WorldWideScience

Sample records for high-precision dense matrix

  1. Redesigning Triangular Dense Matrix Computations on GPUs

    KAUST Repository

    Charara, Ali

    2016-08-09

    A new implementation of the triangular matrix-matrix multiplication (TRMM) and the triangular solve (TRSM) kernels are described on GPU hardware accelerators. Although part of the Level 3 BLAS family, these highly computationally intensive kernels fail to achieve the percentage of the theoretical peak performance on GPUs that one would expect when running kernels with similar surface-to-volume ratio on hardware accelerators, i.e., the standard matrix-matrix multiplication (GEMM). The authors propose adopting a recursive formulation, which enriches the TRMM and TRSM inner structures with GEMM calls and, therefore, reduces memory traffic while increasing the level of concurrency. The new implementation enables efficient use of the GPU memory hierarchy and mitigates the latency overhead, to run at the speed of the higher cache levels. Performance comparisons show up to eightfold and twofold speedups for large dense matrix sizes, against the existing state-of-the-art TRMM and TRSM implementations from NVIDIA cuBLAS, respectively, across various GPU generations. Once integrated into high-level Cholesky-based dense linear algebra algorithms, the performance impact on the overall applications demonstrates up to fourfold and twofold speedups, against the equivalent native implementations, linked with cuBLAS TRMM and TRSM kernels, respectively. The new TRMM/TRSM kernel implementations are part of the open-source KBLAS software library (http://ecrc.kaust.edu.sa/Pages/Res-kblas.aspx) and are lined up for integration into the NVIDIA cuBLAS library in the upcoming v8.0 release.

  2. KBLAS: An Optimized Library for Dense Matrix-Vector Multiplication on GPU Accelerators

    KAUST Repository

    Abdelfattah, Ahmad

    2016-05-11

    KBLAS is an open-source, high-performance library that provides optimized kernels for a subset of Level 2 BLAS functionalities on CUDA-enabled GPUs. Since performance of dense matrix-vector multiplication is hindered by the overhead of memory accesses, a double-buffering optimization technique is employed to overlap data motion with computation. After identifying a proper set of tuning parameters, KBLAS efficiently runs on various GPU architectures while avoiding code rewriting and retaining compliance with the standard BLAS API. Another optimization technique allows ensuring coalesced memory access when dealing with submatrices, especially for high-level dense linear algebra algorithms. All KBLAS kernels have been leveraged to a multi-GPU environment, which requires the introduction of new APIs. Considering general matrices, KBLAS is very competitive with existing state-of-the-art kernels and provides a smoother performance across a wide range of matrix dimensions. Considering symmetric and Hermitian matrices, the KBLAS performance outperforms existing state-of-the-art implementations on all matrix sizes and achieves asymptotically up to 50% and 60% speedup against the best competitor on single GPU and multi-GPUs systems, respectively. Performance results also validate our performance model. A subset of KBLAS highperformance kernels have been integrated into NVIDIA\\'s standard BLAS implementation (cuBLAS) for larger dissemination, starting from version 6.0. © 2016 ACM.

  3. Assessment of high precision, high accuracy Inductively Coupled Plasma-Optical Emission Spectroscopy to obtain concentration uncertainties less than 0.2% with variable matrix concentrations

    International Nuclear Information System (INIS)

    Rabb, Savelas A.; Olesik, John W.

    2008-01-01

    The ability to obtain high precision, high accuracy measurements in samples with complex matrices using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy (HP-ICP-OES) was investigated. The Common Analyte Internal Standard (CAIS) procedure was incorporated into the High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method to correct for matrix-induced changes in emission intensity ratios. Matrix matching and standard addition approaches to minimize matrix-induced errors when using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy were also assessed. The High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method was tested with synthetic solutions in a variety of matrices, alloy standard reference materials and geological reference materials

  4. The Correlation Characteristics of Polarization Backscattering Matrix of Dense Chaff Clouds

    Directory of Open Access Journals (Sweden)

    B. Tang

    2018-04-01

    Full Text Available This paper studied the correlation characteristics of the polarization backscattering matrix of the dense chaff cloud with uniform orientation and location distributions in circular symmetry region. Based on the theoretical analysis and numerical experiments, the correlation coefficients of the four elements in the polarization backscattering matrix are obtained, and the results indicate that the cross to co-polar correlation coefficient is still zero; and that the sum of the co-polar cross-correlation coefficient and the two times of linear depolarization ratio equals one. The results are beneficial for better understanding of the backscattering characteristics of dense chaff clouds, and are useful in the application of jamming recognition in radar electronic warfare. Numerical experiments are performed by using the method of moments.

  5. Auto-tuning Dense Vector and Matrix-vector Operations for Fermi GPUs

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    2012-01-01

    applications. As examples, we develop single-precision CUDA kernels for the Euclidian norm (SNRM2) and the matrix-vector multiplication (SGEMV). The target hardware is the most recent Nvidia Tesla 20-series (Fermi architecture). We show that auto-tuning can be successfully applied to achieve high performance...

  6. Efficient high-precision matrix algebra on parallel architectures for nonlinear combinatorial optimization

    KAUST Repository

    Gunnels, John; Lee, Jon; Margulies, Susan

    2010-01-01

    We provide a first demonstration of the idea that matrix-based algorithms for nonlinear combinatorial optimization problems can be efficiently implemented. Such algorithms were mainly conceived by theoretical computer scientists for proving efficiency. We are able to demonstrate the practicality of our approach by developing an implementation on a massively parallel architecture, and exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision linear algebra. Additionally, we have delineated and implemented the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational efficiency, reliability, and interconnect perspectives. © Springer and Mathematical Programming Society 2010.

  7. Efficient high-precision matrix algebra on parallel architectures for nonlinear combinatorial optimization

    KAUST Repository

    Gunnels, John

    2010-06-01

    We provide a first demonstration of the idea that matrix-based algorithms for nonlinear combinatorial optimization problems can be efficiently implemented. Such algorithms were mainly conceived by theoretical computer scientists for proving efficiency. We are able to demonstrate the practicality of our approach by developing an implementation on a massively parallel architecture, and exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision linear algebra. Additionally, we have delineated and implemented the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational efficiency, reliability, and interconnect perspectives. © Springer and Mathematical Programming Society 2010.

  8. Dense sampled transmission matrix for high resolution angular spectrum imaging through turbid media via compressed sensing (Conference Presentation)

    Science.gov (United States)

    Jang, Hwanchol; Yoon, Changhyeong; Choi, Wonshik; Eom, Tae Joong; Lee, Heung-No

    2016-03-01

    We provide an approach to improve the quality of image reconstruction in wide-field imaging through turbid media (WITM). In WITM, a calibration stage which measures the transmission matrix (TM), the set of responses of turbid medium to a set of plane waves with different incident angles, is preceded to the image recovery. Then, the TM is used for estimation of object image in image recovery stage. In this work, we aim to estimate highly resolved angular spectrum and use it for high quality image reconstruction. To this end, we propose to perform a dense sampling for TM measurement in calibration stage with finer incident angle spacing. In conventional approaches, incident angle spacing is made to be large enough so that the columns in TM are out of memory effect of turbid media. Otherwise, the columns in TM are correlated and the inversion becomes difficult. We employ compressed sensing (CS) for a successful high resolution angular spectrum recovery with dense sampled TM. CS is a relatively new information acquisition and reconstruction framework and has shown to provide superb performance in ill-conditioned inverse problems. We observe that the image quality metrics such as contrast-to-noise ratio and mean squared error are improved and the perceptual image quality is improved with reduced speckle noise in the reconstructed image. This results shows that the WITM performance can be improved only by executing dense sampling in the calibration stage and with an efficient signal reconstruction framework without elaborating the overall optical imaging systems.

  9. Explicit Covariance Matrix for Particle Measurement Precision

    CERN Document Server

    Karimäki, Veikko

    1997-01-01

    We derive explicit and precise formulae for 3 by 3 error matrix of the particle transverse momentum, direction and impact parameter. The error matrix elements are expressed as functions of up to fourth order statistical moments of the measured coordinates. The formulae are valid for any curvature and track length in case of negligible multiple scattering.

  10. High - speed steel for precise cased tools

    International Nuclear Information System (INIS)

    Karwiarz, J.; Mazur, A.

    2001-01-01

    The test results of high-vanadium high - speed steel (SWV9) for precise casted tools are presented. The face -milling cutters of NFCa80A type have been tested in industrial operating conditions. An average life - time of SWV9 steel tools was 3-10 times longer compare to the conventional high - speed milling cutters. Metallography of SWB9 precise casted steel revealed beneficial for tool properties distribution of primary vanadium carbides in the steel matrix. Presented results should be a good argument for wide application of high - vanadium high - speed steel for precise casted tools. (author)

  11. Maturation State and Matrix Microstructure Regulate Interstitial Cell Migration in Dense Connective Tissues.

    Science.gov (United States)

    Qu, Feini; Li, Qing; Wang, Xiao; Cao, Xuan; Zgonis, Miltiadis H; Esterhai, John L; Shenoy, Vivek B; Han, Lin; Mauck, Robert L

    2018-02-19

    Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.

  12. Highly efficient parallel direct solver for solving dense complex matrix equations from method of moments

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2017-03-01

    Full Text Available Based on the vectorised and cache optimised kernel, a parallel lower upper decomposition with a novel communication avoiding pivoting scheme is developed to solve dense complex matrix equations generated by the method of moments. The fine-grain data rearrangement and assembler instructions are adopted to reduce memory accessing times and improve CPU cache utilisation, which also facilitate vectorisation of the code. Through grouping processes in a binary tree, a parallel pivoting scheme is designed to optimise the communication pattern and thus reduces the solving time of the proposed solver. Two large electromagnetic radiation problems are solved on two supercomputers, respectively, and the numerical results demonstrate that the proposed method outperforms those in open source and commercial libraries.

  13. High-Performance Matrix-Vector Multiplication on the GPU

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    2012-01-01

    In this paper, we develop a high-performance GPU kernel for one of the most popular dense linear algebra operations, the matrix-vector multiplication. The target hardware is the most recent Nvidia Tesla 20-series (Fermi architecture), which is designed from the ground up for scientific computing...

  14. Batched Triangular Dense Linear Algebra Kernels for Very Small Matrix Sizes on GPUs

    KAUST Repository

    Charara, Ali; Keyes, David E.; Ltaief, Hatem

    2017-01-01

    Batched dense linear algebra kernels are becoming ubiquitous in scientific applications, ranging from tensor contractions in deep learning to data compression in hierarchical low-rank matrix approximation. Within a single API call, these kernels are capable of simultaneously launching up to thousands of similar matrix computations, removing the expensive overhead of multiple API calls while increasing the occupancy of the underlying hardware. A challenge is that for the existing hardware landscape (x86, GPUs, etc.), only a subset of the required batched operations is implemented by the vendors, with limited support for very small problem sizes. We describe the design and performance of a new class of batched triangular dense linear algebra kernels on very small data sizes using single and multiple GPUs. By deploying two-sided recursive formulations, stressing the register usage, maintaining data locality, reducing threads synchronization and fusing successive kernel calls, the new batched kernels outperform existing state-of-the-art implementations.

  15. Batched Triangular Dense Linear Algebra Kernels for Very Small Matrix Sizes on GPUs

    KAUST Repository

    Charara, Ali

    2017-03-06

    Batched dense linear algebra kernels are becoming ubiquitous in scientific applications, ranging from tensor contractions in deep learning to data compression in hierarchical low-rank matrix approximation. Within a single API call, these kernels are capable of simultaneously launching up to thousands of similar matrix computations, removing the expensive overhead of multiple API calls while increasing the occupancy of the underlying hardware. A challenge is that for the existing hardware landscape (x86, GPUs, etc.), only a subset of the required batched operations is implemented by the vendors, with limited support for very small problem sizes. We describe the design and performance of a new class of batched triangular dense linear algebra kernels on very small data sizes using single and multiple GPUs. By deploying two-sided recursive formulations, stressing the register usage, maintaining data locality, reducing threads synchronization and fusing successive kernel calls, the new batched kernels outperform existing state-of-the-art implementations.

  16. High-precision positioning of radar scatterers

    NARCIS (Netherlands)

    Dheenathayalan, P.; Small, D.; Schubert, A.; Hanssen, R.F.

    2016-01-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy

  17. A framework for dense triangular matrix kernels on various manycore architectures

    KAUST Repository

    Charara, Ali

    2017-06-06

    We present a new high-performance framework for dense triangular Basic Linear Algebra Subroutines (BLAS) kernels, ie, triangular matrix-matrix multiplication (TRMM) and triangular solve (TRSM), on various manycore architectures. This is an extension of a previous work on a single GPU by the same authors, presented at the EuroPar\\'16 conference, in which we demonstrated the effectiveness of recursive formulations in enhancing the performance of these kernels. In this paper, the performance of triangular BLAS kernels on a single GPU is further enhanced by implementing customized in-place CUDA kernels for TRMM and TRSM, which are called at the bottom of the recursion. In addition, a multi-GPU implementation of TRMM and TRSM is proposed and we show an almost linear performance scaling, as the number of GPUs increases. Finally, the algorithmic recursive formulation of these triangular BLAS kernels is in fact oblivious to the targeted hardware architecture. We, therefore, port these recursive kernels to homogeneous x86 hardware architectures by relying on the vendor optimized BLAS implementations. Results reported on various hardware architectures highlight a significant performance improvement against state-of-the-art implementations. These new kernels are freely available in the KAUST BLAS (KBLAS) open-source library at https://github.com/ecrc/kblas.

  18. A framework for dense triangular matrix kernels on various manycore architectures

    KAUST Repository

    Charara, Ali; Keyes, David E.; Ltaief, Hatem

    2017-01-01

    We present a new high-performance framework for dense triangular Basic Linear Algebra Subroutines (BLAS) kernels, ie, triangular matrix-matrix multiplication (TRMM) and triangular solve (TRSM), on various manycore architectures. This is an extension of a previous work on a single GPU by the same authors, presented at the EuroPar'16 conference, in which we demonstrated the effectiveness of recursive formulations in enhancing the performance of these kernels. In this paper, the performance of triangular BLAS kernels on a single GPU is further enhanced by implementing customized in-place CUDA kernels for TRMM and TRSM, which are called at the bottom of the recursion. In addition, a multi-GPU implementation of TRMM and TRSM is proposed and we show an almost linear performance scaling, as the number of GPUs increases. Finally, the algorithmic recursive formulation of these triangular BLAS kernels is in fact oblivious to the targeted hardware architecture. We, therefore, port these recursive kernels to homogeneous x86 hardware architectures by relying on the vendor optimized BLAS implementations. Results reported on various hardware architectures highlight a significant performance improvement against state-of-the-art implementations. These new kernels are freely available in the KAUST BLAS (KBLAS) open-source library at https://github.com/ecrc/kblas.

  19. Redesigning Triangular Dense Matrix Computations on GPUs

    KAUST Repository

    Charara, Ali; Ltaief, Hatem; Keyes, David E.

    2016-01-01

    A new implementation of the triangular matrix-matrix multiplication (TRMM) and the triangular solve (TRSM) kernels are described on GPU hardware accelerators. Although part of the Level 3 BLAS family, these highly computationally intensive kernels

  20. Classification of LIDAR Data for Generating a High-Precision Roadway Map

    Science.gov (United States)

    Jeong, J.; Lee, I.

    2016-06-01

    Generating of a highly precise map grows up with development of autonomous driving vehicles. The highly precise map includes a precision of centimetres level unlike an existing commercial map with the precision of meters level. It is important to understand road environments and make a decision for autonomous driving since a robust localization is one of the critical challenges for the autonomous driving car. The one of source data is from a Lidar because it provides highly dense point cloud data with three dimensional position, intensities and ranges from the sensor to target. In this paper, we focus on how to segment point cloud data from a Lidar on a vehicle and classify objects on the road for the highly precise map. In particular, we propose the combination with a feature descriptor and a classification algorithm in machine learning. Objects can be distinguish by geometrical features based on a surface normal of each point. To achieve correct classification using limited point cloud data sets, a Support Vector Machine algorithm in machine learning are used. Final step is to evaluate accuracies of obtained results by comparing them to reference data The results show sufficient accuracy and it will be utilized to generate a highly precise road map.

  1. CLASSIFICATION OF LIDAR DATA FOR GENERATING A HIGH-PRECISION ROADWAY MAP

    Directory of Open Access Journals (Sweden)

    J. Jeong

    2016-06-01

    Full Text Available Generating of a highly precise map grows up with development of autonomous driving vehicles. The highly precise map includes a precision of centimetres level unlike an existing commercial map with the precision of meters level. It is important to understand road environments and make a decision for autonomous driving since a robust localization is one of the critical challenges for the autonomous driving car. The one of source data is from a Lidar because it provides highly dense point cloud data with three dimensional position, intensities and ranges from the sensor to target. In this paper, we focus on how to segment point cloud data from a Lidar on a vehicle and classify objects on the road for the highly precise map. In particular, we propose the combination with a feature descriptor and a classification algorithm in machine learning. Objects can be distinguish by geometrical features based on a surface normal of each point. To achieve correct classification using limited point cloud data sets, a Support Vector Machine algorithm in machine learning are used. Final step is to evaluate accuracies of obtained results by comparing them to reference data The results show sufficient accuracy and it will be utilized to generate a highly precise road map.

  2. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations

    KAUST Repository

    Zhang, Chen

    2014-05-29

    ZIF-8/6FDA-DAM, a proven mixed-matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual-layer ZIF-8/6FDA-DAM mixed-matrix hollow fiber membranes with ZIF-8 nanoparticle loading up to 30 wt % using the conventional dry-jet/wet-quench fiber spinning technique. The mixed-matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed-matrix dense films. Critical variables controlling successful formation of mixed-matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high-loading mixed-matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed-matrix membranes. © 2014 American Institute of Chemical Engineers.

  3. Implementing a New Dense Symmetric Eigensolver on Multicore Systems

    KAUST Repository

    Sukkari, Dalal E.

    2013-07-01

    We present original advanced architecture implementations of the QDWHeig algo- rithm for solving dense symmetric eigenproblems. The algorithm (Y. Nakatsukasa and N. J. Higham, 2012) performs a spectral divide-and-conquer, which recursively divides the matrix into smaller submatrices by finding an invariant subspace for a subset of the spectrum. The main contribution of this thesis is to enhance the per- formance of QDWHeig algorithm by relying on a high performance kernels from PLASMA [1] and LAPACK [2]. We demonstrate the quality of the eigenpairs that are computed with the QDWHeig algorithm for many matrix types with different eigenvalue clustering. We then implement QDWHeig using kernels from LAPACK and PLASMA, and compare its performance against other divide-and-conquer sym- metric eigensolvers. The main part of QDWHeig is finding a polar decomposition. We introduce mixed precision to enhance the performance in finding the polar decom- position. Our evaluation considers speed and accuracy of the computed eigenvalues. Some applications require finding only a subspectrum of the eigenvalues; therefore we modify the algorithm to find the eigenpairs in a given interval of interest. An ex- perimental study shows significant improvement on the performance of our algorithm using mixed precision and PLASMA routines.

  4. X-ray spectroscopic diagnostics of high-temperature dense plasmas created in different gaseous media

    International Nuclear Information System (INIS)

    Skobelev, I.Y.; Dyakin, V.M.; Faenov, A.Y.

    1997-01-01

    The investigations of emission x-ray spectra of multicharged ions of some chemical elements (S, F, Ar, Fr, O) have been carried out. These atoms are contained in gases and consequently can be used as diagnostic elements in a dense plasma focus experiments. The investigations were done in the dense high-temperature plasma (N e ∼ 10 21 cm -3 , T e ∼ 500 eV) created by laser heating of high-pressure gas puff targets, and X-ray spectrographs with a spherically bent mica crystals were used for spectra observations. Some new spectroscopic results (line identifications, high-precision wavelength measurements) have been obtained and have been applied to determine a spatial distribution of plasma parameters. It is shown that spectroscopic techniques used is a very suitable tool for studies of a plasma with complicated spatial structure

  5. Solving sparse linear least squares problems on some supercomputers by using large dense blocks

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Ostromsky, T; Sameh, A

    1997-01-01

    technique is preferable to sparse matrix technique when the matrices are not large, because the high computational speed compensates fully the disadvantages of using more arithmetic operations and more storage. For very large matrices the computations must be organized as a sequence of tasks in each......Efficient subroutines for dense matrix computations have recently been developed and are available on many high-speed computers. On some computers the speed of many dense matrix operations is near to the peak-performance. For sparse matrices storage and operations can be saved by operating only...... and storing only nonzero elements. However, the price is a great degradation of the speed of computations on supercomputers (due to the use of indirect addresses, to the need to insert new nonzeros in the sparse storage scheme, to the lack of data locality, etc.). On many high-speed computers a dense matrix...

  6. Preconditioner-free Wiener filtering with a dense noise matrix

    Science.gov (United States)

    Huffenberger, Kevin M.

    2018-05-01

    This work extends the Elsner & Wandelt (2013) iterative method for efficient, preconditioner-free Wiener filtering to cases in which the noise covariance matrix is dense, but can be decomposed into a sum whose parts are sparse in convenient bases. The new method, which uses multiple messenger fields, reproduces Wiener-filter solutions for test problems, and we apply it to a case beyond the reach of the Elsner & Wandelt (2013) method. We compute the Wiener-filter solution for a simulated Cosmic Microwave Background (CMB) map that contains spatially varying, uncorrelated noise, isotropic 1/f noise, and large-scale horizontal stripes (like those caused by atmospheric noise). We discuss simple extensions that can filter contaminated modes or inverse-noise-filter the data. These techniques help to address complications in the noise properties of maps from current and future generations of ground-based Microwave Background experiments, like Advanced ACTPol, Simons Observatory, and CMB-S4.

  7. Memory-Efficient Analysis of Dense Functional Connectomes.

    Science.gov (United States)

    Loewe, Kristian; Donohue, Sarah E; Schoenfeld, Mircea A; Kruse, Rudolf; Borgelt, Christian

    2016-01-01

    The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software) are compared with regard to their computational efficiency. The matrix implementation based on on-demand computations has very low memory requirements, thus enabling analyses that would be otherwise infeasible to conduct due to

  8. Reference satellite selection method for GNSS high-precision relative positioning

    Directory of Open Access Journals (Sweden)

    Xiao Gao

    2017-03-01

    Full Text Available Selecting the optimal reference satellite is an important component of high-precision relative positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning.

  9. Dense Alternating Sign Matrices and Extensions

    Czech Academy of Sciences Publication Activity Database

    Fiedler, Miroslav; Hall, F.J.; Stroev, M.

    2014-01-01

    Roč. 444, 1 March (2014), s. 219-226 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : alternating sign matrix * dense matrix * totally unimodular matrix * combined matrix * generalized complementary basic matrix Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

  10. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.

    Science.gov (United States)

    Barako, Michael T; Isaacson, Scott G; Lian, Feifei; Pop, Eric; Dauskardt, Reinhold H; Goodson, Kenneth E; Tice, Jesse

    2017-12-06

    Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm 2 K W -1 , over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.

  11. High Precision Fast Projective Synchronization for Chaotic Systems with Unknown Parameters

    Science.gov (United States)

    Nian, Fuzhong; Wang, Xingyuan; Lin, Da; Niu, Yujun

    2013-08-01

    A high precision fast projective synchronization method for chaotic systems with unknown parameters was proposed by introducing optimal matrix. Numerical simulations indicate that the precision be improved about three orders compared with other common methods under the same condition of software and hardware. Moreover, when average error is less than 10-3, the synchronization speed is 6500 times than common methods, the iteration needs only 4 times. The unknown parameters also were identified rapidly. The theoretical analysis and proof also were given.

  12. Design and algorithm research of high precision airborne infrared touch screen

    Science.gov (United States)

    Zhang, Xiao-Bing; Wang, Shuang-Jie; Fu, Yan; Chen, Zhao-Quan

    2016-10-01

    There are shortcomings of low precision, touch shaking, and sharp decrease of touch precision when emitting and receiving tubes are failure in the infrared touch screen. A high precision positioning algorithm based on extended axis is proposed to solve these problems. First, the unimpeded state of the beam between emitting and receiving tubes is recorded as 0, while the impeded state is recorded as 1. Then, the method of oblique scan is used, in which the light of one emitting tube is used for five receiving tubes. The impeded information of all emitting and receiving tubes is collected as matrix. Finally, according to the method of arithmetic average, the position of the touch object is calculated. The extended axis positioning algorithm is characteristic of high precision in case of failure of individual infrared tube and affects slightly the precision. The experimental result shows that the 90% display area of the touch error is less than 0.25D, where D is the distance between adjacent emitting tubes. The conclusion is gained that the algorithm based on extended axis has advantages of high precision, little impact when individual infrared tube is failure, and using easily.

  13. High-Precision Half-Life Measurement for the Superallowed β+ Emitter Alm26

    Science.gov (United States)

    Finlay, P.; Ettenauer, S.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Cross, D. S.; Demand, G.; Djongolov, M.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hackman, G.; Leach, K. G.; Pearson, C. J.; Phillips, A. A.; Sumithrarachchi, C. S.; Triambak, S.; Williams, S. J.

    2011-01-01

    A high-precision half-life measurement for the superallowed β+ emitter Alm26 was performed at the TRIUMF-ISAC radioactive ion beam facility yielding T1/2=6346.54±0.46stat±0.60systms, consistent with, but 2.5 times more precise than, the previous world average. The Alm26 half-life and ft value, 3037.53(61) s, are now the most precisely determined for any superallowed β decay. Combined with recent theoretical corrections for isospin-symmetry-breaking and radiative effects, the corrected Ft value for Alm26, 3073.0(12) s, sets a new benchmark for the high-precision superallowed Fermi β-decay studies used to test the conserved vector current hypothesis and determine the Vud element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix.

  14. Memory-efficient analysis of dense functional connectomes

    Directory of Open Access Journals (Sweden)

    Kristian Loewe

    2016-11-01

    Full Text Available The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software are compared with regard to their computational efficiency in terms of memory requirements and computation time. The matrix implementation based on on-demand computations has very low memory requirements thus enabling

  15. Efficient sparse matrix-matrix multiplication for computing periodic responses by shooting method on Intel Xeon Phi

    Science.gov (United States)

    Stoykov, S.; Atanassov, E.; Margenov, S.

    2016-10-01

    Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.

  16. Repair of dense connective tissues via biomaterial-mediated matrix reprogramming of the wound interface.

    Science.gov (United States)

    Qu, Feini; Pintauro, Michael P; Haughan, Joanne E; Henning, Elizabeth A; Esterhai, John L; Schaer, Thomas P; Mauck, Robert L; Fisher, Matthew B

    2015-01-01

    Repair of dense connective tissues in adults is limited by their intrinsic hypocellularity and is exacerbated by a dense extracellular matrix (ECM) that impedes cellular migration to and local proliferation at the wound site. Conversely, healing in fetal tissues occurs due in part to an environment conducive to cell mobility and division. Here, we investigated whether the application of a degradative enzyme, collagenase, could reprogram the adult wound margin to a more fetal-like state, and thus abrogate the biophysical impediments that hinder migration and proliferation. We tested this concept using the knee meniscus, a commonly injured structure for which few regenerative approaches exist. To focus delivery and degradation to the wound interface, we developed a system in which collagenase was stored inside poly(ethylene oxide) (PEO) electrospun nanofibers and released upon hydration. Through a series of in vitro and in vivo studies, our findings show that partial digestion of the wound interface improves repair by creating a more compliant and porous microenvironment that expedites cell migration to and/or proliferation at the wound margin. This innovative approach of targeted manipulation of the wound interface, focused on removing the naturally occurring barriers to adult tissue repair, may find widespread application in the treatment of injuries to a variety of dense connective tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Flexibility-Rigidity Coordination of the Dense Exopolysaccharide Matrix in Terrestrial Cyanobacteria Acclimated to Periodic Desiccation.

    Science.gov (United States)

    Liu, Wen; Cui, Lijuan; Xu, Haiyan; Zhu, Zhaoxia; Gao, Xiang

    2017-11-15

    A dense exopolysaccharide (EPS) matrix is crucial for cyanobacterial survival in terrestrial xeric environments, in which cyanobacteria undergo frequent expansion and shrinkage processes during environmental desiccation-rehydration cycles. However, it is unclear how terrestrial cyanobacteria coordinate the structural dynamics of the EPS matrix upon expansion and shrinkage to avoid potential mechanical stress while benefiting from the matrix. In the present study, we sought to answer this question by investigating the gene expression, protein dynamics, enzymatic characteristics, and biological roles of WspA, an abundantly secreted protein, in the representative terrestrial cyanobacterium Nostoc flagelliforme The results demonstrated that WspA is a novel β-galactosidase that facilitates softening of the EPS matrix by breaking the polysaccharide backbone under substantial moisture or facilitates the thickening and relinkage of the broken matrix during the drying process, and thus these regulations are well correlated with moisture availability or desiccation-rehydration cycles. This coordination of flexibility and rigidity of the cyanobacterial extracellular matrix may contribute to a favorable balance of cell growth and stress resistance in xeric environments. IMPORTANCE How the exopolysaccharide matrix is dynamically coordinated by exoproteins to cope with frequent expansion and shrinkage processes in terrestrial colonial cyanobacteria remains unclear. Here we elucidated the biochemical identity and biological roles of a dominant exoprotein in these regulation processes. Our study thus gained insight into this regulative mechanism in cyanobacteria to combat periodic desiccation. In addition, the filamentous drought-adapted cyanobacterium Nostoc flagelliforme serves as an ideal model for us to explore this issue in this study. Copyright © 2017 American Society for Microbiology.

  18. Enabling High Performance Large Scale Dense Problems through KBLAS

    KAUST Repository

    Abdelfattah, Ahmad

    2014-05-04

    KBLAS (KAUST BLAS) is a small library that provides highly optimized BLAS routines on systems accelerated with GPUs. KBLAS is entirely written in CUDA C, and targets NVIDIA GPUs with compute capability 2.0 (Fermi) or higher. The current focus is on level-2 BLAS routines, namely the general matrix vector multiplication (GEMV) kernel, and the symmetric/hermitian matrix vector multiplication (SYMV/HEMV) kernel. KBLAS provides these two kernels in all four precisions (s, d, c, and z), with support to multi-GPU systems. Through advanced optimization techniques that target latency hiding and pushing memory bandwidth to the limit, KBLAS outperforms state-of-the-art kernels by 20-90% improvement. Competitors include CUBLAS-5.5, MAGMABLAS-1.4.0, and CULAR17. The SYMV/HEMV kernel from KBLAS has been adopted by NVIDIA, and should appear in CUBLAS-6.0. KBLAS has been used in large scale simulations of multi-object adaptive optics.

  19. Designing sparse sensing matrix for compressive sensing to reconstruct high resolution medical images

    Directory of Open Access Journals (Sweden)

    Vibha Tiwari

    2015-12-01

    Full Text Available Compressive sensing theory enables faithful reconstruction of signals, sparse in domain $ \\Psi $, at sampling rate lesser than Nyquist criterion, while using sampling or sensing matrix $ \\Phi $ which satisfies restricted isometric property. The role played by sensing matrix $ \\Phi $ and sparsity matrix $ \\Psi $ is vital in faithful reconstruction. If the sensing matrix is dense then it takes large storage space and leads to high computational cost. In this paper, effort is made to design sparse sensing matrix with least incurred computational cost while maintaining quality of reconstructed image. The design approach followed is based on sparse block circulant matrix (SBCM with few modifications. The other used sparse sensing matrix consists of 15 ones in each column. The medical images used are acquired from US, MRI and CT modalities. The image quality measurement parameters are used to compare the performance of reconstructed medical images using various sensing matrices. It is observed that, since Gram matrix of dictionary matrix ($ \\Phi \\Psi \\mathrm{} $ is closed to identity matrix in case of proposed modified SBCM, therefore, it helps to reconstruct the medical images of very good quality.

  20. KBLAS: An Optimized Library for Dense Matrix-Vector Multiplication on GPU Accelerators

    KAUST Repository

    Abdelfattah, Ahmad; Keyes, David E.; Ltaief, Hatem

    2016-01-01

    compliance with the standard BLAS API. Another optimization technique allows ensuring coalesced memory access when dealing with submatrices, especially for high-level dense linear algebra algorithms. All KBLAS kernels have been leveraged to a multi

  1. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    -ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation......Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X...

  2. High frequency flow-structural interaction in dense subsonic fluids

    Science.gov (United States)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  3. Novel method for measuring a dense 3D strain map of robotic flapping wings

    Science.gov (United States)

    Li, Beiwen; Zhang, Song

    2018-04-01

    Measuring dense 3D strain maps of the inextensible membranous flapping wings of robots is of vital importance to the field of bio-inspired engineering. Conventional high-speed 3D videography methods typically reconstruct the wing geometries through measuring sparse points with fiducial markers, and thus cannot obtain the full-field mechanics of the wings in detail. In this research, we propose a novel system to measure a dense strain map of inextensible membranous flapping wings by developing a superfast 3D imaging system and a computational framework for strain analysis. Specifically, first we developed a 5000 Hz 3D imaging system based on the digital fringe projection technique using the defocused binary patterns to precisely measure the dynamic 3D geometries of rapidly flapping wings. Then, we developed a geometry-based algorithm to perform point tracking on the precisely measured 3D surface data. Finally, we developed a dense strain computational method using the Kirchhoff-Love shell theory. Experiments demonstrate that our method can effectively perform point tracking and measure a highly dense strain map of the wings without many fiducial markers.

  4. On the mean squared error of the ridge estimator of the covariance and precision matrix

    NARCIS (Netherlands)

    van Wieringen, Wessel N.

    2017-01-01

    For a suitably chosen ridge penalty parameter, the ridge regression estimator uniformly dominates the maximum likelihood regression estimator in terms of the mean squared error. Analogous results for the ridge maximum likelihood estimators of covariance and precision matrix are presented.

  5. Precision Measurement of the Neutron Twist-3 Matrix Element dn2: Probing Color Forces

    Energy Technology Data Exchange (ETDEWEB)

    Posik, Matthew; Flay, David; Parno, Diana; Allada, Kalyan; Armstrong, Whitney; Averett, Todd; Benmokhtar, Fatiha; Bertozzi, William; Camsonne, Alexandre; Canan, Mustafa; Cates, Gordon; Chen, Chunhua; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Cusanno, Francesco; Dalton, Mark; Deconinck, Wouter; De Jager, Cornelis; Deng, Xiaoyan; Deur, Alexandre; Dutta, Chiranjib; El Fassi, Lamiaa; Franklin, Gregg; Friend, Megan; Gao, Haiyan; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Golge, Serkan; Gomez, Javier; Guo, Lei; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, J; Hyde, Charles; Ibrahim Abdalla, Hassan; Jiang, Xiaodong; Jin, Ge; Katich, Joseph; Kelleher, Aidan; Kolarkar, Ameya; Korsch, Wolfgang; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Long, Elena; Lukhanin, Oleksandr; Mamyan, Vahe; McNulty, Dustin; Meziani, Zein-Eddine; Michaels, Robert; Mihovilovic, Miha; Moffit, Bryan; Muangma, Navaphon; Nanda, Sirish; Narayan, Amrendra; Nelyubin, Vladimir; Norum, Blaine; Nuruzzaman, nfn; Oh, Yongseok; Peng, Jen-chieh; Qian, Xin; Qiang, Yi; Rakhman, Abdurahim; Riordan, Seamus; Saha, Arunava; Sawatzky, Bradley; Hashemi Shabestari, Mitra; Shahinyan, Albert; Sirca, Simon; Solvignon-Slifer, Patricia; Subedi, Ramesh; Sulkosky, Vincent; Tobias, William; Troth, Wolfgang; Wang, Diancheng; Wang, Y; Wojtsekhowski, Bogdan; Yan, X; Yao, Huan; Ye, Yunxiu; Ye, Zhihong; Yuan, Lulin; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, Bo; Zheng, Xiaochao

    2014-07-01

    Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25 lte x lte 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized 3He target. In this dedicated experiment, the spin structure function g2 on 3He was determined with precision at large x, and the neutron twist-three matrix element dn2 was measured at ?Q2? of 3.21 and 4.32 GeV2/c2, with an absolute precision of about 10?5. Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at ?Q2?= 5 GeV2/c2. Combining dn2 and a newly extracted twist-four matrix element, fn2, the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 60 MeV/fm in magnitude.

  6. A near infrared laser frequency comb for high precision Doppler planet surveys

    Directory of Open Access Journals (Sweden)

    Bally J.

    2011-07-01

    Full Text Available Perhaps the most exciting area of astronomical research today is the study of exoplanets and exoplanetary systems, engaging the imagination not just of the astronomical community, but of the general population. Astronomical instrumentation has matured to the level where it is possible to detect terrestrial planets orbiting distant stars via radial velocity (RV measurements, with the most stable visible light spectrographs reporting RV results the order of 1 m/s. This, however, is an order of magnitude away from the precision needed to detect an Earth analog orbiting a star such as our sun, the Holy Grail of these efforts. By performing these observations in near infrared (NIR there is the potential to simplify the search for distant terrestrial planets by studying cooler, less massive, much more numerous class M stars, with a tighter habitable zone and correspondingly larger RV signal. This NIR advantage is undone by the lack of a suitable high precision, high stability wavelength standard, limiting NIR RV measurements to tens or hundreds of m/s [1, 2]. With the improved spectroscopic precision provided by a laser frequency comb based wavelength reference producing a set of bright, densely and uniformly spaced lines, it will be possible to achieve up to two orders of magnitude improvement in RV precision, limited only by the precision and sensitivity of existing spectrographs, enabling the observation of Earth analogs through RV measurements. We discuss the laser frequency comb as an astronomical wavelength reference, and describe progress towards a near infrared laser frequency comb at the National Institute of Standards and Technology and at the University of Colorado where we are operating a laser frequency comb suitable for use with a high resolution H band astronomical spectrograph.

  7. High precision tools for slepton pair production processes at hadron colliders

    International Nuclear Information System (INIS)

    Thier, Stephan Christoph

    2015-01-01

    In this thesis, we develop high precision tools for the simulation of slepton pair production processes at hadron colliders and apply them to phenomenological studies at the LHC. Our approach is based on the POWHEG method for the matching of next-to-leading order results in perturbation theory to parton showers. We calculate matrix elements for slepton pair production and for the production of a slepton pair in association with a jet perturbatively at next-to-leading order in supersymmetric quantum chromodynamics. Both processes are subsequently implemented in the POWHEG BOX, a publicly available software tool that contains general parts of the POWHEG matching scheme. We investigate phenomenological consequences of our calculations in several setups that respect experimental exclusion limits for supersymmetric particles and provide precise predictions for slepton signatures at the LHC. The inclusion of QCD emissions in the partonic matrix elements allows for an accurate description of hard jets. Interfacing our codes to the multi-purpose Monte-Carlo event generator PYTHIA, we simulate parton showers and slepton decays in fully exclusive events. Advanced kinematical variables and specific search strategies are examined as means for slepton discovery in experimentally challenging setups.

  8. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chunyang Lei

    2016-07-01

    Full Text Available Super dense wireless sensor networks (WSNs have become popular with the development of Internet of Things (IoT, Machine-to-Machine (M2M communications and Vehicular-to-Vehicular (V2V networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled.

  9. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks.

    Science.gov (United States)

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Gaura, Elena; Brusey, James; Zhang, Xuekun; Dutkiewicz, Eryk

    2016-07-18

    Super dense wireless sensor networks (WSNs) have become popular with the development of Internet of Things (IoT), Machine-to-Machine (M2M) communications and Vehicular-to-Vehicular (V2V) networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled.

  10. Dense high-temperature plasma transport processes

    International Nuclear Information System (INIS)

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  11. High precision efficiency calibration of a HPGe detector

    International Nuclear Information System (INIS)

    Nica, N.; Hardy, J.C.; Iacob, V.E.; Helmer, R.G.

    2003-01-01

    Many experiments involving measurements of γ rays require a very precise efficiency calibration. Since γ-ray detection and identification also requires good energy resolution, the most commonly used detectors are of the coaxial HPGe type. We have calibrated our 70% HPGe to ∼ 0.2% precision, motivated by the measurement of precise branching ratios (BR) in superallowed 0 + → 0 + β decays. These BRs are essential ingredients in extracting ft-values needed to test the Standard Model via the unitarity of the Cabibbo-Kobayashi-Maskawa matrix, a test that it currently fails by more than two standard deviations. To achieve the required high precision in our efficiency calibration, we measured 17 radioactive sources at a source-detector distance of 15 cm. Some of these were commercial 'standard' sources but we achieved the highest relative precision with 'home-made' sources selected because they have simple decay schemes with negligible side feeding, thus providing exactly matched γ-ray intensities. These latter sources were produced by us at Texas A and M by n-activation or by nuclear reactions. Another critical source among the 17 was a 60 Co source produced by Physikalisch-Technische Bundesanstalt, Braunschweig, Germany: its absolute activity was quoted to better than 0.06%. We used it to establish our absolute efficiency, while all the other sources were used to determine relative efficiencies, extending our calibration over a large energy range (40-3500 keV). Efficiencies were also determined with Monte Carlo calculations performed with the CYLTRAN code. The physical parameters of the Ge crystal were independently determined and only two (unmeasurable) dead-layers were adjusted, within physically reasonable limits, to achieve precise absolute agreement with our measured efficiencies. The combination of measured efficiencies at more than 60 individual energies and Monte Carlo calculations to interpolate between them allows us to quote the efficiency of our

  12. A constitutive model for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures

    Directory of Open Access Journals (Sweden)

    Song Wei-Dong

    2013-01-01

    Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.

  13. Weighted Geometric Dilution of Precision Calculations with Matrix Multiplication

    Directory of Open Access Journals (Sweden)

    Chien-Sheng Chen

    2015-01-01

    Full Text Available To enhance the performance of location estimation in wireless positioning systems, the geometric dilution of precision (GDOP is widely used as a criterion for selecting measurement units. Since GDOP represents the geometric effect on the relationship between measurement error and positioning determination error, the smallest GDOP of the measurement unit subset is usually chosen for positioning. The conventional GDOP calculation using matrix inversion method requires many operations. Because more and more measurement units can be chosen nowadays, an efficient calculation should be designed to decrease the complexity. Since the performance of each measurement unit is different, the weighted GDOP (WGDOP, instead of GDOP, is used to select the measurement units to improve the accuracy of location. To calculate WGDOP effectively and efficiently, the closed-form solution for WGDOP calculation is proposed when more than four measurements are available. In this paper, an efficient WGDOP calculation method applying matrix multiplication that is easy for hardware implementation is proposed. In addition, the proposed method can be used when more than exactly four measurements are available. Even when using all-in-view method for positioning, the proposed method still can reduce the computational overhead. The proposed WGDOP methods with less computation are compatible with global positioning system (GPS, wireless sensor networks (WSN and cellular communication systems.

  14. Object-Based Dense Matching Method for Maintaining Structure Characteristics of Linear Buildings.

    Science.gov (United States)

    Su, Nan; Yan, Yiming; Qiu, Mingjie; Zhao, Chunhui; Wang, Liguo

    2018-03-29

    In this paper, we proposed a novel object-based dense matching method specially for the high-precision disparity map of building objects in urban areas, which can maintain accurate object structure characteristics. The proposed framework mainly includes three stages. Firstly, an improved edge line extraction method is proposed for the edge segments to fit closely to building outlines. Secondly, a fusion method is proposed for the outlines under the constraint of straight lines, which can maintain the building structural attribute with parallel or vertical edges, which is very useful for the dense matching method. Finally, we proposed an edge constraint and outline compensation (ECAOC) dense matching method to maintain building object structural characteristics in the disparity map. In the proposed method, the improved edge lines are used to optimize matching search scope and matching template window, and the high-precision building outlines are used to compensate the shape feature of building objects. Our method can greatly increase the matching accuracy of building objects in urban areas, especially at building edges. For the outline extraction experiments, our fusion method verifies the superiority and robustness on panchromatic images of different satellites and different resolutions. For the dense matching experiments, our ECOAC method shows great advantages for matching accuracy of building objects in urban areas compared with three other methods.

  15. Object-Based Dense Matching Method for Maintaining Structure Characteristics of Linear Buildings

    Directory of Open Access Journals (Sweden)

    Nan Su

    2018-03-01

    Full Text Available In this paper, we proposed a novel object-based dense matching method specially for the high-precision disparity map of building objects in urban areas, which can maintain accurate object structure characteristics. The proposed framework mainly includes three stages. Firstly, an improved edge line extraction method is proposed for the edge segments to fit closely to building outlines. Secondly, a fusion method is proposed for the outlines under the constraint of straight lines, which can maintain the building structural attribute with parallel or vertical edges, which is very useful for the dense matching method. Finally, we proposed an edge constraint and outline compensation (ECAOC dense matching method to maintain building object structural characteristics in the disparity map. In the proposed method, the improved edge lines are used to optimize matching search scope and matching template window, and the high-precision building outlines are used to compensate the shape feature of building objects. Our method can greatly increase the matching accuracy of building objects in urban areas, especially at building edges. For the outline extraction experiments, our fusion method verifies the superiority and robustness on panchromatic images of different satellites and different resolutions. For the dense matching experiments, our ECOAC method shows great advantages for matching accuracy of building objects in urban areas compared with three other methods.

  16. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2016-12-10

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step-size restriction as the method itself. A general recipe for first-order SSP dense output formulae for SSP methods is given, and second-order dense output formulae for several optimal SSP methods are developed. It is shown that SSP dense output formulae of order three and higher do not exist, and that in any method possessing a second-order SSP dense output, the coefficient matrix A has a zero row.

  17. A parallel solver for huge dense linear systems

    Science.gov (United States)

    Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.

    2011-11-01

    HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system

  18. Exploiting Data Sparsity for Large-Scale Matrix Computations

    KAUST Repository

    Akbudak, Kadir

    2018-02-24

    Exploiting data sparsity in dense matrices is an algorithmic bridge between architectures that are increasingly memory-austere on a per-core basis and extreme-scale applications. The Hierarchical matrix Computations on Manycore Architectures (HiCMA) library tackles this challenging problem by achieving significant reductions in time to solution and memory footprint, while preserving a specified accuracy requirement of the application. HiCMA provides a high-performance implementation on distributed-memory systems of one of the most widely used matrix factorization in large-scale scientific applications, i.e., the Cholesky factorization. It employs the tile low-rank data format to compress the dense data-sparse off-diagonal tiles of the matrix. It then decomposes the matrix computations into interdependent tasks and relies on the dynamic runtime system StarPU for asynchronous out-of-order scheduling, while allowing high user-productivity. Performance comparisons and memory footprint on matrix dimensions up to eleven million show a performance gain and memory saving of more than an order of magnitude for both metrics on thousands of cores, against state-of-the-art open-source and vendor optimized numerical libraries. This represents an important milestone in enabling large-scale matrix computations toward solving big data problems in geospatial statistics for climate/weather forecasting applications.

  19. Exploiting Data Sparsity for Large-Scale Matrix Computations

    KAUST Repository

    Akbudak, Kadir; Ltaief, Hatem; Mikhalev, Aleksandr; Charara, Ali; Keyes, David E.

    2018-01-01

    Exploiting data sparsity in dense matrices is an algorithmic bridge between architectures that are increasingly memory-austere on a per-core basis and extreme-scale applications. The Hierarchical matrix Computations on Manycore Architectures (HiCMA) library tackles this challenging problem by achieving significant reductions in time to solution and memory footprint, while preserving a specified accuracy requirement of the application. HiCMA provides a high-performance implementation on distributed-memory systems of one of the most widely used matrix factorization in large-scale scientific applications, i.e., the Cholesky factorization. It employs the tile low-rank data format to compress the dense data-sparse off-diagonal tiles of the matrix. It then decomposes the matrix computations into interdependent tasks and relies on the dynamic runtime system StarPU for asynchronous out-of-order scheduling, while allowing high user-productivity. Performance comparisons and memory footprint on matrix dimensions up to eleven million show a performance gain and memory saving of more than an order of magnitude for both metrics on thousands of cores, against state-of-the-art open-source and vendor optimized numerical libraries. This represents an important milestone in enabling large-scale matrix computations toward solving big data problems in geospatial statistics for climate/weather forecasting applications.

  20. The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.

    Science.gov (United States)

    Pang, Haotian; Liu, Han; Vanderbei, Robert

    2014-02-01

    We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.

  1. Parallelism in matrix computations

    CERN Document Server

    Gallopoulos, Efstratios; Sameh, Ahmed H

    2016-01-01

    This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...

  2. High-Precision Phenotyping of Grape Bunch Architecture Using Fast 3D Sensor and Automation.

    Science.gov (United States)

    Rist, Florian; Herzog, Katja; Mack, Jenny; Richter, Robert; Steinhage, Volker; Töpfer, Reinhard

    2018-03-02

    Wine growers prefer cultivars with looser bunch architecture because of the decreased risk for bunch rot. As a consequence, grapevine breeders have to select seedlings and new cultivars with regard to appropriate bunch traits. Bunch architecture is a mosaic of different single traits which makes phenotyping labor-intensive and time-consuming. In the present study, a fast and high-precision phenotyping pipeline was developed. The optical sensor Artec Spider 3D scanner (Artec 3D, L-1466, Luxembourg) was used to generate dense 3D point clouds of grapevine bunches under lab conditions and an automated analysis software called 3D-Bunch-Tool was developed to extract different single 3D bunch traits, i.e., the number of berries, berry diameter, single berry volume, total volume of berries, convex hull volume of grapes, bunch width and bunch length. The method was validated on whole bunches of different grapevine cultivars and phenotypic variable breeding material. Reliable phenotypic data were obtained which show high significant correlations (up to r² = 0.95 for berry number) compared to ground truth data. Moreover, it was shown that the Artec Spider can be used directly in the field where achieved data show comparable precision with regard to the lab application. This non-invasive and non-contact field application facilitates the first high-precision phenotyping pipeline based on 3D bunch traits in large plant sets.

  3. Locating sources within a dense sensor array using graph clustering

    Science.gov (United States)

    Gerstoft, P.; Riahi, N.

    2017-12-01

    We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.

  4. Accelerating Scientific Applications using High Performance Dense and Sparse Linear Algebra Kernels on GPUs

    KAUST Repository

    Abdelfattah, Ahmad

    2015-01-15

    High performance computing (HPC) platforms are evolving to more heterogeneous configurations to support the workloads of various applications. The current hardware landscape is composed of traditional multicore CPUs equipped with hardware accelerators that can handle high levels of parallelism. Graphical Processing Units (GPUs) are popular high performance hardware accelerators in modern supercomputers. GPU programming has a different model than that for CPUs, which means that many numerical kernels have to be redesigned and optimized specifically for this architecture. GPUs usually outperform multicore CPUs in some compute intensive and massively parallel applications that have regular processing patterns. However, most scientific applications rely on crucial memory-bound kernels and may witness bottlenecks due to the overhead of the memory bus latency. They can still take advantage of the GPU compute power capabilities, provided that an efficient architecture-aware design is achieved. This dissertation presents a uniform design strategy for optimizing critical memory-bound kernels on GPUs. Based on hierarchical register blocking, double buffering and latency hiding techniques, this strategy leverages the performance of a wide range of standard numerical kernels found in dense and sparse linear algebra libraries. The work presented here focuses on matrix-vector multiplication kernels (MVM) as repre- sentative and most important memory-bound operations in this context. Each kernel inherits the benefits of the proposed strategies. By exposing a proper set of tuning parameters, the strategy is flexible enough to suit different types of matrices, ranging from large dense matrices, to sparse matrices with dense block structures, while high performance is maintained. Furthermore, the tuning parameters are used to maintain the relative performance across different GPU architectures. Multi-GPU acceleration is proposed to scale the performance on several devices. The

  5. Obtaining of dense and highly porous ceramic materials from metallurgical slag

    OpenAIRE

    Fidancevska E.; Mangutova B.; Milosevski D.; Milosevski M.; Bossert J.

