic of)

    2015-05-15

    To evaluate {sup 3}H concentration in the atmosphere more accurately compared to the conventional methods, the author of this paper intended to suggest more improved analytical methods and derived the elements which might occur during analysis or required improvements. The method suggested in this study is able to reduce the uncertainty and errors which may be existent in evaluating the {sup 3}H concentration of environmental sample s and thus will serve as the best solution in the technical and economic point of view. Liquid Scintillation Counter is the most widely used to analyze ultra-low level {sup 3}H by using CPM / DPM Counting Mode using external radiation source and Spectrum Plot Mode using internal radiation source. In CPM / DPM Counting Mode, multiple samples can be measured by single calibration despite its rather higher background whereas Spectrum Plot Mode requires more time and cost to analyze multiple samples despite its reliability to reduce the contribution of other radionuclides.

  9. Influence of the counter-pressure casting on the macrostructure of high nitrogen steel industrial blocks

    International Nuclear Information System (INIS)

    Andreev, N.; Rashev, Ts.

    1999-01-01

    The problem of high nitrogen steel (HNS) sheets production has not yet been solved. Sheets represent 90% of the world output of stainless and other steels, but there are no published data about HNS technologies and production of sheets on an industrial scale. The big steel bath (BSB) method and the counter-pressure casting (CPC) have proved the possibility of producing highly homogeneous ingots (1.3 and 10 tons) with all alloying elements, including nitrogen. In this way, the BSB and CPC methods have proved themselves to be universal ones for the production of shaped castings, HNS electrodes for remelting and sort, as well as, of sheets. (orig.)

  10. An introduction to automatic radioactive sample counters

    International Nuclear Information System (INIS)

    1980-01-01

    The subject is covered in chapters, entitled; the detection of radiation in sample counters; nucleonic equipment; liquid scintillation counting; basic features of automatic sample counters; statistics of counting; data analysis; purchase, installation, calibration and maintenance of automatic sample counters. (U.K.)

  11. Development of a gamma camera based on a multiwire proportional counter

    International Nuclear Information System (INIS)

    Anisimov, Yu.S.; Zanevskij, Yu.V.; Ivanov, A.B.

    1981-01-01

    The developed high-pressure gamma-chamber based on a gas multiwire detector is discussed. The main characteristics of the detector for a gamma-ray energy of up to 100 keV are given. The chamber operation is possible at a pressure of up to 10 atm. The detector is filled with a Xe-CH 4 (90-10) mixture. The detector efficiency is about 50%, the space resolution is better than 2 mm at a working region of 280x280 mm [ru

  12. The Proportional Counter. Some Aspects of Operation; Le compteur proportionnel. Ses caracteristiques de fonctionnement; Proportsional'nyj schetchik. Nekotorye aspekty raboty; El contador proportional. Sus caracteristicas de funcionamiento

    Energy Technology Data Exchange (ETDEWEB)

    Curran, S C [Awre, Aldermaston (United Kingdom)

    1960-06-15

    1. Work on a counter system designed for electron capture studies has shown that the diameter of the anode wire in a high-pressure proportional counter can have an important influence on the energy resolution obtained in measurements of low-energy radiations. In a counter working at a pressure of 12 atmospheres the width of the pulse distribution due to 13.5 keV K-capture radiations could be changed from 65% to 17% by changing the wire diameter from 0.0076 mm to 0.0025 mm. This phenomenon is interpreted as an effect of positive ion space charge in the avalanche. For a given gas gain and primary radiation the density of positive ions in the avalanche increases rapidly with pressure of the filling gas, and when the accompanying electric fields are large enough to affect the last stages of the multiplication process the energy resolution of the counter deteriorates. Decrease in diameter of the anode wire increases the externally applied field in the region where multiplication takes place, thus tending to counteract the effect of space charge. Use of 0.0025 mm anode wires has proved satisfactory in new measurements of L/K capture ratios made with a multiwire counter system working at pressures up to 12 atmospheres. The results obtained for L/K capture ratios of Ge{sup 71} and Kr{sup 79} are 0.115 and 0.112 respectively. The same counting system has also been used in a search for M capture in these two isotopes. The low energy of the M capture radiation, 180 eV in Ge{sup 71} and 260 eV in Kr{sup 79}, and its low intensity relative to that of K capture, makes accurate measurement difficult; but peaks attributable to M capture were observed in pulse spectra of both sources. 2. Low-Background Counting - Recent observations made on a combination of proportional counter and scintillation counters (operating as shields) show that there are some real difficulties in devising a relatively simple system of this kind. The performance is inherently very satisfactory but practical

  13. Development of precise measurement method of neutron energy for plasma temperature diagnostics in thermonuclear fusion

    International Nuclear Information System (INIS)

    Mori, Chizuo; Gotoh, Junichi; Uritani, Akira; Miyahara, Hiroshi; Ikeda, Yuichiro; Kasugai, Yoshimi; Kaneko, Junichi

    1998-01-01

    There are many types of fast neutron spectrometers for plasma temperature diagnostics, 28 Si(n,α) 25 Mg reaction giving the energy resolution of 2.2% for 14 MeV neutrons, the 12 C(n,α) 9 Be reaction giving the resolution of 2.15%. These detectors, however suffer from radiation damage, which demands to exchange the detector to a new one in every a few month depending on the usage. Recoil proton method has also been developed by using liquid scintillator or plastic scintillator, as a neutron-to-proton converter in front of a Si-detector, which is called counter telescope type, giving a resolution of 4.0%. This type of spectrometer can reduce radiation damage by placing Si-detector at outside Neutron beam. The scintillator can measure the lost energy of protons in the converter (i.e. the scintillator) and the measured energy loss can be used for improving the energy resolution. However, the energy resolution of organic scintillator itself is generally not so good. We proposed to use a proportional counter with CH 4 as counting gas and also as a neutron-proton converter, which has far better energy resolution than plastic scintillators, although the time resolution of counting in proportional counters is generally inferior to that in organic scintillation counters. The characteristics of the new spectrometer were experimentally studied and also were simulated with analytical calculation. (author)

  14. High-pressure measuring cell for Raman spectroscopic studies of natural gas

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2001-01-01

    A system for obtaining Raman spectra of gases at high pressure has been constructed. In order to ensure that a natural gas sample is totally representative, a high-pressure gas-measuring cell has been developed, built up by stainless steel fittings and a sapphire tube. The design and construction...... of this cell are described. A perfect pressure seal has been demonstrated up to 15.0 MPaA (MPa absolute). The cell has been successfully used to obtain Raman spectra of natural gas samples. Some of these spectra are presented and assigned. The most remarkable observation in the spectra is that it is possible...... to detect hydrogen sulfide at concentrations of 1-3 mg H2S/Nm(3). An attempt to make a quantitative analysis of natural gas by the so-called "ratio method" is presented. In addition to this, the relative normalized differential Raman scattering cross sections for ethane and i-butane molecules at 8.0 MPa...

  15. High pressure gas spheres for neutron and photon experiments

    Science.gov (United States)

    Rupp, G.; Petrich, D.; Käppeler, F.; Kaltenbaek, J.; Leugers, B.; Reifarth, R.

    2009-09-01

    High pressure gas spheres have been designed and successfully used in several nuclear physics experiments on noble gases. The pros and cons of this solution are the simple design and the high reliability versus the fact that the density is limited to 40-60% of liquid or solid gas samples. Originally produced for neutron capture studies at keV energies, the comparably small mass of the gas spheres were an important advantage, which turned out to be of relevance for other applications as well. The construction, performance, and operation of the spheres are described and examples for their use are presented.

  16. Multi element high resolution scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.

    1980-01-01

    A gamma camera scintillator structure, suitable for detecting high energy gamma photons which, in a single scintillator camera, would require a comparatively thick scintillator crystal, so resulting in unacceptable dispersion of light photons, comprises a collimator array of a high Z material with elongated, parallel wall channels with the scintillator material being disposed in one end of the channels so as to form an integrated collimator/scintillator structure. The collimator channel walls are preferably coated with light reflective material and further light reflective surfaces being translucent to gamma photons, may be provided in each channel. The scintillators may be single crystals or preferably comprise a phosphor dispersed in a thermosetting translucent matrix as disclosed in GB2012800A. The light detectors of the assembled camera may be photomultiplier tubes charge coupled devices or charge injection devices. (author)

  17. A piezoelectric micro control valve with integrated capacitive sensing for ambulant blood pressure waveform monitoring

    Science.gov (United States)

    Groen, Maarten S.; Wu, Kai; Brookhuis, Robert A.; van Houwelingen, Marc J.; Brouwer, Dannis M.; Lötters, Joost C.; Wiegerink, Remco J.

    2014-12-01

    We have designed and characterized a MEMS microvalve with built-in capacitive displacement sensing and fitted it with a miniature piezoelectric actuator to achieve active valve control. The integrated displacement sensor enables high bandwidth proportional control of the gas flow through the valve. This is an essential requirement for non-invasive blood pressure waveform monitoring based on following the arterial pressure with a counter pressure. Using the capacitive sensor, we demonstrate negligible hysteresis in the valve control characteristics. Fabrication of the valve requires only two mask steps for deep reactive ion etching (DRIE) and one release etch.

  18. A piezoelectric micro control valve with integrated capacitive sensing for ambulant blood pressure waveform monitoring

    International Nuclear Information System (INIS)

    Groen, Maarten S; Wu, Kai; Brookhuis, Robert A; Lötters, Joost C; Wiegerink, Remco J; Van Houwelingen, Marc J; Brouwer, Dannis M

    2014-01-01

    We have designed and characterized a MEMS microvalve with built-in capacitive displacement sensing and fitted it with a miniature piezoelectric actuator to achieve active valve control. The integrated displacement sensor enables high bandwidth proportional control of the gas flow through the valve. This is an essential requirement for non-invasive blood pressure waveform monitoring based on following the arterial pressure with a counter pressure. Using the capacitive sensor, we demonstrate negligible hysteresis in the valve control characteristics. Fabrication of the valve requires only two mask steps for deep reactive ion etching (DRIE) and one release etch. (paper)

  19. High temperature gas cleaning for pressurized gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alden, H.; Hagstroem, P.; Hallgren, A.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    The purpose of the project was to build an apparatus to study pressurized, high temperature gas cleaning of raw gasification gas generated from biomass. A flexible and easy to operate pressurized apparatus was designed and installed for the investigations in high temperature gas cleaning by means of thermal, catalytic or chemical procedures. A semi continuos fuel feeding concept, at a maximum rate of 700 g/h, allowed a very constant formation of a gas product at 700 deg C. The gas product was subsequently introduced into a fixed bed secondary reactor where the actual gas cleanup or reformation was fulfilled. The installation work was divided into four work periods and apart from a few delays the work was carried out according to the time plan. During the first work period (January - June 1994) the technical design, drawings etc. of the reactor and additional parts were completed. All material for the construction was ordered and the installation work was started. The second work period (July - December 1994) was dedicated to the construction and the installation of the different components. Initial tests with the electrical heating elements, control system and gas supply were assigned to the third work period (January - June 1995). After the commissioning and the resulting modifications, initial pyrolysis and tar decomposition experiments were performed. During the fourth and final work period, (June - December 1995) encouraging results from first tests allowed the experimental part of the project work to commence, however in a slightly reduced program. The experimental part of the project work comparatively studied tar decomposition as a function of the process conditions as well as of the choice of catalyst. Two different catalysts, dolomite and a commercial Ni-based catalyst, were evaluated in the unit. Their tar cracking ability in the pressure interval 1 - 20 bar and at cracker bed temperatures between 800 - 900 deg C was compared. Long term tests to study

  20. Liquid Scintillation Counting - Packard Triple-Label Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Torretto, P. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-23

    The Radiological Measurements Laboratory (RML) maintains and operates nine Packard Liquid Scintillation Counters (LSCs). These counters were obtained through various sources and were generally purchased as 2500, 2700 or 3100 series counters. In 2004/2005 the software and firmware on the counters were upgraded. The counters are now designated as 3100 series counters running the Quantasmart software package. Thus, a single procedure can be used to calibrate and operate the Packard LSCs.

  1. Efficiency determination of whole-body counters by Monte Carlo method, using a microcomputer

    International Nuclear Information System (INIS)

    Fernandes Neto, J.M.

    1987-01-01

    A computing program using Monte Carlo method for calculate the whole efficiency of distributed radiation counters in human body is developed. A simulater of human proportions was used, of which was filled with a known and uniform solution containing a quantity of radioisopes. The 99m Tc, 131 I and 42 K were used in this experience, and theirs activities compared by a liquid scintillator. (C.G.C.) [pt

  2. Proportional wire calorimeters at ISABELLE

    International Nuclear Information System (INIS)

    Matthews, J.A.J.

    1979-01-01

    Gas calorimeters have recently increased in popularity because they provide a simple method of achieving a high degree of calorimeter segmentation with only a modest loss in energy resolution compared with liquid argon or scintillator calorimeters. High radiation levels at ISABELLE will result in gas calorimeter lifetimes similar to those of MWPCs, although the intermediate speed of these devices may cause some resolution degradation due to signal pileup. Schemes for calibration and monitoring gas calorimeters in situ must be evolved and will presumably utilize a combination of pulsers, imbedded 55 Fe sources, etc. Most of the recent development work on gas calorimeters has been centered on electromagnetic (em) calorimetry for large detectors at CESR and PEP. Data on the performance of gas calorimeters are given and compared with the liquid argon results of Hitlin et al. The hadronic gas calorimeter results of Anderson et al. are shown along with typical energy resolution results from various scintillator and liquid argon steel calorimeters

  3. Calculation of efficiency of high-energy neutron detection by plastic scintillators

    International Nuclear Information System (INIS)

    Telegin, Yu.N.

    1977-01-01

    A computer was used to calculate neutron (5-30O MeV) registration effeciencies with plastic scintillators 2,5,10, 20,30,40 and 50 cm thick. The results are shown in the form of tables. The contributions to efficiency of various processes have been analysed. The calculation results may be used in planning experiments with neutron counters

  4. Compression under a mechanical counter pressure space suit glove

    Science.gov (United States)

    Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.

    2002-01-01

    Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, pglove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  5. Performance of microstrip and microgap gas detectors at high pressure

    International Nuclear Information System (INIS)

    Fraga, F.A.F.; Fraga, M.M.F.R.; Marques, R.F.; Margato, L.M.S.; Goncalo, J.R.; Policarpo, A.J.P.L.

    1997-01-01

    A study of the operation of microstrip and microgap detectors at various gas pressures up to 6 bar with Kr-CO 2 , Xe-CO 2 and Xe-CH 4 is presented. The data were collected with a microstrip (1000 μm pitch) and a microgap (200 μm pitch) detector using a clean chamber and gas system. It is shown that maximum gain is strongly dependent on pressure and gains as high as 9 x 10 3 were obtained with Kr-CO 2 at 6 bar with a MSGC. With the smaller-pitch MGC we could get a gain of 180 with Xe-CH 4 at 6 bar; the typical energy resolution at 22 keV being about 15%. From the present work one can conclude that microstructures can operate at high pressure and that their application in high-efficiency, low-granularity X-ray detectors with an energy range up to a few tens of keV can be seriously considered. (orig.)

  6. A field-deployable gamma-ray spectrometer utilizing xenon at high pressure

    International Nuclear Information System (INIS)

    Smith, G.C.; Mahler, G.J.; Yu, B.; Salwen, C.; Kane, W.R.; Lemley, J.R.

    1996-01-01

    Prototype gamma-ray spectrometers utilizing xenon gas at high pressure, suitable for applications in the nuclear safeguards, arms control, and nonproliferation communities, have been developed at Brookhaven National Laboratory (BNL). These spectrometers function as ambient-temperature ionization chambers detecting gamma rays with good efficiency in the energy range 50 keV - 2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. They are capable of prolonged, low-power operation without a requirement for cryogenic fluids or other cooling mechanisms, and with the addition of small quantities of 3 He gas, can function simultaneously as efficient thermal neutron detectors

  7. Novel fast-neutron activation counter for high repetition rate measurements

    International Nuclear Information System (INIS)

    Mahmood, S.; Springham, S. V.; Zhang, T.; Rawat, R. S.; Tan, T. L.; Krishnan, M.; Beg, F. N.; Lee, S.; Schmidt, H.; Lee, P.

    2006-01-01

    A fast-neutron beryllium activation counter has been constructed for neutron measurements on a high repetition rate deuterium plasma focus. Beryllium activation is especially suitable for measurements of DD neutron yields. The cross section for the relevant reaction, 9 Be(n,α) 6 He, results in a maximum sensitivity at the characteristic energy of the DD neutrons (∼2.5 MeV) and practically no sensitivity to neutrons with energies 6 He enabled the shot-to-shot neutron yield from the plasma focus to be measured for repetition rates from 0.2 to 3 Hz (and for a range of deuterium gas pressures). With careful analysis, the shot-to-shot yield can be measured up to a maximum repetition rate of 3 Hz, beyond which the pileup of counts from the previous shots reduces the accuracy of the measurements to an unacceptable level. This new beryllium activation counter has been cross-checked against an indium activation counter to obtain absolute neutron yields. At a charging voltage of 12.5 kV (bank energy of 2.2 kJ), the average neutron yield was found to be (7.9±0.7)x10 7 per shot (standard deviation of 4x10 7 ). It was found that activation of the plasma focus construction materials (especially aluminum) must be taken into account

  8. Radiation loading effect proportional chamber on the performances

    International Nuclear Information System (INIS)

    Alekseev, T.D.; Kalinina, N.A.; Karpukhin, V.V.; Kruglov, V.V.; Khazins, D.M.

