WorldWideScience

Sample records for high-performance passive microwave

  1. High-performance flexible microwave passives on plastic

    Science.gov (United States)

    Ma, Zhenqiang; Seo, Jung-Hun; Cho, Sang June; Zhou, Weidong

    2014-06-01

    We report the demonstration of bendable inductors, capacitors and switches fabricated on a polyethylene terephthalate (PET) substrate that can operate at high microwave frequencies. By employing bendable dielectric and single crystalline semiconductor materials, spiral inductors and metal-insulator-metal (MIM) capacitors with high quality factors and high resonance frequencies and single-pole, single-throw (SPST) switches were archived. The effects of mechanical bending on the performance of inductors, capacitors and switches were also measured and analyzed. We further investigated the highest possible resonance frequencies and quality factors of inductors and capacitors and, high frequency responses and insertion loss. These demonstrations will lead to flexible radio-frequency and microwave systems in the future.

  2. Passive microwave remote sensing of soil moisture

    International Nuclear Information System (INIS)

    Jackson, T.J.; Schmugge, T.J.

    1986-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive microwave soil moisture sensors currently considered for space operation are in the range 10–20 km. The most useful frequency range for soil moisture sensing is 1–5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations

  3. Hybrid Active-Passive Microwave Photonic Filter with High Quality Factor

    International Nuclear Information System (INIS)

    En-Ming, Xu; Xin-Liang, Zhang; Li-Na, Zhou; Yu, Zhang; De-Xiu, Huang

    2009-01-01

    A hybrid high quality factor (Q-factor) microwave photonic filter with a cascaded active filter and a passive filter is presented and experimentally demonstrated. The active infinite impulse response filter is realized by a recirculating delay line loop with a semiconductor optical amplifier, and a much narrower 3 dB bandwidth of response peaks can be achieved. A passive finite impulse response filter is realized by an unbalance Mach–Zehnder interferometer, and it is cascaded to select the desired filter frequencies and to suppress the intermediate peaks. Compared with the purely active filter scheme, the free spectrum range and the Q-factor of the hybrid structure can be doubled. Stable operation and a high Q-factor of 362 are experimentally demonstrated

  4. High-temperature superconducting passive microwave devices, filters and antennas

    International Nuclear Information System (INIS)

    Ohshima, S.

    2000-01-01

    High-temperature superconducting (HTS) passive microwave devices, such as filters and antennas, are promising devices. In particular, HTS filters may be successfully marketed in the near future. Cross-coupled filters, ring filters, and coplanar waveguide filters are good options to reduce filter size. On the other hand, HTS patch antennas which can be cooled by a cryo-cooler are also promising devices as well, since they show higher efficiency than normal antennas. This paper examines the design process and filter properties of HTS filters as well as the gains, directivity, and cooling system of HTS patch antennas. (author)

  5. Active/passive microwave sensor comparison of MIZ-ice concentration estimates. [Marginal Ice Zone (MIZ)

    Science.gov (United States)

    Burns, B. A.; Cavalieri, D. J.; Keller, M. R.

    1986-01-01

    Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.

  6. A Review on Passive and Integrated Near-Field Microwave Biosensors

    Science.gov (United States)

    Guha, Subhajit; Jamal, Farabi Ibne

    2017-01-01

    In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials. On the other hand, integrated biosensors are microwave structures fabricated in standard semiconductor technology platform (CMOS or BiCMOS). The CMOS or BiCMOS sensor technology offers a more compact sensing approach which has the potential in the future for point of care testing systems. Various applications of the passive and the integrated sensors have been discussed in this review paper. PMID:28946617

  7. Effect of Passivation on Microwave Power Performances of AlGaN/GaN/Si HEMTs

    Directory of Open Access Journals (Sweden)

    H. MOSBAHI

    2014-05-01

    Full Text Available This paper reports on the use of plasma assisted molecular beam epitaxy of AlGaN/GaN high electron mobility transistors (HEMTs grown on silicon substrate. Surface passivation effects on AlGaN/GaN HEMTs were studied using SiO2/SiN dielectric layers grown by plasma enhanced chemical vapor deposition. The direct current measurement, pulsed characteristics and microwave small-signal characteristics were studied before and after passivation. An improvement of drain-source current density and the extrinsic transconductance was observed on the passivated HEMTs when compared with the unpassivated HEMTs. An enhancement of cut-off frequency (ft and maximum power gain (fmax was also observed for the devices with full SiO2/SiN passivation. A good correlation is found between pulsed and power measurements.

  8. Report from the Passive Microwave Data Set Management Workshop

    Science.gov (United States)

    Armstrong, Ed; Conover, Helen; Goodman, Michael; Krupp, Brian; Liu, Zhong; Moses, John; Ramapriyan, H. K.; Scott, Donna; Smith, Deborah; Weaver, Ronald

    2011-01-01

    Passive microwave data sets are some of the most important data sets in the Earth Observing System Data and Information System (EOSDIS), providing data as far back as the early 1970s. The widespread use of passive microwave (PM) radiometer data has led to their collection and distribution over the years at several different Earth science data centers. The user community is often confused by this proliferation and the uneven spread of information about the data sets. In response to this situation, a Passive Microwave Data Set Management Workshop was held 17 ]19 May 2011 at the Global Hydrology Resource Center, sponsored by the NASA Earth Science Data and Information System (ESDIS) Project. The workshop attendees reviewed all primary (Level 1 ]3) PM data sets from NASA and non ]NASA sensors held by NASA Distributed Active Archive Centers (DAACs), as well as high ]value data sets from other NASA ]funded organizations. This report provides the key findings and recommendations from the workshop as well as detailed tabluations of the datasets considered.

  9. A passive and active microwave-vector radiative transfer (PAM-VRT) model

    International Nuclear Information System (INIS)

    Yang, Jun; Min, Qilong

    2015-01-01

    A passive and active microwave vector radiative transfer (PAM-VRT) package has been developed. This fast and accurate forward microwave model, with flexible and versatile input and output components, self-consistently and realistically simulates measurements/radiation of passive and active microwave sensors. The core PAM-VRT, microwave radiative transfer model, consists of five modules: gas absorption (two line-by-line databases and four fast models); hydrometeor property of water droplets and ice (spherical and nonspherical) particles; surface emissivity (from Community Radiative Transfer Model (CRTM)); vector radiative transfer of successive order of scattering (VSOS); and passive and active microwave simulation. The PAM-VRT package has been validated against other existing models, demonstrating good accuracy. The PAM-VRT not only can be used to simulate or assimilate measurements of existing microwave sensors, but also can be used to simulate observation results at some new microwave sensors. - Highlights: • A novel microwave vector radiative transfer model is developed. • It can simulate passive and active microwave radiative transfer simultaneously. • It can be applied to simulate measurements for different types of viewing geometry. • The accuracy of this model has been validated against other existing models

  10. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    Science.gov (United States)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and

  11. Application of Memristors in Microwave Passive Circuits

    Directory of Open Access Journals (Sweden)

    M.Potrebic

    2015-06-01

    Full Text Available The recent implementation of the fourth fundamental electric circuit element, the memristor, opened new vistas in many fields of engineering applications. In this paper, we explore several RF/microwave passive circuits that might benefit from the memristor salient characteristics. We consider a power divider, coupled resonator bandpass filters, and a low-reflection quasi-Gaussian lowpass filter with lossy elements. We utilize memristors as configurable linear resistors and we propose memristor-based bandpass filters that feature suppression of parasitic frequency pass bands and widening of the desired rejection band. The simulations are performed in the time domain, using LTspice, and the RF/microwave circuits under consideration are modeled by ideal elements available in LTspice.

  12. Exploring The Limits Of Variational Passive Microwave Retrievals

    Science.gov (United States)

    Duncan, David Ian

    Passive microwave observations from satellite platforms constitute one of the most important data records of the global observing system. Operational since the late 1970s, passive microwave data underpin climate records of precipitation, sea ice extent, water vapor, and more, and contribute significantly to numerical weather prediction via data assimilation. Detailed understanding of the observation errors in these data is key to maximizing their utility for research and operational applications alike. However, the treatment of observation errors in this data record has been lacking and somewhat divergent when considering the retrieval and data assimilation communities. In this study, some limits of passive microwave imager data are considered in light of more holistic treatment of observation errors. A variational retrieval, named the CSU 1DVAR, was developed for microwave imagers and applied to the GMI and AMSR2 sensors for ocean scenes. Via an innovative method to determine forward model error, this retrieval accounts for error covariances across all channels used in the iteration. This improves validation in more complex scenes such as high wind speed and persistently cloudy regimes. In addition, it validates on par with a benchmark dataset without any tuning to in-situ observations. The algorithm yields full posterior error diagnostics and its physical forward model is applicable to other sensors, pending intercalibration. This retrieval is used to explore the viability of retrieving parameters at the limits of the available information content from a typical microwave imager. Retrieval of warm rain, marginal sea ice, and falling snow are explored with the variational retrieval. Warm rain retrieval shows some promise, with greater sensitivity than operational GPM algorithms due to leveraging CloudSat data and accounting for drop size distribution variability. Marginal sea ice is also detected with greater sensitivity than a standard operational retrieval

  13. Passive Polarimetric Microwave Signatures Observed Over Antarctica

    Science.gov (United States)

    WindSat satellite-based fully polarimetric passive microwave observations, expressed in the form of the Stokes vector, were analyzed over the Antarctic ice sheet. The vertically and horizontally polarized brightness temperatures (first two Stokes components) from WindSat are shown to be consistent w...

  14. High quality silicon-based substrates for microwave and millimeter wave passive circuits

    Science.gov (United States)

    Belaroussi, Y.; Rack, M.; Saadi, A. A.; Scheen, G.; Belaroussi, M. T.; Trabelsi, M.; Raskin, J.-P.

    2017-09-01

    Porous silicon substrate is very promising for next generation wireless communication requiring the avoidance of high-frequency losses originating from the bulk silicon. In this work, new variants of porous silicon (PSi) substrates have been introduced. Through an experimental RF performance, the proposed PSi substrates have been compared with different silicon-based substrates, namely, standard silicon (Std), trap-rich (TR) and high resistivity (HR). All of the mentioned substrates have been fabricated where identical samples of CPW lines have been integrated on. The new PSi substrates have shown successful reduction in the substrate's effective relative permittivity to values as low as 3.7 and great increase in the substrate's effective resistivity to values higher than 7 kΩ cm. As a concept proof, a mm-wave bandpass filter (MBPF) centred at 27 GHz has been integrated on the investigated substrates. Compared with the conventional MBPF implemented on standard silicon-based substrates, the measured S-parameters of the PSi-based MBPF have shown high filtering performance, such as a reduction in insertion loss and an enhancement of the filter selectivity, with the joy of having the same filter performance by varying the temperature. Therefore, the efficiency of the proposed PSi substrates has been well highlighted. From 1994 to 1995, she was assistant of physics at (USTHB), Algiers . From 1998 to 2011, she was a Researcher at characterization laboratory in ionized media and laser division at the Advanced Technologies Development Center. She has integrated the Analog Radio Frequency Integrated Circuits team as Researcher since 2011 until now in Microelectronic and Nanotechnology Division at Advanced Technologies Development Center (CDTA), Algiers. She has been working towards her Ph.D. degree jointly at CDTA and Ecole Nationale Polytechnique, Algiers, since 2012. Her research interest includes fabrication and characterization of microwave passive devices on porous

  15. Use of passive microwave remote sensing to monitor soil moisture

    International Nuclear Information System (INIS)

    Wigneron, J.P.; Schmugge, T.; Chanzy, A.; Calvet, J.C.; Kerr, Y.

    1998-01-01

    Surface soil moisture is a key variable to describe the water and energy exchanges at the land surface/atmosphere interface. However, soil moisture is highly variable both spatially and temporally. Passive microwave remotely sensed data have great potential for providing estimates of soil moisture with good temporal repetition (on a daily basis) and at regional scale (∼ 10 km). This paper reviews the various methods for remote sensing of soil moisture from microwave radiometric systems. Potential applications from both airborne and spatial observations are discussed in the fields of agronomy, hydrology and meteorology. Emphasis in this paper is given to relatively new aspects of microwave techniques and of temporal soil moisture information analysis. In particular, the aperture synthesis technique allows us now to a address the soil moisture information needs on a global basis, from space instruments. (author) [fr

  16. Evaluation of multichannel Wiener filters applied to fine resolution passive microwave images of first-year sea ice

    Science.gov (United States)

    Full, William E.; Eppler, Duane T.

    1993-01-01

    The effectivity of multichannel Wiener filters to improve images obtained with passive microwave systems was investigated by applying Wiener filters to passive microwave images of first-year sea ice. Four major parameters which define the filter were varied: the lag or pixel offset between the original and the desired scenes, filter length, the number of lines in the filter, and the weight applied to the empirical correlation functions. The effect of each variable on the image quality was assessed by visually comparing the results. It was found that the application of multichannel Wiener theory to passive microwave images of first-year sea ice resulted in visually sharper images with enhanced textural features and less high-frequency noise. However, Wiener filters induced a slight blocky grain to the image and could produce a type of ringing along scan lines traversing sharp intensity contrasts.

  17. Reprocessing the Historical Satellite Passive Microwave Record at Enhanced Spatial Resolutions using Image Reconstruction

    Science.gov (United States)

    Hardman, M.; Brodzik, M. J.; Long, D. G.; Paget, A. C.; Armstrong, R. L.

    2015-12-01

    working with our Early Adopters to finalize content and format of this new, consistently-processed high-quality satellite passive microwave ESDR.

  18. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...... techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation...

  19. High-performance passive microwave survey on Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, A.G.; Radzikhovsky, V.N.; Kudeliya, A.M. [State Research Center of Superconductive Radioelectronics, Kiev (Ukraine)

    1994-12-31

    The quasi-optical generations of image of objects with their internal structure in millimeter (MM) and submillimeter (SMM) bands is one of the prime problems of modern radioelectronics. The main advantage of passive MM imaging systems in comparison with visible and infrared (IR) systems is small attenuation of signals in fog, cloud, smoke, dust and other obscurants. However at a panoramic scanning of space the observation time lengthens and thereby the information processing rate becomes restricted. So that single-channel system cannot image in real time. Therefore we must use many radiometers in parallel to reduce the observation time. Such system must contain receiving sensors as pixels in multibeam antenna. The use of Josephson Junctions (JJ) for this purpose together with the cryoelectronic devices like GaAs FET or SQUIDS for signal amplifications after JJ is of particular interest in this case.

  20. High-performance passive microwave survey on Josephson junctions

    International Nuclear Information System (INIS)

    Denisov, A.G.; Radzikhovsky, V.N.; Kudeliya, A.M.

    1994-01-01

    The quasi-optical generations of image of objects with their internal structure in millimeter (MM) and submillimeter (SMM) bands is one of the prime problems of modern radioelectronics. The main advantage of passive MM imaging systems in comparison with visible and infrared (IR) systems is small attenuation of signals in fog, cloud, smoke, dust and other obscurants. However at a panoramic scanning of space the observation time lengthens and thereby the information processing rate becomes restricted. So that single-channel system cannot image in real time. Therefore we must use many radiometers in parallel to reduce the observation time. Such system must contain receiving sensors as pixels in multibeam antenna. The use of Josephson Junctions (JJ) for this purpose together with the cryoelectronic devices like GaAs FET or SQUIDS for signal amplifications after JJ is of particular interest in this case

  1. High-Q microwave photonic filter with a tuned modulator.

    Science.gov (United States)

    Capmany, J; Mora, J; Ortega, B; Pastor, D

    2005-09-01

    We propose the use of tuned electro-optic or electroabsorption external modulators to implement high-quality (high-Q) factor, single-bandpass photonic filters for microwave signals. Using this approach, we experimentally demonstrate a transversal finite impulse response with a Q factor of 237. This is to our knowledge the highest value ever reported for a passive finite impulse-response microwave photonic filter.

  2. MAPSM: A Spatio-Temporal Algorithm for Merging Soil Moisture from Active and Passive Microwave Remote Sensing

    Directory of Open Access Journals (Sweden)

    Sat Kumar Tomer

    2016-12-01

    Full Text Available Availability of soil moisture observations at a high spatial and temporal resolution is a prerequisite for various hydrological, agricultural and meteorological applications. In the current study, a novel algorithm for merging soil moisture from active microwave (SAR and passive microwave is presented. The MAPSM algorithm—Merge Active and Passive microwave Soil Moisture—uses a spatio-temporal approach based on the concept of the Water Change Capacity (WCC which represents the amplitude and direction of change in the soil moisture at the fine spatial resolution. The algorithm is applied and validated during a period of 3 years spanning from 2010 to 2013 over the Berambadi watershed which is located in a semi-arid tropical region in the Karnataka state of south India. Passive microwave products are provided from ESA Level 2 soil moisture products derived from Soil Moisture and Ocean Salinity (SMOS satellite (3 days temporal resolution and 40 km nominal spatial resolution. Active microwave are based on soil moisture retrievals from 30 images of RADARSAT-2 data (24 days temporal resolution and 20 m spatial resolution. The results show that MAPSM is able to provide a good estimate of soil moisture at a spatial resolution of 500 m with an RMSE of 0.025 m3/m3 and 0.069 m3/m3 when comparing it to soil moisture from RADARSAT-2 and in-situ measurements, respectively. The use of Sentinel-1 and RISAT products in MAPSM algorithm is envisioned over other areas where high number of revisits is available. This will need an update of the algorithm to take into account the angle sampling and resolution of Sentinel-1 and RISAT data.

  3. Assessing concentration uncertainty estimates from passive microwave sea ice products

    Science.gov (United States)

    Meier, W.; Brucker, L.; Miller, J. A.

    2017-12-01

    Sea ice concentration is an essential climate variable and passive microwave derived estimates of concentration are one of the longest satellite-derived climate records. However, until recently uncertainty estimates were not provided. Numerous validation studies provided insight into general error characteristics, but the studies have found that concentration error varied greatly depending on sea ice conditions. Thus, an uncertainty estimate from each observation is desired, particularly for initialization, assimilation, and validation of models. Here we investigate three sea ice products that include an uncertainty for each concentration estimate: the NASA Team 2 algorithm product, the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF) product, and the NOAA/NSIDC Climate Data Record (CDR) product. Each product estimates uncertainty with a completely different approach. The NASA Team 2 product derives uncertainty internally from the algorithm method itself. The OSI-SAF uses atmospheric reanalysis fields and a radiative transfer model. The CDR uses spatial variability from two algorithms. Each approach has merits and limitations. Here we evaluate the uncertainty estimates by comparing the passive microwave concentration products with fields derived from the NOAA VIIRS sensor. The results show that the relationship between the product uncertainty estimates and the concentration error (relative to VIIRS) is complex. This may be due to the sea ice conditions, the uncertainty methods, as well as the spatial and temporal variability of the passive microwave and VIIRS products.

  4. Twenty-four year record of Northern Hemisphere snow cover derived from passive microwave remote sensing

    Science.gov (United States)

    Armstrong, Richard L.; Brodzik, Mary Jo

    2003-04-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. It is now possible to monitor the global fluctuation of snow cover over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a smiliar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible statellite data and the visible data typically show higher monthly variability. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as on into the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm

  5. Potential of bias correction for downscaling passive microwave and soil moisture data

    Science.gov (United States)

    Passive microwave satellites such as SMOS (Soil Moisture and Ocean Salinity) or SMAP (Soil Moisture Active Passive) observe brightness temperature (TB) and retrieve soil moisture at a spatial resolution greater than most hydrological processes. Bias correction is proposed as a simple method to disag...

  6. The performance of the new enhanced-resolution satellite passive microwave dataset applied for snow water equivalent estimation

    Science.gov (United States)

    Pan, J.; Durand, M. T.; Jiang, L.; Liu, D.

    2017-12-01

    The newly-processed NASA MEaSures Calibrated Enhanced-Resolution Brightness Temperature (CETB) reconstructed using antenna measurement response function (MRF) is considered to have significantly improved fine-resolution measurements with better georegistration for time-series observations and equivalent field of view (FOV) for frequencies with the same monomial spatial resolution. We are looking forward to its potential for the global snow observing purposes, and therefore aim to test its performance for characterizing snow properties, especially the snow water equivalent (SWE) in large areas. In this research, two candidate SWE algorithms will be tested in China for the years between 2005 to 2010 using the reprocessed TB from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), with the results to be evaluated using the daily snow depth measurements at over 700 national synoptic stations. One of the algorithms is the SWE retrieval algorithm used for the FengYun (FY) - 3 Microwave Radiation Imager. This algorithm uses the multi-channel TB to calculate SWE for three major snow regions in China, with the coefficients adapted for different land cover types. The second algorithm is the newly-established Bayesian Algorithm for SWE Estimation with Passive Microwave measurements (BASE-PM). This algorithm uses the physically-based snow radiative transfer model to find the histogram of most-likely snow property that matches the multi-frequency TB from 10.65 to 90 GHz. It provides a rough estimation of snow depth and grain size at the same time and showed a 30 mm SWE RMS error using the ground radiometer measurements at Sodankyla. This study will be the first attempt to test it spatially for satellite. The use of this algorithm benefits from the high resolution and the spatial consistency between frequencies embedded in the new dataset. This research will answer three questions. First, to what extent can CETB increase the heterogeneity in the mapped SWE? Second, will

  7. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions

    Science.gov (United States)

    Kim, Edward

    2012-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201l. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record -- provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica--parameters such as surface temperature.

  8. Combining Passive Microwave Sounders with CYGNSS information for improved retrievals: Observations during Hurricane Harvey

    Science.gov (United States)

    Schreier, M. M.

    2017-12-01

    The launch of CYGNSS (Cyclone Global Navigation Satellite System) has added an interesting component to satellite observations: it can provide wind speeds in the tropical area with a high repetition rate. Passive microwave sounders that are overpassing the same region can benefit from this information, when it comes to the retrieval of temperature or water profiles: the uncertainty about wind speeds has a strong impact on emissivity and reflectivity calculations with respect to surface temperature. This has strong influences on the uncertainty of retrieval of temperature and water content, especially under extreme weather conditions. Adding CYGNSS information to the retrieval can help to reduce errors and provide a significantly better sounder retrieval. Based on observations during Hurricane Harvey, we want to show the impact of CYGNSS data on the retrieval of passive microwave sensors. We will show examples on the impact on the retrieval from polar orbiting instruments, like the Advanced Technology Microwave Sounder (ATMS) and AMSU-A/B on NOAA-18 and 19. In addition we will also show the impact on retrievals from HAMSR (High Altitude MMIC Sounding Radiometer), which was flying on the Global Hawk during the EPOCH campaign. We will compare the results with other observations and estimate the impact of additional CYGNSS information on the microwave retrieval, especially on the impact in error and uncertainty reduction. We think, that a synergetic use of these different data sources could significantly help to produce better assimilation products for forecast assimilation.

  9. Retrieval of Effective Correlation Length and Snow Water Equivalent from Radar and Passive Microwave Measurements

    Directory of Open Access Journals (Sweden)

    Juha Lemmetyinen

    2018-01-01

    Full Text Available Current methods for retrieving SWE (snow water equivalent from space rely on passive microwave sensors. Observations are limited by poor spatial resolution, ambiguities related to separation of snow microstructural properties from the total snow mass, and signal saturation when snow is deep (~>80 cm. The use of SAR (Synthetic Aperture Radar at suitable frequencies has been suggested as a potential observation method to overcome the coarse resolution of passive microwave sensors. Nevertheless, suitable sensors operating from space are, up to now, unavailable. Active microwave retrievals suffer, however, from the same difficulties as the passive case in separating impacts of scattering efficiency from those of snow mass. In this study, we explore the potential of applying active (radar and passive (radiometer microwave observations in tandem, by using a dataset of co-incident tower-based active and passive microwave observations and detailed in situ data from a test site in Northern Finland. The dataset spans four winter seasons with daily coverage. In order to quantify the temporal variability of snow microstructure, we derive an effective correlation length for the snowpack (treated as a single layer, which matches the simulated microwave response of a semi-empirical radiative transfer model to observations. This effective parameter is derived from radiometer and radar observations at different frequencies and frequency combinations (10.2, 13.3 and 16.7 GHz for radar; 10.65, 18.7 and 37 GHz for radiometer. Under dry snow conditions, correlations are found between the effective correlation length retrieved from active and passive measurements. Consequently, the derived effective correlation length from passive microwave observations is applied to parameterize the retrieval of SWE using radar, improving retrieval skill compared to a case with no prior knowledge of snow-scattering efficiency. The same concept can be applied to future radar

  10. Sensitivity of Support Vector Machine Predictions of Passive Microwave Brightness Temperature Over Snow-covered Terrain in High Mountain Asia

    Science.gov (United States)

    Ahmad, J. A.; Forman, B. A.

    2017-12-01

    High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.

  11. Rain detection over land surfaces using passive microwave satellite data

    NARCIS (Netherlands)

    Bauer, P.; Burose, D.; Schulz, J.