    2003-01-01

    Glass-ceramics in a dense and highly porous form can be obtained from metallurgical slag and waste glass of TV monitors. Using polyurethane foam as pore creator, a highly porous system with porosity of 65 ± 5 %, E-modulus and flexural strength of 8 ± 3 GPa and 13 ± 3.5 MPa respectively can be obtained. This porous material had durability (mass loss) of 0.03 % in 0.1 M HCl that is identical with the durability of a dense composite.

  6. Ranks of dense alternating sign matrices and their sign patterns

    Czech Academy of Sciences Publication Activity Database

    Fiedler, Miroslav; Gao, W.; Hall, F.J.; Jing, G.; Li, Z.; Stroev, M.

    2015-01-01

    Roč. 471, April (2015), s. 109-121 ISSN 0024-3795 R&D Projects: GA ČR(CZ) GA14-07880S Institutional support: RVO:67985840 Keywords : alternating sign matrix * dense matrix * sign pattern matrix Subject RIV: BA - General Mathematics Impact factor: 0.965, year: 2015 http://www.sciencedirect.com/science/article/pii/S0024379515000257

  7. Radiative-Transfer Modeling of Spectra of Densely Packed Particulate Media

    Science.gov (United States)

    Ito, G.; Mishchenko, M. I.; Glotch, T. D.

    2017-12-01

    Remote sensing measurements over a wide range of wavelengths from both ground- and space-based platforms have provided a wealth of data regarding the surfaces and atmospheres of various solar system bodies. With proper interpretations, important properties, such as composition and particle size, can be inferred. However, proper interpretation of such datasets can often be difficult, especially for densely packed particulate media with particle sizes on the order of wavelength of light being used for remote sensing. Radiative transfer theory has often been applied to the study of densely packed particulate media like planetary regoliths and snow, but with difficulty, and here we continue to investigate radiative transfer modeling of spectra of densely packed media. We use the superposition T-matrix method to compute scattering properties of clusters of particles and capture the near-field effects important for dense packing. Then, the scattering parameters from the T-matrix computations are modified with the static structure factor correction, accounting for the dense packing of the clusters themselves. Using these corrected scattering parameters, reflectance (or emissivity via Kirchhoff's Law) is computed with the method of invariance imbedding solution to the radiative transfer equation. For this work we modeled the emissivity spectrum of the 3.3 µm particle size fraction of enstatite, representing some common mineralogical and particle size components of regoliths, in the mid-infrared wavelengths (5 - 50 µm). The modeled spectrum from the T-matrix method with static structure factor correction using moderate packing densities (filling factors of 0.1 - 0.2) produced better fits to the laboratory measurement of corresponding spectrum than the spectrum modeled by the equivalent method without static structure factor correction. Future work will test the method of the superposition T-matrix and static structure factor correction combination for larger particles

  8. High-Precision Phenotyping of Grape Bunch Architecture Using Fast 3D Sensor and Automation

    Directory of Open Access Journals (Sweden)

    Florian Rist

    2018-03-01

    Full Text Available Wine growers prefer cultivars with looser bunch architecture because of the decreased risk for bunch rot. As a consequence, grapevine breeders have to select seedlings and new cultivars with regard to appropriate bunch traits. Bunch architecture is a mosaic of different single traits which makes phenotyping labor-intensive and time-consuming. In the present study, a fast and high-precision phenotyping pipeline was developed. The optical sensor Artec Spider 3D scanner (Artec 3D, L-1466, Luxembourg was used to generate dense 3D point clouds of grapevine bunches under lab conditions and an automated analysis software called 3D-Bunch-Tool was developed to extract different single 3D bunch traits, i.e., the number of berries, berry diameter, single berry volume, total volume of berries, convex hull volume of grapes, bunch width and bunch length. The method was validated on whole bunches of different grapevine cultivars and phenotypic variable breeding material. Reliable phenotypic data were obtained which show high significant correlations (up to r2 = 0.95 for berry number compared to ground truth data. Moreover, it was shown that the Artec Spider can be used directly in the field where achieved data show comparable precision with regard to the lab application. This non-invasive and non-contact field application facilitates the first high-precision phenotyping pipeline based on 3D bunch traits in large plant sets.

  9. Toward a High Performance Tile Divide and Conquer Algorithm for the Dense Symmetric Eigenvalue Problem

    KAUST Repository

    Haidar, Azzam

    2012-01-01

    Classical solvers for the dense symmetric eigenvalue problem suffer from the first step, which involves a reduction to tridiagonal form that is dominated by the cost of accessing memory during the panel factorization. The solution is to reduce the matrix to a banded form, which then requires the eigenvalues of the banded matrix to be computed. The standard divide and conquer algorithm can be modified for this purpose. The paper combines this insight with tile algorithms that can be scheduled via a dynamic runtime system to multicore architectures. A detailed analysis of performance and accuracy is included. Performance improvements of 14-fold and 4-fold speedups are reported relative to LAPACK and Intel\\'s Math Kernel Library.

  10. Obtaining of dense and highly porous ceramic materials from metallurgical slag

    Directory of Open Access Journals (Sweden)

    Fidancevska E.

    2003-01-01

    Full Text Available Glass-ceramics in a dense and highly porous form can be obtained from metallurgical slag and waste glass of TV monitors. Using polyurethane foam as pore creator, a highly porous system with porosity of 65 ± 5 %, E-modulus and flexural strength of 8 ± 3 GPa and 13 ± 3.5 MPa respectively can be obtained. This porous material had durability (mass loss of 0.03 % in 0.1 M HCl that is identical with the durability of a dense composite.

  11. High Productivity Programming of Dense Linear Algebra on Heterogeneous NUMA Architectures

    KAUST Repository

    Alomairy, Rabab M.

    2013-07-01

    High-end multicore systems with GPU-based accelerators are now ubiquitous in the hardware landscape. Besides dealing with the nontrivial heterogeneous environ- ment, end users should often take into consideration the underlying memory architec- ture to decrease the overhead of data motion, especially when running on non-uniform memory access (NUMA) platforms. We propose the OmpSs parallel programming model approach using its Nanos++ dynamic runtime system to solve the two challeng- ing problems aforementioned, through 1) an innovative NUMA node-aware scheduling policy to reduce data movement between NUMA nodes and 2) a nested parallelism feature to concurrently exploit the resources available from the GPU devices as well as the CPU host, without compromising the overall performance. Our approach fea- tures separation of concerns by abstracting the complexity of the hardware from the end users so that high productivity can be achieved. The Cholesky factorization is used as a benchmark representative of dense numerical linear algebra algorithms. Superior performance is also demonstrated on the symmetric matrix inversion based on Cholesky factorization, commonly used in co-variance computations in statistics. Performance on a NUMA system with Kepler-based GPUs exceeds that of existing implementations, while the OmpSs-enabled code remains very similar to its original sequential version.

  12. Neutrino reactions in hot and dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Lohs, Andreas

    2015-04-13

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  13. Neutrino reactions in hot and dense matter

    International Nuclear Information System (INIS)

    Lohs, Andreas

    2015-01-01

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  14. Identifying women with dense breasts at high risk for interval cancer: a cohort study.

    Science.gov (United States)

    Kerlikowske, Karla; Zhu, Weiwei; Tosteson, Anna N A; Sprague, Brian L; Tice, Jeffrey A; Lehman, Constance D; Miglioretti, Diana L

    2015-05-19

    Twenty-one states have laws requiring that women be notified if they have dense breasts and that they be advised to discuss supplemental imaging with their provider. To better direct discussions of supplemental imaging by determining which combinations of breast cancer risk and Breast Imaging Reporting and Data System (BI-RADS) breast density categories are associated with high interval cancer rates. Prospective cohort. Breast Cancer Surveillance Consortium (BCSC) breast imaging facilities. 365,426 women aged 40 to 74 years who had 831,455 digital screening mammography examinations. BI-RADS breast density, BCSC 5-year breast cancer risk, and interval cancer rate (invasive cancer ≤12 months after a normal mammography result) per 1000 mammography examinations. High interval cancer rate was defined as more than 1 case per 1000 examinations. High interval cancer rates were observed for women with 5-year risk of 1.67% or greater and extremely dense breasts or 5-year risk of 2.50% or greater and heterogeneously dense breasts (24% of all women with dense breasts). The interval rate of advanced-stage disease was highest (>0.4 case per 1000 examinations) among women with 5-year risk of 2.50% or greater and heterogeneously or extremely dense breasts (21% of all women with dense breasts). Five-year risk was low to average (0% to 1.66%) for 51.0% of women with heterogeneously dense breasts and 52.5% with extremely dense breasts, with interval cancer rates of 0.58 to 0.63 and 0.72 to 0.89 case per 1000 examinations, respectively. The benefit of supplemental imaging was not assessed. Breast density should not be the sole criterion for deciding whether supplemental imaging is justified because not all women with dense breasts have high interval cancer rates. BCSC 5-year risk combined with BI-RADS breast density can identify women at high risk for interval cancer to inform patient-provider discussions about alternative screening strategies. National Cancer Institute.

  15. Trace element analysis by EPMA in geosciences: detection limit, precision and accuracy

    Science.gov (United States)

    Batanova, V. G.; Sobolev, A. V.; Magnin, V.

    2018-01-01

    Use of the electron probe microanalyser (EPMA) for trace element analysis has increased over the last decade, mainly because of improved stability of spectrometers and the electron column when operated at high probe current; development of new large-area crystal monochromators and ultra-high count rate spectrometers; full integration of energy-dispersive / wavelength-dispersive X-ray spectrometry (EDS/WDS) signals; and the development of powerful software packages. For phases that are stable under a dense electron beam, the detection limit and precision can be decreased to the ppm level by using high acceleration voltage and beam current combined with long counting time. Data on 10 elements (Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, Zn) in olivine obtained on a JEOL JXA-8230 microprobe with tungsten filament show that the detection limit decreases proportionally to the square root of counting time and probe current. For all elements equal or heavier than phosphorus (Z = 15), the detection limit decreases with increasing accelerating voltage. The analytical precision for minor and trace elements analysed in olivine at 25 kV accelerating voltage and 900 nA beam current is 4 - 18 ppm (2 standard deviations of repeated measurements of the olivine reference sample) and is similar to the detection limit of corresponding elements. To analyse trace elements accurately requires careful estimation of background, and consideration of sample damage under the beam and secondary fluorescence from phase boundaries. The development and use of matrix reference samples with well-characterised trace elements of interest is important for monitoring and improving of the accuracy. An evaluation of the accuracy of trace element analyses in olivine has been made by comparing EPMA data for new reference samples with data obtained by different in-situ and bulk analytical methods in six different laboratories worldwide. For all elements, the measured concentrations in the olivine reference sample

  16. Quantitative image analysis for investigating cell-matrix interactions

    Science.gov (United States)

    Burkel, Brian; Notbohm, Jacob

    2017-07-01

    The extracellular matrix provides both chemical and physical cues that control cellular processes such as migration, division, differentiation, and cancer progression. Cells can mechanically alter the matrix by applying forces that result in matrix displacements, which in turn may localize to form dense bands along which cells may migrate. To quantify the displacements, we use confocal microscopy and fluorescent labeling to acquire high-contrast images of the fibrous material. Using a technique for quantitative image analysis called digital volume correlation, we then compute the matrix displacements. Our experimental technology offers a means to quantify matrix mechanics and cell-matrix interactions. We are now using these experimental tools to modulate mechanical properties of the matrix to study cell contraction and migration.

  17. High-speed precision motion control

    CERN Document Server

    Yamaguchi, Takashi; Pang, Chee Khiang

    2011-01-01

    Written for researchers and postgraduate students in Control Engineering, as well as professionals in the Hard Disk Drive industry, this book discusses high-precision and fast servo controls in Hard Disk Drives (HDDs). The editors present a number of control algorithms that enable fast seeking and high precision positioning, and propose problems from commercial products, making the book valuable to researchers in HDDs. Each chapter is self contained, and progresses from concept to technique, present application examples that can be used within automotive, aerospace, aeronautical, and manufactu

  18. High Precision Axial Coordinate Readout for an Axial 3-D PET Detector Module using a Wave Length Shifter Strip Matrix

    CERN Document Server

    Braem, André; Joram, C; Séguinot, Jacques; Weilhammer, P; De Leo, R; Nappi, E; Lustermann, W; Schinzel, D; Johnson, I; Renker, D; Albrecht, S

    2007-01-01

    We describe a novel method to extract the axial coordinate from a matrix of long axially oriented crystals, which is based on wavelength shifting plastic strips. The method allows building compact 3-D axial gamma detector modules for PET scanners with excellent 3-dimensional spatial, timing and energy resolution while keeping the number of readout channels reasonably low. A voxel resolution of about 10 mm3 is expected. We assess the performance of the method in two independent ways, using classical PMTs and G-APDs to read out the LYSO (LSO) scintillation crystals and the wavelength shifting strips. We observe yields in excess of 35 photoelectrons from the strips for a 511 keV gamma and reconstruct the axial coordinate with a precision of about 2.5 mm (FWHM).

  19. M3: Matrix Multiplication on MapReduce

    DEFF Research Database (Denmark)

    Silvestri, Francesco; Ceccarello, Matteo

    2015-01-01

    M3 is an Hadoop library for performing dense and sparse matrix multiplication in MapReduce. The library is based on multi-round algorithms exploiting the 3D decomposition of the problem.......M3 is an Hadoop library for performing dense and sparse matrix multiplication in MapReduce. The library is based on multi-round algorithms exploiting the 3D decomposition of the problem....

  20. An extended GS method for dense linear systems

    Science.gov (United States)

    Niki, Hiroshi; Kohno, Toshiyuki; Abe, Kuniyoshi

    2009-09-01

    Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399-1411] derived the GSOR method, which uses an upper triangular matrix [Omega] in order to solve dense linear systems. By applying functional analysis, the authors presented an expression for the optimum [Omega]. Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized SOR method for dense linear systems of boundary element equations, SIAM J. Comput. 19 (1998) 953-967] also introduced further interesting results. In this note, we employ a matrix analysis approach to investigate these schemes, and derive theorems that compare these schemes with existing preconditioners for dense linear systems. We show that the convergence rate of the Gauss-Seidel method with preconditioner PG is superior to that of the GSOR method. Moreover, we define some splittings associated with the iterative schemes. Some numerical examples are reported to confirm the theoretical analysis. We show that the EGS method with preconditioner produces an extremely small spectral radius in comparison with the other schemes considered.

  1. Expected satiation after repeated consumption of low- or high-energy-dense soup

    NARCIS (Netherlands)

    Hogenkamp, P.S.; Brunstrom, J.M.; Stafleu, A.; Mars, M.; Graaf, de C.

    2012-01-01

    We investigated whether repeated consumption of a low-energy-dense (LED; 208 kJ/100 g) or high-energy-dense (HED; 645 kJ/100 g) soup modifies expectations relating to the satiating capacity of the food, and its subsequent intake. In study 1, participants consumed either a novel-flavoured LED (n 32;

  2. Expected satiation after repeated consumption of low-or high-energy-dense soup

    NARCIS (Netherlands)

    Hogenkamp, P.S.; Brunstrom, J.M.; Stafleu, A.; Mars, M.; Graaf, C. de

    2012-01-01

    We investigated whether repeated consumption of a low-energy-dense (LED; 208 kJ/100 g) or high-energy-dense (HED; 645 kJ/100 g) soup modifies expectations relating to the satiating capacity of the food, and its subsequent intake. In study 1, participants consumed either a novel-flavoured LED (n 32;

  3. Complexation induced phase separation: preparation of composite membranes with a nanometer thin dense skin loaded with metal ions

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco; Karunakaran, Madhavan; Peinemann, Klaus-Viktor

    2015-01-01

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  4. Complexation induced phase separation: preparation of composite membranes with a nanometer thin dense skin loaded with metal ions

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2015-04-21

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  5. Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory

    International Nuclear Information System (INIS)

    Ma, L.X.; Tan, J.Y.; Zhao, J.M.; Wang, F.Q.; Wang, C.A.

    2017-01-01

    The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus–Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus–Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied. - Highlights: • The Muller matrix of randomly distributed, densely packed spheres are investigated. • The effects of multiple scattering and dependent scattering are analyzed. • The accuracy of radiative transfer theory for densely packed spheres is discussed. • Dependent scattering correction takes effect at medium size parameter or smaller. • Performance of dependent scattering correction

  6. Precision mechatronics based on high-precision measuring and positioning systems and machines

    Science.gov (United States)

    Jäger, Gerd; Manske, Eberhard; Hausotte, Tino; Mastylo, Rostyslav; Dorozhovets, Natalja; Hofmann, Norbert

    2007-06-01

    Precision mechatronics is defined in the paper as the science and engineering of a new generation of high precision systems and machines. Nanomeasuring and nanopositioning engineering represents important fields of precision mechatronics. The nanometrology is described as the today's limit of the precision engineering. The problem, how to design nanopositioning machines with uncertainties as small as possible will be discussed. The integration of several optical and tactile nanoprobes makes the 3D-nanopositioning machine suitable for various tasks, such as long range scanning probe microscopy, mask and wafer inspection, nanotribology, nanoindentation, free form surface measurement as well as measurement of microoptics, precision molds, microgears, ring gauges and small holes.

  7. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers

    International Nuclear Information System (INIS)

    Schellenberger, Pascale; Kaufmann, Rainer; Siebert, C. Alistair; Hagen, Christoph; Wodrich, Harald; Grünewald, Kay

    2014-01-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. - Highlights: • Vitrified mammalian cell were imaged by fluorescence and electron cryo microscopy. • TetraSpeck fluorescence markers were added to correct shifts between cryo fluorescence channels. • FluoSpheres fiducials were used as reference points to assign new coordinates to cryoEM images. • Adenovirus particles were localised with an average correlation precision of 63 nm

  8. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers

    Energy Technology Data Exchange (ETDEWEB)

    Schellenberger, Pascale [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Kaufmann, Rainer [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Siebert, C. Alistair; Hagen, Christoph [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Wodrich, Harald [Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, University of Bordeaux SEGALEN, 146 rue Leo Seignat, 33076 Bordeaux (France); Grünewald, Kay, E-mail: kay@strubi.ox.ac.uk [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2014-08-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. - Highlights: • Vitrified mammalian cell were imaged by fluorescence and electron cryo microscopy. • TetraSpeck fluorescence markers were added to correct shifts between cryo fluorescence channels. • FluoSpheres fiducials were used as reference points to assign new coordinates to cryoEM images. • Adenovirus particles were localised with an average correlation precision of 63 nm.

  9. High-Precision Computation and Mathematical Physics

    International Nuclear Information System (INIS)

    Bailey, David H.; Borwein, Jonathan M.

    2008-01-01

    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

  10. a High-Precision Branching-Ratio Measurement for the Superallowed β+ Emitter 74Rb

    Science.gov (United States)

    Dunlop, R.; Chagnon-Lessard, S.; Finlay, P.; Garrett, P. E.; Hadinia, B.; Leach, K. G.; Svensson, C. E.; Wong, J.; Ball, G.; Garnsworthy, A. B.; Glister, J.; Hackman, G.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Leslie, J. R.; Andreoiu, C.; Chester, A.; Cross, D.; Starosta, K.; Yates, S. W.; Zganjar, E. F.

    2013-03-01

    Precision measurements of superallowed Fermi beta decay allow for tests of the Cabibbo-Kobayashi-Maskawa matrix (CKM) unitarity, the conserved vector current hypothesis, and the magnitude of isospin-symmetry-breaking effects in nuclei. A high-precision measurement of the branching ratio for the β+ decay of 74Rb has been performed at the Isotope Separator and ACcelerator (ISAC) facility at TRIUMF. The 8π spectrometer, an array of 20 close-packed HPGe detectors, was used to detect gamma rays emitted following the decay of 74Rb. PACES, an array of 5 Si(Li) detectors, was used to detect emitted conversion electrons, while SCEPTAR, an array of plastic scintillators, was used to detect emitted beta particles. A total of 51γ rays have been identified following the decay of 21 excited states in the daughter nucleus 74Kr.

  11. Joint Estimation of Multiple Precision Matrices with Common Structures.

    Science.gov (United States)

    Lee, Wonyul; Liu, Yufeng

    Estimation of inverse covariance matrices, known as precision matrices, is important in various areas of statistical analysis. In this article, we consider estimation of multiple precision matrices sharing some common structures. In this setting, estimating each precision matrix separately can be suboptimal as it ignores potential common structures. This article proposes a new approach to parameterize each precision matrix as a sum of common and unique components and estimate multiple precision matrices in a constrained l 1 minimization framework. We establish both estimation and selection consistency of the proposed estimator in the high dimensional setting. The proposed estimator achieves a faster convergence rate for the common structure in certain cases. Our numerical examples demonstrate that our new estimator can perform better than several existing methods in terms of the entropy loss and Frobenius loss. An application to a glioblastoma cancer data set reveals some interesting gene networks across multiple cancer subtypes.

  12. Projective block Lanczos algorithm for dense, Hermitian eigensystems

    International Nuclear Information System (INIS)

    Webster, F.; Lo, G.C.

    1996-01-01

    Projection operators are used to effect open-quotes deflation by restrictionclose quotes and it is argued that this is an optimal Lanczos algorithm for memory minimization. Algorithmic optimization is constrained to dense, Hermitian eigensystems where a significant number of the extreme eigenvectors must be obtained reliably and completely. The defining constraints are operator algebra without a matrix representation and semi-orthogonalization without storage of Krylov vectors. other semi-orthogonalization strategies for Lanczos algorithms and conjugate gradient techniques are evaluated within these constraints. Large scale, sparse, complex numerical experiments are performed on clusters of magnetic dipoles, a quantum many-body system that is not block-diagonalizable. Plane-wave, density functional theory of beryllium clusters provides examples of dense complex eigensystems. Use of preconditioners and spectral transformations is evaluated in a preprocessor prior to a high accuracy self-consistent field calculation. 25 refs., 3 figs., 5 tabs

  13. Are calcifying matrix vesicles in atherosclerotic lesions of cellular origin?

    Science.gov (United States)

    Bobryshev, Yuri V; Killingsworth, Murray C; Huynh, Thuan G; Lord, Reginald S A; Grabs, Anthony J; Valenzuela, Stella M

    2007-03-01

    Over recent years, the role of matrix vesicles in the initial stages of arterial calcification has been recognized. Matrix calcifying vesicles have been isolated from atherosclerotic arteries and the biochemical composition of calcified vesicles has been studied. No studies have yet been carried out to examine the fine structure of matrix vesicles in order to visualize the features of the consequent stages of their calcification in arteries. In the present work, a high resolution ultrastructural analysis has been employed and the study revealed that matrix vesicles in human atherosclerotic lesions are heterogeneous with two main types which we classified. Type I calcified vesicles were presented by vesicles surrounded by two electron-dense layers and these vesicles were found to be resistant to the calcification process in atherosclerotic lesions in situ. Type II matrix vesicles were presented by vesicles surrounded by several electron-dense layers and these vesicles were found to represent calcifying vesicles in atherosclerotic lesions. To test the hypothesis that calcification of matrix vesicles surrounded by multilayer sheets may occur simply as a physicochemical process, independently from the cell regulation, we produced multilamellar liposomes and induced their calcification in vitro in a manner similar to that occurring in matrix vesicles in atherosclerotic lesions in situ.

  14. High-frequency matrix converter with square wave input

    Science.gov (United States)

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  15. Non-dense domain operator matrices and Cauchy problems

    International Nuclear Information System (INIS)

    Lalaoui Rhali, S.

    2002-12-01

    In this work, we study Cauchy problems with non-dense domain operator matrices. By assuming that the entries of an unbounded operator matrix are Hille-Yosida operators, we give a necessary and sufficient condition ensuring that the part of this operator matrix generates a semigroup in the closure of its domain. This allows us to prove the well-posedness of the corresponding Cauchy problem. Our results are applied to delay and neutral differential equations. (author)

  16. The effect of a fictitious peer on young children's choice of familiar v. unfamiliar low- and high-energy-dense foods.

    Science.gov (United States)

    Bevelander, Kirsten E; Anschütz, Doeschka J; Engels, Rutger C M E

    2012-09-28

    The present experimental study was the first to investigate the impact of a remote (non-existent) peer on children's food choice of familiar v. unfamiliar low- and high-energy-dense food products. In a computer task, children (n 316; 50·3 % boys; mean age 7·13 (SD 0·75) years) were asked to choose between pictures of familiar and unfamiliar foods in four different choice blocks using the following pairs: (1) familiar v. unfamiliar low-energy-dense foods (fruits and vegetables), (2) familiar v. unfamiliar high-energy-dense foods (high sugar, salt and/or fat content), (3) familiar low-energy-dense v. unfamiliar high-energy-dense foods and (4) unfamiliar low-energy-dense v. familiar high-energy-dense foods. Participants who were not in the control group were exposed to the food choices (either always the familiar or always the unfamiliar food product) of a same-sex and same-age fictitious peer who was supposedly completing the same task at another school. The present study provided insights into children's choices between (un)familiar low- and high-energy-dense foods in an everyday situation. The findings revealed that the use of fictitious peers increased children's willingness to try unfamiliar foods, although children tended to choose high-energy-dense foods over low-energy-dense foods. Intervention programmes that use peer influence to focus on improving children's choice of healthy foods should take into account children's strong aversion to unfamiliar low-energy-dense foods as well as their general preference for familiar and unfamiliar high-energy-dense foods.

  17. Atoms in dense plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs

  18. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  19. Study on flow regimes of high-pressure and dense-phase pneumatic conveying

    International Nuclear Information System (INIS)

    Lu Peng; Chen Xiaoping; Liang Cai; Pu Wenhao; Zhou Yun; Xu Pan; Zhao Changsui

    2009-01-01

    High-pressure and dense-phase pneumatic conveying of pulverized coal is a key technology in the field of large-scale entrained bed coal gasification. Flow regime plays an important role in two-phase flow because it affects not only flow behavior and safety operation, but also the reliability of practical processes. Few references and experiences in high-pressure and dense-phase conveying are available, especially for the flow regimes. And because of the high stickiness and electrostatic attraction of pulverized coal to the pipe wall, it is very difficult to make out the flow regimes in the conveying pipe by visualization method. Thus quartz powder was chosen as the conveyed material to study the flow regime. High-speed digital video camera was employed to photograph the flow patterns. Experiments were conducted on a pilot scale experimental setup at the pressure up to 3.6MPa. With the decrease in superficial gas velocity, three distinguishable flow regimes were observed: stratified flow, dune flow and plug flow. The characteristics of pressure traces acquired by high frequency response pressure transmitter and their EMD (Empirical Mode Decomposition) characteristics were correlated strongly with the flow regimes. Combining high-speed photography and pressure signal analysis together can make the recognition of flow patterns in the high-pressure and dense-phase pneumatic conveying system more accurate. The present work will lead to better understanding of the flow regime transition under high-pressure.

  20. Proton acceleration experiments and warm dense matter research using high power lasers

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C R D [Plasma Physics Group, Imperial College London, SW7 2BZ (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory (RAL), Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory (LANL), Los Alamos, NM 87545 (United States); Geissel, M [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gregori, G, E-mail: markus.roth@physik.tu-darmstadt.d [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2009-12-15

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  1. Proton acceleration experiments and warm dense matter research using high power lasers

    International Nuclear Information System (INIS)

    Roth, M; Alber, I; Guenther, M; Harres, K; Bagnoud, V; Brown, C R D; Clarke, R; Heathcote, R; Li, B; Daido, H; Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C; Geissel, M; Glenzer, S; Kritcher, A; Kugland, N; LePape, S; Gregori, G

    2009-01-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  2. Mixed Matrix Composite Membranes Containing POSS Molecules for Carbon Dioxide Removal Application

    KAUST Repository

    Rini, Eki Listya

    2011-05-10

    CO2 removal by membrane processes is considerably potential for several applications such as natural gas and synthesis gas purification, enhanced oil recovery application, and carbon dioxide capture in combat against global warming. Dense polymeric membranes are commonly utilized for these type of gas separation applications. Nevertheless, the intrinsic properties of dense polymeric membranes, which commonly characterize by the low gas permeability versus high gas selectivity trade–off or vice versa, is less desirable. In order to meet the increased demand of CO2 removal, a strategy to improve the gas separation performance of a polymeric membrane is investigated in this study. With this regard, mixed matrix membranes in which inorganic non porous fillers are incorporated into a polymeric matrix were prepared to achieve the aforementioned objective. The mixed matrix membranes were prepared from Pebax® block copolymers and PEG POSS® molecules. These hybrid membranes were formed as both dense and multilayer composite membranes. The dense transparent membranes with well–dispersed fillers could be obtained by variation of the solvent mixture. The DSC analyses showed that incorporation of PEG POSS® into Pebax® matrix altered the thermal properties of the matrix. The multilayer composite membranes were then prepared from a PTMSP gutter layer deposited on a PAN porous support and an adjacent hybrid Pebax®/PEG POSS® as the top layer. These hybrid multilayer composite membranes exhibited an enhanced CO2 selectiv4 ity by a factor of two relative to the pure Pebax®. In these hybrid systems, the CO2 separation was presumably enhanced by the high ether oxides content from PEG POSS® that has high affinities for CO2. For particular composition of Pebax® and PEG POSS® concentrations, the PTMSP gutter layer harnessed the CO2 selectivity without losing the CO2 permeation rate. At the same time, these membrane, however, suffered severe adhesion between the gutter layer

  3. Fast space-varying convolution using matrix source coding with applications to camera stray light reduction.

    Science.gov (United States)

    Wei, Jianing; Bouman, Charles A; Allebach, Jan P

    2014-05-01

    Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.

  4. Precision Study of the $\\beta$-decay of $^{62}$Ga

    CERN Multimedia

    2002-01-01

    It is proposed to perform a precision study of the $\\beta$-decay of $\\,^{62}$Ga taking advantage of recent developments of the ISOLDE Laser Ion Source. The goal is to eventually extend the high-precision knowledge of superallowed $\\beta$-decays beyond the nine decays that presently are used for extracting the V$_{ud}$ quark mixing matrix element of the CKM matrix. The scientific motivations are the current deviation of more than 2$\\sigma$ of the unitary condition of this matrix, which could be an indication of non-standard-model physics, and a test of the theoretical corrections applied to the experimental data. The experiment will utilise the Total Absorption $\\gamma$-ray (TAG) spectrometer in order to determine weak branchings to excited states in $^{62}$Zn and the ISOLDE spectroscopy station to perform half-life measurements and detailed spectroscopy of this nucleus.

  5. High tax on high energy dense foods and its effects on the purchase of calories in a supermarket. An experiment.

    Science.gov (United States)

    Nederkoorn, Chantal; Havermans, Remco C; Giesen, Janneke C A H; Jansen, Anita

    2011-06-01

    The present study examined whether a high tax on high calorie dense foods effectively reduces the purchased calories of high energy dense foods in a web based supermarket, and whether this effect is moderated by budget and weight status. 306 participants purchased groceries in a web based supermarket, with an individualized budget based on what they normally spend. Results showed that relative to the no tax condition, the participants in the tax condition bought less calories. The main reduction was found in high energy dense products and in calories from carbohydrates, but not in calories from fat. BMI and budget did not influence the effectiveness of the tax. The reduction in calories occurred regardless of budget or BMI implying that a food tax may be a beneficial tool, along with other measures, in promoting a diet with fewer calories. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Complete horizontal skin cell resurfacing and delayed vertical cell infiltration into porcine reconstructive tissue matrix compared to bovine collagen matrix and human dermis.

    Science.gov (United States)

    Mirastschijski, Ursula; Kerzel, Corinna; Schnabel, Reinhild; Strauss, Sarah; Breuing, Karl-Heinz

    2013-10-01

    Xenogenous dermal matrices are used for hernia repair and breast reconstruction. Full-thickness skin replacement is needed after burn or degloving injuries with exposure of tendons or bones. The authors used a human skin organ culture model to study whether porcine reconstructive tissue matrix (Strattice) is effective as a dermal tissue replacement. Skin cells or split-thickness skin grafts were seeded onto human deepidermized dermis, Strattice, and Matriderm. Cellular resurfacing and matrix infiltration were monitored by live fluorescence imaging, histology, and electron microscopy. Proliferation, apoptosis, cell differentiation, and adhesion were analyzed by immunohistochemistry. Epithelial resurfacing and vertical proliferation were reduced and delayed with both bioartificial matrices compared with deepidermized dermis; however, no differences in apoptosis, cell differentiation, or basement membrane formation were found. Vertical penetration was greatest on Matriderm, whereas no matrix infiltration was found on Strattice in the first 12 days. Uncompromised horizontal resurfacing was greatest with Strattice but was absent with Matriderm. Strattice showed no stimulatory effect on cellular inflammation. Matrix texture and surface properties governed cellular performance on tissues. Although dense dermal compaction delayed vertical cellular ingrowth for Strattice, it allowed uncompromised horizontal resurfacing. Dense dermal compaction may slow matrix decomposition and result in prolonged biomechanical stability of the graft. Reconstructive surgeons should choose the adequate matrix substitute depending on biomechanical requirements at the recipient site. Strattice may be suitable as a dermal replacement at recipient sites with high mechanical load requirements.

  7. Theory of ultra dense matter and the dynamics of high energy interactions involving nuclei

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1993-01-01

    Progress in the areas of pQCD radiative processes in dense matter, QCD transport theories to describe the evolution of nonequilibrium phenomena in dense matter, and the development and testing of phenomenological models of high-energy nuclear collisions is summarized. The evolution of the total energy density of quarks and gluons with minijet initial conditions at RHIC energy is shown for Au+Au

  8. Performance optimization of Sparse Matrix-Vector Multiplication for multi-component PDE-based applications using GPUs

    KAUST Repository

    Abdelfattah, Ahmad

    2016-05-23

    Simulations of many multi-component PDE-based applications, such as petroleum reservoirs or reacting flows, are dominated by the solution, on each time step and within each Newton step, of large sparse linear systems. The standard solver is a preconditioned Krylov method. Along with application of the preconditioner, memory-bound Sparse Matrix-Vector Multiplication (SpMV) is the most time-consuming operation in such solvers. Multi-species models produce Jacobians with a dense block structure, where the block size can be as large as a few dozen. Failing to exploit this dense block structure vastly underutilizes hardware capable of delivering high performance on dense BLAS operations. This paper presents a GPU-accelerated SpMV kernel for block-sparse matrices. Dense matrix-vector multiplications within the sparse-block structure leverage optimization techniques from the KBLAS library, a high performance library for dense BLAS kernels. The design ideas of KBLAS can be applied to block-sparse matrices. Furthermore, a technique is proposed to balance the workload among thread blocks when there are large variations in the lengths of nonzero rows. Multi-GPU performance is highlighted. The proposed SpMV kernel outperforms existing state-of-the-art implementations using matrices with real structures from different applications. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Performance optimization of Sparse Matrix-Vector Multiplication for multi-component PDE-based applications using GPUs

    KAUST Repository

    Abdelfattah, Ahmad; Ltaief, Hatem; Keyes, David E.; Dongarra, Jack

    2016-01-01

    Simulations of many multi-component PDE-based applications, such as petroleum reservoirs or reacting flows, are dominated by the solution, on each time step and within each Newton step, of large sparse linear systems. The standard solver is a preconditioned Krylov method. Along with application of the preconditioner, memory-bound Sparse Matrix-Vector Multiplication (SpMV) is the most time-consuming operation in such solvers. Multi-species models produce Jacobians with a dense block structure, where the block size can be as large as a few dozen. Failing to exploit this dense block structure vastly underutilizes hardware capable of delivering high performance on dense BLAS operations. This paper presents a GPU-accelerated SpMV kernel for block-sparse matrices. Dense matrix-vector multiplications within the sparse-block structure leverage optimization techniques from the KBLAS library, a high performance library for dense BLAS kernels. The design ideas of KBLAS can be applied to block-sparse matrices. Furthermore, a technique is proposed to balance the workload among thread blocks when there are large variations in the lengths of nonzero rows. Multi-GPU performance is highlighted. The proposed SpMV kernel outperforms existing state-of-the-art implementations using matrices with real structures from different applications. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. High-Precision Computation: Mathematical Physics and Dynamics

    International Nuclear Information System (INIS)

    Bailey, D.H.; Barrio, R.; Borwein, J.M.

    2010-01-01

    At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

  11. High-Precision Computation: Mathematical Physics and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D. H.; Barrio, R.; Borwein, J. M.

    2010-04-01

    At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

  12. High precision target center determination from a point cloud

    Directory of Open Access Journals (Sweden)

    K. Kregar

    2013-10-01

    Full Text Available Many applications of terrestrial laser scanners (TLS require the determination of a specific point from a point cloud. In this paper procedure of high precision planar target center acquisition from point cloud is presented. The process is based on an image matching algorithm but before we can deal with raster image to fit a target on it, we need to properly determine the best fitting plane and project points on it. The main emphasis of this paper is in the precision estimation and propagation through the whole procedure which allows us to obtain precision assessment of final results (target center coordinates. Theoretic precision estimations – obtained through the procedure were rather high so we compared them with the empiric precision estimations obtained as standard deviations of results of 60 independently scanned targets. An χ2-test confirmed that theoretic precisions are overestimated. The problem most probably lies in the overestimated precisions of the plane parameters due to vast redundancy of points. However, empirical precisions also confirmed that the proposed procedure can ensure a submillimeter precision level. The algorithm can automatically detect grossly erroneous results to some extent. It can operate when the incidence angles of a laser beam are as high as 80°, which is desirable property if one is going to use planar targets as tie points in scan registration. The proposed algorithm will also contribute to improve TLS calibration procedures.

  13. Layered compression for high-precision depth data.

    Science.gov (United States)

    Miao, Dan; Fu, Jingjing; Lu, Yan; Li, Shipeng; Chen, Chang Wen

    2015-12-01

    With the development of depth data acquisition technologies, access to high-precision depth with more than 8-b depths has become much easier and determining how to efficiently represent and compress high-precision depth is essential for practical depth storage and transmission systems. In this paper, we propose a layered high-precision depth compression framework based on an 8-b image/video encoder to achieve efficient compression with low complexity. Within this framework, considering the characteristics of the high-precision depth, a depth map is partitioned into two layers: 1) the most significant bits (MSBs) layer and 2) the least significant bits (LSBs) layer. The MSBs layer provides rough depth value distribution, while the LSBs layer records the details of the depth value variation. For the MSBs layer, an error-controllable pixel domain encoding scheme is proposed to exploit the data correlation of the general depth information with sharp edges and to guarantee the data format of LSBs layer is 8 b after taking the quantization error from MSBs layer. For the LSBs layer, standard 8-b image/video codec is leveraged to perform the compression. The experimental results demonstrate that the proposed coding scheme can achieve real-time depth compression with satisfactory reconstruction quality. Moreover, the compressed depth data generated from this scheme can achieve better performance in view synthesis and gesture recognition applications compared with the conventional coding schemes because of the error control algorithm.

  14. High-precision efficiency calibration of a high-purity co-axial germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Blank, B., E-mail: blank@cenbg.in2p3.fr [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Souin, J.; Ascher, P.; Audirac, L.; Canchel, G.; Gerbaux, M.; Grévy, S.; Giovinazzo, J.; Guérin, H.; Nieto, T. Kurtukian; Matea, I. [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Bouzomita, H.; Delahaye, P.; Grinyer, G.F.; Thomas, J.C. [Grand Accélérateur National d' Ions Lourds, CEA/DSM, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, F-14076 CAEN Cedex 5 (France)

    2015-03-11

    A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and γ-ray source measurements have been compared to Monte-Carlo simulations to adjust the dimensions of a detector model. For this purpose, standard calibration sources and short-lived online sources have been used. The resulting efficiency calibration reaches the precision needed e.g. for branching ratio measurements of super-allowed β decays for tests of the weak-interaction standard model.

  15. Weak gravitational lensing towards high-precision cosmology

    International Nuclear Information System (INIS)

    Berge, Joel

    2007-01-01

    This thesis aims at studying weak gravitational lensing as a tool for high-precision cosmology. We first present the development and validation of a precise and accurate tool for measuring gravitational shear, based on the shapelets formalism. We then use shapelets on real images for the first time, we analyze CFHTLS images, and combine them with XMM-LSS data. We measure the normalisation of the density fluctuations power spectrum σ 8 , and the one of the mass-temperature relation for galaxy clusters. The analysis of the Hubble space telescope COSMOS field confirms our σ 8 measurement and introduces tomography. Finally, aiming at optimizing future surveys, we compare the individual and combined merits of cluster counts and power spectrum tomography. Our results demonstrate that next generation surveys will allow weak lensing to yield its full potential in the high-precision cosmology era. (author) [fr

  16. Linear algebra for dense matrices on a hypercube

    International Nuclear Information System (INIS)

    Sears, M.P.

    1990-01-01

    A set of routines has been written for dense matrix operations optimized for the NCUBE/6400 parallel processor. This paper was motivated by a Sandia effort to parallelize certain electronic structure calculations. Routines are included for matrix transpose, multiply, Cholesky decomposition, triangular inversion, and Householder tridiagonalization. The library is written in C and is callable from Fortran. Matrices up to order 1600 can be handled on 128 processors. For each operation, the algorithm used is presented along with typical timings and estimates of performance. Performance for order 1600 on 128 processors varies from 42 MFLOPs (House-holder tridiagonalization, triangular inverse) up to 126 MFLOPs (matrix multiply). The authors also present performance results for communications and basic linear algebra operations (saxpy and dot products)

  17. Maximal quantum Fisher information matrix

    International Nuclear Information System (INIS)

    Chen, Yu; Yuan, Haidong

    2017-01-01

    We study the existence of the maximal quantum Fisher information matrix in the multi-parameter quantum estimation, which bounds the ultimate precision limit. We show that when the maximal quantum Fisher information matrix exists, it can be directly obtained from the underlying dynamics. Examples are then provided to demonstrate the usefulness of the maximal quantum Fisher information matrix by deriving various trade-off relations in multi-parameter quantum estimation and obtaining the bounds for the scalings of the precision limit. (paper)

  18. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  19. High precision detector robot arm system

    Science.gov (United States)

    Shu, Deming; Chu, Yong

    2017-01-31

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  20. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  1. High precision relative position sensing system for formation flying spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test an optical sensing system that provides high precision relative position sensing for formation flying spacecraft.  A high precision...

  2. High performance organic transistor active-matrix driver developed on paper substrate

    Science.gov (United States)

    Peng, Boyu; Ren, Xiaochen; Wang, Zongrong; Wang, Xinyu; Roberts, Robert C.; Chan, Paddy K. L.

    2014-09-01

    The fabrication of electronic circuits on unconventional substrates largely broadens their application areas. For example, green electronics achieved through utilization of biodegradable or recyclable substrates, can mitigate the solid waste problems that arise at the end of their lifespan. Here, we combine screen-printing, high precision laser drilling and thermal evaporation, to fabricate organic field effect transistor (OFET) active-matrix (AM) arrays onto standard printer paper. The devices show a mobility and on/off ratio as high as 0.56 cm2V-1s-1 and 109 respectively. Small electrode overlap gives rise to a cut-off frequency of 39 kHz, which supports that our AM array is suitable for novel practical applications. We demonstrate an 8 × 8 AM light emitting diode (LED) driver with programmable scanning and information display functions. The AM array structure has excellent potential for scaling up.

  3. LABAN-PEL: a two-dimensional, multigroup diffusion, high-order response matrix code

    International Nuclear Information System (INIS)

    Mueller, E.Z.

    1991-06-01

    The capabilities of LABAN-PEL is described. LABAN-PEL is a modified version of the two-dimensional, high-order response matrix code, LABAN, written by Lindahl. The new version extends the capabilities of the original code with regard to the treatment of neutron migration by including an option to utilize full group-to-group diffusion coefficient matrices. In addition, the code has been converted from single to double precision and the necessary routines added to activate its multigroup capability. The coding has also been converted to standard FORTRAN-77 to enhance the portability of the code. Details regarding the input data requirements and calculational options of LABAN-PEL are provided. 13 refs

  4. Ultra High Intensity laser produced fast electron transport in under-dense and over-dense matter

    International Nuclear Information System (INIS)

    Manclossi, Mauro

    2006-01-01

    This thesis is related to inertial fusion research, and particularly concerns the approach to fast ignition, which is based on the use of ultra-intense laser pulses to ignite the thermonuclear fuel. Until now, the feasibility of this scheme has not been proven and depends on many fundamental aspects of the underlying physics, which are not yet fully understood and which are also very far from controls. The main purpose of this thesis is the experimental study of transport processes in the material over-dense (solid) and under-dense (gas jet) of a beam of fast electrons produced by pulse laser at a intensity of some 10 19 Wcm -2 . (author)

  5. High-precision performance testing of the LHC power converters

    CERN Document Server

    Bastos, M; Dreesen, P; Fernqvist, G; Fournier, O; Hudson, G

    2007-01-01

    The magnet power converters for LHC were procured in three parts, power part, current transducers and control electronics, to enable a maximum of industrial participation in the manufacturing and still guarantee the very high precision (a few parts in 10-6) required by LHC. One consequence of this approach was several stages of system tests: factory reception tests, CERN reception tests, integration tests , short-circuit tests and commissioning on the final load in the LHC tunnel. The majority of the power converters for LHC have now been delivered, integrated into complete converter and high-precision performance testing is well advanced. This paper presents the techniques used for high-precision testing and the results obtained.

  6. beachmat: A Bioconductor C++ API for accessing high-throughput biological data from a variety of R matrix types.

    Directory of Open Access Journals (Sweden)

    Aaron T L Lun

    2018-05-01

    Full Text Available Biological experiments involving genomics or other high-throughput assays typically yield a data matrix that can be explored and analyzed using the R programming language with packages from the Bioconductor project. Improvements in the throughput of these assays have resulted in an explosion of data even from routine experiments, which poses a challenge to the existing computational infrastructure for statistical data analysis. For example, single-cell RNA sequencing (scRNA-seq experiments frequently generate large matrices containing expression values for each gene in each cell, requiring sparse or file-backed representations for memory-efficient manipulation in R. These alternative representations are not easily compatible with high-performance C++ code used for computationally intensive tasks in existing R/Bioconductor packages. Here, we describe a C++ interface named beachmat, which enables agnostic data access from various matrix representations. This allows package developers to write efficient C++ code that is interoperable with dense, sparse and file-backed matrices, amongst others. We evaluated the performance of beachmat for accessing data from each matrix representation using both simulated and real scRNA-seq data, and defined a clear memory/speed trade-off to motivate the choice of an appropriate representation. We also demonstrate how beachmat can be incorporated into the code of other packages to drive analyses of a very large scRNA-seq data set.

  7. beachmat: A Bioconductor C++ API for accessing high-throughput biological data from a variety of R matrix types.

    Science.gov (United States)

    Lun, Aaron T L; Pagès, Hervé; Smith, Mike L

    2018-05-01

    Biological experiments involving genomics or other high-throughput assays typically yield a data matrix that can be explored and analyzed using the R programming language with packages from the Bioconductor project. Improvements in the throughput of these assays have resulted in an explosion of data even from routine experiments, which poses a challenge to the existing computational infrastructure for statistical data analysis. For example, single-cell RNA sequencing (scRNA-seq) experiments frequently generate large matrices containing expression values for each gene in each cell, requiring sparse or file-backed representations for memory-efficient manipulation in R. These alternative representations are not easily compatible with high-performance C++ code used for computationally intensive tasks in existing R/Bioconductor packages. Here, we describe a C++ interface named beachmat, which enables agnostic data access from various matrix representations. This allows package developers to write efficient C++ code that is interoperable with dense, sparse and file-backed matrices, amongst others. We evaluated the performance of beachmat for accessing data from each matrix representation using both simulated and real scRNA-seq data, and defined a clear memory/speed trade-off to motivate the choice of an appropriate representation. We also demonstrate how beachmat can be incorporated into the code of other packages to drive analyses of a very large scRNA-seq data set.

  8. beachmat: A Bioconductor C++ API for accessing high-throughput biological data from a variety of R matrix types

    Science.gov (United States)

    Pagès, Hervé

    2018-01-01

    Biological experiments involving genomics or other high-throughput assays typically yield a data matrix that can be explored and analyzed using the R programming language with packages from the Bioconductor project. Improvements in the throughput of these assays have resulted in an explosion of data even from routine experiments, which poses a challenge to the existing computational infrastructure for statistical data analysis. For example, single-cell RNA sequencing (scRNA-seq) experiments frequently generate large matrices containing expression values for each gene in each cell, requiring sparse or file-backed representations for memory-efficient manipulation in R. These alternative representations are not easily compatible with high-performance C++ code used for computationally intensive tasks in existing R/Bioconductor packages. Here, we describe a C++ interface named beachmat, which enables agnostic data access from various matrix representations. This allows package developers to write efficient C++ code that is interoperable with dense, sparse and file-backed matrices, amongst others. We evaluated the performance of beachmat for accessing data from each matrix representation using both simulated and real scRNA-seq data, and defined a clear memory/speed trade-off to motivate the choice of an appropriate representation. We also demonstrate how beachmat can be incorporated into the code of other packages to drive analyses of a very large scRNA-seq data set. PMID:29723188

  9. Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.

    Science.gov (United States)

    Han, Zhao Jun; Ostrikov, Kostya

    2012-04-04

    Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.

  10. The study of high precision neutron moisture gauge

    International Nuclear Information System (INIS)

    Liu Shengkang; Bao Guanxiong; Sang Hai; Zhu Yuzhen

    1993-01-01

    The principle, structure and calibration experiment of the high precision neutron moisture gauge (insertion type) are described. The gauge has been appraised. The precision of the measuring moisture of coke is lower than 0.5%, and the range of the measuring moisture is 2%-12%. The economic benefit of the gauge application is good

  11. Accelerating Matrix-Vector Multiplication on Hierarchical Matrices Using Graphical Processing Units

    KAUST Repository

    Boukaram, W.

    2015-03-25

    Large dense matrices arise from the discretization of many physical phenomena in computational sciences. In statistics very large dense covariance matrices are used for describing random fields and processes. One can, for instance, describe distribution of dust particles in the atmosphere, concentration of mineral resources in the earth\\'s crust or uncertain permeability coefficient in reservoir modeling. When the problem size grows, storing and computing with the full dense matrix becomes prohibitively expensive both in terms of computational complexity and physical memory requirements. Fortunately, these matrices can often be approximated by a class of data sparse matrices called hierarchical matrices (H-matrices) where various sub-blocks of the matrix are approximated by low rank matrices. These matrices can be stored in memory that grows linearly with the problem size. In addition, arithmetic operations on these H-matrices, such as matrix-vector multiplication, can be completed in almost linear time. Originally the H-matrix technique was developed for the approximation of stiffness matrices coming from partial differential and integral equations. Parallelizing these arithmetic operations on the GPU has been the focus of this work and we will present work done on the matrix vector operation on the GPU using the KSPARSE library.

  12. Survey of matrix materials for solidified radioactive high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Gurwell, W.E.

    1981-09-01

    Pacific Northwest Laboratory (PNL) has been investigating advanced waste forms, including matrix waste forms, that may provide a very high degree of stability under the most severe repository conditions. The purpose of this study was to recommend practical matrix materials for future development that most enhance the stability of the matrix waste forms. The functions of the matrix were reviewed. Desirable matrix material properties were discussed and listed relative to the matrix functions. Potential matrix materials were discussed and recommendations were made for future matrix development. The matrix mechanically contains waste cores, reduces waste form temperatures, and is capable of providing a high-quality barrier to leach waters. High-quality barrier matrices that separate and individually encapsulate the waste cores are fabricated by powder fabrication methods, such as sintering, hot pressing, and hot isostatic pressing. Viable barrier materials are impermeable, extremely corrosion resistant, and mechanically strong. Three material classes potentially satisfy the requirements for a barrier matrix and are recommended for development: titanium, glass, and graphite. Polymers appear to be marginally adequate, and a more thorough engineering assessment of their potential should be made.