    1980-01-01

    The effect of a space charge which appears under the effect of radiation loading on counting characteristics of a proportional chamber, is experimentally investigated. Calculations are made which take into account the effect of a space charge of positive ions formed in the chamber. The investigations have been carried out on the test board which consists of a one-coordinate proportional chamber, a telescope of two scintillation counters and a collimated 90 Sr β-source. The proportional chamber has the 160x160 mm dimensions. The signal wires with the 50 μm diameter are located with the step of s=10 mm. High-voltage planes are coiled with a wire with the 100 μm diameter and a 2 mm step. The distance between high-voltage planes are 18 mm. The chamber is blown through with a gaseous mixture, its composition is 57% Ar+38% CH 4 +5% (OCH 3 ) 2 CH 2 . When carrying out measurements in wide ranges, the density of radiation loading and the amplifier threshold are changed. The experimental results show a considerable effect of radiation loading and the value of amplifier threshold on the value of a counting characteristic. This should be taken into account when estimating the performance of a proportional chamber according to board testing using radioactive sources, as conditions for investigations are usually different from those of a physical experiment on an accelerator

  9. Passive neutron coincidence counting with plastic scintillators for the characterization of radioactive waste drums

    Energy Technology Data Exchange (ETDEWEB)

    Deyglun, C.; Simony, B.; Perot, B.; Carasco, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Saurel, N.; Colas, S. [CEA, DAM, Valduc, F-21120 Is-sur-Tille (France); Collot, J. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Grenoble Alpes, CNRS/IN2P3, Grenoble (France)

    2015-07-01

    The quantification of radioactive material is essential in the fields of safeguards, criticality control of nuclear processes, dismantling of nuclear facilities and components, or radioactive waste characterization. The Nuclear Measurement Laboratory (LMN) of CEA is involved in the development of time-correlated neutron detection techniques using plastic scintillators. Usually, 3He proportional counters are used for passive neutron coincidence counting owing to their high thermal neutron capture efficiency and gamma insensitivity. However, the global {sup 3}He shortage in the past few years has made these detectors extremely expensive. In addition, contrary to {sup 3}He counters for which a few tens of microseconds are needed to thermalize fast neutrons, in view to maximize the {sup 3}He(n,p){sup 3}H capture cross section, plastic scintillators are based on elastic scattering and therefore the light signal is formed within a few nanoseconds, correlated pulses being detected within a few dozen- or hundred nanoseconds. This time span reflects fission particles time of flight, which allows reducing accordingly the duration of the coincidence gate and thus the rate of random coincidences, which may totally blind fission coincidences when using {sup 3}He counters in case of a high (α,n) reaction rate. However, plastic scintillators are very sensitive to gamma rays, requiring the use of a thick metallic shield to reduce the corresponding background. Cross talk between detectors is also a major issue, which consists on the detection of one particle by several detectors due to elastic or inelastic scattering, leading to true but undesired coincidences. Data analysis algorithms are tested to minimize cross-talk in simultaneously activated detectors. The distinction between useful fission coincidences and the correlated background due to cross-talk, (α,n) and induced (n,2n) or (n,n'γ) reactions, is achieved by measuring 3-fold coincidences. The performances of a

  10. Gas scintillation drift chambers with wave shifter fiber readout

    International Nuclear Information System (INIS)

    Sadoulet, B.; Weiss, S.; Parsons, A.; Lin, R.P.; Smith, G.

    1988-01-01

    The authors present results from their prototype xenon gas scintillation drift chamber. They discuss its operation with two types of light detection schemes: one based on a Anger camera geometry and one based on an array of wave shifting light fibers. The results demonstrate some of the instruments's tremendous potential

  11. Dynamic behaviour of high-pressure natural-gas flow in pipelines

    International Nuclear Information System (INIS)

    Gato, L.M.C.; Henriques, J.C.C.

    2005-01-01

    The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas

  12. Dynamic behaviour of high-pressure natural-gas flow in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gato, L.M.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: lgato@mail.ist.utl.pt; Henriques, J.C.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: jcch@mail.ist.utl.pt

    2005-10-01

    The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas.

  13. Use of the helium-3 proportional counter for neutron spectrometry

    International Nuclear Information System (INIS)

    Vialettes, H.; Le Thanh, P.

    1967-01-01

    Up to now, two methods have been mainly used for neutron spectrometry near nuclear installations: - photographic emulsion spectrometry - the so-called, 'multisphere' technique spectrometry. The first method, which is fairly difficult to apply, has a threshold energy of about 500 keV; this is a big disadvantage for an apparatus which has to be used for spectrometry around nuclear installations where the neutron radiation is very much degraded energetically. The second method does not suffer from this disadvantage but the results which it yields are only approximate. In order to extend the energy range of the neutron spectra studied with sufficient accuracy the use of a helium-3 proportional counter has been considered. This report presents the principles of operation of the helium-3 spectrometer, and the calculation methods which make it possible to take into account the two main effects tending to deform the spectra obtained: - energy absorption by the walls of the counter, - energy loss of the incident neutrons due to elastic collisions with helium-3 nuclei. As an example of the application, the shape of the neutron spectrum emitted by a polonium-lithium source is given; the results obtained are in excellent agreement with theoretical predictions. (authors) [fr

  14. A cylindrical multiwire high-pressure gas proportional chamber surrounding a gaseous $_{2} target with a mylar separation foil $6 \\mu m thick

    CERN Document Server

    Gastaldi, Ugo; Averdung, H; Bailey, J; Beer, G A; Dreher, B; Erdman, K L; Klempt, E; Merle, K; Neubecker, K; Sabev, C; Schwenk, H; Wendling, R D; White, B L; Wodrich, R

    1978-01-01

    The characteristics and performances of a cylindrical multiwire proportional chamber built and used at CERN in experiment S142 for the study of the pp atom spectroscopy are presented. The chamber surrounds a high-pressure gaseous H/sub 2/ target, from which it is separated by a very thin window (6 mu m mylar foil). The active volume (90 cm long; 2 cm thick, internal diameter=30 cm) is divided into 36 equal and independent cells each covering 10 degrees in azimuth. At 4 abs. atm the detection efficiency for X-rays is higher than 20% in the whole energy range 1.5-15 keV. Typical resolutions are 35% fwhm for the 3 ke V Ar fluorescence line and 25% fwhm for the 5.5 keV /sup 54/Mn line. Working pressures from 0.5 to 16 abs. atm have been used. (8 refs).

  15. High-efficiency organic glass scintillators

    Science.gov (United States)

    Feng, Patrick L.; Carlson, Joseph S.

    2017-12-19

    A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-casting distinguishes the developed organic glasses from existing scintillators.

  16. Determination of hexachlorocyclohexane pesticide residues in wool fat by a combined high-performance liquid chromatographic-gas-liquid chromatographic method

    International Nuclear Information System (INIS)

    Ali, S.L.

    1978-01-01

    Beta- and gamma-hexachlorocyclohexane residues were determined in twelve wool fat samples by using a combined high-performance liquid chromatographic (HPLC)-gas-liquid chromatographic (GLC) method. After extraction and chromatographic clean-up on a silca-gel column, the sample was further purified by HPLC on a reversed-phase C-18 column with methanol as the mobile phase. The final determination was effected by GLC with a 1-mCi nickel-63 electron-capture detector. The analytical method was checked by addition of carbon-14-labelled lindane and measurement of the radioactivity in a liquid scintillation counter. (Auth.)

  17. Pulse Shape Analysis and Discrimination for Silicon-Photomultipliers in Helium-4 Gas Scintillation Neutron Detector

    Science.gov (United States)

    Barker, Cathleen; Zhu, Ting; Rolison, Lucas; Kiff, Scott; Jordan, Kelly; Enqvist, Andreas

    2018-01-01

    Using natural helium (helium-4), the Arktis 180-bar pressurized gas scintillator is capable of detecting and distinguishing fast neutrons and gammas. The detector has a unique design of three optically separated segments in which 12 silicon-photomultiplier (SiPM) pairs are positioned equilaterally across the detector to allow for them to be fully immersed in the helium-4 gas volume; consequently, no additional optical interfaces are necessary. The SiPM signals were amplified, shaped, and readout by an analog board; a 250 MHz, 14-bit digitizer was used to examine the output pulses from each SiPMpair channel. The SiPM over-voltage had to be adjusted in order to reduce pulse clipping and negative overshoot, which was observed for events with high scintillation production. Pulse shaped discrimination (PSD) was conducted by evaluating three different parameters: time over threshold (TOT), pulse amplitude, and pulse integral. In order to differentiate high and low energy events, a 30ns gate window was implemented to group pulses from two SiPM channels or more for the calculation of TOT. It was demonstrated that pulses from a single SiPM channel within the 30ns window corresponded to low-energy gamma events while groups of pulses from two-channels or more were most likely neutron events. Due to gamma pulses having lower pulse amplitude, the percentage of measured gamma also depends on the threshold value in TOT calculations. Similarly, the threshold values were varied for the optimal PSD methods of using pulse amplitude and pulse area parameters. Helium-4 detectors equipped with SiPMs are excellent for in-the-field radiation measurement of nuclear spent fuel casks. With optimized PSD methods, the goal of developing a fuel cask content monitoring and inspection system based on these helium-4 detectors will be achieved.

  18. Characterisation of a ultra-miniature counter for microdosimetric measurements in a therapeutic 400 MeV/A carbon beam

    International Nuclear Information System (INIS)

    Endo, S.; Takada, M.; Ishikawa, M.; Hoshi, M.; Uehara, S.; Yamaguchi, H.; Kanai, T.; Matsufji, N.; Shizuma, K.; Onizuka, Y.

    2002-01-01

    Single event spectra of a clinical carbon beam have been measured by an ultra-miniature tissue-equivalent proportional counter (UMC). In order to cover the energy range of the Bragg peak, the incident energy of the carbon beam was degraded by aluminium plates. Single event spectra for carbon-events incident to the UMC were analysed and selected at several carbon energies using thin scintillation counters. It was found that the dose weighted lineal energy distributions have a doublet peak structure due to incident carbon beam and fragment contributions. (author)

  19. Rapid actinide analysis method coupling liquid chromatography/ICP-MS and "9"0Sr gas proportional counter in post-accidental situation environmental samples

    International Nuclear Information System (INIS)

    Habibi, Azza

    2015-01-01

    The present study follows the Fukushima power plant accident and aimed to develop an analytical method to achieve, during an emergency situation, a rapid identification and quantification of alpha and beta emitters in environmental samples. The first step of this study allowed us to list the alpha and beta emitters which can be released in the environment in case of a nuclear accident. The second step aimed towards the development of a rapid analysis method to quantify 17 radionuclides of U, Th, Pu, Am, Np and Sr. The main objective was the automation of the radiochemical separation step and its coupling for the measurement. The separation is performed using columns containing extraction resins, namely TEVA, TRU and Sr. The measurement is performed using an ICP-MS (inductively coupled plasma mass spectrometry) and in some cases a gas proportional counter to quantify radiostrontium ("8"9Sr and "9"0Sr). Excellent figures of merit were obtained, off line, with water (tap, river and sea water) and solid matrices (soil and aerosol filters), after a micro-wave digestion or an alkaline fusion dissolution followed by a Ca_3(PO_4)_2 coprecipitation. The proposed analytical strategy showed yields between 70 % and 100 % and standard deviations between 5 % and 10 %. The newly developed separation method was then automated and coupled on-line to ICP-MS. The operating parameters were optimized using a design of experiments and the results were processed with Minitab. The optimized automated separation coupled on-line to the ICP-MS allows the rapid quantification, in 1.5 h per sample, of U, Th, Pu, Am, Np and Sr with detection limits gain as high as 20 times for artificial radionuclide. (author)

  20. TOPAS 1 - construction and test of a scintillation counter hodoscope for the tagging of bremsstrahlung photons for the SAPHIR detector

    International Nuclear Information System (INIS)

    Merkel, R.

    1989-09-01

    The development of a tagging-hodoscope for the SAPHIR-detector at the stretcher ring ELSA in Bonn is described. The hodoscope covers the energy range 2.175 GeV γ 0 =3.500 GeV. 24 scintillation counters are used for the determination of the photon energy, giving a resolution of ΔE γ =25 MeV. The tagging method requires a good coincidence timing resoluting τ between the tagging hodoscope and the detector for the photon-induced reactions in order to keep the accidental coincidences low. The timing information is given by 8 fast timing counters (40 mm thick), covering 5 up to 7 energy channels each. Fluctuations of the timing signal which result from different impact-locations on the timing counter, due to different light travelling distances, are corrected by the energy defining counters. The timing-component (8 timing counters) is commpleted and tested. The results of first mesurements show an upper limit of σ=250 psec for the resolution of 7 coincidences out of 45 possible channels in the tagging hodscope. These results are obtained with a preliminary adjustment of the SAPHIR beam-line and with a not yet optimized signal to noize ratio in the extracted beam. We hope to obtain a σ<200 psec under optimized conditions. (orig.)

  1. Measurement of gross alpha and beta in air filter samples by using liquid scintillation counter

    International Nuclear Information System (INIS)

    Sudheendran, V.; Baburajan, A.; Gaikwad, R.H.; Ravi, P.M.; Tripathi, R.M.

    2015-01-01

    The determination of gross alpha and gross beta in particulate air filter samples was carried out by alpha, beta discrimination method using Liquid Scintillation Analyzer by setting the PSA value at 55 for 5 ml 0.1 HCl plus 15 ml of Ultima Gold AB cocktail by using 241 Am and 90 Sr/ 90 Y sources. The standardized method was compared with the gross alpha and gross beta activity determined by conventional method of direct counting with end window G.M. counter and ZnS (Ag). The minimum detectable activity of LSA method was found to be 9.3 mBq and 17.7 mBq for gross alpha and gross beta respectively for 6000 sec compared to the conventional method of 9.8 mBq and 189 mBq respectively at the same counting time. The result of analysis by both method indicate that the alpha, beta discrimination set up of LSA method is highly effective in the determination of low level alpha, beta activity in air filter samples. (author)

  2. Assessing fugitive emissions of CH4 from high-pressure gas pipelines in the UK

    Science.gov (United States)

    Clancy, S.; Worrall, F.; Davies, R. J.; Almond, S.; Boothroyd, I.

    2016-12-01

    Concern over the greenhouse gas impact of the exploitation of unconventional natural gas from shale deposits has caused a spotlight to be shone on to the entire hydrocarbon industry. Numerous studies have developed life-cycle emissions inventories to assess the impact that hydraulic fracturing has upon greenhouse gas emissions. Incorporated within life-cycle assessments are transmission and distribution losses, including infrastructure such as pipelines and compressor stations that pressurise natural gas for transport along pipelines. Estimates of fugitive emissions from transmission, storage and distribution have been criticized for reliance on old data from inappropriate sources (1970s Russian gas pipelines). In this study, we investigate fugitive emissions of CH4 from the UK high pressure national transmission system. The study took two approaches. Firstly, CH4 concentration is detected by driving along roads bisecting high pressure gas pipelines and also along an equivalent distance along a route where no high pressure gas pipeline was nearby. Five pipelines and five equivalent control routes were driven and the test was that CH4 measurements, when adjusted for distance and wind speed, should be greater on any route with a pipe than any route without a pipe. Secondly, 5 km of a high pressure gas pipeline and 5 km of equivalent farmland, were walked and soil gas (above the pipeline where present) was analysed every 7 m using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from

  3. The Rutherford Appleton Laboratory's Mark I Multiwire Proportional Counter positron camera

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Tappern, G.J.; Flesher, A.C.

    1983-01-01

    A small model of a proposed large aperture positron camera has been developed at Rutherford Appleton Laboratory. Based on Multiwire Proportional Counter technology it uses lead foil cathodes which function simultaneously as converters for the 511 keV gamma rays and readout electrodes for a delay line readout system. The detectors have been built up into a portable imaging system complete with a dedicated computer for data taking, processing and display. A complete hardware system and sufficient software was provided to permit hospital based colleagues to generate useful images easily. A complete description of the system is given with performance figures and some of the images obtained are presented. (author)

  4. Standardization of 241Am by digital coincidence counting, liquid scintillation counting and defined solid angle counting

    International Nuclear Information System (INIS)

    Balpardo, C.; Capoulat, M.E.; Rodrigues, D.; Arenillas, P.

    2010-01-01

    The nuclide 241 Am decays by alpha emission to 237 Np. Most of the decays (84.6%) populate the excited level of 237 Np with energy of 59.54 keV. Digital coincidence counting was applied to standardize a solution of 241 Am by alpha-gamma coincidence counting with efficiency extrapolation. Electronic discrimination was implemented with a pressurized proportional counter and the results were compared with two other independent techniques: Liquid scintillation counting using the logical sum of double coincidences in a TDCR array and defined solid angle counting taking into account activity inhomogeneity in the active deposit. The results show consistency between the three methods within a limit of a 0.3%. An ampoule of this solution will be sent to the International Reference System (SIR) during 2009. Uncertainties were analysed and compared in detail for the three applied methods.

  5. Crate counter for normal operating loss

    International Nuclear Information System (INIS)

    Harlan, R.A.

    A lithium-loaded zinc sulfide scintillation counter to closely assay plutonium in waste packaged in 1.3 by 1.3 by 2.13m crates was built. In addition to assays for normal operating loss accounting, the counter will allow safeguards verification immediately before shipment of the crates for burial. The counter should detect approximately 10 g of plutonium in 1000 kg of waste

  6. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    International Nuclear Information System (INIS)

    Dighe, P.M.; Das, D.

    2015-01-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×10 4 neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors

  7. Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic LADs

    Science.gov (United States)

    Hartwig, Jason W.; McQuillen, John; Chato, Daniel J.

    2014-01-01

    This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K - 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  8. Isotope Fractionation in Methane Reactions Studied by Gas Chromatography and Liquid Scintillation

    DEFF Research Database (Denmark)

    Andersen, Bertel Lohmann; Bidoglio, G.; Leip, A.

    1997-01-01

    Determination of C-14-marked methane by gas chromatography and liquid scintillation counting is shown to be useful in studies of isotope effects. Data on the specific activity is used to separate the contributions of (CH4)-C-14, and (CH4)-C-12 to the gas-chromatographic peak area. As an application...

  9. Discriminator setting and cocktail preparation for analysis of alpha and beta emitters in aqueous solution using liquid scintillation counter

    International Nuclear Information System (INIS)

    Zaini Hamzah; Masitah Alias; Zaharudin Ahmad

    2011-01-01

    Liquid scintillation counting (LSC) is not only being used to measure pure beta emitters, but it can be used to measure both alpha and beta emitters simultaneously. Measurement of alpha and beta emitters in aqueous solution is done using a single sample. For the sample preparation, colorless detergent or emulsifier was used to incorporate the water into an organic based scintillator to produce a clear homogeneous solution, since this is the best form to give the highest count rate and detection efficiency. The instrument also need some attention, where after calibration, the LSC was set for the discriminator level which is suitable for measurement of both alpha and beta radiations. In this study, the focus is on the development of the best scintillation cocktail and establishes the best discriminator setting. From this study the best proportion of scintillation cocktail is 2:4:4 for water, toluene, and Triton-N101 (emulsifier) respectively and the best discriminator setting for alpha and beta counting are 120. (author)

  10. Centrifugal gas separator

    Energy Technology Data Exchange (ETDEWEB)

    Kanagawa, A; Fujii, O; Nakamoto, H

    1970-03-09

    Counter currents in the rotary drum of a centrifugal gas separator are produced by providing, at either end of the drum in the vicinity of the circumferential and central positions, respectively, outflow and inflow holes with a communicating passage external to the drum there between whereby gaseous counter currents are caused to flow within the drum and travel through the passage which is provided with gas flow adjustment means. Furthermore, the space defined by the stationary portion of the passage and the rotor drum is additionally provided with a screw pump or throttling device at either its stationary side or drum side or both in order to produce a radially directed gas flow therewithin. A gas mixture is axially admitted into the drum while centrifugal force and a cooling element provided therebelow cause an increase in gas pressure along and a gaseous flow toward the wall member, whereupon the comparatively high pressured circumferentially distributed gas is extracted from the outlet holes, flows through the external gas passage and back into the lower pressured drum core through the inlet holes, thus producing the desired counter currents. The gases thus separated are withdrawn along axially provided discharge pipes. Accordingly, this invention permits heating elements which were formerly used to produce thermal convection currents to be disposed of and allows the length of the rotor drum to be more efficiently utilized to enhance separation efficiency.