    2002-01-01

    An algorithm is presented for the detection of surface rainfall using passive microwave measurements by satellite radiometers. The technique consists of a two-stage approach to distinguish precipitation signatures from other effects: (1) Contributions from slowly varying parameters (surface type and

  12. Results From the First 118 GHz Passive Microwave Observations Over Antarctica

    Science.gov (United States)

    McAllister, R.; Gallaher, D. W.; Gasiewski, A. J.; Periasamy, L.; Belter, R.; Hurowitz, M.; Hosack, W.; Sanders, B. T.

    2017-12-01

    Cooperation between the University of Colorado (Center for Environmental Technology, National Snow and Ice Data Center, and Colorado Space Grant Consortium) and the private corporation Orbital Micro Systems (OMS) has resulted in a highly miniturized passive microwave sensor. This sensor was successfully flown over Antarctica in onboard NASA's DC-8 in Operation Ice Bridge (OIB) in October / November of 2016. Data was collected from the "MiniRad" 8 channel miniaturized microwave sensor, which operated as both a sounder and an imager. The non-calibrated observation included both high and low altitude observations over clouds, sea, ice, ice sheets, and mountains as well as terrain around Tierra del Fuego. Sample results and their significance will be discussed. The instrument is in a form factor suitable for deployment in cubesats and will be launched into orbit next year. Commercial deployments by OMS in a constellation configuration will shortly follow.

  13. Analyzing the inundation pattern of the Poyang Lake floodplain by passive microwave data

    NARCIS (Netherlands)

    Shang, H.; Li, J.; Menenti, M.

    2015-01-01

    The soil wetness condition is a useful indicator of inundation hazard in floodplains, such as the Poyang Lake floodplain. Special Sensor Microwave Imager (SSM/I) passive microwave data were used to monitor water-saturated soil and open water areas of the Poyang Lake floodplain from 2001 to 2008,

  14. High Tc superconductors at microwave frequencies

    International Nuclear Information System (INIS)

    Gruener, G.

    1991-01-01

    The author discusses various experiments conducted in the micro- and millimeter wave spectral range on thin film and single crystal specimens of the high temperature oxide superconductors. For high quality film the surface resistance R s is, except at low temperatures, due to thermally excited carriers, with extrinsic effects playing only a secondary role. Because of the low loss various passive microwave components, such as resonators, delay lines and filters, with performance far superior to those made of normal metals can be fabricated. The conductivity measured at millimeter wave frequencies displays a peak below T c . Whether this is due to coherence factors or due to the change of the relaxation rate when the materials enter the superconducting state remains to be seen

  15. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set provides a Climate Data Record (CDR) of sea ice concentration from passive microwave data. It provides a consistent, daily and monthly time series of...

  16. An equivalent method of mixed dielectric constant in passive microwave/millimeter radiometric measurement

    Science.gov (United States)

    Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui

    2017-10-01

    Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.

  17. A high-performance trench capacitor integrated in a passive integration technology

    International Nuclear Information System (INIS)

    Geiselbrechtinger, Angelika; Büyüktas, Kevni; Allers, Karl-Heinz; Hartung, Wolfgang

    2009-01-01

    The requirements for the electrical characteristics of passive on-chip devices become more and more important. The electrical performance of RF circuits is predominantly restricted by the passives. New technologies and new device concepts are necessary to meet the demands. In this work, a trench capacitor developed for RF applications is presented for the first time. This so-called SilCap (silicon capacitor) device features very high capacitance density, extreme low-voltage dependence, excellent temperature stability, good RF performance and a high breakthrough voltage. First, the device function and the technological concept are introduced. The concept is realized without implementing cost-intensive high-k materials. This trench capacitor is integrated in the front end of line of a passive integration technology. The achieved specific capacitance density is compared to a standard planar capacitor. Performance of the SilCap in terms of quality factor and breakthrough voltage is shown. Finally, reliability data of this trench capacitor are presented with special focus on extrinsic and dielectric lifetime

  18. A method for combining passive microwave and infrared rainfall observations

    Science.gov (United States)

    Kummerow, Christian; Giglio, Louis

    1995-01-01

    Because passive microwave instruments are confined to polar-orbiting satellites, rainfall estimates must interpolate across long time periods, during which no measurements are available. In this paper the authors discuss a technique that allows one to partially overcome the sampling limitations by using frequent infrared observations from geosynchronous platforms. To accomplish this, the technique compares all coincident microwave and infrared observations. From each coincident pair, the infrared temperature threshold is selected that corresponds to an area equal to the raining area observed in the microwave image. The mean conditional rainfall rate as determined from the microwave image is then assigned to pixels in the infrared image that are colder than the selected threshold. The calibration is also applied to a fixed threshold of 235 K for comparison with established infrared techniques. Once a calibration is determined, it is applied to all infrared images. Monthly accumulations for both methods are then obtained by summing rainfall from all available infrared images. Two examples are used to evaluate the performance of the technique. The first consists of a one-month period (February 1988) over Darwin, Australia, where good validation data are available from radar and rain gauges. For this case it was found that the technique approximately doubled the rain inferred by the microwave method alone and produced exceptional agreement with the validation data. The second example involved comparisons with atoll rain gauges in the western Pacific for June 1989. Results here are overshadowed by the fact that the hourly infrared estimates from established techniques, by themselves, produced very good correlations with the rain gauges. The calibration technique was not able to improve upon these results.

  19. Calibrated, Enhanced-Resolution Brightness Temperature Earth System Data Record: A New Era for Gridded Passive Microwave Data

    Science.gov (United States)

    Hardman, M.; Brodzik, M. J.; Long, D. G.

    2017-12-01

    provides for easy importing and correct reprojection interoperability in many standard packages. As a consistently-processed, high-quality satellite passive microwave ESDR, we expect this data set to replace earlier gridded passive microwave data sets, and to pave the way for new insights from higher-resolution derived geophysical products.

  20. CMORPH 8 Km: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A new technique is presented in which half-hourly global precipitation estimates derived from passive microwave satellite scans are propagated by motion vectors...

  1. NOAA Climate Data Record (CDR) of Passive Microwave Sea Ice Concentration, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Passive Microwave Sea Ice Concentration Climate Data Record (CDR) dataset is generated using daily gridded brightness temperatures from the Defense...

  2. Combining Passive Microwave Rain Rate Retrieval with Visible and Infrared Cloud Classification.

    Science.gov (United States)

    Miller, Shawn William

    The relation between cloud type and rain rate has been investigated here from different approaches. Previous studies and intercomparisons have indicated that no single passive microwave rain rate algorithm is an optimal choice for all types of precipitating systems. Motivated by the upcoming Tropical Rainfall Measuring Mission (TRMM), an algorithm which combines visible and infrared cloud classification with passive microwave rain rate estimation was developed and analyzed in a preliminary manner using data from the Tropical Ocean Global Atmosphere-Coupled Ocean Atmosphere Response Experiment (TOGA-COARE). Overall correlation with radar rain rate measurements across five case studies showed substantial improvement in the combined algorithm approach when compared to the use of any single microwave algorithm. An automated neural network cloud classifier for use over both land and ocean was independently developed and tested on Advanced Very High Resolution Radiometer (AVHRR) data. The global classifier achieved strict accuracy for 82% of the test samples, while a more localized version achieved strict accuracy for 89% of its own test set. These numbers provide hope for the eventual development of a global automated cloud classifier for use throughout the tropics and the temperate zones. The localized classifier was used in conjunction with gridded 15-minute averaged radar rain rates at 8km resolution produced from the current operational network of National Weather Service (NWS) radars, to investigate the relation between cloud type and rain rate over three regions of the continental United States and adjacent waters. The results indicate a substantially lower amount of available moisture in the Front Range of the Rocky Mountains than in the Midwest or in the eastern Gulf of Mexico.

  3. Porous Graphene Microflowers for High-Performance Microwave Absorption

    Science.gov (United States)

    Chen, Chen; Xi, Jiabin; Zhou, Erzhen; Peng, Li; Chen, Zichen; Gao, Chao

    2018-06-01

    Graphene has shown great potential in microwave absorption (MA) owing to its high surface area, low density, tunable electrical conductivity and good chemical stability. To fully realize graphene's MA ability, the microstructure of graphene should be carefully addressed. Here we prepared graphene microflowers (Gmfs) with highly porous structure for high-performance MA filler material. The efficient absorption bandwidth (reflection loss ≤ -10 dB) reaches 5.59 GHz and the minimum reflection loss is up to -42.9 dB, showing significant increment compared with stacked graphene. Such performance is higher than most graphene-based materials in the literature. Besides, the low filling content (10 wt%) and low density (40-50 mg cm-3) are beneficial for the practical applications. Without compounding with magnetic materials or conductive polymers, Gmfs show outstanding MA performance with the aid of rational microstructure design. Furthermore, Gmfs exhibit advantages in facile processibility and large-scale production compared with other porous graphene materials including aerogels and foams.

  4. Error characterisation of global active and passive microwave soil moisture datasets

    Directory of Open Access Journals (Sweden)

    W. A. Dorigo

    2010-12-01

    Full Text Available Understanding the error structures of remotely sensed soil moisture observations is essential for correctly interpreting observed variations and trends in the data or assimilating them in hydrological or numerical weather prediction models. Nevertheless, a spatially coherent assessment of the quality of the various globally available datasets is often hampered by the limited availability over space and time of reliable in-situ measurements. As an alternative, this study explores the triple collocation error estimation technique for assessing the relative quality of several globally available soil moisture products from active (ASCAT and passive (AMSR-E and SSM/I microwave sensors. The triple collocation is a powerful statistical tool to estimate the root mean square error while simultaneously solving for systematic differences in the climatologies of a set of three linearly related data sources with independent error structures. Prerequisite for this technique is the availability of a sufficiently large number of timely corresponding observations. In addition to the active and passive satellite-based datasets, we used the ERA-Interim and GLDAS-NOAH reanalysis soil moisture datasets as a third, independent reference. The prime objective is to reveal trends in uncertainty related to different observation principles (passive versus active, the use of different frequencies (C-, X-, and Ku-band for passive microwave observations, and the choice of the independent reference dataset (ERA-Interim versus GLDAS-NOAH. The results suggest that the triple collocation method provides realistic error estimates. Observed spatial trends agree well with the existing theory and studies on the performance of different observation principles and frequencies with respect to land cover and vegetation density. In addition, if all theoretical prerequisites are fulfilled (e.g. a sufficiently large number of common observations is available and errors of the different

  5. Micromachined high-performance RF passives in CMOS substrate

    International Nuclear Information System (INIS)

    Li, Xinxin; Ni, Zao; Gu, Lei; Wu, Zhengzheng; Yang, Chen

    2016-01-01

    This review systematically addresses the micromachining technologies used for the fabrication of high-performance radio-frequency (RF) passives that can be integrated into low-cost complementary metal-oxide semiconductor (CMOS)-grade (i.e. low-resistivity) silicon wafers. With the development of various kinds of post-CMOS-compatible microelectromechanical systems (MEMS) processes, 3D structural inductors/transformers, variable capacitors, tunable resonators and band-pass/low-pass filters can be compatibly integrated into active integrated circuits to form monolithic RF system-on-chips. By using MEMS processes, including substrate modifying/suspending and LIGA-like metal electroplating, both the highly lossy substrate effect and the resistive loss can be largely eliminated and depressed, thereby meeting the high-performance requirements of telecommunication applications. (topical review)

  6. Synergistic use of active and passive microwave in soil moisture estimation

    Science.gov (United States)

    O'Neill, P.; Chauhan, N.; Jackson, T.; Saatchi, S.

    1992-01-01

    Data gathered during the MACHYDRO experiment in central Pennsylvania in July 1990 have been utilized to study the synergistic use of active and passive microwave systems for estimating soil moisture. These data sets were obtained during an eleven-day period with NASA's Airborne Synthetic Aperture Radar (AIRSAR) and Push-Broom Microwave Radiometer (PBMR) over an instrumented watershed which included agricultural fields with a number of different crop covers. Simultaneous ground truth measurements were also made in order to characterize the state of vegetation and soil moisture under a variety of meteorological conditions. A combination algorithm is presented as applied to a representative corn field in the MACHYDRO watershed.

  7. A data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission

    Science.gov (United States)

    Entekhabi, D.; Jagdhuber, T.; Das, N. N.; Baur, M.; Link, M.; Piles, M.; Akbar, R.; Konings, A. G.; Mccoll, K. A.; Alemohammad, S. H.; Montzka, C.; Kunstmann, H.

    2016-12-01

    The active-passive soil moisture retrieval algorithm of NASA's SMAP mission depends on robust statistical estimation of active-passive covariation (β) and vegetation structure (Γ) parameters in order to provide reliable global measurements of soil moisture on an intermediate level (9km) compared to the native resolution of the radiometer (36km) and radar (3km) instruments. These parameters apply to the SMAP radiometer-radar combination over the period of record that was cut short with the end of the SMAP radar transmission. They also apply to the current SMAP radiometer and Sentinel 1A/B radar combination for high-resolution surface soil moisture mapping. However, the performance of the statistically-based approach is directly dependent on the selection of a representative time frame in which these parameters can be estimated assuming dynamic soil moisture and stationary soil roughness and vegetation cover. Here, we propose a novel, data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission. The algorithm does not depend on time series analyses and can be applied using minimum one pair of an active-passive acquisition. The algorithm stems from the physical link between microwave emission and scattering via conservation of energy. The formulation of the emission radiative transfer is combined with the Distorted Born Approximation of radar scattering for vegetated land surfaces. The two formulations are simultaneously solved for the covariation and vegetation structure parameters. Preliminary results from SMAP active-passive observations (April 13th to July 7th 2015) compare well with the time-series statistical approach and confirms the capability of this method to estimate these parameters. Moreover, the method is not restricted to a given frequency (applies to both L-band and C-band combinations for the radar) or incidence angle (all angles and not just the fixed 40° incidence

  8. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation

    KAUST Repository

    Niu, Tianqi

    2018-03-12

    The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment.

  9. NOAA Climate Data Record (CDR) of Passive Microwave Sea Ice Concentration, Version 1.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset version has been superseded by version 2. This data set provides a Climate Data Record (CDR) of passive microwave sea ice concentration based on the...

  10. Incorporation of Passive Microwave Brightness Temperatures in the ECMWF Soil Moisture Analysis

    Directory of Open Access Journals (Sweden)

    Joaquín Muñoz-Sabater

    2015-05-01

    Full Text Available For more than a decade, the European Centre for Medium-Range Weather Forecasts (ECMWF has used in-situ observations of 2 m temperature and 2 m relative humidity to operationally constrain the temporal evolution of model soil moisture. These observations are not available everywhere and they are indirectly linked to the state of the surface, so under various circumstances, such as weak radiative forcing or strong advection, they cannot be used as a proxy for soil moisture reinitialization in numerical weather prediction. Recently, the ECMWF soil moisture analysis has been updated to be able to account for the information provided by microwave brightness temperatures from the Soil Moisture and Ocean Salinity (SMOS mission of the European Space Agency (ESA. This is the first time that ECMWF uses direct information of the soil emission from passive microwave data to globally adjust the estimation of soil moisture by a land-surface model. This paper presents a novel version of the ECMWF Extended Kalman Filter soil moisture analysis to account for remotely sensed passive microwave data. It also discusses the advantages of assimilating direct satellite radiances compared to current soil moisture products, with a view to an operational implementation. A simple assimilation case study at global scale highlights the potential benefits and obstacles of using this new type of information in a global coupled land-atmospheric model.

  11. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    Science.gov (United States)

    Kim, Edward

    2011-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  12. High power microwaves

    CERN Document Server

    Benford, James; Schamiloglu, Edl

    2016-01-01

    Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: * How HPM relates historically and technically to the conventional microwave field * The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied * How high power sources work, including their performance capabilities and limitations * The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or pot...

  13. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation.

    Science.gov (United States)

    Niu, Tianqi; Lu, Jing; Munir, Rahim; Li, Jianbo; Barrit, Dounya; Zhang, Xu; Hu, Hanlin; Yang, Zhou; Amassian, Aram; Zhao, Kui; Liu, Shengzhong Frank

    2018-04-01

    The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Convective climatology over the southwest U.S. and Mexico from passive microwave and infrared data

    Science.gov (United States)

    Negri, Andrew J.; Howard, Kenneth W.; Keehn, Peter R.; Maddox, Robert A.; Adler, Robert F.

    1992-01-01

    Passive microwave data from the Special Sensor Microwave Imager (SSM/I) were used to estimate the amount of rainfall in the June-August season for the regions of the southwest U.S. and Mexico, and the results are compared to rain-gauge observations and to IR climatologies of Maddox et al. (1992), using both the hourly IR data and IR data sampled at the time of the overpass of the SSM/I. A comparison of the microwave climatology with monthly rainfall measured by the climatological gage network over several states of western Mexico resulted in a 0.63 correlation and a large (482 mm) bias, due to sampling and the incongruity of rain gages and satellite estimates. A comparison between the IR and microwave data showed that the IR tended toward higher percentages along the coast compared to the microwave.

  15. Measuring the global distribution of intense convection over land with passive microwave radiometry

    Science.gov (United States)

    Spencer, R. W.; Santek, D. A.

    1985-01-01

    The global distribution of intense convective activity over land is shown to be measurable with satellite passive-microwave methods through a comparison of an empirical rain rate algorithm with a climatology of thunderstorm days for the months of June-August. With the 18 and 37 GHz channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR), the strong volume scattering effects of precipitation can be measured. Even though a single frequency (37 GHz) is responsive to the scattering signature, two frequencies are needed to remove most of the effect that variations in thermometric temperatures and soil moisture have on the brightness temperatures. Because snow cover is also a volume scatterer of microwave energy at these microwavelengths, a discrimination procedure involving four of the SMMR channels is employed to separate the rain and snow classes, based upon their differences in average thermometric temperature.

  16. Satellite passive microwave rain measurement techniques for land and ocean

    Science.gov (United States)

    Spencer, R. W.

    1985-01-01

    Multiseasonal rainfall was found to be measurable over land with satellite passive microwave data, based upon comparisons between Nimbus 7 Scanning Multichannel Microwave Radiometer (SMME) brightness temperatures (T sub B) and operational WSR-57 radar rain rates. All of the SMMR channels (bipolarized 37, 21, 18, 10.7, and 6.6. GHz T sub B) were compared to radar reflectivities for 25 SMMR passes and 234 radar scans over the U.S. during the spring, summer, and fall of 1979. It was found that the radar rain rates were closely related to the difference between 37 and 21 GHz T sub B. This result is due to the volume scattering effects of precipitation which cause emissivity decreases with frequency, as opposed to emissive surfaces (e.g., water) whose emissivities increase with frequency. Two frequencies also act to reduce the effects of thermometric temperature variations on T sub B to a miminum. During summer and fall, multiple correlation coefficients of 0.80 and 0.75 were obtained. These approach the limit of correlation that can be expected to exist between two very different data sources, especially in light of the errors attributable to manual digitization of PPI photographs of variable quality from various operational weather radar not calibrated for research purposes. During the spring, a significantly lower (0.63) correlation was found. This poorer performance was traced to cases of wet, unvegetated soil being sensed at the lower frequencies through light rain, partly negating the rain scattering signal.

  17. Analysis of the electromagnetic radiation generated by a multipactor discharge occurring within a microwave passive component

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, M; Quesada, F; Alvarez, A [Department of Information and Communication Technologies, Technical University of Cartagena, Cartagena (Murcia) (Spain); Gimeno, B [Departamento de Fisica Aplicada y Electromagnetismo-ICMUV, Universidad de Valencia, Valencia (Spain); Miquel-Espanya, C; Raboso, D [European Space Agency (ESA), European Space Research and Technology Center (ESTEC), Noordwijk (Netherlands); Anza, S; Vicente, C; Gil, J [Aurora Software and Testing S.L., Valencia, Valencia (Spain); Taroncher, M; Reglero, M; Boria, V E, E-mail: benito.gimeno@uv.e [Departamento de Comunicaciones-ITEAM, Universidad Politecnica de Valencia (Spain)

    2010-10-06

    Multipactoring is a non-linear phenomenon that appears in high-power microwave equipment operating under vacuum conditions and causes several undesirable effects. In this paper, a theoretical and experimental study of the RF spectrum radiated by a multipactor discharge, occurring within a realistic microwave component based on rectangular waveguides, is reported. The electromagnetic coupling of a multipactor current to the fundamental propagative mode of a uniform waveguide has been analysed in the context of the microwave network theory. The discharge produced under a single-carrier RF voltage regime has been approached as a shunt current source exciting such a mode in a transmission-line gap region. By means of a simple equivalent circuit, this model allows prediction of the harmonics generated by the discharge occurring in a realistic passive waveguide component. Power spectrum radiated by a third-order multipactor discharge has been measured in an E-plane silver-plated waveguide transformer, thus validating qualitatively the presented theory to simulate the noise generated by a single-carrier multipactor discharge.

  18. Use of active and passive microwave remote sensing for soil moisture estimation through corn

    International Nuclear Information System (INIS)

    O'Neill, P.E.; Chauhan, N.S.; Jackson, T.J.

    1996-01-01

    Over the past several years NASA, USDA, and Princeton University have collaborated to conduct hydrology field experiments in instrumented research watersheds in Pennsylvania and Oklahoma with a goal of characterizing the spatial and temporal variability of soil moisture using microwave sensors. As part of these experiments, L-band radar data from both truck and aircraft sensors were used to validate the performance of a vegetation scattering model in which discrete scatter random media techniques were employed to calculate vegetation transmissivity and scattering. These parameters were then used in a soil moisture prediction algorithm based on a radiative transfer approach utilizing aircraft passive microwave data from the L-band PBMR and ESTAR radiometers. Soil moisture was predicted in both experiments for several large corn fields which represented the densest vegetation canopies of all the test fields. Over the 20 per cent change in soil moisture encountered in the experiments, the match of predicted to measured soil moisture was excellent, with an average absolute error of about 0 · 02 cm 3 cm −3 . (author)

  19. Glacial Boundary Features Delineated Using Enhanced-resolution Passive-microwave Data to Determine Melt Season Variation of the Vatnajokull Ice Cap, Iceland

    Science.gov (United States)

    Marzillier, D. M.; Ramage, J. M.

    2017-12-01

    Temperate glaciers such as those seen in Iceland experience high annual mass flux, thereby responding to small scale changes in Earth's climate. Decadal changes in the glacial margins of Iceland's ice caps are observable in the Landsat record, however twice daily AMSR-E Calibrated Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature (CETB) Earth System Data Record (ESDR) allow for observation on a daily temporal scale and a 3.125 km spatial scale, which can in turn be connected to patterns seen over longer periods of time. Passive microwave data allow for careful observation of melt onset and duration in Iceland's glacial regions by recording changes in emissivity of the ice surface, known as brightness temperature (TB), which is sensitive to fluctuations in the liquid water content of snow and ice seen during melting in glaciated regions. Enhanced resolution of this data set allows for a determination of a threshold that defines the melting season. The XPGR snowmelt algorithm originally presented by Abdalati and Steffen (1995) is used as a comparison with the diurnal amplitude variation (DAV) values on Iceland's Vatnajokull ice cap located at 64.4N, -16.8W. Ground-based air temperature data in this region, digital elevation models (DEMs), and river discharge dominated by glacial runoff are used to confirm the glacial response to changes in global climate. Results show that Iceland glaciers have a bimodal distribution of brightness temperature delineating when the snow/ice is melting and refreezing. Ground based temperatures have increased on a decadal trend. Clear glacial boundaries are visible on the passive microwave delineating strong features, and we are working to understand their variability and contribution to glacier evolution. The passive microwave data set allows connections to be made between observations seen on a daily scale and the long term glacier changes observed by the Landsat satellite record that integrates the

  20. Merging thermal and microwave satellite observations for a high-resolution soil moisture data product

    Science.gov (United States)

    Many societal applications of soil moisture data products require high spatial resolution and numerical accuracy. Current thermal geostationary satellite sensors (GOES Imager and GOES-R ABI) could produce 2-16km resolution soil moisture proxy data. Passive microwave satellite radiometers (e.g. AMSR...

  1. Multifrequency passive microwave observations of soil moisture in an arid rangeland environment

    Science.gov (United States)

    Jackson, T. J.; Schmugge, T. J.; Parry, R.; Kustas, W. P.; Ritchie, J. C.; Shutko, A. M.; Khaldin, A.; Reutov, E.; Novichikhin, E.; Liberman, B.

    1992-01-01

    A cooperative experiment was conducted by teams from the U.S. and U.S.S.R. to evaluate passive microwave instruments and algorithms used to estimate surface soil moisture. Experiments were conducted as part of an interdisciplinary experiment in an arid rangeland watershed located in the southwest United States. Soviet microwave radiometers operating at wavelengths of 2.25, 21 and 27 cm were flown on a U.S. aircraft. Radio frequency interference limited usable data to the 2.25 and 21 cm systems. Data have been calibrated and compared to ground observations of soil moisture. These analyses showed that the 21 cm system could produce reliable and useful soil moisture information and that the 2.25 cm system was of no value for soil moisture estimation in this experiment.