  13. Survey of matrix materials for solidified radioactive high-level waste

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1981-09-01

    Pacific Northwest Laboratory (PNL) has been investigating advanced waste forms, including matrix waste forms, that may provide a very high degree of stability under the most severe repository conditions. The purpose of this study was to recommend practical matrix materials for future development that most enhance the stability of the matrix waste forms. The functions of the matrix were reviewed. Desirable matrix material properties were discussed and listed relative to the matrix functions. Potential matrix materials were discussed and recommendations were made for future matrix development. The matrix mechanically contains waste cores, reduces waste form temperatures, and is capable of providing a high-quality barrier to leach waters. High-quality barrier matrices that separate and individually encapsulate the waste cores are fabricated by powder fabrication methods, such as sintering, hot pressing, and hot isostatic pressing. Viable barrier materials are impermeable, extremely corrosion resistant, and mechanically strong. Three material classes potentially satisfy the requirements for a barrier matrix and are recommended for development: titanium, glass, and graphite. Polymers appear to be marginally adequate, and a more thorough engineering assessment of their potential should be made

  14. Spectrophotometric high-precision seawater pH determination for use in underway measuring systems

    Directory of Open Access Journals (Sweden)

    S. Aßmann

    2011-10-01

    Full Text Available Autonomous sensors are required for a comprehensive documentation of the changes in the marine carbon system and thus to differentiate between its natural variability and anthropogenic impacts. Spectrophotometric determination of pH – a key variable of the seawater carbon system – is particularly suited to achieve precise and drift-free measurements. However, available spectrophotometric instruments are not suitable for integration into automated measurement systems (e.g. FerryBox since they do not meet the major requirements of reliability, stability, robustness and moderate cost. Here we report on the development and testing of a~new indicator-based pH sensor that meets all of these requirements. This sensor can withstand the rough conditions during long-term deployments on ships of opportunity and is applicable to the open ocean as well as to coastal waters with a complex matrix and highly variable conditions. The sensor uses a high resolution CCD spectrometer as detector connected via optical fibers to a custom-made cuvette designed to reduce the impact of air bubbles. The sample temperature can be precisely adjusted (25 °C ± 0.006 °C using computer-controlled power supplies and Peltier elements thus avoiding the widely used water bath. The overall setup achieves a measurement frequency of 1 min−1 with a precision of ±0.0007 pH units, an average offset of +0.0005 pH units to a reference system, and an offset of +0.0081 pH units to a certified standard buffer. Application of this sensor allows monitoring of seawater pH in autonomous underway systems, providing a key variable for characterization and understanding of the marine carbon system.

  15. High precision, rapid laser hole drilling

    Science.gov (United States)

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  16. Contribution to high voltage matrix switches reliability

    International Nuclear Information System (INIS)

    Lausenaz, Yvan

    2000-01-01

    Nowadays, power electronic equipment requirements are important, concerning performances, quality and reliability. On the other hand, costs have to be reduced in order to satisfy the market rules. To provide cheap, reliability and performances, many standard components with mass production are developed. But the construction of specific products must be considered following these two different points: in one band you can produce specific components, with delay, over-cost problems and eventuality quality and reliability problems, in the other and you can use standard components in a adapted topologies. The CEA of Pierrelatte has adopted this last technique of power electronic conception for the development of these high voltage pulsed power converters. The technique consists in using standard components and to associate them in series and in parallel. The matrix constitutes high voltage macro-switch where electrical parameters are distributed between the synchronized components. This study deals with the reliability of these structures. It brings up the high reliability aspect of MOSFETs matrix associations. Thanks to several homemade test facilities, we obtained lots of data concerning the components we use. The understanding of defects propagation mechanisms in matrix structures has allowed us to put forwards the necessity of robust drive system, adapted clamping voltage protection, and careful geometrical construction. All these reliability considerations in matrix associations have notably allowed the construction of a new matrix structure regrouping all solutions insuring reliability. Reliable and robust, this product has already reaches the industrial stage. (author) [fr

  17. Deterministic dense coding and faithful teleportation with multipartite graph states

    International Nuclear Information System (INIS)

    Huang, C.-Y.; Yu, I-C.; Lin, F.-L.; Hsu, L.-Y.

    2009-01-01

    We propose schemes to perform the deterministic dense coding and faithful teleportation with multipartite graph states. We also find the sufficient and necessary condition of a viable graph state for the proposed schemes. That is, for the associated graph, the reduced adjacency matrix of the Tanner-type subgraph between senders and receivers should be invertible.

  18. 1024 matrix image reconstruction: usefulness in high resolution chest CT

    International Nuclear Information System (INIS)

    Jeong, Sun Young; Chung, Myung Jin; Chong, Se Min; Sung, Yon Mi; Lee, Kyung Soo

    2006-01-01

    We tried to evaluate whether high resolution chest CT with a 1,024 matrix has a significant advantage in image quality compared to a 512 matrix. Each set of 512 and 1024 matrix high resolution chest CT scans with both 0.625 mm and 1.25 mm slice thickness were obtained from 26 patients. Seventy locations that contained twenty-four low density lesions without sharp boundary such as emphysema, and forty-six sharp linear densities such as linear fibrosis were selected; these were randomly displayed on a five mega pixel LCD monitor. All the images were masked for information concerning the matrix size and slice thickness. Two chest radiologists scored the image quality of each ar rowed lesion as follows: (1) undistinguishable, (2) poorly distinguishable, (3) fairly distinguishable, (4) well visible and (5) excellently visible. The scores were compared from the aspects of matrix size, slice thickness and the different observers by using ANOVA tests. The average and standard deviation of image quality were 3.09 (± .92) for the 0.625 mm x 512 matrix, 3.16 (± .84) for the 0.625 mm x 1024 matrix, 2.49 (± 1.02) for the 1.25 mm x 512 matrix, and 2.35 (± 1.02) for the 1.25 mm x 1024 matrix, respectively. The image quality on both matrices of the high resolution chest CT scans with a 0.625 mm slice thickness was significantly better than that on the 1.25 mm slice thickness (ρ < 0.001). However, the image quality on the 1024 matrix high resolution chest CT scans was not significantly different from that on the 512 matrix high resolution chest CT scans (ρ = 0.678). The interobserver variation between the two observers was not significant (ρ = 0.691). We think that 1024 matrix image reconstruction for high resolution chest CT may not be clinical useful

  19. Automatic titrator for high precision plutonium assay

    International Nuclear Information System (INIS)

    Jackson, D.D.; Hollen, R.M.

    1986-01-01

    Highly precise assay of plutonium metal is required for accountability measurements. We have developed an automatic titrator for this determination which eliminates analyst bias and requires much less analyst time. The analyst is only required to enter sample data and start the titration. The automated instrument titrates the sample, locates the end point, and outputs the results as a paper tape printout. Precision of the titration is less than 0.03% relative standard deviation for a single determination at the 250-mg plutonium level. The titration time is less than 5 min

  20. High-precision multi-node clock network distribution.

    Science.gov (United States)

    Chen, Xing; Cui, Yifan; Lu, Xing; Ci, Cheng; Zhang, Xuesong; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2017-10-01

    A high precision multi-node clock network for multiple users was built following the precise frequency transmission and time synchronization of 120 km fiber. The network topology adopts a simple star-shaped network structure. The clock signal of a hydrogen maser (synchronized with UTC) was recovered from a 120 km telecommunication fiber link and then was distributed to 4 sub-stations. The fractional frequency instability of all substations is in the level of 10 -15 in a second and the clock offset instability is in sub-ps in root-mean-square average.

  1. Morphologies of precise polyethylene-based acid copolymers and ionomers

    Science.gov (United States)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been

  2. High precision locating control system based on VCM for Talbot lithography

    Science.gov (United States)

    Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song

    2016-10-01

    Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.

  3. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  4. High-Precision Registration of Point Clouds Based on Sphere Feature Constraints

    Directory of Open Access Journals (Sweden)

    Junhui Huang

    2016-12-01

    Full Text Available Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method.

  5. High accuracy injection circuit for the calibration of a large pixel sensor matrix

    International Nuclear Information System (INIS)

    Quartieri, E.; Comotti, D.; Manghisoni, M.

    2013-01-01

    Semiconductor pixel detectors, for particle tracking and vertexing in high energy physics experiments as well as for X-ray imaging, in particular for synchrotron light sources and XFELs, require a large area sensor matrix. This work will discuss the design and the characterization of a high-linearity, low dispersion injection circuit to be used for pixel-level calibration of detector readout electronics in a large pixel sensor matrix. The circuit provides a useful tool for the characterization of the readout electronics of the pixel cell unit for both monolithic active pixel sensors and hybrid pixel detectors. In the latter case, the circuit allows for precise analogue test of the readout channel already at the chip level, when no sensor is connected. Moreover, it provides a simple means for calibration of readout electronics once the detector has been connected to the chip. Two injection techniques can be provided by the circuit: one for a charge sensitive amplification and the other for a transresistance readout channel. The aim of the paper is to describe the architecture and the design guidelines of the calibration circuit, which has been implemented in a 130 nm CMOS technology. Moreover, experimental results of the proposed injection circuit will be presented in terms of linearity and dispersion

  6. Video-rate or high-precision: a flexible range imaging camera

    Science.gov (United States)

    Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.; Payne, Andrew D.; Conroy, Richard M.; Godbaz, John P.; Jongenelen, Adrian P. P.

    2008-02-01

    A range imaging camera produces an output similar to a digital photograph, but every pixel in the image contains distance information as well as intensity. This is useful for measuring the shape, size and location of objects in a scene, hence is well suited to certain machine vision applications. Previously we demonstrated a heterodyne range imaging system operating in a relatively high resolution (512-by-512) pixels and high precision (0.4 mm best case) configuration, but with a slow measurement rate (one every 10 s). Although this high precision range imaging is useful for some applications, the low acquisition speed is limiting in many situations. The system's frame rate and length of acquisition is fully configurable in software, which means the measurement rate can be increased by compromising precision and image resolution. In this paper we demonstrate the flexibility of our range imaging system by showing examples of high precision ranging at slow acquisition speeds and video-rate ranging with reduced ranging precision and image resolution. We also show that the heterodyne approach and the use of more than four samples per beat cycle provides better linearity than the traditional homodyne quadrature detection approach. Finally, we comment on practical issues of frame rate and beat signal frequency selection.

  7. Method of high precision interval measurement in pulse laser ranging system

    Science.gov (United States)

    Wang, Zhen; Lv, Xin-yuan; Mao, Jin-jin; Liu, Wei; Yang, Dong

    2013-09-01

    Laser ranging is suitable for laser system, for it has the advantage of high measuring precision, fast measuring speed,no cooperative targets and strong resistance to electromagnetic interference,the measuremen of laser ranging is the key paremeters affecting the performance of the whole system.The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement, the principle structure of laser ranging system was introduced, and a method of high precision time interval measurement in pulse laser ranging system was established in this paper.Based on the analysis of the factors which affected the precision of range measure,the pulse rising edges discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2 high precision interval measurement system based on TMS320F2812 DSP was designed to improve the measurement precision.Experimental results indicate that the time interval measurement method in this paper can obtain higher range accuracy. Compared with the traditional time interval measurement system,the method simplifies the system design and reduce the influence of bad weather conditions,furthermore,it satisfies the requirements of low costs and miniaturization.

  8. Clean-up and matrix effect in LC-MS/MS analysis of food of plant origin for high polar herbicides.

    Science.gov (United States)

    Kaczyński, Piotr

    2017-09-01

    This study reports an innovative and sensitive procedure for analysis of difficult high polar herbicides (HPH) in diverse foods of plant origin. The QuPPe (Quick Polar Pesticides) method followed by determination by LC-MS/MS was modified. Chromatographic conditions, extraction, clean-up, and matrix effect were studied. Several liquid chromatography stationary and mobile phases were evaluated, and it was found that hydrophilic interaction chromatography (HILIC) gives good retention and sensitivity. An acidified methanol-water mixture was used as an effective extraction solvent of eleven HPH. Dispersive solid-phase clean-up sorbents (C18, GCB, Florisil, chitosan and graphene) were evaluated. The efficiency of the method was examined using data on recovery, precision and matrix effects. High extraction yields were achieved, and recoveries were within the 64-97% range with relative standard deviations <20% for all HPH in all commodities. Low matrix effects were observed when graphene was used during clean-up of onion extract and when chitosan was used for wheat, potato and pea extract. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. High Precision Edge Detection Algorithm for Mechanical Parts

    Science.gov (United States)

    Duan, Zhenyun; Wang, Ning; Fu, Jingshun; Zhao, Wenhui; Duan, Boqiang; Zhao, Jungui

    2018-04-01

    High precision and high efficiency measurement is becoming an imperative requirement for a lot of mechanical parts. So in this study, a subpixel-level edge detection algorithm based on the Gaussian integral model is proposed. For this purpose, the step edge normal section line Gaussian integral model of the backlight image is constructed, combined with the point spread function and the single step model. Then gray value of discrete points on the normal section line of pixel edge is calculated by surface interpolation, and the coordinate as well as gray information affected by noise is fitted in accordance with the Gaussian integral model. Therefore, a precise location of a subpixel edge was determined by searching the mean point. Finally, a gear tooth was measured by M&M3525 gear measurement center to verify the proposed algorithm. The theoretical analysis and experimental results show that the local edge fluctuation is reduced effectively by the proposed method in comparison with the existing subpixel edge detection algorithms. The subpixel edge location accuracy and computation speed are improved. And the maximum error of gear tooth profile total deviation is 1.9 μm compared with measurement result with gear measurement center. It indicates that the method has high reliability to meet the requirement of high precision measurement.

  10. High-precision half-life measurements of the T =1 /2 mirror β decays 17F and 33Cl

    Science.gov (United States)

    Grinyer, J.; Grinyer, G. F.; Babo, M.; Bouzomita, H.; Chauveau, P.; Delahaye, P.; Dubois, M.; Frigot, R.; Jardin, P.; Leboucher, C.; Maunoury, L.; Seiffert, C.; Thomas, J. C.; Traykov, E.

    2015-10-01

    Background: Measurements of the f t values for T =1 /2 mirror β+ decays offer a method to test the conserved vector current hypothesis and to determine Vud, the up-down matrix element of the Cabibbo-Kobayashi-Maskawa matrix. In most mirror decays used for these tests, uncertainties in the f t values are dominated by the uncertainties in the half-lives. Purpose: Two precision half-life measurements were performed for the T =1 /2 β+ emitters, 17F and 33Cl, in order to eliminate the half-life as the leading source of uncertainty in their f t values. Method: Half-lives of 17F and 33Cl were determined using β counting of implanted radioactive ion beam samples on a moving tape transport system at the Système de Production d'Ions Radioactifs Accélérés en Ligne low-energy identification station at the Grand Accélérateur National d'Ions Lourds. Results: The 17F half-life result, 64.347 (35) s, precise to ±0.05 % , is a factor of 5 times more precise than the previous world average. The half-life of 33Cl was determined to be 2.5038 (22) s. The current precision of ±0.09 % is nearly 2 times more precise compared to the previous world average. Conclusions: The precision achieved during the present measurements implies that the half-life no longer dominates the uncertainty of the f t values for both T =1 /2 mirror decays 17F and 33Cl.

  11. Fiber Scrambling for High Precision Spectrographs

    Science.gov (United States)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.

    2011-05-01

    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  12. 4TH International Conference on High-Temperature Ceramic Matrix Composites

    National Research Council Canada - National Science Library

    2001-01-01

    .... Topic to be covered include fibers, interfaces, interphases, non-oxide ceramic matrix composites, oxide/oxide ceramic matrix composites, coatings, and applications of high-temperature ceramic matrix...

  13. Dynamics Analysis for Hydroturbine Regulating System Based on Matrix Model

    Directory of Open Access Journals (Sweden)

    Jiafu Wei

    2017-01-01

    Full Text Available The hydraulic turbine model is the key factor which affects the analysis precision of the hydraulic turbine governing system. This paper discusses the basic principle of the hydraulic turbine matrix model and gives two methods to realize. Using the characteristic matrix to describe unit flow and torque and their relationship with the opening and unit speed, it can accurately represent the nonlinear characteristics of the turbine, effectively improve the convergence of simulation process, and meet the needs of high precision real-time simulation of power system. Through the simulation of a number of power stations, it indicates that, by analyzing the dynamic process of the hydraulic turbine regulating with 5-order matrix model, the calculation results and field test data will have good consistency, and it can better meet the needs of power system dynamic simulation.

  14. Biomarkers specific to densely-ionising (high LET) radiations

    International Nuclear Information System (INIS)

    Brenner, D.J.; Okladnikova, N.; Hande, P.; Burak, L.; Geard, C.R.; Azizova, T.

    2001-01-01

    There have been several suggestions of biomarkers that are specific to high LET radiation. Such a biomarker could significantly increase the power of epidemiological studies of individuals exposed to densely-ionising radiations such as alpha particles (e.g. radon, plutonium workers, individuals exposed to depleted uranium) or neutrons (e.g. radiation workers, airline personnel). We discuss here a potentially powerful high LET biomarker (the H value) which is the ratio of induced inter-chromosomal aberrations to intra-arm aberrations. Both theoretical and experimental studies have suggested that this ratio should differ by a factor of about three between high LET radiation and any other likely clastogen, and will yield more discrimination than the previously suggested F value (ratio of inter-chromosomal aberrations to intra-chromosomal inter-arm aberrations). Evidence of the long-term stability of such chromosomal biomarkers has also been generated. Because these stable intra-arm and inter-chromosomal aberrations are (1) frequent and (2) measurable at long times after exposure, this H value appears to be a practical biomarker of high LET exposure, and several in vitro studies have confirmed the approach for unstable aberrations. The approach is currently being tested in a population of Russian radiation workers exposed several decades ago to high- or low LET radiation. (author)

  15. Development of Exact Matrix-Matching Inductively Coupled Plasma-Optical Emission Spectroscopy for the Analysis of Cu and K in Infant Formula

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ye-Ji; Yim, Yong-Hyeon [University of Science and Technology, Daejeon (Korea, Republic of); Heo, Sung Woo; Han, Myung-Sub; Lim, Youngran [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-08-15

    In the present study, we have developed an exact matrix-matching inductively coupled plasma-optical emission spectroscopy (ICP-OES) as a low-cost alternative to the isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) method for accurate and precise measurements of nutrient elements K and Cu in infant formula. In spite of its high precision and accuracy, ICP-OES analysis of complex samples was not reliable due to biases originating from various matrix effects. The elaborated exact matrix-matching approach tested here demonstrated its potential to minimize biases due to matrix mismatch. The exact matrix-matching ICP-OES method was successfully validated by comparing the results with those from an isotope dilution ICP-M S method. Because the model provides reliable results without significant loss of precision, it will be an excellent choice for major element analysis in a complex sample, especially when isotope dilution is not applicable due to the l ck of alternative isotopes or the high cost of enriched isotopes.

  16. Unitarity of CKM Matrix

    CERN Document Server

    Saleem, M

    2002-01-01

    The Unitarity of the CKM matrix is examined in the light of the latest available accurate data. The analysis shows that a conclusive result cannot be derived at present. Only more precise data can determine whether the CKM matrix opens new vistas beyond the standard model or not.

  17. CaO-matrix processing of MnBi alloys for permanent magnets

    Directory of Open Access Journals (Sweden)

    A. M. Gabay

    2017-05-01

    Full Text Available The possibility to suppress agglomeration of MnBi alloy particles during milling and their unwanted sintering during subsequent annealing was explored by embedding the particles in CaO through co-milling. A 15 h annealing of the micron-sized MnBi particles embedded in the CaO matrix at 300 °C is not accompanied by sintering or growth of the particles while it significantly increases their coercivity – presumably by healing the milling-induced crystal defects. After separation from the CaO matrix, the annealed MnBi powder combines a calculated energy product of 10 MGOe with a room-temperature coercivity of 14.4 kOe. At the same time, the partial loss and degradation of the MnBi low-temperature phase during warm compaction of the powders makes the effect of the CaO-matrix annealing less pronounced in the case of fully dense magnets; the residue from the solvents employed for the removal of the CaO might have contributed to the decline of the properties. Still, a relatively high room-temperature coercivity of 8.5 kOe was obtained for the fuslly-dense MnBi magnet exhibiting an energy product of 5.3 MGOe.

  18. High-precision thermal and electrical characterization of thermoelectric modules

    Science.gov (United States)

    Kolodner, Paul

    2014-05-01

    This paper describes an apparatus for performing high-precision electrical and thermal characterization of thermoelectric modules (TEMs). The apparatus is calibrated for operation between 20 °C and 80 °C and is normally used for measurements of heat currents in the range 0-10 W. Precision thermometry based on miniature thermistor probes enables an absolute temperature accuracy of better than 0.010 °C. The use of vacuum isolation, thermal guarding, and radiation shielding, augmented by a careful accounting of stray heat leaks and uncertainties, allows the heat current through the TEM under test to be determined with a precision of a few mW. The fractional precision of all measured parameters is approximately 0.1%.

  19. Exploiting Data Sparsity In Covariance Matrix Computations on Heterogeneous Systems

    KAUST Repository

    Charara, Ali M.

    2018-05-24

    Covariance matrices are ubiquitous in computational sciences, typically describing the correlation of elements of large multivariate spatial data sets. For example, covari- ance matrices are employed in climate/weather modeling for the maximum likelihood estimation to improve prediction, as well as in computational ground-based astronomy to enhance the observed image quality by filtering out noise produced by the adap- tive optics instruments and atmospheric turbulence. The structure of these covariance matrices is dense, symmetric, positive-definite, and often data-sparse, therefore, hier- archically of low-rank. This thesis investigates the performance limit of dense matrix computations (e.g., Cholesky factorization) on covariance matrix problems as the number of unknowns grows, and in the context of the aforementioned applications. We employ recursive formulations of some of the basic linear algebra subroutines (BLAS) to accelerate the covariance matrix computation further, while reducing data traffic across the memory subsystems layers. However, dealing with large data sets (i.e., covariance matrices of billions in size) can rapidly become prohibitive in memory footprint and algorithmic complexity. Most importantly, this thesis investigates the tile low-rank data format (TLR), a new compressed data structure and layout, which is valuable in exploiting data sparsity by approximating the operator. The TLR com- pressed data structure allows approximating the original problem up to user-defined numerical accuracy. This comes at the expense of dealing with tasks with much lower arithmetic intensities than traditional dense computations. In fact, this thesis con- solidates the two trends of dense and data-sparse linear algebra for HPC. Not only does the thesis leverage recursive formulations for dense Cholesky-based matrix al- gorithms, but it also implements a novel TLR-Cholesky factorization using batched linear algebra operations to increase hardware occupancy and

  20. Unified approach to dense matter

    International Nuclear Information System (INIS)

    Park, Byung-Yoon; Lee, Hee-Jung; Vento, Vicente; Kim, Joon-Il; Min, Dong-Pil; Rho, Mannque

    2005-01-01

    We apply the Skyrme model to dense hadronic matter, which provides a unified approach to high density, valid in the large N c limit. In our picture, dense hadronic matter is described by the classical soliton configuration with minimum energy for the given baryon number density. By incorporating the meson fluctuations on such ground state we obtain an effective Lagrangian for meson dynamics in a dense medium. Our starting point has been the Skyrme model defined in terms of pions, thereafter we have extended and improved the model by incorporating other degrees of freedom such as dilaton, kaons and vector mesons

  1. Cyclotrons as Drivers for Precision Neutrino Measurements

    International Nuclear Information System (INIS)

    Alonso, J.; Barletta, W. A.; Winslow, L. A.; Shaevitz, M. H.; Spitz, J.; Conrad, J. M.; Toups, M.; Adelmann, A.

    2014-01-01

    As we enter the age of precision measurement in neutrino physics, improved flux sources are required. These must have a well defined flavor content with energies in ranges where backgrounds are low and cross-section knowledge is high. Very few sources of neutrinos can meet these requirements. However, pion/muon and isotope decay-at-rest sources qualify. The ideal drivers for decay-at-rest sources are cyclotron accelerators, which are compact and relatively inexpensive. This paper describes a scheme to produce decay-at-rest sources driven by such cyclotrons, developed within the DAEδALUS program. Examples of the value of the high precision beams for pursuing Beyond Standard Model interactions are reviewed. New results on a combined DAEδALUS—Hyper-K search for CP violation that achieve errors on the mixing matrix parameter of 4° to 12° are presented

  2. High Precision Edge Detection Algorithm for Mechanical Parts

    Directory of Open Access Journals (Sweden)

    Duan Zhenyun

    2018-04-01

    Full Text Available High precision and high efficiency measurement is becoming an imperative requirement for a lot of mechanical parts. So in this study, a subpixel-level edge detection algorithm based on the Gaussian integral model is proposed. For this purpose, the step edge normal section line Gaussian integral model of the backlight image is constructed, combined with the point spread function and the single step model. Then gray value of discrete points on the normal section line of pixel edge is calculated by surface interpolation, and the coordinate as well as gray information affected by noise is fitted in accordance with the Gaussian integral model. Therefore, a precise location of a subpixel edge was determined by searching the mean point. Finally, a gear tooth was measured by M&M3525 gear measurement center to verify the proposed algorithm. The theoretical analysis and experimental results show that the local edge fluctuation is reduced effectively by the proposed method in comparison with the existing subpixel edge detection algorithms. The subpixel edge location accuracy and computation speed are improved. And the maximum error of gear tooth profile total deviation is 1.9 μm compared with measurement result with gear measurement center. It indicates that the method has high reliability to meet the requirement of high precision measurement.

  3. Imaging Three-Dimensional Myocardial Mechanics Using Navigator-gated Volumetric Spiral Cine DENSE MRI

    Science.gov (United States)

    Zhong, Xiaodong; Spottiswoode, Bruce S.; Meyer, Craig H.; Kramer, Christopher M.; Epstein, Frederick H.

    2010-01-01

    A navigator-gated 3D spiral cine displacement encoding with stimulated echoes (DENSE) pulse sequence for imaging 3D myocardial mechanics was developed. In addition, previously-described 2D post-processing algorithms including phase unwrapping, tissue tracking, and strain tensor calculation for the left ventricle (LV) were extended to 3D. These 3D methods were evaluated in 5 healthy volunteers, using 2D cine DENSE and historical 3D myocardial tagging as reference standards. With an average scan time of 20.5 ± 5.7 minutes, 3D data sets with a matrix size of 128 × 128 × 22, voxel size of 2.8 × 2.8 × 5.0 mm3, and temporal resolution of 32 ms were obtained with displacement encoding in three orthogonal directions. Mean values for end-systolic mid-ventricular mid-wall radial, circumferential, and longitudinal strain were 0.33 ± 0.10, −0.17 ± 0.02, and −0.16 ± 0.02, respectively. Transmural strain gradients were detected in the radial and circumferential directions, reflecting high spatial resolution. Good agreement by linear correlation and Bland-Altman analysis was achieved when comparing normal strains measured by 2D and 3D cine DENSE. Also, the 3D strains, twist, and torsion results obtained by 3D cine DENSE were in good agreement with historical values measured by 3D myocardial tagging. PMID:20574967

  4. Improvement of microstructure and mechanical properties of high dense SiC ceramics manufactured by high-speed hot pressing

    International Nuclear Information System (INIS)

    Voyevodin, V.; Sayenko, S.; Lobach, K.; Tarasov, R.; Zykova, A.; Svitlychnyi, Ye.; Surkov, A.; Abelentsev, V.; Ghaemi, H.; Szkodo, M.; Gajowiec, G.; Kmiec, M.; Antoszkiewicz, M.

    2017-01-01

    Non-oxide ceramics possess high physical-mechanical properties, corrosion and radiation resistance, which can be used as a protective materials for radioactive wastes disposal. The aim of the present study was the manufacturing of high density SiC ceramics with advanced physical and mechanical parameters. The high performance on the properties of produced ceramics was determined by the dense and monolithic structure. The densified silicon carbide samples possessed good mechanical strength, with a high Vickers micro hardness up to 28.5 GPa.

  5. Survival of high pT light and heavy flavors in a dense medium

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.

    2011-01-01

    This talk presents an attempt at a critical overview of the current status of modeling for high-p T processes in nuclei. In particular, it includes discussion of the space-time development of hadronization of highly virtual light and heavy partons, and the related time scales; the role of early production and subsequent attenuation of pre-hadrons in a dense medium. We identify several challenging problems within the current interpretation of high-p T processes and propose solutions for some of them.

  6. High precision pulsar timing and spin frequency second derivatives

    Science.gov (United States)

    Liu, X. J.; Bassa, C. G.; Stappers, B. W.

    2018-05-01

    We investigate the impact of intrinsic, kinematic and gravitational effects on high precision pulsar timing. We present an analytical derivation and a numerical computation of the impact of these effects on the first and second derivative of the pulsar spin frequency. In addition, in the presence of white noise, we derive an expression to determine the expected measurement uncertainty of a second derivative of the spin frequency for a given timing precision, observing cadence and timing baseline and find that it strongly depends on the latter (∝t-7/2). We show that for pulsars with significant proper motion, the spin frequency second derivative is dominated by a term dependent on the radial velocity of the pulsar. Considering the data sets from three Pulsar Timing Arrays, we find that for PSR J0437-4715 a detectable spin frequency second derivative will be present if the absolute value of the radial velocity exceeds 33 km s-1. Similarly, at the current timing precision and cadence, continued timing observations of PSR J1909-3744 for about another eleven years, will allow the measurement of its frequency second derivative and determine the radial velocity with an accuracy better than 14 km s-1. With the ever increasing timing precision and observing baselines, the impact of the, largely unknown, radial velocities of pulsars on high precision pulsar timing can not be neglected.

  7. Constraints on the fourth-generation quark mixing matrix from precision flavour observables

    International Nuclear Information System (INIS)

    Menzel, Andreas

    2016-01-01

    The present PhD thesis ist the last result of a joint project which succeeded at excluding the existence of an additional sequential generation of Dirac fermions (SM4) ath the 5.3σ level in 2012. This exclusion was achieved in a combined fit of the SM4 to Electroweak Precision Observables and the production cross sections and branching fractions of the newly-discovered Higgs boson. The Flavour sector had not been included. Thus, three was still the possibility that the significance of the exclusion of the SM4 might at least be reduced if it described Flavour physics better than the SM3. Consequently, this thesis presents a combined fit of the SM4 to a typical set of Flavour physics observables and the results of the previously performed Electroweak Precision fit. Where necessary, quantities extracted in an SM3 framework are reinterpreted in SM4 terms and the adapted theoretical expressions are given. The fits were performed with the CKMfitter software. The resultant constraints on the SM4's CKM matrix, its potentially CP-violating phases and the mass of the new up-type quark t ' are given. Where necessary, the interplay of individual constraints and parameters is discussed and plotted. To compare the relative performance of the SM4 and the SM3, this work uses the χ 2 values achieved in the fit. The values χ 2 min,SM3 =15.53 for the χ 2 min,SM4 =9.56 are almost perfectly consistent with both models describing the experimental data equally well with the SM3 having six degrees of freedom more. The dimuon charge asymmetry A SL was not used as a fit input because the interpretation of its measurement was subject to debate at the time when the fits were produced, but its prediction in the fit was used as an additional test of the SM4. The SM3's prediction differs from the experimental values by about 2σ, and the SM4's prediction by ∼3σ. In summary, these results do not suggest that any significant reduction of the 5.3σ exclusion could be

  8. High precision 3D coordinates location technology for pellet

    International Nuclear Information System (INIS)

    Fan Yong; Zhang Jiacheng; Zhou Jingbin; Tang Jun; Xiao Decheng; Wang Chuanke; Dong Jianjun

    2010-01-01

    In inertial confinement fusion (ICF) system, manual way has been used to collimate the pellet traditionally, which is time-consuming and low-level automated. A new method based on Binocular Vision is proposed, which can place the prospecting apparatus on the public diagnosis platform to reach relevant engineering target and uses the high precision two dimension calibration board. Iterative method is adopted to satisfy 0.1 pixel for corner extraction precision. Furthermore, SVD decomposition is used to remove the singularity corners and advanced Zhang's calibration method is applied to promote camera calibration precision. Experiments indicate that the RMS of three dimension coordinate measurement precision is 25 μm, and the max system RMS of distance measurement is better than 100 μm, satisfying the system index requirement. (authors)

  9. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  10. Joint Tomographic Imaging of 3-­-D Density Structure Using Cosmic Ray Muons and High-­-Precision Gravity Data

    Science.gov (United States)

    Rowe, C. A.; Guardincerri, E.; Roy, M.; Dichter, M.

    2015-12-01

    As part of the CO2 reservoir muon imaging project headed by the Pacific Northwest National Laboraory (PNNL) under the U.S. Department of Energy Subsurface Technology and Engineering Research, Development, and Demonstration (SubTER) iniative, Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) plan to leverage the recently decommissioned and easily accessible Tunnel Vault on LANL property to test the complementary modeling strengths of muon radiography and high-precision gravity surveys. This tunnel extends roughly 300 feet into the hillside, with a maximum depth below the surface of approximately 300 feet. We will deploy LANL's Mini Muon Tracker (MMT), a detector consisting of 576 drift tubes arranged in alternating parallel planes of orthogonally oriented tubes. This detector is capable of precise determination of trajectories for incoming muons with angular resolution of a few milliradians. We will deploy the MMT at several locations within the tunnel, to obtain numerous crossing muon trajectories and permit a 3D tomographic image of the overburden to be built. In the same project, UNM will use a Scintrex digital gravimeter to collect high-precision gravity data from a dense grid on the hill slope above the tunnel as well as within the tunnel itself. This will provide both direct and differential gravity readings for density modeling of the overburden. By leveraging detailed geologic knowledge of the canyon and the lithology overlying the tunnel, as well as the structural elements, elevations and blueprints of the tunnel itself, we will evaluate the muon and gravity data both independently and in a simultaneous, joint inversion to build a combined 3D density model of the overburden.

  11. High-precision reflectivity measurements: improvements in the calibration procedure

    Science.gov (United States)

    Jupe, Marco; Grossmann, Florian; Starke, Kai; Ristau, Detlev

    2003-05-01

    The development of high quality optical components is heavily depending on precise characterization procedures. The reflectance and transmittance of laser components are the most important parameters for advanced laser applications. In the industrial fabrication of optical coatings, quality management is generally insured by spectral photometric methods according to ISO/DIS 15386 on a medium level of accuracy. Especially for high reflecting mirrors, a severe discrepancy in the determination of the absolute reflectivity can be found for spectral photometric procedures. In the first part of the CHOCLAB project, a method for measuring reflectance and transmittance with an enhanced precision was developed, which is described in ISO/WD 13697. In the second part of the CHOCLAB project, the evaluation and optimization for the presented method is scheduled. Within this framework international Round-Robin experiment is currently in progress. During this Round-Robin experiment, distinct deviations could be observed between the results of high precision measurement facilities of different partners. Based on the extended experiments, the inhomogeneity of the sample reflectivity was identified as one important origin for the deviation. Consequently, this inhomogeneity is also influencing the calibration procedure. Therefore, a method was developed that allows the calibration of the chopper blade using always the same position on the reference mirror. During the investigations, the homogeneity of several samples was characterized by a surface mapping procedure for 1064 nm. The measurement facility was extended to the additional wavelength 532 nm and a similar set-up was assembled at 10.6 μm. The high precision reflectivity procedure at the mentioned wavelengths is demonstrated for exemplary measurements.

  12. System and method for high precision isotope ratio destructive analysis

    Science.gov (United States)

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  13. High-precision x-ray spectroscopy of highly charged ions with microcalorimeters

    International Nuclear Information System (INIS)

    Kraft-Bermuth, S; Andrianov, V; Bleile, A; Echler, A; Egelhof, P; Grabitz, P; Ilieva, S; Kiselev, O; Meier, J; Kilbourne, C; McCammon, D

    2013-01-01

    The precise determination of the energy of the Lyman α1 and α2 lines in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. To improve the experimental precision, the new detector concept of microcalorimeters is now exploited for such measurements. Such detectors consist of compensated-doped silicon thermistors and Pb or Sn absorbers to obtain high quantum efficiency in the energy range of 40–70 keV, where the Doppler-shifted Lyman lines are located. For the first time, a microcalorimeter was applied in an experiment to precisely determine the transition energy of the Lyman lines of lead ions at the experimental storage ring at GSI. The energy of the Ly α1 line E(Ly-α1, 207 Pb 81+ ) = (77937 ± 12 stat ± 25 syst ) eV agrees within error bars with theoretical predictions. To improve the experimental precision, a new detector array with more pixels and better energy resolution was equipped and successfully applied in an experiment to determine the Lyman-α lines of gold ions 197 Au 78+ . (paper)

  14. Dense granular Flows: a conceptual design of high-power neutron source

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2017-01-01

    Full Text Available A high-power neutron source system is very useful for multifunctional applications, such as material facilities for advanced nuclear power, space radiation studies, radiography and tomography. Here the idea of inclined dense granular flow is utilized and developed in a new conceptual design of a compact high-power target to produce a high-energy and high-flux neutron irradiation (the flux is up to 1015 n/cm2/s or even 1016. Comparing to the traditional solid and liquid heavy metal targets, this design has advantages in material choice, fluid stability, heat removal, etc. In this paper the natures of the granular flows in an inclined chute are investigated and preliminary experimental and numerical results are reported. Then the feasibility of this design is discussed.

  15. A new high precision energy-preserving integrator for system of oscillatory second-order differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin, E-mail: wangbinmaths@gmail.com [Department of Mathematics, Nanjing University, State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing 210093 (China); Wu, Xinyuan, E-mail: xywu@nju.edu.cn [Department of Mathematics, Nanjing University, State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing 210093 (China)

    2012-03-05

    This Letter proposes a new high precision energy-preserving integrator for system of oscillatory second-order differential equations q{sup ″}(t)+Mq(t)=f(q(t)) with a symmetric and positive semi-definite matrix M and f(q)=−∇U(q). The system is equivalent to a separable Hamiltonian system with Hamiltonian H(p,q)=1/2 p{sup T}p+1/2 q{sup T}Mq+U(q). The properties of the new energy-preserving integrator are analyzed. The well-known Fermi–Pasta–Ulam problem is performed numerically to show that the new integrator preserves the energy integral with higher accuracy than Average Vector Field (AVF) method and an energy-preserving collocation method. -- Highlights: ► A novel high order energy-preserving integrator AAVF-GL is proposed. ► The important properties of the new integrator AAVF-GL are shown. ► Numerical experiment is carried out compared with AVF method etc. appeared recently.

  16. Pharmaceutical production of nano particles using supercritical or dense gas technology

    International Nuclear Information System (INIS)

    Regtop, H.

    2002-01-01

    Full text: The primary aim of our proposed research is to develop pharmaceutical formulations with enhanced pharmacokinetics and increased bioavailability. The particular drug delivery systems of interest are, oral, aerosols, injectable and topical with well-recognised and distinct problems of bioavailability. More than 40% of all drugs in the USP or BP are insoluble or have some problem with solubility. It is estimated in 2000, the total combined sales of drugs that are insoluble or poorly soluble was US$37 billion. Precise and predictable drug delivery is made more possible by producing uniform micron size particles or powders, which can improve the efficiency and effectiveness of therapeutical formulations. Hence the purpose of micronisation is to increase bioavailability and also to allow other modes of administration, eg insulin is a protein, which is an injectable for the treatment of diabetes, but recently particles of 1-4 microns of insulin are in phase 3 clinical trials to deliver the drug to diabetics as an inhalant. In addition aerosolised drugs such as mucolytics, antibiotics, antiinflammatory drugs and hormones have recently been trailed. Finely powdered pharmaceuticals are however difficult to process by current techniques. In spray drying the operating temperatures are often too high for heat sensitive drugs. Thermal degradation of compounds can also be experienced in milling due to high rates of shear and requires high energy inputs and do not produce particles within a narrow range distribution. A relatively new technique which has been used and developed by Eiffel Technologies to produce uniform micron and sub micron size particles is a dense gas process in which the gas is used as an antisolvent to precipitate compounds from solution. Pharmaceutical processing with dense gas is relatively new and is an efficient process for producing high purity micronised particles with defined morphological structures and with a narrow size distribution rate

  17. Rigorous high-precision enclosures of fixed points and their invariant manifolds

    Science.gov (United States)

    Wittig, Alexander N.

    The well established concept of Taylor Models is introduced, which offer highly accurate C0 enclosures of functional dependencies, combining high-order polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly non-linear dynamical systems. A method is proposed to extend the existing implementation of Taylor Models in COSY INFINITY from double precision coefficients to arbitrary precision coefficients. Great care is taken to maintain the highest efficiency possible by adaptively adjusting the precision of higher order coefficients in the polynomial expansion. High precision operations are based on clever combinations of elementary floating point operations yielding exact values for round-off errors. An experimental high precision interval data type is developed and implemented. Algorithms for the verified computation of intrinsic functions based on the High Precision Interval datatype are developed and described in detail. The application of these operations in the implementation of High Precision Taylor Models is discussed. An application of Taylor Model methods to the verification of fixed points is presented by verifying the existence of a period 15 fixed point in a near standard Henon map. Verification is performed using different verified methods such as double precision Taylor Models, High Precision intervals and High Precision Taylor Models. Results and performance of each method are compared. An automated rigorous fixed point finder is implemented, allowing the fully automated search for all fixed points of a function within a given domain. It returns a list of verified enclosures of each fixed point, optionally verifying uniqueness within these enclosures. An application of the fixed point finder to the rigorous analysis of beam transfer maps in accelerator physics is presented. Previous work done by

  18. High core count single-mode multicore fiber for dense space division multiplexing

    DEFF Research Database (Denmark)

    Aikawa, K.; Sasaki, Y.; Amma, Y.

    2016-01-01

    Multicore fibers and few-mode fibers have the potential to realize dense-space-division multiplexing systems. Several dense-space-division multiplexing system transmission experiments over multicore fibers and few-mode fibers have been demonstrated so far. Multicore fibers, including recent resul...

  19. Study of dense-plasma properties using very high-frequency electromagnetic waves (light waves)

    International Nuclear Information System (INIS)

    Gormezano, C.

    1966-06-01

    A study is made of methods based on the use of lasers for measuring the electronic density and temperature of dense plasmas (N e > 10 15 e/cm 3 ): - an interferometric method using a gas laser, based on the. properties of the Perot-Fabry cavities; - a method making use of the 90 deg C scattering produced by the plasma on light emitted by a ruby laser. These methods have been applied to various dense plasmas: - high-frequency plasma torch; - azimuth compression; - plasma bursts produced by focussing a laser beam on a metal target. The measurements have also been carried out using conventional methods of diagnosis. It has thus been possible to measure densities of between 5.10 15 and 10 19 e/cm 3 and temperatures of between 3 and 10 eV. These different-methods are then compared, (author) [fr

  20. High precision capacitive beam phase probe for KHIMA project

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ji-Gwang, E-mail: windy206@hanmail.net [Korea Institute of Radiological and Medical Sciences, 215–4, Gongneung-dong, Nowon-t, Seoul 139–706 (Korea, Republic of); Yang, Tae-Keun [Korea Institute of Radiological and Medical Sciences, 215–4, Gongneung-dong, Nowon-t, Seoul 139–706 (Korea, Republic of); Forck, Peter [GSI Helmholtz Centre for Ion Research, Darmstadt 64291, German (Germany)

    2016-11-21

    In the medium energy beam transport (MEBT) line of KHIMA project, a high precision beam phase probe monitor is required for a precise tuning of RF phase and amplitude of Radio Frequency Quadrupole (RFQ) accelerator and IH-DTL linac. It is also used for measuring a kinetic energy of ion beam by time-of-flight (TOF) method using two phase probes. The capacitive beam phase probe has been developed. The electromagnetic design of the high precision phase probe was performed to satisfy the phase resolution of 1° (@200 MHz). It was confirmed by the test result using a wire test bench. The measured phase accuracy of the fabricated phase probe is 1.19 ps. The pre-amplifier electronics with the 0.125 ∼ 1.61 GHz broad-band was designed and fabricated for amplifying the signal strength. The results of RF frequency and beam energy measurement using a proton beam from the cyclotron in KIRAMS is presented.

  1. Strategy for Realizing High-Precision VUV Spectro-Polarimeter

    Science.gov (United States)

    Ishikawa, R.; Narukage, N.; Kubo, M.; Ishikawa, S.; Kano, R.; Tsuneta, S.

    2014-12-01

    Spectro-polarimetric observations in the vacuum ultraviolet (VUV) range are currently the only means to measure magnetic fields in the upper chromosphere and transition region of the solar atmosphere. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) aims to measure linear polarization at the hydrogen Lyman- α line (121.6 nm). This measurement requires a polarization sensitivity better than 0.1 %, which is unprecedented in the VUV range. We here present a strategy with which to realize such high-precision spectro-polarimetry. This involves the optimization of instrument design, testing of optical components, extensive analyses of polarization errors, polarization calibration of the instrument, and calibration with onboard data. We expect that this strategy will aid the development of other advanced high-precision polarimeters in the UV as well as in other wavelength ranges.

  2. Geometrical optics of dense aerosols: forming dense plasma slabs.

    Science.gov (United States)

    Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J

    2013-11-01

    Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.

  3. Energy footprint of advanced dense numerical linear algebra using tile algorithms on multicore architectures

    KAUST Repository

    Dongarra, Jack

    2012-11-01

    We propose to study the impact on the energy footprint of two advanced algorithmic strategies in the context of high performance dense linear algebra libraries: (1) mixed precision algorithms with iterative refinement allow to run at the peak performance of single precision floating-point arithmetic while achieving double precision accuracy and (2) tree reduction technique exposes more parallelism when factorizing tall and skinny matrices for solving over determined systems of linear equations or calculating the singular value decomposition. Integrated within the PLASMA library using tile algorithms, which will eventually supersede the block algorithms from LAPACK, both strategies further excel in performance in the presence of a dynamic task scheduler while targeting multicore architecture. Energy consumption measurements are reported along with parallel performance numbers on a dual-socket quad-core Intel Xeon as well as a quad-socket quad-core Intel Sandy Bridge chip, both providing component-based energy monitoring at all levels of the system, through the Power Pack framework and the Running Average Power Limit model, respectively. © 2012 IEEE.

  4. Energy footprint of advanced dense numerical linear algebra using tile algorithms on multicore architectures

    KAUST Repository

    Dongarra, Jack; Ltaief, Hatem; Luszczek, Piotr R.; Weaver, Vincent M.

    2012-01-01

    We propose to study the impact on the energy footprint of two advanced algorithmic strategies in the context of high performance dense linear algebra libraries: (1) mixed precision algorithms with iterative refinement allow to run at the peak performance of single precision floating-point arithmetic while achieving double precision accuracy and (2) tree reduction technique exposes more parallelism when factorizing tall and skinny matrices for solving over determined systems of linear equations or calculating the singular value decomposition. Integrated within the PLASMA library using tile algorithms, which will eventually supersede the block algorithms from LAPACK, both strategies further excel in performance in the presence of a dynamic task scheduler while targeting multicore architecture. Energy consumption measurements are reported along with parallel performance numbers on a dual-socket quad-core Intel Xeon as well as a quad-socket quad-core Intel Sandy Bridge chip, both providing component-based energy monitoring at all levels of the system, through the Power Pack framework and the Running Average Power Limit model, respectively. © 2012 IEEE.

  5. FttC-Based Fronthaul for 5G Dense/Ultra-Dense Access Network: Performance and Costs in Realistic Scenarios

    Directory of Open Access Journals (Sweden)

    Franco Mazzenga

    2017-10-01

    Full Text Available One distinctive feature of the next 5G systems is the presence of a dense/ultra-dense wireless access network with a large number of access points (or nodes at short distances from each other. Dense/ultra-dense access networks allow for providing very high transmission capacity to terminals. However, the deployment of dense/ultra-dense networks is slowed down by the cost of the fiber-based infrastructure required to connect radio nodes to the central processing units and then to the core network. In this paper, we investigate the possibility for existing FttC access networks to provide fronthaul capabilities for dense/ultra-dense 5G wireless networks. The analysis is realistic in that it is carried out considering an actual access network scenario, i.e., the Italian FttC deployment. It is assumed that access nodes are connected to the Cabinets and to the corresponding distributors by a number of copper pairs. Different types of cities grouped in terms of population have been considered. Results focus on fronthaul transport capacity provided by the FttC network and have been expressed in terms of the available fronthaul bit rate per node and of the achievable coverage.

  6. Eigenspaces of networks reveal the overlapping and hierarchical community structure more precisely

    International Nuclear Information System (INIS)

    Ma, Xiaoke; Gao, Lin; Yong, Xuerong

    2010-01-01

    Identifying community structure is fundamental for revealing the structure–functionality relationship in complex networks, and spectral algorithms have been shown to be powerful for this purpose. In a traditional spectral algorithm, each vertex of a network is embedded into a spectral space by making use of the eigenvectors of the adjacency matrix or Laplacian matrix of the graph. In this paper, a novel spectral approach for revealing the overlapping and hierarchical community structure of complex networks is proposed by not only using the eigenvalues and eigenvectors but also the properties of eigenspaces of the networks involved. This gives us a better characterization of community. We first show that the communicability between a pair of vertices can be rewritten in term of eigenspaces of a network. An agglomerative clustering algorithm is then presented to discover the hierarchical communities using the communicability matrix. Finally, these overlapping vertices are discovered with the corresponding eigenspaces, based on the fact that the vertices more densely connected amongst one another are more likely to be linked through short cycles. Compared with the traditional spectral algorithms, our algorithm can identify both the overlapping and hierarchical community without increasing the time complexity O(n 3 ), where n is the size of the network. Furthermore, our algorithm can also distinguish the overlapping vertices from bridges. The method is tested by applying it to some computer-generated and real-world networks. The experimental results indicate that our algorithm can reveal community structure more precisely than the traditional spectral approaches

  7. Bayesian quantification of thermodynamic uncertainties in dense gas flows

    International Nuclear Information System (INIS)

    Merle, X.; Cinnella, P.

    2015-01-01

    A Bayesian inference methodology is developed for calibrating complex equations of state used in numerical fluid flow solvers. Precisely, the input parameters of three equations of state commonly used for modeling the thermodynamic behavior of the so-called dense gas flows, – i.e. flows of gases characterized by high molecular weights and complex molecules, working in thermodynamic conditions close to the liquid–vapor saturation curve – are calibrated by means of Bayesian inference from reference aerodynamic data for a dense gas flow over a wing section. Flow thermodynamic conditions are such that the gas thermodynamic behavior strongly deviates from that of a perfect gas. In the aim of assessing the proposed methodology, synthetic calibration data – specifically, wall pressure data – are generated by running the numerical solver with a more complex and accurate thermodynamic model. The statistical model used to build the likelihood function includes a model-form inadequacy term, accounting for the gap between the model output associated to the best-fit parameters and the true phenomenon. Results show that, for all of the relatively simple models under investigation, calibrations lead to informative posterior probability density distributions of the input parameters and improve the predictive distribution significantly. Nevertheless, calibrated parameters strongly differ from their expected physical values. The relationship between this behavior and model-form inadequacy is discussed. - Highlights: • Development of a Bayesian inference procedure for calibrating dense-gas flow solvers. • Complex thermodynamic models calibrated by using aerodynamic data for the flow. • Preliminary Sobol analysis used to reduce parameter space. • Piecewise polynomial surrogate model constructed to reduce computational cost. • Calibration results show the crucial role played by model-form inadequacies

  8. Precision ring rolling technique and application in high-performance bearing manufacturing

    Directory of Open Access Journals (Sweden)

    Hua Lin

    2015-01-01

    Full Text Available High-performance bearing has significant application in many important industry fields, like automobile, precision machine tool, wind power, etc. Precision ring rolling is an advanced rotary forming technique to manufacture high-performance seamless bearing ring thus can improve the working life of bearing. In this paper, three kinds of precision ring rolling techniques adapt to different dimensional ranges of bearings are introduced, which are cold ring rolling for small-scale bearing, hot radial ring rolling for medium-scale bearing and hot radial-axial ring rolling for large-scale bearing. The forming principles, technological features and forming equipments for three kinds of precision ring rolling techniques are summarized, the technological development and industrial application in China are introduced, and the main technological development trend is described.