  11. High Efficiency, Low Cost Scintillators for PET

    International Nuclear Information System (INIS)

    Kanai Shah

    2007-01-01

    Inorganic scintillation detectors coupled to PMTs are an important element of medical imaging applications such as positron emission tomography (PET). Performance as well as cost of these systems is limited by the properties of the scintillation detectors available at present. The Phase I project was aimed at demonstrating the feasibility of producing high performance scintillators using a low cost fabrication approach. Samples of these scintillators were produced and their performance was evaluated. Overall, the Phase I effort was very successful. The Phase II project will be aimed at advancing the new scintillation technology for PET. Large samples of the new scintillators will be produced and their performance will be evaluated. PET modules based on the new scintillators will also be built and characterized

  12. High pressure deuterium-tritium gas target vessels for muon-catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Caffrey, A.J.; Spaletta, H.W.; Ware, A.G.; Zabriskie, J.M.; Hardwick, D.A.; Maltrud, H.R.; Paciotti, M.A.

    1989-01-01

    In experimental studies of muon-catalyzed fusion, the density of the hydrogen gas mixture is an important parameter. Catalysis of up to 150 fusions per muon has been observed in deuterium-tritium gas mixtures at liquid hydrogen density; at room temperature, such densities require a target gas pressure of the order of 1000 atmospheres (100 MPa, 15,000 psi). We report here the design considerations for hydrogen gas target vessels for muon-catalyzed fusion experiments that operate at 1000 and 10,000 atmospheres. The 1000 atmosphere high pressure target vessels are fabricated of Type A-286 stainless steel and lined with oxygen-free, high-conductivity (OFHC) copper to provide a barrier to hydrogen permeation of the stainless steel. The 10,000 atmosphere ultrahigh pressure target vessels are made from 18Ni (200 grade) maraging steel and are lined with OFHC copper, again to prevent hydrogen permeation of the steel. In addition to target design features, operating requirements, fabrication procedures, and secondary containment are discussed. 13 refs., 3 figs., 1 tab

  13. Electronic system for recording proportional counter rare pulses with the pulse shape analysis

    International Nuclear Information System (INIS)

    Barabanov, I.R.; Gavrin, V.N.; Zakharov, Yu.I.; Tikhonov, A.A.

    1984-01-01

    The anutomated system for recording proportional counter rare pulses is described. The proportional counters are aimed at identification of 37 Ar and H7 1 Gr decays in chemical radiation detectors of solar neutrino. Pulse shape recording by means of a storage oscilloscope and a TV display is performed in the system considered besides two-parametric selection of events (measurement of pulse amplitude in a slow channel and the amplitude of pulse differentiated with time constant of about 10 ns in a parallel fast channel). Pulse discrimination by a front rise rate provides background decrease in the 55 Fe range (5.9 keV) by 6 times; the visual analysis of pulse shapes recorded allows to decrease the background additionally by 25-30%. The background counting rate in the 55 Fe range being equal to 1 pulse per 1.5 days, is obtained when using the installation described above, as well as the passive Pb shield 5 cm thick, and the active shield based on the anticoincidence NaI(Tl) detector with the cathode 5.6 mm in-diameter made of Fe fabircated by zone melting. The installation described allows to reach the background level of 0.6 pulse/day (the total coefficient of background attenuation is 400). Further background decrease is supposed to be provided by installation allocation in the low-noise underground laboratory of the Baksan Neutrino Observatory

  14. Design of nuclear pulse shaped circuit based on proportional counter

    International Nuclear Information System (INIS)

    Song Qianqian; Cheng Yi; Tuo Xianguo

    2011-01-01

    Use the self-developed proportional to sample gas tritium in environment and make the measurement. For this detector, a kind of pulse shape circuit based on second order active low pass filtering circuit realized filtering and shaping nuclear pulse by high-speed operational amplifier, with less stages that has been approved for filter Gaussian wave. Use Multisim 10.0 to simulate the different parameters of the filter circuit. The simulation result was consistent with the theoretical results. The experiments proved the feasibility of this circuit, and at the same time provided a convenient and reliable method for analysis and optimization of the nuclear pulse waveform in order for discriminating by MCA. (authors)

  15. Applications of low level liquid scintillation counting

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1983-01-01

    Low level liquid scintillation counting is reviewed in terms of its present use and capabilities for measuring low activity samples. New areas of application of the method are discussed with special interest directed to the food industry and environmental monitoring. Advantages offered in the use of a low background liquid scintillation counter for the nuclear power industry and nuclear navy are discussed. Attention is drawn to the need for commercial development of such instrumentation to enable wider use of the method. A user clientele is suggested as is the required technology to create such a counter

  16. Studies on Microscopic Structure of Diesel Sprays under Atmospheric and High Gas Pressures

    Directory of Open Access Journals (Sweden)

    D. Deshmukh

    2014-06-01

    Full Text Available In the present work, the spray structure of diesel from a 200-μm, single-hole solenoid injector is studied using microscopic imaging at injection pressures of 700, 1000 and 1400 bar for various gas pressures. A long-distance microscope with a high resolution camera is used for spray visualization with a direct imaging technique. This study shows that even at very high injection pressures, the spray structure in an ambient environment of atmospheric pressure reveals presence of entangled ligaments and non-spherical droplets during the injection period. With increase in the injection pressure, the ligaments tend to get smaller and spread radially. The spray structure studies are also conducted at high gas pressures in a specially designed high pressure chamber with optical access. The near nozzle spray structure at the end of the injection shows that the liquid jet breakup is improved with increase in gas density. The droplet size measurement is possible only late in the injection duration when the breakup appears to be complete and mostly spherical droplets are observed. Hence, droplet size measurements are performed after 1.3 ms from start of the injection pulse. Spatial and temporal variation in Sauter Mean Diameter (SMD is observed and reported for the case corresponding to an injection pressure of 700 bar. Overall, this study has highlighted the importance of verifying the extentof atomization and droplet shape even in dense sprays before using conventional dropsizing methods such as PDPA.

  17. The role of different linear and non-linear channels of relaxation in scintillator non-proportionality

    Energy Technology Data Exchange (ETDEWEB)

    Bizarri, G.; Moses, W.W. [Lawrence Berkeley Laboratory, Berkeley, CA 94720-8119 (United States); Singh, J. [Faculty of EHS, B-41, Charles Darwin University, Darwin NT 0909 (Australia); Vasil' ev, A.N., E-mail: anvasiliev@rambler.r [Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation); Williams, R.T. [Department of Physics, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2009-12-15

    The non-proportional dependence of a scintillator's light yield on primary particle energy is believed to be influenced crucially by the interplay of non-linear kinetic terms in the radiative and non-radiative decay of excitations versus locally deposited excitation density. A calculation of energy deposition, -dE/dx, along the electron track for NaI is presented for an energy range from several electron-volt to 1 MeV. Such results can be used to specify an initial excitation distribution, if diffusion is neglected. An exactly solvable two-channel (exciton and hole(electron)) model containing 1st and 2nd order kinetic terms is constructed and used to illustrate important features seen in non-proportional light-yield curves, including a dependence on pulse shaping (detection gate width).

  18. The role of different linear and non-linear channels of relaxation in scintillator non-proportionality

    International Nuclear Information System (INIS)

    Bizarri, G.; Moses, W.W.; Singh, J.; Vasil'ev, A.N.; Williams, R.T.

    2009-01-01

    The non-proportional dependence of a scintillator's light yield on primary particle energy is believed to be influenced crucially by the interplay of non-linear kinetic terms in the radiative and non-radiative decay of excitations versus locally deposited excitation density. A calculation of energy deposition, -dE/dx, along the electron track for NaI is presented for an energy range from several electron-volt to 1 MeV. Such results can be used to specify an initial excitation distribution, if diffusion is neglected. An exactly solvable two-channel (exciton and hole(electron)) model containing 1st and 2nd order kinetic terms is constructed and used to illustrate important features seen in non-proportional light-yield curves, including a dependence on pulse shaping (detection gate width).

  19. Low energy recoil detection with a spherical proportional counter

    Science.gov (United States)

    Savvidis, I.; Katsioulas, I.; Eleftheriadis, C.; Giomataris, I.; Papaevangellou, T.

    2018-01-01

    We present results for the detection of low energy nuclear recoils in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An 241Am-9Be fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the keV energy region was measured by observing the 5.9 keV line of a 55Fe X-ray source, with energy resolution of 10% (σ). The toolkit GEANT4 was used to simulate the irradiation of the detector by an 241Am-9Be source, while SRIM was used to calculate the Ionization Quenching Factor (IQF), the simulation results are compared with the measurements. The potential of the SPC in low energy recoil detection makes the detector a good candidate for a wide range of applications, including Supernova or reactor neutrino detection and Dark Matter (WIMP) searches (via coherent elastic scattering).

  20. Development of photocathodes for gas counters

    International Nuclear Information System (INIS)

    Chalot, J.F.

    1982-03-01

    A lot of ways of physics needs the development of high sensibility imaging devices with large sensitive surface. The problems brought by the building of such devices may be solved by the use of gaz counters. But we must sensitize these counters to low energy photons ( [fr

  1. Study of argon-based Penning gas mixtures for use in proportional counters

    International Nuclear Information System (INIS)

    Agrawal, P.C.; Ramsey, B.D.; Weisskopf, M.C.

    1989-01-01

    Results from an experimental investigation of three Penning gas mixtures, namely argon-acetylene (Ar-C 2 H 2 ), argon-xenon (Ar-Xe) and argon-xenon-trimethylamine (Ar-Xe-TMA), are reported. The measurements, carried out in cylindrical geometry as well as parallel plate geometry detectors, demonstrate that the Ar-C 2 H 2 mixtures show a significant Penning effect even at an acetylene concentration of 10% and provide the best energy resolution among all the argon-based gas mixtures (≤13% FWHM at 5.9 keV and 6.7% at 22.2 keV). In the parallel plate detector the Ar-C 2 H 2 fillings provide a resolution of ≅7% FWHM at 22.2 keV up to a gas gain of at least ≅10 4 . The nonmetastable Penning mixture Ar-Xe provides the highest gas gain among all the argon-based gas mixtures and is well suited for use in long-duration space-based experiments. Best results are obtained with 5% and 20% Xe in Ar, the energy resolution being ≅7% FWHM at 22.2 keV and ≅4.5% at 59.6 keV for gas gain 3 . Addition of ≥1% TMA to an 80% Ar-20% Xe mixture produces a dramatic increase in gas gain but the energy resolution remains unaffected (≅7% FWHM at 22.2 keV). This increase in gas gain is attributed to the occurrence of a Penning effect between Xe and TMA, the ionization potential of TMA being 8.3 eV, just below the xenon metastable potential of 8.39 eV. (orig.)

  2. Design and construction techniques for one-meter position sensitive proportional counters of the helical delay line type

    International Nuclear Information System (INIS)

    Orbesen, S.D.; Sherman, J.D.; Flynn, E.R.

    1976-03-01

    A description is given of the techniques involved in the construction of a one-meter long helical proportional counter which produces excellent position accuracy of 1 mm while yielding particle identification through a measurement of energy loss and total energy

  3. Radium 226 and uranium isotopes simultaneously determination in water samples using liquid scintillation counter

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Al-Akel, B.; Saaid, S.; Nashawati, A.

    2007-04-01

    In this work a method has been developed to determine simultaneously Radium 226 and Uranium isotopes in water samples by low back ground Liquid Scintillation Counter. Radium 226 was determined by its progeny Polonium 214 after one month of sample storage in order to achieve the equilibrium between Radium 226 and Polonium 214. Uranium isotopes were determined by subtracting Radium 226 activity from total alpha activity. The method detection limits were 0.049 Bq/L and 0.176 Bq/L for Radium 226 and Uranium isotopes respectively. The repeatability limits were ± 0.32 Bq/L and ± 0.9 Bq/L for Radium 226 and Uranium isotopes respectively. While relative errors were % 9.5 and %18.2 for Radium 226 and Uranium isotopes respectively. On the other hand, the report presented the results of different standard and natural samples.(author)

  4. Excited Atoms and Molecules in High Pressure Gas Discharges

    International Nuclear Information System (INIS)

    Vuskovic, L.; Popovic, S.

    2003-01-01

    Various types of high-pressure non-thermal discharges are increasingly drawing attention in view of many interesting applications. These, partially ionized media in non-equilibrium state, tend to generate complex effects that are difficult to interpret without a detailed knowledge of elementary processes involved. Electronically excited molecules and atoms may play an important role as intermediate states in a wide range of atomic and molecular processes, many of which are important in high-pressure discharges. They can serve also as reservoirs of energy or as sources of high energy electrons either through the energy pooling or through superelastic collisions. By presenting the analysis of current situation on the processes involving excited atoms and molecules of interest for high-pressure gas discharges, we will attempt to draw attention on the insufficiency of available data. In the same time we will show how to circumvent this situation and still be able to develop accurate models and interpretations of the observed phenomena

  5. High-resolution gamma spectroscopy with whole-body and partial-body counters. Experience, recommendations. Report

    International Nuclear Information System (INIS)

    Sahre, P.

    1997-12-01

    The application of high-resolution gamma spectroscopy with whole-body and partial-body counters shows a steadily rising upward trend over the last few years. This induced the ''Arbeitskreis Inkorporationsueberwachung'' of the association ''Fachverband fuer Strahlenschutz e.V.'' to organise a meeting for joint elaboration of a guide on recommended applications of this measuring technique, based on a review of existing experience and results. A key item on the agenda of the meeting was the comparative evaluation of the Ge semiconductor detector and the NaI solid scintillation detector. (orig./CB) [de

  6. Measurement and simulation of the neutron detection efficiency with a Pb-scintillating fiber calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M; Bertolucci, S; Curceanu, C; Giovannella, S; Happacher, F; Iliescu, M; Martini, M; Miscetti, S [Laboratori Nazionali di Frascati, INFN (Italy); Battistoni, G [Sezione INFN di Milano (Italy); Bini, C; Zorzi, G De; Domenico, Adi; Gauzzi, P [Ubiversita degli Studi ' La Sapienza' e Sezine INFN di Roma (Italy); Branchini, P; Micco, B Di; Ngugen, F; Paseri, A [Universita degli di Studi ' Roma Tre' e Sezione INFN di Roma Tre (Italy); Ferrari, A [Fondazione CNAO, Milano (Italy); Prokfiev, A [Svedberg Laboratory, Uppsala University (Sweden); Fiore, S, E-mail: matteo.martino@inf.infn.i

    2009-04-01

    We have measured the overall detection efficiency of a small prototype of the KLOE PB-scintillation fiber calorimeter to neutrons with kinetic energy range [5,175] MeV. The measurement has been done in a dedicated test beam in the neutron beam facility of the Svedberg Laboratory, TSL Uppsala. The measurements of the neutron detection efficiency of a NE110 scintillator provided a reference calibration. At the lowest trigger threshold, the overall calorimeter efficiency ranges from 28% to 33%. This value largely exceeds the estimated {approx}8% expected if the response were proportional only to the scintillator equivalent thickness. A detailed simulation of the calorimeter and of the TSL beam line has been performed with the FLUKA Monte Carlo code. The simulated response of the detector to neutrons is presented together with the first data to Monte Carlo comparison. The results show an overall neutron efficiency of about 35%. The reasons for such an efficiency enhancement, in comparison with the typical scintillator-based neutron counters, are explained, opening the road to a novel neutron detector.

  7. Determining the level of gross alpha and beta radioactivity of water from Marilao river using liquid scintillation counter

    International Nuclear Information System (INIS)

    Cruz, J.; Magtaka, J.; Balisi, R.; Castaneda, Soledad; De Vero, J.

    2009-01-01

    This study aims to determine the level of gross alpha- and beta- radioactivity present in the Marilao River. Liquid Scintillation Counter was used to detect samples radioactivity. Water samples were taken along the different spots of Marilao River. The results showed that the radioactivity are below the Philippine National Standard for Drinking Water (PNSDW) which is 0.1 Bq/L for gross alpha activity and 1.0 Bq/L for gross beta activity set by the Dept. of Health. Hence water samples from Marilao River, is safe in terms of the level of radioactivity levels.(author)

  8. Testing of the scintillation sandwich prototype

    International Nuclear Information System (INIS)

    Vashkevich, V.

    1995-06-01

    The 3 m 2 prototype of the surface detector using optical fiber readout was completely prepared for testing measurements in February 1995 at Fermilab. Two 25 mm thick, 3 m 2 acrylic scintillation plates (1.2 x 2.5 m 2 ) are used for light collection in the upper (above the 25 mm steel plate) and lower (below the steel) counters of the sandwich. The light is collected with the help of 1 mm diameter wavelength shifter fiber loops 3 m long inserted in the grooves on the top surface of the scintillator, 3 fibers per groove. We used Kurary Y11, 200 ppm of shifter dye, and double clad fibers. 1.5 m of clear fibers spliced to each end of the shifter fiber transport the light to the phototube. Spacing between the grooves is 5 cm. The counter's edges were painted with BICRON (BC620) white reflective paint. The scintillation plates were wrapped with Dupont Tyvek. The glued bundle of fibers is connected to an EMI-9902KB 38 mm phototube through the simple light mixer bar. Used PM has a ''green extended'' rubidium bialkali photocathode. The report contains information on the testing of the scintillation sandwich

  9. Image simulation of high-speed imaging by high-pressure gas ionization detector

    International Nuclear Information System (INIS)

    Miao Jichen; Liu Ximing; Wu Zhifang

    2005-01-01

    The signal of the neighbor pixels is cumulated in Freight Train Inspection System because data fetch time is shorter than ion excursion time. This paper analyzes the pertinency of neighbor pixels and designs computer simulation method to generate some emulate images such as indicator image. The result indicates the high-pressure gas ionization detector can be used in high-speed digital radiography field. (authors)

  10. Atmospheric Pressure Effect of Retained Gas in High Level Waste

    International Nuclear Information System (INIS)

    Weber, A.H.