  2. Temporal observations of surface soil moisture using a passive microwave sensor

    International Nuclear Information System (INIS)

    Jackson, T.J.; O'Neill, P.

    1987-01-01

    A series of 10 aircraft flights was conducted over agricultural fields to evaluate relationships between observed surface soil moisture and soil moisture predicted using passive microwave sensor observations. An a priori approach was used to predict values of surface soil moisture for three types of fields: tilled corn, no-till corn with soybean stubble, and idle fields with corn stubble. Acceptable predictions were obtained for the tilled corn fields, while poor results were obtained for the others. The source of error is suspected to be the density and orientation of the surface stubble layer; however, further research is needed to verify this explanation. Temporal comparisons between observed, microwave predicted, and soil water-simulated moisture values showed similar patterns for tilled well-drained fields. Divergences between the observed and simulated measurements were apparent on poorly drained fields. This result may be of value in locating and mapping hydrologic contributing areas

  3. HTS thin films: Passive microwave components and systems integration issues

    International Nuclear Information System (INIS)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B.

    1994-01-01

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory's High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects

  4. A multi-sensor data-driven methodology for all-sky passive microwave inundation retrieval

    Science.gov (United States)

    Takbiri, Zeinab; Ebtehaj, Ardeshir M.; Foufoula-Georgiou, Efi

    2017-06-01

    We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-infrared, and microwave bands, thereby allowing for detection and mapping of the sub-pixel fraction of inundated areas under almost all-sky conditions. The method relies on a nearest-neighbor search and a modern sparsity-promoting inversion method that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping observations by the Special Sensor Microwave Imager and Sounder (SSMIS) on board the Defense Meteorological Satellite Program (DMSP) F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua and Terra satellites. Evaluation of the retrieval algorithm over the Mekong Delta shows that it is capable of capturing to a good degree the inundation diurnal variability due to localized convective precipitation. At longer timescales, the results demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation, and also copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water levels at monthly and daily timescales. The current inundation products are at a resolution of 12.5 km and taken twice per day, but a higher resolution (order of 5 km and every 3 h) can be achieved using the same algorithm with the dictionary populated by the Global Precipitation Mission (GPM) Microwave Imager (GMI) products.

  5. A multi-sensor data-driven methodology for all-sky passive microwave inundation retrieval

    Directory of Open Access Journals (Sweden)

    Z. Takbiri

    2017-06-01

    Full Text Available We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-infrared, and microwave bands, thereby allowing for detection and mapping of the sub-pixel fraction of inundated areas under almost all-sky conditions. The method relies on a nearest-neighbor search and a modern sparsity-promoting inversion method that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping observations by the Special Sensor Microwave Imager and Sounder (SSMIS on board the Defense Meteorological Satellite Program (DMSP F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS on board the Aqua and Terra satellites. Evaluation of the retrieval algorithm over the Mekong Delta shows that it is capable of capturing to a good degree the inundation diurnal variability due to localized convective precipitation. At longer timescales, the results demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation, and also copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water levels at monthly and daily timescales. The current inundation products are at a resolution of 12.5 km and taken twice per day, but a higher resolution (order of 5 km and every 3 h can be achieved using the same algorithm with the dictionary populated by the Global Precipitation Mission (GPM Microwave Imager (GMI products.

  6. Error Characterisation and Merging of Active and Passive Microwave Soil Moisture Data Sets

    Science.gov (United States)

    Wagner, Wolfgang; Gruber, Alexander; de Jeu, Richard; Parinussa, Robert; Chung, Daniel; Dorigo, Wouter; Reimer, Christoph; Kidd, Richard

    2015-04-01

    As part of the Climate Change Initiative (CCI) programme of the European Space Agency (ESA) a data fusion system has been developed which is capable of ingesting surface soil moisture data derived from active and passive microwave sensors (ASCAT, AMSR-E, etc.) flown on different satellite platforms and merging them to create long and consistent time series of soil moisture suitable for use in climate change studies. The so-created soil moisture data records (latest version: ESA CCI SM v02.1 released on 5/12/2014) are freely available and can be obtained from http://www.esa-soilmoisture-cci.org/. As described by Wagner et al. (2012) the principle steps of the data fusion process are: 1) error characterisation, 2) matching to account for data set specific biases, and 3) merging. In this presentation we present the current data fusion process and discuss how new error characterisation methods, such as the increasingly popular triple collocation method as discussed for example by Zwieback et al. (2012) may be used to improve it. The main benefit of an improved error characterisation would be a more reliable identification of the best performing microwave soil moisture retrieval(s) for each grid point and each point in time. In case that two or more satellite data sets provides useful information, the estimated errors can be used to define the weights with which each satellite data set are merged, i.e. the lower its error the higher its weight. This is expected to bring a significant improvement over the current data fusion scheme which is not yet based on quantitative estimates of the retrieval errors but on a proxy measure, namely the vegetation optical depth (Dorigo et al., 2015): over areas with low vegetation passive soil moisture retrievals are used, while over areas with moderate vegetation density active retrievals are used. In transition areas, where both products correlate well, both products are being used in a synergistic way: on time steps where only one of

  7. Improved Passive Microwave Algorithms for North America and Eurasia

    Science.gov (United States)

    Foster, James; Chang, Alfred; Hall, Dorothy

    1997-01-01

    Microwave algorithms simplify complex physical processes in order to estimate geophysical parameters such as snow cover and snow depth. The microwave radiances received at the satellite sensor and expressed as brightness temperatures are a composite of contributions from the Earth's surface, the Earth's atmosphere and from space. Owing to the coarse resolution inherent to passive microwave sensors, each pixel value represents a mixture of contributions from different surface types including deep snow, shallow snow, forests and open areas. Algorithms are generated in order to resolve these mixtures. The accuracy of the retrieved information is affected by uncertainties in the assumptions used in the radiative transfer equation (Steffen et al., 1992). One such uncertainty in the Chang et al., (1987) snow algorithm is that the snow grain radius is 0.3 mm for all layers of the snowpack and for all physiographic regions. However, this is not usually the case. The influence of larger grain sizes appears to be of more importance for deeper snowpacks in the interior of Eurasia. Based on this consideration and the effects of forests, a revised SMMR snow algorithm produces more realistic snow mass values. The purpose of this study is to present results of the revised algorithm (referred to for the remainder of this paper as the GSFC 94 snow algorithm) which incorporates differences in both fractional forest cover and snow grain size. Results from the GSFC 94 algorithm will be compared to the original Chang et al. (1987) algorithm and to climatological snow depth data as well.

  8. Ramifications of a potential gap in passive microwave data for the long-term sea ice climate record

    Science.gov (United States)

    Meier, W.; Stewart, J. S.

    2017-12-01

    The time series of sea ice concentration and extent from passive microwave sensors is one of the longest satellite-derived climate records and the significant decline in Arctic sea ice extent is one of the most iconic indicators of climate change. However, this continuous and consistent record is under threat due to the looming gap in passive microwave sensor coverage. The record started in late 1978 with the launch of the Scanning Multichannel Microwave Radiometer (SMMR) and has continued with a series of Special Sensor Microwave Imager (SSMI) and Special Sensor Microwave Imager and Sounder (SSMIS) instruments on U.S. Defense Meteorological Satellite Program (DMSP) satellites. The data from the different sensors are intercalibrated at the algorithm level by adjusting algorithm coefficients so that the output sea ice data is as consistent as possible between the older and the newer sensor. A key aspect in constructing the time series is to have at least two sensors operating simultaneously so that data from the older and newer sensor can be obtained from the same locations. However, with recent losses of the DMSP F19 and F20, the remaining SSMIS sensors are all well beyond their planned mission lifetime. This means that risk of failure is not small and is increasing with each day of operation. The newest passive microwave sensor, the JAXA Advanced Microwave Scanning Radiometer-2 (AMSR2), is a potential contributor to the time series (though it too is now beyond it's planned 5-year mission lifetime). However, AMSR2's larger antenna and higher spatial resolution presents a challenge in integrating its data with the rest of the sea ice record because the ice edge is quite sensitive to the sensor resolution, which substantially affects the total sea ice extent and area estimates. This will need to be adjusted for if AMSR2 is used to continue the time series. Here we will discuss efforts at NSIDC to integrate AMSR2 estimates into the sea ice climate record if needed. We

  9. Snow Cover Mapping at the Continental to Global Scale Using Combined Visible and Passive Microwave Satellite Data

    Science.gov (United States)

    Armstrong, R. L.; Brodzik, M.; Savoie, M. H.

    2007-12-01

    Over the past several decades both visible and passive microwave satellite data have been utilized for snow mapping at the continental to global scale. Snow mapping using visible data has been based primarily on the magnitude of the surface reflectance, and in more recent cases on specific spectral signatures, while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. We describe the respective problems as well as the advantages and disadvantages of these two types of satellite data for snow cover mapping and demonstrate how a multi-sensor approach is optimal. For the period 1978 to present we combine data from the NOAA weekly snow charts with snow cover derived from the SMMR and SSM/I brightness temperature data. For the period since 2002 we blend NASA EOS MODIS and AMSR-E data sets. Our current product incorporates MODIS data from the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) with microwave-derived snow water equivalent (SWE) at 25 km, resulting in a blended product that includes percent snow cover in the larger grid cell whenever the microwave SWE signal is absent. Validation of AMSR-E at the brightness temperature level is provided through the comparison with data from the well-calibrated heritage SSM/I sensor over large homogeneous snow-covered surfaces (e.g. Dome C region, Antarctica). We also describe how the application of the higher frequency microwave channels (85 and 89 GHz)enhances accurate mapping of shallow and intermittent snow cover.

  10. Verification of a New NOAA/NSIDC Passive Microwave Sea-Ice Concentration Climate Record

    Science.gov (United States)

    Meier, Walter N.; Peng, Ge; Scott, Donna J.; Savoie, Matt H.

    2014-01-01

    A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA)Climate Data Record (CDR) programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC) requirements, including (1) self describing file format, (2) ISO 19115-2 compliant collection-level metadata,(3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields) and NASA (for the GSFC fields). The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different.

  11. Remote detection and ecological monitoring of the industrial and natural nuclei activity of radioactive elements based on passive microwave radiometry

    Science.gov (United States)

    Chistyakova, Liliya K.; Chistyakov, Vyacheslav Y.; Losev, Dmitry V.; Penin, Sergei T.; Tarabrin, Yurij K.; Yakubov, Vladimir P.; Yurjev, Igor A.

    1998-12-01

    The passive remote method of microwave radiometry and its instrumental realization for express diagnostics of radioactive elements in the atmosphere have been discussed. Analysis of the microwave radiation due to ionization and dissociation of atmospheric components interacting with radioactive elements is carried out. The photochemical processes resulting in background microwave radiation power have been discussed. As an example, the results of natural experiment of detecting the atomic hydrogen radiation in the plume of emissions of nuclear cycle processing plants have been presented.

  12. Adaptive suppression of passive intermodulation in digital satellite transceivers

    Directory of Open Access Journals (Sweden)

    Lu TIAN

    2017-06-01

    Full Text Available For the performance issues of satellite transceivers suffering passive intermodulation interference, a novel and effective digital suppression algorithm is presented in this paper. In contrast to analog approaches, digital passive intermodulation (PIM suppression approaches can be easily reconfigured and therefore are highly attractive for future satellite communication systems. A simplified model of nonlinear distortion from passive microwave devices is established in consideration of the memory effect. The multiple high-order PIM products falling into the receiving band can be described as a bilinear predictor function. A suppression algorithm based on a bilinear polynomial decorrelated adaptive filter is proposed for baseband digital signal processing. In consideration of the time-varying characteristics of passive intermodulation, this algorithm can achieve the rapidness of online interference estimation and low complexity with less consumption of resources. Numerical simulation results show that the algorithm can effectively compensate the passive intermodulation interference, and achieve a high signal-to-interference ratio gain.

  13. Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves

    Science.gov (United States)

    Cui, Tie Jun

    2017-08-01

    Since 2004, my group at Southeast University has been carrying out research into microwave metamaterials, which are classified into three catagories: metamaterials based on the effective medium model, plasmonic metamaterials for spoof surface plasmon polaritons (SPPs), and coding and programmable metamaterials. For effective-medium metamaterials, we have developed a general theory to accurately describe effective permittivity and permeability in semi-analytical forms, from which we have designed and realized a three dimensional (3D) wideband ground-plane invisibility cloak, a free-space electrostatic invisibility cloak, an electromagnetic black hole, optical/radar illusions, and radially anisotropic zero-index metamaterial for omni-directional radiation and a nearly perfect power combination of source array, etc. We have also considered the engineering applications of microwave metamaterials, such as a broadband and low-loss 3D transformation-optics lens for wide-angle scanning, a 3D planar gradient-index lens for high-gain radiations, and a random metasurface for reducing radar cross sections. In the area of plasmonic metamaterials, we proposed an ultrathin, narrow, and flexible corrugated metallic strip to guide SPPs with a small bending loss and radiation loss, from which we designed and realized a series of SPP passive devices (e.g. power divider, coupler, filter, and resonator) and active devices (e.g. amplifier and duplexer). We also showed a significant feature of the ultrathin SPP waveguide in overcoming the challenge of signal integrity in traditional integrated circuits, which will help build a high-performance SPP wireless communication system. In the area of coding and programmable metamaterials, we proposed a new measure to describe a metamaterial from the viewpoint of information theory. We have illustrated theoretically and experimentally that coding metamaterials composed of digital units can be controlled by coding sequences, leading to different

  14. Passive and Active Monitoring on a High Performance Research Network

    International Nuclear Information System (INIS)

    Matthews, Warren

    2001-01-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10 12 ). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge has arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data

  15. Passive and Active Monitoring on a High Performance Research Network.

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Warren

    2001-05-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10{sup 12}). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge has arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not!) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data.

  16. HTS thin films: Passive microwave components and systems integration issues

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B. [National Aeronautics and Space Administration, Cleveland, OH (United States)

    1994-12-31

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory`s High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.

  17. Classification of sea ice types with single-band (33.6 GHz) airborne passive microwave imagery

    Science.gov (United States)

    Eppler, Duane T.; Farmer, L. Dennis; Lohanick, Alan W.; Hoover, Mervyn

    1986-09-01

    During March 1983 extensive high-quality airborne passive Ka band (33.6 GHz) microwave imagery and coincident high-resolution aerial photography were obtained of ice along a 378-km flight line in the Beaufort Sea. Analysis of these data suggests that four classes of winter surfaces can be distinguished solely on the basis of 33.6-GHz brightness temperature: open water, frazil, old ice, and young/first-year ice. New ice (excluding frazil) and nilas display brightness temperatures that overlap the range of temperatures characteristic of old ice and, to a lesser extent, young/first-year ice. Scenes in which a new ice or nilas are present in appreciable amounts are subject to substantial errors in classification if static measures of Ka band radiometric brightness temperature alone are considered. Textural characteristics of nilas and new ice, however, differ significantly from textural features characteristic of other ice types and probably can be used with brightness temperature data to classify ice type in high-resolution single-band microwave images. In any case, open water is radiometrically the coldest surface observed in any scene. Lack of overlap between brightness temperatures characteristic of other surfaces indicates that estimates of the areal extent of open water based on only 33.6-GHz brightness temperatures are accurate.

  18. CDRD and PNPR passive microwave precipitation retrieval algorithms: verification study over Africa and Southern Atlantic

    Science.gov (United States)

    Panegrossi, Giulia; Casella, Daniele; Cinzia Marra, Anna; Petracca, Marco; Sanò, Paolo; Dietrich, Stefano

    2015-04-01

    The ongoing NASA/JAXA Global Precipitation Measurement mission (GPM) requires the full exploitation of the complete constellation of passive microwave (PMW) radiometers orbiting around the globe for global precipitation monitoring. In this context the coherence of the estimates of precipitation using different passive microwave radiometers is a crucial need. We have developed two different passive microwave precipitation retrieval algorithms: one is the Cloud Dynamics Radiation Database algorithm (CDRD), a physically ¬based Bayesian algorithm for conically scanning radiometers (i.e., DMSP SSMIS); the other one is the Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for cross¬-track scanning radiometers (i.e., NOAA and MetOp¬A/B AMSU-¬A/MHS, and NPP Suomi ATMS). The algorithms, originally created for application over Europe and the Mediterranean basin, and used operationally within the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF, http://hsaf.meteoam.it), have been recently modified and extended to Africa and Southern Atlantic for application to the MSG full disk area. The two algorithms are based on the same physical foundation, i.e., the same cloud-radiation model simulations as a priori information in the Bayesian solver and as training dataset in the neural network approach, and they also use similar procedures for identification of frozen background surface, detection of snowfall, and determination of a pixel based quality index of the surface precipitation retrievals. In addition, similar procedures for the screening of not ¬precipitating pixels are used. A novel algorithm for the detection of precipitation in tropical/sub-tropical areas has been developed. The precipitation detection algorithm shows a small rate of false alarms (also over arid/desert regions), a superior detection capability in comparison with other widely used screening algorithms, and it is applicable

  19. Passive Microwave Precipitation Retrieval Uncertainty Characterized based on Field Campaign Data over Complex Terrain

    Science.gov (United States)

    Derin, Y.; Anagnostou, E. N.; Anagnostou, M.; Kalogiros, J. A.; Casella, D.; Marra, A. C.; Panegrossi, G.; Sanò, P.

    2017-12-01

    Difficulties in representation of high rainfall variability over mountainous areas using ground based sensors make satellite remote sensing techniques attractive for hydrologic studies over these regions. Even though satellite-based rainfall measurements are quasi global and available at high spatial resolution, these products have uncertainties that necessitate use of error characterization and correction procedures based upon more accurate in situ rainfall measurements. Such measurements can be obtained from field campaigns facilitated by research quality sensors such as locally deployed weather radar and in situ weather stations. This study uses such high quality and resolution rainfall estimates derived from dual-polarization X-band radar (XPOL) observations from three field experiments in Mid-Atlantic US East Coast (NASA IPHEX experiment), the Olympic Peninsula of Washington State (NASA OLYMPEX experiment), and the Mediterranean to characterize the error characteristics of multiple passive microwave (PMW) sensor retrievals. The study first conducts an independent error analysis of the XPOL radar reference rainfall fields against in situ rain gauges and disdrometer observations available by the field experiments. Then the study evaluates different PMW precipitation products using the XPOL datasets (GR) over the three aforementioned complex terrain study areas. We extracted matchups of PMW/GR rainfall based on a matching methodology that identifies GR volume scans coincident with PMW field-of-view sampling volumes, and scaled GR parameters to the satellite products' nominal spatial resolution. The following PMW precipitation retrieval algorithms are evaluated: the NASA Goddard PROFiling algorithm (GPROF), standard and climatology-based products (V 3, 4 and 5) from four PMW sensors (SSMIS, MHS, GMI, and AMSR2), and the precipitation products based on the algorithms Cloud Dynamics and Radiation Database (CDRD) for SSMIS and Passive microwave Neural network

  20. Impact of Missing Passive Microwave Sensors on Multi-Satellite Precipitation Retrieval Algorithm

    Directory of Open Access Journals (Sweden)

    Bin Yong

    2015-01-01

    Full Text Available The impact of one or two missing passive microwave (PMW input sensors on the end product of multi-satellite precipitation products is an interesting but obscure issue for both algorithm developers and data users. On 28 January 2013, the Version-7 TRMM Multi-satellite Precipitation Analysis (TMPA products were reproduced and re-released by National Aeronautics and Space Administration (NASA Goddard Space Flight Center because the Advanced Microwave Sounding Unit-B (AMSU-B and the Special Sensor Microwave Imager-Sounder-F16 (SSMIS-F16 input data were unintentionally disregarded in the prior retrieval. Thus, this study investigates the sensitivity of TMPA algorithm results to missing PMW sensors by intercomparing the “early” and “late” Version-7 TMPA real-time (TMPA-RT precipitation estimates (i.e., without and with AMSU-B, SSMIS-F16 sensors with an independent high-density gauge network of 200 tipping-bucket rain gauges over the Chinese Jinghe river basin (45,421 km2. The retrieval counts and retrieval frequency of various PMW and Infrared (IR sensors incorporated into the TMPA system were also analyzed to identify and diagnose the impacts of sensor availability on the TMPA-RT retrieval accuracy. Results show that the incorporation of AMSU-B and SSMIS-F16 has substantially reduced systematic errors. The improvement exhibits rather strong seasonal and topographic dependencies. Our analyses suggest that one or two single PMW sensors might play a key role in affecting the end product of current combined microwave-infrared precipitation estimates. This finding supports algorithm developers’ current endeavor in spatiotemporally incorporating as many PMW sensors as possible in the multi-satellite precipitation retrieval system called Integrated Multi-satellitE Retrievals for Global Precipitation Measurement mission (IMERG. This study also recommends users of satellite precipitation products to switch to the newest Version-7 TMPA datasets and

  1. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    Science.gov (United States)

    Comiso, J. C.

    1990-08-01

    The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.

  2. Imaging of microwave-induced acoustic fields in LiNbO{sub 3} by high-performance Brillouin microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France); Krueger, J K [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Fachrichtung 7.2, Experimentalphysik, Univ. des Saarlandes, Bau 38, D-66041 Saarbruecken (Germany); Elmazria, O [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Universite H. Poincare, Nancy I, F-54506 (France); Bouvot, L [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Universite H. Poincare, Nancy I, F-54506 (France); Mainka, J [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Fachrichtung 7.2, Experimentalphysik, Universitaet des Saarlandes, Bau 38, D-66041 Saarbruecken (Germany); Sanctuary, R [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Materiaux, Campus Luxembourg-Limpertsberg, L-1511 Luxembourg (Luxembourg); Rouxel, D [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France); Alnot, P [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France)

    2005-06-21

    High performance Brillouin microscopy (BM) has been used to characterize the spatial distribution of piezoelectrically induced acoustic fields excited at microwave frequencies in a LiNbO{sub 3} single crystal. It is demonstrated that under suitable conditions BM is able to detect microwave-induced bulk as well as surface acoustic waves. Brillouin spectroscopy is able to probe sound wave intensities of induced phonons, which are as small as those of thermal phonons.

  3. A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers

    Science.gov (United States)

    Meng, Huan; Dong, Jun; Ferraro, Ralph; Yan, Banghua; Zhao, Limin; Kongoli, Cezar; Wang, Nai-Yu; Zavodsky, Bradley

    2017-06-01

    Snowfall rate retrieval from spaceborne passive microwave (PMW) radiometers has gained momentum in recent years. PMW can be so utilized because of its ability to sense in-cloud precipitation. A physically based, overland snowfall rate (SFR) algorithm has been developed using measurements from the Advanced Microwave Sounding Unit-A/Microwave Humidity Sounder sensor pair and the Advanced Technology Microwave Sounder. Currently, these instruments are aboard five polar-orbiting satellites, namely, NOAA-18, NOAA-19, Metop-A, Metop-B, and Suomi-NPP. The SFR algorithm relies on a separate snowfall detection algorithm that is composed of a satellite-based statistical model and a set of numerical weather prediction model-based filters. There are four components in the SFR algorithm itself: cloud properties retrieval, computation of ice particle terminal velocity, ice water content adjustment, and the determination of snowfall rate. The retrieval of cloud properties is the foundation of the algorithm and is accomplished using a one-dimensional variational (1DVAR) model. An existing model is adopted to derive ice particle terminal velocity. Since no measurement of cloud ice distribution is available when SFR is retrieved in near real time, such distribution is implicitly assumed by deriving an empirical function that adjusts retrieved SFR toward radar snowfall estimates. Finally, SFR is determined numerically from a complex integral. The algorithm has been validated against both radar and ground observations of snowfall events from the contiguous United States with satisfactory results. Currently, the SFR product is operationally generated at the National Oceanic and Atmospheric Administration and can be obtained from that organization.

  4. A high-brightness thermionic microwave electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Borland, Michael [Stanford Univ., CA (United States)

    1991-02-01

    In a collaborative effort by SSRL, AET Associates, and Varian Associates, a high-brightness microwave electron gun using a thermionic cathode has been designed, built, tested, and installed for use with the SSRL 150 MeV linear accelerator. This thesis discusses the physics behind the design and operation of the gun and associated systems, presenting predictions and experimental tests of the gun`s performance. The microwave gun concept is of increasing interest due to its promise of providing higher-current, lower-emittance electron beams than possible from conventional, DC gun technology. In a DC guns, accelerating gradients are less than 8 MV/m, while those in a microwave gun can exceed 100 MV/m, providing much more rapid initial acceleration, thereby reducing the deleterious effects of space-charge. Microwave guns produce higher momentum beams than DC guns, thus lessening space-charge effects during subsequent beam transport. Typical DC guns produce kinetic energies of 80--400 KeV, compared to 2--3 MeV for the SSRL microwave gun. ``State-of-the-art`` microwave gun designs employ laser-driven photocathodes, providing excellent performance but with greater complexity and monetary costs. A thermionic microwave gun with a magnetic bunching system is comparable in cost and complexity to a conventional system, but provides performance that is orders of magnitude better. Simulations of the SSRL microwave gun predict a normalized RMS emittance at the gun exist of < 10 π • mec • μm for a beam consisting of approximately 50% of the particles emitted from the gun, and having a momentum spread ±10%. These emittances are for up to 5 x 109e- per bunch. Chromatic aberrations in the transport line between the gun and linear accelerator increase this to typically < 30 π • me • μm.