  9. High-precision half-life measurements of the T=1/2 mirror beta decays F-17 and Cl-33

    OpenAIRE

    Grinyer, J; Grinyer, G. F; Babo, Mathieu; Bouzomita, H; Chauveau, P; Delahaye, P; Dubois, M; Frigot, R; Jardin, P; Leboucher, C; Maunoury, L; Seiffert, C; Thomas, J. C; Traykov, E

    2015-01-01

    Background: Measurements of the ft values for T=1/2 mirror β+ decays offer a method to test the conserved vector current hypothesis and to determine Vud, the up-down matrix element of the Cabibbo-Kobayashi-Maskawa matrix. In most mirror decays used for these tests, uncertainties in the ft values are dominated by the uncertainties in the half-lives. Purpose: Two precision half-life measurements were performed for the T=1/2β+ emitters, 17F and 33Cl, in order to eliminate the half-life as th...

  10. High-precision half-life measurements of the T=1/2 mirror β decays F17 and Cl33

    OpenAIRE

    Grinyer, J; Grinyer, G F; Babo, M; Bouzomita, H; Chauveau, P; Delahaye, P; Dubois, M; Frigot, R; Jardin, P; Leboucher, C; Maunoury, L; Seiffert, C; Thomas, J C; Traykov, E

    2015-01-01

    Background: Measurements of the ft values for T=1/2 mirror β+ decays offer a method to test the conserved vector current hypothesis and to determine Vud, the up-down matrix element of the Cabibbo-Kobayashi-Maskawa matrix. In most mirror decays used for these tests, uncertainties in the ft values are dominated by the uncertainties in the half-lives. Purpose: Two precision half-life measurements were performed for the T=1/2β+ emitters, F17 and Cl33, in order to eliminate the half-life as the le...

  11. XFEL resonant photo-pumping of dense plasmas and dynamic evolution of autoionizing core hole states

    Science.gov (United States)

    Rosmej, F. B.; Moinard, A.; Renner, O.; Galtier, E.; Lee, J. J.; Nagler, B.; Heimann, P. A.; Schlotter, W.; Turner, J. J.; Lee, R. W.; Makita, M.; Riley, D.; Seely, J.

    2016-03-01

    Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment”, approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.

  12. HIGH-PRECISION PREDICTIONS FOR THE ACOUSTIC SCALE IN THE NONLINEAR REGIME

    International Nuclear Information System (INIS)

    Seo, Hee-Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Mehta, Kushal; Metchnik, Marc; Pinto, Phillip; Xu Xiaoying; Padmanabhan, Nikhil; Takahashi, Ryuichi; White, Martin

    2010-01-01

    We measure shifts of the acoustic scale due to nonlinear growth and redshift distortions to a high precision using a very large volume of high-force-resolution simulations. We compare results from various sets of simulations that differ in their force, volume, and mass resolution. We find a consistency within 1.5σ for shift values from different simulations and derive shift α(z) - 1 = (0.300 ± 0.015) %[D(z)/D(0)] 2 using our fiducial set. We find a strong correlation with a non-unity slope between shifts in real space and in redshift space and a weak correlation between the initial redshift and low redshift. Density-field reconstruction not only removes the mean shifts and reduces errors on the mean, but also tightens the correlations. After reconstruction, we recover a slope of near unity for the correlation between the real and redshift space and restore a strong correlation between the initial and the low redshifts. We derive propagators and mode-coupling terms from our N-body simulations and compare with the Zel'dovich approximation and the shifts measured from the χ 2 fitting, respectively. We interpret the propagator and the mode-coupling term of a nonlinear density field in the context of an average and a dispersion of its complex Fourier coefficients relative to those of the linear density field; from these two terms, we derive a signal-to-noise ratio of the acoustic peak measurement. We attempt to improve our reconstruction method by implementing 2LPT and iterative operations, but we obtain little improvement. The Fisher matrix estimates of uncertainty in the acoustic scale is tested using 5000 h -3 Gpc 3 of cosmological Particle-Mesh simulations from Takahashi et al. At an expected sample variance level of 1%, the agreement between the Fisher matrix estimates based on Seo and Eisenstein and the N-body results is better than 10%.

  13. High precision redundant robotic manipulator

    International Nuclear Information System (INIS)

    Young, K.K.D.

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs

  14. Profiling high performance dense linear algebra algorithms on multicore architectures for power and energy efficiency

    KAUST Repository

    Ltaief, Hatem; Luszczek, Piotr R.; Dongarra, Jack

    2011-01-01

    This paper presents the power profile of two high performance dense linear algebra libraries i.e., LAPACK and PLASMA. The former is based on block algorithms that use the fork-join paradigm to achieve parallel performance. The latter uses fine

  15. Precise coulometric titration of uranium in a high-purity uranium metal and in uranium compounds

    International Nuclear Information System (INIS)

    Tanaka, Tatsuhiko; Yoshimori, Takayoshi

    1975-01-01

    Uranium in uranyl nitrate, uranium trioxide and a high-purity uranium metal was assayed by the coulometric titration with biamperometric end-point detection. Uranium (VI) was reduced to uranium (IV) by solid bismuth amalgam in 5M sulfuric acid solution. The reduced uranium was reoxidized to uranium (VI) with a large excess of ferric ion at a room temperature, and the ferrous ion produced was titrated with the electrogenerated manganese(III) fluoride. In the analyses of uranium nitrate and uranium trioxide, the results were precise enough when the error from uncertainty in water content in the samples was considered. The standard sample of pure uranium metal (JAERI-U4) was assayed by the proposed method. The sample was cut into small chips of about 0.2g. Oxides on the metal surface were removed by the procedure shown by National Bureau of Standards just before weighing. The mean assay value of eleven determinations corrected for 3ppm of iron was (99.998+-0.012) % (the 95% confidence interval for the mean), with a standard deviation of 0.018%. The proposed coulometric method is simple and permits accurate and precise determination of uranium which is matrix constituent in a sample. (auth.)

  16. Quasidistributed temperature sensor based on dense wavelength-division multiplexing optical fiber delay

    Science.gov (United States)

    Su, Jun; Yang, Ning; Fan, Zhiqiang; Qiu, Qi

    2017-10-01

    We report on a fiber-optic delay-based quasidistributed temperature sensor with high precision. The device works by detecting the delay induced by the temperature instead of the spectrum. To analyze the working principle of this sensor, the thermal dependence of the fiber-optic delay was theoretically investigated and the delay-temperature coefficient was measured to be 42.2 ps/km°C. In this sensor, quasidistributed measurement of temperature could be easily realized by dense wavelength-division multiplexing and wavelength addressing. We built and tested a prototype quasidistributed temperature sensor with eight testing points equally distributed along a 32.61-km-long fiber. The experimental results demonstrate an average error of economic temperature measurements.

  17. Acoustic grating fringe projector for high-speed and high-precision three-dimensional shape measurements

    International Nuclear Information System (INIS)

    Yin Xuebing; Zhao Huijie; Zeng Junyu; Qu Yufu

    2007-01-01

    A new acoustic grating fringe projector (AGFP) was developed for high-speed and high-precision 3D measurement. A new acoustic grating fringe projection theory is also proposed to describe the optical system. The AGFP instrument can adjust the spatial phase and period of fringes with unprecedented speed and accuracy. Using rf power proportional-integral-derivative (PID) control and CCD synchronous control, we obtain fringes with fine sinusoidal characteristics and realize high-speed acquisition of image data. Using the device, we obtained a precise phase map for a 3D profile. In addition, the AGFP can work in running fringe mode, which could be applied in other measurement fields

  18. High-Fat, High-Sugar Diet-Induced Subendothelial Matrix Stiffening is Mitigated by Exercise.

    Science.gov (United States)

    Kohn, Julie C; Azar, Julian; Seta, Francesca; Reinhart-King, Cynthia A

    2018-03-01

    Consumption of a high-fat, high-sugar diet and sedentary lifestyle are correlated with bulk arterial stiffening. While measurements of bulk arterial stiffening are used to assess cardiovascular health clinically, they cannot account for changes to the tissue occurring on the cellular scale. The compliance of the subendothelial matrix in the intima mediates vascular permeability, an initiating step in atherosclerosis. High-fat, high-sugar diet consumption and a sedentary lifestyle both cause micro-scale subendothelial matrix stiffening, but the impact of these factors in concert remains unknown. In this study, mice on a high-fat, high-sugar diet were treated with aerobic exercise or returned to a normal diet. We measured bulk arterial stiffness through pulse wave velocity and subendothelial matrix stiffness ex vivo through atomic force microscopy. Our data indicate that while diet reversal mitigates high-fat, high-sugar diet-induced macro- and micro-scale stiffening, exercise only significantly decreases micro-scale stiffness and not macro-scale stiffness, during the time-scale studied. These data underscore the need for both healthy diet and exercise to maintain vascular health. These data also indicate that exercise may serve as a key lifestyle modification to partially reverse the deleterious impacts of high-fat, high-sugar diet consumption, even while macro-scale stiffness indicators do not change.

  19. Exploratory study of a novel low occupancy vertex detector architecture based on high precision timing for high luminosity particle colliders

    Energy Technology Data Exchange (ETDEWEB)

    Orel, Peter, E-mail: porel@hawaii.edu; Varner, Gary S.; Niknejadi, Pardis

    2017-06-11

    Vertex detectors provide space–time coordinates for the traversing charged particle decay products closest to the interaction point. Resolving these increasingly intense particle fluences at high luminosity particle colliders, such as SuperKEKB, is an ever growing challenge. This results in a non-negligible occupancy of the vertex detector using existing low material budget techniques. Consequently, new approaches are being studied that meet the vertexing requirements while lowering the occupancy. In this paper, we introduce a novel vertex detector architecture. Its design relies on an asynchronous digital pixel matrix in combination with a readout based on high precision time-of-flight measurement. Denoted the Timing Vertex Detector (TVD), it consists of a binary pixel array, a transmission line for signal collection, and a readout ASIC. The TVD aims to have a spatial resolution comparable to the existing Belle2 vertex detector. At the same time it offers a reduced occupancy by a factor of ten while decreasing the channel count by almost three orders of magnitude. Consequently, reducing the event size from about 1 MB/event to about 5.9 kB/event.

  20. Application of high precision temperature control technology in infrared testing

    Science.gov (United States)

    Cao, Haiyuan; Cheng, Yong; Zhu, Mengzhen; Chu, Hua; Li, Wei

    2017-11-01

    In allusion to the demand of infrared system test, the principle of Infrared target simulator and the function of the temperature control are presented. The key technology of High precision temperature control is discussed, which include temperature gathering, PID control and power drive. The design scheme of temperature gathering is put forward. In order to reduce the measure error, discontinuously current and four-wire connection for the platinum thermal resistance are adopted. A 24-bits AD chip is used to improve the acquisition precision. Fuzzy PID controller is designed because of the large time constant and continuous disturbance of the environment temperature, which result in little overshoot, rapid response, high steady-state accuracy. Double power operational amplifiers are used to drive the TEC. Experiments show that the key performances such as temperature control precision and response speed meet the requirements.

  1. A Comparison of Methods for Estimating the Determinant of High-Dimensional Covariance Matrix

    KAUST Repository

    Hu, Zongliang; Dong, Kai; Dai, Wenlin; Tong, Tiejun

    2017-01-01

    The determinant of the covariance matrix for high-dimensional data plays an important role in statistical inference and decision. It has many real applications including statistical tests and information theory. Due to the statistical and computational challenges with high dimensionality, little work has been proposed in the literature for estimating the determinant of high-dimensional covariance matrix. In this paper, we estimate the determinant of the covariance matrix using some recent proposals for estimating high-dimensional covariance matrix. Specifically, we consider a total of eight covariance matrix estimation methods for comparison. Through extensive simulation studies, we explore and summarize some interesting comparison results among all compared methods. We also provide practical guidelines based on the sample size, the dimension, and the correlation of the data set for estimating the determinant of high-dimensional covariance matrix. Finally, from a perspective of the loss function, the comparison study in this paper may also serve as a proxy to assess the performance of the covariance matrix estimation.

  2. A Comparison of Methods for Estimating the Determinant of High-Dimensional Covariance Matrix

    KAUST Repository

    Hu, Zongliang

    2017-09-27

    The determinant of the covariance matrix for high-dimensional data plays an important role in statistical inference and decision. It has many real applications including statistical tests and information theory. Due to the statistical and computational challenges with high dimensionality, little work has been proposed in the literature for estimating the determinant of high-dimensional covariance matrix. In this paper, we estimate the determinant of the covariance matrix using some recent proposals for estimating high-dimensional covariance matrix. Specifically, we consider a total of eight covariance matrix estimation methods for comparison. Through extensive simulation studies, we explore and summarize some interesting comparison results among all compared methods. We also provide practical guidelines based on the sample size, the dimension, and the correlation of the data set for estimating the determinant of high-dimensional covariance matrix. Finally, from a perspective of the loss function, the comparison study in this paper may also serve as a proxy to assess the performance of the covariance matrix estimation.

  3. A Comparison of Methods for Estimating the Determinant of High-Dimensional Covariance Matrix.

    Science.gov (United States)

    Hu, Zongliang; Dong, Kai; Dai, Wenlin; Tong, Tiejun

    2017-09-21

    The determinant of the covariance matrix for high-dimensional data plays an important role in statistical inference and decision. It has many real applications including statistical tests and information theory. Due to the statistical and computational challenges with high dimensionality, little work has been proposed in the literature for estimating the determinant of high-dimensional covariance matrix. In this paper, we estimate the determinant of the covariance matrix using some recent proposals for estimating high-dimensional covariance matrix. Specifically, we consider a total of eight covariance matrix estimation methods for comparison. Through extensive simulation studies, we explore and summarize some interesting comparison results among all compared methods. We also provide practical guidelines based on the sample size, the dimension, and the correlation of the data set for estimating the determinant of high-dimensional covariance matrix. Finally, from a perspective of the loss function, the comparison study in this paper may also serve as a proxy to assess the performance of the covariance matrix estimation.

  4. Propagation of complex shaped ultrafast pulses in highly optically dense samples

    International Nuclear Information System (INIS)

    Davis, J. C.; Fetterman, M. R.; Warren, W. S.; Goswami, D.

    2008-01-01

    We examine the propagation of shaped (amplitude- and frequency-modulated) ultrafast laser pulses through optically dense rubidium vapor. Pulse reshaping, stimulated emission dynamics, and residual electronic excitation all strongly depend on the laser pulse shape. For example, frequency swept pulses, which produce adiabatic passage in the optically thin limit (independent of the sign of the frequency sweep), behave unexpectedly in optically dense samples. Paraxial Maxwell optical Bloch equations can model our ultrafast pulse propagation results well and provide insight

  5. High precision electrostatic potential calculations for cylindrically symmetric lenses

    International Nuclear Information System (INIS)

    Edwards, David Jr.

    2007-01-01

    A method is developed for a potential calculation within cylindrically symmetric electrostatic lenses using mesh relaxation techniques, and it is capable of considerably higher accuracies than currently available. The method involves (i) creating very high order algorithms (orders of 6, 8, and 10) for determining the potentials at points in the net using surrounding point values, (ii) eliminating the effect of the large errors caused by singular points, and (iii) reducing gradients in the high gradient regions of the geometry, thereby allowing the algorithms used in these regions to achieve greater precisions--(ii) and (iii) achieved by the use of telescopic multiregions. In addition, an algorithm for points one unit from a metal surface is developed, allowing general mesh point algorithms to be used in these situations, thereby taking advantage of the enhanced precision of the latter. A maximum error function dependent on a sixth order gradient of the potential is defined. With this the single point algorithmic errors are able to be viewed over the entire net. Finally, it is demonstrated that by utilizing the above concepts and procedures, the potential of a point in a reasonably high gradient region of a test geometry can realize a precision of less than 10 -10

  6. High-precision mass measurements for the rp-process at JYFLTRAP

    Directory of Open Access Journals (Sweden)

    Canete Laetitia

    2017-01-01

    Full Text Available The double Penning trap JYFLTRAP at the University of Jyväskylä has been successfully used to achieve high-precision mass measurements of nuclei involved in the rapid proton-capture (rp process. A precise mass measurement of 31Cl is essential to estimate the waiting point condition of 30S in the rp-process occurring in type I x-ray bursts (XRBs. The mass-excess of 31C1 measured at JYFLTRAP, -7034.7(3.4 keV, is 15 more precise than the value given in the Atomic Mass Evaluation 2012. The proton separation energy Sp determined from the new mass-excess value confirmed that 30S is a waiting point, with a lower-temperature limit of 0.44 GK. The mass of 52Co effects both 51Fe(p,γ52Co and 52Co(p,γ53Ni reactions. The mass-excess value measured, - 34 331.6(6.6 keV is 30 times more precise than the value given in AME2012. The Q values for the 51Fe(p,γ52Co and 52Co(p,γ53Ni reactions are now known with a high precision, 1418(11 keV and 2588(26 keV respectively. The results show that 52Co is more proton bound and 53Ni less proton bound than what was expected from the extrapolated value.

  7. Thorium spectrophotometric analysis with high precision

    International Nuclear Information System (INIS)

    Palmieri, H.E.L.

    1983-06-01

    An accurate and precise determination of thorium is proposed. Precision of about 0,1% is required for the determination of macroquantities of thorium processed. After an extensive literature search concerning this subject, spectrophotometric titration has been chosen, using disodium ethylenediaminetetraacetate (EDTA) solution and alizarin S as indicator. In order to obtain such a precision, an amount of 0,025 M EDTA solution precisely measured has been added and the titration was completed with less than 5 ml of 0,0025 M EDTA solution. It is usual to locate the end-point graphically, by plotting added titrant versus absorbance. The non-linear minimum square fit, using the Fletcher e Powell's minimization process and a computer program. (author)

  8. A simulation of driven reconnection by a high precision MHD code

    International Nuclear Information System (INIS)

    Kusano, Kanya; Ouchi, Yasuo; Hayashi, Takaya; Horiuchi, Ritoku; Watanabe, Kunihiko; Sato, Tetsuya.

    1988-01-01

    A high precision MHD code, which has the fourth-order accuracy for both the spatial and time steps, is developed, and is applied to the simulation studies of two dimensional driven reconnection. It is confirm that the numerical dissipation of this new scheme is much less than that of two-step Lax-Wendroff scheme. The effect of the plasma compressibility on the reconnection dynamics is investigated by means of this high precision code. (author)

  9. Recent high precision surveys at PEP

    International Nuclear Information System (INIS)

    Sah, R.C.

    1980-12-01

    The task of surveying and aligning the components of PEP has provided an opportunity to develop new instruments and techniques for the purpose of high precision surveys. The new instruments are quick and easy to use, and they automatically encode survey data and read them into the memory of an on-line computer. When measurements of several beam elements have been taken, the on-line computer analyzes the measured data, compares them with desired parameters, and calculates the required adjustments to beam element support stands

  10. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Morgan, J.L.L.; Gordon, G.W.; Arrua, R.C.; Skulan, J.L.; Anbar, A.D.; Bullen, T.D.

    2011-01-01

    We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios (44Ca/42Ca and 44Ca/43Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10000; Ca/Ti > 10000000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ44/42Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).

  11. Precise Calculation of Complex Radioactive Decay Chains

    National Research Council Canada - National Science Library

    Harr, Logan J

    2007-01-01

    ...). An application of the exponential moments function is used with a transmutation matrix in the calculation of complex radioactive decay chains to achieve greater precision than can be attained through current methods...

  12. Precision study of the $\\beta$-decay of $^{74}$Rb

    CERN Multimedia

    Van Duppen, P L E; Lunney, D

    2002-01-01

    We are proposing a high-resolution study of the $\\beta$-decay of $^{74}$Rb in order to extrapolate our precision knowledge of the superallowed $\\beta$-decays from the sd and fp shells towards the medium-heavy Z=N nuclei. The primary goal is to provide new data for testing the CVC hypothesis and the unitarity condition of the CKM matrix of the Standard Model. The presented programme would involve the careful measurements of the decay properties of $^{74}$Rb including the branching ratios to the excited states as well as the precise determination of the decay energy of $^{74}$Rb. The experimental methods readily available at ISOLDE include high-transmission conversion electron spectroscopy, $\\gamma$-ray spectroscopy as well as the measurements of the masses of $^{74}$Rb and $^{74}$Kr using two complementary techniques, ISOLTRAP and MISTRAL. The experiment would rely on a high-quality $^{74}$Rb beam available at ISOLDE with adequate intensity.

  13. Numerical Simulation Analysis of High-precision Dispensing Needles for Solid-liquid Two-phase Grinding

    Science.gov (United States)

    Li, Junye; Hu, Jinglei; Wang, Binyu; Sheng, Liang; Zhang, Xinming

    2018-03-01

    In order to investigate the effect of abrasive flow polishing surface variable diameter pipe parts, with high precision dispensing needles as the research object, the numerical simulation of the process of polishing high precision dispensing needle was carried out. Analysis of different volume fraction conditions, the distribution of the dynamic pressure and the turbulence viscosity of the abrasive flow field in the high precision dispensing needle, through comparative analysis, the effectiveness of the abrasive grain polishing high precision dispensing needle was studied, controlling the volume fraction of silicon carbide can change the viscosity characteristics of the abrasive flow during the polishing process, so that the polishing quality of the abrasive grains can be controlled.

  14. Engineering stable topography in dense bio-mimetic 3D collagen scaffolds

    Directory of Open Access Journals (Sweden)

    T Alekseeva

    2012-01-01

    Full Text Available Topographic features are well known to influence cell behaviour and can provide a powerful tool for engineering complex, functional tissues. This study aimed to investigate the mechanisms of formation of a stable micro-topography on plastic compressed (PC collagen gels. The uni-directional fluid flow that accompanies PC of collagen gels creates a fluid leaving surface (FLS and a non-fluid leaving surface (non-FLS. Here we tested the hypothesis that the resulting anisotropy in collagen density and stiffness between FLS and non-FLS would influence the fidelity and stability of micro-grooves patterned on these surfaces. A pattern template of parallel-aligned glass fibres was introduced to the FLS or non-FLS either at the start of the compression or halfway through, when a dense FLS had already formed. Results showed that both early and late patterning of the FLS generated grooves that had depth (25 ±7 µm and 19 ±8 µm, respectively and width (55 ±11 µm and 50 ±12 µm, respectively which matched the glass fibre diameter (50 µm. In contrast, early and late patterning of the non-FLS gave much wider (151 ±50 µm and 89 ±14 µm, respectively and shallower (10 ±2.7 µm and 13 ±3.5 µm, respectively grooves than expected. The depth to width ratio of the grooves generated on the FLS remained unaltered under static culture conditions over 2 weeks, indicating that grooves were stable under long term active cell-mediated matrix remodelling. These results indicate that the FLS, characterised by a higher matrix collagen density and stiffness than the non-FLS, provides the most favourable mechanical surface for precise engineering of a stable micro-topography in 3D collagen hydrogel scaffolds.

  15. High-precision two-dimensional atom localization via quantum interference in a tripod-type system

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    A scheme is proposed for high-precision two-dimensional atom localization in a four-level tripod-type atomic system via measurement of the excited state population. It is found that because of the position-dependent atom–field interaction, the precision of 2D atom localization can be significantly improved by appropriately adjusting the system parameters. Our scheme may be helpful in laser cooling or atom nanolithography via high-precision and high-resolution atom localization. (letter)

  16. Towards High Productivity in Precision Grinding

    Directory of Open Access Journals (Sweden)

    W. Brian Rowe

    2018-04-01

    Full Text Available Over the last century, substantial advances have been made, based on improved understanding of the requirements of grinding processes, machines, control systems, materials, abrasives, wheel preparation, coolants, lubricants, and coolant delivery. This paper reviews a selection of areas in which the application of scientific principles and engineering ingenuity has led to the development of new grinding processes, abrasives, tools, machines, and systems. Topics feature a selection of areas where relationships between scientific principles and new techniques are yielding improved productivity and better quality. These examples point towards further advances that can fruitfully be pursued. Applications in modern grinding technology range from high-precision kinematics for grinding very large lenses and reflectors through to medium size grinding machine processes and further down to grinding very small components used in micro electro-mechanical systems (MEMS devices. The importance of material issues is emphasized for the range of conventional engineering steels, through to aerospace materials, ceramics, and composites. It is suggested that future advances in productivity will include the wider application of artificial intelligence and robotics to improve precision, process efficiency, and features required to integrate grinding processes into wider manufacturing systems.

  17. Exploiting Data Sparsity In Covariance Matrix Computations on Heterogeneous Systems

    KAUST Repository

    Charara, Ali

    2018-01-01

    the thesis leverage recursive formulations for dense Cholesky-based matrix al- gorithms, but it also implements a novel TLR-Cholesky factorization using batched linear algebra operations to increase hardware occupancy and reduce the overhead of the API

  18. Polarimetry on dense samples of spin-polarized 3He by magnetostatic detection

    International Nuclear Information System (INIS)

    Wilms, E.; Ebert, M.; Heil, W.; Surkau, R.

    1997-01-01

    A very sensitive low-field fluxgate magnetometer is used to detect the static magnetic field produced by dense samples of spin-polarized 3 He gas contained in spherical glass cells at pressures around several bars. The 3 He nuclear polarization can be extracted with high precision ΔP/P<1% by utilizing magnetostatic detection in combination with adiabatic fast-passage spin reversal. The polarization losses can be kept well below 0.1% thus making this type of polarimetry almost non-destructive. More simply even, P can be measured with reduced accuracy by the change of field when the cell is removed from the fluxgate. In this case the accuracy is limited to about 10% due to the uncertainties about the susceptibilities of the cell walls. (orig.)

  19. High precision ray tracing in cylindrically symmetric electrostatics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards Jr, David, E-mail: dej122842@gmail.com

    2015-11-15

    Highlights: • High precision ray tracing is formulated using power series techniques. • Ray tracing is possible for fields generated by solution to laplace's equation. • Spatial and temporal orders of 4–10 are included. • Precisions in test geometries of hemispherical deflector analyzer of ∼10{sup −20} have been obtained. • This solution offers a considerable extension to the ray tracing accuracy over the current state of art. - Abstract: With the recent availability of a high order FDM solution to the curved boundary value problem, it is now possible to determine potentials in such geometries with considerably greater accuracy than had been available with the FDM method. In order for the algorithms used in the accurate potential calculations to be useful in ray tracing, an integration of those algorithms needs to be placed into the ray trace process itself. The object of this paper is to incorporate these algorithms into a solution of the equations of motion of the ray and, having done this, to demonstrate its efficacy. The algorithm incorporation has been accomplished by using power series techniques and the solution constructed has been tested by tracing the medial ray through concentric sphere geometries. The testing has indicated that precisions of ray calculations of 10{sup −20} are now possible. This solution offers a considerable extension to the ray tracing accuracy over the current state of art.

  20. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro.

    Science.gov (United States)

    Blair, Harry C; Larrouture, Quitterie C; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S; Robinson, Lisa J; Schlesinger, Paul H; Nelson, Deborah J

    2017-06-01

    We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and

  1. Google matrix analysis of directed networks

    Science.gov (United States)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  2. HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS.

    Science.gov (United States)

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2011-01-01

    The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied.

  3. High precision neutron polarization for PERC

    International Nuclear Information System (INIS)

    Klauser, C.

    2013-01-01

    The decay of the free neutron into a proton, an electron and an anti-electron neutrino offers a simple system to study the semi-leptonic weak decay. High precision measurements of angular correlation coefficients of this decay provide the opportunity to test the standard model on the low energy frontier. The Proton Electron Radiation Channel PERC is part of a new generation of expriments pushing the accuracy of such an angular correlation coefficient measurement towards 10 -4 . Past experiments have been limited to an accuracy of 10 -3 with uncertainties on the neutron polarization as one of the leading systematic errors. This thesis focuses on the development of a stable, highly precise neutron polarization for a large, divergent cold neutron beam. A diagnostic tool that provides polarization higher than 99.99 % and analyzes with an accuracy of 10 -4 , the Opaque Test Bench, is presented and validated. It consists of two highly opaque polarized helium cells. The Opaque Test Bench reveals depolarizing effects in polarizing supermirrors commonly used for polarization in neutron decay experiments. These effects are investigated in detail. They are due to imperfect lateral magnetization in supermirror layers and can be minimized by significantly increased magnetizing fields and low incidence angle and supermirror factor m. A subsequent test in the crossed (X-SM) geometry demonstrated polarizations up to 99.97% from supermirrors only, improving neutron polarization with supermirrors by an order of magnitude. The thesis also discusses other neutron optical components of the PERC beamline: Monte-Carlo simulations of the beamline under consideration of the primary guide are carried out. In addition, calculation shows that PERC would statistically profit from an installation at the European Spallation source. Furthermore, beamline components were tested. A radio-frequency spin flipper was confirmed to work with an efficiency higher than 0.9999. (author) [de

  4. High precision spectrophotometric analysis of thorium

    International Nuclear Information System (INIS)

    Palmieri, H.E.L.

    1984-01-01

    An accurate and precise determination of thorium is proposed. Precision of about 0,1% is required for the determination of macroquantities of thorium when processed. After an extensive literature search concerning this subject, spectrophotometric titration has been chosen, using dissodium ethylenediaminetetraacetate (EDTA) solution and alizarin-S as indicator. In order to obtain such a precision, an amount of 0,025 M EDTA solution precisely measured has been added and the titration was completed with less than 5 ml of 0,0025 M EDTA solution. It is usual to locate the end-point graphically, by plotting added titrant versus absorbance. The non-linear minimum square fit, using the Fletcher e Powell's minimization process and a computer programme. Besides the equivalence point, other parameters of titration were determined: the indicator concentration, the absorbance of the metal-indicator complex, and the stability constants of the metal-indicator and the metal-EDTA complexes. (Author) [pt

  5. Observing exoplanet populations with high-precision astrometry

    Science.gov (United States)

    Sahlmann, Johannes

    2012-06-01

    This thesis deals with the application of the astrometry technique, consisting in measuring the position of a star in the plane of the sky, for the discovery and characterisation of extra-solar planets. It is feasible only with a very high measurement precision, which motivates the use of space observatories, the development of new ground-based astronomical instrumentation and of innovative data analysis methods: The study of Sun-like stars with substellar companions using CORALIE radial velocities and HIPPARCOS astrometry leads to the determination of the frequency of close brown dwarf companions and to the discovery of a dividing line between massive planets and brown dwarf companions; An observation campaign employing optical imaging with a very large telescope demonstrates sufficient astrometric precision to detect planets around ultra-cool dwarf stars and the first results of the survey are presented; Finally, the design and initial astrometric performance of PRIMA, ! a new dual-feed near-infrared interferometric observing facility for relative astrometry is presented.

  6. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    Science.gov (United States)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  7. ORIENTATION AND DENSE RECONSTRUCTION OF UNORDERED TERRESTRIAL AND AERIAL WIDE BASELINE IMAGE SETS

    Directory of Open Access Journals (Sweden)

    J. Bartelsen

    2012-07-01

    Full Text Available In this paper we present an approach for detailed and precise automatic dense 3D reconstruction using images from consumer cameras. The major difference between our approach and many others is that we focus on wide-baseline image sets. We have combined and improved several methods, particularly, least squares matching, RANSAC, scale-space maxima and bundle adjustment, for robust matching and parameter estimation. Point correspondences and the five-point algorithm lead to relative orientation. Due to our robust matching method it is possible to orient images under much more unfavorable conditions, for instance concerning illumination changes or scale differences, than for often used operators such as SIFT. For dense reconstruction, we use our orientation as input for Semiglobal Matching (SGM resulting into dense depth images. The latter can be fused into a 2.5D model for eliminating the redundancy of the highly overlapping depth images. However, some applications require full 3D models. A solution to this problem is part of our current work, for which preliminary results are presented in this paper. With very small unmanned aerial systems (Micro UAS it is possible to acquire images which have a perspective similar to terrestrial images and can thus be combined with them. Such a combination is useful for an almost complete 3D reconstruction of urban scenes. We have applied our approach to several hundred aerial and terrestrial images and have generated detailed 2.5D and 3D models of urban areas.

  8. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Mai [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan); Kitaguchi, Tetsuya [Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABOIS), Waseda University, 11 Biopolis Way, 05-01/02 Helios, Singapore 138667 (Singapore); Numano, Rika [The Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tennpaku-cho, Toyohashi, Aichi 441-8580 (Japan); Ikematsu, Kazuya [Forensic Pathology and Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Kakeyama, Masaki [Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Murata, Masayuki; Sato, Ken [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan); Tsuboi, Takashi, E-mail: takatsuboi@bio.c.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Regulation of exocytosis by Rho GTPase Cdc42. Black-Right-Pointing-Pointer Cdc42 increases the number of fusion events from newly recruited vesicles. Black-Right-Pointing-Pointer Cdc42 increases the number of exocytosis-competent dense-core vesicles. -- Abstract: Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott-Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

  9. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

    International Nuclear Information System (INIS)

    Sato, Mai; Kitaguchi, Tetsuya; Numano, Rika; Ikematsu, Kazuya; Kakeyama, Masaki; Murata, Masayuki; Sato, Ken; Tsuboi, Takashi

    2012-01-01

    Highlights: ► Regulation of exocytosis by Rho GTPase Cdc42. ► Cdc42 increases the number of fusion events from newly recruited vesicles. ► Cdc42 increases the number of exocytosis-competent dense-core vesicles. -- Abstract: Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott–Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

  10. High-precision thickness measurements using beta backscatter

    International Nuclear Information System (INIS)

    Heckman, R.V.

    1978-11-01

    A two-axis, automated fixture for use with a high-intensity Pm-147 source and a photomultiplier-scintillation beta-backscatter probe for making thickness measurements has been designed and built. A custom interface was built to connect the system to a minicomputer, and software was written to position the tables, control the probe, and make the measurements. Measurements can be made in less time with much greater precision than by the method previously used

  11. Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Shi, Xusheng; Huang, Qunwu; Cui, Yong; Kang, Xue

    2017-01-01

    Highlights: • Direct-contact liquid film cooling dense-array solar cells was first proposed. • Average temperature was controlled well below 80 °C. • The maximum temperature difference was less than 10 °C. • The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under 589X. - Abstract: This paper presented a new method of cooling dense-array solar cells in high concentrating photovoltaic system by direct-contact liquid film, and water was used as working fluid. An electric heating plate was designed to simulate the dense-array solar cells in high concentrating photovoltaic system. The input power of electric heating plate simulated the concentration ratios. By heat transfer experiments, the effect of water temperatures and flow rates on heat transfer performance was investigated. The results indicated that: the average temperature of simulated solar cells was controlled well below 80 °C under water temperature of 30 °C and flow rate of 300 L/h when concentration ratio ranged between 300X and 600X. The maximum temperature difference among temperature measurement points was less than 10 °C, which showed the temperature distribution was well uniform. The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under concentration ratio of 589X. To improve heat transfer performance and obtain low average temperature of dense-array solar cells, lower water temperature and suitable water flow rate are preferred.

  12. Digitalization of highly precise fluxgate magnetometers

    DEFF Research Database (Denmark)

    Cerman, Ales; Kuna, A.; Ripka, P.

    2005-01-01

    This paper describes the theory behind all three known ways of digitalizing the fluxgate magnetometers: analogue magnetometers with digitalized output using high resolution ADC, application of the delta-sigma modulation to the sensor feedback loop and fully digital signal detection. At present time...... the Delta-Sigma ADCs are mostly used for the digitalization of the highly precise fluxgate magnetorneters. The relevant part of the paper demonstrates some pitfalls of their application studied during the design of the magnetometer for the new Czech scientific satellite MIMOSA. The part discussing...... the application of the A-E modulation to the sensor feedback loop theoretically derives the main advantage of this method-increasing of the modulation order and shows its real potential compared to the analog magnetometer with consequential digitalization. The comparison is realized on the modular magnetometer...

  13. Oxidation resistant coatings for ceramic matrix composite components

    Energy Technology Data Exchange (ETDEWEB)

    Vaubert, V.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Hirschfeld, D.A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Materials and Metallurgical Engineering

    1998-11-01

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  14. Dynamics of dense particle disks

    International Nuclear Information System (INIS)

    Araki, S.; Tremaine, S.; Toronto Univ., Canada)

    1986-01-01

    The present investigation of mechanical equilibrium and collisional transport processes in dense, differentially rotating particle disks is based on the Enskog (1922) theory of dense, hard sphere gases, with the single exception that the spheres are inelastic. The viscous instability suggested as a source of Saturn B ring structure does not arise in the models presented, although the ring may be subject to a phase transition analogous to the liquid-solid transition observed in molecular dynamics simulations of elastic hard spheres. In such a case, the ring would alternately exhibit zero-shear, or solid, and high shear, or liquid, zones. 29 references

  15. MRPC-PET: A new technique for high precision time and position measurements

    International Nuclear Information System (INIS)

    Doroud, K.; Hatzifotiadou, D.; Li, S.; Williams, M.C.S.; Zichichi, A.; Zuyeuski, R.

    2011-01-01

    The purpose of this paper is to consider a new technology for medical diagnosis: the MRPC-PET. This technology allows excellent time resolution together with 2-D position information thus providing a fundamental step in this field. The principle of this method is based on the Multigap Resistive Plate Chamber (MRPC) capable of high precision time measurements. We have previously found that the route to precise timing is differential readout (this requires matching anode and cathode strips); thus crossed strip readout schemes traditionally used for 2-D readout cannot be exploited. In this paper we consider the time difference from the two ends of the strip to provide a high precision measurement along the strip; the average time gives precise timing. The MRPC-PET thus provides a basic step in the field of medical technology: excellent time resolution together with 2-D position measurement.

  16. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations

    KAUST Repository

    Zhang, Chen; Dai, Ying; Johnson, Justin R.; Karvan, Oguz; Koros, William J.

    2012-01-01

    We report significantly enhanced propylene/propane (C 3H 6/C 3H 8) selectivity in mixed matrix membranes fabricated using 6FDA-DAM polyimide and a zeolitic imidazolate framework (ZIF-8). Equilibrium isotherms and sorption kinetics of C 3H 6 and C 3H 8 at 35°C were studied on a 200nm commercially available ZIF-8 sample produced by BASF. Mixed matrix dense films were formed with 6FDA-DAM and 200nm BASF ZIF-8 particles. SEM imaging showed generally good adhesion between the ZIF-8 and 6FDA-DAM without the need for surface-treating ZIF-8. Pure gas permeation showed significantly enhanced mixed matrix ZIF-8/6FDA-DAM membrane C 3H 6/C 3H 8 separation performance over the pure 6FDA-DAM membrane performance. A C 3H 6 permeability of 56.2Barrer and C 3H 6/C 3H 8 ideal selectivity of 31.0 was found in ZIF-8/6FDA-DAM mixed matrix membrane with 48.0wt% ZIF-8 loading, which are 258% and 150% higher than the pure 6FDA-DAM membrane, respectively for permeability and selectivity. Permeation properties of C 3H 6 and C 3H 8 in ZIF-8 were back-calculated by the Maxwell model for composite permeability using pure gas permeation data, leading to a C 3H 6 permeability of 277Barrer and C 3H 6/C 3H 8 selectivity of 122. Mixed gas permeation also verified that selectivity enhancements were achievable in mixed gas environment by ZIF-8. © 2011 Elsevier B.V.

  17. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations

    KAUST Repository

    Zhang, Chen

    2012-02-01

    We report significantly enhanced propylene/propane (C 3H 6/C 3H 8) selectivity in mixed matrix membranes fabricated using 6FDA-DAM polyimide and a zeolitic imidazolate framework (ZIF-8). Equilibrium isotherms and sorption kinetics of C 3H 6 and C 3H 8 at 35°C were studied on a 200nm commercially available ZIF-8 sample produced by BASF. Mixed matrix dense films were formed with 6FDA-DAM and 200nm BASF ZIF-8 particles. SEM imaging showed generally good adhesion between the ZIF-8 and 6FDA-DAM without the need for surface-treating ZIF-8. Pure gas permeation showed significantly enhanced mixed matrix ZIF-8/6FDA-DAM membrane C 3H 6/C 3H 8 separation performance over the pure 6FDA-DAM membrane performance. A C 3H 6 permeability of 56.2Barrer and C 3H 6/C 3H 8 ideal selectivity of 31.0 was found in ZIF-8/6FDA-DAM mixed matrix membrane with 48.0wt% ZIF-8 loading, which are 258% and 150% higher than the pure 6FDA-DAM membrane, respectively for permeability and selectivity. Permeation properties of C 3H 6 and C 3H 8 in ZIF-8 were back-calculated by the Maxwell model for composite permeability using pure gas permeation data, leading to a C 3H 6 permeability of 277Barrer and C 3H 6/C 3H 8 selectivity of 122. Mixed gas permeation also verified that selectivity enhancements were achievable in mixed gas environment by ZIF-8. © 2011 Elsevier B.V.

  18. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  19. Sustainable energy policy for Asia: Mitigating systemic hurdles in a highly dense city

    International Nuclear Information System (INIS)

    Ng, Artie W.; Nathwani, Jatin

    2010-01-01

    Greenhouse gas emission (GHG) has been increasingly a sensitive issue that is across border and impacting global public interests. While the use of renewable energy technology is perceived as a means to enable delivery of emission-free solutions, its penetration into the energy market has not been timely and significant enough as projected in prior studies. This article aims to illustrate some of the critical hurdles as the policy makers start formulating environmentally friendly energy consumption means for the public in Asian economies. In particular, through analyzing the characteristics in the case of Hong Kong, the authors unveil the challenges for this highly dense city to reach a landscape of alternative energy resources for its transition into a sustainable economy. Education and engagement with the public about a sustainable future, alignment of stakeholders' economic interests and absorption capacity of emerging technologies are argued as the three main challenges and initiatives in mitigating the underlying systemic hurdles that remain to be overcome. Observing the current responses to the externalities by the policy makers in Hong Kong, this study articulates the critical challenges to mitigate these specific systemic hurdles embedded in the existing infrastructure of a highly dense city. Possible mitigating measures to enable deployment of integrative sustainable energy solutions in dealing with climate change are discussed. (author)

  20. Composite systems of dilute and dense couplings

    International Nuclear Information System (INIS)

    Raymond, J R; Saad, D

    2008-01-01

    Composite systems, where couplings are of two types, a combination of strong dilute and weak dense couplings of Ising spins, are examined through the replica method. The dilute and dense parts are considered to have independent canonical disordered or uniform bond distributions; mixing the models by variation of a parameter γ alongside inverse temperature β we analyse the respective thermodynamic solutions. We describe the variation in high temperature transitions as mixing occurs; in the vicinity of these transitions we exactly analyse the competing effects of the dense and sparse models. By using the replica symmetric ansatz and population dynamics we described the low temperature behaviour of mixed systems

  1. General 4–zero texture mass matrix parametrizations

    International Nuclear Information System (INIS)

    Barranco, J; Delepine, D; Lopez-Lozano, L

    2014-01-01

    It is performed the diagonalization of a non–Hermitian four–zero texture Yukawa matrix with a general formalism. This procedure leads to 3 possibilities to parametrize the relation between the fermion masses and the elements of the corresponding Yukawa matrix. Then, the matrices that diagonalize each Yukawa mass matrix are combined in order to obtain 9 different theoretical CKM or PMNS mixing matrices [1]. Through a χ 2 analysis, we have constrained the values of the remaining free parameters such as the theoretical mixing matrix matches the latest experimental measurements of the mixing matrices. This analysis was done without assuming any approximations. In the case of the quark sector, it is found that only four different theoretical mixing matrices are compatible with the actual high precision experimental measurement of the CKM matrix elements. For the lepton sector, where the masses of neutrinos are not known, we found that independently of the parametrization that have been chosen, the updated experimental measurements of the mixing angles in the PMNS matrix, imply a mass for the heaviest left–handed neutrino to be ∼ 0.05eV

  2. High-dimensional statistical inference: From vector to matrix

    Science.gov (United States)

    Zhang, Anru

    Statistical inference for sparse signals or low-rank matrices in high-dimensional settings is of significant interest in a range of contemporary applications. It has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. In this thesis, we consider several problems in including sparse signal recovery (compressed sensing under restricted isometry) and low-rank matrix recovery (matrix recovery via rank-one projections and structured matrix completion). The first part of the thesis discusses compressed sensing and affine rank minimization in both noiseless and noisy cases and establishes sharp restricted isometry conditions for sparse signal and low-rank matrix recovery. The analysis relies on a key technical tool which represents points in a polytope by convex combinations of sparse vectors. The technique is elementary while leads to sharp results. It is shown that, in compressed sensing, delta kA 0, delta kA < 1/3 + epsilon, deltak A + thetak,kA < 1 + epsilon, or deltatkA< √(t - 1) / t + epsilon are not sufficient to guarantee the exact recovery of all k-sparse signals for large k. Similar result also holds for matrix recovery. In addition, the conditions delta kA<1/3, deltak A+ thetak,kA<1, delta tkA < √(t - 1)/t and deltarM<1/3, delta rM+ thetar,rM<1, delta trM< √(t - 1)/ t are also shown to be sufficient respectively for stable recovery of approximately sparse signals and low-rank matrices in the noisy case. For the second part of the thesis, we introduce a rank-one projection model for low-rank matrix recovery and propose a constrained nuclear norm minimization method for stable recovery of low-rank matrices in the noisy case. The procedure is adaptive to the rank and robust against small perturbations. Both upper and lower bounds for the estimation accuracy under the Frobenius norm loss are obtained. The proposed estimator is shown to be rate-optimal under certain conditions. The

  3. Local high precision 3D measurement based on line laser measuring instrument

    Science.gov (United States)

    Zhang, Renwei; Liu, Wei; Lu, Yongkang; Zhang, Yang; Ma, Jianwei; Jia, Zhenyuan

    2018-03-01

    In order to realize the precision machining and assembly of the parts, the geometrical dimensions of the surface of the local assembly surfaces need to be strictly guaranteed. In this paper, a local high-precision three-dimensional measurement method based on line laser measuring instrument is proposed to achieve a high degree of accuracy of the three-dimensional reconstruction of the surface. Aiming at the problem of two-dimensional line laser measuring instrument which lacks one-dimensional high-precision information, a local three-dimensional profile measuring system based on an accurate single-axis controller is proposed. First of all, a three-dimensional data compensation method based on spatial multi-angle line laser measuring instrument is proposed to achieve the high-precision measurement of the default axis. Through the pretreatment of the 3D point cloud information, the measurement points can be restored accurately. Finally, the target spherical surface is needed to make local three-dimensional scanning measurements for accuracy verification. The experimental results show that this scheme can get the local three-dimensional information of the target quickly and accurately, and achieves the purpose of gaining the information and compensating the error for laser scanner information, and improves the local measurement accuracy.

  4. Influence of sulfur-bearing polyatomic species on high precision measurements of Cu isotopic composition

    Science.gov (United States)

    Pribil, M.J.; Wanty, R.B.; Ridley, W.I.; Borrok, D.M.

    2010-01-01

    An increased interest in high precision Cu isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has developed recently for various natural geologic systems and environmental applications, these typically contain high concentrations of sulfur, particularly in the form of sulfate (SO42-) and sulfide (S). For example, Cu, Fe, and Zn concentrations in acid mine drainage (AMD) can range from 100??g/L to greater than 50mg/L with sulfur species concentrations reaching greater than 1000mg/L. Routine separation of Cu, Fe and Zn from AMD, Cu-sulfide minerals and other geological matrices usually incorporates single anion exchange resin column chromatography for metal separation. During chromatographic separation, variable breakthrough of SO42- during anion exchange resin column chromatography into the Cu fractions was observed as a function of the initial sulfur to Cu ratio, column properties, and the sample matrix. SO42- present in the Cu fraction can form a polyatomic 32S-14N-16O-1H species causing a direct mass interference with 63Cu and producing artificially light ??65Cu values. Here we report the extent of the mass interference caused by SO42- breakthrough when measuring ??65Cu on natural samples and NIST SRM 976 Cu isotope spiked with SO42- after both single anion column chromatography and double anion column chromatography. A set of five 100??g/L Cu SRM 976 samples spiked with 500mg/L SO42- resulted in an average ??65Cu of -3.50?????5.42??? following single anion column separation with variable SO42- breakthrough but an average concentration of 770??g/L. Following double anion column separation, the average SO42-concentration of 13??g/L resulted in better precision and accuracy for the measured ??65Cu value of 0.01?????0.02??? relative to the expected 0??? for SRM 976. We conclude that attention to SO42- breakthrough on sulfur-rich samples is necessary for accurate and precise measurements of ??65Cu and may require

  5. High precision timing in a FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Hoek, Matthias; Cardinali, Matteo; Dickescheid, Michael; Schlimme, Soeren; Sfienti, Concettina; Spruck, Bjoern; Thiel, Michaela [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany)

    2016-07-01

    A segmented highly precise start counter (FLASH) was designed and constructed at the Institute for Nuclear Physics in Mainz. Besides determining a precise reference time, a Time-of-Flight measurement can be performed with two identical FLASH units. Thus, particle identification can be provided for mixed hadron beam environments. The detector design is based on the detection of Cherenkov light produced in fused silica radiator bars with fast multi-anode MCP-PMTs. The segmentation of the radiator improves the timing resolution while allowing a coarse position resolution along one direction. Both, the arrival time and the Time-over-Threshold are determined by the readout electronics, which enables walk correction of the arrival time. The performance of two FLASH units was investigated in test experiments at the Mainz Microton (MAMI) using an electron beam with an energy of 855 MeV and at CERN's PS T9 beam line with a mixed hadron beam with momenta between 3-8 GeV/c. Effective Time-walk correction methods based on Time-over-Threshold were developed for the data analysis. The achieved Time-Of-Flight resolution after applying all corrections was found to be 70 ps. Furthermore, the PID and position resolution capabilities are discussed in this contribution.