    1999-01-01

    Isolated high level waste tanks in H-Area have unexplained changes in waste-level which have been attributed to environmental effects including pressure, temperature, and relative humidity. Previous studies at SRS have considered waste-level changes from causes not including the presence of gas in the salt cake. This study was undertaken to determine the effect of atmospheric pressure on gas in the salt cake and resultant changes in the supernate level of Tank 41H, and to model that effect if possible. A simple theory has been developed to account for changes in the supernate level in a high level waste tank containing damp salt cake as the response of trapped gases to changes in the ambient pressure. The gas is modeled as an ideal gas retained as bubbles within the interstitial spaces in the salt cake and distributed uniformly throughout the tank. The model does not account for consistent long term increases or decreases in the tank level. Any such trend in the tank level is attributed to changes in the liquid content in the tank (from condensation, evaporation, etc.) and is removed from the data prior to the void estimation. Short term fluctuations in the tank level are explained as the response of the entrained gas volume to changes in the ambient pressure. The model uses the response of the tank level to pressure changes to estimate an average void fraction for the time period of interest. This estimate of the void is then used to predict the expected level response. The theory was applied to three separate time periods of the level data for tank 41H as follows: (1) May 3, 1993 through August 3, 1993, (2) January 23, 1994 through April 21, 1994, and (3) June 4, 1994 through August 24, 1994. A strong correlation was found between fluctuations in the tank level and variations in the ambient pressure. This correlation is a clear marker of the presence of entrained gases in the tank. From model calculations, an average void fraction of 11 percent was estimated to

  11. Some history of liquid scintillator development at Los Alamos

    International Nuclear Information System (INIS)

    Ott, D.G.

    1979-01-01

    The early developments in liquid scintillation counting made at Los Alamos Scientific Laboratory are reviewed. Most of the work was under the direction of F.N. Hayes and included counter development and applications as well as synthesis and chemistry of liquid scintillators

  12. Measurements of 222Rn and 226Ra Levels in environmental samples by using liquid scintillation counter

    International Nuclear Information System (INIS)

    Moustafa, A.S.

    2004-01-01

    The advantageous of liquid scintillation counting technique for 6 Ra determination compared with other methods are the high counting efficiency and the easier sample preparation, with no need for sample pre-concentration. In this work, liquid scintillation counting system was used to measure 222 Rn and 226 Ra levels in environmental samples. The liquid scintillation cocktail was prepared in the laboratory and was found efficient for measuring 222 Rn. Soil, sediment and TENORM samples were dried, grind, sieved and added to hydrochloric acid, in a standard scintillation vial, preloaded with the liquid scintillation cocktail. By measuring 222 Rn levels in the prepared vials, at different intervals of time after preparation, 222 Rn and 226 Ra levels were determined

  13. Possibility of semiconductor counters application for internal contamination measurement of whole human body

    International Nuclear Information System (INIS)

    Cunic, O.; Orlic, M.; Bek-Uzarov, Dj.; Pavlovic, S.; Pavlovic, R.

    1997-01-01

    The possibility of high resolution semiconductor counters application in 'Vinca' Whole Body Counter for direct beta-gamma internal contamination measurement are discussed, assuming the following relevant characteristics: efficiency, resolution and counter price. A comparison with appropriate characteristics of NaI(Tl) crystal used in 'Vinca' WBC is treated. It is evident that the scintillation counters have the higher detection efficiency, but HPGe counters having much better resolution and recently lowest prices are also acceptable to join the existing NaI(Tl) counters with the HPGe counters in the same time, allow better spectral analyses of the human body activity and additionally more precise estimation of the equivalent doses rate which is generally a essential problem in WBC measurements. (author)

  14. Quasi-periodic fluctuations of atmospheric pressure and cosmic rays observed in the stratosphere

    International Nuclear Information System (INIS)

    Kodama, Masahiro; Abe, Toshiaki; Sakai, Takasuke; Kato, Masato; Kogami, Shinichi.

    1976-01-01

    Quasi-periodicities of barometric pressure and cosmic ray intensity, with 5.5-minute period and one hour persistency, have been observed by means of a high-precision barometer and a large plastic scintillation counter in a balloon at an altitude of --18 km over the Pacific Ocean. From characteristics of such short period fluctuations, it is suggested that the observed pressure fluctuation may possibly be caused by the internal atmospheric gravity wave whose amplitude and wave length are --30 m and --30 km respectively. (auth.)

  15. High-pressure water electrolysis: Electrochemical mitigation of product gas crossover

    International Nuclear Information System (INIS)

    Schalenbach, Maximilian; Stolten, Detlef

    2015-01-01

    Highlights: • New technique to reduce gas crossover during water electrolysis • Increase of the efficiency of pressurized water electrolysis • Prevention of safety hazards due to explosive gas mixtures caused by crossover • Experimental realization for a polymer electrolyte membrane electrolyzer • Discussion of electrochemical crossover mitigation for alkaline water electrolysis - Abstract: Hydrogen produced by water electrolysis can be used as an energy carrier storing electricity generated from renewables. During water electrolysis hydrogen can be evolved under pressure at isothermal conditions, enabling highly efficient compression. However, the permeation of hydrogen through the electrolyte increases with operating pressure and leads to efficiency loss and safety hazards. In this study, we report on an innovative concept, where the hydrogen crossover is electrochemically mitigated by an additional electrode between the anode and the cathode of the electrolysis cell. Experimentally, the technique was applied to a proton exchange membrane water electrolyzer operated at a hydrogen pressure that was fifty times larger than the oxygen pressure. Therewith, the hydrogen crossover was reduced and the current efficiency during partial load operation was increased. The concept is also discussed for water electrolysis that is operated at balanced pressures, where the crossover of hydrogen and oxygen is mitigated using two additional electrodes

  16. A technique for searching for the 2 K capture in 124Xe with a copper proportional counter

    Science.gov (United States)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-12-01

    An experimental technique for searching for the 2 K capture in 124Xe with a large low-background copper proportional counter is described. Such an experiment is conducted at the Baksan Neutrino Observatory of the Institute for Nuclear Research of the Russian Academy of Sciences. The experimental setup is located in the Low-Background Deep-Level Laboratory at a depth of 4900 m.w.e., where the flux of muons of cosmic rays is suppressed by a factor of 107 relative to that at the Earth's surface. The setup incorporates a proportional counter and low-background shielding (18 cm of copper, 15 cm of lead, and 8 cm of borated polyethylene). The results of processing the data obtained in 5 months of live measurement time are presented. A new limit on the half-life of 124Xe with respect to the 2 K capture is set at the level of 2.5 × 1021 years.

  17. Prediction and correlation of high-pressure gas solubility in polymers with simplified PC-SAFT

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2005-01-01

    Using simplified PC-SAFT we have modeled gas solubilities at high temperatures and pressures for the gases methane and carbon dioxide in each of the three polymers high-density polyethylene (HDPE), nylon polyamide-11 (PA-11), and poly(vinylidene fluoride) (PVDF). In general the results are satisf......Using simplified PC-SAFT we have modeled gas solubilities at high temperatures and pressures for the gases methane and carbon dioxide in each of the three polymers high-density polyethylene (HDPE), nylon polyamide-11 (PA-11), and poly(vinylidene fluoride) (PVDF). In general the results...

  18. Applications of liquid scintillation tubes

    International Nuclear Information System (INIS)

    Broga, D.W.

    1977-01-01

    A new cocktail containing device for liquid scintillation counting, the scintillation tube, consists of a two-layered plastic bag which is heatsealed after the cocktail and sample have been placed in it. It is then placed in a carrying vial and counted in a conventional liquid scintillation counter. These tubes have proved to be a practical and economical alternative to vials. Some of their advantages are elimination of absorption problems, transparency, lower background and higher counting efficiency, low breakage danger and savings in waste disposal costs. Two applications for which the tubes are particularly suitable are the counting of laboratory swipes and urine analysis. (author)

  19. Analysis of pressure drop accidents in high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kameoka, Toshiyuki

    1980-01-01

    Research and development are carried out on various problems in order to realize a multi-purpose, high temperature gas-cooled experimental reactor by Japan Atomic Energy Research Institute and others. In the experimental reactor in consideration at present, it is planned to flow helium at 1000 deg C and 40 atm. For the purpose, high temperature heat insulation structures are designed and developed, which insulate heat on the internal surfaces of pressure vessels and pipings. Consideration must be given to these internal heat insulation structures about the various characteristics in the working environmental temperature and pressure conditions, the measures for preventing the by-pass flow due to the formation of gaps and the abnormal leak of heat through the natural convection in the heat insulators and others. In this paper, the experimental results on the rapid pressure reduction characteristics of ceramic fiber heat insulation structures are reported. The ceramic fiber heat insulation structures have the features such as the application to uneven surfaces and penetration parts, the prevention of by-pass flow, and very low permeability. The problem is the restoring force after the high temperature compression. The experiment on rapid pressure reduction due to the accidental release of gas and the results are reported. (Kako, I.)

  20. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  1. Application of the pulse-rise-time discriminator for background noise decreasing in proportional x-ray counters

    International Nuclear Information System (INIS)

    Goganov, D.A.; Guslina, A.G.; Korolev, V.F.; Lozinskij, B.S.; Sklyankin, V.A.

    1977-01-01

    The intrinsic background of commercial rising edge discriminator - based proportional counters has been measured. The block-diagram of the experimental apparatus comprises the detector to be tested, a charge-sensitive amplifier with an amplitude analyzer, a rising edge discriminator (RED) and a scaling device. The rising edges have been analyzed in the range between 0.2 to 0.7 of the pulse amplitude. The RED threshold has been preset to cut off all the edges longer than those of 55 Fe (to register 87% of the 55 Fe quanta). It has been found that by limiting the amplitude discriminator window to +-20% and using a RED the background of commercial counters can be reduced by about an order

  2. Elevated temperature and high pressure large helium gas loop

    International Nuclear Information System (INIS)

    Sakasai, Minoru; Midoriyama, Shigeru; Miyata, Toyohiko; Nakase, Tsuyoshi; Izaki, Makoto

    1979-01-01

    The development of high temperature gas-cooled reactors especially aiming at the multi-purpose utilization of nuclear heat energy is carried out actively in Japan and West Germany. In Japan, the experimental HTGR of 50 MWt and 1000 deg C outlet temperature is being developed by Japan Atomic Energy Research Institute and others since 1969, and the development of direct iron-making technology utilizing high temperature reducing gas was started in 1973 as the large project of Ministry of Internalional Trade and Industry. Kawasaki Heavy Industries, Ltd., Has taken part in these development projects, and has developed many softwares for nuclear heat design, system design and safety design of nuclear reactor system and heat utilization system. In hardwares also, efforts have been exerted to develop the technologies of design and manufacture of high temperature machinery and equipments. The high temperature, high pressure, large helium gas loop is under construction in the technical research institute of the company, and it is expected to be completed in December, 1979. The tests planned are that of proving the dynamic performances of the loop and its machinery and equipments and the verification of analysis codes. The loop is composed of the main circulation system, the objects of testing, the helium gas purifying system, the helium supplying and evacuating system, instruments and others. (Kako, I.)

  3. ATLAS ALFA—measuring absolute luminosity with scintillating fibres

    CERN Document Server

    Franz, S

    2009-01-01

    ALFA is a high-precision scintillating fibre tracking detector under construction for the absolute determination of the LHC luminosity at the ATLAS interaction point. This detector, mounted in so-called Roman Pots, will track protons elastically scattered under μrad angles at IP1.In total there are four pairs of vertically arranged detector modules which approach the LHC beam axis to mm distance. Each detector module consists of ten layers of two times 64 scintillating fibres each (U and V planes). The fibres are coupled to 64 channels Multi-Anodes PhotoMultipliers Tubes read out by compact front-end electronics. Each detector module is complemented by so-called overlap detectors: Three layers of two times 30 scintillating fibres which will be used to measure the relative positioning of two vertically arranged main detectors. The total number of channels is about 15000. Conventional plastic scintillator tiles are mounted in front of the fibre detectors and will serve as trigger counter. The extremely restric...

  4. Multisector scintillation detector with fiber-optic light collection

    Science.gov (United States)

    Ampilogov, N. V.; Denisov, S. P.; Kokoulin, R. P.; Petrukhin, A. A.; Prokopenko, N. N.; Shulzhenko, I. A.; Unatlokov, I. B.; Yashin, I. I.

    2017-07-01

    A new type of scintillation detector for the use in high energy physics is described. The octagonal detector consists of eight triangular scintillator sectors with total area of 1 m2. Each sector represents two plates of 2 cm thick plastic scintillator. Seven 1 mm thick WLS fibers are laid evenly between the plates. The space between the fibers is filled with silicone compound to provide better light collection. Fiber ends from all eight sectors are gathered in the central part of the detector into a bunch and docked to the cathode of a FEU-115m photomultiplier. The read-out of the counter signals is carried out from 7th and 12th dynodes, providing a wide dynamic range up to about 10000 particles. The front-end electronics of the detector is based on the flash-ADC with a sampling frequency of 200 MHz. The features of detecting and recording systems of the multisector scintillation detector (MSD) and the results of its testing are discussed.

  5. Detection systems for high energy particle producing gaseous ionization

    International Nuclear Information System (INIS)

    Duran, I.; Martinez, L.

    1985-01-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Mueller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures are discussed, most relevant devices are reported. (author)

  6. The IFIN-HH triple coincidence liquid scintillation counter

    CSIR Research Space (South Africa)

    Razdolescu, AC

    2006-10-01

    Full Text Available at IFIN-HH using a 3 H standard. The performances of the IFIN-HH TDCR counter was checked against the measurement results of the TDCR counters of CSIR NML (South Africa), RC (Poland) and LNHB (France). A set of ready-to-measure Ni-63 sources in liquid...

  7. A new scintillation counter with very fast resolving time (1961); Nouveau compteur a scintillation a tres faible temps de resolution (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Koch, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The rare gases used as scintillators are characterized by their short time of luminescence and by the linearity of their response as a function of the total energy imparted to the gas by the incident particle. It is possible with these scintillators, when associated with a fast response photomultiplier, to solve certain problems of nuclear physics demanding a linear detector with a very fast resolving time (a few nanoseconds). Two examples of the construction of this apparatus are described. The results obtained and future possibilities are briefly outlined. (author) [French] Les gaz rares utilises comme scintillateurs sont caracterises par leur faible duree de luminescence et par la linearite de leur reponse en fonction de l'energie totale cedee au gaz par la particule incidente. Ces scintillateurs, associes a un photomultiplicateur a une reponse rapide, permettent de resoudre certains problemes de physique nucleaire dans lesquels un detecteur lineaire a tres faible temps de resolution (quelques nanosecondes) se revele indispensable. Deux exemples de realisation sont decrits. Les resultats obtenus et les possibilites futures sont brievement exposes. (auteur)

  8. Standardization of {sup 241}Am by digital coincidence counting, liquid scintillation counting and defined solid angle counting

    Energy Technology Data Exchange (ETDEWEB)

    Balpardo, C., E-mail: balpardo@cae.cnea.gov.a [Laboratorio de Metrologia de Radioisotopos, CNEA, Buenos Aires (Argentina); Capoulat, M.E.; Rodrigues, D.; Arenillas, P. [Laboratorio de Metrologia de Radioisotopos, CNEA, Buenos Aires (Argentina)

    2010-07-15

    The nuclide {sup 241}Am decays by alpha emission to {sup 237}Np. Most of the decays (84.6%) populate the excited level of {sup 237}Np with energy of 59.54 keV. Digital coincidence counting was applied to standardize a solution of {sup 241}Am by alpha-gamma coincidence counting with efficiency extrapolation. Electronic discrimination was implemented with a pressurized proportional counter and the results were compared with two other independent techniques: Liquid scintillation counting using the logical sum of double coincidences in a TDCR array and defined solid angle counting taking into account activity inhomogeneity in the active deposit. The results show consistency between the three methods within a limit of a 0.3%. An ampoule of this solution will be sent to the International Reference System (SIR) during 2009. Uncertainties were analysed and compared in detail for the three applied methods.

  9. Calibration method based on direct radioactivity measurement for radioactive gas monitoring instruments

    International Nuclear Information System (INIS)

    Yoshida, Makoto; Ohi, Yoshihiro; Chida, Tohru; Wu, Youyang.

    1993-01-01

    A calibration method for radioactive gas monitoring instruments was studied. In the method, gaseous radioactivity standards were provided on the basis of the direct radioactivity measurement by the diffusion-in long proportional counter method (DLPC method). The radioactivity concentration of the gas mixture through a monitoring instrument was determined by sampling the known volume of the gas mixture into the proportional counter used for the DLPC method. Since oxygen in the gas mixture decreased the counting efficiency in a proportional counter, the influence on calibration was experimentally estimated. It was not serious and able to be easily corrected. By the present method, the relation between radioactivity concentration and ionization current was determined for a gas-flow ionization chamber with 1.5 l effective volume. It showed good agreement with the results in other works. (author)

  10. Gas filled detectors

    International Nuclear Information System (INIS)

    Stephan, C.

    1993-01-01

    The main types of gas filled nuclear detectors: ionization chambers, proportional counters, parallel-plate avalanche counters (PPAC) and microstrip detectors are described. New devices are shown. A description of the processes involved in such detectors is also given. (K.A.) 123 refs.; 25 figs.; 3 tabs

  11. Performance tests and comparison of microdosimetric measurements with four tissue-equivalent proportional counters in scanning proton therapy

    Czech Academy of Sciences Publication Activity Database

    Farah, J.; De Saint-Hubert, M.; Mojzeszek, N.; Chiriotti, S.; Gryzinski, M.; Ploc, Ondřej; Trompier, F.; Turek, Karel; Vanhavere, F.; Olko, P.

    2017-01-01

    Roč. 96, JAN (2017), s. 42-52 ISSN 1350-4487 EU Projects: European Commission(XE) 662287 - CONCERT Institutional support: RVO:61389005 Keywords : tissue-equivalent proportional counters * microdosimetry * proton therapy * stray neutrons and prothons Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.442, year: 2016

  12. Systematic studies of small scintillators for new sampling calorimeter

    Indian Academy of Sciences (India)

    A new sampling calorimeter using very thin scintillators and the multi-pixel photon counter (MPPC) has been proposed to produce better position resolution for the international linear collider (ILC) experiment. As part of this R & D study, small plastic scintillators of different sizes, thickness and wrapping reflectors are ...