  5. A high-brightness thermionic microwave electron gun

    International Nuclear Information System (INIS)

    Borland, M.

    1991-02-01

    In a collaborative effort by SSRL, AET Associates, and Varian Associates, a high-brightness microwave electron gun using a thermionic cathode has been designed, built, tested, and installed for use with the SSRL 150 MeV linear accelerator. This thesis discusses the physics behind the design and operation of the gun and associated systems, presenting predictions and experimental tests of the gun's performance. The microwave gun concept is of increasing interest due to its promise of providing higher-current, lower-emittance electron beams than possible from conventional, DC gun technology. In a DC guns, accelerating gradients are less than 8 MV/m, while those in a microwave gun can exceed 100 MV/m, providing much more rapid initial acceleration, thereby reducing the deleterious effects of space-charge. Microwave guns produce higher momentum beams than DC guns, thus lessening space-charge effects during subsequent beam transport. Typical DC guns produce kinetic energies of 80--400 KeV, compared to 2--3 MeV for the SSRL microwave gun. ''State-of-the-art'' microwave gun designs employ laser-driven photocathodes, providing excellent performance but with greater complexity and monetary costs. A thermionic microwave gun with a magnetic bunching system is comparable in cost and complexity to a conventional system, but provides performance that is orders of magnitude better. Simulations of the SSRL microwave gun predict a normalized RMS emittance at the gun exist of e c · μm for a beam consisting of approximately 50% of the particles emitted from the gun, and having a momentum spread ±10%. These emittances are for up to 5 x 10 9 e - per bunch. Chromatic aberrations in the transport line between the gun and linear accelerator increase this to typically e · μm

  6. Classification of Active Microwave and Passive Optical Data Based on Bayesian Theory and Mrf

    Science.gov (United States)

    Yu, F.; Li, H. T.; Han, Y. S.; Gu, H. Y.

    2012-08-01

    A classifier based on Bayesian theory and Markov random field (MRF) is presented to classify the active microwave and passive optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.

  7. CLASSIFICATION OF ACTIVE MICROWAVE AND PASSIVE OPTICAL DATA BASED ON BAYESIAN THEORY AND MRF

    Directory of Open Access Journals (Sweden)

    F. Yu

    2012-08-01

    Full Text Available A classifier based on Bayesian theory and Markov random field (MRF is presented to classify the active microwave and passive optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.

  8. Leveraging GeoTIFF Compatibility for Visualizing a New EASE-Grid 2.0 Global Satellite Passive Microwave Climate Record

    Science.gov (United States)

    Paget, A. C.; Brodzik, M. J.; Long, D. G.; Hardman, M.

    2016-02-01

    The historical record of satellite-derived passive microwave brightness temperatures comprises data from multiple imaging radiometers (SMMR, SSM/I-SSMIS, AMSR-E), spanning nearly 40 years of Earth observations from 1978 to the present. Passive microwave data are used to monitor time series of many climatological variables, including ocean wind speeds, cloud liquid water and sea ice concentrations and ice velocity. Gridded versions of passive microwave data have been produced using various map projections (polar stereographic, Lambert azimuthal equal-area, cylindrical equal-area, quarter-degree Platte-Carree) and data formats (flat binary, HDF). However, none of the currently available versions can be rendered in the common visualization standard, geoTIFF, without requiring cartographic reprojection. Furthermore, the reprojection details are complicated and often require expert knowledge of obscure software package options. We are producing a consistently calibrated, completely reprocessed data set of this valuable multi-sensor satellite record, using EASE-Grid 2.0, an improved equal-area projection definition that will require no reprojection for translation into geoTIFF. Our approach has been twofold: 1) define the projection ellipsoid to match the reference datum of the satellite data, and 2) include required file-level metadata for standard projection software to correctly render the data in the geoTIFF standard. The Calibrated, Enhanced Resolution Brightness Temperature (CETB) Earth System Data Record (ESDR), leverages image reconstruction techniques to enhance gridded spatial resolution to 3 km and uses newly available intersensor calibrations to improve the quality of derived geophysical products. We expect that our attention to easy geoTIFF compatibility will foster higher-quality analysis with the CETB product by enabling easy and correct intercomparison with other gridded and in situ data.

  9. Soil Moisture Active Passive (SMAP) Microwave Radiometer Radio-Frequency Interference (RFI) Mitigation: Initial On-Orbit Results

    Science.gov (United States)

    Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Aksoy, Mustafa; Bringer, Alexandra

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission, launched in January 2015, provides global measurements of soil moisture using a microwave radiometer. SMAPs radiometer passband lies within the passive frequency allocation. However, both unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum have been documented as sources of radio frequency interference (RFI) to the L-band radiometers on SMOS and Aquarius. The spectral environment consists of high RFI levels as well as significant occurrences of low level RFI equivalent to 0.1 to 10 K. The SMAP ground processor reports the antenna temperature both before and after RFI mitigation is applied. The difference between these quantities represents the detected RFI level. The presentation will review the SMAP RFI detection and mitigation procedure and discuss early on-orbit RFI measurements from the SMAP radiometer. Assessments of global RFI properties and source types will be provided, as well as the implications of these results for SMAP soil moisture measurements.

  10. Diamond Windows for High Powered Microwave Transmission. Final Report

    International Nuclear Information System (INIS)

    Gat, R.

    2011-01-01

    This phase II SBIR developed technology for manufacturing diamond windows for use in high energy density photon transmission e.g. microwave or laser light photons. Microwave sources used in fusion research require microwave extraction windows with high thermal conductivity, low microwave absorption, and low resistance to thermal cracking. Newly developed, man made diamond windows have all three of these properties, but these windows are prohibitively expensive. This limits the natural progress of these important technologies to higher powers and slows the development of additional applications. This project developed a lower cost process for manufacturing diamond windows using microwave plasma. Diamond windows were deposited. A grinding process was used to provide optical smoothness for 2 cm diameter diamond windows that met the parallelism specifications for fusion beam windows. The microwave transmission performance (loss tangent) of one of the windows was measured at 95GHz to be less than 10-4, meeting specifications for utilization in the ITER tokamak.

  11. Soil moisture inversion from aircraft passive microwave observations during SMEX04 using a single-frequency algorithm

    International Nuclear Information System (INIS)

    Zeng, J Y; Li, Z; Chen, Q; Bi, H Y

    2014-01-01

    Soil moisture plays a key role in global water cycles. In the study, soil moisture retrievals from airborne microwave radiometer observations using a single-frequency algorithm were presented. The algorithm is based on a simplified radiative transfer (tau-omega) model and the influence of both the roughness and vegetation is combined into a single parameter in the algorithm. The microwave polarization difference index (MPDI) is used to eliminate the effects of temperature. Then soil moisture is obtained through a nonlinear iterative procedure by making the absolute value of the differences between the simulated and observed MPDI minimum. The algorithm was validated with aircraft passive microwave data from the Polarimetric Scanning Radiometer (PSR) at the Arizona during the Soil Moisture Experiment 2004 (SMEX04). The results show that the soil moisture retrieved by the algorithm is in good agreement with ground measurements with a small bias and an overall accuracy of 0.037m 3 m −3

  12. An Uncertainty Data Set for Passive Microwave Satellite Observations of Warm Cloud Liquid Water Path

    Science.gov (United States)

    Greenwald, Thomas J.; Bennartz, Ralf; Lebsock, Matthew; Teixeira, João.

    2018-04-01

    The first extended comprehensive data set of the retrieval uncertainties in passive microwave observations of cloud liquid water path (CLWP) for warm oceanic clouds has been created for practical use in climate applications. Four major sources of systematic errors were considered over the 9-year record of the Advanced Microwave Scanning Radiometer-EOS (AMSR-E): clear-sky bias, cloud-rain partition (CRP) bias, cloud-fraction-dependent bias, and cloud temperature bias. Errors were estimated using a unique merged AMSR-E/Moderate resolution Imaging Spectroradiometer Level 2 data set as well as observations from the Cloud-Aerosol Lidar with Orthogonal Polarization and the CloudSat Cloud Profiling Radar. To quantify the CRP bias more accurately, a new parameterization was developed to improve the inference of CLWP in warm rain. The cloud-fraction-dependent bias was found to be a combination of the CRP bias, an in-cloud bias, and an adjacent precipitation bias. Globally, the mean net bias was 0.012 kg/m2, dominated by the CRP and in-cloud biases, but with considerable regional and seasonal variation. Good qualitative agreement between a bias-corrected AMSR-E CLWP climatology and ship observations in the Northeast Pacific suggests that the bias estimates are reasonable. However, a possible underestimation of the net bias in certain conditions may be due in part to the crude method used in classifying precipitation, underscoring the need for an independent method of detecting rain in warm clouds. This study demonstrates the importance of combining visible-infrared imager data and passive microwave CLWP observations for estimating uncertainties and improving the accuracy of these observations.

  13. Microwave remote sensing of sea ice in the AIDJEX Main Experiment

    Science.gov (United States)

    Campbell, W.J.; Wayenberg, J.; Ramseyer, J.B.; Ramseier, R.O.; Vant, M.R.; Weaver, R.; Redmond, A.; Arsenaul, L.; Gloersen, P.; Zwally, H.J.; Wilheit, T.T.; Chang, T.C.; Hall, D.; Gray, L.; Meeks, D.C.; Bryan, M.L.; Barath, F.T.; Elachi, C.; Leberl, F.; Farr, Tom

    1978-01-01

    During the AIDJEX Main Experiment, April 1975 through May 1976, a comprehensive microwave sensing program was performed on the sea ice of the Beaufort Sea. Surface and aircraft measurements were obtained during all seasons using a wide variety of active and passive microwave sensors. The surface program obtained passive microwave measurements of various ice types using four antennas mounted on a tracked vehicle. In three test regions, each with an area of approximately 1.5 ?? 104 m2, detailed ice crystallographic, dielectric properties, and brightness temperatures of first-year, multiyear, and first-year/multiyear mixtures were measured. A NASA aircraft obtained passive microwave measurements of the entire area of the AIDJEX manned station array (triangle) during each of 18 flights. This verified the earlier reported ability to distinguish first-year and multiyear ice types and concentration and gave new information on ways to observe ice mixtures and thin ice types. The active microwave measurements from aircraft included those from an X- and L-band radar and from a scatterometer. The former is used to study a wide variety of ice features and to estimate deformations, while both are equally usable to observe ice types. With the present data, only the scatterometer can be used to distinguish positively multiyear from first-year and various types of thin ice. This is best done using coupled active and passive microwave sensing. ?? 1978 D. Reidel Publishing Company.

  14. High-Performance Quantum Dot Thin-Film Transistors with Environmentally Benign Surface Functionalization and Robust Defect Passivation.

    Science.gov (United States)

    Jung, Su Min; Kang, Han Lim; Won, Jong Kook; Kim, JaeHyun; Hwang, ChaHwan; Ahn, KyungHan; Chung, In; Ju, Byeong-Kwon; Kim, Myung-Gil; Park, Sung Kyu

    2018-01-31

    The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- , to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm 2 /(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.

  15. Investigation of a metallic photonic crystal high power microwave mode converter

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-02-01

    Full Text Available It is demonstrated that an L band metallic photonic crystal TEM-TE11 mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawatt level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE11 mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.

  16. Constructing Two-, Zero-, and One-Dimensional Integrated Nanostructures: an Effective Strategy for High Microwave Absorption Performance.

    Science.gov (United States)

    Sun, Yuan; Xu, Jianle; Qiao, Wen; Xu, Xiaobing; Zhang, Weili; Zhang, Kaiyu; Zhang, Xing; Chen, Xing; Zhong, Wei; Du, Youwei

    2016-11-23

    A novel "201" nanostructure composite consisting of two-dimensional MoS 2 nanosheets, zero-dimensional Ni nanoparticles and one-dimensional carbon nanotubes (CNTs) was prepared successfully by a two-step method: Ni nanopaticles were deposited onto the surface of few-layer MoS 2 nanosheets by a wet chemical method, followed by chemical vapor deposition growth of CNTs through the catalysis of Ni nanoparticles. The as-prepared 201-MoS 2 -Ni-CNTs composites exhibit remarkably enhanced microwave absorption performance compared to Ni-MoS 2 or Ni-CNTs. The minimum reflection loss (RL) value of 201-MoS 2 -Ni-CNTs/wax composites with filler loading ratio of 30 wt % reached -50.08 dB at the thickness of 2.4 mm. The maximum effective microwave absorption bandwidth (RL< -10 dB) of 6.04 GHz was obtained at the thickness of 2.1 mm. The excellent absorption ability originates from appropriate impedance matching ratio, strong dielectric loss and large surface area, which are attributed to the "201" nanostructure. In addition, this method could be extended to other low-dimensional materials, proving to be an efficient and promising strategy for high microwave absorption performance.

  17. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links.

    Science.gov (United States)

    Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-11-04

    In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators.

  18. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  19. An RFI Detection Algorithm for Microwave Radiometers Using Sparse Component Analysis

    Science.gov (United States)

    Mohammed-Tano, Priscilla N.; Korde-Patel, Asmita; Gholian, Armen; Piepmeier, Jeffrey R.; Schoenwald, Adam; Bradley, Damon

    2017-01-01

    Radio Frequency Interference (RFI) is a threat to passive microwave measurements and if undetected, can corrupt science retrievals. The sparse component analysis (SCA) for blind source separation has been investigated to detect RFI in microwave radiometer data. Various techniques using SCA have been simulated to determine detection performance with continuous wave (CW) RFI.

  20. Snowmelt Pattern and Lake Ice Phenology around Tibetan Plateau Estimated from Enhanced Resolution Passive Microwave Data

    Science.gov (United States)

    Xiong, C.; Shi, J.; Wang, T.

    2017-12-01

    Snow and ice is very sensitive to the climate change. Rising air temperature will cause the snowmelt time change. In contrast, the change in snow state will have feedback on climate through snow albedo. The snow melt timing is also correlated with the associated runoff. Ice phenology describes the seasonal cycle of lake ice cover and includes freeze-up and breakup periods and ice cover duration, which is an important weather and climate indicator. It is also important for lake-atmosphere interactions and hydrological and ecological processes. The enhanced resolution (up to 3.125 km) passive microwave data is used to estimate the snowmelt pattern and lake ice phenology on and around Tibetan Plateau. The enhanced resolution makes the estimation of snowmelt and lake ice phenology in more spatial detail compared to previous 25 km gridded passive microwave data. New algorithm based on smooth filters and change point detection was developed to estimate the snowmelt and lake ice freeze-up and break-up timing. Spatial and temporal pattern of snowmelt and lake ice phonology are estimated. This study provides an objective evidence of climate change impact on the cryospheric system on Tibetan Plateau. The results show significant earlier snowmelt and lake ice break-up in some regions.

  1. High performance passive solar heating system with heat pipe energy transfer and latent heat storage

    NARCIS (Netherlands)

    Dijk, van H.A.L.; Galen, van E; Hensen, J.L.M.; Wit, de M.H.

    1983-01-01

    Preliminar results are reported from a current project on the development of a high performance passive solar heating system. Two special components are introduced: a. A heat pipe as a thermal diode tube for the efficient transfer of collected solar heat from the absorber plate to behind an

  2. Theory and Design of Tunable and Reconfigurable Microwave Passive Components on Partially Magnetized Ferrite Substrate

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-01

    Typical microwave components such as antennas are large in size and occupy considerable space. Since multiple standards are utilized in modern day systems and thus multiple antennas are required, it is best if a single component can be reconfigured or tuned to various bands. Similarly phase shifters to provide beam scanning and polarization reconfigurable antennas are important for modern day congested wireless systems. Tunability of antennas or phase shifting between antenna elements has been demonstrated using various techniques which include magnetically tunable components on ferrite based substrates. Although this method has shown promising results it also has several issues due to the use of large external electromagnets and operation in the magnetically saturated state. These issues include the device being bulky, inefficient, non-integrable and expensive. In this thesis, we have tried to resolve the above mentioned issues of large size and large power requirement by replacing the large electromagnets with embedded bias windings and also by operating the ferrites in the partially magnetized state. New theoretical models and simulation methodology have been used to evaluate the performance of the microwave passive components in the partially magnetized state. A multilayer ferrite Low Temperature Cofired Ceramic (LTCC) tape system has been used to verify the performance experimentally. There exists a good agreement between the theoretical, simulation and measurement results. Tunable antennas with tuning range of almost 10 % and phase shifter with an FoM of 83.2/dB have been demonstrated in this work, however the major contribution is that this has been achieved with bias fields that are 90 % less than the typically reported values in the literature. Finally, polarization reconfigurability has also been demonstrated for a circular patch antenna using a low cost additive manufacturing technique. The results are promising and indicate that highly integrated

  3. Lifetime test on a high-performance dc microwave proton source

    International Nuclear Information System (INIS)

    Sherman, J.D.; Hodgkins, D.J.; Lara, P.D.; Schneider, J.D.; Stevens, R.R. Jr.

    1995-01-01

    Powerful CW proton linear accelerators (100 mA at 0.5--1 GeV) are being proposed for spallation neutron source applications.These production accelerators require high availability and reliability. A microwave proton source, which has already demonstrated several key beam requirements, was operated for one week (170 hours) in a dc mode to test the reliability and lifetime of its plasma generator. The source was operated with 570 W of microwave (2.45 GHz) discharge power and with a 47-kV extraction voltage. This choice of operating parameters gave a proton current density of 250-mA/cm 2 at 83% proton fraction, which is sufficient for a conservative dc injector design. The beam current was 60--65 mA over most of the week, and was sufficiently focused for RFQ injection. Total beam availability, defined as 47-keV beam-on time divided by elapsed time, was 96.2%. Spark downs in the high voltage column and a gas flow control problem caused all the downtime; no plasma generator failures were observed

  4. Multiscale comparison of GPM radar and passive microwave precipitation fields over oceans and land: effective resolution and global/regional/local diagnostics for improving retrieval algorithms

    Science.gov (United States)

    Guilloteau, C.; Foufoula-Georgiou, E.; Kummerow, C.; Kirstetter, P. E.

    2017-12-01

    A multiscale approach is used to compare precipitation fields retrieved from GMI using the last version of the GPROF algorithm (GPROF-2017) to the DPR fields all over the globe. Using a wavelet-based spectral analysis, which renders the multi-scale decompositions of the original fields independent of each other spatially and across scales, we quantitatively assess the various scales of variability of the retrieved fields, and thus define the spatially-variable "effective resolution" (ER) of the retrievals. Globally, a strong agreement is found between passive microwave and radar patterns at scales coarser than 80km. Over oceans the patterns match down to the 20km scale. Over land, comparison statistics are spatially heterogeneous. In most areas a strong discrepancy is observed between passive microwave and radar patterns at scales finer than 40-80km. The comparison is also supported by ground-based observations over the continental US derived from the NOAA/NSSL MRMS suite of products. While larger discrepancies over land than over oceans are classically explained by land complex surface emissivity perturbing the passive microwave retrieval, other factors are investigated here, such as intricate differences in the storm structure over oceans and land. Differences in term of statistical properties (PDF of intensities and spatial organization) of precipitation fields over land and oceans are assessed from radar data, as well as differences in the relation between the 89GHz brightness temperature and precipitation. Moreover, the multiscale approach allows quantifying the part of discrepancies caused by miss-match of the location of intense cells and instrument-related geometric effects. The objective is to diagnose shortcomings of current retrieval algorithms such that targeted improvements can be made to achieve over land the same retrieval performance as over oceans.

  5. DMSP SSM/I- Microwave Imager

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/I is a seven-channel, four frequency, linearly-polarized, passive microwave radiometric system which measures atmospheric, ocean and terrain microwave...

  6. Application of high power microwave vacuum electron devices

    International Nuclear Information System (INIS)

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  7. Estimating Global Ecosystem Isohydry/Anisohydry Using Active and Passive Microwave Satellite Data

    Science.gov (United States)

    Li, Yan; Guan, Kaiyu; Gentine, Pierre; Konings, Alexandra G.; Meinzer, Frederick C.; Kimball, John S.; Xu, Xiangtao; Anderegg, William R. L.; McDowell, Nate G.; Martinez-Vilalta, Jordi; Long, David G.; Good, Stephen P.

    2017-12-01

    The concept of isohydry/anisohydry describes the degree to which plants regulate their water status, operating from isohydric with strict regulation to anisohydric with less regulation. Though some species level measures of isohydry/anisohydry exist at a few locations, ecosystem-scale information is still largely unavailable. In this study, we use diurnal observations from active (Ku-Band backscatter from QuikSCAT) and passive (X-band vegetation optical depth (VOD) from Advanced Microwave Scanning Radiometer on EOS Aqua) microwave satellite data to estimate global ecosystem isohydry/anisohydry. Here diurnal observations from both satellites approximate predawn and midday plant canopy water contents, which are used to estimate isohydry/anisohydry. The two independent estimates from radar backscatter and VOD show reasonable agreement at low and middle latitudes but diverge at high latitudes. Grasslands, croplands, wetlands, and open shrublands are more anisohydric, whereas evergreen broadleaf and deciduous broadleaf forests are more isohydric. The direct validation with upscaled in situ species isohydry/anisohydry estimates indicates that the VOD-based estimates have much better agreement than the backscatter-based estimates. The indirect validation with prior knowledge suggests that both estimates are generally consistent in that vegetation water status of anisohydric ecosystems more closely tracks environmental fluctuations of water availability and demand than their isohydric counterparts. However, uncertainties still exist in the isohydry/anisohydry estimate, primarily arising from the remote sensing data and, to a lesser extent, from the methodology. The comprehensive assessment in this study can help us better understand the robustness, limitation, and uncertainties of the satellite-derived isohydry/anisohydry estimates. The ecosystem isohydry/anisohydry has the potential to reveal new insights into spatiotemporal ecosystem response to droughts.

  8. A Direct Comparison of Passive Polarimetry and Scatterometry Under Low- and High-Wind Conditions

    National Research Council Canada - National Science Library

    Swift, Calvin

    1997-01-01

    The University of Massachusetts Microwave Remote Sensing Laboratory (MIRSL) gathered coincident active and passive measurements of the ocean surface from the NASA Wallops P3 during the Ocean Wind Imaging (OWI) Experiment...

  9. A Long-Term and Reproducible Passive Microwave Sea Ice Concentration Data Record for Climate Studies and Monitoring

    Science.gov (United States)

    Peng, G.; Meier, W. N.; Scott, D. J.; Savoie, M. H.

    2013-01-01

    A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR) is available for climate studies, monitoring, and model validation with an initial operation capability (IOC). The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC) polar stereographic grid with nominal 25 km × 25 km grid cells in both the Southern and Northern Hemisphere polar regions from 9 July 1987 to 31 December 2007. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA) under the satellite climate data record program (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html). The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The data set, along with detailed data processing steps and error source information, can be found at http://dx.doi.org/10.7265/N5B56GN3.

  10. Spectroscopic study of microwave induced plasmas : exploration of active and passive methods

    NARCIS (Netherlands)

    Vries, de N.

    2008-01-01

    Microwave induced plasmas (MIPs) are used for a number of high-tech applications like material processing, light generation, gas cleaning and spectrochemical analysis. Especially the feature that MIPs can be operated remotely and that the propagation of the microwaves can be manipulated with slits,

  11. Development of radio frequency interference detection algorithms for passive microwave remote sensing

    Science.gov (United States)

    Misra, Sidharth

    Radio Frequency Interference (RFI) signals are man-made sources that are increasingly plaguing passive microwave remote sensing measurements. RFI is of insidious nature, with some signals low power enough to go undetected but large enough to impact science measurements and their results. With the launch of the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite in November 2009 and the upcoming launches of the new NASA sea-surface salinity measuring Aquarius mission in June 2011 and soil-moisture measuring Soil Moisture Active Passive (SMAP) mission around 2015, active steps are being taken to detect and mitigate RFI at L-band. An RFI detection algorithm was designed for the Aquarius mission. The algorithm performance was analyzed using kurtosis based RFI ground-truth. The algorithm has been developed with several adjustable location dependant parameters to control the detection statistics (false-alarm rate and probability of detection). The kurtosis statistical detection algorithm has been compared with the Aquarius pulse detection method. The comparative study determines the feasibility of the kurtosis detector for the SMAP radiometer, as a primary RFI detection algorithm in terms of detectability and data bandwidth. The kurtosis algorithm has superior detection capabilities for low duty-cycle radar like pulses, which are more prevalent according to analysis of field campaign data. Most RFI algorithms developed have generally been optimized for performance with individual pulsed-sinusoidal RFI sources. A new RFI detection model is developed that takes into account multiple RFI sources within an antenna footprint. The performance of the kurtosis detection algorithm under such central-limit conditions is evaluated. The SMOS mission has a unique hardware system, and conventional RFI detection techniques cannot be applied. Instead, an RFI detection algorithm for SMOS is developed and applied in the angular domain. This algorithm compares

  12. Performance simulation of the JPL solar-powered distiller. Part 1: Quasi-steady-state conditions. [for cooling microwave equipment

    Science.gov (United States)

    Yung, C. S.; Lansing, F. L.