  6. Vast Volatility Matrix Estimation using High Frequency Data for Portfolio Selection*

    Science.gov (United States)

    Fan, Jianqing; Li, Yingying; Yu, Ke

    2012-01-01

    Portfolio allocation with gross-exposure constraint is an effective method to increase the efficiency and stability of portfolios selection among a vast pool of assets, as demonstrated in Fan et al. (2011). The required high-dimensional volatility matrix can be estimated by using high frequency financial data. This enables us to better adapt to the local volatilities and local correlations among vast number of assets and to increase significantly the sample size for estimating the volatility matrix. This paper studies the volatility matrix estimation using high-dimensional high-frequency data from the perspective of portfolio selection. Specifically, we propose the use of “pairwise-refresh time” and “all-refresh time” methods based on the concept of “refresh time” proposed by Barndorff-Nielsen et al. (2008) for estimation of vast covariance matrix and compare their merits in the portfolio selection. We establish the concentration inequalities of the estimates, which guarantee desirable properties of the estimated volatility matrix in vast asset allocation with gross exposure constraints. Extensive numerical studies are made via carefully designed simulations. Comparing with the methods based on low frequency daily data, our methods can capture the most recent trend of the time varying volatility and correlation, hence provide more accurate guidance for the portfolio allocation in the next time period. The advantage of using high-frequency data is significant in our simulation and empirical studies, which consist of 50 simulated assets and 30 constituent stocks of Dow Jones Industrial Average index. PMID:23264708

  7. Vast Volatility Matrix Estimation using High Frequency Data for Portfolio Selection.

    Science.gov (United States)

    Fan, Jianqing; Li, Yingying; Yu, Ke

    2012-01-01

    Portfolio allocation with gross-exposure constraint is an effective method to increase the efficiency and stability of portfolios selection among a vast pool of assets, as demonstrated in Fan et al. (2011). The required high-dimensional volatility matrix can be estimated by using high frequency financial data. This enables us to better adapt to the local volatilities and local correlations among vast number of assets and to increase significantly the sample size for estimating the volatility matrix. This paper studies the volatility matrix estimation using high-dimensional high-frequency data from the perspective of portfolio selection. Specifically, we propose the use of "pairwise-refresh time" and "all-refresh time" methods based on the concept of "refresh time" proposed by Barndorff-Nielsen et al. (2008) for estimation of vast covariance matrix and compare their merits in the portfolio selection. We establish the concentration inequalities of the estimates, which guarantee desirable properties of the estimated volatility matrix in vast asset allocation with gross exposure constraints. Extensive numerical studies are made via carefully designed simulations. Comparing with the methods based on low frequency daily data, our methods can capture the most recent trend of the time varying volatility and correlation, hence provide more accurate guidance for the portfolio allocation in the next time period. The advantage of using high-frequency data is significant in our simulation and empirical studies, which consist of 50 simulated assets and 30 constituent stocks of Dow Jones Industrial Average index.

  8. Precision measurements of the CKM angle gamma

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The level of CP-violation permitted within the Standard Model cannot account for the matter dominated universe in which we live. Within the Standard Model the CKM matrix, which describes the quark couplings, is expected to be unitary. By making precise measurements of the CKM matrix parameters new physics models can be constrained, or with sufficient precision the effects of physics beyond the standard model might become apparent. The CKM angle gamma is the least well known angle of the unitarity triangle. It is the only angle easily accessible at tree-level, and furthermore has almost no theoretical uncertainties. Therefore it provides an invaluable Standard Model benchmark against which other new physics sensitive tests of the CP-violation can be made. I will discuss recent measurements of gamma using the the Run 1 LHCb dataset, which improve our knowledge of this key parameter.

  9. Laser-Induced Focused Ultrasound for Cavitation Treatment: Toward High-Precision Invisible Sonic Scalpel.

    Science.gov (United States)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Demirci, Hakan; Guo, L Jay

    2017-10-01

    Beyond the implementation of the photoacoustic effect to photoacoustic imaging and laser ultrasonics, this study demonstrates a novel application of the photoacoustic effect for high-precision cavitation treatment of tissue using laser-induced focused ultrasound. The focused ultrasound is generated by pulsed optical excitation of an efficient photoacoustic film coated on a concave surface, and its amplitude is high enough to produce controllable microcavitation within the focal region (lateral focus <100 µm). Such microcavitation is used to cut or ablate soft tissue in a highly precise manner. This work demonstrates precise cutting of tissue-mimicking gels as well as accurate ablation of gels and animal eye tissues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A novel power source for high-precision, highly efficient micro w-EDM

    International Nuclear Information System (INIS)

    Chen, Shun-Tong; Chen, Chi-Hung

    2015-01-01

    The study presents the development of a novel power source for high-precision, highly efficient machining of micropart microstructures using micro wire electrical discharge machining (w-EDM). A novel power source based on a pluri resistance–capacitance (pRC) circuit that can generate a high-frequency, high-peak current with a short pulse train is proposed and designed to enhance the performance of micro w-EDM processes. Switching between transistors is precisely controlled in the designed power source to create a high-frequency short-pulse train current. Various microslot cutting tests in both aluminum and copper alloys are conducted. Experimental results demonstrate that the pRC power source creates instant spark erosion resulting in markedly less material for removal, diminishing discharge crater size, and consequently an improved surface finish. A new evaluation approach for spark erosion ability (SEA) to assess the merits of micro EDM power sources is also proposed. In addition to increasing the speed of micro w-EDM by increasing wire feed rates by 1.6 times the original feed rate, the power source is more appropriate for machining micropart microstructures since there is less thermal breaking. Satisfactory cutting of an elaborate miniature hook-shaped structure and a high-aspect ratio microstructure with a squared-pillar array also reveal that the developed pRC power source is effective, and should be very useful in the manufacture of intricate microparts. (paper)

  11. Stabilized Acoustic Levitation of Dense Materials Using a High-Powered Siren

    Science.gov (United States)

    Gammell, P. M.; Croonquist, A.; Wang, T. G.

    1982-01-01

    Stabilized acoustic levitation and manipulation of dense (e.g., steel) objects of 1 cm diameter, using a high powered siren, was demonstrated in trials that investigated the harmonic content and spatial distribution of the acoustic field, as well as the effect of sample position and reflector geometries on the acoustic field. Although further optimization is possible, the most stable operation achieved is expected to be adequate for most containerless processing applications. Best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper one. Operation slightly below resonance enhances stability as this minimizes the second harmonic, which is suspected of being a particularly destabilizing influence.

  12. An Information-Based Approach to Precision Analysis of Indoor WLAN Localization Using Location Fingerprint

    Directory of Open Access Journals (Sweden)

    Mu Zhou

    2015-12-01

    Full Text Available In this paper, we proposed a novel information-based approach to precision analysis of indoor wireless local area network (WLAN localization using location fingerprint. First of all, by using the Fisher information matrix (FIM, we derive the fundamental limit of WLAN fingerprint-based localization precision considering different signal distributions in characterizing the variation of received signal strengths (RSSs in the target environment. After that, we explore the relationship between the localization precision and access point (AP placement, which can provide valuable suggestions for the design of the highly-precise localization system. Second, we adopt the heuristic simulated annealing (SA algorithm to optimize the AP locations for the sake of approaching the fundamental limit of localization precision. Finally, the extensive simulations and experiments are conducted in both regular line-of-sight (LOS and irregular non-line-of-sight (NLOS environments to demonstrate that the proposed approach can not only effectively improve the WLAN fingerprint-based localization precision, but also reduce the time overhead.

  13. High-precision relative position and attitude measurement for on-orbit maintenance of spacecraft

    Science.gov (United States)

    Zhu, Bing; Chen, Feng; Li, Dongdong; Wang, Ying

    2018-02-01

    In order to realize long-term on-orbit running of satellites, space stations, etc spacecrafts, in addition to the long life design of devices, The life of the spacecraft can also be extended by the on-orbit servicing and maintenance. Therefore, it is necessary to keep precise and detailed maintenance of key components. In this paper, a high-precision relative position and attitude measurement method used in the maintenance of key components is given. This method mainly considers the design of the passive cooperative marker, light-emitting device and high resolution camera in the presence of spatial stray light and noise. By using a series of algorithms, such as background elimination, feature extraction, position and attitude calculation, and so on, the high precision relative pose parameters as the input to the control system between key operation parts and maintenance equipment are obtained. The simulation results show that the algorithm is accurate and effective, satisfying the requirements of the precision operation technique.

  14. Trial of accelerator cells machining with high precision and high efficiency at Okayama region

    International Nuclear Information System (INIS)

    Yoshikawa, Mitsuo; Yoden, Hiroyuki; Yokomizo, Seiichi; Sumida, Tsuneto; Kunishida, Jun; Oshita, Isao

    2005-01-01

    In the framework of the project 'Promotion of Science and Technology in Regional Areas' by the Ministry of Education, Culture, Sports, Science and Technology, we have prepared a special apparatus for machining accelerator cells with a high precision and a high efficiency for the future linear collider. A machining with as small an error as 2 micrometers has been realized. Necessary time to finish one accelerator cell is reduced from 128 minutes to 34 minutes due to the suppression of the heating of the object at the machining. If newly developed one chuck method was employed, the precision and efficiency would be further improved. By cutting at both sides of the spindle, the necessary time for machining would be reduced by half. (author)

  15. HIGH PRECISION ROVIBRATIONAL SPECTROSCOPY OF OH{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Markus, Charles R.; Hodges, James N.; Perry, Adam J.; Kocheril, G. Stephen; McCall, Benjamin J. [Department of Chemistry, University of Illinois, Urbana, IL 61801 (United States); Müller, Holger S. P., E-mail: bjmccall@illinois.edu [I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany)

    2016-02-01

    The molecular ion OH{sup +} has long been known to be an important component of the interstellar medium. Its relative abundance can be used to indirectly measure cosmic ray ionization rates of hydrogen, and it is the first intermediate in the interstellar formation of water. To date, only a limited number of pure rotational transitions have been observed in the laboratory making it necessary to indirectly calculate rotational levels from high-precision rovibrational spectroscopy. We have remeasured 30 transitions in the fundamental band with MHz-level precision, in order to enable the prediction of a THz spectrum of OH{sup +}. The ions were produced in a water cooled discharge of O{sub 2}, H{sub 2}, and He, and the rovibrational transitions were measured with the technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy. These values have been included in a global fit of field free data to a {sup 3}Σ{sup −} linear molecule effective Hamiltonian to determine improved spectroscopic parameters which were used to predict the pure rotational transition frequencies.

  16. Research on the high-precision non-contact optical detection technology for banknotes

    Science.gov (United States)

    Jin, Xiaofeng; Liang, Tiancai; Luo, Pengfeng; Sun, Jianfeng

    2015-09-01

    The technology of high-precision laser interferometry was introduced for optical measurement of the banknotes in this paper. Taking advantage of laser short wavelength and high sensitivity, information of adhesive tape and cavity about the banknotes could be checked efficiently. Compared with current measurement devices, including mechanical wheel measurement device, Infrared measurement device, ultrasonic measurement device, the laser interferometry measurement has higher precision and reliability. This will improve the ability of banknotes feature information in financial electronic equipment.

  17. Simultaneous determination of phenolic compounds in Equisetum palustre L. by ultra high performance liquid chromatography with tandem mass spectrometry combined with matrix solid-phase dispersion extraction.

    Science.gov (United States)

    Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie

    2014-11-01

    A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structural properties of matrix metalloproteinases.

    Science.gov (United States)

    Bode, W; Fernandez-Catalan, C; Tschesche, H; Grams, F; Nagase, H; Maskos, K

    1999-04-01

    Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation. Their proteolytic activity must be precisely regulated by their endogenous protein inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases such as arthritis, tumour growth and metastasis. Knowledge of the tertiary structures of the proteins involved is crucial for understanding their functional properties and interference with associated dysfunctions. Within the last few years, several three-dimensional MMP and MMP-TIMP structures became available, showing the domain organization, polypeptide fold and main specificity determinants. Complexes of the catalytic MMP domains with various synthetic inhibitors enabled the structure-based design and improvement of high-affinity ligands, which might be elaborated into drugs. A multitude of reviews surveying work done on all aspects of MMPs have appeared in recent years, but none of them has focused on the three-dimensional structures. This review was written to close the gap.

  19. Space-time scenarios of wind power generation produced using a Gaussian copula with parametrized precision matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tastu, J.; Pinson, P.; Madsen, Henrik

    2013-09-01

    The emphasis in this work is placed on generating space-time trajectories (also referred to as scenarios) of wind power generation. This calls for prediction of multivariate densities describing wind power generation at a number of distributed locations and for a number of successive lead times. A modelling approach taking advantage of sparsity of precision matrices is introduced for the description of the underlying space-time dependence structure. The proposed parametrization of the dependence structure accounts for such important process characteristics as non-constant conditional precisions and direction-dependent cross-correlations. Accounting for the space-time effects is shown to be crucial for generating high quality scenarios. (Author)

  20. A Lane-Level LBS System for Vehicle Network with High-Precision BDS/GPS Positioning

    Science.gov (United States)

    Guo, Chi; Guo, Wenfei; Cao, Guangyi; Dong, Hongbo

    2015-01-01

    In recent years, research on vehicle network location service has begun to focus on its intelligence and precision. The accuracy of space-time information has become a core factor for vehicle network systems in a mobile environment. However, difficulties persist in vehicle satellite positioning since deficiencies in the provision of high-quality space-time references greatly limit the development and application of vehicle networks. In this paper, we propose a high-precision-based vehicle network location service to solve this problem. The major components of this study include the following: (1) application of wide-area precise positioning technology to the vehicle network system. An adaptive correction message broadcast protocol is designed to satisfy the requirements for large-scale target precise positioning in the mobile Internet environment; (2) development of a concurrence service system with a flexible virtual expansion architecture to guarantee reliable data interaction between vehicles and the background; (3) verification of the positioning precision and service quality in the urban environment. Based on this high-precision positioning service platform, a lane-level location service is designed to solve a typical traffic safety problem. PMID:25755665

  1. Cytoskeletal remodeling of connective tissue fibroblasts in response to static stretch is dependent on matrix material properties

    Science.gov (United States)

    Abbott, Rosalyn D; Koptiuch, Cathryn; Iatridis, James C; Howe, Alan K; Badger, Gary J; Langevin, Helene M

    2012-01-01

    In areolar “loose” connective tissue, fibroblasts remodel their cytoskeleton within minutes in response to static stretch resulting in increased cell body cross-sectional area that relaxes the tissue to a lower state of resting tension. It remains unknown whether the loosely arranged collagen matrix, characteristic of areolar connective tissue, is required for this cytoskeletal response to occur. The purpose of this study was to evaluate cytoskeletal remodeling of fibroblasts in and dissociated from areolar and dense connective tissue in response to 2 hours of static stretch in both native tissue and collagen gels of varying crosslinking. Rheometric testing indicated that the areolar connective tissue had a lower dynamic modulus and was more viscous than the dense connective tissue. In response to stretch, cells within the more compliant areolar connective tissue adopted a large “sheet-like” morphology that was in contrast to the smaller dendritic morphology in the dense connective tissue. By adjusting the in vitro collagen crosslinking, and the resulting dynamic modulus, it was demonstrated that cells dissociated from dense connective tissue are capable of responding when seeded into a compliant matrix, while cells dissociated from areolar connective tissue can lose their ability to respond when their matrix becomes stiffer. This set of experiments indicated stretch-induced fibroblast expansion was dependent on the distinct matrix material properties of areolar connective tissues as opposed to the cells’ tissue of origin. These results also suggest that disease and pathological processes with increased crosslinks, such as diabetes and fibrosis, could impair fibroblast responsiveness in connective tissues. PMID:22552950

  2. Coalescence preference in dense packing of bubbles

    Science.gov (United States)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  3. Precision for B-meson matrix elements

    International Nuclear Information System (INIS)

    Guazzini, D.; Sommer, R.; Tantalo, N.

    2007-10-01

    We demonstrate how HQET and the Step Scaling Method for B-physics, pioneered by the Tor Vergata group, can be combined to reach a further improved precision. The observables considered are the mass of the b-quark and the B s -meson decay constant. The demonstration is carried out in quenched lattice QCD. We start from a small volume, where one can use a standard O(a)-improved relativistic action for the b-quark, and compute two step scaling functions which relate the observables to the large volume ones. In all steps we extrapolate to the continuum limit, separately in HQET and in QCD for masses below m b . The physical point m b is then reached by an interpolation of the continuum results in 1/m. The essential, expected and verified, feature is that the step scaling functions have a weak mass-dependence resulting in an easy interpolation to the physical point. With r 0 =0.5 fm and the experimental B s and K masses as input, we find F B s =191(6) MeV and the renormalization group invariant mass M b =6.88(10) GeV, translating into anti m b (anti m b )=4.42(6) GeV in the MS scheme. This approach seems very promising for full QCD. (orig.)

  4. Calibration of the precision high voltage dividers of the KATRIN experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rest, Oliver [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The KATRIN (KArlsruhe TRItium Neutrino) experiment will measure the endpoint region of the tritium β decay spectrum to determine the neutrino mass with a sensitivity of 200 meV/c{sup 2}. To achieve this sub-eV sensitivity the energy of the decay electrons will be analyzed using a MAC-E type spectrometer. The retarding potential of the MAC-E-filter (up to -35 kV) has to be monitored with a relative precision of 3 . 10{sup -6}. For this purpose the potential will be measured directly via two custom made precision high voltage dividers, which were developed and constructed in cooperation with the Physikalisch-Technische Bundesanstalt Braunschweig. In order to determine the absolute values and the stability of the scale factors of the voltage dividers, regular calibration measurements are essential. Such measurements have been performed during the last years using several different methods. The poster gives an overview of the methods and results of the calibration of the precision high voltage dividers.

  5. Role of Nutritional Supplements Complementing Nutrient-Dense Diets: General Versus Sport/Exercise-Specific Dietary Guidelines Related to Energy Expenditure

    Science.gov (United States)

    Kleiner, Susan; Greenwood, Mike

    A nutrient-dense diet is a critical aspect in attaining optimal exercise training and athletic performance outcomes. Although including safe and effective nutritional supplements in the dietary design can be extremely helpful in promoting adequate caloric ingestion, they are not sufficient for promoting adequate caloric ingestion based on individualized caloric expenditure needs without the proper diet. Specifically, a strategic and scientifically based nutrient-dense dietary profile should be created by qualified professionals to meet the sport/exercise-specific energy demands of any individual involved in select training intensity protocols. Finally, ingesting the right quantity and quality of nutrient dense calories at precise windows of opportunity becomes vital in attaining desired training and/or competitive performance outcomes.

  6. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    Lowden, R.A.; Ferber, M.K.; DiPietro, S.G.

    1995-01-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  7. High precision determination of 16O in high Tc superconductors by DIGME

    International Nuclear Information System (INIS)

    Vickridge, I.; Tallon, J.; Presland, M.

    1994-01-01

    A method is described for measuring the 16 O content of high T c superconductors with better than 1% precision by exploiting the detection of gamma rays emitted when they are irradiated by an MeV deuterium beam. The method is presently less accurate than the widely used titration and thermogravimetric methods, however it is rapid, and may be applied to materials such as Tl-containing high T c superconductors which pose serious problems for the usual analytical methods. (orig.)

  8. Covariance matrix estimation for stationary time series

    OpenAIRE

    Xiao, Han; Wu, Wei Biao

    2011-01-01

    We obtain a sharp convergence rate for banded covariance matrix estimates of stationary processes. A precise order of magnitude is derived for spectral radius of sample covariance matrices. We also consider a thresholded covariance matrix estimator that can better characterize sparsity if the true covariance matrix is sparse. As our main tool, we implement Toeplitz [Math. Ann. 70 (1911) 351–376] idea and relate eigenvalues of covariance matrices to the spectral densities or Fourier transforms...

  9. Sensitivity and parameter-estimation precision for alternate LISA configurations

    International Nuclear Information System (INIS)

    Vallisneri, Michele; Crowder, Jeff; Tinto, Massimo

    2008-01-01

    We describe a simple framework to assess the LISA scientific performance (more specifically, its sensitivity and expected parameter-estimation precision for prescribed gravitational-wave signals) under the assumption of failure of one or two inter-spacecraft laser measurements (links) and of one to four intra-spacecraft laser measurements. We apply the framework to the simple case of measuring the LISA sensitivity to monochromatic circular binaries, and the LISA parameter-estimation precision for the gravitational-wave polarization angle of these systems. Compared to the six-link baseline configuration, the five-link case is characterized by a small loss in signal-to-noise ratio (SNR) in the high-frequency section of the LISA band; the four-link case shows a reduction by a factor of √2 at low frequencies, and by up to ∼2 at high frequencies. The uncertainty in the estimate of polarization, as computed in the Fisher-matrix formalism, also worsens when moving from six to five, and then to four links: this can be explained by the reduced SNR available in those configurations (except for observations shorter than three months, where five and six links do better than four even with the same SNR). In addition, we prove (for generic signals) that the SNR and Fisher matrix are invariant with respect to the choice of a basis of TDI observables; rather, they depend only on which inter-spacecraft and intra-spacecraft measurements are available

  10. Development and simulation of microfluidic Wheatstone bridge for high-precision sensor

    International Nuclear Information System (INIS)

    Shipulya, N D; Konakov, S A; Krzhizhanovskaya, V V

    2016-01-01

    In this work we present the results of analytical modeling and 3D computer simulation of microfluidic Wheatstone bridge, which is used for high-accuracy measurements and precision instruments. We propose and simulate a new method of a bridge balancing process by changing the microchannel geometry. This process is based on the “etching in microchannel” technology we developed earlier (doi:10.1088/1742-6596/681/1/012035). Our method ensures a precise control of the flow rate and flow direction in the bridge microchannel. The advantage of our approach is the ability to work without any control valves and other active electronic systems, which are usually used for bridge balancing. The geometrical configuration of microchannels was selected based on the analytical estimations. A detailed 3D numerical model was based on Navier-Stokes equations for a laminar fluid flow at low Reynolds numbers. We investigated the behavior of the Wheatstone bridge under different process conditions; found a relation between the channel resistance and flow rate through the bridge; and calculated the pressure drop across the system under different total flow rates and viscosities. Finally, we describe a high-precision microfluidic pressure sensor that employs the Wheatstone bridge and discuss other applications in complex precision microfluidic systems. (paper)

  11. Hyperons in dense matter

    International Nuclear Information System (INIS)

    Dapo, Haris

    2009-01-01

    The hyperon-nucleon YN low momentum effective interaction (V low k ) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V low k can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V low k one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V low k potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three-body force with a density-dependent interaction. This

  12. High-precision branching ratio measurement for the superallowed β+ emitter Ga62

    Science.gov (United States)

    Finlay, P.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Towner, I. S.; Austin, R. A. E.; Bandyopadhyay, D.; Chaffey, A.; Chakrawarthy, R. S.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Kanungo, R.; Leach, K. G.; Mattoon, C. M.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Ressler, J. J.; Sarazin, F.; Savajols, H.; Schumaker, M. A.; Wong, J.

    2008-08-01

    A high-precision branching ratio measurement for the superallowed β+ decay of Ga62 was performed at the Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. The 8π spectrometer, an array of 20 high-purity germanium detectors, was employed to detect the γ rays emitted following Gamow-Teller and nonanalog Fermi β+ decays of Ga62, and the SCEPTAR plastic scintillator array was used to detect the emitted β particles. Thirty γ rays were identified following Ga62 decay, establishing the superallowed branching ratio to be 99.858(8)%. Combined with the world-average half-life and a recent high-precision Q-value measurement for Ga62, this branching ratio yields an ft value of 3074.3±1.1 s, making Ga62 among the most precisely determined superallowed ft values. Comparison between the superallowed ft value determined in this work and the world-average corrected F tmacr value allows the large nuclear-structure-dependent correction for Ga62 decay to be experimentally determined from the CVC hypothesis to better than 7% of its own value, the most precise experimental determination for any superallowed emitter. These results provide a benchmark for the refinement of the theoretical description of isospin-symmetry breaking in A⩾62 superallowed decays.

  13. Matrix-exponential description of radiative transfer

    International Nuclear Information System (INIS)

    Waterman, P.C.

    1981-01-01

    By appling the matrix-exponential operator technique to the radiative-transfer equation in discrete form, new analytical solutions are obtained for the transmission and reflection matrices in the limiting cases x >1, where x is the optical depth of the layer. Orthongonality of the eigenvectors of the matrix exponential apparently yields new conditions for determining. Chandrasekhar's characteristic roots. The exact law of reflection for the discrete eigenfunctions is also obtained. Finally, when used in conjuction with the doubling method, the matrix exponential should result in reduction in both computation time and loss of precision

  14. Manufacturing techniques for titanium aluminide based alloys and metal matrix composites

    Science.gov (United States)

    Kothari, Kunal B.

    -sized titanium aluminide powders were rapidly consolidated to form near-net shape titanium aluminide parts in form of small discs and tiles. The rapidly consolidated titanium aluminide parts were found to be fully dense. The microstructure morphology was found to vary with consolidation conditions. The mechanical properties were found to be significantly dependent on microstructure morphology and grain size. Due to rapid consolidation, grain growth during consolidation was limited, which in turn led to enhanced mechanical properties. The high temperature mechanical properties for the consolidated titanium aluminide samples were characterized and were found to retain good mechanical performance up to 700°C. Micron-sized titanium aluminide powders with slightly less Aluminum and small Nb, and Cr additions were rapidly consolidated into near-net shape parts. The consolidated parts were found to exhibit enhanced mechanical performance in terms of ductility and yield strength. The negative effect of Oxygen on the flexural strength at high temperatures was found to be reduced with the addition of Nb. In an effort to further reduce the grain size of the consolidated titanium aluminide samples, the as-received titanium aluminide powders were milled in an attrition mill. The average powder particle size of the powders was reduced by 60% after milling. The milled powders were then rapidly consolidated. The grain size of the consolidated parts was found to be in the sub-micrometer range. The mechanical properties were found to be significantly enhanced due to reduction of grain size in the sub-micrometer range. In order to develop a metal matrix composite based on titanium aluminide matrix reinforced with titanium boride, an experiment to study the effect of rapid consolidation on titanium diboride powders was conducted. Micron-sized titanium diboride powders were consolidated and were found to be 93% dense and exhibited minimal grain growth. The low density of the consolidated part was

  15. Precise muon drift tube detectors for high background rate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Albert

    2011-08-04

    The muon spectrometer of the ATLAS-experiment at the Large Hadron Collider consists of drift tube chambers, which provide the precise measurement of trajectories of traversing muons. In order to determine the momentum of the muons with high precision, the measurement of the position of the muon in a single tube has to be more accurate than {sigma}{<=}100 {mu}m. The large cross section of proton-proton-collisions and the high luminosity of the accelerator cause relevant background of neutrons and {gamma}s in the muon spectrometer. During the next decade a luminosity upgrade to 5.10{sup 34} cm{sup -2}s{sup -1} is planned, which will increase the background counting rates considerably. In this context this work deals with the further development of the existing drift chamber technology to provide the required accuracy of the position measurement under high background conditions. Two approaches of improving the drift tube chambers are described: - In regions of moderate background rates a faster and more linear drift gas can provide precise position measurement without changing the existing hardware. - At very high background rates drift tube chambers consisting of tubes with a diameter of 15 mm are a valuable candidate to substitute the CSC muon chambers. The single tube resolution of the gas mixture Ar:CO{sub 2}:N{sub 2} in the ratio of 96:3:1 Vol %, which is more linear and faster as the currently used drift gas Ar:CO{sub 2} in the ratio of 97:3 Vol %, was determined at the Cosmic Ray Measurement Facility at Garching and at high {gamma}-background counting rates at the Gamma Irradiation Facility at CERN. The alternative gas mixture shows similar resolution without background. At high background counting rates it shows better resolution as the standard gas. To analyse the data the various parts of the setup have to be aligned precisely to each other. The change to an alternative gas mixture allows the use of the existing hardware. The second approach are drift tubes

  16. Design of high precision temperature control system for TO packaged LD

    Science.gov (United States)

    Liang, Enji; Luo, Baoke; Zhuang, Bin; He, Zhengquan

    2017-10-01

    Temperature is an important factor affecting the performance of TO package LD. In order to ensure the safe and stable operation of LD, a temperature control circuit for LD based on PID technology is designed. The MAX1978 and an external PID circuit are used to form a control circuit that drives the thermoelectric cooler (TEC) to achieve control of temperature and the external load can be changed. The system circuit has low power consumption, high integration and high precision,and the circuit can achieve precise control of the LD temperature. Experiment results show that the circuit can achieve effective and stable control of the laser temperature.

  17. Modern precise high-power water-cooling systems for press quenching

    Directory of Open Access Journals (Sweden)

    A. Patejuk

    2009-04-01

    Full Text Available Demand for extrusions in transport applications is increasing rapidly. The extrusions must be strong, light, crashworthy and may have to undergo hydroforming. This implies low wall thicknesses (1-2½ mm in strong alloys that need very fast quenching to obtain the required T4 temper. Crashworth iness – the ability to absorb a lot of energy in crushing deformation – demands very uniform properties throughout the section, and so does hydroforming. Various systems of water or air/water jets, with and without scanning, with and withoutarrangements for precisely aiming the jets, have proved effective for less difficult alloys in wall thicknesses down to 3 mm. These areunsuitable for the new types of transport extrusions, either inducing physical distortion or non-uniform mechanical properties. A novelcooling system that satisfies the new requirements uses laminar water jets of 50-250 μm diameter in a densely packed array of up to10/cm2. These are arranged in modules whose position and direction of aim can be adjusted relative to the part of the extrusion they cool,assuring linear cooling of all parts of the section at up to 500 K/s. The array of modules is very compact and not expensive. A sophisticated system of water microfiltration ensures that the fine nozzles do not become blocked.

  18. Research on Ship Trajectory Tracking with High Precision Based on LOS

    Directory of Open Access Journals (Sweden)

    Hengzhi Liu

    2018-01-01

    Full Text Available Aiming at how precise to track by LOS, a method is proposed. The method combines the advantages of LOS simplicity and intuition, easy parameter setting and good convergence, with the features of GPC softening, multi-step prediction, rolling optimization and excellent controllability and robustness. In order to verify the effectiveness of the method, the method is simulated by Matlab. The simulation’s results show that it makes ship tracking highly precise.

  19. Sparse subspace clustering for data with missing entries and high-rank matrix completion.

    Science.gov (United States)

    Fan, Jicong; Chow, Tommy W S

    2017-09-01

    Many methods have recently been proposed for subspace clustering, but they are often unable to handle incomplete data because of missing entries. Using matrix completion methods to recover missing entries is a common way to solve the problem. Conventional matrix completion methods require that the matrix should be of low-rank intrinsically, but most matrices are of high-rank or even full-rank in practice, especially when the number of subspaces is large. In this paper, a new method called Sparse Representation with Missing Entries and Matrix Completion is proposed to solve the problems of incomplete-data subspace clustering and high-rank matrix completion. The proposed algorithm alternately computes the matrix of sparse representation coefficients and recovers the missing entries of a data matrix. The proposed algorithm recovers missing entries through minimizing the representation coefficients, representation errors, and matrix rank. Thorough experimental study and comparative analysis based on synthetic data and natural images were conducted. The presented results demonstrate that the proposed algorithm is more effective in subspace clustering and matrix completion compared with other existing methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. WARM EXTENDED DENSE GAS AT THE HEART OF A COLD COLLAPSING DENSE CORE

    International Nuclear Information System (INIS)

    Shinnaga, Hiroko; Phillips, Thomas G.; Furuya, Ray S.; Kitamura, Yoshimi

    2009-01-01

    In order to investigate when and how the birth of a protostellar core occurs, we made survey observations of four well-studied dense cores in the Taurus molecular cloud using CO transitions in submillimeter bands. We report here the detection of unexpectedly warm (∼30-70 K), extended (radius of ∼2400 AU), dense (a few times 10 5 cm -3 ) gas at the heart of one of the dense cores, L1521F (MC27), within the cold dynamically collapsing components. We argue that the detected warm, extended, dense gas may originate from shock regions caused by collisions between the dynamically collapsing components and outflowing/rotating components within the dense core. We propose a new stage of star formation, 'warm-in-cold core stage (WICCS)', i.e., the cold collapsing envelope encases the warm extended dense gas at the center due to the formation of a protostellar core. WICCS would constitute a missing link in evolution between a cold quiescent starless core and a young protostar in class 0 stage that has a large-scale bipolar outflow.

  1. High-precision analogue peak detector for X-ray imaging applications

    OpenAIRE

    Dlugosz, Rafal Tomasz; Iniewski, Kris

    2007-01-01

    A new analogue high-precision peak detector is presented. Owing to its very low power consumption the circuit is particularly well suited for photon energy detection in multichannel receiver integrated circuits used in nuclear medicine.

  2. Properties of the proton therapy. A high precision radiotherapy

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    The proton therapy is a radiotherapy using protons beams. The protons present interesting characteristics but they need heavy technologies to be used, such particles accelerators, radiation protection wall and sophisticated technologies to reach the high precision allowed by their ballistic qualities (planning of treatment, beam conformation and patient positioning). (N.C.)

  3. High-precision micro/nano-scale machining system

    Science.gov (United States)

    Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.

    2014-08-19

    A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.

  4. Computational Calorimetry: High-Precision Calculation of Host–Guest Binding Thermodynamics

    Science.gov (United States)

    2015-01-01

    We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van’t Hoff equation. Excellent agreement between the direct and van’t Hoff methods is demonstrated for both host–guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design. PMID:26523125

  5. Thermochemistry of dense hydrous magnesium silicates

    Science.gov (United States)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  6. A new numerically stable implementation of the T-matrix method for electromagnetic scattering by spheroidal particles

    Science.gov (United States)

    Somerville, W. R. C.; Auguié, B.; Le Ru, E. C.

    2013-07-01

    We propose, describe, and demonstrate a new numerically stable implementation of the extended boundary-condition method (EBCM) to compute the T-matrix for electromagnetic scattering by spheroidal particles. Our approach relies on the fact that for many of the EBCM integrals in the special case of spheroids, a leading part of the integrand integrates exactly to zero, which causes catastrophic loss of precision in numerical computations. This feature was in fact first pointed out by Waterman in the context of acoustic scattering and electromagnetic scattering by infinite cylinders. We have recently studied it in detail in the case of electromagnetic scattering by particles. Based on this study, the principle of our new implementation is therefore to compute all the integrands without the problematic part to avoid the primary cause of loss of precision. Particular attention is also given to choosing the algorithms that minimise loss of precision in every step of the method, without compromising on speed. We show that the resulting implementation can efficiently compute in double precision arithmetic the T-matrix and therefore optical properties of spheroidal particles to a high precision, often down to a remarkable accuracy (10-10 relative error), over a wide range of parameters that are typically considered problematic. We discuss examples such as high-aspect ratio metallic nanorods and large size parameter (≈35) dielectric particles, which had been previously modelled only using quadruple-precision arithmetic codes.

  7. High precision frequency estimation for harpsichord tuning classification

    OpenAIRE

    Tidhar, D.; Mauch, M.; Dixon, S.

    2010-01-01

    We present a novel music signal processing task of classifying the tuning of a harpsichord from audio recordings of standard musical works. We report the results of a classification experiment involving six different temperaments, using real harpsichord recordings as well as synthesised audio data. We introduce the concept of conservative transcription, and show that existing high-precision pitch estimation techniques are sufficient for our task if combined with conservative transcription. In...

  8. Drift chambers for a large-area, high-precision muon spectrometer

    International Nuclear Information System (INIS)

    Alberini, C.; Bari, G.; Cara Romeo, G.; Cifarelli, L.; Del Papa, C.; Iacobucci, G.; Laurenti, G.; Maccarrone, G.; Massam, T.; Motta, F.; Nania, R.; Perotto, E.; Prisco, G.; Willutsky, M.; Basile, M.; Contin, A.; Palmonari, F.; Sartorelli, G.

    1987-01-01

    We have tested two prototypes of high-precision drift chamber for a magnetic muon spectrometer. Results of the tests are presented, with special emphasis on their efficiency and spatial resolution as a function of particle rate. (orig.)

  9. SKLUST device for high-precision gluing of MWPC

    International Nuclear Information System (INIS)

    Amaglobeli, N.S.; Burov, R.V.; Sakandelidze, R.M.; Sakhelashvili, T.M.; Chiladze, B.G.; Glonti, G.L.; Glonti, L.N.

    2005-01-01

    The SKLUST device has been created for gluing precision plane-parallel anode, cathode of spacer bars and integral anode and cathode frames of the MWPCs or flat surfaces of the large-area cathode planes for them in the case that thin copper clad stesalit or glass-cloth-base laminate is used as the cathode, for example, for the CSC chambers. In contrast to usual gluing, in this device the glued components are not pressed to each other. SKLUST allows making high-precision products in laboratory conditions without preliminarily machining its components and receiving a precision article practically for any area at the plane parallelism from ±0.030 up to ±0.006 mm using a non-calibrated sheet of the foiled (or unfoiled) stesalit, glass-cloth-base laminate or other flexible materials to a tolerance for the thickness ±0.2-0.5 mm or worse. On the biggest of the existing devices it is possible to fabricate an article with the maximal sizes 2400x250 mm 2 at the thickness accuracy (6±0.015) mm (maximum deviation). Whereas in the technological cycle machining of blanks to the thickness or application of exact blanks is completely excluded, the manufacturing process becomes simpler, and the price of the articles essentially reduces, especially for mass production

  10. High precision innovative micropump for artificial pancreas

    Science.gov (United States)

    Chappel, E.; Mefti, S.; Lettieri, G.-L.; Proennecke, S.; Conan, C.

    2014-03-01

    The concept of artificial pancreas, which comprises an insulin pump, a continuous glucose meter and a control algorithm, is a major step forward in managing patient with type 1 diabetes mellitus. The stability of the control algorithm is based on short-term precision micropump to deliver rapid-acting insulin and to specific integrated sensors able to monitor any failure leading to a loss of accuracy. Debiotech's MEMS micropump, based on the membrane pump principle, is made of a stack of 3 silicon wafers. The pumping chamber comprises a pillar check-valve at the inlet, a pumping membrane which is actuated against stop limiters by a piezo cantilever, an anti-free-flow outlet valve and a pressure sensor. The micropump inlet is tightly connected to the insulin reservoir while the outlet is in direct communication with the patient skin via a cannula. To meet the requirement of a pump dedicated to closed-loop application for diabetes care, in addition to the well-controlled displacement of the pumping membrane, the high precision of the micropump is based on specific actuation profiles that balance effect of pump elasticity in low-consumption push-pull mode.

  11. The capture of attention by entirely irrelevant pictures of calorie-dense foods.

    Science.gov (United States)

    Cunningham, Corbin A; Egeth, Howard E

    2018-04-01

    Inborn preference for palatable energy-dense food is thought to be an evolutionary adaptation. One way this preference manifests itself is through the control of visual attention. In the present study, we investigated how attentional capture is influenced by changes in naturally occurring goal-states, in this case desire for energy-dense foods (typically high fat and/or high sugar). We demonstrate that even when distractors are entirely irrelevant, participants were significantly more distracted by energy-dense foods compared with non-food objects and even low-energy foods. Additionally, we show the lability of these goal-states by having a separate set of participants consume a small amount of calorie-dense food prior to the task. The amount of distraction by the energy-dense food images in this case was significantly reduced and no different than distraction by images of low-energy foods and images of non-food objects. While naturally occurring goal-states can be difficult to ignore, they also are highly flexible.

  12. High precision NC lathe feeding system rigid-flexible coupling model reduction technology

    Science.gov (United States)

    Xuan, He; Hua, Qingsong; Cheng, Lianjun; Zhang, Hongxin; Zhao, Qinghai; Mao, Xinkai

    2017-08-01

    This paper proposes the use of dynamic substructure method of reduction of order to achieve effective reduction of feed system for high precision NC lathe feeding system rigid-flexible coupling model, namely the use of ADAMS to establish the rigid flexible coupling simulation model of high precision NC lathe, and then the vibration simulation of the period by using the FD 3D damper is very effective for feed system of bolt connection reduction of multi degree of freedom model. The vibration simulation calculation is more accurate, more quickly.

  13. Large Area, High Resolution N2H+ studies of dense gas in the Perseus and Serpens Molecular Clouds

    Science.gov (United States)

    Storm, Shaye; Mundy, Lee

    2014-07-01

    Star formation in molecular clouds occurs over a wide range of spatial scales and physical densities. Understanding the origin of dense cores thus requires linking the structure and kinematics of gas and dust from cloud to core scales. The CARMA Large Area Star Formation Survey (CLASSy) is a CARMA Key Project that spectrally imaged five diverse regions of the Perseus and Serpens Molecular Clouds in N2H+ (J=1-0), totaling over 800 square arcminutes. The observations have 7’’ angular resolution (~0.01 pc spatial resolution) to probe dense gas down to core scales, and use combined interferometric and single-dish data to fully recover line emission up to parsec scales. CLASSy observations are complete, and this talk will focus on three science results. First, the dense gas in regions with existing star formation has complex hierarchical structure. We present a non-binary dendrogram analysis for all regions and show that dense gas hierarchy correlates with star formation activity. Second, well-resolved velocity information for each dendrogram-identified structure allows a new way of looking at linewidth-size relations in clouds. Specifically, we find that non-thermal line-of-sight velocity dispersion varies weakly with structure size, while rms variation in the centroid velocity increases strongly with structure size. We argue that the typical line-of-sight depth of a cloud can be estimated from these relations, and that our regions have depths that are several times less than their extent on the plane of the sky. This finding is consistent with numerical simulations of molecular cloud turbulence that show that high-density sheets are a generic result. Third, N2H+ is a good tracer of cold, dense gas in filaments; we resolve multiple beams across many filaments, some of which are narrower than 0.1 pc. The centroid velocity fields of several filaments show gradients perpendicular to their major axis, which is a common feature in filaments formed from numerical

  14. High precision measurements of the luminosity at LEP

    International Nuclear Information System (INIS)

    Pietrzyk, B.

    1994-01-01

    The art of the luminosity measurements at LEP is presented. First generation LEP detectors have measured the absolute luminosity with the precision of 0.3-0.5%. The most precise present detectors have reached the 0.07% precision and the 0.05% is not excluded in future. Center-of-mass energy dependent relative precision of the luminosity detectors and the use of the theoretical cross-section in the LEP experiments are also discussed. (author). 18 refs., 6 figs., 6 tabs

  15. Laser-generated ultrasound for high-precision cutting of tissue-mimicking gels (Conference Presentation)

    Science.gov (United States)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Guo, L. Jay

    2017-03-01

    Laser-generated focused ultrasound has shown great promise in precisely treating cells and tissues by producing controlled micro-cavitation within the acoustic focal volume (30 MPa, negative pressure amplitude). By moving cavitation spots along pre-defined paths through a motorized stage, tissue-mimicking gels of different elastic moduli were cut into different shapes (rectangle, triangle, and circle), leaving behind the same shape of holes, whose sizes are less than 1 mm. The cut line width is estimated to be less than 50 um (corresponding to localized cavitation region), allowing for accurate cutting. This novel approach could open new possibility for in-vivo treatment of diseased tissues in a high-precision manner (i.e., high-precision invisible sonic scalpel).

  16. Polarimetry on dense samples of spin-polarized {sup 3}He by magnetostatic detection

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, E.; Ebert, M.; Heil, W.; Surkau, R. [Mainz Univ. (Germany). Inst. fuer Physik

    1997-12-21

    A very sensitive low-field fluxgate magnetometer is used to detect the static magnetic field produced by dense samples of spin-polarized {sup 3}He gas contained in spherical glass cells at pressures around several bars. The {sup 3}He nuclear polarization can be extracted with high precision {Delta}P/P<1% by utilizing magnetostatic detection in combination with adiabatic fast-passage spin reversal. The polarization losses can be kept well below 0.1% thus making this type of polarimetry almost non-destructive. More simply even, P can be measured with reduced accuracy by the change of field when the cell is removed from the fluxgate. In this case the accuracy is limited to about 10% due to the uncertainties about the susceptibilities of the cell walls. (orig.). 29 refs.

  17. Development of a spectroscopic Mueller matrix imaging ellipsometer for nanostructure metrology

    International Nuclear Information System (INIS)

    Chen, Xiuguo; Du, Weichao; Yuan, Kui; Chen, Jun; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan

    2016-01-01

    In this paper, we describe the development of a spectroscopic Mueller matrix imaging ellipsometer (MMIE), which combines the great power of Mueller matrix ellipsometry with the high spatial resolution of optical microscopy. A dual rotating-compensator configuration is adopted to collect the full 4 × 4 imaging Mueller matrix in a single measurement. The light wavelengths are scanned in the range of 400–700 nm by a monochromator. The instrument has measurement accuracy and precision better than 0.01 for all the Mueller matrix elements in both the whole image and the whole spectral range. The instrument was then applied for the measurement of nanostructures combined with an inverse diffraction problem solving technique. The experiment performed on a photoresist grating sample has demonstrated the great potential of MMIE for accurate grating reconstruction from spectral data collected by a single pixel of the camera and for efficient quantification of geometrical profile of the grating structure over a large area with pixel resolution. It is expected that MMIE will be a powerful tool for nanostructure metrology in future high-volume nanomanufacturing.

  18. Development of a spectroscopic Mueller matrix imaging ellipsometer for nanostructure metrology

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiuguo; Du, Weichao; Yuan, Kui; Chen, Jun; Jiang, Hao, E-mail: hjiang@hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Chuanwei; Liu, Shiyuan, E-mail: hjiang@hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan Eoptics Technology Co. Ltd., Wuhan 430075 (China)

    2016-05-15

    In this paper, we describe the development of a spectroscopic Mueller matrix imaging ellipsometer (MMIE), which combines the great power of Mueller matrix ellipsometry with the high spatial resolution of optical microscopy. A dual rotating-compensator configuration is adopted to collect the full 4 × 4 imaging Mueller matrix in a single measurement. The light wavelengths are scanned in the range of 400–700 nm by a monochromator. The instrument has measurement accuracy and precision better than 0.01 for all the Mueller matrix elements in both the whole image and the whole spectral range. The instrument was then applied for the measurement of nanostructures combined with an inverse diffraction problem solving technique. The experiment performed on a photoresist grating sample has demonstrated the great potential of MMIE for accurate grating reconstruction from spectral data collected by a single pixel of the camera and for efficient quantification of geometrical profile of the grating structure over a large area with pixel resolution. It is expected that MMIE will be a powerful tool for nanostructure metrology in future high-volume nanomanufacturing.

  19. Design of a self-calibration high precision micro-angle deformation optical monitoring scheme

    Science.gov (United States)

    Gu, Yingying; Wang, Li; Guo, Shaogang; Wu, Yun; Liu, Da

    2018-03-01

    In order to meet the requirement of high precision and micro-angle measurement on orbit, a self-calibrated optical non-contact real-time monitoring device is designed. Within three meters, the micro-angle variable of target relative to measuring basis can be measured in real-time. The range of angle measurement is +/-50'', the angle measurement accuracy is less than 2''. The equipment can realize high precision real-time monitoring the micro-angle deformation, which caused by high strength vibration and shock of rock launching, sun radiation and heat conduction on orbit and so on.

  20. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S., E-mail: shahid.ali@ncp.edu.p [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); IPFN, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ahmed, Z. [COMSATS Institute of Information Technology, Department of Physics, Wah Campus (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, I. [COMSATS Institute of Information Technology, Department of Physics, Islamabad Campus (Pakistan)

    2009-08-10

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  1. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    International Nuclear Information System (INIS)

    Ali, S.; Ahmed, Z.; Mirza, Arshad M.; Ahmad, I.

    2009-01-01

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  2. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    International Nuclear Information System (INIS)

    Zhang, Shen; Kang, Wei; Wang, Hongwei; Zhang, Ping; He, X. T.

    2016-01-01

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  3. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shen; Kang, Wei, E-mail: weikang@pku.edu.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Wang, Hongwei [College of Engineering, Peking University, Beijing 100871 (China); Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); He, X. T., E-mail: xthe@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2016-04-15

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  4. High Precision Measurement of the differential W and Z boson cross-sections

    CERN Document Server

    Gasnikova, Ksenia; The ATLAS collaboration

    2017-01-01

    Measurements of the Drell-Yan production of W and Z/gamma bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at center-of-mass energies of 7. The measurements are performed for W+, W- and Z/gamma bosons integrated and as a function of the boson or lepton rapidity and the Z/gamma* mass. Unprecedented precision is reached and strong constraints on Parton Distribution functions, in particular the strange density are found. Z cross sections are also measured at a center-of-mass energies of 8TeV and 13TeV, and cross-section ratios to the top-quark pair production have been derived. This ratio measurement leads to a cancellation of several systematic effects and allows therefore for a high precision comparison to the theory predictions.

  5. High precision analysis of trace lithium isotope by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Tang Lei; Liu Xuemei; Long Kaiming; Liu Zhao; Yang Tianli

    2010-01-01

    High precision analysis method of ng lithium by thermal ionization mass spectrometry is developed. By double-filament measurement,phosphine acid ion enhancer and sample pre-baking technique,the precision of trace lithium analysis is improved. For 100 ng lithium isotope standard sample, relative standard deviation is better than 0.086%; for 10 ng lithium isotope standard sample, relative standard deviation is better than 0.90%. (authors)

  6. High spatial precision nano-imaging of polarization-sensitive plasmonic particles

    Science.gov (United States)

    Liu, Yunbo; Wang, Yipei; Lee, Somin Eunice

    2018-02-01

    Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required.

  7. Highly sensitive bacterial susceptibility test against penicillin using parylene-matrix chip.

    Science.gov (United States)

    Park, Jong-Min; Kim, Jo-Il; Song, Hyun-Woo; Noh, Joo-Yoon; Kang, Min-Jung; Pyun, Jae-Chul

    2015-09-15

    This work presented a highly sensitive bacterial antibiotic susceptibility test through β-lactamase assay using Parylene-matrix chip. β-lactamases (EC 3.5.2.6) are an important family of enzymes that confer resistance to β-lactam antibiotics by catalyzing the hydrolysis of these antibiotics. Here we present a highly sensitive assay to quantitate β-lactamase-mediated hydrolysis of penicillin into penicilloic acid. Typically, MALDI-TOF mass spectrometry has been used to quantitate low molecular weight analytes and to discriminate them from noise peaks of matrix fragments that occur at low m/z ratios (m/ztest was carried out using Parylene-matrix chip and MALDI-TOF mass spectrometry. The Parylene-matrix chip was successfully used to quantitate penicillin (m/z: [PEN+H](+)=335.1 and [PEN+Na](+)=357.8) and penicilloic acid (m/z: [PA+H](+)=353.1) in a β-lactamase assay with minimal interference of low molecular weight noise peaks. The β-lactamase assay was carried out with an antibiotic-resistant E. coli strain and an antibiotic-susceptible E. coli strain, revealing that the minimum number of E. coli cells required to screen for antibiotic resistance was 1000 cells for the MALDI-TOF mass spectrometry/Parylene-matrix chip assay. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Precise muon drift tube detectors for high background rate conditions

    CERN Document Server

    Engl, Albert; Dünnweber, Wolfgang

    The muon spectrometer of the ATLAS-experiment at the Large H adron Collider consists of drift tube chambers, which provide the precise m easurement of trajec- tories of traversing muons. In order to determine the moment um of the muons with high precision, the measurement of the position of the m uon in a single tube has to be more accurate than σ ≤ 100 m. The large cross section of proton-proton-collisions and th e high luminosity of the accelerator cause relevant background of neutrons and γ s in the muon spectrome- ter. During the next decade a luminosity upgrade [1] to 5 10 34 cm − 2 s − 1 is planned, which will increase the background counting rates consider ably. In this context this work deals with the further development of the existing drift chamber tech- nology to provide the required accuracy of the position meas urement under high background conditions. Two approaches of improving the dri ft tube chambers are described: • In regions of moderate background rates a faster and more lin ear ...

  9. Verification of Linear (In)Dependence in Finite Precision Arithmetic

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří

    2014-01-01

    Roč. 8, č. 3-4 (2014), s. 323-328 ISSN 1661-8289 Institutional support: RVO:67985807 Keywords : linear dependence * linear independence * pseudoinverse matrix * finite precision arithmetic * verification * MATLAB file Subject RIV: BA - General Mathematics

  10. High precision straw tube chamber with cathode readout

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Golutvin, I.A.; Ershov, Yu.V.

    1992-01-01

    The high precision straw chamber with cathode readout was constructed and investigated. The 10 mm straws were made of aluminized mylar strip with transparent longitudinal window. The X coordinate information has been taken from the cathode strips as induced charges and investigated via centroid method. The spatial resolution σ=120 μm has been obtained with signal/noise ratio about 60. The possible ways for improving the signal/noise ratio have been described. 7 refs.; 8 figs

  11. Machine vision for high-precision volume measurement applied to levitated containerless material processing

    International Nuclear Information System (INIS)

    Bradshaw, R.C.; Schmidt, D.P.; Rogers, J.R.; Kelton, K.F.; Hyers, R.W.