  13. Numerical Analysis on Transient of Steam-gas Pressurizer

    International Nuclear Information System (INIS)

    Kim, Jong-Won; Lee, Yeon-Gun; Park, Goon-Cherl

    2008-01-01

    In nuclear reactors, various pressurizers are adopted to satisfy their characteristics and uses. The additional active systems such as heater, pressurizer cooler, spray and insulator are essential for a steam or a gas pressurizer. With a steam-gas pressurizer, additional systems are not required due to the use of steam and non-condensable gas as pressure-buffering materials. The steam-gas pressurizer in integrated small reactors experiences very complicated thermal-hydraulic phenomena. To ensure the integrity of this pressurizer type, the analysis on the transient behavior of the steam-gas pressure is indispensable. For this purpose, the steam-gas pressurizer model is introduced to predict the accurate system pressure. The proposed model includes bulk flashing, rainout, inter-region heat and mass transfer and wall condensation with non-condensable gas. However, the ideal gas law is not applied because of significant interaction at high pressure between steam and non-condensable gas. The results obtained from this proposed model agree with those from pressurizer tests. (authors)

  14. Rapid method for determining Sr-89 and Sr-90 using Cherenkov and proportional counting; Schnellmethode zur Bestimmung von SR-89 und SR-90 durch Cerenkov- und Proportionalzaehlermessungen

    Energy Technology Data Exchange (ETDEWEB)

    Lange, S.; Wende, C.; Schwokowski, R.; Alisch-Mark, M.; Abraham, A.; Heinrich, T. [Staatliche Betriebsgesellschaft fuer Umwelt und Landwirtschaft, Radebeul (Germany)

    2016-07-01

    A rapid method for determining Sr-89 and Sr-90 in water, milk and biological samples has been developed and tested. After sample preparation strontium is separated by extraction chromatography using Sr resin. Eluate is divided and transfered to LSC vial and filter paper by SrCO{sub 3} precipitation. A Hidex 300 SL TDCR liquid scintillation counter and Thermo Fisher low level proportional counter have been used. Chemical yield of Sr-85 tracer is determined by Gamma spectroscopy. Uncertainty budget, decision threshold and detection limit are calculated in accordance with GUM and ISO 11929.

  15. Nuclear safeguards research with the LASL 3. 75-MV Van de Graaff accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Krick, M.S.; Evans, A.E.

    1976-01-01

    The continued use of the Los Alamos Scientific Laboratory (LASL) 3.75-MV Van de Graaff accelerator for the nondestructive assay of nuclear material in support of nuclear safeguards is reviewed. A brief description of the accelerator facility and the small-sample assay station (SSAS) is provided. Factors affecting high-accuracy assay of small samples are outlined. Examples are provided for the assay of uranium--thorium mixtures, low-level uranium samples, and high-temperature gas-cooled reactor (HTGR) fuel rods. Research on delayed-neutron energy spectra, radiation damage to /sup 3/He proportional counters, and /sup 4/He gas scintillators is summarized.

  16. Determination of radon concentration in ground water in Aichi Prefecture by liquid scintillation counter

    Energy Technology Data Exchange (ETDEWEB)

    Onuma, A.; Shimizu, M.; Chaya, K.; Hamamura, N. (Aichi Prefectural Inst. of Public Health, Nagoya (Japan)); Kagami, T.

    1982-01-01

    The radon (Rn) concentration in ground water in Aichi Prefecture was determined by the liquid scintillation counter (LSC) method. The measurement of radon by LSC was made by integration counting, keeping the constant LS quantity in a vial and the constant geometry of a photomultiplier. The recovery rate of radon with 226-radium standard solution was 98.7%. The coefficient of variation in the measured values of radon concentration in ground water in Aichi Prefecture by the LSC method was 4.9%. For the same ground waters in the prefecture, the radon concentrations measured by the LSC method and by the conventional IM fontactoscope method were examined comparatively. This gave a regression formula of LSC value = 0.583 x IM value + 1.325 (n = 70, coefficient of correlation 0.966), indicating significant correlation between the two. It is thus shown that the LSC method is an effective means as the IM fontactoscope method.

  17. Determination of radon concentration in ground water in Aichi Prefecture by liquid scintillation counter

    International Nuclear Information System (INIS)

    Onuma, Akiko; Shimizu, Michihiko; Chaya, Kunio; Hamamura, Norikatsu; Kagami, Tadaaki.

    1982-01-01

    The radon (Rn) concentration in ground water in Aichi Prefecture was determined by the liquid scintillation counter (LSC) method. The measurement of radon by LSC was made by integration counting, keeping the constant LS quantity in a vial and the constant geometry of a photomultiplier. The recovery rate of radon with 226-radium standard solution was 98.7%. The coefficient of variation in the measured values of radon concentration in ground water in Aichi Prefecture by the LSC method was 4.9%. For the same ground waters in the prefecture, the radon concentrations measured by the LSC method and by the conventional IM fontactoscope method were examined comparatively. This gave a regression formula of LSC value = 0.583 x IM value + 1.325 (n = 70, coefficient of correlation 0.966), indicating significant correlation between the two. It is thus shown that the LSC method is an effective means as the IM fontactoscope method. (J.P.N.)

  18. Modern high pressure gas injection centrifugal compressor for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, Amin [Worley Parsons Services Pty Ltd, Brisbane, NSW (Australia). Mechanical Dept.

    2011-12-15

    This article covers different design, manufacturing, performance and reliability aspects of modern high pressure gas re-injection centrifugal compressor units. Advances and recent technologies on critical areas such as rotor dynamics, anti-surge system, rotating stall prevention, auxiliary systems, material selection, shop performance tests and gas sealing are studied. Three different case studies for modern re-injection machines including 12 MW, 15 MW and 32 MW trains are presented. (orig.)

  19. Study of the MWPC gas gain behaviour as a function of the gas pressure and temperature

    CERN Document Server

    Pinci, D

    2005-01-01

    The Muon System of the LHCb experiment is composed of five detection stations (M1-M5) equipped with 1368 Multi-Wire Proportional Chambers (MWPC) and 24 Triple-GEM detectors. The Multi Wire Proportional Chamber (MWPC) performances (detection efficiency, time resolution, pad-cluster size and ageing properties) are heavily dependent on the gas gain. The chamber gain depends on the gas density and therefore on the gas temperature and pressure. The impact of the environmental parameters on the MWPC gain has been studied in detail. The results, togheter with a simple method proposed to account for the gain variations, are reported in this note. The absolute gas gain at the testing voltage of 2750 V was also measured to be (1.2 +- 0.1)*10^5.

  20. Study of colour quenching effects in the calibration of liquid scintillation counters: the case of sup 2 sup 1 sup 0 Pb

    CERN Document Server

    Villa, M; Manjon, G

    2003-01-01

    In this work a rigorous method for the calibration of a liquid scintillation counter for sup 2 sup 1 sup 0 Pb activity determination is proposed. The variation of the PSA threshold level for alpha/beta discrimination with the colour quenching is analysed for different beta energies. Also the changes in some parameters of the detector response, as the muon-peak, the channel ratio and the centroid of the spectrum, due to colour quenching are studied. The relationship between such parameters and the counting efficiency is described in such a way that the effects of colour in the efficiency are established. sup 9 sup 9 Tc is proposed as a good standard to calibrate the counter for sup 2 sup 1 sup 0 Pb determination in real samples.

  1. The fast trigger scintillator for the JETSET experiment (PS202/LEAR)

    International Nuclear Information System (INIS)

    Sefzick, T.

    1988-12-01

    In the present thesis the trigger detector of the JETSET experiment (PS202) at the LEAR/CERN consisting of scintillation counters is presented. After giving a start signal in a second stage of the trigger electronics the determination of the position of the traversed points of the reaction products is performed with the information of the scintillation detector. A third following trigger stage shall study the position informations given by the second stage under kinematical points of view. The present diploma thesis deals especially with the first two trigger stages. As basic conditions the components of a scintillation counter are treated and calibration and testing possibilities presented. For this belongs a fast light pulser with green or blue LED. Results of the studies which scintillator and light-guide materials are most suitable for the JETSET experiment are presented. (orig./HSI) [de

  2. Application of digital waveform processing to position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Takenaka, Yasuto; Uritani, Akira; Mori, Chizuo

    1995-01-01

    In a charge-division type position-sensitive proportional counter (PSPC) with an anode wire of small resistance, a reflected component from an opposite end and thermal noise involved in signals deteriorate the position resolution of the PSPC. A digital waveform processing method was applied to the reduction of these undesirable effects by skillfully utilizing their signal characteristics that can be observed as inversely correlative signals between two-output signals from both sides of the PSPC. The digital waveform processing could improve the position resolution compared to a conventional pulse height processing method with analog filters. When the digital waveform processing was applied to signals of an equivalent circuit simulating the PSPC, the position resolutions defined by the full width at half maximum were improved to about 30% of those of conventional analog pulse processing. In the case of an actual PSPC, the position resolutions by the digital waveform processing were improved by 4-10% as compared with those of conventional pulse height processing. (author)

  3. Construction of a self-supporting tissue-equivalent dividing wall and operational characteristics of a coaxial double-cylindrical tissue-equivalent proportional counter

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.

    1994-01-01

    An additional feature incorporated in a coaxial double-cylindrical tissue-equivalent proportional counter, is the presence of a common tissue-equivalent dividing wall between the inner and outer counters of thickness equivalent to the corresponding maximum range of protons at the energy of interest. By appropriate use of an anti-coincidence arrangement with the outer counter, the inner counter could be used to discriminate microdosimetric spectra of neutrons at the desired low energy range from those of the faster neutrons. The construction of an A-150 self-supporting tissue-equivalent dividing wall and an anti-coincidence unit are described. Some operational characteristic tests have been performed to determine the operation of the new microdosimeter. (author)

  4. Express method and radon gas measurement detector

    International Nuclear Information System (INIS)

    Khajdarov, R.A.; Khajdarov, R.R.

    2004-01-01

    The purpose of this work was to improve the activated charcoal adsorption method. The detector consisted of an electronic unit (200 mm x 180 mm x 80 mm) and a scintillation cell (a tube 200 mm long, 60 mm diam.). The electronic unit contained a power supply, amplifier, discriminator, timer, counter and indicator. The scintillation cell contained a zinc sulfide scintillator, photomultiplier, preamplifier, high voltage power supply and a 200 ml chamber above the scintillator. This chamber was intended to situate activated carbon fibrous absorber and air compressor. In this method, air is drawn through a filter to remove radon decay products and then through the activated carbon cloth by using a compressor. Sampling takes between 5 and 15 minutes. After the sampling, the cloth is heated for 5-10 sec up to 200-250 deg C by electric current passing through the fiber. Radon gas evaporates from the cloth and the device detects scintillation pulses. Owing to a high radon preconcentration factor (by adsorption of radon on the activated carbon cloth from 50-150 L of air of and evaporation into the small volume of the chamber), the detection limit of the method is 2-4 Bq/m 3 . Since the distance between the filter, cloth and scintillator is over 80 mm, the detector only measures radiation from radon without interference from the radon decay products, remaining in the filter and cloth

  5. Multiwire proportional chamber for Moessbauer spectroscopy: development and results

    International Nuclear Information System (INIS)

    Costa, M.S. da.

    1985-12-01

    A new Multiwere proportional Chamber designed for Moessbauer Spectroscopy is presented. This detector allows transmission backscattering experiments using either photons or electrons. The Moessbauer data acquisition system, partially developed for this work is described. A simple method for determining the frontier between true proportional and semi-proportional regions of operation in gaseous detectors is proposed. The study of the tertiary gas mixture He-Ar-CH 4 leads to a straight forward way of energy calibration of the electron spectra. Moessbauer spectra using Fe-57 source are presented. In particular those obtained with backsattered electrons show the feasibility of depth selective analysis with gaseous proportional counters. (author) [pt

  6. From the High Energy Physics Laboratory to the hospital -some experiences of the application of MWPC [multiwire proportional counter] technology to medicine

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1989-01-01

    In this talk I wish to briefly review the experience we have obtained at the Rutherford Appleton Laboratory over the past decade in the adaptation of MWPC (multiwire proportional counter) technology to diagnostic imaging applications in medicine. A cursory glance at the history of science and technology quickly shows the often intimate and mutually beneficial relationship between ''pure'' science (and scientists) and practical applications. The following talk traces some of the principal features of the situation which have been brought to my attention in the course of the last decade. (author)

  7. Determination of the influence of asymmetry of the electric field distribution in gaseous proportional counters on their signal amplitude

    International Nuclear Information System (INIS)

    Jagusztyn, W.

    1976-01-01

    A method is described of establishing the influence of the asymmetry of the electric field distribution in gaseous proportional counters on the amplitude of their voltage signal. A numerical evaluation of this effect demands performing calculations of the electric field in the vicinity of the anode. Using the described method of numerical solution of the Laplace equation in polar coordinates with logarythmically scaled radial dimension, it is possible to achieve the required accuracy. In the calculations of differences in amplitudes of voltage signals, for chosen trajektories of electrons liberated in the process of primary ionization, changes in the gaseous amplification factors and drift velocities of positive ions are taken into account. Experimental results prove the validity of presented theory. The results obtained are accurate enough to be applied to the design of proportional counters of non-cylindrical geometries. (author)

  8. A compact and high efficiency GAGG well counter for radiocesium concentration measurements

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Ogata, Yoshimune

    2014-07-01

    After the Fukushima nuclear disaster, social concern about radiocesium ({sup 137}Cs and {sup 134}Cs) contamination in food increased. However, highly efficient instruments that can measure low level radioactivity are quite expensive and heavy. A compact, lightweight, and reliable radiation detector that can inexpensively monitor low level radiocesium is highly desired. We developed a compact and highly efficient radiocesium detector to detect ∼32 keV X-rays from radiocesium instead of high energy gamma photons. A 1-mm thick GAGG scintillator was selected to effectively detect ∼32 keV X-rays from {sup 137}Cs to reduce the influence of ambient radiation. Four sets of 25 mm×25 mm×1 mm GAGG plates, each of which was optically coupled to a triangular-shaped light guide, were optically coupled to a photomultiplier tube (PMT) to form a square-shaped well counter. Another GAGG plate was directly optically coupled to the PMT to form its bottom detector. The energy resolution of the GAGG well counter was 22.3% FWHM for 122 keV gamma rays and 32% FWHM for ∼32 keV X-rays. The counting efficiency for the X-rays from radiocesium (mixture of {sup 137}Cs and {sup 134}Cs) was 4.5%. In measurements of the low level radiocesium mixture, a photo-peak of ∼32 keV X-rays can clearly be distinguished from the background. The minimum detectable activity (MDA) was estimated to be ∼100 Bq/kg for 1000 s measurement. The results show that our developed GAGG well counter is promising for the detection of radiocesium in food.

  9. Silicon photomultipliers for scintillating trackers

    Energy Technology Data Exchange (ETDEWEB)

    Rabaioli, S., E-mail: simone.rabaioli@gmail.com [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Berra, A.; Bolognini, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Bosisio, L. [Universita degli Studi di Trieste and INFN sezione di Trieste (Italy); Ciano, S.; Iugovaz, D. [INFN sezione di Trieste (Italy); Lietti, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Penzo, A. [INFN sezione di Trieste (Italy); Prest, M. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Rashevskaya, I.; Reia, S. [INFN sezione di Trieste (Italy); Stoppani, L. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2012-12-11

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain ({approx}10{sup 6}). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  10. Silicon photomultipliers for scintillating trackers

    Science.gov (United States)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  11. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  12. A technique for searching for the 2K capture in {sup 124}Xe with a copper proportional counter

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Kazalov, V. V.; Kuzminov, V. V. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Panasenko, S. I.; Ratkevich, S. S. [Karazin Kharkiv National University (Ukraine); Tekueva, D. A., E-mail: t.jami.a@mail.ru; Yakimenko, S. P. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2015-12-15

    An experimental technique for searching for the 2K capture in {sup 124}Xe with a large low-background copper proportional counter is described. Such an experiment is conducted at the Baksan Neutrino Observatory of the Institute for Nuclear Research of the Russian Academy of Sciences. The experimental setup is located in the Low-Background Deep-Level Laboratory at a depth of 4900 m.w.e., where the flux of muons of cosmic rays is suppressed by a factor of 10{sup 7} relative to that at the Earth’s surface. The setup incorporates a proportional counter and low-background shielding (18 cm of copper, 15 cm of lead, and 8 cm of borated polyethylene). The results of processing the data obtained in 5 months of live measurement time are presented. A new limit on the half-life of {sup 124}Xe with respect to the 2K capture is set at the level of 2.5 × 10{sup 21} years.

  13. Neutron detection and multiplicity counting using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array

    International Nuclear Information System (INIS)

    Miller, M.C.

    1998-03-01

    Neutron detection and multiplicity counting has been investigated using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array. Boron-loaded plastic combines neutron moderation (H) and detection ( 10 B) at the molecular level, thereby physically coupling increasing detection efficiency and decreasing die-away time with detector volume. Both of these characteristics address a fundamental limitation of thermal-neutron multiplicity counters, where 3 He proportional counters are embedded in a polyethylene matrix. Separation of the phoswich response into its plastic scintillator and bismuth germanate components was accomplished on a pulse-by-pulse basis using custom integrator and timing circuits. In addition, a custom time-tag module was used to provide a time for each detector event. Analysis of the combined energy and time event stream was performed by calibrating each detector's response and filtering based on the presence of a simultaneous energy deposition corresponding to the 10 B(n,alpha) reaction products in the plastic scintillator (93 keV ee ) and the accompanying neutron-capture gamma ray in the bismuth germanate (478 keV). Time-correlation analysis was subsequently performed on the filtered event stream to obtain shift-register-type singles and doubles count rates. Proof-of-principle measurements were conducted with a variety of gamma-ray and neutron sources including 137 Cs, 54 Mn, AmLi, and 252 Cf. Results of this study indicate that a neutron-capture probability of ∼10% and a die-away time of ∼10 micros are possible with a 4-detector array with a detector volume of 1600 cm 3 . Simulations were performed that indicate neutron-capture probabilities on the order of 50% and die-away times of less than 4 micros are realistically achievable. While further study will be required for practical application of such a detection system, the results obtained in this investigation are encouraging and may lead to a new class of high

  14. An efficient anticoincidence counter

    CERN Multimedia

    1977-01-01

    This scintillation counter (about 25 cm diameter) was prepared at CERN for an experiment at the Saclay 600 MeV electron linac studying molecular processes originated in liquid hydrogen by muons. The counter is meant to surround the target and detect charged particles emerging from the hydrogen. The experiment was a CERN-Saclay collaboration which used the linac so as to take advantage of the time structure of the electron beam(see CERN Courier Sep 1977 and J. Bardin et al. Phys. Lett. B104 (1981) 320)

  15. Radiation detection systems

    International Nuclear Information System (INIS)

    Rozsa, Sandor

    1989-01-01

    Principles and operation of radiation detectors used for industrial and laboratory radiometric measurements are reviewed. The discussed detector types are as follows: ionization chamber, proportional counter, Geiger-Mueller counter, semiconductor detectors, scintillation counter and scintillators, photomultiplier tube, scintillation spectrometer and scintillation detector with semiconductor light sensor. A brief overview of the detectors of industrial nuclear instruments is also presented. (R.P.) 32 figs.; 3 tabs

  16. Detection systems for high energy particle producing gaseous ionization

    International Nuclear Information System (INIS)

    Martinez, L.; Duran, I.