    1983-01-01

    A 37.85 cu m (10,000 gallons) per year (nominal) passive solar powered water distillation system was installed and is operational in the Venus Deep Space Station. The system replaced an old, electrically powered water distiller. The distilled water produced with its high electrical resistivity is used to cool the sensitive microwave equipment. A detailed thermal model was developed to simulate the performance of the distiller and study its sensitivity under varying environment and load conditions. The quasi-steady state portion of the model is presented together with the formulas for heat and mass transfer coefficients used. Initial results indicated that a daily water evaporation efficiency of 30% can be achieved. A comparison made between a full day performance simulation and the actual field measurements gave good agreement between theory and experiment, which verified the model.

  13. Modelling the passive microwave signature from land surfaces: a review of recent results and application to the SMOS & SMAP soil moisture retrieval algorithms

    Science.gov (United States)

    Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009....

  14. Towards a climatology of tropical cyclone morphometric structures using a newly standardized passive microwave satellite dataset

    Science.gov (United States)

    Cossuth, J.; Hart, R. E.

    2013-12-01

    The structure of a tropical cyclone (TC) is a spatial representation of its organizational pattern and distribution of energy acquisition and release. Physical processes that react to both the external environment and its own internal dynamics manifest themselves in the TC shape. This structure depicts a specific phase in the TC's meteorological lifecycle, reflecting its past and potentially constraining its future development. For a number of reasons, a thorough objective definition of TC structures and an intercomparison of their varieties have been neglected. This lack of knowledge may be a key reason why TC intensity forecasts, despite numerical model improvements and theoretical advances, have been stagnant in recent years relative to track forecasts. Satellite microwave imagers provide multiple benefits in discerning TC structure, but compiling a research quality data set has been problematic due to several inherent technical and logistical issues. While there are multiple satellite sensors that incorporate microwave frequencies, inter-comparison between such sensors is limited by the different available channels, spatial resolutions, and calibration metrics between satellites, all of which provide inconsistencies in resolving TC structural features. To remedy these difficulties, a global archive of TCs as measured by all available US satellite microwave sensors is compiled and standardized. Using global historical best track data, TC microwave data is retrieved from the Defense Meteorological Satellite Program (DMSP) series (including all SSM/I and SSMIS), TMI, AMSR-E, and WindSat sensors. Standardization between sensors for each TC overpass are performed, including: 1) Recalibration of data from the 'ice scattering' channels to a common frequency (89GHz); 2) Resampling the DMSP series to a higher resolution using the Backus-Gilbert technique; and 3) Re-centering the TC center more precisely using the ARCHER technique (Wimmers and Velden 2010) to analyze the

  15. TRMM MICROWAVE IMAGER (TMI) WENTZ OCEAN PRODUCTS V3

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM Microwave Imager (TMI) is a 5-channel, dual-polarized, passive microwave radiometer. Microwave radiation is emitted by the Earth's surface and by water...

  16. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    Science.gov (United States)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  17. Recent advances in processing and applications of microwave ferrites

    International Nuclear Information System (INIS)

    Harris, Vincent G.; Geiler, Anton; Chen Yajie; Yoon, Soack Dae; Wu Mingzhong; Yang, Aria; Chen Zhaohui; He Peng; Parimi, Patanjali V.; Zuo Xu; Patton, Carl E.; Abe, Manasori; Acher, Olivier

    2009-01-01

    Next generation magnetic microwave devices will be planar, smaller, weigh less, and perform well beyond the present state-of-the-art. For this to become a reality advances in ferrite materials must first be realized. These advances include self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction. To achieve these goals one must turn to novel materials processing methods. Here, we review recent advances in the processing of microwave ferrites. Attention is paid to the processing of ferrite films by pulsed laser deposition, liquid phase epitaxy, spin spray ferrite plating, screen printing, and compaction of quasi-single crystals. Conventional and novel applications of ferrite materials, including microwave non-reciprocal passive devices, microwave signal processing, negative index metamaterial-based electronics, and electromagnetic interference suppression are discussed.

  18. Performance enhancement of a heterojunction bipolar transistor (HBT) by two-step passivation

    International Nuclear Information System (INIS)

    Fu, S.-I.; Lai, P.-H.; Tsai, Y.-Y.; Hung, C.-W.; Yen, C.-H.; Cheng, S.-Y.; Liu, W.-C.

    2006-01-01

    An interesting two-step passivation (with ledge structure and sulphide based chemical treatment) on base surface, for the first time, is demonstrated to study the temperature-dependent DC characteristics and noise performance of an InGaP/GaAs heterojunction bipolar transistor (HBT). Improved transistor behaviors on maximum current gain β max , offset voltage ΔV CE , and emitter size effect are obtained by using the two-step passivation. Moreover, the device with the two-step passivation exhibits relatively temperature-independent and improved thermal stable performances as the temperature is increased. Therefore, the two-step passivationed device can be used for high-temperature and low-power electronics applications

  19. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Lifshitz, A.; Skinner, G.B.; Wood, D.R.

    1978-01-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described

  20. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry.

    Science.gov (United States)

    Lifshitz, A; Skinner, G B; Wood, D R

    1978-09-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described.

  1. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Improved Method and Uncertainties

    Science.gov (United States)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.; hide

    2006-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in

  2. Sea Ice Concentration Estimation Using Active and Passive Remote Sensing Data Fusion

    Science.gov (United States)

    Zhang, Y.; Li, F.; Zhang, S.; Zhu, T.

    2017-12-01

    In this abstract, a decision-level fusion method by utilizing SAR and passive microwave remote sensing data for sea ice concentration estimation is investigated. Sea ice concentration product from passive microwave concentration retrieval methods has large uncertainty within thin ice zone. Passive microwave data including SSM/I, AMSR-E, and AMSR-2 provide daily and long time series observations covering whole polar sea ice scene, and SAR images provide rich sea ice details with high spatial resolution including deformation and polarimetric features. In the proposed method, the merits from passive microwave data and SAR data are considered. Sea ice concentration products from ASI and sea ice category label derived from CRF framework in SAR imagery are calibrated under least distance protocol. For SAR imagery, incident angle and azimuth angle were used to correct backscattering values from slant range to ground range in order to improve geocoding accuracy. The posterior probability distribution between category label from SAR imagery and passive microwave sea ice concentration product is modeled and integrated under Bayesian network, where Gaussian statistical distribution from ASI sea ice concentration products serves as the prior term, which represented as an uncertainty of sea ice concentration. Empirical model based likelihood term is constructed under Bernoulli theory, which meets the non-negative and monotonically increasing conditions. In the posterior probability estimation procedure, final sea ice concentration is obtained using MAP criterion, which equals to minimize the cost function and it can be calculated with nonlinear iteration method. The proposed algorithm is tested on multiple satellite SAR data sets including GF-3, Sentinel-1A, RADARSAT-2 and Envisat ASAR. Results show that the proposed algorithm can improve the accuracy of ASI sea ice concentration products and reduce the uncertainty along the ice edge.

  3. Improved DC performance of AlGaN/GaN high electron mobility transistors using hafnium oxide for surface passivation

    International Nuclear Information System (INIS)

    Liu, Chang; Chor, Eng Fong; Tan, Leng Seow

    2007-01-01

    Improved DC performance of AlGaN/GaN high electron mobility transistors (HEMTs) have been demonstrated using reactive-sputtered hafnium oxide (HfO 2 ) thin film as the surface passivation layer. Hall data indicate a significant increase in the product of sheet carrier concentration (n s ) and electron mobility (μ n ) in the HfO 2 -passivated HEMTs, compared to the unpassivated HEMTs. This improvement in electron carrier characteristics gives rise to a 22% higher I Dmax and an 18% higher g mmax in HEMTs with HfO 2 passivation relative to the unpassivated devices. On the other hand, I gleak of the HEMTs decreases by nearly one order of magnitude when HfO 2 passivation is applied. In addition, drain current is measured in the subthreshold regime. Compared to the unpassivated HEMTs, HfO 2 -passivated HEMTs exhibit a much smaller off-state I D , indicating better turn-off characteristics

  4. Passivation Of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  5. Development of a modified two-scale electromagnetic model simulating both active and passive microwave measurements: Comparison to data remotely sensed over the ocean

    Science.gov (United States)

    Boukabara, S. A.; Eymard, L.; Guillou, C.; Lemaire, D.; Sobieski, P.; Guissard, A.

    2002-08-01

    Spaceborne microwave remote sensing allows the determination of oceanic and atmospheric parameters. Operational payloads such as ERS-1 and ERS-2 and TOPEX/Poseidon as well as missions such as Jason (from NASA-Centre National d'Etudes) or Envisat (from the European Space Agency), have contained or contain paired microwave instruments looking at the nadir direction. This combination consists of microwave radiometers and a radar-altimeter. For the frequencies chosen in oceanographic satellite payloads, the active mode signal is mostly dependent on the surface state through its reflectivity and thus used for the near-surface wind speed retrieval. The active mode can also be attenuated by the atmosphere. On the other hand, the passive mode is related to the surface emissivity and the atmospheric radiation through the radiative transfer equation. Until now, the oceanic and atmospheric parameters have been retrieved separately, the latter being used to correct radar measurements. However, the reflectivity and the emissivity of a target are not independent quantities; hence the synergistic use of these two kinds of microwave measurements should allow one to improve the retrieval quality of the sea and atmosphere parameters. For this purpose, a unified model has been developed for the simulation of both the microwave backscattering coefficient σ° (active measurement) and the microwave emissivity, an important factor for the brightness temperature TB simulation, for every configuration (incidence angles, frequency, polarizations), taking into account the fact that the reflectivity and the emissivity are complementary to unity. The atmospheric absorption is computed following a widely used model from the literature. This paper gives a description and a first attempt of validation of this approach through a comparison with real data. The performance of the model is assessed by comparing the simulations to both brightness temperatures and backscattering coefficients from ERS

  6. Performance Test of the Microwave Ion Source with the Multi-layer DC Break

    International Nuclear Information System (INIS)

    Kim, Dae Il; Kwon, Hyeok Jung; Kim, Han Sung; Seol, Kyung Tae; Cho, Yong Sub

    2012-01-01

    A microwave proton source has been developed as a proton injector for the 100-MeV proton linac of the PEFP (Proton Engineering Frontier Project). On microwave ion source, the high voltage for the beam extraction is applied to the plasma chamber, also to the microwave components such as a 2.45GHz magnetron, a 3-stub tuner, waveguides. If microwave components can be installed on ground side, the microwave ion source can be operated and maintained easily. For the purpose, the multi-layer DC break has been developed. A multi-layer insulation has the arrangement of conductors and insulators as shown in the Fig. 1. For the purpose of stable operation as the multi-layer DC break, we checked the radiation of the insulator depending on materials and high voltage test of a fabricated multi-layer insulation. In this report, the details of performance test of the multi-layer DC break will be presented

  7. Passive Solar Construction--Design and Performance.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Presented is a list of books and reports intended to serve as technical sources of information for the building professional interested in energy conservation. These publications are grouped under these headings: (1) energy-conserving building design; (2) passive systems/design; (3) passive systems/performance; and (4) proceedings (of the American…

  8. Estimation of Hydraulic properties of a sandy soil using ground-based active and passive microwave remote sensing

    KAUST Repository

    Jonard, François

    2015-06-01

    In this paper, we experimentally analyzed the feasibility of estimating soil hydraulic properties from 1.4 GHz radiometer and 0.8-2.6 GHz ground-penetrating radar (GPR) data. Radiometer and GPR measurements were performed above a sand box, which was subjected to a series of vertical water content profiles in hydrostatic equilibrium with a water table located at different depths. A coherent radiative transfer model was used to simulate brightness temperatures measured with the radiometer. GPR data were modeled using full-wave layered medium Green\\'s functions and an intrinsic antenna representation. These forward models were inverted to optimally match the corresponding passive and active microwave data. This allowed us to reconstruct the water content profiles, and thereby estimate the sand water retention curve described using the van Genuchten model. Uncertainty of the estimated hydraulic parameters was quantified using the Bayesian-based DREAM algorithm. For both radiometer and GPR methods, the results were in close agreement with in situ time-domain reflectometry (TDR) estimates. Compared with radiometer and TDR, much smaller confidence intervals were obtained for GPR, which was attributed to its relatively large bandwidth of operation, including frequencies smaller than 1.4 GHz. These results offer valuable insights into future potential and emerging challenges in the development of joint analyses of passive and active remote sensing data to retrieve effective soil hydraulic properties.

  9. Interfacial Passivation of the p-Doped Hole-Transporting Layer Using General Insulating Polymers for High-Performance Inverted Perovskite Solar Cells.

    Science.gov (United States)

    Zhang, Fan; Song, Jun; Hu, Rui; Xiang, Yuren; He, Junjie; Hao, Yuying; Lian, Jiarong; Zhang, Bin; Zeng, Pengju; Qu, Junle

    2018-05-01

    Organic-inorganic lead halide perovskite solar cells (PVSCs), as a competing technology with traditional inorganic solar cells, have now realized a high power conversion efficiency (PCE) of 22.1%. In PVSCs, interfacial carrier recombination is one of the dominant energy-loss mechanisms, which also results in the simultaneous loss of potential efficiency. In this work, for planar inverted PVSCs, the carrier recombination is dominated by the dopant concentration in the p-doped hole transport layers (HTLs), since the F4-TCNQ dopant induces more charge traps and electronic transmission channels, thus leading to a decrease in open-circuit voltages (V OC ). This issue is efficiently overcome by inserting a thin insulating polymer layer (poly(methyl methacrylate) or polystyrene) as a passivation layer with an appropriate thickness, which allows for increases in the V OC without significantly sacrificing the fill factor. It is believed that the passivation layer attributes to the passivation of interfacial recombination and the suppression of current leakage at the perovskite/HTL interface. By manipulating this interfacial passivation technique, a high PCE of 20.3% is achieved without hysteresis. Consequently, this versatile interfacial passivation methodology is highly useful for further improving the performance of planar inverted PVSCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Soil Moisture Retrieval Using Convolutional Neural Networks: Application to Passive Microwave Remote Sensing

    Science.gov (United States)

    Hu, Z.; Xu, L.; Yu, B.

    2018-04-01

    A empirical model is established to analyse the daily retrieval of soil moisture from passive microwave remote sensing using convolutional neural networks (CNN). Soil moisture plays an important role in the water cycle. However, with the rapidly increasing of the acquiring technology for remotely sensed data, it's a hard task for remote sensing practitioners to find a fast and convenient model to deal with the massive data. In this paper, the AMSR-E brightness temperatures are used to train CNN for the prediction of the European centre for medium-range weather forecasts (ECMWF) model. Compared with the classical inversion methods, the deep learning-based method is more suitable for global soil moisture retrieval. It is very well supported by graphics processing unit (GPU) acceleration, which can meet the demand of massive data inversion. Once the model trained, a global soil moisture map can be predicted in less than 10 seconds. What's more, the method of soil moisture retrieval based on deep learning can learn the complex texture features from the big remote sensing data. In this experiment, the results demonstrates that the CNN deployed to retrieve global soil moisture can achieve a better performance than the support vector regression (SVR) for soil moisture retrieval.

  11. SOIL MOISTURE RETRIEVAL USING CONVOLUTIONAL NEURAL NETWORKS: APPLICATION TO PASSIVE MICROWAVE REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    Z. Hu

    2018-04-01

    Full Text Available A empirical model is established to analyse the daily retrieval of soil moisture from passive microwave remote sensing using convolutional neural networks (CNN. Soil moisture plays an important role in the water cycle. However, with the rapidly increasing of the acquiring technology for remotely sensed data, it's a hard task for remote sensing practitioners to find a fast and convenient model to deal with the massive data. In this paper, the AMSR-E brightness temperatures are used to train CNN for the prediction of the European centre for medium-range weather forecasts (ECMWF model. Compared with the classical inversion methods, the deep learning-based method is more suitable for global soil moisture retrieval. It is very well supported by graphics processing unit (GPU acceleration, which can meet the demand of massive data inversion. Once the model trained, a global soil moisture map can be predicted in less than 10 seconds. What's more, the method of soil moisture retrieval based on deep learning can learn the complex texture features from the big remote sensing data. In this experiment, the results demonstrates that the CNN deployed to retrieve global soil moisture can achieve a better performance than the support vector regression (SVR for soil moisture retrieval.

  12. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells.

    Science.gov (United States)

    Chen, Qi; Zhou, Huanping; Song, Tze-Bin; Luo, Song; Hong, Ziruo; Duan, Hsin-Sheng; Dou, Letian; Liu, Yongsheng; Yang, Yang

    2014-07-09

    To improve the performance of the polycrystalline thin film devices, it requires a delicate control of its grain structures. As one of the most promising candidates among current thin film photovoltaic techniques, the organic/inorganic hybrid perovskites generally inherit polycrystalline nature and exhibit compositional/structural dependence in regard to their optoelectronic properties. Here, we demonstrate a controllable passivation technique for perovskite films, which enables their compositional change, and allows substantial enhancement in corresponding device performance. By releasing the organic species during annealing, PbI2 phase is presented in perovskite grain boundaries and at the relevant interfaces. The consequent passivation effects and underlying mechanisms are investigated with complementary characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence decay (TRPL), scanning Kelvin probe microscopy (SKPM), and ultraviolet photoemission spectroscopy (UPS). This controllable self-induced passivation technique represents an important step to understand the polycrystalline nature of hybrid perovskite thin films and contributes to the development of perovskite solar cells judiciously.

  13. Design study for remotely piloted, high-altitude airplanes powered by microwave energy

    Science.gov (United States)

    Morris, C. E. K., Jr.

    1983-01-01

    A design study has been conducted for unmanned, microwave-powered airplanes that must fly with long endurance at high altitude. They are proposed to conduct communications-relay, observation, or various scientific missions above approximately 55,000 feet altitude. The special characteristics of the microwave-power system and high-altitude, low-speed vehicle are reviewed. Examples of both sizing and performance analysis are used to suggest design procedure guidelines.

  14. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  15. On-Chip Microwave Quantum Hall Circulator

    Directory of Open Access Journals (Sweden)

    A. C. Mahoney

    2017-01-01

    Full Text Available Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, “slow-light” response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330  μm diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.

  16. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    Science.gov (United States)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes are developed that provide low-loss, hermetic enclosure for enhanced monolithic microwave and millimeter-wave integrated circuits. These package schemes are based on a fused quartz substrate material offering improved RF performance through 44 GHz. The small size and weight of the packages make them useful for a number of applications, including phased array antenna systems. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices.

  17. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Seongsuk Lee

    2016-12-01

    Full Text Available The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP F13 Special Sensor Microwave/Imagers (SSMI and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily and monthly sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole even during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA.

  18. Study of additive manufactured microwave cavities for pulsed optically pumped atomic clock applications

    Science.gov (United States)

    Affolderbach, C.; Moreno, W.; Ivanov, A. E.; Debogovic, T.; Pellaton, M.; Skrivervik, A. K.; de Rijk, E.; Mileti, G.

    2018-03-01

    Additive manufacturing (AM) of passive microwave components is of high interest for the cost-effective and rapid prototyping or manufacture of devices with complex geometries. Here, we present an experimental study on the properties of recently demonstrated microwave resonator cavities manufactured by AM, in view of their applications to high-performance compact atomic clocks. The microwave cavities employ a loop-gap geometry using six electrodes. The critical electrode structures were manufactured monolithically using two different approaches: Stereolithography (SLA) of a polymer followed by metal coating and Selective Laser Melting (SLM) of aluminum. The tested microwave cavities show the desired TE011-like resonant mode at the Rb clock frequency of ≈6.835 GHz, with a microwave magnetic field highly parallel to the quantization axis across the vapor cell. When operated in an atomic clock setup, the measured atomic Rabi oscillations are comparable to those observed for conventionally manufactured cavities and indicate a good uniformity of the field amplitude across the vapor cell. Employing a time-domain Ramsey scheme on one of the SLA cavities, high-contrast (34%) Ramsey fringes are observed for the Rb clock transition, along with a narrow (166 Hz linewidth) central fringe. The measured clock stability of 2.2 × 10-13 τ-1/2 up to the integration time of 30 s is comparable to the current state-of-the-art stabilities of compact vapor-cell clocks based on conventional microwave cavities and thus demonstrates the feasibility of the approach.

  19. Microwave induced plasma for solid fuels and waste processing: A review on affecting factors and performance criteria.

    Science.gov (United States)

    Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir

    2017-11-01

    High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Wideband Radio Frequency Interference Detection for Microwave Radiometer Subsystem

    Data.gov (United States)

    National Aeronautics and Space Administration — Anthropogenic Radio-Frequency Interference (RFI) is threatening the quality and utility of multi-frequency passive microwave radiometry. The GPM Microwave Imager...

  1. Machine Learning on Images: Combining Passive Microwave and Optical Data to Estimate Snow Water Equivalent

    Science.gov (United States)

    Dozier, J.; Tolle, K.; Bair, N.

    2014-12-01

    We have a problem that may be a specific example of a generic one. The task is to estimate spatiotemporally distributed estimates of snow water equivalent (SWE) in snow-dominated mountain environments, including those that lack on-the-ground measurements. Several independent methods exist, but all are problematic. The remotely sensed date of disappearance of snow from each pixel can be combined with a calculation of melt to reconstruct the accumulated SWE for each day back to the last significant snowfall. Comparison with streamflow measurements in mountain ranges where such data are available shows this method to be accurate, but the big disadvantage is that SWE can only be calculated retroactively after snow disappears, and even then only for areas with little accumulation during the melt season. Passive microwave sensors offer real-time global SWE estimates but suffer from several issues, notably signal loss in wet snow or in forests, saturation in deep snow, subpixel variability in the mountains owing to the large (~25 km) pixel size, and SWE overestimation in the presence of large grains such as depth and surface hoar. Throughout the winter and spring, snow-covered area can be measured at sub-km spatial resolution with optical sensors, with accuracy and timeliness improved by interpolating and smoothing across multiple days. So the question is, how can we establish the relationship between Reconstruction—available only after the snow goes away—and passive microwave and optical data to accurately estimate SWE during the snow season, when the information can help forecast spring runoff? Linear regression provides one answer, but can modern machine learning techniques (used to persuade people to click on web advertisements) adapt to improve forecasts of floods and droughts in areas where more than one billion people depend on snowmelt for their water resources?

  2. High power microwave source development

    Science.gov (United States)

    Benford, James N.; Miller, Gabriel; Potter, Seth; Ashby, Steve; Smith, Richard R.

    1995-05-01

    The requirements of this project have been to: (1) improve and expand the sources available in the facility for testing purposes and (2) perform specific tasks under direction of the Defense Nuclear Agency about the applications of high power microwaves (HPM). In this project the HPM application was power beaming. The requirements of this program were met in the following way: (1) We demonstrated that a compact linear induction accelerator can drive HPM sources at repetition rates in excess of 100 HZ at peak microwave powers of a GW. This was done for the relativistic magnetron. Since the conclusion of this contract such specifications have also been demonstrated for the relativistic klystron under Ballistic Missile Defense Organization funding. (2) We demonstrated an L band relativistic magnetron. This device has been used both on our single pulse machines, CAMEL and CAMEL X, and the repetitive system CLIA. (3) We demonstrated that phase locking of sources together in large numbers is a feasible technology and showed the generation of multigigawatt S-band radiation in an array of relativistic magnetrons.

  3. Studies on the coupling transformer to improve the performance of microwave ion source.

    Science.gov (United States)

    Misra, Anuraag; Pandit, V S

    2014-06-01

    A 2.45 GHz microwave ion source has been developed and installed at the Variable Energy Cyclotron Centre to produce high intensity proton beam. It is operational and has already produced more than 12 mA of proton beam with just 350 W of microwave power. In order to optimize the coupling of microwave power to the plasma, a maximally flat matching transformer has been used. In this paper, we first describe an analytical method to design the matching transformer and then present the results of rigorous simulation performed using ANSYS HFSS code to understand the effect of different parameters on the transformed impedance and reflection and transmission coefficients. Based on the simulation results, we have chosen two different coupling transformers which are double ridged waveguides with ridge widths of 24 mm and 48 mm. We have fabricated these transformers and performed experiments to study the influence of these transformers on the coupling of microwave to plasma and extracted beam current from the ion source.