    2005-01-01

    By combining the best practices in optical dilatometry with numerical methods, a high-speed and high-precision technique has been developed to measure the volume of levitated, containerlessly processed samples with subpixel resolution. Containerless processing provides the ability to study highly reactive materials without the possibility of contamination affecting thermophysical properties. Levitation is a common technique used to isolate a sample as it is being processed. Noncontact optical measurement of thermophysical properties is very important as traditional measuring methods cannot be used. Modern, digitally recorded images require advanced numerical routines to recover the subpixel locations of sample edges and, in turn, produce high-precision measurements

  12. Precision measurements in nuclear beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Naviliat-Cuncic, Oscar, E-mail: naviliat@nscl.msu.edu [Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy (United States)

    2013-03-15

    Precision measurements in nuclear beta decay provide sensitive means to determine the fundamental coupling of charged fermions to weak bosons and to test discrete symmetries in the weak interaction. The main motivation of such measurements is to find deviations from Standard Model predictions as possible indications of new physics. I focus here on two topics related to precision measurements in beta decay, namely: (i) the determination of the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix from nuclear mirror transitions and (ii) selected measurements of time reversal violating correlations in nuclear and neutron decays. These topics complement those presented in other contributions to this conference.

  13. High-precision multiband spectroscopy of ultracold fermions in a nonseparable optical lattice

    Science.gov (United States)

    Fläschner, Nick; Tarnowski, Matthias; Rem, Benno S.; Vogel, Dominik; Sengstock, Klaus; Weitenberg, Christof

    2018-05-01

    Spectroscopic tools are fundamental for the understanding of complex quantum systems. Here, we demonstrate high-precision multiband spectroscopy in a graphenelike lattice using ultracold fermionic atoms. From the measured band structure, we characterize the underlying lattice potential with a relative error of 1.2 ×10-3 . Such a precise characterization of complex lattice potentials is an important step towards precision measurements of quantum many-body systems. Furthermore, we explain the excitation strengths into different bands with a model and experimentally study their dependency on the symmetry of the perturbation operator. This insight suggests the excitation strengths as a suitable observable for interaction effects on the eigenstates.

  14. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    Science.gov (United States)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  15. Hyperons in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Dapo, Haris

    2009-01-28

    The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three

  16. Precision laser spectroscopy of highly charged ions

    International Nuclear Information System (INIS)

    Kuehl, T.; Borneis, S.; Becker, S.; Dax, A.; Engel, T.; Grieser, R.; Huber, G.; Klaft, I.; Klepper, O.; Kohl, A.; Marx, D.; Meier, K.; Neumann, R.; Schmitt, F.; Seelig, P.; Voelker, L.

    1996-01-01

    Recently, intense beams of highly charged ions have become available at heavy ion cooler rings. The obstacle for producing these highly interesting candidates is the large binding energy of K-shell electrons in heavy systems in excess of 100 keV. One way to remove these electrons is to strip them off by passing the ion through material. In the cooler ring, the ions are cooled to a well defined velocity. At the SIS/ESR complex it is possible to produce, store, and cool highly charged ions up to bare uranium with intensities exceeding 10 8 atoms in the ring. This opens the door for precision laser spectroscopy of hydrogenlike-heavy ions, e.g. 209 Bi 82+ , and allows to examine the interaction of the single electron with the large fields of the heavy nucleus, exceeding any artificially produced electric and magnetic fields by orders of magnitude. In the electron cooler the interaction of electrons and highly charged ions otherwise only present in the hottest plasmas can be studied. (orig.)

  17. Ultracold Anions for High-Precision Antihydrogen Experiments.

    Science.gov (United States)

    Cerchiari, G; Kellerbauer, A; Safronova, M S; Safronova, U I; Yzombard, P

    2018-03-30

    Experiments with antihydrogen (H[over ¯]) for a study of matter-antimatter symmetry and antimatter gravity require ultracold H[over ¯] to reach ultimate precision. A promising path towards antiatoms much colder than a few kelvin involves the precooling of antiprotons by laser-cooled anions. Because of the weak binding of the valence electron in anions-dominated by polarization and correlation effects-only few candidate systems with suitable transitions exist. We report on a combination of experimental and theoretical studies to fully determine the relevant binding energies, transition rates, and branching ratios of the most promising candidate La^{-}. Using combined transverse and collinear laser spectroscopy, we determined the resonant frequency of the laser cooling transition to be ν=96.592 713(91)  THz and its transition rate to be A=4.90(50)×10^{4}  s^{-1}. Using a novel high-precision theoretical treatment of La^{-} we calculated yet unmeasured energy levels, transition rates, branching ratios, and lifetimes to complement experimental information on the laser cooling cycle of La^{-}. The new data establish the suitability of La^{-} for laser cooling and show that the cooling transition is significantly stronger than suggested by a previous theoretical study.

  18. High precision and stable structures for particle detectors

    CERN Document Server

    Da Mota Silva, S; Hauviller, Claude

    1999-01-01

    The central detectors used in High Energy Physics Experiments require the use of light and stable structures capable of supporting delicate and precise radiation detection elements. These structures need to be highly stable under environmental conditions where external vibrations, high radiation levels, temperature and humidity gradients should be taken into account. Their main design drivers are high dimension and dynamic stability, high stiffness to mass ratio and large radiation length. For most applications, these constraints lead us to choose Carbon Fiber Reinforced Plastics ( CFRP) as structural element. The construction of light and stable structures with CFRP for these applications can be achieved by careful design engineering and further confirmation at the prototyping phase. However, the experimental environment can influence their characteristics and behavior. In this case, theuse of adaptive structures could become a solution for this problem. We are studying structures in CFRP with bonded piezoel...

  19. High power X-ray welding of metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1997-12-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10{sup 4} watts/cm{sup 2} and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  20. Dynamics of High-Speed Precision Geared Rotor Systems

    Directory of Open Access Journals (Sweden)

    Lim Teik C.

    2014-07-01

    Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.

  1. Jets and high pT hadrons in dense matter: recent results from STAR

    International Nuclear Information System (INIS)

    Jacobs, Peter; Klay, Jennifer

    2004-01-01

    We review recent measurements of high transverse momentum (high pT) hadron production in nuclear collisions by the STAR Collaboration at RHIC. The previously observed suppression in central Au+Au collisions has been extended to much higher pT. New measurements from d+Au collisions are presented which help disentangle the mechanisms responsible for the suppression. Inclusive single hadron spectra are enhanced in d+Au relative to p+p, while two-particle azimuthal distributions are observed to be similar in p+p, d+Au and peripheral Au+Au collisions. The large suppression of inclusive hadron production and absence of the away-side jet-like correlations in central Au+Au collisions are shown to be due to interactions of the jets with the very dense medium produced in these collisions

  2. Dry processing versus dense medium processing for preparing thermal coal

    CSIR Research Space (South Africa)

    De Korte, GJ

    2013-10-01

    Full Text Available of the final product. The separation efficiency of dry processes is, however, not nearly as good as that of dense medium and, as a result, it is difficult to effectively beneficiate coals with a high near-dense content. The product yield obtained from some raw...

  3. A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids

    Science.gov (United States)

    Liang, Yingjie; Chen, Wen

    2018-03-01

    Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.

  4. Super high precision 200 ppi liquid crystal display series; Chokoseido 200 ppi ekisho display series

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In mobile equipment, in demand is a high precision liquid crystal display (LCD) having the power of expression equivalent to printed materials like magazines because of the necessity of displaying a large amount of information on a easily potable small screen. In addition, with the spread and high-quality image of digital still cameras, it is strongly desired to display photographed digital image data in high quality. Toshiba Corp., by low temperature polysilicone (p-Si) technology, commercialized the liquid crystal display series of 200 ppi (pixels per inch) precision dealing with the rise of the high-precision high-image quality LCD market. The super high precision of 200 ppi enables the display of smooth beautiful animation comparable to printed sheets of magazines and photographs. The display series are suitable for the display of various information services such as electronic books and electronic photo-viewers including internet. The screen sizes lined up are No. 4 type VGA (640x480 pixels) of a small pocket notebook size and No. 6.3 type XGA (1,024x768 pixels) of a paperback size, with a larger screen to be furthered. (translated by NEDO)

  5. An Ultra-low Frequency Modal Testing Suspension System for High Precision Air Pressure Control

    Directory of Open Access Journals (Sweden)

    Qiaoling YUAN

    2014-05-01

    Full Text Available As a resolution for air pressure control challenges in ultra-low frequency modal testing suspension systems, an incremental PID control algorithm with dead band is applied to achieve high-precision pressure control. We also develop a set of independent hardware and software systems for high-precision pressure control solutions. Taking control system versatility, scalability, reliability, and other aspects into considerations, a two-level communication employing Ethernet and CAN bus, is adopted to complete such tasks as data exchange between the IPC, the main board and the control board ,and the pressure control. Furthermore, we build a single set of ultra-low frequency modal testing suspension system and complete pressure control experiments, which achieve the desired results and thus confirm that the high-precision pressure control subsystem is reasonable and reliable.

  6. Concept of modular flexure-based mechanisms for ultra-high precision robot design

    Directory of Open Access Journals (Sweden)

    M. Richard

    2011-05-01

    Full Text Available This paper introduces a new concept of modular flexure-based mechanisms to design industrial ultra-high precision robots, which aims at significantly reducing both the complexity of their design and their development time. This modular concept can be considered as a robotic Lego, where a finite number of building bricks is used to quickly build a high-precision robot. The core of the concept is the transformation of a 3-D design problem into several 2-D ones, which are simpler and well-mastered. This paper will first briefly present the theoretical bases of this methodology and the requirements of both types of building bricks: the active and the passive bricks. The section dedicated to the design of the active bricks will detail the current research directions, mainly the maximisation of the strokes and the development of an actuation sub-brick. As for the passive bricks, some examples will be presented, and a discussion regarding the establishment of a mechanical solution catalogue will conclude the section. Last, this modular concept will be illustrated with a practical example, consisting in the design of a 5-degree of freedom ultra-high precision robot.

  7. The selection of a matrix for the recovery of uranium by wet high-intensity magnetic separation

    International Nuclear Information System (INIS)

    Svoboda, J.

    1985-01-01

    The proper choice of a suitable matrix for high-intensity magnetic separation is of the utmost importance, since the geometry and size of the matrix play decisive roles in the achievement of optimum separation conditions. In relatively simple filtration applications, the matrix must offer a high efficiency of collision with suspended particles, a high probability of retention of intercepted particles, and high loading capacity. Also, it must be easily cleaned. The results obtained by the use of theoretical models of magnetic separation fail to agree with the experimental results for basic parameters like the ratio of particle size to matrix size, the length of the matrix, and the magnetic properties of the matrix material. Preconceived ideas about the matrix often lead to the erroneous choice of a matrix, and hence to its unsatisfactory performance during magnetic separation. The potential value of high-intensity magnetic separation as applied to the recovery of uranium and gold from leach residues and in association with the development of a large-scale magnetic separator to be used for the same purpose led to the present investigation in which a wide spectrum of matrix shapes and sizes were tested. It was found that the optimum recovery and selectivity of separation are obtained at a ratio of particle size to matrix-element size ranging from 200 to 300. The use of these matrices also results in a low degree of mechanical entrapment, particularly of coarser particles, for which straining plays a significant role for fine matrices. It was also found that the magnetization of a matrix plays a minor role, contrary to the theoretical predictions. Furthermore, the effects of matrix height, matrix loading, and scalping of the pulp by paramagnetic matrices were evaluated for various types of matrices

  8. Electromagnetic Charge Radius of the Pion at High Precision

    Science.gov (United States)

    Ananthanarayan, B.; Caprini, Irinel; Das, Diganta

    2017-09-01

    We present a determination of the pion charge radius from high precision data on the pion vector form factor from both timelike and spacelike regions, using a novel formalism based on analyticity and unitarity. At low energies, instead of the poorly known modulus of the form factor, we use its phase, known with high accuracy from Roy equations for π π elastic scattering via the Fermi-Watson theorem. We use also the values of the modulus at several higher timelike energies, where the data from e+e- annihilation and τ decay are mutually consistent, as well as the most recent measurements at spacelike momenta. The experimental uncertainties are implemented by Monte Carlo simulations. The results, which do not rely on a specific parametrization, are optimal for the given input information and do not depend on the unknown phase of the form factor above the first inelastic threshold. Our prediction for the charge radius of the pion is rπ=(0.657 ±0.003 ) fm , which amounts to an increase in precision by a factor of about 2.7 compared to the Particle Data Group average.

  9. Atoms in dense plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1987-01-01

    This paper covers some aspects of the theory of atomic processes in dense plasmas. Because the topic is very broad, a few general rules which give useful guidance about the typical behavior of dense plasmas have been selected. These rules are illustrated by semiclassical estimates, scaling laws and appeals to more elaborate calculations. Included in the paper are several previously unpublished results including a new mechanism for electron-ion heat exchange (section II), and an approximate expression for oscillator-strengths of highly charged ions (section V). However the main emphasis is not upon practical formulas but rather on questions of fundamental theory, the structural ingredients which must be used in building a model for plasma events. What are the density effects and how does one represent them? Which are most important? How does one identify an incorrect theory? The general rules help to answer these questions. 106 references, 23 figures, 2 tables

  10. Strategies for high-precision Global Positioning System orbit determination

    Science.gov (United States)

    Lichten, Stephen M.; Border, James S.

    1987-01-01

    Various strategies for the high-precision orbit determination of the GPS satellites are explored using data from the 1985 GPS field test. Several refinements to the orbit determination strategies were found to be crucial for achieving high levels of repeatability and accuracy. These include the fine tuning of the GPS solar radiation coefficients and the ground station zenith tropospheric delays. Multiday arcs of 3-6 days provided better orbits and baselines than the 8-hr arcs from single-day passes. Highest-quality orbits and baselines were obtained with combined carrier phase and pseudorange solutions.

  11. Matrix correlations for high-dimensional data: The modified RV-coefficient

    NARCIS (Netherlands)

    Smilde, A.K.; Kiers, H.A.L.; Bijlsma, S.; Rubingh, C.M.; Erk, M.J. van

    2009-01-01

    Motivation: Modern functional genomics generates high-dimensional datasets. It is often convenient to have a single simple number characterizing the relationship between pairs of such high-dimensional datasets in a comprehensive way. Matrix correlations are such numbers and are appealing since they

  12. Advanced ceramic matrix composites for high energy x-ray generation

    International Nuclear Information System (INIS)

    Khan, Amir Azam; Labbe, Jean Claude

    2011-01-01

    High energy x-ray targets are the anodes used in high performance tubes, designed to work for long operating times and at high power. Such tubes are used in computed tomography (CT) scan machines. Usually the tubes used in CT scanners have to continuously work at high temperatures and for longer scan durations in order to get maximum information during a single scan. These anodes are composed of a refractory substrate which supports a refractory metallic coating. The present work is a review of the development of a ceramic metal composite based on aluminium nitride (AlN) and molybdenum for potential application as the substrate. This composite is surface engineered by coating with tungsten, the most popular material for high energy x-ray targets. To spray metallic coatings on the surface of ceramic matrix composites dc blown arc plasma is employed. The objective is to increase the performance and the life of an x-ray tube. Aluminium nitride-molybdenum ceramic matrix composites were produced by uniaxial hotpressing mixtures of AlN and Mo powders. These composites were characterized for their mechanical, thermal, electrical and micro-structural properties. An optimized composition was selected which contained 25 vol.% of metallic phase dispersed in the AlN matrix. These composites were produced in the actual size of an anode and coated with tungsten through dc blown arc plasma spraying. The results have shown that sintering of large size anodes is possible through uniaxial pressing, using a modified sintering cycle

  13. HPC-NMF: A High-Performance Parallel Algorithm for Nonnegative Matrix Factorization

    Energy Technology Data Exchange (ETDEWEB)

    2016-08-22

    NMF is a useful tool for many applications in different domains such as topic modeling in text mining, background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining community, there is a lack of efficient distributed algorithms to solve the problem for big data sets. We propose a high-performance distributed-memory parallel algorithm that computes the factorization by iteratively solving alternating non-negative least squares (NLS) subproblems for $\\WW$ and $\\HH$. It maintains the data and factor matrices in memory (distributed across processors), uses MPI for interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild assumptions). As opposed to previous implementation, our algorithm is also flexible: It performs well for both dense and sparse matrices, and allows the user to choose any one of the multiple algorithms for solving the updates to low rank factors $\\WW$ and $\\HH$ within the alternating iterations.

  14. Coherent interface structures and intergrain Josephson coupling in dense MgO/Mg{sub 2}Si/MgB{sub 2} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Katsuya; Takahashi, Kazuyuki; Uchino, Takashi, E-mail: uchino@kobe-u.ac.jp [Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501 (Japan); Nagashima, Yukihito [Nippon Sheet Glass Co., Ltd., Konoike, Itami 664-8520 (Japan); Seto, Yusuke [Department of Planetology, Graduate School of Science, Kobe University, Nada, Kobe 657-8501 (Japan); Matsumoto, Megumi; Sakurai, Takahiro [Center for Support to Research and Education Activities, Kobe University, Nada, Kobe 657-8501 (Japan); Ohta, Hitoshi [Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-8501 (Japan)

    2016-07-07

    Many efforts are under way to control the structure of heterointerfaces in nanostructured composite materials for designing functionality and engineering application. However, the fabrication of high-quality heterointerfaces is challenging because the crystal/crystal interface is usually the most defective part of the nanocomposite materials. In this work, we show that fully dense insulator (MgO)/semiconductor(Mg{sub 2}Si)/superconductor(MgB{sub 2}) nanocomposites with atomically smooth and continuous interfaces, including epitaxial-like MgO/Mg{sub 2}Si interfaces, are obtained by solid phase reaction between metallic magnesium and a borosilicate glass. The resulting nanocomposites exhibit a semiconductor-superconducting transition at 36 K owing to the MgB{sub 2} nanograins surrounded by the MgO/Mg{sub 2}Si matrix. This transition is followed by the intergrain phase-lock transition at ∼24 K due to the construction of Josephson-coupled network, eventually leading to a near-zero resistance state at 17 K. The method not only provides a simple process to fabricate dense nanocomposites with high-quality interfaces, but also enables to investigate the electric and magnetic properties of embedded superconducting nanograins with good intergrain coupling.

  15. Dynamic strain and rotation ground motions of the 2011 Tohoku earthquake from dense high-rate GPS observations in Taiwan

    Science.gov (United States)

    Huang, B. S.; Rau, R. J.; Lin, C. J.; Kuo, L. C.

    2017-12-01

    Seismic waves generated by the 2011 Mw 9.0 Tohoku, Japan earthquake were well recorded by continuous GPS in Taiwan. Those GPS were operated in one hertz sampling rate and densely distributed in Taiwan Island. Those continuous GPS observations and the precise point positioning technique provide an opportunity to estimate spatial derivatives from absolute ground motions of this giant teleseismic event. In this study, we process and investigate more than one and half hundred high-rate GPS displacements and its spatial derivatives, thus strain and rotations, to compare to broadband seismic and rotational sensor observations. It is shown that continuous GPS observations are highly consistent with broadband seismic observations during its surface waves across Taiwan Island. Several standard Geodesy and seismic array analysis techniques for spatial gradients have been applied to those continuous GPS time series to determine its dynamic strain and rotation time histories. Results show that those derivate GPS vertical axis ground rotations are consistent to seismic array determined rotations. However, vertical rotation-rate observations from the R1 rotational sensors have low resolutions and could not compared with GPS observations for this special event. For its dese spatial distribution of GPS stations in Taiwan Island, not only wavefield gradient time histories at individual site was obtained but also 2-D spatial ground motion fields were determined in this study also. In this study, we will report the analyzed results of those spatial gradient wavefields of the 2011 Tohoku earthquake across Taiwan Island and discuss its geological implications.

  16. High Porosity Alumina as Matrix Material for Composites of Al-Mg Alloys

    International Nuclear Information System (INIS)

    Gömze, L A; Egész, Á; Gömze, L N; Ojima, F

    2013-01-01

    The sophisticated industry and technologies require higher and higher assumptions against mechanical strength and surface hardness of ceramic reinforced metal alloys and metal matrix composites. Applying the well-known alumina powders by dry pressing technology and some special pore-forming additives and sintering technology the authors have successfully developed a new, high porosity alumina matrix material for composites of advenced Al-Mg alloys. The developed new matrix material have higher than 30% porosity, with homogenous porous structure and pore sizes from few nano up to 2–3 mm depending on the alloys containments. Thanks to the used materials and the sintering conditions the authors could decrease the wetting angles less than 90° between the high porosity alumina matrix and the Al-Mg alloys. Applied analytical methods in this research were laser granulometry, scanning electron microscopy, and X-ray diffraction. Digital image analysis was applied to microscopy results, to enhance the results of transformation

  17. In-depth, high-accuracy proteomics of sea urchin tooth organic matrix

    Directory of Open Access Journals (Sweden)

    Mann Matthias

    2008-12-01

    Full Text Available Abstract Background The organic matrix contained in biominerals plays an important role in regulating mineralization and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin tooth, which is an important model for developmental biology and biomineralization, only few matrix components have been identified. The recent publication of the Strongylocentrotus purpuratus genome sequence rendered possible not only the identification of genes potentially coding for matrix proteins, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy proteomic analysis. Results We identified 138 proteins in the matrix of tooth powder. Only 56 of these proteins were previously identified in the matrices of test (shell and spine. Among the novel components was an interesting group of five proteins containing alanine- and proline-rich neutral or basic motifs separated by acidic glycine-rich motifs. In addition, four of the five proteins contained either one or two predicted Kazal protease inhibitor domains. The major components of tooth matrix were however largely identical to the set of spicule matrix proteins and MSP130-related proteins identified in test (shell and spine matrix. Comparison of the matrices of crushed teeth to intact teeth revealed a marked dilution of known intracrystalline matrix proteins and a concomitant increase in some intracellular proteins. Conclusion This report presents the most comprehensive list of sea urchin tooth matrix proteins available at present. The complex mixture of proteins identified may reflect many different aspects of the mineralization process. A comparison between intact tooth matrix, presumably containing odontoblast remnants, and crushed tooth matrix served to differentiate between matrix components and possible contributions of cellular remnants. Because LC-MS/MS-based methods directly

  18. Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys

    Science.gov (United States)

    Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely

    2018-03-01

    An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.

  19. Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF)

    Science.gov (United States)

    Beier, Matthias; Scheiding, Sebastian; Gebhardt, Andreas; Loose, Roman; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas

    2013-09-01

    The fabrication of complex shaped metal mirrors for optical imaging is a classical application area of diamond machining techniques. Aspherical and freeform shaped optical components up to several 100 mm in diameter can be manufactured with high precision in an acceptable amount of time. However, applications are naturally limited to the infrared spectral region due to scatter losses for shorter wavelengths as a result of the remaining periodic diamond turning structure. Achieving diffraction limited performance in the visible spectrum demands for the application of additional polishing steps. Magnetorheological Finishing (MRF) is a powerful tool to improve figure and finish of complex shaped optics at the same time in a single processing step. The application of MRF as a figuring tool for precise metal mirrors is a nontrivial task since the technology was primarily developed for figuring and finishing a variety of other optical materials, such as glasses or glass ceramics. In the presented work, MRF is used as a figuring tool for diamond turned aluminum lightweight mirrors with electroless nickel plating. It is applied as a direct follow-up process after diamond machining of the mirrors. A high precision measurement setup, composed of an interferometer and an advanced Computer Generated Hologram with additional alignment features, allows for precise metrology of the freeform shaped optics in short measuring cycles. Shape deviations less than 150 nm PV / 20 nm rms are achieved reliably for freeform mirrors with apertures of more than 300 mm. Characterization of removable and induced spatial frequencies is carried out by investigating the Power Spectral Density.

  20. Google matrix of the citation network of Physical Review

    Science.gov (United States)

    Frahm, Klaus M.; Eom, Young-Ho; Shepelyansky, Dima L.

    2014-05-01

    We study the statistical properties of spectrum and eigenstates of the Google matrix of the citation network of Physical Review for the period 1893-2009. The main fraction of complex eigenvalues with largest modulus is determined numerically by different methods based on high-precision computations with up to p =16384 binary digits that allow us to resolve hard numerical problems for small eigenvalues. The nearly nilpotent matrix structure allows us to obtain a semianalytical computation of eigenvalues. We find that the spectrum is characterized by the fractal Weyl law with a fractal dimension df≈1. It is found that the majority of eigenvectors are located in a localized phase. The statistical distribution of articles in the PageRank-CheiRank plane is established providing a better understanding of information flows on the network. The concept of ImpactRank is proposed to determine an influence domain of a given article. We also discuss the properties of random matrix models of Perron-Frobenius operators.

  1. Investigation of the proton-neutron interaction by high-precision nuclear mass measurements

    CERN Multimedia

    Savreux, R P; Akkus, B

    2007-01-01

    We propose to measure the atomic masses of a series of short-lived nuclides, including $^{70}$Ni, $^{122-130}$Cd, $^{134}$Sn, $^{138,140}$Xe, $^{207-210}$Hg, and $^{223-225}$Rn, that contribute to the investigation of the proton-neutron interaction and its role in nuclear structure. The high-precision mass measurements are planned for the Penning trap mass spectrometer ISOLTRAP that reaches the required precision of 10 keV in the nuclear mass determination.

  2. Structure–property relationships of iron–hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, Jamillah Amer [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Prajitno, Djoko Hadi [Nuclear Technology Center for Materials and Radiometry, National Nuclear Energy, Bandung 40132 (Indonesia); Saidin, Syafiqah [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Nur, Hadi, E-mail: hadi@kimia.fs.utm.my [Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Department of Physics, Institut Sains dan Teknologi Nasional, Jl. Moh. Kahfi II, Jagakarsa, Jakarta Selatan 12640 (Indonesia); Hermawan, Hendra, E-mail: hendra.hermawan@gmn.ulaval.ca [Department of Mining, Metallurgical and Materials Engineering & CHU de Québec Research Center, Laval University, Québec City G1V 0A6 (Canada)

    2015-06-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone–implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12 h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12 h milling in the presence of HPO{sub 4}{sup 2−} ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12 h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis - Highlights: • Improvement of mechanical properties of HAp bioceramics by mechanosynthesis method • Structure–property relationship of iron–hydroxyapatite ceramic matrix nanocomposite • Milling time influenced the properties of iron–hydroxyapatite ceramic matrix nanocomposite.

  3. Structure–property relationships of iron–hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method

    International Nuclear Information System (INIS)

    Nordin, Jamillah Amer; Prajitno, Djoko Hadi; Saidin, Syafiqah; Nur, Hadi; Hermawan, Hendra

    2015-01-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone–implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12 h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12 h milling in the presence of HPO 4 2− ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12 h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis - Highlights: • Improvement of mechanical properties of HAp bioceramics by mechanosynthesis method • Structure–property relationship of iron–hydroxyapatite ceramic matrix nanocomposite • Milling time influenced the properties of iron–hydroxyapatite ceramic matrix nanocomposite

  4. Ultra-low power high precision magnetotelluric receiver array based customized computer and wireless sensor network

    Science.gov (United States)

    Chen, R.; Xi, X.; Zhao, X.; He, L.; Yao, H.; Shen, R.

    2016-12-01

    Dense 3D magnetotelluric (MT) data acquisition owns the benefit of suppressing the static shift and topography effect, can achieve high precision and high resolution inversion for underground structure. This method may play an important role in mineral exploration, geothermal resources exploration, and hydrocarbon exploration. It's necessary to reduce the power consumption greatly of a MT signal receiver for large-scale 3D MT data acquisition while using sensor network to monitor data quality of deployed MT receivers. We adopted a series of technologies to realized above goal. At first, we designed an low-power embedded computer which can couple with other parts of MT receiver tightly and support wireless sensor network. The power consumption of our embedded computer is less than 1 watt. Then we designed 4-channel data acquisition subsystem which supports 24-bit analog-digital conversion, GPS synchronization, and real-time digital signal processing. Furthermore, we developed the power supply and power management subsystem for MT receiver. At last, a series of software, which support data acquisition, calibration, wireless sensor network, and testing, were developed. The software which runs on personal computer can monitor and control over 100 MT receivers on the field for data acquisition and quality control. The total power consumption of the receiver is about 2 watts at full operation. The standby power consumption is less than 0.1 watt. Our testing showed that the MT receiver can acquire good quality data at ground with electrical dipole length as 3 m. Over 100 MT receivers were made and used for large-scale geothermal exploration in China with great success.

  5. A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z., E-mail: zhaohui@nwpu.edu.cn; Yu, T. [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Chen, H. [Xi’an Aerospace Propulsion Institute, Xi’an 710100 (China); Li, B. [State Key Laboratory for Manufacturing and Systems Engineering, Xi’an Jiaotong University, Xi’an 710054 (China)

    2016-08-15

    The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software TEMA Motion is used to track the spot which marked the cage surface. Finally, by developing the MATLAB program, a Lissajous’ figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.

  6. A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage

    International Nuclear Information System (INIS)

    Yang, Z.; Yu, T.; Chen, H.; Li, B.

    2016-01-01

    The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software TEMA Motion is used to track the spot which marked the cage surface. Finally, by developing the MATLAB program, a Lissajous’ figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.

  7. Developing and implementing a high precision setup system

    Science.gov (United States)

    Peng, Lee-Cheng

    The demand for high-precision radiotherapy (HPRT) was first implemented in stereotactic radiosurgery using a rigid, invasive stereotactic head frame. Fractionated stereotactic radiotherapy (SRT) with a frameless device was developed along a growing interest in sophisticated treatment with a tight margin and high-dose gradient. This dissertation establishes the complete management for HPRT in the process of frameless SRT, including image-guided localization, immobilization, and dose evaluation. The most ideal and precise positioning system can allow for ease of relocation, real-time patient movement assessment, high accuracy, and no additional dose in daily use. A new image-guided stereotactic positioning system (IGSPS), the Align RT3C 3D surface camera system (ART, VisionRT), which combines 3D surface images and uses a real-time tracking technique, was developed to ensure accurate positioning at the first place. The uncertainties of current optical tracking system, which causes patient discomfort due to additional bite plates using the dental impression technique and external markers, are found. The accuracy and feasibility of ART is validated by comparisons with the optical tracking and cone-beam computed tomography (CBCT) systems. Additionally, an effective daily quality assurance (QA) program for the linear accelerator and multiple IGSPSs is the most important factor to ensure system performance in daily use. Currently, systematic errors from the phantom variety and long measurement time caused by switching phantoms were discovered. We investigated the use of a commercially available daily QA device to improve the efficiency and thoroughness. Reasonable action level has been established by considering dosimetric relevance and clinic flow. As for intricate treatments, the effect of dose deviation caused by setup errors remains uncertain on tumor coverage and toxicity on OARs. The lack of adequate dosimetric simulations based on the true treatment coordinates from

  8. Densely Packed, Ultra Small SnO Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO2 Reduction.

    Science.gov (United States)

    Gu, Jun; Héroguel, Florent; Luterbacher, Jeremy; Hu, Xile

    2018-03-05

    Controlling the selectivity in electrochemical CO 2 reduction is an unsolved challenge. While tin (Sn) has emerged as a promising non-precious catalyst for CO 2 electroreduction, most Sn-based catalysts produce formate as the major product, which is less desirable than CO in terms of separation and further use. Tin monoxide (SnO) nanoparticles supported on carbon black were synthesized and assembled and their application in CO 2 reduction was studied. Remarkably high selectivity and partial current densities for CO formation were obtained using these SnO nanoparticles compared to other Sn catalysts. The high activity is attributed to the ultra-small size of the nanoparticles (2.6 nm), while the high selectivity is attributed to a local pH effect arising from the dense packing of nanoparticles in the conductive carbon black matrix. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dietary intake of energy-dense, nutrient-poor and nutrient-dense food sources in children with cystic fibrosis.

    Science.gov (United States)

    Sutherland, Rosie; Katz, Tamarah; Liu, Victoria; Quintano, Justine; Brunner, Rebecca; Tong, Chai Wei; Collins, Clare E; Ooi, Chee Y

    2018-04-30

    Prescription of a high-energy, high-fat diet is a mainstay of nutrition management in cystic fibrosis (CF). However, families may be relying on energy-dense, nutrient-poor (EDNP) foods rather than nutrient-dense (ND) foods to meet dietary targets. We aimed to evaluate the relative contribution of EDNP and ND foods to the usual diets of children with CF and identify sociodemographic factors associated with higher EDNP intakes. This is a cross-sectional comparison of children with CF aged 2-18 years and age- and gender-matched controls. Dietary intake was assessed using the Australian Child and Adolescent Eating Survey (ACAES) food frequency questionnaire. Children with CF (n = 80: 37 males; mean age 9.3 years) consumed significantly more EDNP foods than controls (mean age 9.8 years) in terms of both total energy (median [IQR]: 1301 kcal/day (843-1860) vs. 686 kcal/day (480-1032); p energy intake (median [IQR]: 44% (34-51) vs. 31% (24-43); p energy requirements (median [IQR]: 158% (124-187) vs. 112% (90-137); p energy- and fat-dense CF diet is primarily achieved by overconsumption of EDNP foods, rather than ND sources. This dietary pattern may not be optimal for the future health of children with CF, who are now expected to survive well into adulthood. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  10. High-precision optical systems with inexpensive hardware: a unified alignment and structural design approach

    Science.gov (United States)

    Winrow, Edward G.; Chavez, Victor H.

    2011-09-01

    High-precision opto-mechanical structures have historically been plagued by high costs for both hardware and the associated alignment and assembly process. This problem is especially true for space applications where only a few production units are produced. A methodology for optical alignment and optical structure design is presented which shifts the mechanism of maintaining precision from tightly toleranced, machined flight hardware to reusable, modular tooling. Using the proposed methodology, optical alignment error sources are reduced by the direct alignment of optics through their surface retroreflections (pips) as seen through a theodolite. Optical alignment adjustments are actualized through motorized, sub-micron precision actuators in 5 degrees of freedom. Optical structure hardware costs are reduced through the use of simple shapes (tubes, plates) and repeated components. This approach produces significantly cheaper hardware and more efficient assembly without sacrificing alignment precision or optical structure stability. The design, alignment plan and assembly of a 4" aperture, carbon fiber composite, Schmidt-Cassegrain concept telescope is presented.

  11. Warm Dense Matter: An Overview

    International Nuclear Information System (INIS)

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-01-01

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities. The conclusion of this

  12. Precision of quantum tomographic detection of radiation

    Energy Technology Data Exchange (ETDEWEB)

    D' Ariano, G.M. (Dipartimento di Fisica ' ' Alessandro Volta' ' , Via A. Bassi 6, I-27100, Pavia (Italy) Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Via A. Bassi 6, I-27100, Pavia (Italy)); Macchiavello, Chiara (Dipartimento di Fisica ' ' Alessandro Volta' ' , Via A. Bassi 6, I-27100, Pavia (Italy)); Paris, M.G.A. (Dipartimento di Fisica ' ' Alessandro Volta' ' , Via A. Bassi 6, I-27100, Pavia (Italy))

    1994-11-21

    Homodyne tomography provides an experimental technique for reconstructing the density matrix of the radiation field. Here we analyze the tomographic precision in recovering observables like the photon number, the quadrature, and the phase. We show that tomographic reconstruction, despite providing a complete characterization of the state of the field, is generally much less efficient than conventional detection techniques. ((orig.))

  13. Precision of quantum tomographic detection of radiation

    International Nuclear Information System (INIS)

    D'Ariano, G.M.; Macchiavello, Chiara; Paris, M.G.A.

    1994-01-01

    Homodyne tomography provides an experimental technique for reconstructing the density matrix of the radiation field. Here we analyze the tomographic precision in recovering observables like the photon number, the quadrature, and the phase. We show that tomographic reconstruction, despite providing a complete characterization of the state of the field, is generally much less efficient than conventional detection techniques. ((orig.))

  14. Involvement of extracellular matrix constituents in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Bissell, Mina J

    1995-06-01

    It has recently been established that the extracellular matrix is required for normal functional differentiation of mammary epithelia not only in culture, but also in vivo. The mechanisms by which extracellular matrix affects differentiation, as well as the nature of extracellular matrix constituents which have major impacts on mammary gland function, have only now begun to be dissected. The intricate variety of extracellular matrix-mediated events and the remarkable degree of plasticity of extracellular matrix structure and composition at virtually all times during ontogeny, make such studies difficult. Similarly, during carcinogenesis, the extracellular matrix undergoes gross alterations, the consequences of which are not yet precisely understood. Nevertheless, an increasing amount of data suggests that the extracellular matrix and extracellular matrix-receptors might participate in the control of most, if not all, of the successive stages of breast tumors, from appearance to progression and metastasis.

  15. Study of dense-plasma properties using very high-frequency electromagnetic waves (light waves); Etude des proprietes des plasmas denses au moyen d'ondes electromagnetiques de tres haute frequence (ondes lumineuses)

    Energy Technology Data Exchange (ETDEWEB)

    Gormezano, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    A study is made of methods based on the use of lasers for measuring the electronic density and temperature of dense plasmas (N{sub e} > 10{sup 15}e/cm{sup 3}): - an interferometric method using a gas laser, based on the. properties of the Perot-Fabry cavities; - a method making use of the 90 deg C scattering produced by the plasma on light emitted by a ruby laser. These methods have been applied to various dense plasmas: - high-frequency plasma torch; - azimuth compression; - plasma bursts produced by focussing a laser beam on a metal target. The measurements have also been carried out using conventional methods of diagnosis. It has thus been possible to measure densities of between 5.10{sup 15} and 10{sup 19} e/cm{sup 3} and temperatures of between 3 and 10 eV. These different-methods are then compared, (author) [French] On etudie la mesure de la densite et de la temperature electronique des plasmas denses (N{sub e} > 10{sup 15} e/cm{sup 3}) a I'aide de methodes utilisant des lasers: - une methode interferometrique utilisant un laser a gaz, basee sur les proprietes des cavites Perot Fabry; -- une methode utilisant la diffusion a 900 deg C par le plasma de la lumiere issue d'un laser a rubis. Ces methodes ont ete appliquees sur differents plasmas denses: - Torche a plasma haute-frequence; - Compression azimutale; - Bouffees de plasma produites par la focalisation d'un faisceau laser sur une cible metallique. Les mesures ont ete egalement faites a I'aide de diagnostics classiques. On a pu ainsi mesurer des densites comprises entre 5.10{sup 15} et 10{sup 19} e/cm{sup 3} et des temperatures comprises entre 3 et 10 eV. On compare ensuite ces differentes methodes. (auteur)

  16. Using cold deformation methods in flow-production of steel high precision shaped sections

    International Nuclear Information System (INIS)

    Zajtsev, M.L.; Makhnev, I.F.; Shkurko, I.I.

    1975-01-01

    A final size with a preset tolerance and a required surface finish of steel high-precision sections could be achieved by a cold deformation of hot-rolled ingots-by drawing through dismountable, monolith or roller-type drawing tools or by cold rolling in roller dies. The particularities of the both techniques are compared as regards a number of complicated shaped sections and the advantages of cold rolling are showna more uniform distribution of deformations (strain hardening) across the section, that is a greater margin of plasticity with the same reductions, the less number of the operations required. Rolling is recommended in all the cases when possible as regards the section shape and the bulk volume. The rolling-mill for the calibration of high-precision sections should have no less than two shafts (so that the size could be controlled in both directions) and arrangements to withstand high axial stresses on the rollers (the stresses appearing during rolling in skew dies). When manufacturing precise shaped sections by the cold rolling method the operations are less plentiful than in the cold drawing manufacturing

  17. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    Science.gov (United States)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  18. The honeycomb strip chamber: A two coordinate and high precision muon detector

    International Nuclear Information System (INIS)

    Tolsma, H.P.T.

    1996-01-01

    This thesis describes the construction and performance of the Honeycomb Strip Chamber (HSC). The HSC offers several advantages with respect to classical drift chambers and drift tubes. The main features of the HSC are: -The detector offers the possibility of simultaneous readout of two orthogonal coordinates with approximately the same precision. - The HSC technology is optimised for mass production. This means that the design is modular (monolayers) and automisation of most of the production steps is possible (folding and welding machines). - The technology is flexible. The cell diameter can easily be changed from a few millimetres to at least 20 mm by changing the parameters in the computer programme of the folding machine. The number of monolayers per station can be chosen freely to the demands of the experiment. -The honeycomb structure gives the detector stiffness and makes it self supporting. This makes the technology a very transparent one in terms of radiation length which is important to prevent multiple scattering of high energetic muons. - The dimensions of the detector are defined by high precision templates. Those templates constrain for example the overall tolerance on the wire positions to 20 μm rms. Reproduction of the high precision assembly of the detector is thus guaranteed. (orig.)

  19. The honeycomb strip chamber: A two coordinate and high precision muon detector

    Energy Technology Data Exchange (ETDEWEB)

    Tolsma, H P.T.

    1996-04-19

    This thesis describes the construction and performance of the Honeycomb Strip Chamber (HSC). The HSC offers several advantages with respect to classical drift chambers and drift tubes. The main features of the HSC are: -The detector offers the possibility of simultaneous readout of two orthogonal coordinates with approximately the same precision. - The HSC technology is optimised for mass production. This means that the design is modular (monolayers) and automisation of most of the production steps is possible (folding and welding machines). - The technology is flexible. The cell diameter can easily be changed from a few millimetres to at least 20 mm by changing the parameters in the computer programme of the folding machine. The number of monolayers per station can be chosen freely to the demands of the experiment. -The honeycomb structure gives the detector stiffness and makes it self supporting. This makes the technology a very transparent one in terms of radiation length which is important to prevent multiple scattering of high energetic muons. - The dimensions of the detector are defined by high precision templates. Those templates constrain for example the overall tolerance on the wire positions to 20 {mu}m rms. Reproduction of the high precision assembly of the detector is thus guaranteed. (orig.).

  20. Matrix densification of SiC composites by sintering process

    International Nuclear Information System (INIS)

    Kim, Young-Wook; Jang, Doo-Hee; Eom, Jung-Hye; Chun, Yong-Seong

    2007-02-01

    The objectives of this research are to develop a process for dense SiC fiber-SiC composites with a porosity of 5% or less and to develop high-strength SiC fiber-SiC composites with a strength of 500 MPa or higher. To meet the above objectives, the following research topics were investigated ; new process development for the densification of SiC fiber-SiC composites, effect of processing parameters on densification of SiC fiber-SiC composites, effect of additive composition on matrix microstructure, effects of additive composition and content on densification of SiC fiber-SiC composites, mechanical properties of SiC fiber-SiC composites, effect of fiber coating on densification and strength of SiC fiber-SiC composites, development of new additive composition. There has been a great deal of progress in the development of technologies for the processing and densification of SiC fiber-SiC composites and in better understanding of additive-densification-mechanical property relations as results of this project. Based on the progress, dense SiC fiber-SiC composites (≥97%) and high strength SiC fiber-SiC composites (≥600 MPa) have been developed. Development of 2D SiC fiber-SiC composites with a relative density of ≥97% and a strength of ≥600 MPa can be counted as a notable achievement

  1. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states

    Science.gov (United States)

    Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva

    2016-08-01

    We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been

  2. The QCD coupling and parton distributions at high precision

    International Nuclear Information System (INIS)

    Bluemlein, Johannes

    2010-07-01

    A survey is given on the present status of the nucleon parton distributions and related precision calculations and precision measurements of the strong coupling constant α s (M 2 Z ). We also discuss the impact of these quantities on precision observables at hadron colliders. (orig.)

  3. Two-matrix models and c =1 string theory

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong Chuansheng

    1994-05-01

    We show that the most general two-matrix model with bilinear coupling underlies c = 1 string theory. More precisely we prove that W 1+∞ constraints, a subset of the correlation functions and the integrable hierarchy characterizing such two-matrix model, correspond exactly to the W 1+∞ constraints, to the discrete tachyon correlation functions and the integrable hierarchy of the c = 1 string theory. (orig.)

  4. High-precision solution to the moving load problem using an improved spectral element method

    Science.gov (United States)

    Wen, Shu-Rui; Wu, Zhi-Jing; Lu, Nian-Li

    2018-02-01

    In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.

  5. Variational optimization algorithms for uniform matrix product states

    Science.gov (United States)

    Zauner-Stauber, V.; Vanderstraeten, L.; Fishman, M. T.; Verstraete, F.; Haegeman, J.

    2018-01-01

    We combine the density matrix renormalization group (DMRG) with matrix product state tangent space concepts to construct a variational algorithm for finding ground states of one-dimensional quantum lattices in the thermodynamic limit. A careful comparison of this variational uniform matrix product state algorithm (VUMPS) with infinite density matrix renormalization group (IDMRG) and with infinite time evolving block decimation (ITEBD) reveals substantial gains in convergence speed and precision. We also demonstrate that VUMPS works very efficiently for Hamiltonians with long-range interactions and also for the simulation of two-dimensional models on infinite cylinders. The new algorithm can be conveniently implemented as an extension of an already existing DMRG implementation.

  6. High-Precision Mass Measurements of Exotic Nuclei with the Triple-Trap Mass Spectrometer Isoltrap

    CERN Multimedia

    Blaum, K; Zuber, K T; Stanja, J

    2002-01-01

    The masses of close to 200 short-lived nuclides have already been measured with the mass spectrometer ISOLTRAP with a relative precision between 1$\\times$10$^{-7}$ and 1$\\times$10^{-8}$. The installatin of a radio-frequency quadrupole trap increased the overall efficiency by two orders of magnitude which is at present about 1%. In a recent upgrade, we installed a carbon cluster laser ion source, which will allow us to use carbon clusters as mass references for absolute mass measurements. Due to these improvements and the high reliability of ISOLTRAP we are now able to perform accurate high-precision mass measurements all over the nuclear chart. We propose therefore mass measurements on light, medium and heavy nuclides on both sides of the valley of stability in the coming four years. ISOLTRAP is presently the only instrument capable of the high precision required for many of the proposed studies.

  7. Simulations of a dense plasma focus on a high impedance generator

    Science.gov (United States)

    Beresnyak, Andrey; Giuliani, John; Jackson, Stuart; Richardson, Steve; Swanekamp, Steve; Schumer, Joe; Commisso, Robert; Mosher, Dave; Weber, Bruce; Velikovich, Alexander

    2017-10-01

    We study the connection between plasma instabilities and fast ion acceleration for neutron production on a Dense Plasma Focus (DPF). The experiments will be performed on the HAWK generator (665 kA), which has fast rise time, 1.2 μs, and a high inductance, 607 nH. It is hypothesized that high impedance may enhance the neutron yield because the current will not be reduced during the collapse resulting in higher magnetization. To prevent upstream breakdown, we will inject plasma far from the insulator stack. We simulated rundown and collapse dynamics with Athena - Eulerian 3D, unsplit finite volume MHD code that includes shock capturing with Riemann solvers, resistive diffusion and the Hall term. The simulations are coupled to an equivalent circuit model for HAWK. We will report the dynamics and implosion time as a function of the initial injected plasma distribution and the implications of non-ideal effects. We also traced test particles in MHD fields and confirmed the presence of stochastic acceleration, which was limited by the size of the system and the strength of the magnetic field. Supported by DOE/NNSA and the Naval Research Laboratory Base Program.

  8. A High Precision Laser-Based Autofocus Method Using Biased Image Plane for Microscopy

    Directory of Open Access Journals (Sweden)

    Chao-Chen Gu

    2018-01-01

    Full Text Available This study designs and accomplishes a high precision and robust laser-based autofocusing system, in which a biased image plane is applied. In accordance to the designed optics, a cluster-based circle fitting algorithm is proposed to calculate the radius of the detecting spot from the reflected laser beam as an essential factor to obtain the defocus value. The experiment conduct on the experiment device achieved novel performance of high precision and robustness. Furthermore, the low demand of assembly accuracy makes the proposed method a low-cost and realizable solution for autofocusing technique.

  9. The QCD coupling and parton distributions at high precision

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes

    2010-07-15

    A survey is given on the present status of the nucleon parton distributions and related precision calculations and precision measurements of the strong coupling constant {alpha}{sub s}(M{sup 2}{sub Z}). We also discuss the impact of these quantities on precision observables at hadron colliders. (orig.)

  10. A recently developed bifacial platelet-rich fibrin matrix

    Directory of Open Access Journals (Sweden)

    E Lucarelli

    2010-07-01

    Full Text Available Platelet-rich plasma (PRP is used clinically in liquid or gel form to promote tissue repair. Because of the poor mechanical properties, conventional PRP is often difficult to handle when used in clinical settings and requires secure implantation in a specific site, otherwise when released growth factors could be washed out during an operation. In this study, we analyzed the end product of a recently developed commercially available system (FIBRINET®, which is a dense pliable, platelet-rich fibrin matrix (PRFM. We characterized the mechanical properties of PRFM and tested whether PRFM releases growth factors and whether released factors induce the proliferation of mesenchymal stem cells (MSC. Mechanical properties as well as platelet distribution were evaluated in PRFM. PRFM demonstrated robust mechanical properties, with a tear elastic modulus of 937.3 + 314.6 kPa, stress at a break of 1476.0 + 526.3 kPa, and an elongation at break of 146.3 + 33.8 %. PRFM maintained its mechanical properties throughout the testing process. Microscopic observations showed that the platelets were localized on one side of the matrix. Elevated levels of PDGF-AA, PDGF-AB, EGF, VEGF, bFGF and TGF-β1 were measured in the day 1-conditioned media (CM of PRFM and growth factor levels decreased thereafter. BMP2 and BMP7 were not detectable. MSC culture media supplemented with 20% PRFM-CM stimulated MSC cell proliferation; at 24 and 48 hours the induction of the proliferation was significantly greater than the induction obtained with media supplemented with 20% foetal bovine serum. The present study shows that the production of a dense, physically robust PRFM made through high-speed centrifugation of intact platelets and fibrin in the absence of exogenous thrombin yields a potential tool for accelerating tissue repair.

  11. Stimulated Light Emission in Dense Fog Confined inside a Porous Glass Matrix

    Science.gov (United States)

    Gross, E.; Kovalev, D.; Künzner, N.; Diener, J.; Koch, F.; Fujii, M.

    2002-12-01

    We report on light amplification through stimulated emission in a dielectrically disordered medium. Liquid fragments confined in the solid matrix of porous quartz layers result in a random fluctuation of the dielectric function, and dye molecules embedded in the voids yield optical gain. The level of opacity is tunable by the ambient vapor pressure of the dielectric substance. In the multiple scattering regime, a strong intensity enhancement of the dye emission accompanied by significant spectral narrowing is observed above the threshold for a layer being in the opalescence state.

  12. Fabrication of thin yttria-stabilized-zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells

    DEFF Research Database (Denmark)

    Esposito, Vincenzo; Gadea, Christophe; Hjelm, Johan

    2015-01-01

    In this work, we present how a low-cost HP Deskjet 1000 inkjet printer was used to fabricate a 1.2 mm thin, dense and gas tight 16 cm2 solid oxide fuel cells (SOFC) electrolyte. The electrolyte was printed using an ink made of highly diluted (

  13. Experimental Studies of the Transport Parameters of Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)

    2014-12-01

    There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.

  14. Interfacial (Fiber-matrix) Properties of High-strength Mortar (150 MPa) from Fiber Pullout

    DEFF Research Database (Denmark)

    Shannag, M.J.; Brincker, Rune; Hansen, Will

    1996-01-01

     The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial z......-strength DSP mortar has significantly improved interfacial properties compared to ordinary strength mortar. These results are important in the understanding of the role of steel fibers in improving the tensile properties of high-strength, brittle, cement-matrix composites....... The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial...

  15. Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.