    1985-01-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Muller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures, are discussed, most relevant devices are reported along 90 pages with 98 references. (Author) 98 refs

  17. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    Science.gov (United States)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  18. Emulation workbench for position sensitive gaseous scintillation detectors

    International Nuclear Information System (INIS)

    Pereira, L.; Margato, L.M.S.; Morozov, A.; Solovov, V.; Fraga, F. A. F.

    2015-01-01

    Position sensitive detectors based on gaseous scintillation proportional counters with Anger-type readout are being used in several research areas such as neutron detection, search for dark matter and neutrinoless double beta decay. Design and optimization of such detectors are complex and time consuming tasks. Simulations, while being a powerful tool, strongly depend on the light transfer models and demand accurate knowledge of many parameters, which are often not available. Here we describe an alternative approach based on the experimental evaluation of a detector using an isotropic point-like light source with precisely controllable light emission properties, installed on a 3D positioning system. The results obtained with the developed setup at validation conditions, when the scattered light is strongly suppressed show good agreement with simulations

  19. Photon veto counters at KTeV/KAMI with blue WLS fibers

    International Nuclear Information System (INIS)

    Hanagaki, Kazunori

    1998-01-01

    The photon veto detectors used in KTeV experiment were required to have high detection efficiency with high speed response. To satisfy the requirements, we used scintillation counters with blue wave length shifter fibers for their readout. This document describes the design and performance of the photon veto detectors and a possible improvement for future experiments

  20. Tests of the new STIC scintillator ring prototype, the photomultipliers and optic fibers cables of the 40 deg C counters

    International Nuclear Information System (INIS)

    Silva, Tatiana da

    1997-01-01

    This paper reports the tests performed on the semicircular prototype of the new scintillator ring with readings obtained by WLS optic fibers. The prototype intends to verify the light collecting and investigate a method for fiber gluing in a circular surface, without the appearing of air bubbles which may restrain the light transmission. Also the optic fiber cables and the photomultipliers used in the 40 deg C counters have been tested in order to verify the electromagnetic energy which may leak from failures in the barrel, aiming the hermeticity enhancement, and also the existence of any damaged cable

  1. Low level neutron monitoring using high pressure 3He detectors

    International Nuclear Information System (INIS)

    Pszona, S.

    1995-01-01

    Three detectors, two spherical proportional counters and an ionisation chamber, all filled with 3 He to pressures of 160 kPa, 325 kPa and 1 MPa respectively have been experimentally studied with respect to their use for low level neutron monitoring. The ambient dose equivalent responses and the energy resolutions of these detectors have been determined. It is shown that spectral analysis of the signals from these detectors not only gives high sensitivity with regard to ambient dose equivalent but also improves the quality of the measurements. A special instrumentation for low level neutron monitoring is described in which a quality control method has been implemented. (Author)

  2. Production low cost plastic scintillator by using commercial polystyrene

    International Nuclear Information System (INIS)

    2011-01-01

    Plastic Scintillators can be described as solid materials which contain organic fluorescent compounds dissolved within a polymer matrix. Transparent plastics commonly used for light scintillation are Polystyrene (or PS, poly-vinyl-benzene) and polyvinyl-toluene (or PVT, poly-methyl-styron). By changing the composition of plastic Scintillators some features such as light yield, radiation hardening, decay time etc. can be controlled. Plastic scintillation detectors have been used in nuclear and high energy physics for many decades. Among their benefits are fast response, ease of manufacture and versatility. Their main drawbacks are radiation resistance and cost. Many research projects have concentrated on improving the fundamental properties of plastic scintillators, but little attention has focussed on their cost and easier manufacturing techniques. First plastic Scintillators were produced in 1950's. Activities for production of low cost Scintillators accelerated in second half of 1970's. In 1975 acrylic based Plexipop Scintillator was developed. Despite its low cost, since its structure was not aromatic the light yield of Plexipop was about one quarter of classical Scintillators. Problems arising from slow response time and weak mechanical properties in scintillators developed, has not been solved until 1980. Within the last decade extrusion method became very popular in preparation of low cost and high quality plastic scintillators. In this activity, preliminary studies for low cost plastic scintillator production by using commercial polystyrene pellets and extrusion plus compression method were aimed. For this purpose, PS blocks consist of commercial fluorescent dopant were prepared in June 2008 by use of the extruder and pres in SANAEM. Molds suitable for accoupling to extruder were designed and manufactured and optimum production parameters such as extrusion temperature profile, extrusion rate and moulding pressure were obtained hence, PS Scintillator Blocks

  3. Study of the switching rate of gas-discharge devices based on the open discharge with counter-propagating electron beams

    International Nuclear Information System (INIS)

    Bokhan, P. A.; Gugin, P. P.; Lavrukhin, M. A.; Zakrevsky, Dm. E.

    2015-01-01

    The switching rate of gas-discharge devices “kivotrons” based on the open discharge with counter-propagating electron beams has been experimentally studied. Structures with 2-cm 2 overall cathode area were examined. The switching time was found to show a monotonic decrease with increasing the working-gas helium pressure and with increasing the voltage across the discharge gap at breakdown. The minimum switching time was found to be ∼240 ps at 17 kV voltage, and the maximum rate of electric-current rise limited by the discharge-circuit inductance was 3 × 10 12  A/s

  4. Optical fibers and avalanche photodiodes for scintillator counters

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Palmer, R.B.; Strand, R.C.

    1980-01-01

    Fine hodoscopes can be made of new scintillating optical fibers and one half inch end-on PMT's. An avalanche photodiode with small size and immunity to magnetic fields remains as a tempting new device to be proven as a photodetector for the fibers

  5. Energy resolution in X-ray detecting micro-strip gas counters

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Mir, J A; Spill, E J; Stephenson, R

    2002-01-01

    Systematic measurements of the energy resolution available from a Micro-Strip Gas Counter (MSGC) are presented. The effect of factors such as bias potential, gas filling and strip geometry on the energy resolution are examined in detail and related to a simple model. The geometry of the MSGC is adapted to permit 'wall-less' detection of X-rays and this results in useful improvements in the pulse height spectra.

  6. Effect of gas filling pressure and operation energy on ion and neutron emission in a medium energy plasma focus device

    Science.gov (United States)

    Niranjan, Ram; Rout, R. K.; Srivastava, Rohit; Kaushik, T. C.

    2018-03-01

    The effects of gas filling pressure and operation energy on deuterium ions and neutrons have been studied in a medium energy plasma focus device, MEPF-12. The deuterium gas filling pressure was varied from 1 to 10 mbar at an operation energy of 9.7 kJ. Also, the operation energy was varied from 3.9 to 9.7 kJ at a deuterium gas filling pressure of 4 mbar. Time resolved emission of deuterium ions was measured using a Faraday cup. Simultaneously, time integrated and time resolved emissions of neutrons were measured using a silver activation detector and plastic scintillator detector, respectively. Various characteristics (fluence, peak density, and most probable energy) of deuterium ions were estimated using the Faraday cup signal. The fluence was found to be nearly independent of the gas filling pressure and operation energy, but the peak density and most probable energy of deuterium ions were found to be varying. The neutron yield was observed to be varying with the gas filling pressure and operation energy. The effect of ions on neutrons emission was observed at each operation condition.

  7. Calibration of a liquid scintillation counter for alpha, beta and Cerenkov counting

    International Nuclear Information System (INIS)

    Scarpitta, S.C.; Fisenne, I.M.

    1996-07-01

    Calibration data are presented for 25 radionuclides that were individually measured in a Packard Tri-Carb 2250CA liquid scintillation (LS) counter by both conventional and Cerenkov detection techniques. The relationships and regression data between the quench indicating parameters and the LS counting efficiencies were determined using microliter amounts of tracer added to low 40 K borosilicate glass vials containing 15 mL of Insta-Gel XF scintillation cocktail. Using 40 K, the detection efficiencies were linear over a three order of magnitude range (10 - 10,000 mBq) in beta activity for both LS and Cerenkov counting. The Cerenkov counting efficiency (CCE) increased linearly (42% per MeV) from 0.30 to 2.0 MeV, whereas the LS efficiency was >90% for betas with energy in excess of 0.30 MeV. The CCE was 20 - 50% less than the LS counting efficiency for beta particles with maximum energies in excess of 1 MeV. Based on replicate background measurements, the lower limit of detection (LLD) for a 1-h count at the 95% confidence level, using water as a solvent, was 0.024 counts sec- -1 and 0.028 counts sec-1 for plastic and glass vials, respectively. The LLD for a 1-h-count ranged from 46 to 56 mBq (2.8 - 3.4 dpm) for both Cerenkov and conventional LS counting. This assumes: (1) a 100% counting efficiency, (2) a 50% yield of the nuclide of interest, (3) a 1-h measurement time using low background plastic vials, and (4) a 0-50 keV region of interest. The LLD is reduced an order of magnitude when the yield recovery exceeds 90% and a lower background region is used (i.e., 100 - 500 keV alpha region of interest). Examples and applications of both Cerenkov and LS counting techniques are given in the text and appendices

  8. First experimental results and simulation for gas optimisation of the MART-LIME detector

    International Nuclear Information System (INIS)

    Bazzano, A.; Brunetti, M.T.; Cocchi, M.; Hall, C.J.; Lewis, R.A.; Natalucci, L.; Ortuno-Prados, F.; Ubertini, P.

    1996-01-01

    A large area high pressure multi-wire proportional counter (MWPC), with both spatial and spectroscopic capabilities, is being jointly developed by the Istituto di Astrofisica Spaziale (IAS), CNR, Frascati, Italy and the Daresbury Laboratory (DL), Warrington, UK as part of the MART-LIME telescope. Recent test results (October-December 1995) carried out at the DL facilities are presented. A brief study, by means of a simulation program, on the possible gas mixtures to be employed in the MART-LIME detector is also reported. The results of the simulation are compared with the experimental data obtained from the tests. (orig.)

  9. An innovative scintillation process for correcting, cooling, and reducing the randomness of waveforms

    International Nuclear Information System (INIS)

    Shen, J.

    1991-01-01

    Research activities were concentrated on an innovative scintillation technique for high-energy collider detection. Heretofore, scintillation waveform data of high- energy physics events have been problematically random. This paper represents a bottleneck of data flow for the next generation of detectors for proton colliders like SSC or LHC. Prevailing problems to resolve were: additional time walk and jitter resulting from the random hitting positions of particles, increased walk and jitter caused by scintillation photon propagation dispersions, and quantum fluctuations of luminescence. However, these were manageable when the different aspects of randomness had been clarified in increased detail. For this purpose, these three were defined as pseudorandomness, quasi-randomness, and real randomness, respectively. A unique scintillation counter incorporating long scintillators with light guides, a drift chamber, and fast discriminators plus integrators was employed to resolve problems of correcting time walk and reducing the additional jitter by establishing an analytical waveform description of V(t,z) for a measured (z). Resolving problem was accomplished by reducing jitter by compressing V(t,z) with a nonlinear medium, called cooling scintillation. Resolving problem was proposed by orienting molecular and polarizing scintillation through the use of intense magnetic technology, called stabilizing the waveform

  10. The 'miniskirt' counter array at CDF II

    International Nuclear Information System (INIS)

    Artikov, A.; Budagov, Yu.; Bellettini, G.

    2002-01-01

    Muon detection is fundamental to many of the interesting analyses at CDF II. For more efficient muon registration in Run II it was decided to increase geometrical coverage. The so-called 'miniskirt' counters are part of this upgrade. The original design parameters of the 'miniskirt' and mixed 'miniskirt' scintillation counters for the CDF Muon System are presented. The modifications, testing and installation of these counters within the CDF Upgrade Project are described in detail. The timing characteristics of mixed 'miniskirt' counters are also investigated using cosmic muons. The measurements show that the time resolution does not exceed 2.2 ns

  11. The effect of pressurization path on high pressure gas forming of Ti-3Al-2.5V at elevated temperature

    OpenAIRE

    Liu Gang; Wang Jianlong; Dang Kexin; Yuan Shijian

    2015-01-01

    High pressure gas forming is a tubular component forming technology with pressurized gas at elevated temperature, based on QPF, HMGF and Hydroforming. This process can be used to form tube blank at lower temperatures with high energy efficiency and also at higher strain rates. With Ti-3Al-2.5V Ti-alloy tube, the potential of HPGF was studied further through experiments at the elevated temperatures of 650 ∘C and 700 ∘C. In order to know the formability of the Ti-alloy tube, tensile tests were ...

  12. Development of a scintillator detector set with counter and data acquisition for flow measurements

    CERN Document Server

    Costa, F E D

    2002-01-01

    A portable counter with data acquisition system for flow measurements was developed, using the pulse velocity technique. This consists in determining the tracer transit time mixed homogeneously to the liquid or gas pipelines. The counter comprises: (a) two CsI(Tl) crystals solid state detectors, associated with Si PIN photodiodes, with compatible sensitivity to the injected radiotracers activities; (b) amplification units; (c) analogue-to-digital interface, which processes and displays the detectors counting separately and in real time, but in a same temporal axis, via a computer screen and (d) 30-m coaxial cables for signals transmission from each detector to the processing unit. Experiments were carried out for the detector and associated electronic characterizations. The equipment showed to be suitable for flow measurements in an industrial plant, in the real situation.

  13. A new tritium process monitor based on scintillating fibres

    International Nuclear Information System (INIS)

    Pacenti, P.; Edwards, R.A.H.; Monte, A. de; Campi, F.

    1998-01-01

    The main requirements for tritium monitoring in processes related with fusion fuel cycle are low tritium memory, fast response and accuracy, in decreasing order of importance. At present, in-line tritium monitoring in such tritium processing is done mostly using ionization chambers, which suffer a number of drawbacks: output and sensitivity depends on total gas pressure, composition and flow, etc., and have problems such as tritium memory and generally of saturation effect at high tritium concentrations. Solid scintillators can only work well with tritium if they offer a large surface area, because tritium is absorbed within the first microns of material. The present design uses entirely inorganic scintillator and construction materials, chosen to minimize tritium memory. The described on line and real time tritium detector presents some advantages in comparison with well established flow-through tritium process monitors, such as ionization chambers and thermal conductivity detectors. (authors)

  14. High-resolution x-ray imaging using a structured scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan [Materials and Nano Physics, School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, Kista, Stockholm SE-16440 (Sweden)

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  15. Verification of surface source's characteristics using large-area 2π gas flow counter

    International Nuclear Information System (INIS)

    Abu Naser Waheed, M.M.; Mikami, S.; Kobayashi, H.; Noda, K.

    1998-09-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) has large-area 2π gas flow counter for the purpose of measuring activity of surface sources of alpha or beta ray emitter. Surface sources are used for the calibration of radiation measuring equipment for radiation control. Due to sequent use of sources, the surface of these sources are inclined to go in bad condition because of unwanted accidental incidents. For the better calibration achievement of radiation measuring instruments the rate of emission of these sources are to be checked periodically by the large-area 2π gas flow counter. In this paper described that eight U 3 O 8 surface sources were selected from many sources of PNC Tokai Works and activity of these sources was measured by the 2π gas flow counter. The results were compared with the values certified by Japan Radio Isotope Association (JRIA). It is evident from the result of comparison that the surface sources are in good condition, i.e., the sources are reliable to calibrate the radiation control instruments. (author)

  16. KEhD-1 Debye-Sherrar camera with a coordinate proportional counter

    International Nuclear Information System (INIS)

    Ageev, O.I.; Glazova, L.P.; Goganov, D.A.; Rejzis, B.M.; Syrkin, M.G.

    1985-01-01

    An arrangement of the KEhD-1 Debye-Sherrar camera, in which the advantages of a proportional counter are combined with the wide range of simultaneous image recording is described. The camera consists of an X-ray tube unit with the URS-0.1 source, a linear coordinate detector with resistive-capacity coding, a signal transducer and the MK-1 multichannel system for data acquisition and processing based on the ''Uskra-1256'' computer. The counting rate of X-ray pulses is > 5x10 4 s -1 , energy resolution for the CuKsub(α) line constitutes 20%, spatial resolution equals 150 μm, detection efficiency constitutes not less than 64%. The range of the detector displacement varies from -30 deg to +130 deg. The information obtained by means of the camera may be output to a display, a plotter, a numeric printer or a magnetic tape

  17. High Blood Pressure and Cold Remedies: Which Are Safe?

    Science.gov (United States)

    ... counter cold remedies safe for people who have high blood pressure? Answers from Sheldon G. Sheps, M.D. Over- ... remedies aren't off-limits if you have high blood pressure, but it's important to make careful choices. Among ...

  18. Sample oxidation for liquid scintillation counting

    International Nuclear Information System (INIS)

    Kisieleski, W.E.; Buess, E.M.

    1976-01-01

    The general features of biological and medical investigations which are responsible for the demands such investigations place upon the design specifications of liquid scintillation counters and associated methodology are reviewed. Special emphasis is given to the oxidative technique for sample preparation

  19. Vacuum surface flashover and high pressure gas streamers

    International Nuclear Information System (INIS)

    Elizondo, J.M.; Krogh, M.L.; Smith, D.; Stolz, D.; Wright, S.N.