  4. The AMSR2 Satellite-based Microwave Snow Algorithm (SMSA) to estimate regional to global snow depth and snow water equivalent

    Science.gov (United States)

    Kelly, R. E. J.; Saberi, N.; Li, Q.

    2017-12-01

    With moderate to high spatial resolution (observation approaches yet to be fully scoped and developed, the long-term satellite passive microwave record remains an important tool for cryosphere-climate diagnostics. A new satellite microwave remote sensing approach is described for estimating snow depth (SD) and snow water equivalent (SWE). The algorithm, called the Satellite-based Microwave Snow Algorithm (SMSA), uses Advanced Microwave Scanning Radiometer - 2 (AMSR2) observations aboard the Global Change Observation Mission - Water mission launched by the Japan Aerospace Exploration Agency in 2012. The approach is unique since it leverages observed brightness temperatures (Tb) with static ancillary data to parameterize a physically-based retrieval without requiring parameter constraints from in situ snow depth observations or historical snow depth climatology. After screening snow from non-snow surface targets (water bodies [including freeze/thaw state], rainfall, high altitude plateau regions [e.g. Tibetan plateau]), moderate and shallow snow depths are estimated by minimizing the difference between Dense Media Radiative Transfer model estimates (Tsang et al., 2000; Picard et al., 2011) and AMSR2 Tb observations to retrieve SWE and SD. Parameterization of the model combines a parsimonious snow grain size and density approach originally developed by Kelly et al. (2003). Evaluation of the SMSA performance is achieved using in situ snow depth data from a variety of standard and experiment data sources. Results presented from winter seasons 2012-13 to 2016-17 illustrate the improved performance of the new approach in comparison with the baseline AMSR2 algorithm estimates and approach the performance of the model assimilation-based approach of GlobSnow. Given the variation in estimation power of SWE by different land surface/climate models and selected satellite-derived passive microwave approaches, SMSA provides SWE estimates that are independent of real or near real

  5. Feasibility and Performance of the Microwave Thermal Rocket Launcher

    OpenAIRE

    Parkin, Kevin L. G.; Culick, Fred E. C.

    2004-01-01

    Beamed-energy launch concepts employing a microwave thermal thruster are feasible in principle, and microwave sources of sufficient power to launch tons into LEO already exist. Microwave thermal thrusters operate on an analogous principle to nuclear thermal thrusters, which have experimentally demonstrated specific impulses exceeding 850 seconds. Assuming such performance, simple application of the rocket equation suggests that payload fractions of 10% are possible for a single stage to orbit...

  6. AMSR-E/Aqua Monthly Global Microwave Land Surface Emissivity

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer - Earth Observing System...

  7. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  8. Performance of AlGaN/GaN Heterostructure Field-Effect Transistors for High-Frequency and High-Power Electronics

    Directory of Open Access Journals (Sweden)

    Peter Kordos

    2005-01-01

    Full Text Available Preparation and properties of GaN-based heterostructure field-effect transistors (HFETs for high-frequency and high-power applications are studied in this work. Performance of unpassivated and SiO2 passivated AlGaN/GaN HFETs, as well as passivated SiO2/AlGaN/GaN MOSHFETs (metal-oxide-semicondutor HFETs is compared. It is found that MOSHFETs exhibit better DC and RF properties than simple HFET counterparts. Deposited SiO2 yielded an increase of the sheet carrier density from 7.6x10^12 cm^-2 to 9.2x10^12 cm^-2 and subsequent increase of the static drain saturation current from 0.75 A/mm to 1.09 A/mm. Small-signal RF characterisation of MOSHFETs showed an extrinsic current gain cut-off frequency fT of 24 GHz and a maximum frequency of oscillation fmax of 40 GHz. These are fully comparable values with state-of-the-art AlGaN/GaN HFETs. Finnaůůy, microwave power measurements confirmed excellent performance of MOSHFETs:the output power measured at 7 GHz is about two-times larger than that of simple unpassived HFET. Thus, a great potential in application of GaN-based MOSHFETs is documented. 

  9. Experimental progress on virtual-cathode very high power microwave source development

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.

    1987-01-01

    The evolution of rf accelerator technology toward high-power, high-current, low-emittance beams produces an ever-increasing demand for efficient, very high power microwave sources. The present klystron technology has performed very well but is not expected to produce reliable gigawatt peak-power units in the 1- to 10-GHz regime. Further major advancements must involve other types of sources. The reflexing electron sources can produce microwave powers at the gigawatt level and have demonstrated operation from 800 MHz to 40 GHz. Pulse length appears to be limited by electron-beam diode closure, and reflexing electron devices have been operated in a repetitively pulsed mode. An experiment is under way to investigate concepts to stabilize the frequency of the virtual cathode source. If one can successfully frequency and phase lock this source to an external signal, then this source can operate as a very high power microwave amplifier making it practical for accelerator applications. The progress on an experiment to test these concepts will be discussed

  10. Microwave tomography global optimization, parallelization and performance evaluation

    CERN Document Server

    Noghanian, Sima; Desell, Travis; Ashtari, Ali

    2014-01-01

    This book provides a detailed overview on the use of global optimization and parallel computing in microwave tomography techniques. The book focuses on techniques that are based on global optimization and electromagnetic numerical methods. The authors provide parallelization techniques on homogeneous and heterogeneous computing architectures on high performance and general purpose futuristic computers. The book also discusses the multi-level optimization technique, hybrid genetic algorithm and its application in breast cancer imaging.

  11. Snowmelt on the Greenland Ice Sheet as Derived From Passive Microwave Satellite Data

    Science.gov (United States)

    Abdalati, Waleed; Steffen, Konrad

    1997-01-01

    The melt extent of the snow on the Greenland ice sheet is of considerable importance to the ice sheet's mass and energy balance, as well as Arctic and global climates. By comparing passive microwave satellite data to field observations, variations in melt extent have been detected by establishing melt thresholds in the cross-polarized gradient ratio (XPGR). The XPGR, defined as the normalized difference between the 19-GHz horizontal channel and the 37-GHz vertical channel of the Special Sensor Microwave/Imager (SSM/I), exploits the different effects of snow wetness on different frequencies and polarizations and establishes a distinct melt signal. Using this XPGR melt signal, seasonal and interannual variations in snowmelt extent of the ice sheet are studied. The melt is found to be most extensive on the western side of the ice sheet and peaks in late July. Moreover, there is a notable increasing trend in melt area between the years 1979 and 1991 of 4.4% per year, which came to an abrupt halt in 1992 after the eruption of Mt. Pinatubo. A similar trend is observed in the temperatures at six coastal stations. The relationship between the warming trend and increasing melt trend between 1979 and 1991 suggests that a 1 C temperature rise corresponds to an increase in melt area of 73000 sq km, which in general exceeds one standard deviation of the natural melt area variability.

  12. High temperature superconducting YBCO microwave filters

    Science.gov (United States)

    Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.

    2018-06-01

    Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.

  13. Influence of passivation process on chip performance

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2009-01-01

    In this work, we have studied the performance of CMOS chips before and after a low temperature post-processing step. In order to prevent damage to the IC chips by the post-processing steps, a first passivation layers is needed on top of the IC chips. Two different passivation layer deposition

  14. A Field Performance Evaluation Scheme for Microwave-Absorbing Material Coatings

    Directory of Open Access Journals (Sweden)

    Shaopeng Guan

    2017-03-01

    Full Text Available Performance evaluation is an important aspect in the study of microwave-absorbing material coatings. The reflectivity of the incident wave is usually taken as the performance indicator. There have been various methods to directly or indirectly measure the reflectivity, but existing methods are mostly cumbersome and require a strict testing environment. What is more, they cannot be applied to field measurement. In this paper, we propose a scheme to achieve field performance evaluation of microwave-absorbing materials, which adopts a small H-plane sectoral horn antenna as the testing probe and a small microwave reflectometer as the indicator. When the size of the H-plane sectoral horn antenna is specially designed, the field distribution at the antenna aperture can be approximated as a plane wave similar to the far field of the microwave emitted by a radar unit. Therefore, the reflectivity can be obtained by a near-field measurement. We conducted experiments on a kind of ferrite-based microwave-absorbing material at X band (8.2–12.4 GHz to validate the scheme. The experimental results show that the reflectivity is in agreement with the reference data measured by the conventional method as a whole.

  15. Feasibility and Performance of the Microwave Thermal Rocket Launcher

    Science.gov (United States)

    Parkin, Kevin L. G.; Culick, Fred E. C.

    2004-03-01

    Beamed-energy launch concepts employing a microwave thermal thruster are feasible in principle, and microwave sources of sufficient power to launch tons into LEO already exist. Microwave thermal thrusters operate on an analogous principle to nuclear thermal thrusters, which have experimentally demonstrated specific impulses exceeding 850 seconds. Assuming such performance, simple application of the rocket equation suggests that payload fractions of 10% are possible for a single stage to orbit (SSTO) microwave thermal rocket. We present an SSTO concept employing a scaled X-33 aeroshell. The flat aeroshell underside is covered by a thin-layer microwave absorbent heat-exchanger that forms part of the thruster. During ascent, the heat-exchanger faces the microwave beam. A simple ascent trajectory analysis incorporating X-33 aerodynamic data predicts a 10% payload fraction for a 1 ton craft of this type. In contrast, the Saturn V had 3 non-reusable stages and achieved a payload fraction of 4%.

  16. The effects of passive leg press training on jumping performance, speed, and muscle power.

    Science.gov (United States)

    Liu, Chiang; Chen, Chuan-Shou; Ho, Wei-Hua; Füle, Róbert János; Chung, Pao-Hung; Shiang, Tzyy-Yuang

    2013-06-01

    Passive leg press (PLP) training was developed based on the concepts of the stretch-shortening cycle (SSC) and the benefits of high muscle contraction velocity. Passive leg press training enables lower limb muscle groups to apply a maximum downward force against a platform moved up and down at high frequency by an electric motor. Thus, these muscle groups accomplished both concentric and eccentric isokinetic contractions in a passive, rapid, and repetitive manner. This study investigates the effects of 10 weeks of PLP training at high and low movement frequencies have on jumping performance, speed, and muscle power. The authors selected 30 college students who had not performed systematic resistance training in the previous 6 months, including traditional resistance training at a squat frequency of 0.5 Hz, PLP training at a low frequency of 0.5 Hz, and PLP training at a high frequency of 2.5 Hz, and randomly divided them into 3 groups (n = 10). The participants' vertical jump, drop jump, 30-m sprint performance, explosive force, and SSC efficiency were tested under the same experimental procedures at pre- and post-training. Results reveal that high-frequency PLP training significantly increased participants' vertical jump, drop jump, 30-m sprint performance, instantaneous force, peak power, and SSC efficiency (p training (p training significantly increased participants' vertical jump, 30-m sprint performance, instantaneous force, and peak power (p training only increased participants' 30-m sprint performance and peak power (p training at high movement frequency. A PLP training machine powered by an electrical motor enables muscles of the lower extremities to contract faster compared with voluntary contraction. Therefore, muscle training with high contraction velocity is one of the main methods of increasing muscle power. Passive leg press training is a unique method for enhancing jump performance, speed, and muscle power.

  17. Brookfield Homes Passive House Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Herk, A. [IBACOS, Inc., Pittsburgh, PA (United States); Poerschke, A. [IBACOS, Inc., Pittsburgh, PA (United States); Beach, R. [IBACOS, Inc., Pittsburgh, PA (United States)

    2016-02-01

    In 2012-2013, IBACOS worked with a builder, Brookfield Homes in Denver, Colorado, to design and construct a Passive House certified model home. IBACOS used several modeling programs and calculation methods to complete the final design package along with Brookfield's architect KGA Studio. This design package included upgrades to the thermal enclosure, basement insulation, windows, and heating, ventilation, and air conditioning. Short-term performance testing in the Passive House was done during construction and after construction.

  18. A Wireless Fully Passive Neural Recording Device for Unobtrusive Neuropotential Monitoring.

    Science.gov (United States)

    Kiourti, Asimina; Lee, Cedric W L; Chae, Junseok; Volakis, John L

    2016-01-01

    We propose a novel wireless fully passive neural recording device for unobtrusive neuropotential monitoring. Previous work demonstrated the feasibility of monitoring emulated brain signals in a wireless fully passive manner. In this paper, we propose a novel realistic recorder that is significantly smaller and much more sensitive. The proposed recorder utilizes a highly efficient microwave backscattering method and operates without any formal power supply or regulating elements. Also, no intracranial wires or cables are required. In-vitro testing is performed inside a four-layer head phantom (skin, bone, gray matter, and white matter). Compared to our former implementation, the neural recorder proposed in this study has the following improved features: 1) 59% smaller footprint, 2) up to 20-dB improvement in neuropotential detection sensitivity, and 3) encapsulation in biocompatible polymer. For the first time, temporal emulated neuropotentials as low as 63 μVpp can be detected in a wireless fully passive manner. Remarkably, the high-sensitivity achieved in this study implies reading of most neural signals generated by the human brain. The proposed recorder brings forward transformational possibilities in wireless fully passive neural detection for a very wide range of applications (e.g., epilepsy, Alzheimer's, mental disorders, etc.).

  19. On the performance of SART and ART algorithms for microwave imaging

    Science.gov (United States)

    Aprilliyani, Ria; Prabowo, Rian Gilang; Basari

    2018-02-01

    The development of advanced technology leads to the change of human lifestyle in current society. One of the disadvantage impact is arising the degenerative diseases such as cancers and tumors, not just common infectious diseases. Every year, victims of cancers and tumors grow significantly leading to one of the death causes in the world. In early stage, cancer/tumor does not have definite symptoms, but it will grow abnormally as tissue cells and damage normal tissue. Hence, early cancer detection is required. Some common diagnostics modalities such as MRI, CT and PET are quite difficult to be operated in home or mobile environment such as ambulance. Those modalities are also high cost, unpleasant, complex, less safety and harder to move. Hence, this paper proposes a microwave imaging system due to its portability and low cost. In current study, we address on the performance of simultaneous algebraic reconstruction technique (SART) algorithm that was applied in microwave imaging. In addition, SART algorithm performance compared with our previous work on algebraic reconstruction technique (ART), in order to have performance comparison, especially in the case of reconstructed image quality. The result showed that by applying SART algorithm on microwave imaging, suspicious cancer/tumor can be detected with better image quality.

  20. High-frequency and microwave circuit design

    CERN Document Server

    Nelson, Charles

    2007-01-01

    An integral part of any communications system, high-frequency and microwave design stimulates major progress in the wireless world and continues to serve as a foundation for the commercial wireless products we use every day. The exceptional pace of advancement in developing these systems stipulates that engineers be well versed in multiple areas of electronics engineering. With more illustrations, examples, and worked problems, High-Frequency and Microwave Circuit Design, Second Edition provides engineers with a diverse body of knowledge they can use to meet the needs of this rapidly progressi

  1. Using High Frequency Passive Microwave, A-train, and TRMM Data to Evaluate Hydrometer Structure in the NASA GEOS-5 Data Assimilation System

    Science.gov (United States)

    Robertson, Franklin; Bacmeister, Julio; Bosilovich, Michael; Pittman, Jasna

    2007-01-01

    Validating water vapor and prognostic condensate in global models remains a challenging research task. Model parameterizations are still subject to a large number of tunable parameters; furthermore, accurate and representative in situ observations are very sparse, and satellite observations historically have significant quantitative uncertainties. Progress on improving cloud / hydrometeor fields in models stands to benefit greatly from the growing inventory ofA-Train data sets. ill the present study we are using a variety of complementary satellite retrievals of hydrometeors to examine condensate produced by the emerging NASA Modem Era Retrospective Analysis for Research and Applications, MERRA, and its associated atmospheric general circulation model GEOS5. Cloud and precipitation are generated by both grid-scale prognostic equations and by the Relaxed Arakawa-Schubert (RAS) diagnostic convective parameterization. The high frequency channels (89 to 183.3 GHz) from AMSU-B and MRS on NOAA polar orbiting satellites are being used to evaluate the climatology and variability of precipitating ice from tropical convective anvils. Vertical hydrometeor structure from the Tropical Rainfall Measuring Mission (TRMM) and CloudSat radars are used to develop statistics on vertical hydrometeor structure in order to better interpret the extensive high frequency passive microwave climatology. Cloud liquid and ice water path data retrieved from the Moderate Resolution Imaging Spectroradiometer, MODIS, are used to investigate relationships between upper level cloudiness and tropical deep convective anvils. Together these data are used to evaluate cloud / ice water path, gross aspects of vertical hydrometeor structure, and the relationship between cloud extent and surface precipitation that the MERRA reanalysis must capture.

  2. A Prototype Physical Database for Passive Microwave Retrievals of Precipitation over the US Southern Great Plains

    Science.gov (United States)

    Ringerud, S.; Kummerow, C. D.; Peters-Lidard, C. D.

    2015-01-01

    An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information.

  3. Performance of the prism reactor's passive decay heat removal system

    International Nuclear Information System (INIS)

    Magee, P.M.; Hunsbedt, A.

    1989-01-01

    The PRISM modular reactor concept has a totally passive safety-grade decay heat removal system referred to as the Reactor Vessel Auxiliary Cooling System (RVACS) that rejects heat from the reactor by radiation and natural convection of air. The system is inherently reliable and is not subject to the failure modes commonly associated with active cooling systems. The thermal performance of RVACS exceeds requirements and significant thermal margins exist. RVACS has been shown to perform its function under many postulated accident conditions. The PRISM power plant is equipped with three methods for shutdown: condenser cooling in conjunction with intermediate sodium and steam generator systems, and auxiliary cooling system (ACS) which removes heat from the steam generator by natural convection of air and transport of heat from the core by natural convection in the primary and intermediate systems, and a safety- grade reactor vessel auxiliary cooling system (RVACS) which removes heat passively from the reactor containment vessel by natural convection of air. The combination of one active and two passive systems provides a highly reliable and economical shutdown heat removal system. This paper provides a summary of the RVACS thermal performance for expected operating conditions and postulated accident events. The supporting experimental work, which substantiates the performance predictions, is also summarized

  4. AMSR-E/Aqua Monthly Global Microwave Land Surface Emissivity, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer - Earth Observing System...

  5. Effects of the Ionosphere on Passive Microwave Remote Sensing of Ocean Salinity from Space

    Science.gov (United States)

    LeVine, D. M.; Abaham, Saji; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Among the remote sensing applications currently being considered from space is the measurement of sea surface salinity. The salinity of the open ocean is important for understanding ocean circulation and for modeling energy exchange with the atmosphere. Passive microwave remote sensors operating near 1.4 GHz (L-band) could provide data needed to fill the gap in current coverage and to complement in situ arrays being planned to provide subsurface profiles in the future. However, the dynamic range of the salinity signal in the open ocean is relatively small and propagation effects along the path from surface to sensor must be taken into account. In particular, Faraday rotation and even attenuation/emission in the ionosphere can be important sources of error. The purpose or this work is to estimate the magnitude of these effects in the context of a future remote sensing system in space to measure salinity in L-band. Data will be presented as a function of time location and solar activity using IRI-95 to model the ionosphere. The ionosphere presents two potential sources of error for the measurement of salinity: Rotation of the polarization vector (Faraday rotation) and attenuation/emission. Estimates of the effect of these two phenomena on passive remote sensing over the oceans at L-band (1.4 GHz) are presented.

  6. Kinetics of passivation of a nickel-base alloy in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Machet, A. [Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, F-75231 Paris cedex 05 (France)]|[Framatome ANP, Tour AREVA, F-92084 Paris-la-Defense (France); Galtayries, A.; Zanna, S.; Marcus, P. [Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, F-75231 Paris cedex 05 (France); Jolivet, P.; Scott, P. [Framatome ANP, Tour AREVA, F-92084 Paris-la-Defense (France); Foucault, M.; Combrade, P. [Framatome ANP, Centre Technique, F-71205 Le Creusot (France)

    2004-07-01

    The kinetics of passivation and the composition of the surface oxide layer, in high temperature and high pressure water, of a nickel-chromium-iron alloy (Alloy 600) have been investigated by X-ray Photoelectron Spectroscopy (XPS). The samples have been exposed for short (0.4 - 8.2 min) and longer (0 - 400 hours) time periods to high temperature (325 deg. C) and high pressure water (containing boron and lithium) under controlled hydrogen pressure. The experiments were performed in two types of autoclaves: a novel autoclave dedicated to short time periods and a classic static autoclave for the longer exposures. In the initial stage of passivation, a continuous ultra-thin layer of chromium oxide (Cr{sub 2}O{sub 3}) is rapidly formed on the surface with an external layer of chromium hydroxide. For longer times of passivation, the oxide layer is in a duplex form with an internal chromium oxide layer and an external layer of nickel hydroxide. The growth of the internal Cr{sub 2}O{sub 3} oxide layer has been fitted by three classical models (parabolic, logarithmic and inverse logarithmic laws) for the short passivation times, and the growth curves have been extrapolated to longer passivation periods. The comparison with the experimental results reveals that the kinetics of passivation of Alloy 600 in high temperature and high pressure water, for passivation times up to 400 hours, is well fitted by a logarithmic growth law. (authors)

  7. Kinetics of passivation of a nickel-base alloy in high temperature water

    International Nuclear Information System (INIS)

    Machet, A.; Galtayries, A.; Zanna, S.; Marcus, P.; Jolivet, P.; Scott, P.; Foucault, M.; Combrade, P.

    2004-01-01

    The kinetics of passivation and the composition of the surface oxide layer, in high temperature and high pressure water, of a nickel-chromium-iron alloy (Alloy 600) have been investigated by X-ray Photoelectron Spectroscopy (XPS). The samples have been exposed for short (0.4 - 8.2 min) and longer (0 - 400 hours) time periods to high temperature (325 deg. C) and high pressure water (containing boron and lithium) under controlled hydrogen pressure. The experiments were performed in two types of autoclaves: a novel autoclave dedicated to short time periods and a classic static autoclave for the longer exposures. In the initial stage of passivation, a continuous ultra-thin layer of chromium oxide (Cr 2 O 3 ) is rapidly formed on the surface with an external layer of chromium hydroxide. For longer times of passivation, the oxide layer is in a duplex form with an internal chromium oxide layer and an external layer of nickel hydroxide. The growth of the internal Cr 2 O 3 oxide layer has been fitted by three classical models (parabolic, logarithmic and inverse logarithmic laws) for the short passivation times, and the growth curves have been extrapolated to longer passivation periods. The comparison with the experimental results reveals that the kinetics of passivation of Alloy 600 in high temperature and high pressure water, for passivation times up to 400 hours, is well fitted by a logarithmic growth law. (authors)

  8. Arsenic speciation in edible alga samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Salgado, S. [Departamento de Ingenieria Civil: Tecnologia Hidraulica y Energetica, Escuela Universitaria de Ingenieria Tecnica de Obras Publicas, Universidad Politecnica de Madrid, Alfonso XII 3 y 5, 28014 Madrid (Spain); Quijano, M.A., E-mail: marian.quijano@upm.es [Departamento de Ingenieria Civil: Tecnologia Hidraulica y Energetica, Escuela Universitaria de Ingenieria Tecnica de Obras Publicas, Universidad Politecnica de Madrid, Alfonso XII 3 y 5, 28014 Madrid (Spain); Bonilla, M.M. [Departamento de Ingenieria Civil: Tecnologia Hidraulica y Energetica, Escuela Universitaria de Ingenieria Tecnica de Obras Publicas, Universidad Politecnica de Madrid, Alfonso XII 3 y 5, 28014 Madrid (Spain)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Total As and As species were analyzed in edible marine algae. Black-Right-Pointing-Pointer A microwave-assisted extraction method with deionized water was applied. Black-Right-Pointing-Pointer As compounds identified comprised DMA, As(V) and four arsenosugars Black-Right-Pointing-Pointer Considerably high As(V) concentrations were found in the most of the algae studied. - Abstract: Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 {mu}g g{sup -1}. Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography-ultraviolet photo-oxidation-hydride generation atomic-fluorescence spectrometry (HPLC-(UV)-HG-AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 {mu}g g{sup -1}, whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 {mu}g g{sup -1}). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) (<0.9 {mu}g g{sup -1}) and generally high arsenate (As(V)) concentrations (up to 77 {mu}g g{sup -1}) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.

  9. Arsenic speciation in edible alga samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    García-Salgado, S.; Quijano, M.A.; Bonilla, M.M.