    Science.gov (United States)

    Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y

    2010-11-01

    The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.

  16. High-Precision Measurements of the Bound Electron’s Magnetic Moment

    Directory of Open Access Journals (Sweden)

    Sven Sturm

    2017-01-01

    Full Text Available Highly charged ions represent environments that allow to study precisely one or more bound electrons subjected to unsurpassed electromagnetic fields. Under such conditions, the magnetic moment (g-factor of a bound electron changes significantly, to a large extent due to contributions from quantum electrodynamics. We present three Penning-trap experiments, which allow to measure magnetic moments with ppb precision and better, serving as stringent tests of corresponding calculations, and also yielding access to fundamental quantities like the fine structure constant α and the atomic mass of the electron. Additionally, the bound electrons can be used as sensitive probes for properties of the ionic nuclei. We summarize the measurements performed so far, discuss their significance, and give a detailed account of the experimental setups, procedures and the foreseen measurements.

  17. High-Precision Half-Life Measurements for the Superallowed Fermi β+ Emitters 14O and 18Ne

    Science.gov (United States)

    Laffoley, A. T.; Andreoiu, C.; Austin, R. A. E.; Ball, G. C.; Bender, P. C.; Bidaman, H.; Bildstein, V.; Blank, B.; Bouzomita, H.; Cross, D. S.; Deng, G.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Garrett, P.; Giovinazzo, J.; Grinyer, G. F.; Grinyer, J.; Hadinia, B.; Jamieson, D. S.; Jigmeddorj, B.; Ketelhut, S.; Kisliuk, D.; Leach, K. G.; Leslie, J. R.; MacLean, A.; Miller, D.; Mills, B.; Moukaddam, M.; Radich, A. J.; Rajabali, M. M.; Rand, E. T.; Svensson, C. E.; Tardiff, E.; Thomas, J. C.; Turko, J.; Voss, P.; Unsworth, C.

    High-precision half-life measurements, at the level of ±0.04%, for the superallowed Fermi emitters 14O and 18Ne have been performed at TRIUMF's Isotope Separator and Accelerator facility. Using 3 independent detector systems, a gas-proportional counter, a fast plastic scintillator, and a high-purity germanium array, a series of direct β and γ counting measurements were performed for each of the isotopes. In the case of 14O, these measurements were made to help resolve an existing discrepancy between detection methods, whereas for 18Ne the half-life precision has been improved in anticipation of forthcoming high-precision branching ratio measurements.

  18. Measurement of dispersion of nanoparticles in a dense suspension by high-sensitivity low-coherence dynamic light scattering

    Science.gov (United States)

    Ishii, Katsuhiro; Nakamura, Sohichiro; Sato, Yuki

    2014-08-01

    High-sensitivity low-coherence DLS apply to measurement of particle size distribution of pigments suspended in a ink. This method can be apply to extremely dense and turbid media without dilution. We show the temporal variation of particle size distribution of thixotropy and sedimentary pigments due to aggregation, agglomerate, and sedimentation. Moreover, we demonstrate the influence of dilution of ink to particle size distribution.

  19. Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements

    International Nuclear Information System (INIS)

    2014-07-01

    The recent advances in the development of nuclear science and technology, demonstrating the globally growing economy, require highly accurate, powerful simulations and precise analysis of the experimental results. Confidence in these results is still determined by the accuracy of the atomic and nuclear input data. For studying material response, neutron beams produced from accelerators and research reactors in broad energy spectra are reliable and indispensable tools to obtain high accuracy experimental results for neutron induced reactions. The IAEA supports the accomplishment of high precision nuclear data using nuclear facilities in particular, based on particle accelerators and research reactors around the world. Such data are essential for numerous applications in various industries and research institutions, including the safety and economical operation of nuclear power plants, future fusion reactors, nuclear medicine and non-destructive testing technologies. The IAEA organized and coordinated the technical meeting Use of Neutron Beams for High Precision Nuclear Data Measurements, in Budapest, Hungary, 10–14 December 2012. The meeting was attended by participants from 25 Member States and three international organizations — the European Organization for Nuclear Research (CERN), the Joint Research Centre (JRC) and the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (OECD/NEA). The objectives of the meeting were to provide a forum to exchange existing know-how and to share the practical experiences of neutron beam facilities and associated instrumentation, with regard to the measurement of high precision nuclear data using both accelerators and research reactors. Furthermore, the present status and future developments of worldwide accelerator and research reactor based neutron beam facilities were discussed. This publication is a summary of the technical meeting and additional materials supplied by the international

  20. Expected satiation after repeated consumption of low- or high-energy-dense soup.

    Science.gov (United States)

    Hogenkamp, Pleunie S; Brunstrom, Jeffrey M; Stafleu, Annette; Mars, Monica; de Graaf, Cees

    2012-07-14

    We investigated whether repeated consumption of a low-energy-dense (LED; 208 kJ/100 g) or high-energy-dense (HED; 645 kJ/100 g) soup modifies expectations relating to the satiating capacity of the food, and its subsequent intake. In study 1, participants consumed either a novel-flavoured LED (n 32; 21 (SD 1·6) years, BMI 21·4 (SD 1·6) kg/m(2)) or HED soup (n 32; 21 (SD 1·6) years, BMI 21·3 (SD 1·7) kg/m(2)). Soup was served in a fixed amount on days 1-4 and ad libitum on day 5. 'Expected satiation' was measured on days 1, 2 and 5. Expected satiation did not change after repeated consumption of the LED or HED soup. Ad libitum intake did not differ between the LED (461 (SD 213) g) and HED soup (391 (SD 164) g). Only on day 1, expected satiation was higher for the HED soup than for the LED soup (P = 0·03), suggesting a role for sensory attributes in expected satiation. In study 2, thirty participants (21 (SD 1·6) years, BMI 21·3 (SD 1·7) kg/m(2)) performed a single measurement of expected satiation of the LED and HED soup, and four commercially available types of soup. Ratings on sensory attributes were associated with expected satiation. Results on expected satiation coincided with those of study 1. Thickness and intensity of taste were independently associated with expected satiation. Expectations may initially rely on sensory attributes and previous experiences, and are not easily changed.

  1. A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization

    Directory of Open Access Journals (Sweden)

    Hu Ke-bin

    2015-02-01

    Full Text Available Owing to the platform instability and precision limitations of motion sensors, motion errors negatively affect the quality of synthetic aperture radar (SAR images. The autofocus Back Projection (BP algorithm based on the optimization of image sharpness compensates for motion errors through phase error estimation. This method can attain relatively good performance, while assuming the same phase error for all pixels, i.e., it ignores the spatial variance of motion errors. To overcome this drawback, a high-precision motion error compensation method is presented in this study. In the proposed method, the Antenna Phase Centers (APC are estimated via optimization using the criterion of maximum image intensity. Then, the estimated APCs are applied for BP imaging. Because the APC estimation equals the range history estimation for each pixel, high-precision phase compensation for every pixel can be achieved. Point-target simulations and processing of experimental data validate the effectiveness of the proposed method.

  2. Separation of Platinum from Palladium and Iridium in Iron Meteorites and Accurate High-Precision Determination of Platinum Isotopes by Multi-Collector ICP-MS.

    Science.gov (United States)

    Hunt, Alison C; Ek, Mattias; Schönbächler, Maria

    2017-12-01

    This study presents a new measurement procedure for the isolation of Pt from iron meteorite samples. The method also allows for the separation of Pd from the same sample aliquot. The separation entails a two-stage anion-exchange procedure. In the first stage, Pt and Pd are separated from each other and from major matrix constituents including Fe and Ni. In the second stage, Ir is reduced with ascorbic acid and eluted from the column before Pt collection. Platinum yields for the total procedure were typically 50-70%. After purification, high-precision Pt isotope determinations were performed by multi-collector ICP-MS. The precision of the new method was assessed using the IIAB iron meteorite North Chile. Replicate analyses of multiple digestions of this material yielded an intermediate precision for the measurement results of 0.73 for ε 192 Pt, 0.15 for ε 194 Pt and 0.09 for ε 196 Pt (2 standard deviations). The NIST SRM 3140 Pt solution reference material was passed through the measurement procedure and yielded an isotopic composition that is identical to the unprocessed Pt reference material. This indicates that the new technique is unbiased within the limit of the estimated uncertainties. Data for three iron meteorites support that Pt isotope variations in these samples are due to exposure to galactic cosmic rays in space.

  3. High Performance Multi-GPU SpMV for Multi-component PDE-Based Applications

    KAUST Repository

    Abdelfattah, Ahmad

    2015-07-25

    Leveraging optimization techniques (e.g., register blocking and double buffering) introduced in the context of KBLAS, a Level 2 BLAS high performance library on GPUs, the authors implement dense matrix-vector multiplications within a sparse-block structure. While these optimizations are important for high performance dense kernel executions, they are even more critical when dealing with sparse linear algebra operations. The most time-consuming phase of many multicomponent applications, such as models of reacting flows or petroleum reservoirs, is the solution at each implicit time step of large, sparse spatially structured or unstructured linear systems. The standard method is a preconditioned Krylov solver. The Sparse Matrix-Vector multiplication (SpMV) is, in turn, one of the most time-consuming operations in such solvers. Because there is no data reuse of the elements of the matrix within a single SpMV, kernel performance is limited by the speed at which data can be transferred from memory to registers, making the bus bandwidth the major bottleneck. On the other hand, in case of a multi-species model, the resulting Jacobian has a dense block structure. For contemporary petroleum reservoir simulations, the block size typically ranges from three to a few dozen among different models, and still larger blocks are relevant within adaptively model-refined regions of the domain, though generally the size of the blocks, related to the number of conserved species, is constant over large regions within a given model. This structure can be exploited beyond the convenience of a block compressed row data format, because it offers opportunities to hide the data motion with useful computations. The new SpMV kernel outperforms existing state-of-the-art implementations on single and multi-GPUs using matrices with dense block structure representative of porous media applications with both structured and unstructured multi-component grids.

  4. P2. A fused silica Cherenkov detector for the high precision determination of the weak mixing angle

    Energy Technology Data Exchange (ETDEWEB)

    Gerz, Kathrin; Becker, Dominik; Jennewein, Thomas; Baunack, Sebastian [Johannes Gutenberg Universitaet Mainz (Germany); Kumar, Krishna [Department of Physics and Astronomy, Stony Brook University, Stony Brook (United States); Maas, Frank [Johannes Gutenberg Universitaet Mainz (Germany); Helmholtz Institut Mainz (Germany)

    2016-07-01

    The weak mixing angle is a central parameter of the standard model and its high precision determination is tantamount to probing for new physics effects. The P2 experiment at the MESA accelerator in Mainz will perform such a measurement of the weak mixing angle via parity violating electron-proton scattering. We aim to determine sin{sup 2}(Θ{sub W}) to a relative precision of 0.13%. Since the weak charge of the proton is small compared to its electric charge, the measurable asymmetry is only 33 ppb, requiring a challenging measurement to a precision of only 0.44 ppb. In order to achieve this precision we need to collect very high statistics and carefully minimize interfering effects like apparatus induced false asymmetries. We present the status of the development of an integrating fused-silica Cherenkov detector, which is suitable for a high precision and high intensity experiment like P2. The contribution will focus on the investigation of the detector's response to incoming signal and background particles both by simulations and by beam tests at the MAMI accelerator.

  5. Warm dense matter and Thomson scattering at FLASH

    International Nuclear Information System (INIS)

    Faeustlin, Roland Rainer

    2010-05-01

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  6. Warm dense matter and Thomson scattering at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Faeustlin, Roland Rainer

    2010-05-15

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  7. Dense-gas dispersion advection-diffusion model

    International Nuclear Information System (INIS)

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments

  8. Precision axial translator with high stability.

    Science.gov (United States)

    Bösch, M A

    1979-08-01

    We describe a new type of translator which is inherently stable against torsion and twisting. This concentric translator is also ideally suited for precise axial motion with clearance of the center line.

  9. High Precision Measurement of the differential vector boson cross-sections with the ATLAS detector

    CERN Document Server

    Armbruster, Aaron James; The ATLAS collaboration

    2017-01-01

    Measurements of the Drell-Yan production of W and Z/gamma bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at center-of-mass energies of 7. The measurements are performed for W+, W- and Z/gamma bosons integrated and as a function of the boson or lepton rapidity and the Z/gamma* mass. Unprecedented precision is reached and strong constraints on Parton Distribution functions, in particular the strange density are found. Z cross sections are also measured at center-of-mass energies of 8 eV and 13TeV, and cross-section ratios to the top-quark pair production have been derived. This ratio measurement leads to a cancellation of systematic effects and allows for a high precision comparison to the theory predictions. The cross section of single W events has also been measured precisely at center-of-mass energies of 8TeV and 13TeV and the W charge asymmetry has been determ...

  10. Hydrogen and helium under high pressure: a case for a classical theory of dense matter

    International Nuclear Information System (INIS)

    Celebonovic, V.

    1989-01-01

    When subject to high pressure, H 2 and 3 He are expected to undergo phase transitions, and to become metallic at a sufficiently high pressure. Using a semiclassical theory of dense matter proposed by Savic and Kasanin (1962/65), calculations of phase transition and metallisation pressure have been performed for these two materials. In hydrogen, metallisation occurs at 3.0±0.2 Mbar, while for helium the corresponding value is 106±1 Mbar. A phase transition occurs in helium at 10.0±0.4 Mbar. These values are close to the results obtainable by more rigorous methods. Possibilities of experimental verification of the calculations are briefly discussed. 38 refs

  11. Hydrogen and helium under high pressure: a case for a classical theory of dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Celebonovic, V. (Belgrade Univ. (Yugoslavia). Inst. za Fiziku)

    1989-06-01

    When subject to high pressure, H{sub 2} and {sup 3}He are expected to undergo phase transitions, and to become metallic at a sufficiently high pressure. Using a semiclassical theory of dense matter proposed by Savic and Kasanin (1962/65), calculations of phase transition and metallisation pressure have been performed for these two materials. In hydrogen, metallisation occurs at 3.0{plus minus}0.2 Mbar, while for helium the corresponding value is 106{plus minus}1 Mbar. A phase transition occurs in helium at 10.0{plus minus}0.4 Mbar. These values are close to the results obtainable by more rigorous methods. Possibilities of experimental verification of the calculations are briefly discussed. 38 refs.

  12. Improvement of the Convergence of the Invariant Imbedding T-Matrix Method

    Science.gov (United States)

    Zhai, S.; Panetta, R. L.; Yang, P.

    2017-12-01

    The invariant imbedding T-matrix method (IITM) is based on an electromagnetic volume integral equation to compute the T-matrix of an arbitrary scattering particle. A free-space Green's function is chosen as the integral kernel and thus each source point is placed in an imaginary vacuum spherical shell extending from the center to that source point. The final T-matrix (of the largest circumscribing sphere) is obtained through an iterative relation that, layer by layer, computes the T-matrix from the particle center to the outermost shell. On each spherical shell surface, an integration of the product of the refractive index 𝜀(𝜃, 𝜑) and vector spherical harmonics must be performed, resulting in the so-called U-matrix, which directly leads to the T-matrix on the spherical surface. Our observations indicate that the matrix size and sparseness are determined by the particular refractive index function 𝜀(𝜃, 𝜑). If 𝜀(𝜃, 𝜑) is an analytic function on the surface, then the matrix elements resulting from the integration decay rapidly, leading to sparse matrix; if 𝜀(𝜃, 𝜑) is not (for example, contains jump discontinuities), then the matrix elements decay slowly, leading to a large dense matrix. The intersection between an irregular scatterer and each spherical shell can leave jump discontinuities in 𝜀(𝜃, 𝜑) distributed over the shell surface. The aforementioned feature is analogous to the Gibbs phenomenon appearing in the orthogonal expansion of non-smooth functions with Hermitian eigenfunctions (complex exponential, Legendre, Bessel,...) where poor convergence speed is a direct consequence of the slow decay rate of the expansion coefficients. Various methods have been developed to deal with this slow convergence in the presence of discontinuities. Among the different approaches the most practical one may be a spectral filter: a filter is applied on the

  13. Matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    Science.gov (United States)

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2013-11-05

    Mechanisms for performing matrix multiplication operations with data pre-conditioning in a high performance computing architecture are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A load and splat operation is performed to load an element of a second vector operand and replicating the element to each of a plurality of elements of a second target vector register. A multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product of the matrix multiplication operation is accumulated with other partial products of the matrix multiplication operation.

  14. Study of dense-plasma properties using very high-frequency electromagnetic waves (light waves); Etude des proprietes des plasmas denses au moyen d'ondes electromagnetiques de tres haute frequence (ondes lumineuses)

    Energy Technology Data Exchange (ETDEWEB)

    Gormezano, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    A study is made of methods based on the use of lasers for measuring the electronic density and temperature of dense plasmas (N{sub e} > 10{sup 15}e/cm{sup 3}): - an interferometric method using a gas laser, based on the. properties of the Perot-Fabry cavities; - a method making use of the 90 deg C scattering produced by the plasma on light emitted by a ruby laser. These methods have been applied to various dense plasmas: - high-frequency plasma torch; - azimuth compression; - plasma bursts produced by focussing a laser beam on a metal target. The measurements have also been carried out using conventional methods of diagnosis. It has thus been possible to measure densities of between 5.10{sup 15} and 10{sup 19} e/cm{sup 3} and temperatures of between 3 and 10 eV. These different-methods are then compared, (author) [French] On etudie la mesure de la densite et de la temperature electronique des plasmas denses (N{sub e} > 10{sup 15} e/cm{sup 3}) a I'aide de methodes utilisant des lasers: - une methode interferometrique utilisant un laser a gaz, basee sur les proprietes des cavites Perot Fabry; -- une methode utilisant la diffusion a 900 deg C par le plasma de la lumiere issue d'un laser a rubis. Ces methodes ont ete appliquees sur differents plasmas denses: - Torche a plasma haute-frequence; - Compression azimutale; - Bouffees de plasma produites par la focalisation d'un faisceau laser sur une cible metallique. Les mesures ont ete egalement faites a I'aide de diagnostics classiques. On a pu ainsi mesurer des densites comprises entre 5.10{sup 15} et 10{sup 19} e/cm{sup 3} et des temperatures comprises entre 3 et 10 eV. On compare ensuite ces differentes methodes. (auteur)

  15. Why precision?

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes

    2012-05-15

    Precision measurements together with exact theoretical calculations have led to steady progress in fundamental physics. A brief survey is given on recent developments and current achievements in the field of perturbative precision calculations in the Standard Model of the Elementary Particles and their application in current high energy collider data analyses.

  16. Why precision?

    International Nuclear Information System (INIS)

    Bluemlein, Johannes

    2012-05-01

    Precision measurements together with exact theoretical calculations have led to steady progress in fundamental physics. A brief survey is given on recent developments and current achievements in the field of perturbative precision calculations in the Standard Model of the Elementary Particles and their application in current high energy collider data analyses.

  17. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    Science.gov (United States)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  18. Precision crystal alignment for high-resolution electron microscope imaging

    International Nuclear Information System (INIS)

    Wood, G.J.; Beeching, M.J.

    1990-01-01

    One of the more difficult tasks involved in obtaining quality high-resolution electron micrographs is the precise alignment of a specimen into the required zone. The current accepted procedure, which involves changing to diffraction mode and searching for symmetric point diffraction pattern, is insensitive to small amounts of misalignment and at best qualitative. On-line analysis of the fourier space representation of the image, both for determining and correcting crystal tilt, is investigated. 8 refs., 42 figs

  19. A high precision straw tube chamber with cathode readout

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Golutvin, I.A.; Ershov, Yu.V.; Zubarev, E.V.; Ivanov, A.B.; Lysiakov, V.N.; Makhankov, A.V.; Movchan, S.A.; Peshekhonov, V.D.; Preda, T.

    1993-01-01

    The high precision straw chamber with cathode readout was constructed and investigated. The 10 mm diameter straws were made of aluminized Mylar with transparent longitudinal window. The X-coordinate information has been taken from cathode strips as induced charges and investigated with the centroid method. The spatial resolution σ x =103 μm was obtained at a signal-to-noise ratio of about 70. The possible ways to improve the signal-to-noise ratio are discussed. (orig.)

  20. High-Spatial-Multiplicity Multicore Fibers for Future Dense Space-Division-Multiplexing Systems

    DEFF Research Database (Denmark)

    Matsuo, Shoichiro; Takenaga, Katsuhiro; Sasaki, Yusuke

    2016-01-01

    Multicore fibers and few-mode fibers have potential application in realizing dense-space-division multiplexing systems. However, there are some tradeoff requirements for designing the fibers. In this paper, the tradeoff requirements such as spatial channel count, crosstalk, differential mode dela...

  1. High-Precision Half-Life and Branching Ratio Measurements for the Superallowed β+ Emitter 26Alm

    Science.gov (United States)

    Finlay, P.; Svensson, C. E.; Demand, G. A.; Garrett, P. E.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Rand, E. T.; Ball, G.; Bandyopadhyay, D.; Djongolov, M.; Ettenauer, S.; Hackman, G.; Pearson, C. J.; Leslie, J. R.; Andreoiu, C.; Cross, D.; Austin, R. A. E.; Grinyer, G. F.; Sumithrarachchi, C. S.; Williams, S. J.; Triambak, S.

    2013-03-01

    High-precision half-life and branching-ratio measurements for the superallowed β+ emitter 26Alm were performed at the TRIUMF-ISAC radioactive ion beam facility. An upper limit of ≤ 15 ppm at 90% C.L. was determined for the sum of all possible non-analogue β+/EC decay branches of 26Alm, yielding a superallowed branching ratio of 100.0000+0-0.0015%. A value of T1/2 = 6:34654(76) s was determined for the 26Alm half-life which is consistent with, but 2.5 times more precise than, the previous world average. Combining these results with world-average measurements yields an ft value of 3037.58(60) s, the most precisely determined for any superallowed emitting nucleus to date. This high-precision ft value for 26Alm provides a new benchmark to refine theoretical models of isospin-symmetry-breaking effects in superallowed β decays.

  2. Proceedings, High-Precision $\\alpha_s$ Measurements from LHC to FCC-ee

    Energy Technology Data Exchange (ETDEWEB)

    d' Enterria, David [CERN; Skands, Peter Z. [Monash U.

    2015-01-01

    This document provides a writeup of all contributions to the workshop on "High precision measurements of $\\alpha_s$: From LHC to FCC-ee" held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the QCD coupling $\\alpha_s$ from 15 methods where high precision measurements are (or will be) available. Those include low-energy observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv) $\\tau$ decays, (v) soft parton-to-hadron fragmentation functions, as well as high-energy observables: (vi) global fits of parton distribution functions, (vii) hard parton-to-hadron fragmentation functions, (viii) jets in $e^\\pm$p DIS and $\\gamma$-p photoproduction, (ix) photon structure function in $\\gamma$-$\\gamma$, (x) event shapes and (xi) jet cross sections in $e^+e^-$ collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv) top-quark cross sections in proton-(anti)proton collisions. The current status of the theoretical and experimental uncertainties associated to each extraction method, the improvements expected from LHC data in the coming years, and future perspectives achievable in $e^+e^-$ collisions at the Future Circular Collider (FCC-ee) with $\\cal{O}$(1--100 ab$^{-1}$) integrated luminosities yielding 10$^{12}$ Z bosons and jets, and 10$^{8}$ W bosons and $\\tau$ leptons, are thoroughly reviewed. The current uncertainty of the (preliminary) 2015 strong coupling world-average value, $\\alpha_s(m_Z)$ = 0.1177 $\\pm$ 0.0013, is about 1\\%. Some participants believed this may be reduced by a factor of three in the near future by including novel high-precision observables, although this opinion was not universally shared. At the FCC-ee facility, a factor of ten reduction in the $\\alpha_s$ uncertainty should be possible, mostly thanks to the huge Z and W data samples available.

  3. Toward Superior Capacitive Energy Storage: Recent Advances in Pore Engineering for Dense Electrodes.

    Science.gov (United States)

    Liu, Congcong; Yan, Xiaojun; Hu, Fei; Gao, Guohua; Wu, Guangming; Yang, Xiaowei

    2018-04-01

    With the rapid development of mobile electronics and electric vehicles, future electrochemical capacitors (ECs) need to store as much energy as possible in a rather limited space. As the core component of ECs, dense electrodes that have a high volumetric energy density and superior rate capability are the key to achieving improved energy storage. Here, the significance of and recent progress in the high volumetric performance of dense electrodes are presented. Furthermore, dense yet porous electrodes, as the critical precondition for realizing superior electrochemical capacitive energy, have become a scientific challenge and an attractive research focus. From a pore-engineering perspective, insight into the guidelines of engineering the pore size, connectivity, and wettability is provided to design dense electrodes with different porous architectures toward high-performance capacitive energy storage. The current challenges and future opportunities toward dense electrodes are discussed and include the construction of an orderly porous structure with an appropriate gradient, the coupling of pore sizes with the solvated cations and anions, and the design of coupled pores with diverse electrolyte ions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Optimization of the data taking strategy for a high precision τ mass measurement

    International Nuclear Information System (INIS)

    Wang, Y.K.; Mo, X.H.; Yuan, C.Z.; Liu, J.P.

    2007-01-01

    To achieve a high precision τ mass (m τ ) measurement at the forthcoming high luminosity experiment, Monte Carlo simulation and sampling technique are adopted to simulate various data taking cases from which the optimal scheme is determined. The study indicates that when m τ is the sole parameter to be fit, the optimal energy for data taking is located near the τ + τ - production threshold in the vicinity of the largest derivative of the cross-section to energy; one point in the optimal position with luminosity around 63pb -1 is sufficient for getting a statistical precision of 0.1MeV/c 2 or better

  5. Advances in the Control System for a High Precision Dissolved Organic Carbon Analyzer

    Science.gov (United States)

    Liao, M.; Stubbins, A.; Haidekker, M.

    2017-12-01

    Dissolved organic carbon (DOC) is a master variable in aquatic ecosystems. DOC in the ocean is one of the largest carbon stores on earth. Studies of the dynamics of DOC in the ocean and other low DOC systems (e.g. groundwater) are hindered by the lack of high precision (sub-micromolar) analytical techniques. Results are presented from efforts to construct and optimize a flow-through, wet chemical DOC analyzer. This study focused on the design, integration and optimization of high precision components and control systems required for such a system (mass flow controller, syringe pumps, gas extraction, reactor chamber with controlled UV and temperature). Results of the approaches developed are presented.

  6. High-precision comparison of the antiproton-to-proton charge-to-mass ratio.

    Science.gov (United States)

    Ulmer, S; Smorra, C; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-08-13

    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p − 1 =1(69) × 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of |α − 1| < 8.7 × 10(-7).

  7. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-01-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders. -- Highlights: ► New superposition T-matrix code is applied to soot aerosols. ► Quasi-Rayleigh side-scattering peak in linear depolarization (LD) is explained. ► LD measurements can be used for morphological characterization of soot aerosols

  8. High precision mass measurements in Ψ and Υ families revisited

    International Nuclear Information System (INIS)

    Artamonov, A.S.; Baru, S.E.; Blinov, A.E.

    2000-01-01

    High precision mass measurements in Ψ and Υ families performed in 1980-1984 at the VEPP-4 collider with OLYA and MD-1 detectors are revisited. The corrections for the new value of the electron mass are presented. The effect of the updated radiative corrections has been calculated for the J/Ψ(1S) and Ψ(2S) mass measurements [ru

  9. High fidelity visualization of cell-to-cell variation and temporal dynamics in nascent extracellular matrix formation.

    Science.gov (United States)

    McLeod, Claire M; Mauck, Robert L

    2016-12-12

    Extracellular matrix dynamics are key to tissue morphogenesis, homeostasis, injury, and repair. The spatiotemporal organization of this matrix has profound biological implications, but is challenging to monitor using standard techniques. Here, we address these challenges by using noncanonical amino acid tagging to fluorescently label extracellular matrix synthesized in the presence of bio-orthogonal methionine analogs. This strategy labels matrix proteins with high resolution, without compromising their distribution or mechanical function. We demonstrate that the organization and temporal dynamics of the proteinaceous matrix depend on the biophysical features of the microenvironment, including the biomaterial scaffold and the niche constructed by cells themselves. Pulse labeling experiments reveal that, in immature constructs, nascent matrix is highly fibrous and interdigitates with pre-existing matrix, while in more developed constructs, nascent matrix lacks fibrous organization and is retained in the immediate pericellular space. Inhibition of collagen crosslinking increases matrix synthesis, but compromises matrix organization. Finally, these data demonstrate marked cell-to-cell heterogeneity amongst both chondrocytes and mesenchymal stem cells undergoing chondrogenesis. Collectively, these results introduce fluorescent noncanonical amino acid tagging as a strategy to investigate spatiotemporal matrix organization, and demonstrate its ability to identify differences in phenotype, microenvironment, and matrix assembly at the single cell level.

  10. High-speed scanning stroboscopic fringe-pattern projection technology for three-dimensional shape precision measurement.

    Science.gov (United States)

    Yang, Guowei; Sun, Changku; Wang, Peng; Xu, Yixin

    2014-01-10

    A high-speed scanning stroboscopic fringe-pattern projection system is designed. A high-speed rotating polygon mirror and a line-structured laser cooperate to produce stable and unambiguous stroboscopic fringe patterns. The system combines the rapidity of the grating projection with the high accuracy of the line-structured laser light source. The fringe patterns have fast frame rate, great density, high precision, and high brightness, with convenience and accuracy in adjusting brightness, frequency, linewidth, and the amount of phase shift. The characteristics and the stability of this system are verified by experiments. Experimental results show that the finest linewidth can reach 40 μm and that the minimum fringe cycle is 80 μm. Circuit modulation makes the light source system flexibly adjustable, easy to control in real time, and convenient to project various fringe patterns. Combined with different light intensity adjustment algorithms and 3D computation models, the 3D topography with high accuracy can be obtained for objects measured under different environments or objects with different sizes, morphologies, and optical properties. The proposed system shows a broad application prospect for fast 3D shape precision measurements, particularly in the industrial field of 3D online detection for precision devices.

  11. School and district wellness councils and availability of low-nutrient, energy-dense vending fare in Minnesota middle and high schools.

    Science.gov (United States)

    Kubik, Martha Y; Lytle, Leslie A; Farbakhsh, Kian

    2011-01-01

    The Child Nutrition and WIC Reauthorization Act of 2004 required school districts participating in the federal school meals program to establish by the start of the 2006-2007 school year policies that included nutrition guidelines for all foods sold on school campus during the school day and policy development involving key stakeholders. For many schools, policy development was done by wellness councils. This study examined the association between having a wellness council and availability of low-nutrient, energy-dense foods/beverages in school vending machines following enactment of the federal legislation. In 2006-2007, Minnesota middle (n=35) and high (n=54) school principals reported whether their school and district had a wellness council. Trained research staff observed foods/beverages in vending machines accessible to students. Low-nutrient, energy-dense foods/beverages (snacks >3 g fat or >200 calories/serving, and soda, fruit/sport drinks and reduced-fat/whole milk) were grouped into seven categories (eg, high-fat baked goods) and a food score was calculated. Higher scores indicated more low-nutrient, energy-dense vending fare. Multivariate linear regression, adjusted for school characteristics, was used to examine associations between scores and a three-category council variable (district-only; district and school; no council). Among schools, 53% had district-only councils, 38% district and school councils, and 9% had no council. Schools with both a district and school council had a significantly lower mean food score than schools without councils (P=0.03). The potential of wellness councils to impact availability of low-nutrient, energy-dense vending fare is promising. There may be an added benefit to having both a school and district council. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  12. Self-tuning in master-slave synchronization of high-precision stage systems

    NARCIS (Netherlands)

    Heertjes, M.F.; Temizer, B.; Schneiders, M.G.E.

    2013-01-01

    For synchronization of high-precision stage systems, in particular the synchronization between a wafer and a reticle stage system of a wafer scanner, a master–slave controller design is presented. The design consists of a synchronization controller based on FIR filters and a data-driven self-tuning

  13. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hui, E-mail: penghui@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Liu, Chang [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Yuan, Yuan [Zhuzhou Seed Cemented Carbide Technology Co. Ltd, No. 1099 Xiangda Road, Zhuzhou, Hunan 412000 (China); Gong, Shengkai; Xu, Huibin [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China)

    2016-06-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  14. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    International Nuclear Information System (INIS)

    Peng, Hui; Liu, Chang; Guo, Hongbo; Yuan, Yuan; Gong, Shengkai; Xu, Huibin

    2016-01-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  15. Laser rapid forming technology of high-performance dense metal components with complex structure

    Science.gov (United States)

    Huang, Weidong; Chen, Jing; Li, Yanming; Lin, Xin

    2005-01-01

    Laser rapid forming (LRF) is a new and advanced manufacturing technology that has been developed on the basis of combining high power laser cladding technology with rapid prototyping (RP) to realize net shape forming of high performance dense metal components without dies. Recently we have developed a set of LRF equipment. LRF experiments were carried out on the equipment to investigate the influences of processing parameters on forming characterizations systematically with the cladding powder materials as titanium alloys, superalloys, stainless steel, and copper alloys. The microstructure of laser formed components is made up of columnar grains or columnar dendrites which grow epitaxially from the substrate since the solid components were prepared layer by layer additionally. The result of mechanical testing proved that the mechanical properties of laser formed samples are similar to or even over that of forging and much better than that of casting. It is shown in this paper that LRF technology is providing a new solution for some difficult processing problems in the high tech field of aviation, spaceflight and automobile industries.

  16. Pseudoinverse preconditioners and iterative methods for large dense linear least-squares problems

    Directory of Open Access Journals (Sweden)

    Oskar Cahueñas

    2013-05-01

    Full Text Available We address the issue of approximating the pseudoinverse of the coefficient matrix for dynamically building preconditioning strategies for the numerical solution of large dense linear least-squares problems. The new preconditioning strategies are embedded into simple and well-known iterative schemes that avoid the use of the, usually ill-conditioned, normal equations. We analyze a scheme to approximate the pseudoinverse, based on Schulz iterative method, and also different iterative schemes, based on extensions of Richardson's method, and the conjugate gradient method, that are suitable for preconditioning strategies. We present preliminary numerical results to illustrate the advantages of the proposed schemes.

  17. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew J. [Northern Illinois Univ., DeKalb, IL (United States)

    2017-05-01

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experiments investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.

  18. Studying dense plasmas with coherent XUV pulses

    International Nuclear Information System (INIS)

    Stabile, H.

    2006-12-01

    The investigation of dense plasma dynamic requires the development of diagnostics able to ensure the measurement of electronic density with micro-metric space resolution and sub-nanosecond, or even subpicosecond, time resolution (indeed this must be at least comparable with the characteristic tune scale of plasma evolution). In contrast with low-density plasmas, dense plasmas cannot be studied using optical probes in the visible domain, the density range accessible being limited to the critical density (N c equals 1.1*10 21 λ -2 (μm) ∼ 10 21 cm -3 for infrared). In addition, light is reflected even at smaller densities if the medium exhibits sharp density gradients. Hence probing of dense plasmas, for instance those produced by laser irradiation of solids, requires using shorter wavelength radiation. Thanks to their physical properties, high order harmonics generated in rare gases are particularly adapted to the study of dense plasmas. Indeed, they can naturally be synchronized with the generating laser and their pulse duration is very short, which makes it possible to use them in pump-probe experiments. Moreover, they exhibit good spatial and temporal coherencies. Two types of diagnostics were developed during this thesis. The first one was used to study the instantaneous creation of hot-solid-density plasma generated by focusing a femtosecond high-contrast laser on an ultra-thin foil (100 nm) in the 10 18 W/cm 2 intensity regime. The use of high order harmonics, providing a probe beam of sufficiently short wavelengths to penetrate such a medium, enables the study of its dynamics on the 100 fs time scale. The second one uses the harmonics beam as probe beam (λ equals 32 nm) within an interferometric device. This diagnostic was designed to ensure a micro-metric spatial resolution and a temporal resolution in the femtosecond range. The first results in presence of plasma created by irradiation of an aluminum target underline the potentialities of this new

  19. Computer-controlled detection system for high-precision isotope ratio measurements

    International Nuclear Information System (INIS)

    McCord, B.R.; Taylor, J.W.

    1986-01-01

    In this paper the authors describe a detection system for high-precision isotope ratio measurements. In this new system, the requirement for a ratioing digital voltmeter has been eliminated, and a standard digital voltmeter interfaced to a computer is employed. Instead of measuring the ratio of the two steadily increasing output voltages simultaneously, the digital voltmeter alternately samples the outputs at a precise rate over a certain period of time. The data are sent to the computer which calculates the rate of charge of each amplifier and divides the two rates to obtain the isotopic ratio. These results simulate a coincident measurement of the output of both integrators. The charge rate is calculated by using a linear regression method, and the standard error of the slope gives a measure of the stability of the system at the time the measurement was taken

  20. [Nuclear matrix organization of the chromocenters in cultured murine fibroblasts].

    Science.gov (United States)

    Sheval', E V; Poliakov, V Iu

    2010-01-01

    In the current work, the structural organization of nuclear matrix of pericentromeric heterochromatin blocks (chromocenters) inside cultured murine fibroblasts was investigated. After 2 M NaCl extraction without DNase I treatment, chromocenters were extremely swelled, and it was impossible to detect them using conventional electron microscopy. Using immunogolding with anti-topoisomerase IIalpha antibody, we demonstrated that residual chromocenters were subdivided into numerous discrete aggregates. After 2 M NaCl extraction with DNase I treatment, the residual chromocenters appeared as a dense meshwork of thin fibers, and using this feature, the residual chromocenters were easily distinguished from the rest of nuclear matrix. After extraction with dextran sulfate and heparin, the chromocenters were decondensed, and chromatin complexes having rosette organization (central core from which numerous DNA fibers radiated) were seen. Probably, the appearance of these rosettes was a consequence of incomplete chromatin extraction. Thus, the nuclear matrix of pericentromeric chromosome regions in cultured murine fibroblasts differs morphologically from the rest of nuclear matrix.

  1. Present status and future aspects of highly precise radiotherapy

    International Nuclear Information System (INIS)

    Oita, Masataka; Takegawa, Yoshihiro; Maezawa, Hiroshi; Ikushima, Hitoshi; Osaki, Kyosuke; Nishitani, Hiromu

    2006-01-01

    This review describes about therapeutic equipments, irradiation technology, actual practice of highly precise radiotherapy (RT) and its tasks in future. Development of radiation equipments has made the therapy highly precise. At present, there are reportedly 836 linacs and 23 microtrons in Japan (March, 2005), most of which are computerized, new generation equipments. Image-guided RT, CT-linac system, real-time tumor-tracking RT (RTRT), tomotherapy and cyberknife are introduced owing to development of concerned devices and equipments. In addition, there are 7 facilities with proton and/or heavy ion beams. In parallel with the machine development above, irradiation has become to that from 2D to 3D by multi-gate technique with use of multi-leaf collimator and intensity-modulated RT is introduced. RTRT is an example of 4D RT. Practically, stereotactic irradiation (STI) to brain tumor has resulted in 1-year cumulative survival rate of 58% in 16 cases (23 foci, median size 1.2 cm and volume 0.57 ml) with median dose of 21.0 Gy in authors' hospital. STI in the early stage lung cancers is also practically conducted without severe adverse effects. Future tasks involve the further development of irradiation techniques and RT planning, QA/QC system, and raising of experts in related fields, which is a national problem. (T.I.)

  2. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    Directory of Open Access Journals (Sweden)

    Rohit Shukla

    2018-03-01

    Full Text Available Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

  3. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    Science.gov (United States)

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines. PMID:29593483

  4. A modified precise integration method based on Magnus expansion for transient response analysis of time varying dynamical structure

    International Nuclear Information System (INIS)

    Yue, Cong; Ren, Xingmin; Yang, Yongfeng; Deng, Wangqun

    2016-01-01

    This paper provides a precise and efficacious methodology for manifesting forced vibration response with respect to the time-variant linear rotational structure subjected to unbalanced excitation. A modified algorithm based on time step precise integration method and Magnus expansion is developed for instantaneous dynamic problems. The iterative solution is achieved by the ideology of transition and dimensional increment matrix. Numerical examples on a typical accelerating rotation system considering gyroscopic moment and mass unbalance force comparatively demonstrate the validity, effectiveness and accuracy with Newmark-β method. It is shown that the proposed algorithm has high accuracy without loss efficiency.

  5. Laser technology for high precision satellite tracking

    Science.gov (United States)

    Plotkin, H. H.

    1974-01-01

    Fixed and mobile laser ranging stations have been developed to track satellites equipped with retro-reflector arrays. These have operated consistently at data rates of once per second with range precision better than 50 cm, using Q-switched ruby lasers with pulse durations of 20 to 40 nanoseconds. Improvements are being incorporated to improve the precision to 10 cm, and to permit ranging to more distant satellites. These include improved reflector array designs, processing and analysis of the received reflection pulses, and use of sub-nanosecond pulse duration lasers.

  6. Progress Towards a High-Precision Infrared Spectroscopic Survey of the H_3^+ Ion

    Science.gov (United States)

    Perry, Adam J.; Hodges, James N.; Markus, Charles R.; Kocheril, G. Stephen; Jenkins, Paul A., II; McCall, Benjamin J.

    2015-06-01

    The trihydrogen cation, H_3^+, represents one of the most important and fundamental molecular systems. Having only two electrons and three nuclei, H_3^+ is the simplest polyatomic system and is a key testing ground for the development of new techniques for calculating potential energy surfaces and predicting molecular spectra. Corrections that go beyond the Born-Oppenheimer approximation, including adiabatic, non-adiabatic, relativistic, and quantum electrodynamic corrections are becoming more feasible to calculate. As a result, experimental measurements performed on the H_3^+ ion serve as important benchmarks which are used to test the predictive power of new computational methods. By measuring many infrared transitions with precision at the sub-MHz level it is possible to construct a list of the most highly precise experimental rovibrational energy levels for this molecule. Until recently, only a select handful of infrared transitions of this molecule have been measured with high precision (˜ 1 MHz). Using the technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, we are aiming to produce the largest high-precision spectroscopic dataset for this molecule to date. Presented here are the current results from our survey along with a discussion of the combination differences analysis used to extract the experimentally determined rovibrational energy levels. O. Polyansky, et al., Phil. Trans. R. Soc. A (2012), 370, 5014. M. Pavanello, et al., J. Chem. Phys. (2012), 136, 184303. L. Diniz, et al., Phys. Rev. A (2013), 88, 032506. L. Lodi, et al., Phys. Rev. A (2014), 89, 032505. J. Hodges, et al., J. Chem. Phys (2013), 139, 164201.

  7. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope.

    Science.gov (United States)

    Wang, Ye; He, Honghui; Chang, Jintao; Zeng, Nan; Liu, Shaoxiong; Li, Migao; Ma, Hui

    2015-12-01

    Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Quantum Control of Open Systems and Dense Atomic Ensembles

    Science.gov (United States)

    DiLoreto, Christopher

    Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated

  9. Utility of supplemental screening with breast ultrasound in asymptomatic women with dense breast tissue who are not at high risk for breast cancer.

    Science.gov (United States)

    Klevos, Geetika A; Collado-Mesa, Fernando; Net, Jose M; Yepes, Monica M

    2017-01-01

    To assess the results of an initial round of supplemental screening with hand-held bilateral breast ultrasound following a negative screening mammogram in asymptomatic women with dense breast tissue who are not at high risk for breast cancer. A retrospective, Health Insurance Portability and Accountability Act compliant, Institutional Research Board approved study was performed at a single academic tertiary breast center. Informed consent was waived. A systematic review of the breast imaging center database was conducted to identify and retrieve data for all asymptomatic women, who were found to have heterogeneously dense or extremely dense breast tissue on screening bilateral mammograms performed from July 1, 2010 through June 30, 2012 and who received a mammographic final assessment American College of Radiology's (ACR) Breast Imaging Reporting and Data System (BI-RADS) category 1 or BI-RADS category 2. Hand-held screening ultrasound was performed initially by a technologist followed by a radiologist. Chi-square and t -test were used and statistical significance was considered at P ultrasound. BI-RADS category 1 or 2 was assigned to 323 women (81.9%). BI-RADS category 3 was assigned to 50 women (12.9%). A total of 26 biopsies/aspirations were recommended and performed in 26 women (6.6%). The most common finding for which biopsy was recommended was a solid mass (88.5%) with an average size of 0.9 cm (0.5-1.7 cm). Most frequent pathology result was fibroadenoma (60.8%). No carcinoma was found. Our data support the reported occurrence of a relatively high number of false positives at supplemental screening with breast ultrasound following a negative screening mammogram in asymptomatic women with dense breast tissue, who are not at a high risk of developing breast cancer, and suggests that caution is necessary in establishing wide implementation of this type of supplemental screening for all women with dense breast tissue without considering other risk factors for

  10. High precision isotopic ratio analysis of volatile metal chelates

    International Nuclear Information System (INIS)

    Hachey, D.L.; Blais, J.C.; Klein, P.D.

    1980-01-01

    High precision isotope ratio measurements have been made for a series of volatile alkaline earth and transition metal chelates using conventional GC/MS instrumentation. Electron ionization was used for alkaline earth chelates, whereas isobutane chemical ionization was used for transition metal studies. Natural isotopic abundances were determined for a series of Mg, Ca, Cr, Fe, Ni, Cu, Cd, and Zn chelates. Absolute accuracy ranged between 0.01 and 1.19 at. %. Absolute precision ranged between +-0.01-0.27 at. % (RSD +- 0.07-10.26%) for elements that contained as many as eight natural isotopes. Calibration curves were prepared using natural abundance metals and their enriched 50 Cr, 60 Ni, and 65 Cu isotopes covering the range 0.1-1010.7 at. % excess. A separate multiple isotope calibration curve was similarly prepared using enriched 60 Ni (0.02-2.15 at. % excess) and 62 Ni (0.23-18.5 at. % excess). The samples were analyzed by GC/CI/MS. Human plasma, containing enriched 26 Mg and 44 Ca, was analyzed by EI/MS. 1 figure, 5 tables

  11. High Precision Continuous and Real-Time Measurement of Atmospheric Oxygen Using Cavity Ring-Down Spectroscopy.

    Science.gov (United States)

    Kim-Hak, D.; Hoffnagle, J.; Rella, C.; Sun, M.

    2016-12-01

    Oxygen is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis. Although atmospheric oxygen is not a greenhouse gas, it can be used as a top-down constraint on the carbon cycle. The variation observations of oxygen in the atmosphere are very small, in the order of the few ppm's. This presents the main technical challenge for measurement as a very high level of precision is required and only few methods including mass spectrometry, fuel cell, and paramagnetic are capable of overcoming it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and oxygen isotope. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-20%. We will present supplemental data acquired from our 10m tower measurements in Santa Clara, CA.

  12. High-precision laser microcutting and laser microdrilling using diffractive beam-splitting and high-precision flexible beam alignment

    Science.gov (United States)

    Zibner, F.; Fornaroli, C.; Holtkamp, J.; Shachaf, Lior; Kaplan, Natan; Gillner, A.

    2017-08-01

    High-precision laser micro machining gains more importance in industrial applications every month. Optical systems like the helical optics offer highest quality together with controllable and adjustable drilling geometry, thus as taper angle, aspect ratio and heat effected zone. The helical optics is based on a rotating Dove-prism which is mounted in a hollow shaft engine together with other optical elements like wedge prisms and plane plates. Although the achieved quality can be interpreted as extremely high the low process efficiency is a main reason that this manufacturing technology has only limited demand within the industrial market. The objective of the research studies presented in this paper is to dramatically increase process efficiency as well as process flexibility. During the last years, the average power of commercial ultra-short pulsed laser sources has increased significantly. The efficient utilization of the high average laser power in the field of material processing requires an effective distribution of the laser power onto the work piece. One approach to increase the efficiency is the application of beam splitting devices to enable parallel processing. Multi beam processing is used to parallelize the fabrication of periodic structures as most application only require a partial amount of the emitted ultra-short pulsed laser power. In order to achieve highest flexibility while using multi beam processing the single beams are diverted and re-guided in a way that enables the opportunity to process with each partial beam on locally apart probes or semimanufactures.

  13. The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, D.; Barbrel, B.; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Vorberger, J. [Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden (Germany); Helfrich, J.; Frydrych, S.; Ortner, A.; Otten, A.; Roth, F.; Schaumann, G.; Schumacher, D.; Siegenthaler, K.; Wagner, F.; Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 9, 64289 Darmstadt (Germany); Gericke, D. O.; Wünsch, K. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Bachmann, B.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bagnoud, V.; Blažević, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); and others

    2015-05-15

    We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability of spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.

  14. OH megamasers: dense gas & the infrared radiation field

    Science.gov (United States)

    Huang, Yong; Zhang, JiangShui; Liu, Wei; Xu, Jie

    2018-06-01

    To investigate possible factors related to OH megamaser formation (OH MM, L_{H2O}>10L_{⊙}), we compiled a large HCN sample from all well-sampled HCN measurements so far in local galaxies and identified with the OH MM, OH kilomasers (L_{H2O}gas and the dense gas, respectively), we found that OH MM galaxies tend to have stronger HCN emission and no obvious difference on CO luminosity exists between OH MM and non-OH MM. This implies that OH MM formation should be related to the dense molecular gas, instead of the low-density molecular gas. It can be also supported by other facts: (1) OH MMs are confirmed to have higher mean molecular gas density and higher dense gas fraction (L_{HCN}/L_{CO}) than non-OH MMs. (2) After taking the distance effect into account, the apparent maser luminosity is still correlated with the HCN luminosity, while no significant correlation can be found at all between the maser luminosity and the CO luminosity. (3) The OH kMs tend to have lower values than those of OH MMs, including the dense gas luminosity and the dense gas fraction. (4) From analysis of known data of another dense gas tracer HCO^+, similar results can also be obtained. However, from our analysis, the infrared radiation field can not be ruled out for the OH MM trigger, which was proposed by previous works on one small sample (Darling in ApJ 669:L9, 2007). On the contrary, the infrared radiation field should play one more important role. The dense gas (good tracers of the star formation) and its surrounding dust are heated by the ultra-violet (UV) radiation generated by the star formation and the heating of the high-density gas raises the emission of the molecules. The infrared radiation field produced by the re-radiation of the heated dust in turn serves for the pumping of the OH MM.

  15. Zeolite-imidazolate framework (ZIF-8) membrane synthesis on a mixed-matrix substrate.

    Science.gov (United States)

    Barankova, Eva; Pradeep, Neelakanda; Peinemann, Klaus-Viktor

    2013-10-21

    A thin, dense, compact and hydrogen selective ZIF-8 membrane was synthesized on a polymer/metal oxide mixed-matrix support by a secondary seeding method. The new concept of incorporating ZnO particles into the support and PDMS coating of the ZIF-8 layer is introduced to improve the preparation of ZIF-polymer composite membranes.

  16. Equation of state of dense plasmas: Orbital-free molecular dynamics as the limit of quantum molecular dynamics for high-Z elements

    Energy Technology Data Exchange (ETDEWEB)

    Danel, J.-F.; Blottiau, P.; Kazandjian, L.; Piron, R.; Torrent, M. [CEA, DAM, DIF, 91297 Arpajon (France)

    2014-10-15

    The applicability of quantum molecular dynamics to the calculation of the equation of state of a dense plasma is limited at high temperature by computational cost. Orbital-free molecular dynamics, based on a semiclassical approximation and possibly on a gradient correction, is a simulation method available at high temperature. For a high-Z element such as lutetium, we examine how orbital-free molecular dynamics applied to the equation of state of a dense plasma can be regarded as the limit of quantum molecular dynamics at high temperature. For the normal mass density and twice the normal mass density, we show that the pressures calculated with the quantum approach converge monotonically towards those calculated with the orbital-free approach; we observe a faster convergence when the orbital-free approach includes the gradient correction. We propose a method to obtain an equation of state reproducing quantum molecular dynamics results up to high temperatures where this approach cannot be directly implemented. With the results already obtained for low-Z plasmas, the present study opens the way for reproducing the quantum molecular dynamics pressure for all elements up to high temperatures.