    1997-07-01

    Pre-breakdown current traces obtained during high pressure gas breakdown and vacuum surface flashover show similar signatures. The initial pre-breakdown current spike, a flat constant current phase, and the breakdown phase with voltage collapse and current surge differ mostly in magnitude. Given these similarities, a model, consisting of the initial current spike corresponding to a fast precursor streamer (ionization wave led by a photoionizing front), the flat current stage as the heating or glow phase, and the terminal avalanche and gap closure, is applied to vacuum surface flashover. A simple analytical approximation based on the resistivity changes induced in the vacuum and dielectric surface is presented. The approximation yields an excellent fit to pre-breakdown time delay vs applied field for previously published experimental data. A detailed kinetics model that includes surface and gas contributions is being developed based in the initial approximation

  20. Measurement and calculation of gas compressibility factor for condensate gas and natural gas under pressure up to 116 MPa

    International Nuclear Information System (INIS)

    Yan, Ke-Le; Liu, Huang; Sun, Chang-Yu; Ma, Qing-Lan; Chen, Guang-Jin; Shen, De-Ji; Xiao, Xiang-Jiao; Wang, Hai-Ying

    2013-01-01

    Highlights: • Volumetric properties of two reservoir fluid samples were measured with pressure up to 116 MPa. • Dew point pressures at four temperatures for condensate gas sample are obtained. • Correlations and thermodynamic model for describing gas compressibility factor under high pressure were compared. • The thermodynamic model recommended is most suitable for fluids produced from reservoirs with a wide pressure range. -- Abstract: The volumetric properties of two reservoir fluid samples collected from one condensate gas well and one natural gas well were measured under four groups of temperatures, respectively, with pressure up to 116 MPa. For the two samples examined, the experimental results show that the gas compressibility factor increases with the increase of pressure. But the influence of the temperature is related to the range of the experimental pressure. It approximately decreases with the increase of temperature when the pressure is larger than (45 to 50) MPa, while there is the opposite trend when the pressure is lower than (45 to 50) MPa. The dew point pressure was also determined for the condensate gas sample, which decreases with the increase of temperature. The capabilities of four empirical correlations and a thermodynamic model based on equation of state for describing gas compressibility factor of reservoir fluids under high pressure were investigated. The comparison results show that the thermodynamic model recommended is the most suitable for fluids whatever produced from high-pressure reservoirs or conventional mild-pressure reservoirs

  1. Digital signal processing for He3 proportional counter

    International Nuclear Information System (INIS)

    Zeynalov, Sh.S.; Ahmadov, Q.S.

    2010-01-01

    Full text : Data acquisition systems for nuclear spectroscopy have traditionally been based on systems with analog shaping amplifiers followed by analog-to-digital converters. Recently, however, new systems based on digital signal processing make possible to replace the analog shaping and timing circuitry the numerical algorithms to derive properties of the pulse such as its amplitude. DSP is a fully numerical analysis of the detector pulse signals and this technique demonstrates significant advantages over analog systems in some circumstances. From a mathematical point of view, one can consider the signal evolution from the detector to the ADC as a sequence of transformations that can be described by precisely defined mathematical expressions. Digital signal processing with ADCs has the possibility to utilize further information on the signal pulses from radiation detectors. In the experiment each step of the signal generation in the 3He filled proportional counter was described using digital signal processing techniques (DSP). The electronic system has consisted of a detector, a preamplifier and a digital oscilloscope. The pulses from the detector were digitized using a digital storage oscilloscope. This oscilloscope allowed signal digitization with accuracy of 8 bit (256 levels) and with frequency of up to 5 * 10 8 samples/s. As a neutron source was used Cf-252. To obtain detector output current pulse I(t) created by the motions of the ions/electrons pairs was written an algorithm which can easily be programmed using modern computer programming languages.

  2. Proposal and design of a natural gas liquefaction process recovering the energy obtained from the pressure reducing stations of high-pressure pipelines

    Science.gov (United States)

    Tan, Hongbo; Zhao, Qingxuan; Sun, Nannan; Li, Yanzhong

    2016-12-01

    Taking advantage of the refrigerating effect in the expansion at an appropriate temperature, a fraction of high-pressure natural gas transported by pipelines could be liquefied in a city gate station through a well-organized pressure reducing process without consuming any extra energy. The authors proposed such a new process, which mainly consists of a turbo-expander driven booster, throttle valves, multi-stream heat exchangers and separators, to yield liquefied natural gas (LNG) and liquid light hydrocarbons (LLHs) utilizing the high-pressure of the pipelines. Based on the assessment of the effects of several key parameters on the system performance by a steady-state simulation in Aspen HYSYS, an optimal design condition of the proposed process was determined. The results showed that the new process is more appropriate to be applied in a pressure reducing station (PRS) for the pipelines with higher pressure. For the feed gas at the pressure of 10 MPa, the maximum total liquefaction rate (ytot) of 15.4% and the maximum exergy utilizing rate (EUR) of 21.7% could be reached at the optimal condition. The present process could be used as a small-scale natural gas liquefying and peak-shaving plant at a city gate station.

  3. Pulse shape discrimination with scintillation detectors

    International Nuclear Information System (INIS)

    Winyard, R.A.

    A quantitative study of pulse shape discrimination with scintillation counters has been undertaken using a crossover timing technique. The scintillators investigated included experimental and commercial liquids and plastics in addition to inorganic phosphors. The versatility of the pulse shape discrimination system has been demonstrated by extending the measurements to investigate phoswiches and liquids loaded with radioactive materials and by its application to the suppression of unwanted backgrounds in delayed coincidence counting for the measurement of nuclear half-lives and isotope identification have been carried out. (author)

  4. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    Science.gov (United States)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  5. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    International Nuclear Information System (INIS)

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant; Ó Náraigh, Lennon

    2016-01-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  6. On the high gain operation of low-pressure microdot gas avalanche chambers

    International Nuclear Information System (INIS)

    Breskin, A.

    1997-01-01

    Microdot avalanche chambers (MDOT) equipped with thin semitransparent Cr photocathodes, were characterized with UV photons at low gas pressure. Gains superior to 10 4 were reached with gas multiplication at the dots. In a mode where preamplification in the gas volume precedes the additional dot multiplication, gains superior to 10 6 were measured at 30-60 torr of propane. The fast amplification mechanism results in narrow high amplitude pulses with 2-3 ns rise time, visible with no further electronic amplification means. We present here our preliminary results and briefly discuss potential applications. (orig.)

  7. Development of a new scintillation-trigger detector for the MTV experiment using aluminum-metallized film tape

    Science.gov (United States)

    Sakamoto, Yuko; Ozaki, Sachi; Tanaka, Saki; Tanuma, Ryosuke; Yoshida, Tatsuru; Murata, Jiro

    2014-09-01

    A new type of trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, using aluminum-metallized film tape for wrapping. The MTV experiment aims to perform the finest precision test of time reversal symmetry in nuclear beta decay. In that purpose, we search non-zero T-Violating transverse polarization of electrons emitted from polarized Li-8 nuclei. It uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The trigger-scintillation counter consists of 12-segmented 1 mm thick 300 mm long thin plastic scintillation counters. This counter is placed inside the CDC to generate a trigger signal. The required assembling precision of +-0.5 mm was a tricky point when we tried to use conventional total reflection mode. Indeed, produce an air-layer surrounding the scintillating bar to keep good light transmission was the main issue. For this reason, we tried to use a new wrapping material made of metallized-aluminum tape, which has a good mirror-like reflecting surface on both sides of the tape. Through this report, we will compare detection efficiency and light attenuation between conventional and new wrapping materials.

  8. Preparation of 'dead water' for low background liquid scintillation counting

    International Nuclear Information System (INIS)

    Morishima, Hiroshige; Koga, Taeko; Niwa, Takeo; Kawai, Hiroshi

    1987-01-01

    'Dead water', low level tritiated water is indispensable to measure tritium concentration in environmental waters using a low background liquid scintillation counter. Water produced by combustion of natural gas, or deep sea water etc. are usually used for the above purpose. A new method of reducing tritium concentration in natural water has been introduced for preparation of 'dead water'. This method is to combine hydrogen-oxygen mixture produced by water electrolysis with hopcalite catalyzer at 700 deg C. Deep well water was electrolized up to 2/3 volume, and tritium concentration of recombined water was reduced to be about one third of that of the original one. (author)

  9. Beam tests of 'SPACAL' type modules for a high pressure gas calorimeter

    International Nuclear Information System (INIS)

    Konstantinov, V.F.; Krasnokutskij, R.N.; Shuvalov, R.S.; Solodkov, A.A.; Starchenko, E.A.; Sushkov, V.V.; Zajtsev, A.M.; Dzhelyadin, R.I.; Kopikov, S.V.; Solov'yanov, O.V.

    1993-01-01

    High-pressure gas modules with cylindrical ionization chambers for a Very Forward Calorimeter are constructed and tested in the IHEP U-70 electron beam. The amplifiers are used in a remote mode (3 m long cables). The module performance at small angles is tested in the energy range of 10-30 GeV using different gas mixtures like Ar + CH 4 , Ar + CF 4 and pure CF 4 at the pressure of 20-40 Atm. The best value of energy resolution equal to 18% is reached at the angle of 5.7 deg for 30 GeV electrons. The design is found to be adequate for future use in ATLAS/LHC. 24 refs., 10 figs

  10. Study of the effect of some of the experimental parameters on the x-ray fluorescence determination of traces of hafnia in high purity zirconia

    International Nuclear Information System (INIS)

    Qurbani, J.M.; Khanna, P.P.; Agrawal, R.M.

    1974-01-01

    The effect of the following parameters : (i) analytical lines HfLsub(αsub(1)) or HfLsub(βsub(1,6)) or HfLsub(βsub(2)) (ii) detectors - scintillation or gas flow proportional (iii) collimators - fine or coarse (iv) x-ray tube voltage, current and power (v) order of diffraction : I or II of analysing crystal LiF (200), on the precision of the results and the sensitivity of the method in the x-ray fluorescence determination of traces of hafnia in high purity zirconia, has been studied. Philips semiautomatic x-ray spectrometer PW 1220 with associated equipment has been used. Synthetic standards containing HfO 2 in the range 20 ppm to 1 % in ZrO 2 , presented as double layer pellets have been used. LiF (200) analysing crystal, tungsten target x-ray tube, automatic pulse height selection and pulse height discrimination were used in all the cases. The set - 'HfLsub(βsub(1,6)) analytical line, fine collimator and gas flow proportional counter detector' - gave the best performance. (author)

  11. Improved spacers for high temperature gas-cooled heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Nordstroem, L A [Swiss Federal Institute for Reactor Research, Wuerenlingen (Switzerland)

    1984-07-01

    Experimental and analytical investigations in the field of heat exchanger thermohydraulics have been performed at EIR for many years, Basic studies have been carried out on heat transfer and pressure loss for tube bundles of different geometries and tube surfaces. As a part of this overall R+D programme for heat exchangers, investigations have been carried out on spacer pressure loss in bundles with longitudinal flow. An analytical spacer pressure loss model was developed which could handle different types of subchannel within the bundle. The model has been evaluated against experiments, using about 25 spacers of widely differing geometries. In a gas-cooled reactor it is important to keep the pressure loss over the primary circuit heat exchangers to a minimum. In exchangers with grid spacers these contribute a significant proportion of the overall bundle losses. For example, in the HHT Recuperator, with a shell-side pressure loss of 3.5 % of the inlet pressure, the spacers cause about one half of this loss. Reducing the loss to, say, 2.5 % results in an overall increase in plant efficiency by more than 1 % - a significant improvement Preliminary analysis identified 5 geometries in particular which were chosen for experimental evaluation as part of a joint project with the SULZER Company, to develop a low pressure-loss spacer for HHT heat exchangers (longitudinal counter-flow He/He and He/H{sub 2}O designs). The aim of the tests was to verify the low pressure-loss characteristics of these spacer grid types, as well as the quality of the results calculated by the computer code analytical model. The experimental and analytical results are compared in this report.

  12. Methods of calculus for neutron spectrometry in proportional counters; Metodos de calculo para espectrometria de neutrones en contadores proporcionales

    Energy Technology Data Exchange (ETDEWEB)

    Butragueno, J L; Blazquez, J B; Barrado, J M

    1976-07-01

    Response functions for cylindrical proportional counters with hydrogenated gases have been determined, taking in account only wall effect, by means of two independent calculus methods. One of them is a Monte Carlo application and the other one analytica at all. Results of both methods have been compared. (Author)

  13. Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes

    Science.gov (United States)

    Tanaka, S.; Ozaki, S.; Sakamoto, Y.; Tanuma, R.; Yoshida, T.; Murata, J.

    2014-07-01

    A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of ±0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied.

  14. Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes

    International Nuclear Information System (INIS)

    Tanaka, S.; Ozaki, S.; Sakamoto, Y.; Tanuma, R.; Yoshida, T.; Murata, J.

    2014-01-01

    A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of ±0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied

  15. Search for ultra-high energy photons with AMIGA muon counters

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Nicolas Martin [Instituto de Tecnologias en Deteccion y Astroparticulas, Buenos Aires (Argentina); Institut fuer Kernphysik, Karlsruher Institut fuer Technologie. (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The study of the composition of ultra-high energy (UHE) cosmic rays (CR) is one of the topical problems of astroparticle physics. The discovery of UHE photons, i.e. photons with energies around 1 EeV, in primary cosmic rays could be of particular interest for the field of astroparticle physics, and also for fundamental physics, since they are tracers of the highest-energy processes in the Universe. For the search for UHE photons at the Pierre Auger Observatory (PAO), several parameters have been proposed to distinguish between primary hadrons and photons. One of the most promising approaches to search for primary gamma rays is the study of the muon component in extensive air showers (EAS) produced in the interaction between the CR and the nuclei in the atmosphere. The number of muons in showers induced by gamma primaries is an order of magnitude lower than the hadronic primaries counterpart. The AMIGA extension of the PAO, consisting of an array of buried scintillators counters, allows the study of the muons produced during the EAS development. In this talk, the sensitivity of the muon counters to photon-initiated EAS and the possible discrimination procedures are discussed using dedicated EAS simulations with software package CORSIKA, including the detector response using the Offline package developed by the Pierre Auger Collaboration.

  16. Sound produced by an oscillating arc in a high-pressure gas

    Science.gov (United States)

    Popov, Fedor K.; Shneider, Mikhail N.

    2017-08-01

    We suggest a simple theory to describe the sound generated by small periodic perturbations of a cylindrical arc in a dense gas. Theoretical analysis was done within the framework of the non-self-consistent channel arc model and supplemented with time-dependent gas dynamic equations. It is shown that an arc with power amplitude oscillations on the order of several percent is a source of sound whose intensity is comparable with external ultrasound sources used in experiments to increase the yield of nanoparticles in the high pressure arc systems for nanoparticle synthesis.

  17. Determination of the air/water partition coefficient of groundwater radon using liquid scintillation counter

    International Nuclear Information System (INIS)

    Lee, K.Y.; Yoon, Y.Y.; Ko, K.S.

    2010-01-01

    A method was studied for measuring air/water partition coefficient (K air/water ) of groundwater radon by a simple procedure using liquid scintillation counter (LSC). In contrast conventional techniques such as equilibrium partitioning in a closed system or air striping methods, the described method allow for a simple and uncomplicated determination of the coefficient. The (K air/water ) of radon in pure water has been well known quantitatively over a wide range of temperatures. In this work, groundwater samples having high radon concentration instead of distilled water have been used to determine the (K air/water ) of radon in the temperature range of 0-25. Aqueous phase in a closed system was used in this study instead of gaseous phase in conventional methods. Three kinds of groundwater taken from different geologic environments were used to investigate the effect of groundwater properties. With the aim to evaluate the reproducibility of the data an appropriate number of laboratory experiments have been carried out. The results show that tie (K air/water ) of radon in the groundwater is smaller than that in the pure water. However, the temperature effect on the coefficient is similar in the groundwater and the pure water. The method using aqueous phase in a closed system by LSC can be used to determine the (K air/water ) of radon in various groundwaters with a simple procedure. The results will be presented at the NAC-IV conference

  18. Recoil-proton fast-neutron counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R. (Padua Univ. (Italy). Ist. di Fisica); Galeazzi, G.; Bressanini, G.

    1981-12-01

    A recoil-proton neutron counter telescope is described composed of a solid-state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time of flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  19. Recoil-proton fast-neutron-counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Bressanini, G.

    1981-01-01

    A proton-recoil neutron counter telescope is described composed of a solid state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time-of-flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV, presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  20. Operating experience with gas-bearing circulators in a high-pressure helium loop

    International Nuclear Information System (INIS)

    Sanders, J.P.; Gat, U.; Young, H.C.

    1988-01-01

    A high-pressure engineering test loop has been designed and constructed at the Oak Ridge National Laboratory for circulating helium through a test chamber at temperatures to 1,000 deg. C. The purpose of this loop is to determine the thermal and structural performance of proposed components for the primary loops of gas-cooled nuclear reactors. Three gas-bearing circulators, mounted in series, provide a maximum volumetric flow of 0.47 m 3 /s and a maximum head of 78 kJ/kg at operating pressures from 0.1 to 10.7 MPa. Control of gaseous impurities in the circulating gas was the significant operating requirement that dictated the choice of a circulator that is lubricated by the circulating gas. The motor for each circulator is contained within the pressure boundary, and it is cooled by circulating the gas in the motor cavity over water-cooled coils. Each motor is rated at 200 kW at a speed of 23,500 rpm. The circulators have been operated in the loop for more than 5,000 h. The flow of the gas in the loop is controlled by varying the speed of the circulators through the use of individual 250-kVA, solid state power supplies that can be continuously varied in frequency from 50 to 400 Hz. To prevent excessive wear on the gas bearings during startup, the circulator motor accelerates the rotor to 3,000 rpm in less than one second. During operation, no problems associated with the gas bearings, per se, were encountered; however, related problems pointed to design considerations that should be included in future applications of circulators of this type. The primary test that has been conducted in this loop required sustained operation for several weeks without interruption. After a number of unscheduled interruptions, the operating goals were attained. During part of this period, the loop was operated with only two circulators installed in the pressure vessels with a guard installed in the third vessel to protect the closure flange from the gas temperatures. Unattended

  1. Experimental procedures for the calibration of scintillation cells used in the determination of radon gas concentrations

    International Nuclear Information System (INIS)

    Grenier, M; Bigu, J.

    1982-02-01

    Experimental and analytical procedures are described for the calibration of scintillation cells used for the determination of radon gas concentration. In-house designed and built scintillation cells, used routinely in the monitoring of radon gas in uranium mine underground environments and in the laboratory, were calibrated. The cells had a volume of approximately 158 cm 3 and an α-counting efficiency ranging from 50% to 64%. Calibration factors for the cells were determined. Values ranged approximately from 0.177 cpm/pCiL -1 (4.77 cpm/BqL -1 ) to 0.224 cpm/pCiL -1 (6.05 cpm/BqL -1 ). The calibration facilities at the Elliot Lake Laboratory are briefly described

  2. Fast neutron spectroscopy by gas proton-recoil methods at the light water reactor pressure vessel simulator

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1980-10-01

    Fast neutron spectrum measurements were made in a Light Water Reactor (LWR) Pressure Vessel Simulator (PVS) to provide neutron spectral definition required to appropriately perform and interpret neutron dosimetry measurements related to fast neutron damage in LWR-PV steels. Proton-recoil proportional counter methods using hydrogen and methane gas-filled detectors were applied to obtain the proton spectra from which the neutron spectra were derived. Cylindrical and spherical geometry detectors were used to cover the neutron energy range between 50 keV and 2 MeV. Results show that the neutron spectra shift in energy distribution toward lower energy between the front and back of a PVS. The relative neutron flux densities increase in this energy range with increasing thickness of the steel. Neutron spectrum fine structure shapes and changes are observed. These results should assist in the generation of more accurate effective cross sections and fluences for use in LWR-PV fast neutron dosimetry and materials damage analyses

  3. Measurement of the time resolution of small SiPM-based scintillation counters

    Science.gov (United States)

    Kravchenko, E. A.; Porosev, V. V.; Savinov, G. A.