    2012-01-01

    Highlights: ► Total As and As species were analyzed in edible marine algae. ► A microwave-assisted extraction method with deionized water was applied. ► As compounds identified comprised DMA, As(V) and four arsenosugars ► Considerably high As(V) concentrations were found in the most of the algae studied. - Abstract: Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 μg g −1 . Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography–ultraviolet photo-oxidation–hydride generation atomic–fluorescence spectrometry (HPLC–(UV)–HG–AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 μg g −1 , whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 μg g −1 ). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) ( −1 ) and generally high arsenate (As(V)) concentrations (up to 77 μg g −1 ) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.

  10. Applications of high power microwaves

    International Nuclear Information System (INIS)

    Benford, J.; Swegle, J.

    1993-01-01

    The authors address a number of applications for HPM technology. There is a strong symbiotic relationship between a developing technology and its emerging applications. New technologies can generate new applications. Conversely, applications can demand development of new technological capability. High-power microwave generating systems come with size and weight penalties and problems associated with the x-radiation and collection of the electron beam. Acceptance of these difficulties requires the identification of a set of applications for which high-power operation is either demanded or results in significant improvements in peRFormance. The authors identify the following applications, and discuss their requirements and operational issues: (1) High-energy RF acceleration; (2) Atmospheric modification (both to produce artificial ionospheric mirrors for radio waves and to save the ozone layer); (3) Radar; (4) Electronic warfare; and (5) Laser pumping. In addition, they discuss several applications requiring high average power than border on HPM, power beaming and plasma heating

  11. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    International Nuclear Information System (INIS)

    Waldmann, Ole; Ludewigt, Bernhard

    2010-01-01

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5 · 10 11 n/s for D-T and ∼ 1 · 10 10 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60 · 6 mm 2 ) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm 2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  12. Microwave Photonic Imaging Radiometer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Passive Microwave Remote Sensing is currently utilized by NASA, NOAA, and USGIS to conduct Earth Science missions, including weather forecasting, early warning...

  13. Pushbroom microwave radiometer results from HAPEX-MOBILHY

    International Nuclear Information System (INIS)

    Nichols, W.E.; Cuenca, R.H.; Schmugge, T.J.; Wang, J.R.

    1993-01-01

    The NASA C-130 remote sensing aircraft was in Toulouse, France from 25 May through 4 July 1986, for participation in the HAPEX-MOBILHY program. Spectral and radiometric data were collected by C-130 borne sensors in the visible, infrared, and microwave wavelengths. These data provided information on the spatial and temporal variations of surface parameters such as vegetation indices, surface temperature, and surface soil moisture. The Pushbroom Microwave Radiometer (PBMR) was used to collect passive microwave brightness temperature data. This four-beam sensor operates at the 21-cm wavelength, providing cross-track coverage approximately 1.2 times the aircraft altitude. Observed brightness temperatures for the period were high, ranging from above 240 K about 290 K. Brightness temperature images appeared to correspond well to spatial and temporal soil moisture variation. Previous research has demonstrated that an approximately linear relationship exists between the surface emissivity and surface soil moisture. For these data, however, regression analysis did not indicate a strong linear relationship (r 2 = 0.32 and r 2 = 0.42 respectively) because of the limited range of soil moisture conditions encountered and the small number of ground measurements. When results from wetter soil conditions encountered in another experiment were included, the regression improved dramatically. Based on similar research with the PBMR and an understanding of the ground data collection program, this result was examined to produce recommendations for improvements to future passive microwave research and data collection programs. Examples of surface soil moisture maps generated with PBMR data are presented which appear to be representative of the actual soil moisture conditions

  14. Control of Ambipolar Transport in SnO Thin-Film Transistors by Back-Channel Surface Passivation for High Performance Complementary-like Inverters.

    Science.gov (United States)

    Luo, Hao; Liang, Lingyan; Cao, Hongtao; Dai, Mingzhi; Lu, Yicheng; Wang, Mei

    2015-08-12

    For ultrathin semiconductor channels, the surface and interface nature are vital and often dominate the bulk properties to govern the field-effect behaviors. High-performance thin-film transistors (TFTs) rely on the well-defined interface between the channel and gate dielectric, featuring negligible charge trap states and high-speed carrier transport with minimum carrier scattering characters. The passivation process on the back-channel surface of the bottom-gate TFTs is indispensable for suppressing the surface states and blocking the interactions between the semiconductor channel and the surrounding atmosphere. We report a dielectric layer for passivation of the back-channel surface of 20 nm thick tin monoxide (SnO) TFTs to achieve ambipolar operation and complementary metal oxide semiconductor (CMOS) like logic devices. This chemical passivation reduces the subgap states of the ultrathin channel, which offers an opportunity to facilitate the Fermi level shifting upward upon changing the polarity of the gate voltage. With the advent of n-type inversion along with the pristine p-type conduction, it is now possible to realize ambipolar operation using only one channel layer. The CMOS-like logic inverters based on ambipolar SnO TFTs were also demonstrated. Large inverter voltage gains (>100) in combination with wide noise margins are achieved due to high and balanced electron and hole mobilities. The passivation also improves the long-term stability of the devices. The ability to simultaneously achieve field-effect inversion, electrical stability, and logic function in those devices can open up possibilities for the conventional back-channel surface passivation in the CMOS-like electronics.

  15. Analysis of the performance of a passive hybrid powerplant to power a lightweight unmanned aerial vehicle for a high altitude mission

    Science.gov (United States)

    Renau, Jordi; Sánchez, Fernando; Lozano, Antonio; Barroso, Jorge; Barreras, Félix

    2017-07-01

    The objective of this research is to analyze the performance of a passive hybrid powerplant control system to be implemented in a lightweight unmanned aerial vehicle capable to ascend up to the high troposphere (10,000 m). The powerplant is based on a high-temperature PEM fuel cell connected in parallel to a set of lithium-polymer batteries and regulated by two power diodes. Test performed in steady state demonstrates that the use of the hybrid system increases the efficiency of the stack by more than 7% because the voltage at the main DC bus is limited by the batteries. The robustness of the passive control system is proved in a long-term test in which random perturbations of ±15% are applied to the average power that would be demanded during the ascent flight. The hybridization of the stack with the batteries eliminates sudden peaks in the current generated by the stack, which are responsible for prompt degradation phenomena that drastically reduce its useful lifetime. The study demonstrates that with the passive hybrid powerplant it is possible to reach the target height with the gas storage system considered in the application, contrary to what happens with the simple power plant.

  16. rGO-ZnO nanocomposites for high electrocatalytic effect on water oxidation obtained by microwave-hydrothermal method

    Science.gov (United States)

    Romeiro, Fernanda C.; Rodrigues, Mônica A.; Silva, Luiz A. J.; Catto, Ariadne C.; da Silva, Luis F.; Longo, Elson; Nossol, Edson; Lima, Renata C.

    2017-11-01

    Reduced graphene oxide-zinc oxide (rGO-ZnO) nanocomposites were successfully synthesized using a facile microwave-hydrothermal method under mild conditions, and their electrocatalytic properties towards O2 evolution were investigated. The microwave radiation played an important role in obtainment of well dispersed ZnO nanoparticles directly on reduced graphene oxide sheets without any additional reducing reagents or passivation agent. X-ray diffraction (XRD), Raman and infrared spectroscopies indicated the reduction of GO as well as the successful synthesis of rGO-ZnO nanocomposites. The chemical states of the samples were shown by XPS analyses. Due to the synergic effect, the resulting nanocomposites exhibited high electronic interaction between ZnO and rGO sheets, which improved the electrocatalytic oxidation of water with low onset potential of 0.48 V (vs. Ag/AgCl) in neutral pH and long-term stability, with high current density during electrolysis. The overpotential for water oxidation decreased in alkaline pH, suggesting useful insight on the catalytic mechanism for O2 evolution.

  17. High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    In this study, a novel Li-ion battery pack design including hybrid active–passive thermal management system is presented. The battery pack is suitable for using in hybrid/electric vehicles. Active part of the hybrid thermal management system uses distributed thin ducts, air flow and natural convection as cooling media while the passive part utilizes phase change material/expanded graphite composite (PCM/EG) as cooling/heating component to optimize the thermal performance of the proposed battery pack. High melting enthalpy of PCM/EG composite together with melting of PCM/EG composite at the temperature of 58.9 °C remains the temperature distribution of the battery units in the desired temperature range (below 60 °C). The temperature and voltage distributions in the proposed battery pack design consisting of battery units, distributed thin ducts and PCM/EG composite are calculated by numerical solving of the related partial differential equations. Simulation results obtained by writing M-files code in Matlab environment and plotting the numerical data are presented to validate the theoretical results. A comparison between the thermal and physical characteristics of the proposed battery pack and other latest works is presented that explicitly proves the battery pack performance. - Highlights: • Novel Li-ion battery pack including active and passive thermal management systems. • The battery pack has high thermal performance for ambient temperatures until 55 °C. • Uniform temperature and voltage distributions. • The maximum observed temperature in each battery unit is less than other works. • The maximum temperature dispersion in each battery is less than other works

  18. Handbook of microwave component measurements with advanced VNA techniques

    CERN Document Server

    Dunsmore, Joel P

    2012-01-01

    This book provides state-of-the-art coverage for making measurements on RF and Microwave Components, both active and passive. A perfect reference for R&D and Test Engineers, with topics ranging from the best practices for basic measurements, to an in-depth analysis of errors, correction methods, and uncertainty analysis, this book provides everything you need to understand microwave measurements. With primary focus on active and passive measurements using a Vector Network Analyzer, these techniques and analysis are equally applicable to measurements made with Spectrum Analyzers or Noise Figure

  19. Microwave-assisted synthesis of high-voltage nanostructured LiMn1.5Ni0.5O4 spinel: tuning the Mn3+ content and electrochemical performance

    CSIR Research Space (South Africa)

    Jafta, CJ

    2013-08-01

    Full Text Available on the Mn3+ concentration and electrochemistry of the LiMn1.5Ni0.5O4 spinel. It is shown that microwave is capable of tuning the Mn3+ content of the spinel for enhanced electrochemical performance (high capacity, high capacity retention, excellent rate...

  20. Microwave Power Beaming Infrastructure for Manned Lightcraft Operations: Part 2

    International Nuclear Information System (INIS)

    Myrabo, Leik N.

    2008-01-01

    In the past ∼7 years, microwave gyrotron technology has rapidly evolved to a critical threshold wherein ultra-energetic space launch missions based on beamed energy propulsion (BEP) now appear eminently feasible. Over the next 20 years, hundred megawatt-class microwave power-beaming stations could be prototyped on high deserts and 3- to 4 km mountain peaks before migrating into low Earth orbit, along with their passive microwave relay satellites. Described herein is a 20 GW rechargeable nuclear power satellite and microwave power-beaming infrastructure designed for manned space launch operations in the year 2025. The technological readiness of 2500 GJ superconducting magnetic energy storage 'batteries', 433-m ultralight space structures, 100 MW liquid droplet radiators, 1-6+ MW gyrotron sources, and mega-scale arrays (e.g., 3000 phase-locked units) is addressed. Microwave BEP is 'breakthrough' technology with the very real potential to radically reduce space access costs by factors of 100 to 1000 in the forseeable future

  1. Balanced microwave filters

    CERN Document Server

    Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran

    2018-01-01

    This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...

  2. Application of a plane-stratified emission model to predict the effects of vegetation in passive microwave radiometry

    Directory of Open Access Journals (Sweden)

    K. Lee

    2002-01-01

    Full Text Available This paper reports the application to vegetation canopies of a coherent model for the propagation of electromagnetic radiation through a stratified medium. The resulting multi-layer vegetation model is plausibly realistic in that it recognises the dielectric permittivity of the vegetation matter, the mixing of the dielectric permittivities for vegetation and air within the canopy and, in simplified terms, the overall vertical distribution of dielectric permittivity and temperature through the canopy. Any sharp changes in the dielectric profile of the canopy resulted in interference effects manifested as oscillations in the microwave brightness temperature as a function of canopy height or look angle. However, when Gaussian broadening of the top and bottom of the canopy (reflecting the natural variability between plants was included within the model, these oscillations were eliminated. The model parameters required to specify the dielectric profile within the canopy, particularly the parameters that quantify the dielectric mixing between vegetation and air in the canopy, are not usually available in typical field experiments. Thus, the feasibility of specifying these parameters using an advanced single-criterion, multiple-parameter optimisation technique was investigated by automatically minimizing the difference between the modelled and measured brightness temperatures. The results imply that the mixing parameters can be so determined but only if other parameters that specify vegetation dry matter and water content are measured independently. The new model was then applied to investigate the sensitivity of microwave emission to specific vegetation parameters. Keywords: passive microwave, soil moisture, vegetation, SMOS, retrieval

  3. Synergistic estimation of surface parameters from jointly using optical and microwave observations in EOLDAS

    Science.gov (United States)

    Timmermans, Joris; Gomez-Dans, Jose; Lewis, Philip; Loew, Alexander; Schlenz, Florian

    2017-04-01

    The large amount of remote sensing data nowadays available provides a huge potential for monitoring crop development, drought conditions and water efficiency. This potential however not been realized yet because algorithms for land surface parameter retrieval mostly use data from only a single sensor. Consequently products that combine different low-level observations from different sensors are hard to find. The lack of synergistic retrieval is caused because it is easier to focus on single sensor types/footprints and temporal observation times, than to find a way to compensate for differences. Different sensor types (microwave/optical) require different radiative transfer (RT) models and also require consistency between the models to have any impact on the retrieval of soil moisture by a microwave instrument. Varying spatial footprints require first proper collocation of the data before one can scale between different resolutions. Considering these problems, merging optical and microwave observations have not been performed yet. The goal of this research was to investigate the potential of integrating optical and microwave RT models within the Earth Observation Land Data Assimilation System (EOLDAS) synergistically to derive biophysical parameters. This system uses a Bayesian data assimilation approach together with observation operators such as the PROSAIL model to estimate land surface parameters. For the purpose of enabling the system to integrate passive microwave radiation (from an ELBARRA II passive microwave radiometer), the Community Microwave Emission Model (CMEM) RT-model, was integrated within the EOLDAS system. In order to quantify the potential, a variety of land surface parameters was chosen to be retrieved from the system, in particular variables that a) impact only optical RT (such as leaf water content and leaf dry matter), b) only impact the microwave RT (such as soil moisture and soil temperature), and c) Leaf Area Index (LAI) that impacts both

  4. PASOTRON high-energy microwave source

    Science.gov (United States)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  5. Hoar crystal development and disappearance at Dome C, Antarctica: observation by near-infrared photography and passive microwave satellite

    Directory of Open Access Journals (Sweden)

    N. Champollion

    2013-08-01

    Full Text Available Hoar crystals episodically cover the snow surface in Antarctica and affect the roughness and reflective properties of the air–snow interface. However, little is known about their evolution and the processes responsible for their development and disappearance despite a probable influence on the surface mass balance and energy budget. To investigate hoar evolution, we use continuous observations of the surface by in situ near-infrared photography and by passive microwave remote sensing at Dome C in Antarctica. From the photography data, we retrieved a daily indicator of the presence/absence of hoar crystals using a texture analysis algorithm. The analysis of this 2 yr long time series shows that Dome C surface is covered almost half of the time by hoar. The development of hoar crystals takes a few days and seems to occur whatever the meteorological conditions. In contrast, the disappearance of hoar is rapid (a few hours and coincident with either strong winds or with moderate winds associated with a change in wind direction from southwest (the prevailing direction to southeast. From the microwave satellite data, we computed the polarisation ratio (i.e. horizontal over vertical polarised brightness temperatures, an indicator known to be sensitive to hoar in Greenland. Photography data and microwave polarisation ratio are correlated, i.e. high values of polarisation ratio which theoretically correspond to low snow density values near the surface are associated with the presence of hoar crystals in the photography data. Satellite data over nearly ten years (2002–2011 confirm that a strong decrease of the polarisation ratio (i.e. signature of hoar disappearance is associated with an increase of wind speed or a change in wind direction from the prevailing direction. The photography data provides, in addition, evidence of interactions between hoar and snowfall. Further adding the combined influence of wind speed and wind direction results in a

  6. Performance of a passive direct ethanol fuel cell

    Science.gov (United States)

    Pereira, J. P.; Falcão, D. S.; Oliveira, V. B.; Pinto, A. M. F. R.

    2014-06-01

    Ethanol emerges as an attractive fuel since it is less toxic and has higher energy density than methanol and can be produced from biomass. Direct ethanol fuel cells (DEFCs) appear as a good choice for producing sustainable energy for portable applications. However, they are still far from attaining acceptable levels of power output, since their performance is affected by the slow electrochemical ethanol oxidation and water and ethanol crossover. In the present work, an experimental study on the performance of a passive DEFC is described. Tailored MEAs (membrane electrode assembly) with different catalyst loadings, anode diffusion layers and membranes were tested in order to select optimal working conditions at high ethanol concentrations and low ethanol crossover. The performance increased with an increase of membrane and anode diffusion layer thicknesses and anode catalyst loading. A maximum power density of 1.33 mW cm-2, was obtained using a Nafion 117 membrane, 4 mg cm-2 of Pt-Ru and 2 mg cm-2 of Pt on the anode and cathode catalyst layers, ELAT as anode diffusion layer, carbon cloth as cathode diffusion layer and an ethanol concentration of 2 M. As far as the authors are aware this is the first work reporting an experimental optimization of passive DEFCs.

  7. High power microwave source with a three dimensional printed metamaterial slow-wave structure

    International Nuclear Information System (INIS)

    French, David M.; Shiffler, Don

    2016-01-01

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  8. High power microwave source with a three dimensional printed metamaterial slow-wave structure

    Energy Technology Data Exchange (ETDEWEB)

    French, David M.; Shiffler, Don [Air Force Research Laboratory, Directed Energy Directorate, Albuquerque, New Mexico 871117 (United States)

    2016-05-15

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  9. The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Muñiz, J. [Universidad de Santiago de Compostela, Departamento de Física de Partículas, Campus Sur, Universidad, E-15782 Santiago de Compostela (Spain); Amaral Soares, E. [Universidade Federal do Rio de Janeiro, Instituto de Física, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Berlin, A.; Bogdan, M. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Boháčová, M. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Institute of Physics of the Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic); Bonifazi, C. [Universidade Federal do Rio de Janeiro, Instituto de Física, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Carvalho, W.R. [Universidad de Santiago de Compostela, Departamento de Física de Partículas, Campus Sur, Universidad, E-15782 Santiago de Compostela (Spain); Mello Neto, J.R.T. de [Universidade Federal do Rio de Janeiro, Instituto de Física, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Facal San Luis, P., E-mail: facal@kicp.uchicago.edu [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Genat, J.F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); and others

    2013-08-11

    We present the design, implementation and data taking performance of the MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view imaging telescope designed to detect microwave radiation from extensive air showers induced by ultra-high energy cosmic rays. This novel technique may bring a tenfold increase in detector duty cycle when compared to the standard fluorescence technique based on detection of ultraviolet photons. The MIDAS telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera, instrumented with feed horns operating in the commercial extended C-Band (3.4–4.2 GHz). A self-trigger capability is implemented in the digital electronics. The main objectives of this first prototype of the MIDAS telescope – to validate the telescope design, and to demonstrate a large detector duty cycle – were successfully accomplished in a dedicated data taking run at the University of Chicago campus prior to installation at the Pierre Auger Observatory. -- Highlights: • The MIDAS objective is to detect ultra high energy cosmic rays using microwaves. • GHz radiation could provide a powerful alternative to current detection methods. • The MIDAS prototype explores the potential of the microwave technique.

  10. The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    International Nuclear Information System (INIS)

    Alvarez-Muñiz, J.; Amaral Soares, E.; Berlin, A.; Bogdan, M.; Boháčová, M.; Bonifazi, C.; Carvalho, W.R.; Mello Neto, J.R.T. de; Facal San Luis, P.; Genat, J.F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P.

    2013-01-01

    We present the design, implementation and data taking performance of the MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view imaging telescope designed to detect microwave radiation from extensive air showers induced by ultra-high energy cosmic rays. This novel technique may bring a tenfold increase in detector duty cycle when compared to the standard fluorescence technique based on detection of ultraviolet photons. The MIDAS telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera, instrumented with feed horns operating in the commercial extended C-Band (3.4–4.2 GHz). A self-trigger capability is implemented in the digital electronics. The main objectives of this first prototype of the MIDAS telescope – to validate the telescope design, and to demonstrate a large detector duty cycle – were successfully accomplished in a dedicated data taking run at the University of Chicago campus prior to installation at the Pierre Auger Observatory. -- Highlights: • The MIDAS objective is to detect ultra high energy cosmic rays using microwaves. • GHz radiation could provide a powerful alternative to current detection methods. • The MIDAS prototype explores the potential of the microwave technique

  11. Measure Guideline: Passive Vents

    Energy Technology Data Exchange (ETDEWEB)

    Berger, David [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Neri, Robin [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-05

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated source of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.

  12. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    International Nuclear Information System (INIS)

    Omran, Mamdouh; Fabritius, Timo; Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A.; El-Aref, Mortada; Elmanawi, Abd El-Hamid

    2015-01-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe 2 O 3 and P 2 O 5 contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe 3+ ) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases

  13. Passive and active RF-microwave circuits course and exercises with solutions

    CERN Document Server

    Jarry, Pierre

    2015-01-01

    Microwave and radiofrequency (RF) circuits play an important role in communication systems. Due to the proliferation of radar, satellite, and mobile wireless systems, there is a need for design methods that can satisfy the ever increasing demand for accuracy, reliability, and fast development times. This book explores the principal elements for receiving and emitting signals between Earth stations, satellites, and RF (mobile phones) in four parts; the theory and realization of couplers, computation and realization of microwave and RF filters, amplifiers and microwave and RF oscillators. Pas

  14. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Omran, Mamdouh, E-mail: mamdouh.omran@oulu.fi [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); Fabritius, Timo [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A. [Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); El-Aref, Mortada; Elmanawi, Abd El-Hamid [Geology Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2015-08-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe{sub 2}O{sub 3} and P{sub 2}O{sub 5} contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe{sup 3+}) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases.

  15. Enhanced conductive loss in nickel–cobalt sulfide nanostructures for highly efficient microwave absorption and shielding

    Science.gov (United States)

    Li, Wanrong; Zhou, Min; Lu, Fei; Liu, Hongfei; Zhou, Yuxue; Zhu, Jun; Zeng, Xianghua

    2018-06-01

    Microwave-absorbing materials with light weight and high efficiency are desirable in addressing electromagnetic interference (EMI) problems. Herein, a nickel–cobalt sulfide (NCS) nanostructure was employed as a robust microwave absorber, which displayed an optimized reflection loss of  ‑49.1 dB in the gigahertz range with a loading of only 20 wt% in an NCS/paraffin wax composite. High electrical conductivity was found to contribute prominent conductive loss in NCS, leading to intense dielectric loss within a relatively low mass loading. Furthermore, owing to its high electrical conductivity and remarkable dielectric loss to microwaves, the prepared NCS exhibited excellent performance in EMI shielding. The EMI shielding efficiency of the 50 wt% NCS/paraffin composite exceeded 55 dB at the X-band, demonstrating NCS is a versatile candidate for solving EMI problems.

  16. Estimation of areal soil water content through microwave remote sensing

    NARCIS (Netherlands)

    Oevelen, van P.J.

    2000-01-01

    In this thesis the use of microwave remote sensing to estimate soil water content is investigated. A general framework is described which is applicable to both passive and active microwave remote sensing of soil water content. The various steps necessary to estimate areal soil water content

  17. Microwave-polyol synthesis and electrocatalytic performance of Pt/graphene nanocomposites

    International Nuclear Information System (INIS)

    Liao, Chien-Shiun; Liao, Chien-Tsao; Tso, Ching-Yu; Shy, Hsiou-Jeng

    2011-01-01

    Highlights: · One-pot microwave-polyol synthesis of Pt/graphene electrocatalyst. · Simultaneous formation of Pt nanoparticles and reduction of graphene oxide. · Electrocatalytic activities depend on the morphology of the deposited Pt particles. · Dense dispersion of isolated Pt particles with high electrochemical active surface. · Few particle clusters of Pt have large number of active sites for methanol oxidation. - Abstract: Graphene oxide (GO) prepared by the modified Hummers method is used as a support in the formation of a Pt/GO nanocomposite electrocatalyst by microwave-polyol synthesis. The effects of microwave reaction times on particle size, dispersion, and electrocatalytic performance of Pt nanoparticles are studied using wide-angle X-ray diffractometery, Raman spectroscopy, transmission electron microscopy and three-electrode electrochemical measurements. The results indicate that Pt nanoparticles nucleation and growth occur, and the particles are uniformly deposited on the GO nanosheets within a short time. The maximum electrochemical active surface area 85.71 m 2 g -1 for a Pt/GO reaction time of 5 min, is a result of the deposition of a dense dispersion of small Pt particles. The highest methanol oxidation peak current density, I f , of 0.59 A mg -1 occurs for a Pt/GO reaction time of 10 min and is due to the formation of interconnecting Pt particles clusters. This novel Pt/GO nanocomposite electrocatalyst with high electrocatalytic activities has the potential for use as an anode material in fuel cells.