  17. Mechanics of dense suspensions in turbulent channel flows

    NARCIS (Netherlands)

    Picano, F.; Costa, P.; Breugem, W.P.; Brandt, L.

    2015-01-01

    Dense suspensions are usually investigated in the laminar limit where inertial effects are insignificant. When the flow rate is high enough, i.e. at high Reynolds number, the flow may become turbulent and the interaction between solid and liquid phases modifies the turbulence we know in single-phase

  18. A high efficiency readout architecture for a large matrix of pixels.

    Science.gov (United States)

    Gabrielli, A.; Giorgi, F.; Villa, M.

    2010-07-01

    In this work we present a fast readout architecture for silicon pixel matrix sensors that has been designed to sustain very high rates, above 1 MHz/mm2 for matrices greater than 80k pixels. This logic can be implemented within MAPS (Monolithic Active Pixel Sensors), a kind of high resolution sensor that integrates on the same bulk the sensor matrix and the CMOS logic for readout, but it can be exploited also with other technologies. The proposed architecture is based on three main concepts. First of all, the readout of the hits is performed by activating one column at a time; all the fired pixels on the active column are read, sparsified and reset in parallel in one clock cycle. This implies the use of global signals across the sensor matrix. The consequent reduction of metal interconnections improves the active area while maintaining a high granularity (down to a pixel pitch of 40 μm). Secondly, the activation for readout takes place only for those columns overlapping with a certain fired area, thus reducing the sweeping time of the whole matrix and reducing the pixel dead-time. Third, the sparsification (x-y address labeling of the hits) is performed with a lower granularity with respect to single pixels, by addressing vertical zones of 8 pixels each. The fine-grain Y resolution is achieved by appending the zone pattern to the zone address of a hit. We show then the benefits of this technique in presence of clusters. We describe this architecture from a schematic point of view, then presenting the efficiency results obtained by VHDL simulations.

  19. A high efficiency readout architecture for a large matrix of pixels

    International Nuclear Information System (INIS)

    Gabrielli, A; Giorgi, F; Villa, M

    2010-01-01

    In this work we present a fast readout architecture for silicon pixel matrix sensors that has been designed to sustain very high rates, above 1 MHz/mm 2 for matrices greater than 80k pixels. This logic can be implemented within MAPS (Monolithic Active Pixel Sensors), a kind of high resolution sensor that integrates on the same bulk the sensor matrix and the CMOS logic for readout, but it can be exploited also with other technologies. The proposed architecture is based on three main concepts. First of all, the readout of the hits is performed by activating one column at a time; all the fired pixels on the active column are read, sparsified and reset in parallel in one clock cycle. This implies the use of global signals across the sensor matrix. The consequent reduction of metal interconnections improves the active area while maintaining a high granularity (down to a pixel pitch of 40 μm). Secondly, the activation for readout takes place only for those columns overlapping with a certain fired area, thus reducing the sweeping time of the whole matrix and reducing the pixel dead-time. Third, the sparsification (x-y address labeling of the hits) is performed with a lower granularity with respect to single pixels, by addressing vertical zones of 8 pixels each. The fine-grain Y resolution is achieved by appending the zone pattern to the zone address of a hit. We show then the benefits of this technique in presence of clusters. We describe this architecture from a schematic point of view, then presenting the efficiency results obtained by VHDL simulations.

  20. From Porous to Dense Nanostructured β-Ti alloys through High-Pressure Torsion.

    Science.gov (United States)

    Afonso, Conrado R M; Amigó, Angelica; Stolyarov, Vladimir; Gunderov, Dmitri; Amigó, Vicente

    2017-10-19

    β-Ti alloys have low elastic modulus, good specific strength and high corrosion resistance for biomaterial applications. Noble elements, such as Nb, Ta and Mo, are used to obtain β-Ti due to their chemical biocompatibility. However, due to their refractory nature, β-Ti requires specific processing routes. Powder metallurgy (P/M) allows for the development of new β-Ti alloys with decreasing costs, but dealing with high-elemental-content alloys can lead to a lack of diffusion and grain growth. One method to refine the structure and improve mechanical properties is a severe plastic deformation technique through high-pressure torsion (HPT). The aim of this work was to evaluate the conversion of P/M porous β-Ti-35Nb-10Ta-xFe alloys to dense nanostructures through high-pressure torsion in one deformation step and the influence of the structure variation on the properties and microstructure. TEM analysis and ASTAR crystallographic mapping was utilized to characterize the nanostructures, and the properties of P/M β Ti-35Nb-10Ta-xFe alloys processed by HPT were compared. The initial microstructure consisted mainly by the β-Ti phase with some α-Ti phase at the grain boundaries. The HPT process refined the microstructure from 50 µm (P/M) down to nanostructured grains of approximately 50 nm.

  1. A regularized matrix factorization approach to induce structured sparse-low-rank solutions in the EEG inverse problem

    DEFF Research Database (Denmark)

    Montoya-Martinez, Jair; Artes-Rodriguez, Antonio; Pontil, Massimiliano

    2014-01-01

    We consider the estimation of the Brain Electrical Sources (BES) matrix from noisy electroencephalographic (EEG) measurements, commonly named as the EEG inverse problem. We propose a new method to induce neurophysiological meaningful solutions, which takes into account the smoothness, structured...... sparsity, and low rank of the BES matrix. The method is based on the factorization of the BES matrix as a product of a sparse coding matrix and a dense latent source matrix. The structured sparse-low-rank structure is enforced by minimizing a regularized functional that includes the ℓ21-norm of the coding...... matrix and the squared Frobenius norm of the latent source matrix. We develop an alternating optimization algorithm to solve the resulting nonsmooth-nonconvex minimization problem. We analyze the convergence of the optimization procedure, and we compare, under different synthetic scenarios...

  2. Densely quaternized poly(arylene ether)s with distinct phase separation for highly anion-conductive membranes

    Science.gov (United States)

    Hu, Yuanfang; Wang, Bingxi; Li, Xiao; Chen, Dongyang; Zhang, Weiying

    2018-05-01

    To develop high performance anion exchange membranes (AEMs), a novel bisphenol monomer bearing eight benzylmethyl groups at the outer edge of the molecule was synthesized, which after condensation polymerization with various amounts of 4,4‧-dihydroxydiphenylsulfone and 4,4‧-difluorobenzophenone yielded novel poly(arylene ether)s with densely located benzylmethyl groups. These benzylmethyl groups were then converted to quaternary ammonium groups by radical-initiated bromination and quaternization in tandem, leading to the emergence of densely quaternized poly(arylene ether sulfone)s (QA-PAEs) with controlled ion exchange capacities (IECs) ranging from 1.61 to 2.32 mmol g-1. Both small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) studies revealed distinct phase separation in the QA-PAEs. The QA-PAE-40 with an IEC of 2.32 mmol g-1 exhibited a Br- conductivity of 9.2 mS cm-1 and a SO42- conductivity of 14.0 mS cm-1 at room temperature, much higher than those of a control membrane with a similar IEC but without obvious phase separation. Therefore, phase separation of AEMs was validated to be advantageous for the efficient conducting of anions. The experimental results also showed that the QA-PAEs were promising AEM materials, especially for non-alkaline applications.

  3. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning

    Directory of Open Access Journals (Sweden)

    Wenwei Zuo

    2018-01-01

    Full Text Available Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS/Global Positioning System (GPS positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API of the original standard Global Navigation Satellite System (GNSS to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to

  4. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning

    Science.gov (United States)

    Zuo, Wenwei; Guo, Chi; Liu, Jingnan; Peng, Xuan; Yang, Min

    2018-01-01

    Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI) exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS)/Global Positioning System (GPS) positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API) of the original standard Global Navigation Satellite System (GNSS) to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to meet the

  5. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning.

    Science.gov (United States)

    Zuo, Wenwei; Guo, Chi; Liu, Jingnan; Peng, Xuan; Yang, Min

    2018-01-10

    Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI) exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS)/Global Positioning System (GPS) positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API) of the original standard Global Navigation Satellite System (GNSS) to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to meet the

  6. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols

    Science.gov (United States)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-07-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.

  7. Quantum dense key distribution

    International Nuclear Information System (INIS)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.

    2004-01-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility

  8. Low-rank matrix approximation with manifold regularization.

    Science.gov (United States)

    Zhang, Zhenyue; Zhao, Keke

    2013-07-01

    This paper proposes a new model of low-rank matrix factorization that incorporates manifold regularization to the matrix factorization. Superior to the graph-regularized nonnegative matrix factorization, this new regularization model has globally optimal and closed-form solutions. A direct algorithm (for data with small number of points) and an alternate iterative algorithm with inexact inner iteration (for large scale data) are proposed to solve the new model. A convergence analysis establishes the global convergence of the iterative algorithm. The efficiency and precision of the algorithm are demonstrated numerically through applications to six real-world datasets on clustering and classification. Performance comparison with existing algorithms shows the effectiveness of the proposed method for low-rank factorization in general.

  9. Polarization of X rays of multiply charged ions in dense high-temperature plasma

    NARCIS (Netherlands)

    Baronova, EO; Dolgov, AN; Yakubovskii, LK

    2004-01-01

    The development of a method for studying the features of X-ray emission by multiply charged ions in a dense hot plasma is considered. These features are determined by the radiation polarization phenomenon.

  10. High precision electron beam diagnostic system for high current long pulse beams

    International Nuclear Information System (INIS)

    Chen, Y J; Fessenden, T; Holmes, C; Nelson, S D; Selchow, N.

    1999-01-01

    As part of the effort to develop a multi-axis electron beam transport system using stripline kicker technology for DARHT II applications, it is necessary to precisely determine the position and extent of long high energy beams (6-40 MeV, 1-4 kA, 2 microseconds) for accurate position control. The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (<20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt measurements performed using capacitive pick-off probes. Likewise, transmission line traveling wave probes have problems with multi-bounce effects due to these longer pulse widths. Finally, the high energy densities experienced in these applications distort typical foil beam position measurements

  11. A New High-Precision Correction Method of Temperature Distribution in Model Stellar Atmospheres

    Directory of Open Access Journals (Sweden)

    Sapar A.

    2013-06-01

    Full Text Available The main features of the temperature correction methods, suggested and used in modeling of plane-parallel stellar atmospheres, are discussed. The main features of the new method are described. Derivation of the formulae for a version of the Unsöld-Lucy method, used by us in the SMART (Stellar Model Atmospheres and Radiative Transport software for modeling stellar atmospheres, is presented. The method is based on a correction of the model temperature distribution based on minimizing differences of flux from its accepted constant value and on the requirement of the lack of its gradient, meaning that local source and sink terms of radiation must be equal. The final relative flux constancy obtainable by the method with the SMART code turned out to have the precision of the order of 0.5 %. Some of the rapidly converging iteration steps can be useful before starting the high-precision model correction. The corrections of both the flux value and of its gradient, like in Unsöld-Lucy method, are unavoidably needed to obtain high-precision flux constancy. A new temperature correction method to obtain high-precision flux constancy for plane-parallel LTE model stellar atmospheres is proposed and studied. The non-linear optimization is carried out by the least squares, in which the Levenberg-Marquardt correction method and thereafter additional correction by the Broyden iteration loop were applied. Small finite differences of temperature (δT/T = 10−3 are used in the computations. A single Jacobian step appears to be mostly sufficient to get flux constancy of the order 10−2 %. The dual numbers and their generalization – the dual complex numbers (the duplex numbers – enable automatically to get the derivatives in the nilpotent part of the dual numbers. A version of the SMART software is in the stage of refactorization to dual and duplex numbers, what enables to get rid of the finite differences, as an additional source of lowering precision of the

  12. Dynamic conductivity and partial ionization in dense fluid hydrogen

    Science.gov (United States)

    Zaghoo, Mohamed

    2018-04-01

    A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different quantum statistical approaches are used to describe the mechanism of electronic transport in hydrogen's high-temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described by a strong rise in atomic polarizability, due to increased ionization, whereas in the highly degenerate limit, the Ziman weak scattering model better accounts for the observed saturation of reflectance. The inclusion of effects of partial ionization in the highly degenerate region provides great agreement with experimental results. Hydrogen's fluid metallic state is revealed to be a partially ionized free-electron plasma. Our results provide some of the first theoretical transport models that are experimentally benchmarked, as well as an important guide for future studies.

  13. A high-precision system for conformal intracranial radiotherapy

    International Nuclear Information System (INIS)

    Tome, Wolfgang A.; Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Li Zuofeng

    2000-01-01

    Purpose: Currently, optimally precise delivery of intracranial radiotherapy is possible with stereotactic radiosurgery and fractionated stereotactic radiotherapy. We report on an optimally precise optically guided system for three-dimensional (3D) conformal radiotherapy using multiple noncoplanar fixed fields. Methods and Materials: The optically guided system detects infrared light emitting diodes (IRLEDs) attached to a custom bite plate linked to the patient's maxillary dentition. The IRLEDs are monitored by a commercially available stereo camera system, which is interfaced to a personal computer. An IRLED reference is established with the patient at the selected stereotactic isocenter, and the computer reports the patient's current position based on the location of the IRLEDs relative to this reference position. Using this readout from the computer, the patient may be dialed directly to the desired position in stereotactic space. The patient is localized on the first day and a reference file is established for 5 different couch positions. The patient's image data are then imported into a commercial convolution-based 3D radiotherapy planning system. The previously established isocenter and couch positions are then used as a template upon which to design a conformal 3D plan with maximum beam separation. Results: The use of the optically guided system in conjunction with noncoplanar radiotherapy treatment planning using fixed fields allows the generation of highly conformal treatment plans that exhibit a high degree of dose homogeneity and a steep dose gradient. To date, this approach has been used to treat 28 patients. Conclusion: Because IRLED technology improves the accuracy of patient localization relative to the linac isocenter and allows real-time monitoring of patient position, one can choose treatment-field margins that only account for beam penumbra and image resolution without adding margin to account for larger and poorly defined setup uncertainty. This

  14. High performance matrix inversion based on LU factorization for multicore architectures

    KAUST Repository

    Dongarra, Jack

    2011-01-01

    The goal of this paper is to present an efficient implementation of an explicit matrix inversion of general square matrices on multicore computer architecture. The inversion procedure is split into four steps: 1) computing the LU factorization, 2) inverting the upper triangular U factor, 3) solving a linear system, whose solution yields inverse of the original matrix and 4) applying backward column pivoting on the inverted matrix. Using a tile data layout, which represents the matrix in the system memory with an optimized cache-aware format, the computation of the four steps is decomposed into computational tasks. A directed acyclic graph is generated on the fly which represents the program data flow. Its nodes represent tasks and edges the data dependencies between them. Previous implementations of matrix inversions, available in the state-of-the-art numerical libraries, are suffer from unnecessary synchronization points, which are non-existent in our implementation in order to fully exploit the parallelism of the underlying hardware. Our algorithmic approach allows to remove these bottlenecks and to execute the tasks with loose synchronization. A runtime environment system called QUARK is necessary to dynamically schedule our numerical kernels on the available processing units. The reported results from our LU-based matrix inversion implementation significantly outperform the state-of-the-art numerical libraries such as LAPACK (5x), MKL (5x) and ScaLAPACK (2.5x) on a contemporary AMD platform with four sockets and the total of 48 cores for a matrix of size 24000. A power consumption analysis shows that our high performance implementation is also energy efficient and substantially consumes less power than its competitors. © 2011 ACM.

  15. Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy.

    Science.gov (United States)

    Rosa, Adalberto Luiz; Crippa, Grasiele Edilaine; de Oliveira, Paulo Tambasco; Taba, Mario; Lefebvre, Louis-Philippe; Beloti, Marcio Mateus

    2009-05-01

    This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 microm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.

  16. Dense image correspondences for computer vision

    CERN Document Server

    Liu, Ce

    2016-01-01

    This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code, and data necessary for expediting the development of effective correspondence-based computer vision systems.   ·         Provides i...

  17. Dense module enumeration in biological networks

    Science.gov (United States)

    Tsuda, Koji; Georgii, Elisabeth

    2009-12-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  18. Dense module enumeration in biological networks

    International Nuclear Information System (INIS)

    Tsuda, Koji; Georgii, Elisabeth

    2009-01-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  19. The STiC ASIC. High precision timing with silicon photomultipliers

    International Nuclear Information System (INIS)

    Harion, Tobias

    2015-01-01

    In recent years, Silicon Photomultipliers are being increasingly used for Time of Flight measurements in particle detectors. To utilize the high intrinsic time resolution of these sensors in detector systems, the development of specialized, highly integrated readout electronics is required. In this thesis, a mixed-signal application specific integrated circuit, named STiC, has been developed, characterized and integrated in a detector system. STiC has been specifically designed for high precision timing measurements with SiPMs, and is in particular dedicated to the EndoTOFPET-US project, which aims to achieve a coincidence time resolution of 200 ps FWHM and an energy resolution of less than 20% in an endoscopic positron emission tomography system. The chip integrates 64 high precision readout channels for SiPMs together with a digital core logic to process, store and transfer the recorded events to a data acquisition system. The performance of the chip has been validated in coincidence measurements using detector modules consisting of 3.1 x 3.1 x 15 mm 3 LYSO crystals coupled to Silicon Photomultipliers from Hamamatsu. The measurements show an energy resolution of 15% FWHM for the detection of 511 keV photons. A coincidence time resolution of 213 ps FWHM has been measured, which is among the best resolution values achieved to date with this detector topology. STiC has been integrated in the EndoTOFPET-US detector system and has been chosen as the baseline design for the readout of SiPM sensors in the Mu3e experiment.

  20. Single Crystal Piezomotor for Large Stroke, High Precision and Cryogenic Actuations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes a novel single crystal piezomotor for large stroke, high precision, and cryogenic actuations with capability of position set-hold with...

  1. Niobium Carbide-Reinforced Al Matrix Composites Produced by High-Energy Ball Milling

    Science.gov (United States)

    Travessa, Dilermando Nagle; Silva, Marina Judice; Cardoso, Kátia Regina

    2017-06-01

    Aluminum and its alloys are key materials for the transportation industry as they contribute to the development of lightweight structures. The dispersion of hard ceramic particles in the Al soft matrix can lead to a substantial strengthening effect, resulting in composite materials exhibiting interesting mechanical properties and inspiring their technological use in sectors like the automotive and aerospace industries. Powder metallurgy techniques are attractive to design metal matrix composites, achieving a homogeneous distribution of the reinforcement into the metal matrix. In this work, pure aluminum has been reinforced with particles of niobium carbide (NbC), an extremely hard and stable refractory ceramic. Its use as a reinforcing phase in metal matrix composites has not been deeply explored. Composite powders produced after different milling times, with 10 and 20 vol pct of NbC were produced by high-energy ball milling and characterized by scanning electron microscopy and by X-ray diffraction to establish a relationship between the milling time and size, morphology, and distribution of the particles in the composite powder. Subsequently, an Al/10 pct NbC composite powder was hot extruded into cylindrical bars. The strength of the obtained composite bars is comparable to the commercial high-strength, aeronautical-grade aluminum alloys.

  2. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses

    NARCIS (Netherlands)

    Yu, R.; Spiesz, P.R.; Brouwers, H.J.H.

    2015-01-01

    This paper addresses the development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses are investigated. The modified Andreasen & Andersen particle packing model is utilized to achieve a densely compacted cementitious matrix. Fly ash (FA),

  3. High-precision analog circuit technology for power supply integrated circuits; Dengen IC yo koseido anarogu kairo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamori, A.; Suzuki, T.; Mizoe, K. [Fuji Electric Corporate Research and Development,Ltd., Kanagawa (Japan)

    2000-08-10

    With the recent rapid spread of portable electronic appliances, specification requirements such as compact power supply and long operation with batteries have become severer. Power supply ICs (integrated circuits) are required to reduce power consumption in the circuit and perform high-precision control. To meet these requirements, Fuji Electric develops high-precision CMOS (complementary metal-oxide semiconductor) analog technology. This paper describes three analog circuit technologies of a voltage reference, an operational amplifier and a comparator as circuit components particularly important for the precision of power supply ICs. (author)

  4. Precision formed micro magnets: LDRD project summary report

    Energy Technology Data Exchange (ETDEWEB)

    CHRISTENSON,TODD R.; GARINO,TERRY J.; VENTURINI,EUGENE L.

    2000-02-01

    A microfabrication process is described that provides for the batch realization of miniature rare earth based permanent magnets. Prismatic geometry with features as small as 5 microns, thicknesses up through several hundred microns and with submicron tolerances may be accommodated. The processing is based on a molding technique using deep x-ray lithography as a means to generate high aspect-ratio precision molds from PMMA (poly methyl methacrylate) used as an x-ray photoresist. Subsequent molding of rare-earth permanent magnet (REPM) powder combined with a thermosetting plastic binder may take place directly in the PMMA mold. Further approaches generate an alumina form replicated from the PMMA mold that becomes an intermediate mold for pressing higher density REPM material and allows for higher process temperatures. Maximum energy products of 3--8 MGOe (Mega Gauss Oersted, 1 MGOe = 100/4{pi} kJ/m{sup 3}) are obtained for bonded isotropic forms of REPM with dimensions on the scale of 100 microns and up to 23 MGOe for more dense anisotropic REPM material using higher temperature processing. The utility of miniature precision REPMs is revealed by the demonstration of a miniature multipole brushless DC motor that possesses a pole-anisotropic rotor with dimensions that would otherwise prohibit multipole magnetization using a multipole magnetizing fixture at this scale. Subsequent multipole assembly also leads to miniaturized Halbach arrays, efficient magnetic microactuators, and mechanical spring-like elements which can offset miniaturized mechanical scaling behavior.

  5. Accurate and emergent applications for high precision light small aerial remote sensing system

    Science.gov (United States)

    Pei, Liu; Yingcheng, Li; Yanli, Xue; Qingwu, Hu; Xiaofeng, Sun

    2014-03-01

    In this paper, we focus on the successful applications of accurate and emergent surveying and mapping for high precision light small aerial remote sensing system. First, the remote sensing system structure and three integrated operation modes will be introduced. It can be combined to three operation modes depending on the application requirements. Second, we describe the preliminary results of a precision validation method for POS direct orientation in 1:500 mapping. Third, it presents two fast response mapping products- regional continuous three-dimensional model and digital surface model, taking the efficiency and accuracy evaluation of the two products as an important point. The precision of both products meets the 1:2 000 topographic map accuracy specifications in Pingdingshan area. In the end, conclusions and future work are summarized.

  6. Accurate and emergent applications for high precision light small aerial remote sensing system

    International Nuclear Information System (INIS)

    Pei, Liu; Yingcheng, Li; Yanli, Xue; Xiaofeng, Sun; Qingwu, Hu

    2014-01-01

    In this paper, we focus on the successful applications of accurate and emergent surveying and mapping for high precision light small aerial remote sensing system. First, the remote sensing system structure and three integrated operation modes will be introduced. It can be combined to three operation modes depending on the application requirements. Second, we describe the preliminary results of a precision validation method for POS direct orientation in 1:500 mapping. Third, it presents two fast response mapping products- regional continuous three-dimensional model and digital surface model, taking the efficiency and accuracy evaluation of the two products as an important point. The precision of both products meets the 1:2 000 topographic map accuracy specifications in Pingdingshan area. In the end, conclusions and future work are summarized

  7. Dynamics of number systems computation with arbitrary precision

    CERN Document Server

    Kurka, Petr

    2016-01-01

    This book is a source of valuable and useful information on the topics of dynamics of number systems and scientific computation with arbitrary precision. It is addressed to scholars, scientists and engineers, and graduate students. The treatment is elementary and self-contained with relevance both for theory and applications. The basic prerequisite of the book is linear algebra and matrix calculus. .

  8. Electroweak precision tests in high-energy diboson processes

    Science.gov (United States)

    Franceschini, Roberto; Panico, Giuliano; Pomarol, Alex; Riva, Francesco; Wulzer, Andrea

    2018-02-01

    A promising avenue to perform precision tests of the SM at the LHC is to measure differential cross-sections at high invariant mass, exploiting in this way the growth with the energy of the corrections induced by heavy new physics. We classify the leading growing-with-energy effects in longitudinal diboson and in associated Higgs production processes, showing that they can be encapsulated in four real "high-energy primary" parameters. We assess the reach on these parameters at the LHC and at future hadronic colliders, focusing in particular on the fully leptonic W Z channel that appears particularly promising. The reach is found to be superior to existing constraints by one order of magnitude, providing a test of the SM electroweak sector at the per-mille level, in competition with LEP bounds. Unlike LHC run-1 bounds, which only apply to new physics effects that are much larger than the SM in the high-energy tail of the distributions, the probe we study applies to a wider class of new physics scenarios where such large departures are not expected.

  9. A novel approach for pulse width measurements with a high precision (8 ps RMS) TDC in an FPGA

    International Nuclear Information System (INIS)

    Ugur, C.; Linev, S.; Schweitzer, T.; Traxler, M.; Michel, J.

    2016-01-01

    High precision time measurements are a crucial element in particle identification experiments, which likewise require pulse width information for Time-over-Threshold (ToT) measurements and charge measurements (correlated with pulse width). In almost all of the FPGA-based TDC applications, pulse width measurements are implemented using two of the TDC channels for leading and trailing edge time measurements individually. This method however, requires twice the number of resources. In this paper we present the latest precision improvements in the high precision TDC (8 ps RMS) developed before [1], as well as the novel way of measuring ToT using a single TDC channel, while still achieving high precision (as low as 11.7 ps RMS). The effect of voltage, generated by a DC-DC converter, over the precision is also discussed. Finally, the outcome of the temperature change over the pulse width measurement is shown and a correction method is suggested to limit the degradation

  10. Computing Low-Rank Approximation of a Dense Matrix on Multicore CPUs with a GPU and Its Application to Solving a Hierarchically Semiseparable Linear System of Equations

    Directory of Open Access Journals (Sweden)

    Ichitaro Yamazaki

    2015-01-01

    of their low-rank properties. To compute a low-rank approximation of a dense matrix, in this paper, we study the performance of QR factorization with column pivoting or with restricted pivoting on multicore CPUs with a GPU. We first propose several techniques to reduce the postprocessing time, which is required for restricted pivoting, on a modern CPU. We then examine the potential of using a GPU to accelerate the factorization process with both column and restricted pivoting. Our performance results on two eight-core Intel Sandy Bridge CPUs with one NVIDIA Kepler GPU demonstrate that using the GPU, the factorization time can be reduced by a factor of more than two. In addition, to study the performance of our implementations in practice, we integrate them into a recently developed software StruMF which algebraically exploits such low-rank structures for solving a general sparse linear system of equations. Our performance results for solving Poisson's equations demonstrate that the proposed techniques can significantly reduce the preconditioner construction time of StruMF on the CPUs, and the construction time can be further reduced by 10%–50% using the GPU.

  11. THE JCMT GOULD BELT SURVEY: DENSE CORE CLUSTERS IN ORION A

    International Nuclear Information System (INIS)

    Lane, J.; Kirk, H.; Johnstone, D.; Mairs, S.; Francesco, J. Di; Sadavoy, S.; Hatchell, J.; Berry, D. S.; Jenness, T.; Hogerheijde, M. R.; Ward-Thompson, D.

    2016-01-01

    The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in the 850 and 450 μ m SCUBA-2 maps from the JCMT Gould Belt Legacy Survey. We identify dense cores in a uniform manner across the Orion A cloud and analyze their clustering properties. Using two independent lines of analysis, we find evidence that clusters of dense cores tend to be mass segregated, suggesting that stellar clusters may have some amount of primordial mass segregation already imprinted in them at an early stage. We also demonstrate that the dense core clusters have a tendency to be elongated, perhaps indicating a formation mechanism linked to the filamentary structure within molecular clouds.

  12. THE JCMT GOULD BELT SURVEY: DENSE CORE CLUSTERS IN ORION A

    Energy Technology Data Exchange (ETDEWEB)

    Lane, J.; Kirk, H.; Johnstone, D.; Mairs, S.; Francesco, J. Di [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Sadavoy, S. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Hatchell, J. [Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Berry, D. S. [East Asian Observatory, 660 N. A‘ohōkū Place, University Park, Hilo, Hawaii 96720 (United States); Jenness, T. [Joint Astronomy Centre, 660 N. A‘ohōkū Place, University Park, Hilo, Hawaii 96720 (United States); Hogerheijde, M. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ward-Thompson, D. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, Lancashire, PR1 2HE (United Kingdom); Collaboration: JCMT Gould Belt Survey Team

    2016-12-10

    The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in the 850 and 450 μ m SCUBA-2 maps from the JCMT Gould Belt Legacy Survey. We identify dense cores in a uniform manner across the Orion A cloud and analyze their clustering properties. Using two independent lines of analysis, we find evidence that clusters of dense cores tend to be mass segregated, suggesting that stellar clusters may have some amount of primordial mass segregation already imprinted in them at an early stage. We also demonstrate that the dense core clusters have a tendency to be elongated, perhaps indicating a formation mechanism linked to the filamentary structure within molecular clouds.

  13. Precision Muon Tracking Detectors for High-Energy Hadron Colliders

    CERN Document Server

    Gadow, Philipp; Kroha, Hubert; Richter, Robert

    2016-01-01

    Small-diameter muon drift tube (sMDT) chambers with 15 mm tube diameter are a cost-effective technology for high-precision muon tracking over large areas at high background rates as expected at future high-energy hadron colliders including HL-LHC. The chamber design and construction procedures have been optimized for mass production and provide sense wire positioning accuracy of better than 10 ?m. The rate capability of the sMDT chambers has been extensively tested at the CERN Gamma Irradiation Facility. It exceeds the one of the ATLAS muon drift tube (MDT) chambers, which are operated at unprecedentedly high background rates of neutrons and gamma-rays, by an order of magnitude, which is sufficient for almost the whole muon detector acceptance at FCC-hh at maximum luminosity. sMDT operational and construction experience exists from ATLAS muon spectrometer upgrades which are in progress or under preparation for LHC Phase 1 and 2.

  14. The various correction methods to the high precision aeromagnetic data

    International Nuclear Information System (INIS)

    Xu Guocang; Zhu Lin; Ning Yuanli; Meng Xiangbao; Zhang Hongjian

    2014-01-01

    In the airborne geophysical survey, an outstanding achievement first depends on the measurement precision of the instrument, and the choice of measurement conditions, the reliability of data collection, followed by the correct method of measurement data processing, the rationality of the data interpretation. Obviously, geophysical data processing is an important task for the comprehensive interpretation of the measurement results, processing method is correct or not directly related to the quality of the final results. we have developed a set of personal computer software to aeromagnetic and radiometric survey data processing in the process of actual production and scientific research in recent years, and successfully applied to the production. The processing methods and flowcharts to the high precision aromagnetic data were simply introduced in this paper. However, the mathematical techniques of the various correction programes to IGRF and flying height and magnetic diurnal variation were stressily discussed in the paper. Their processing effectness were illustrated by taking an example as well. (authors)

  15. A high precision mass spectrometer for hydrogen isotopic analysis of water samples

    International Nuclear Information System (INIS)

    Murthy, M.S.; Prahallada Rao, B.S.; Handu, V.K.; Satam, J.V.

    1979-01-01

    A high precision mass spectrometer with two ion collector assemblies and direct on line reduction facility (with uranium at 700 0 C) for water samples for hydrogen isotopic analysis has been designed and developed. The ion source particularly gives high sensitivity and at the same tike limits the H 3 + ions to a minimum. A digital ratiometer with a H 2 + compensator has also been developed. The overall precision obtained on the spectrometer is 0.07% 2sub(sigmasub(10)) value. Typical results on the performance of the spectrometer, which is working since a year and a half are given. Possible methods of extending the ranges of concentration the spectrometer can handle, both on lower and higher sides are discussed. Problems of memory between samples are briefly listed. A multiple inlet system to overcome these problems is suggested. This will also enable faster analysis when samples of highly varying concentrations are to be analyzed. A few probable areas in which the spectrometer will be shortly put to use are given. (auth.)

  16. High-precision and low-cost vibration generator for low-frequency calibration system

    Science.gov (United States)

    Li, Rui-Jun; Lei, Ying-Jun; Zhang, Lian-Sheng; Chang, Zhen-Xin; Fan, Kuang-Chao; Cheng, Zhen-Ying; Hu, Peng-Hao

    2018-03-01

    Low-frequency vibration is one of the harmful factors that affect the accuracy of micro-/nano-measuring machines because its amplitude is significantly small and it is very difficult to avoid. In this paper, a low-cost and high-precision vibration generator was developed to calibrate an optical accelerometer, which is self-designed to detect low-frequency vibration. A piezoelectric actuator is used as vibration exciter, a leaf spring made of beryllium copper is used as an elastic component, and a high-resolution, low-thermal-drift eddy current sensor is applied to investigate the vibrator’s performance. Experimental results demonstrate that the vibration generator can achieve steady output displacement with frequency range from 0.6 Hz to 50 Hz, an analytical displacement resolution of 3.1 nm and an acceleration range from 3.72 mm s-2 to 1935.41 mm s-2 with a relative standard deviation less than 1.79%. The effectiveness of the high-precision and low-cost vibration generator was verified by calibrating our optical accelerometer.

  17. Laser-produced dense plasma in extremely high pressure gas and its application to a plasma-bridged gap switch

    International Nuclear Information System (INIS)

    Yamada, J.; Okuda, A.

    1989-01-01

    When an extremely high pressure gas is irradiated by an intense laser light, a dense plasma produced at the focal spot moves towards the focusing lens with a high velocity. Making use of this phenomenon, a new plasma-bridged gap switch is proposed and its switching characteristics is experimentally examined. From the experiments, it is confirmed that the switching time is almost constant with the applied voltage only when the focal spot is just on the positive electrode, indicating that the bridging of gap is caused by the laser light. (author)

  18. French Meteor Network for High Precision Orbits of Meteoroids

    Science.gov (United States)

    Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.

    2011-01-01

    There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.

  19. Kinetic theory of the interdiffusion coefficient in dense plasmas

    International Nuclear Information System (INIS)

    Boercker, D.B.

    1986-08-01

    Naive applications of Spitzer's theory to very dense plasmas can lead to negative diffusion coefficients. The interdiffusion coefficients in Binary Ionic Mixtures (two species of point ions in a uniform neutralizing background) have been calculated recently using molecular dynamics techniques. These calculations can provide useful benchmarks for theoretical evaluations of the diffusion coefficient in dense plasma mixtures. This paper gives a brief description of a kinetic theoretic approximation to the diffusion coefficient which generalizes Spitzer to high density and is in excellent agreement with the computer simulations. 15 refs., 1 fig., 2 tabs

  20. HLIBCov: Parallel Hierarchical Matrix Approximation of Large Covariance Matrices and Likelihoods with Applications in Parameter Identification

    KAUST Repository

    Litvinenko, Alexander

    2017-01-01

    and maximizing likelihood functions. We show that an approximate Cholesky factorization of a dense matrix of size $2M\\times 2M$ can be computed on a modern multi-core desktop in few minutes. Further, HLIBCov is used for estimating the unknown parameters

  1. Thermal-mechanical behavior of high precision composite mirrors

    Science.gov (United States)

    Kuo, C. P.; Lou, M. C.; Rapp, D.

    1993-01-01

    Composite mirror panels were designed, constructed, analyzed, and tested in the framework of a NASA precision segmented reflector task. The deformations of the reflector surface during the exposure to space enviroments were predicted using a finite element model. The composite mirror panels have graphite-epoxy or graphite-cyanate facesheets, separated by an aluminum or a composite honeycomb core. It is pointed out that in order to carry out detailed modeling of composite mirrors with high accuracy, it is necessary to have temperature dependent properties of the materials involved and the type and magnitude of manufacturing errors and material nonuniformities. The structural modeling and analysis efforts addressed the impact of key design and materials parameters on the performance of mirrors.

  2. Optimal dynamic performance for high-precision actuators/stages

    International Nuclear Information System (INIS)

    Preissner, C.; Lee, S.-H.; Royston, T. J.; Shu, D.

    2002-01-01

    System dynamic performance of actuator/stage groups, such as those found in optical instrument positioning systems and other high-precision applications, is dependent upon both individual component behavior and the system configuration. Experimental modal analysis techniques were implemented to determine the six degree of freedom stiffnesses and damping for individual actuator components. These experimental data were then used in a multibody dynamic computer model to investigate the effect of stage group configuration. Running the computer model through the possible stage configurations and observing the predicted vibratory response determined the optimal stage group configuration. Configuration optimization can be performed for any group of stages, provided there is stiffness and damping data available for the constituent pieces

  3. Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC) : experiments and modeling

    NARCIS (Netherlands)

    Yu, R.; Spiesz, P.R.; Brouwers, H.J.H.

    2014-01-01

    This paper addresses the static properties and impact resistance of a "green" Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC). The design of concrete mixtures aims to achieve a densely compacted cementitious matrix, employing the modified Andreasen & Andersen particle packing

  4. Iso-precision scaling of digitized mammograms to facilitate image analysis

    International Nuclear Information System (INIS)

    Karssmeijer, N.; van Erning, L.

    1991-01-01

    This paper reports on a 12 bit CCD camera equipped with a linear sensor of 4096 photodiodes which is used to digitize conventional mammographic films. An iso-precision conversion of the pixel values is preformed to transform the image data to a scale on which the image noise is equal at each level. For this purpose film noise and digitization noise have been determined as a function of optical density and pixel size. It appears that only at high optical densities digitization noise is comparable to or larger than film noise. The quantization error caused by compression of images recorded with 12 bits per pixel to 8 bit images by an iso-precision conversion has been calculated as a function of the number of quantization levels. For mammograms digitized in a 4096 2 matrix the additional error caused by such a scale transform is only about 1.5 percent. An iso-precision scale transform can be advantageous when automated procedures for quantitative image analysis are developed. Especially when detection of signals in noise is aimed at, a constant noise level over the whole pixel value range is very convenient. This is demonstrated by applying local thresholding to detect small microcalcifications. Results are compared to those obtained by using logarithmic or linearized scales

  5. Temperature Measurements of Dense Plasmas by Detailed Balance

    International Nuclear Information System (INIS)

    Holl, A; Redmer, R; Ropke, G; Reinholz, H; Thiele, R; Fortmann, C; Forster, E; Cao, L; Tschentscher, T; Toleikis, S; Glenzer, S H

    2006-01-01

    Plasmas at high electron densities of n e = 10 20 - 10 26 cm -3 and moderate temperatures T e = 1 - 20 eV are important for laboratory astrophysics, high energy density science and inertial confinement fusion. These plasmas are usually referred to as Warm Dense Matter (WDM) and are characterized by a coupling parameter of Λ ∼> 1 where correlations become important. The characterization of such plasmas is still a challenging task due to the lack of direct measurement techniques for temperatures and densities. They propose to measure the Thomson scattering spectrum of vacuum-UV radiation off density fluctuations in the plasma. Collective Thomson scattering provides accurate data for the electron temperature applying first principles. Further, this method takes advantage of the spectral asymmetry resulting from detailed balance and is independent of collisional effects in these dense systems

  6. Dense strongly non-ideal plasma generation by laser isobaric heating

    International Nuclear Information System (INIS)

    Kulik, P.P.; Rozanov, E.K.; Riabii, V.A.; Titov, M.A.

    1975-01-01

    A method of generation of a dense strongly non-ideal plasma by slow isobaric heating of a small target in a high inert gas medium is discussed. The characteristic life-time of dense plasma is 10 -3 sec. Estimations show that such a plasma is homogeneous. Conditions are found for temperature uniformity. The experimental results of the isobaric heating of a thin potassium foil target by a ruby laser beam at 500 atm are described. (Auth.)

  7. The πNN coupling from high precision np charge exchange at 162 MeV

    International Nuclear Information System (INIS)

    Nilsson, J.; Blomgren, J.; Conde, H.; Elmgren, K.; Olsson, N.; Ericson, T.E.O.; Uppsala Univ.; Jonsson, O.; Nilsson, L.; Loiseau, B.; Ringbom, A.

    1995-02-01

    Differential cross sections for unpolarized neutrons of 162 MeV have been measured to high precision with particular attention to the absolute normalisation. These data can be extrapolated precisely and model-independently to the pion pole and give a πNN coupling constant g 2 =14.6±0.3 or f 2 =0.0808±0.0017. This is higher than recently suggested values. (author) 24 refs.; 3 figs.; 1 tab

  8. Precision measurements with LPCTrap at GANIL

    Energy Technology Data Exchange (ETDEWEB)

    Liénard, E., E-mail: lienard@lpccaen.in2p3.fr; Ban, G. [LPC CAEN, ENSICAEN, Université de Caen, CNRS/IN2P3 (France); Couratin, C. [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Delahaye, P. [GANIL, CEA/DSM-CNRS/IN2P3 (France); Durand, D.; Fabian, X. [LPC CAEN, ENSICAEN, Université de Caen, CNRS/IN2P3 (France); Fabre, B. [CELIA, Université Bordeaux, CNRS, CEA (France); Fléchard, X. [LPC CAEN, ENSICAEN, Université de Caen, CNRS/IN2P3 (France); Finlay, P. [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Mauger, F. [LPC CAEN, ENSICAEN, Université de Caen, CNRS/IN2P3 (France); Méry, A. [CIMAP, CEA/CNRS/ENSICAEN, Université de Caen (France); Naviliat-Cuncic, O. [NSCL and Department of Physics and Astronomy, MSU (United States); Pons, B. [CELIA, Université Bordeaux, CNRS, CEA (France); Porobic, T. [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Quéméner, G. [LPC CAEN, ENSICAEN, Université de Caen, CNRS/IN2P3 (France); Severijns, N. [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Thomas, J. C. [GANIL, CEA/DSM-CNRS/IN2P3 (France); Velten, Ph. [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium)

    2015-11-15

    The experimental achievements and the results obtained so far with the LPCTrap device installed at GANIL are presented. The apparatus is dedicated to the study of the weak interaction at low energy by means of precise measurements of the β − ν angular correlation parameter in nuclear β decays. So far, the data collected with three isotopes have enabled to determine, for the first time, the charge state distributions of the recoiling ions, induced by shakeoff process. The analysis is presently refined to deduce the correlation parameters, with the potential of improving both the constraint deduced at low energy on exotic tensor currents ({sup 6}He{sup 1+}) and the precision on the V{sub ud} element of the quark-mixing matrix ({sup 35}Ar{sup 1+} and {sup 19}Ne{sup 1+}) deduced from the mirror transitions dataset.

  9. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies.

    Science.gov (United States)

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-03-04

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro.

  10. A quasi-dense matching approach and its calibration application with Internet photos.

    Science.gov (United States)

    Wan, Yanli; Miao, Zhenjiang; Wu, Q M Jonathan; Wang, Xifu; Tang, Zhen; Wang, Zhifei

    2015-03-01

    This paper proposes a quasi-dense matching approach to the automatic acquisition of camera parameters, which is required for recovering 3-D information from 2-D images. An affine transformation-based optimization model and a new matching cost function are used to acquire quasi-dense correspondences with high accuracy in each pair of views. These correspondences can be effectively detected and tracked at the sub-pixel level in multiviews with our neighboring view selection strategy. A two-layer iteration algorithm is proposed to optimize 3-D quasi-dense points and camera parameters. In the inner layer, different optimization strategies based on local photometric consistency and a global objective function are employed to optimize the 3-D quasi-dense points and camera parameters, respectively. In the outer layer, quasi-dense correspondences are resampled to guide a new estimation and optimization process of the camera parameters. We demonstrate the effectiveness of our algorithm with several experiments.

  11. The plasmon contribution to the electrical resistivity of dense, high-temperature plasmas

    International Nuclear Information System (INIS)

    Daveloza K, S.M.; Krikorian, R.; Ferro Fontan, C.

    1990-01-01

    The plasmon contribution to the resistivity of a dense, nonideal and degenerate plasma in the framework of the Quantum Boltzmann Equation is studied. Holstein's integral equation is presented and a rough estimate of the electron plasmon scattering rate is given, which extends to the quantum domain a previous heuristic derivation by Kurilenkov and Valuev. (Author)

  12. High-precision high-sensitivity clock recovery circuit for a mobile payment application

    International Nuclear Information System (INIS)

    Sun Lichong; Yan Na; Min Hao; Ren Wenliang

    2011-01-01

    This paper presents a fully integrated carrier clock recovery circuit for a mobile payment application. The architecture is based on a sampling-detection module and a charge pump phase locked loop. Compared with clock recovery in conventional 13.56 MHz transponders, this circuit can recover a high-precision consecutive carrier clock from the on/off keying (OOK) signal sent by interrogators. Fabricated by a SMIC 0.18-μm EEPROM CMOS process, this chip works from a single power supply as low as 1.5 V Measurement results show that this circuit provides 0.34% frequency deviation and 8 mV sensitivity. (semiconductor integrated circuits)

  13. A high-precision synchronization circuit for clock distribution

    International Nuclear Information System (INIS)

    Lu Chong; Tan Hongzhou; Duan Zhikui; Ding Yi

    2015-01-01

    In this paper, a novel structure of a high-precision synchronization circuit, HPSC, using interleaved delay units and a dynamic compensation circuit is proposed. HPSCs are designed for synchronization of clock distribution networks in large-scale integrated circuits, where high-quality clocks are required. The application of a hybrid structure of a coarse delay line and dynamic compensation circuit performs roughly the alignment of the clock signal in two clock cycles, and finishes the fine tuning in the next three clock cycles with the phase error suppressed under 3.8 ps. The proposed circuit is implemented and fabricated using a SMIC 0.13 μm 1P6M process with a supply voltage at 1.2 V. The allowed operation frequency ranges from 200 to 800 MHz, and the duty cycle ranges between [20%, 80%]. The active area of the core circuits is 245 × 134 μm 2 , and the power consumption is 1.64 mW at 500 MHz. (paper)

  14. Dense plasma focus - a literature review

    International Nuclear Information System (INIS)

    Tendys, J.

    1976-01-01

    The dense plasma focus (DPF) is a convenient source of short, intense neutron pulses, and dense, high temperature plasma. This review of the literature on the DPF indicates that its operation is still not understood, and attempts to show where the present data is either inadequate or inconsistent. Because the plasma conditions and neutron and x-ray fluxes vary from shot to shot, it is maintained that, to resolve inconsistencies in the present data, spectra need to be measured with energy and time resolution simultaneously, and cannot be built up from a large number of shots. Time resolutions of the order of 1 nsec for pulse lengths of about 100 nsec make these requirements especially difficult. Some theoretical models are presented for the neutron output and its spectrum, but no self-consistent description of the plasma in the focus region is likely for some time. (author)

  15. Utility of supplemental screening with breast ultrasound in asymptomatic women with dense breast tissue who are not at high risk for breast cancer

    Directory of Open Access Journals (Sweden)

    Geetika A Klevos

    2017-01-01

    Full Text Available Objective: To assess the results of an initial round of supplemental screening with hand-held bilateral breast ultrasound following a negative screening mammogram in asymptomatic women with dense breast tissue who are not at high risk for breast cancer. Materials and Methods: A retrospective, Health Insurance Portability and Accountability Act compliant, Institutional Research Board approved study was performed at a single academic tertiary breast center. Informed consent was waived. A systematic review of the breast imaging center database was conducted to identify and retrieve data for all asymptomatic women, who were found to have heterogeneously dense or extremely dense breast tissue on screening bilateral mammograms performed from July 1, 2010 through June 30, 2012 and who received a mammographic final assessment American College of Radiology's (ACR Breast Imaging Reporting and Data System (BI-RADS category 1 or BI-RADS category 2. Hand-held screening ultrasound was performed initially by a technologist followed by a radiologist. Chi-square and t-test were used and statistical significance was considered at P< 0.05. Results: A total of 1210 women were identified. Of these, 394 underwent the offered supplemental screening ultrasound. BI-RADS category 1 or 2 was assigned to 323 women (81.9%. BI-RADS category 3 was assigned to 50 women (12.9%. A total of 26 biopsies/aspirations were recommended and performed in 26 women (6.6%. The most common finding for which biopsy was recommended was a solid mass (88.5% with an average size of 0.9 cm (0.5–1.7 cm. Most frequent pathology result was fibroadenoma (60.8%. No carcinoma was found. Conclusion: Our data support the reported occurrence of a relatively high number of false positives at supplemental screening with breast ultrasound following a negative screening mammogram in asymptomatic women with dense breast tissue, who are not at a high risk of developing breast cancer, and suggests that caution

  16. Zeolite-imidazolate framework (ZIF-8) membrane synthesis on a mixed-matrix substrate

    KAUST Repository

    Barankova, Eva; Neelakanda, Pradeep; Peinemann, Klaus-Viktor

    2013-01-01

    A thin, dense, compact and hydrogen selective ZIF-8 membrane was synthesized on a polymer/metal oxide mixed-matrix support by a secondary seeding method. The new concept of incorporating ZnO particles into the support and PDMS coating of the ZIF-8 layer is introduced to improve the preparation of ZIF-polymer composite membranes. © 2013 The Royal Society of Chemistry.

  17. Predicting diffusivities in dense fluid mixtures

    Directory of Open Access Journals (Sweden)

    C. DARIVA

    1999-09-01

    Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.

  18. MiniDSS: a low-power and high-precision miniaturized digital sun sensor

    NARCIS (Netherlands)

    Boer, B.M. de; Durkut, M.; Laan, E.; Hakkesteegt, H.; Theuwissen, A.; Xie, N.; Leijtens, J.L.; Urquijo, E.; Bruins, P.

    2012-01-01

    A high-precision and low-power miniaturized digital sun sensor has been developed at TNO. The single-chip sun sensor comprises an application specific integrated circuit (ASIC) on which an active pixel sensor (APS), read-out and processing circuitry as well as communication circuitry are combined.

  19. Large scale, highly dense nanoholes on metal surfaces by underwater laser assisted hydrogen etching near nanocrystalline boundary

    Energy Technology Data Exchange (ETDEWEB)

    Lin Dong; Zhang, Martin Yi; Ye Chang; Liu Zhikun; Liu, C. Richard [School of Industrial Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47906 (United States); Cheng, Gary J., E-mail: gjcheng@purdue.edu [School of Industrial Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47906 (United States)

    2012-03-01

    A new method to generate large scale and highly dense nanoholes is presented in this paper. By the pulsed laser irradiation under water, the hydrogen etching is introduced to form high density nanoholes on the surfaces of AISI 4140 steel and Ti. In order to achieve higher nanohole density, laser shock peening (LSP) followed by recrystallization is used for grain refinement. It is found that the nanohole density does not increase until recrystallization of the substructures after laser shock peening. The mechanism of nanohole generation is studied in detail. This method can be also applied to generate nanoholes on other materials with hydrogen etching effect.

  20. Large scale, highly dense nanoholes on metal surfaces by underwater laser assisted hydrogen etching near nanocrystalline boundary

    International Nuclear Information System (INIS)

    Lin Dong; Zhang, Martin Yi; Ye Chang; Liu Zhikun; Liu, C. Richard; Cheng, Gary J.

    2012-01-01

    A new method to generate large scale and highly dense nanoholes is presented in this paper. By the pulsed laser irradiation under water, the hydrogen etching is introduced to form high density nanoholes on the surfaces of AISI 4140 steel and Ti. In order to achieve higher nanohole density, laser shock peening (LSP) followed by recrystallization is used for grain refinement. It is found that the nanohole density does not increase until recrystallization of the substructures after laser shock peening. The mechanism of nanohole generation is studied in detail. This method can be also applied to generate nanoholes on other materials with hydrogen etching effect.