    2017-12-01

    In this research, we evaluated the timing resolution of SiPM-based scintillation detector on a 1-GeV electron beam "extracted" from VEPP-4M. We tested small scintillation crystals of pure CsI, YAP, LYSO, and LFS-3 with HAMAMATSU S10362-33-025C and S13360-3050CS. The CsI scintillator together with HAMAMATSU S13360-3050CS demonstrated the best results. Nevertheless, the achieved time resolution of ~80 ps (RMS) relates mainly to the photodetector itself. It makes the silicon photomultiplier an attractive candidate to replace other devices in applications where sub-nanosecond accuracy is required.

  4. Computational analysis of transient gas release from a high pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, G.; Oshkai, P.; Djilali, N. [Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems; Penau, F. [CERAM Euro-American Inst. of Technology, Sophia Antipolis (France)

    2006-07-01

    Gas jets exiting from compressed vessels can undergo several regimes as the pressure in the vessel decreases, and a greater understanding of the characteristics of gas jets is needed to determine safety requirements in the transport, distribution, and use of hydrogen. This paper provided a study of the bow shock waves that typically occur during the initial stage of a gas jet incident. The transient behaviour of an initiated jet was investigated using unsteady, compressible flow simulations. The gas was considered to be ideal, and the domain was considered to be axisymmetric. Tank pressure for the analysis was set at a value of 100 atm. Jet structure was examined, as well as the shock structures and separation due to adverse pressure gradients at the nozzle. Shock structure displacement was also characterized.

  5. Method and apparstus for determining random coincidence count rate in a scintillation counter utilizing the coincidence technique

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1980-01-01

    A method and apparatus for the reliable determination of a random coincidence count attributable to chance coincidences of single-photon events which are each detected in only a single detector of a scintillation counter utilizing two detectors in a coincidence counting technique are described. A firstdelay device is employed to delay output pulses from one detector, and then the delayed signal is compared with the undelayed signal from the other detector in a coincidence circuit, to obtain an approximate random coincidence count. The output of the coincidence circuit is applied to an anti-coincidence circuit, where it is corrected by elimination of pulses coincident with, and attributable to, conventionally detected real coincidences, and by elimination of pulses coincident with, and attributable to, real coincidences that have been delayed by a second delay device having the same time parameter as the first. 8 claims

  6. Electro-removal of H-3 and C-14 contained in scintillation liquid absorbed in soils type Phaeozem

    International Nuclear Information System (INIS)

    Valdovinos, V.; Bustos, E.; Monroy G, F.

    2014-10-01

    This paper presents the results of electro-removal, an electrochemical treatment in soils contaminated with H-3 and C-14 contained in scintillation liquids absorbed in soils. For this purpose the best electrochemical conditions were used, which are: scintillation liquid Ultima Gold Xr, water (1:1) and 1 m A in the passage of current. The media were characterized before and after of applying the different potentials by various analytical techniques, such as: liquids by gas chromatography with a flame ionization detector, solids and liquids by Fourier transform infrared spectroscopy (Ftir) and electrodes by scanning electron microscopy with elemental analysis by energy-dispersive X-ray spectroscopy. Later standard samples with H-3 and C-14 were prepared and the electrochemical treatment was applied to previously established conditions. After electrochemical treatment the scintillation liquid characterization was performed by gas chromatography and a scintillation counter to see the disintegrations per minute. According to results of Ftir, soils show no deterioration and in the liquid phase the amount of water increases as the applied potential, due to oxidation-reduction reactions where happen modification or mineralization of organic molecules (H 2 O and CO 2 formation). In 4 h of treatment, removal percentages in the liquid phase, were: 53.6% of H-3 and 11.6% of C-14. (Author)

  7. Improved terbium-doped, lithium-loaded glass scintillator fibers

    International Nuclear Information System (INIS)

    Spector, G.B.; McCollum, T.; Spowart, A.R.

    1993-01-01

    An improved terbium-doped, 6 Li-loaded glass scintillator has been drawn into fibers. Tests indicate that the neutron detection response of the fibers is superior to the response with fibers drawn from the original terbium-doped glass. The new fibers offer less attenuation (1/e length of ∝40 cm) and improved gamma ray/neutron discrimination. The improved fibers will be incorporated in a scintillator fiber optic long counter for neutron detection. (orig.)

  8. Primary 4πβ-γ coincidence system for standardization of radionuclides by means of plastic scintillators

    International Nuclear Information System (INIS)

    Baccarelli, Aida Maria

    2003-01-01

    The present work describes a 4π(α,β)-γ coincidence system for absolute measurement of radionuclide activity using a plastic scintillator in 4π geometry for charged particles detection and a Nal (Tl) crystal for gamma-ray detection. Several shapes and dimensions of the plastic scintillator have been tried in order to obtain the best system configuration. Radionuclides which decay by alpha emission, β - , β + and electron capture have been standardized. The results showed excellent agreement with other conventional primary system which makes use of a 4π proportional counter for X-ray and charged particle detection. The system developed in the present work have some advantages when compared with the conventional systems, namely; it does not need metal coating on the films used as radioactive source holders. When compared to liquid scintillators, is showed the advantage of not needing to be kept in dark for more than 24 h to allow phosphorescence decay of ambient light. Therefore it can be set to count immediately after the sources are placed inside of it. (author)

  9. Measurement of gas-liquid two-phase flow around horizontal tube bundle using SF6-water. Simulating high-pressure high-temperature gas-liquid two-phase flow of PWR/SG secondary coolant side at normal pressure

    International Nuclear Information System (INIS)

    Ishikawa, Atsushi; Imai, Ryoj; Tanaka, Takahiro

    2014-01-01

    In order to improve prediction accuracy of analysis code used for design and development of industrial products, technology had been developed to create and evaluate constitutive equation incorporated in analysis code. The experimental facility for PWR/SG U tubes part was manufactured to measure local void fraction and gas-liquid interfacial velocity with forming gas-liquid upward two-phase flow simulating high-pressure high-temperature secondary coolant (water-steam) rising vertically around horizontal tube bundle. The experimental facility could reproduce flow field having gas-liquid density ratio equivalent to real system with no heating using SF6 (Sulfur Hexafluoride) gas at normal temperature and pressure less than 1 MPa, because gas-liquid density ratio, surface tension and gas-liquid viscosity ratio were important parameters to determine state of gas-liquid two-phase flow and gas-liquid density ratio was most influential. Void fraction was measured by two different methods of bi-optical probe and conductivity type probe. Test results of gas-liquid interfacial velocity vs. apparent velocity were in good agreement with existing empirical equation within 10% error, which could confirm integrity of experimental facility and appropriateness of measuring method so as to set up original constitutive equation in the future. (T. Tanaka)

  10. Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks.

    KAUST Repository

    Li, Yanqiang; Ben, Teng; Zhang, Bingyao; Fu, Yao; Qiu, Shilun

    2013-01-01

    The carbonized PAF-1 derivatives formed by high-temperature KOH activation showed a unique bimodal microporous structure located at 0.6 nm and 1.2 nm and high surface area. These robust micropores were confirmed by nitrogen sorption experiment and high-resolution transmission electron microscopy (TEM). Carbon dioxide, methane and hydrogen sorption experiments indicated that these novel porous carbon materials have significant gas sorption abilities in both low-pressure and high-pressure environments. Moreover the methane storage ability of K-PAF-1-750 is among the best at 35 bars, and its low-pressure gas adsorption abilities are also comparable to the best porous materials in the world. Combined with excellent physicochemical stability, these materials are very promising for industrial applications such as carbon dioxide capture and high-density clean energy storage.

  11. Development of multiwire proportional chambers

    CERN Multimedia

    Charpak, G

    1969-01-01

    It has happened quite often in the history of science that theoreticians, confronted with some major difficulty, have successfully gone back thirty years to look at ideas that had then been thrown overboard. But it is rare that experimentalists go back thirty years to look again at equipment which had become out-dated. This is what Charpak and his colleagues did to emerge with the 'multiwire proportional chamber' which has several new features making it a very useful addition to the armoury of particle detectors. In the 1930s, ion-chambers, Geiger- Muller counters and proportional counters, were vital pieces of equipment in nuclear physics research. Other types of detectors have since largely replaced them but now the proportional counter, in new array, is making a comeback.

  12. Digital signal processing for He3 proportional counter

    International Nuclear Information System (INIS)

    Ahmadov, Q.S.; Institute of Radiation Problems, ANAS, Baku

    2011-01-01

    Full text: Data acquisition systems for nuclear spectroscopy have traditionally been based on systems with analog shaping amplifiers followed by analog-to-digital converters. Recently, however, new systems based on digital signal processing allow us to replace the analog shaping and timing circuitry the numerical algorithms to derive properties of the pulse such as its amplitude. DSP is a fully numerical analysis of the detector pulse signals and this technique demonstrates significant advantages over analog systems in some circumstances. From a mathematical point of view, one can consider the signal evolution from the detector to the ADC as a sequence of transformations that can be described by precisely defined mathematical expressions.Digital signal processing with ADCs has the possibility to utilize further information on the signal pulses from radiation detectors [1] [2]. In the experiment each step of the signal generation in the 3He filled proportional counter was described using digital signal processing techniques (DSP). The electronic system has consisted of a detector, a preamplifier and a digital oscilloscope. The pulses from the detector were digitized using a OTSZS-02 (250USB)-4 digital storage oscilloscope from ZAO R UDNEV-SHILYAYEV . This oscilloscope allowed signal digitization with accuracy of 8 bit(256 levels) and with frequency of up to 5.10''8 samples/s. As a neutron source was used Cf-252.To obtain detector output current pulse I(t) created by the motions of the ions/electrons pairs was written an algorithm which can easily be programmed using modern computer programming languages

  13. High-speed parallel counter

    International Nuclear Information System (INIS)

    Gus'kov, B.N.; Kalinnikov, V.A.; Krastev, V.R.; Maksimov, A.N.; Nikityuk, N.M.

    1985-01-01

    This paper describes a high-speed parallel counter that contains 31 inputs and 15 outputs and is implemented by integrated circuits of series 500. The counter is designed for fast sampling of events according to the number of particles that pass simultaneously through the hodoscopic plane of the detector. The minimum delay of the output signals relative to the input is 43 nsec. The duration of the output signals can be varied from 75 to 120 nsec

  14. Gross alpha/beta analyses in water by liquid scintillation counting

    International Nuclear Information System (INIS)

    Wong, C.T.; Lawrence Livermore National Laboratory, CA; Soliman, V.M.; Perera, S.K.

    2005-01-01

    The standard procedure for analyzing gross alpha and gross beta in water is evaporation of the sample and radioactivity determination of the resultant solids by proportional counting. This technique lacks precision, and lacks sensitivity for samples with high total dissolved solids. Additionally, the analytical results are dependent on the choice of radionuclide calibration standard and the sample matrix. Direct analysis by liquid scintillation counting has the advantages of high counting efficiencies and minimal sample preparation time. However, due to the small sample aliquants used for analysis, long count times are necessary to reach required detection limits. The procedure proposed consists of evaporating a sample aliquant to dryness, dissolving the resultant solids in a small volume of dilute acid, followed by liquid scintillation counting to determine radioactivity. This procedure can handle sample aliquants containing up to 500 mg of dissolved solids. Various acids, scintillation cocktail mixtures, instrument discriminator settings, and regions of interest (ROI) were evaluated to determine optimum counting conditions. Precision is improved and matrix effects are reduced as compared to proportional counting. Tests indicate that this is a viable alternative to proportional counting for gross alpha and gross beta analyses of water samples. (author)

  15. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel

    2017-02-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  16. Toward the Probabilistic Forecasting of High-latitude GPS Phase Scintillation

    Science.gov (United States)

    Prikryl, P.; Jayachandran, P.T.; Mushini, S. C.; Richardson, I. G.

    2012-01-01

    The phase scintillation index was obtained from L1 GPS data collected with the Canadian High Arctic Ionospheric Network (CHAIN) during years of extended solar minimum 2008-2010. Phase scintillation occurs predominantly on the dayside in the cusp and in the nightside auroral oval. We set forth a probabilistic forecast method of phase scintillation in the cusp based on the arrival time of either solar wind corotating interaction regions (CIRs) or interplanetary coronal mass ejections (ICMEs). CIRs on the leading edge of high-speed streams (HSS) from coronal holes are known to cause recurrent geomagnetic and ionospheric disturbances that can be forecast one or several solar rotations in advance. Superposed epoch analysis of phase scintillation occurrence showed a sharp increase in scintillation occurrence just after the arrival of high-speed solar wind and a peak associated with weak to moderate CMEs during the solar minimum. Cumulative probability distribution functions for the phase scintillation occurrence in the cusp are obtained from statistical data for days before and after CIR and ICME arrivals. The probability curves are also specified for low and high (below and above median) values of various solar wind plasma parameters. The initial results are used to demonstrate a forecasting technique on two example periods of CIRs and ICMEs.

  17. Development of a low-cost-high-sensitivity Compton camera using CsI (Tl) scintillators (γI)

    Energy Technology Data Exchange (ETDEWEB)

    Kagaya, M., E-mail: 13nd401n@vc.ibaraki.ac.jp [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito City, Ibaraki 310-8512 (Japan); Open-It consortium (Japan); Katagiri, H. [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito City, Ibaraki 310-8512 (Japan); Open-It consortium (Japan); Enomoto, R. [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582 (Japan); Open-It consortium (Japan); Hanafusa, R.; Hosokawa, M.; Itoh, Y. [Fuji Electric, 1 Fujimachi, Hino City, Tokyo 191-8502 (Japan); Muraishi, H. [School of Allied Health Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa 252-0373 (Japan); Open-It consortium (Japan); Nakayama, K. [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito City, Ibaraki 310-8512 (Japan); Open-It consortium (Japan); Satoh, K. [Shinsei Corporation, 4-9-1 Nihonbashi-honcho, Chuo-ku, Tokyo 103-0023 (Japan); Takeda, T. [School of Allied Health Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa 252-0373 (Japan); Tanaka, M.M.; Uchida, T. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba City, Ibaraki 305-0801 (Japan); Open-It consortium (Japan); Watanabe, T. [School of Allied Health Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa 252-0373 (Japan); Open-It consortium (Japan); Yanagita, S.; Yoshida, T.; Umehara, K. [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito City, Ibaraki 310-8512 (Japan); Open-It consortium (Japan)

    2015-12-21

    We have developed a novel low-cost gamma-ray imaging Compton camera γI that has a high detection efficiency. Our motivation for the development of this detector was to measure the arrival directions of gamma rays produced by radioactive nuclides that were released by the Fukushima Daiichi nuclear power plant accident in 2011. The detector comprises two arrays of inorganic scintillation detectors, which act as a scatterer and an absorber. Each array has eight scintillation detectors, each comprising a large CsI (Tl) scintillator cube of side 3.5 cm, which is inexpensive and has a good energy resolution. Energies deposited by the Compton scattered electrons and subsequent photoelectric absorption, measured by each scintillation counter, are used for image reconstruction. The angular resolution was found to be 3.5° after using an image-sharpening technique. With this angular resolution, we can resolve a 1 m{sup 2} radiation hot spot that is located at a distance of 10 m from the detector with a wide field of view of 1 sr. Moreover, the detection efficiency 0.68 cps/MBq at 1 m for 662 keV (7.6 cps/μSv/h) is sufficient for measuring low-level contamination (i.e., less than 1 μSv/h) corresponding to typical values in large areas of eastern Japan. In addition to the laboratory tests, the imaging capability of our detector was verified in various regions with dose rates less than 1 μSv/h (e.g., Fukushima city).

  18. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    Directory of Open Access Journals (Sweden)

    R.P. Kelley

    2015-03-01

    Full Text Available An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the 4He detector. A further understanding of this mechanism in the 4He detector will advance the use of this system as a neutron spectrometer. For 252Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a 252Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  19. Application of water-insoluble polymers to orally disintegrating tablets treated by high-pressure carbon dioxide gas.

    Science.gov (United States)

    Ito, Yoshitaka; Maeda, Atsushi; Kondo, Hiromu; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2016-09-10

    The phase transition of pharmaceutical excipients that can be induced by humidifying or heating is well-known to increase the hardness of orally disintegrating tablets (ODTs). However, these conditions are not applicable to drug substances that are chemically unstable against such stressors. Here, we describe a system which enhances the hardness of tablets containing water-insoluble polymers by using high-pressure carbon dioxide (CO2). On screening of 26 polymeric excipients, aminoalkyl methacrylate copolymer E (AMCE) markedly increased tablet hardness (+155N) when maintained in a high-pressure CO2 environment. ODTs containing 10% AMCE were prepared and treatment with 4.0MPa CO2 gas at 25°C for 10min increased the hardness to +30N, whose level corresponded to heating at 70°C for 720min. In addition, we confirmed the effects of CO2 pressure, temperature, treatment time, and AMCE content on the physical properties of ODTs. Optimal pressure of CO2 gas was considered to be approximately 3.5MPa for an AMCE formula, as excessive pressure delayed the disintegration of ODTs. Combination of high-pressure CO2 gas and AMCE is a prospective approach for increasing the tablet hardness for ODTs, and can be conducted without additional heat or moisture stress using a simple apparatus. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A NRESPG Monte Carlo code for the calculation of neutron response functions for gas counters

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, K; Takeda, N; Fukuda, A [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Torii, T; Hashimoto, M; Sugita, T; Yang, X; Dietze, G

    1996-07-01

    In this paper, we show the outline of the NRESPG and some typical results of the response functions and efficiencies of several kinds of gas counters. The cross section data for the several kinds of filled gases and the wall material of stainless steel or aluminum are taken mainly from ENDF/B-IV. The ENDF/B-V for stainless steel is also used to investigate the influence on pulse height spectra of gas counters due to the difference of nuclear data files. (J.P.N.)