  18. Potential Relationship between Passive Plantar Flexor Stiffness and Running Performance.

    Science.gov (United States)

    Ueno, Hiromasa; Suga, Tadashi; Takao, Kenji; Tanaka, Takahiro; Misaki, Jun; Miyake, Yuto; Nagano, Akinori; Isaka, Tadao

    2018-02-01

    The present study aimed to determine the relationship between passive stiffness of the plantar flexors and running performance in endurance runners. Forty-eight well-trained male endurance runners and 24 untrained male control subjects participated in this study. Plantar flexor stiffness during passive dorsiflexion was calculated from the slope of the linear portion of the torque-angle curve. Of the endurance runners included in the present study, running economy in 28 endurance runners was evaluated by measuring energy cost during three 4-min trials (14, 16, and 18 km/h) of submaximal treadmill running. Passive stiffness of the plantar flexors was significantly higher in endurance runners than in untrained subjects. Moreover, passive plantar flexor stiffness in endurance runners was significantly correlated with a personal best 5000-m race time. Furthermore, passive plantar flexor stiffness in endurance runners was significantly correlated with energy cost during submaximal running at 16 km/h and 18 km/h, and a trend towards such significance was observed at 14 km/h. The present findings suggest that stiffer plantar flexors may help achieve better running performance, with greater running economy, in endurance runners. Therefore, in the clinical setting, passive stiffness of the plantar flexors may be a potential parameter for assessing running performance. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Application of an antenna excited high pressure microwave discharge to compact discharge lamps

    International Nuclear Information System (INIS)

    Kando, M; Fukaya, T; Ohishi, Y; Mizojiri, T; Morimoto, Y; Shido, M; Serita, T

    2008-01-01

    A novel type of high pressure microwave discharge has been investigated to feed the microwave power at the centre of the compact high pressure discharge lamps using the antenna effect. This method of microwave discharge is named as the antenna excited microwave discharge (AEMD). The 2.45 GHz microwave of around 50 W from the solid state microwave generator can sustain a stable plasma column in the small gap between a couple of antennas fitted on the compact lamp filled with discharge gases at a pressure higher than atmosphere. The AEMD has been applied to a compact metal halide lamp and an extremely high pressure mercury discharge lamp. As a result, the metal halide lamp showed high luminous efficacy of around 130 lm W -1 . The excellent lamp properties obtained here can be explained by the low heating loss at the antennas and the lamp wall. The profiles of the microwave electric field in the lamp and the microwave launcher have been numerically calculated to consider the microwave power supply into the lamp

  20. Analytical Retrieval of Global Land Surface Emissivity Maps at AMSR-E passive microwave frequencies

    Science.gov (United States)

    Norouzi, H.; Temimi, M.; Khanbilvardi, R.

    2009-12-01

    Land emissivity is a crucial boundary condition in Numerical Weather Prediction (NWP) modeling. Land emissivity is also a key indicator of land surface and subsurface properties. The objective of this study, supported by NOAA-NESDIS, is to develop global land emissivity maps using AMSR-E passive microwave measurements along with several ancillary data. The International Satellite Cloud Climatology Project (ISCCP) database has been used to obtain several inputs for the proposed approach such as land surface temperature, cloud mask and atmosphere profile. The Community Radiative Transfer Model (CRTM) has been used to estimate upwelling and downwelling atmospheric contributions. Although it is well known that correction of the atmospheric effect on brightness temperature is required at higher frequencies (over 19 GHz), our preliminary results have shown that a correction at 10.7 GHz is also necessary over specific areas. The proposed approach is based on three main steps. First, all necessary data have been collected and processed. Second, a global cloud free composite of AMSR-E data and corresponding ancillary images is created. Finally, monthly composting of emissivity maps has been performed. AMSR-E frequencies at 6.9, 10.7, 18.7, 36.5 and 89.0 GHz have been used to retrieve the emissivity. Water vapor information obtained from ISCCP (TOVS data) was used to calculate upwelling, downwelling temperatures and atmospheric transmission in order to assess the consistency of those derived from the CRTM model. The frequent land surface temperature (LST) determination (8 times a day) in the ISCCP database has allowed us to assess the diurnal cycle effect on emissivity retrieval. Differences in magnitude and phase between thermal temperature and low frequencies microwave brightness temperature have been noticed. These differences seem to vary in space and time. They also depend on soil texture and thermal inertia. The proposed methodology accounts for these factors and

  1. Microwave-assisted preparation of Li3V2(PO4)3/C composite with high-rate capacity

    International Nuclear Information System (INIS)

    Yan, Ji; Mao, Wen-feng; Xie, Hui; Tang, Zhi-yuan; Yuan, Wei; Chen, Xue-cheng; Xu, Qiang; Ma, Li

    2012-01-01

    Highlights: ► High-rate Li 3 V 2 (PO 4 ) 3 /C is firstly reported via a microwave-assisted method. ► The reduced particle size is responsible for the improved high-rate performance. ► A discharge capacity of 100 mAh g −1 is obtained at 20 C charge–discharge rate. -- Abstract: A fast sol–gel assisted microwave heating approach has been developed for the synthesis of high-rate Li 3 V 2 (PO 4 ) 3 /C cathode material. This approach can synthesize Li 3 V 2 (PO 4 ) 3 /C particles with high purity and good crystallinity in 12 min at a low microwave power of 320 W. In the voltage range of 3.0–4.3 V, the obtained Li 3 V 2 (PO 4 ) 3 /C delivers a reversible discharge capacity of 100 mAh g −1 after 100 cycles at 20 °C, exhibiting excellent rate capability and cycling performance. The rate-recovery performance also suggests that the Li 3 V 2 (PO 4 ) 3 /C material possesses excellent structure stability after high-rate cycles, presenting excellent application value in high-power lithium ion batteries.

  2. Special Sensor Microwave Imager/Sounder (SSMIS) Sensor Data Record (SDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  3. Special Sensor Microwave Imager/Sounder (SSMIS) Temperature Data Record (TDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  4. High power microwave emission and diagnostics of microsecond electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Gilgenbach, R; Hochman, J M; Jayness, R; Rintamaki, J I; Lau, Y Y; Luginsland, J; Lash, J S [Univ. of Michigan, Ann Arbor, MI (United States). Intense Electron Beam Interaction Lab.; Spencer, T A [Air Force Phillips Lab., Kirtland AFB, NM (United States)

    1997-12-31

    Experiments were performed to generate high power, long-pulse microwaves by the gyrotron mechanism in rectangular cross-section interaction cavities. Long-pulse electron beams are generated by MELBA (Michigan Electron Long Beam Accelerator), which operates with parameters: -0.8 MV, 1-10 kA, and 0.5-1 microsecond pulse length. Microwave power levels are in the megawatt range. Polarization control is being studied by adjustment of the solenoidal magnetic field. Initial results show polarization power ratios up to a factor of 15. Electron beam dynamics (V{sub perp}/V{sub par}) are being measured by radiation darkening on glass plates. Computer modeling utilizes the MAGIC Code for electromagnetic waves and a single electron orbit code that includes a distribution of angles. (author). 4 figs., 4 refs.

  5. Usability and Interoperability Improvements for an EASE-Grid 2.0 Passive Microwave Data Product Using CF Conventions

    Science.gov (United States)

    Hardman, M.; Brodzik, M. J.; Long, D. G.

    2017-12-01

    Beginning in 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Historical versions of the gridded passive microwave data sets were produced as flat binary files described in human-readable documentation. This format is error-prone and makes it difficult to reliably include all processing and provenance. Funded by NASA MEaSUREs, we have completely reprocessed the gridded data record that includes SMMR, SSM/I-SSMIS and AMSR-E. The new Calibrated Enhanced-Resolution Brightness Temperature (CETB) Earth System Data Record (ESDR) files are self-describing. Our approach to the new data set was to create netCDF4 files that use standard metadata conventions and best practices to incorporate file-level, machine- and human-readable contents, geolocation, processing and provenance metadata. We followed the flexible and adaptable Climate and Forecast (CF-1.6) Conventions with respect to their coordinate conventions and map projection parameters. Additionally, we made use of Attribute Conventions for Dataset Discovery (ACDD-1.3) that provided file-level conventions with spatio-temporal bounds that enable indexing software to search for coverage. Our CETB files also include temporal coverage and spatial resolution in the file-level metadata for human-readability. We made use of the JPL CF/ACDD Compliance Checker to guide this work. We tested our file format with real software, for example, netCDF Command-line Operators (NCO) power tools for unlimited control on spatio-temporal subsetting and concatenation of files. The GDAL tools understand the CF metadata and produce fully-compliant geotiff files from our data. ArcMap can then reproject the geotiff files on-the-fly and work

  6. Microwave-assisted extraction of scutellarin from Erigeron breviscapus Hand-Mazz and its determination by high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Gao Min; Huang Wei; RoyChowdhury, Moytri; Liu Chunzhao

    2007-01-01

    An efficient microwave-assisted extraction (MAE) technique has been developed to extract scutellarin from Erigeron breviscapus for rapid determination by high-performance liquid chromatography (HPLC). The maximum yield of scutellarin reached 1.02% in 40 min under the optimal MAE conditions with 80 deg. C of extraction temperature and 1:10 (w/v) of the solid/liquid ratio. The MAE showed obvious advantages in terms of short duration and high efficiency to extract scutellarin in comparison with heat-flux extraction. The mechanism of the enhanced extraction by microwave assistance was discussed by detecting particle size and specific surface area of plant materials and observing cell destruction of plant material by light microscopy and scanning electron microscopy. The results showed that the plant materials were significantly destroyed due to the cell rupture after MAE treatment. Afterward, the method validation for HPLC-UV analysis was developed. Calibration range was 0.1-100 μg mL -1 for scutellarin, and correlation coefficient R was 0.9993. Limit of detection was less than 0.01 μg mL -1 . The intra- and inter-day relative standard deviation (R.S.D.) of scutellarin detection ranged from 1.58% to 2.96% and from 3.32% to 4.19%, respectively. The recovery of the method for scutellarin ranged from 96.7% to 101.9%

  7. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  8. Main principles of passive devices based on graphene and carbon films in microwave-THz frequency range

    Science.gov (United States)

    Kuzhir, Polina P.; Paddubskaya, Alesia G.; Volynets, Nadezhda I.; Batrakov, Konstantin G.; Kaplas, Tommi; Lamberti, Patrizia; Kotsilkova, Rumiana; Lambin, Philippe

    2017-07-01

    The ability of thin conductive films, including graphene, pyrolytic carbon (PyC), graphitic PyC (GrPyC), graphene with graphitic islands (GrI), glassy carbon (GC), and sandwich structures made of all these materials separated by polymer slabs to absorb electromagnetic radiation in microwave-THz frequency range, is discussed. The main physical principles making a basis for high absorption ability of these heterostructures are explained both in the language of electromagnetic theory and using representation of equivalent electrical circuits. The idea of using carbonaceous thin films as the main working elements of passive radiofrequency (RF) devices, such as shields, filters, polarizers, collimators, is proposed theoretically and proved experimentally. The important advantage of PyC, GrI, GrPyC, and GC is that, in contrast to graphene, they either can be easily deposited onto a dielectric substrate or are strong enough to allow their transfer from the catalytic substrate without a shuttle polymer layer. This opens a new avenue toward the development of a scalable protocol for cost-efficient production of ultralight electromagnetic shields that can be transferred to commercial applications. A robust design via finite-element method and design of experiment for RF devices based on carbon/graphene films and sandwiches is also discussed in the context of virtual prototyping.

  9. Advances in passive cooling design and performance analysis

    International Nuclear Information System (INIS)

    Woodcock, J.

    1994-01-01

    The Third International Conference on Containment Design and Operation continues the trend of rapidly extending the state of the art in containment methodology, joining other conferences, OECD-sponsored International Standard Problem exercises, and vendor licensing submittals. Methodology developed for use on plants with passive features is under increasing scrutiny for advanced designs, since the passive features are often the only deviation from existing operating base of the past 30 years of commercial nuclear power. This session, 'Containment Passive Safety Systems Design and Operation,' offers papers on a wide range of topics, with authors from six organizations from around the world, dealing with general passive containments, Westinghouse AP600, large (>1400 MWe) passive plants, and the AECL advanced CANDU reactor. This level and variety of participation underscores the high interest and accelerated methods development associated with advanced passive containment heat removal. The papers presented in this session demonstrate that significant contributions are being made to the advancement of technology necessary for building a new generation of safer, more economical nuclear plants. (author)

  10. Mapping Daily and Maximum Flood Extents at 90-m Resolution During Hurricanes Harvey and Irma Using Passive Microwave Remote Sensing

    Science.gov (United States)

    Galantowicz, J. F.; Picton, J.; Root, B.

    2017-12-01

    Passive microwave remote sensing can provided a distinct perspective on flood events by virtue of wide sensor fields of view, frequent observations from multiple satellites, and sensitivity through clouds and vegetation. During Hurricanes Harvey and Irma, we used AMSR2 (Advanced Microwave Scanning Radiometer 2, JAXA) data to map flood extents starting from the first post-storm rain-free sensor passes. Our standard flood mapping algorithm (FloodScan) derives flooded fraction from 22-km microwave data (AMSR2 or NASA's GMI) in near real time and downscales it to 90-m resolution using a database built from topography, hydrology, and Global Surface Water Explorer data and normalized to microwave data footprint shapes. During Harvey and Irma we tested experimental versions of the algorithm designed to map the maximum post-storm flood extent rapidly and made a variety of map products available immediately for use in storm monitoring and response. The maps have several unique features including spanning the entire storm-affected area and providing multiple post-storm updates as flood water shifted and receded. From the daily maps we derived secondary products such as flood duration, maximum flood extent (Figure 1), and flood depth. In this presentation, we describe flood extent evolution, maximum extent, and local details as detected by the FloodScan algorithm in the wake of Harvey and Irma. We compare FloodScan results to other available flood mapping resources, note observed shortcomings, and describe improvements made in response. We also discuss how best-estimate maps could be updated in near real time by merging FloodScan products and data from other remote sensing systems and hydrological models.

  11. Advanced Performance Modeling with Combined Passive and Active Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dovrolis, Constantine [Georgia Inst. of Technology, Atlanta, GA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-04-15

    To improve the efficiency of resource utilization and scheduling of scientific data transfers on high-speed networks, the "Advanced Performance Modeling with combined passive and active monitoring" (APM) project investigates and models a general-purpose, reusable and expandable network performance estimation framework. The predictive estimation model and the framework will be helpful in optimizing the performance and utilization of networks as well as sharing resources with predictable performance for scientific collaborations, especially in data intensive applications. Our prediction model utilizes historical network performance information from various network activity logs as well as live streaming measurements from network peering devices. Historical network performance information is used without putting extra load on the resources by active measurement collection. Performance measurements collected by active probing is used judiciously for improving the accuracy of predictions.

  12. Analysis and comparison of the breakdown performance of semi- insulator and dielectric passivated Si strip detectors

    CERN Document Server

    Ranjan, Kirti; Chatterji, S; Srivastava-Ajay, K; Shivpuri, R K

    2002-01-01

    The harsh radiation environment in future high-energy physics (HEP) experiments like LHC provides a challenging task to the performance of Si microstrip detectors. Normal operating condition for silicon detectors in HEP experiments are in most cases not as favourable as for experiments in nuclear physics. In HEP experiments the detector may be exposed to moisture and other adverse atmospheric environment. It is therefore utmost important to protect the sensitive surfaces against such poisonous effects. These instabilities can be nearly eliminated and the performance of Si detectors can be improved by implementing suitably passivated metal-overhang structures. This paper presents the influence of the relative permittivity of the passivant on the breakdown performance of the Si detectors using computer simulations. The semi-insulator and the dielectric passivated metal-overhang structures are compared under optimal conditions. The influence of various parameters such as passivation layer thickness, junction dep...

  13. High speed and high resolution interrogation of a fiber Bragg grating sensor based on microwave photonic filtering and chirped microwave pulse compression.

    Science.gov (United States)

    Xu, Ou; Zhang, Jiejun; Yao, Jianping

    2016-11-01

    High speed and high resolution interrogation of a fiber Bragg grating (FBG) sensor based on microwave photonic filtering and chirped microwave pulse compression is proposed and experimentally demonstrated. In the proposed sensor, a broadband linearly chirped microwave waveform (LCMW) is applied to a single-passband microwave photonic filter (MPF) which is implemented based on phase modulation and phase modulation to intensity modulation conversion using a phase modulator (PM) and a phase-shifted FBG (PS-FBG). Since the center frequency of the MPF is a function of the central wavelength of the PS-FBG, when the PS-FBG experiences a strain or temperature change, the wavelength is shifted, which leads to the change in the center frequency of the MPF. At the output of the MPF, a filtered chirped waveform with the center frequency corresponding to the applied strain or temperature is obtained. By compressing the filtered LCMW in a digital signal processor, the resolution is improved. The proposed interrogation technique is experimentally demonstrated. The experimental results show that interrogation sensitivity and resolution as high as 1.25 ns/με and 0.8 με are achieved.

  14. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation

    KAUST Repository

    Niu, Tianqi; Lu, Jing; Munir, Rahim; Li, Jianbo; Barrit, Dounya; Zhang, Xu; Hu, Hanlin; Yang, Zhou; Amassian, Aram; Zhao, Kui; Liu, Shengzhong Frank

    2018-01-01

    the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits

  15. Assimilation of a knowledge base and physical models to reduce errors in passive-microwave classifications of sea ice

    Science.gov (United States)

    Maslanik, J. A.; Key, J.

    1992-01-01

    An expert system framework has been developed to classify sea ice types using satellite passive microwave data, an operational classification algorithm, spatial and temporal information, ice types estimated from a dynamic-thermodynamic model, output from a neural network that detects the onset of melt, and knowledge about season and region. The rule base imposes boundary conditions upon the ice classification, modifies parameters in the ice algorithm, determines a `confidence' measure for the classified data, and under certain conditions, replaces the algorithm output with model output. Results demonstrate the potential power of such a system for minimizing overall error in the classification and for providing non-expert data users with a means of assessing the usefulness of the classification results for their applications.

  16. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    Science.gov (United States)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  17. Estimating snow depth of alpine snowpack via airborne multifrequency passive microwave radiance observations: Colorado, USA

    Science.gov (United States)

    Kim, R. S.; Durand, M. T.; Li, D.; Baldo, E.; Margulis, S. A.; Dumont, M.; Morin, S.

    2017-12-01

    This paper presents a newly-proposed snow depth retrieval approach for mountainous deep snow using airborne multifrequency passive microwave (PM) radiance observation. In contrast to previous snow depth estimations using satellite PM radiance assimilation, the newly-proposed method utilized single flight observation and deployed the snow hydrologic models. This method is promising since the satellite-based retrieval methods have difficulties to estimate snow depth due to their coarse resolution and computational effort. Indeed, this approach consists of particle filter using combinations of multiple PM frequencies and multi-layer snow physical model (i.e., Crocus) to resolve melt-refreeze crusts. The method was performed over NASA Cold Land Processes Experiment (CLPX) area in Colorado during 2002 and 2003. Results showed that there was a significant improvement over the prior snow depth estimates and the capability to reduce the prior snow depth biases. When applying our snow depth retrieval algorithm using a combination of four PM frequencies (10.7,18.7, 37.0 and 89.0 GHz), the RMSE values were reduced by 48 % at the snow depth transects sites where forest density was less than 5% despite deep snow conditions. This method displayed a sensitivity to different combinations of frequencies, model stratigraphy (i.e. different number of layering scheme for snow physical model) and estimation methods (particle filter and Kalman filter). The prior RMSE values at the forest-covered areas were reduced by 37 - 42 % even in the presence of forest cover.

  18. Experiments on the Performance of Small Horizontal Axis Wind Turbine with Passive Pitch Control by Disk Pulley

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    2016-05-01

    Full Text Available The present work is to design a passive pitch-control mechanism for small horizontal axis wind turbine (HAWT to generate stable power at high wind speeds. The mechanism uses a disk pulley as an actuator to passively adjust the pitch angle of blades by centrifugal force. For this design, aerodynamic braking is caused by the adjustment of pitch angles at high wind speeds. As a marked advantage, this does not require mechanical brakes that would incur electrical burn-out and structural failure under high speed rotation. This can ensure the survival of blades and generator in sever operation environments. In this paper, the analysis uses blade element momentum theory (BEMT to develop graphical user interface software to facilitate the performance assessment of the small-scale HAWT using passive pitch control (PPC. For verification, the HAWT system was tested in a full-scale wind tunnel for its aerodynamic performance. At low wind speeds, this system performed the same as usual, yet at high wind speeds, the equipped PPC system can effectively reduce the rotational speed to generate stable power.

  19. Micro and nano devices in passive millimetre wave imaging systems

    Science.gov (United States)

    Appleby, R.

    2013-06-01

    The impact of micro and nano technology on millimetre wave imaging from the post war years to the present day is reviewed. In the 1950s whisker contacted diodes in mixers and vacuum tubes were used to realise both radiometers and radars but required considerable skill to realise the performance needed. Development of planar semiconductor devices such as Gunn and Schottky diodes revolutionised mixer performance and provided considerable improvement. The next major breakthrough was high frequency transistors based on gallium arsenide which were initially used at intermediate frequencies but later after further development at millimeter wave frequencies. More recently Monolithic Microwave Integrated circuits(MMICs) offer exceptional performance and the opportunity for innovative design in passive imaging systems. In the future the use of micro and nano technology will continue to drive system performance and we can expect to see integration of antennae, millimetre wave and sub millimetre wave circuits and signal processing.

  20. Microwave exfoliated graphene oxide/TiO{sub 2} nanowire hybrid for high performance lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul; Lin, Yirong [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States); Islam, Md Tariqul; Noveron, Juan C. [Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ramabadran, Navaneet [Department of Chemical Engineering, University of California at Santa Barbara, California 93106 (United States)

    2015-09-28

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  1. Bias correction for rainrate retrievals from satellite passive microwave sensors

    Science.gov (United States)

    Short, David A.

    1990-01-01

    Rainrates retrieved from past and present satellite-borne microwave sensors are affected by a fundamental remote sensing problem. Sensor fields-of-view are typically large enough to encompass substantial rainrate variability, whereas the retrieval algorithms, based on radiative transfer calculations, show a non-linear relationship between rainrate and microwave brightness temperature. Retrieved rainrates are systematically too low. A statistical model of the bias problem shows that bias correction factors depend on the probability distribution of instantaneous rainrate and on the average thickness of the rain layer.

  2. Extended Special Sensor Microwave Imager (SSM/I) Temperature Data Record (TDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager (SSM/I) is a seven-channel linearly polarized passive microwave radiometer that operates at frequencies of 19.36 (vertically and...

  3. Extended Special Sensor Microwave Imager (SSM/I) Sensor Data Record (SDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager (SSM/I) is a seven-channel linearly polarized passive microwave radiometer that operates at frequencies of 19.36 (vertically and...

  4. Enhanced hemispheric-scale snow mapping through the blending of optical and microwave satellite data

    Science.gov (United States)

    Armstrong, R. L.; Brodzik, M. J.; Savoie, M.; Knowles, K.

    2003-04-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. Global snow cover fluctuation can now be monitored over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere weekly snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Decadal trends and their significance are compared for the two data types. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as throughout the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the

  5. High-Frequency Microwave Processing of Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...

  6. ''High-power microwave'' tubes: In the laboratory and on-line

    International Nuclear Information System (INIS)

    Caryotakis, G.

    1994-01-01

    The possibility of incapacitating the electronic circuits of hostile equipment with high-energy microwave pulses has created a demand for microwave tubes capable of very high peak pulsed powers. Experimentalists, primarily from the plasma physics community, have been working in this field, dubbed High-Power Microwave or HPM. Separately, research in high-energy physics requires electron-positron colliders with energies approaching 1 trillion electron-volts (1 terra-electron-volt, or TeV). Such accelerators must be powered by microwave sources that are very similar to some that are proposed for the HPM application. The paper points out that for these tubes to be used on-line in the manner intended, they must be designed and built to operate at a very high internal vacuum, which is not the case for many of the HPM laboratory projects. The development of a particular klystron at the Stanford Linear Accelerator Center is described in detail in order to illustrate the need for special facilities and strong Quality Control. Should the Defense requirements for HPM survive the end of the cold war, an effort should be made to coordinate the tube development activities serving these two widely disparate applications

  7. Very high S-band microwave absorption of carbon nanotube buckypapers with Mn nanoparticle interlayers

    Science.gov (United States)

    Lu, Shaowei; Bai, Yaoyao; Wang, Jijie; Zhang, Lu; Tian, Caijiao; Ma, Keming; Wang, Xiaoqiang

    2018-03-01

    Flexible and high-performance electromagnetic absorbing materials of multi-walled carbon nanotube (MWCNT) buckypapers with Mn nanoparticles (NPSs) interlayer were fabricated via monodisperse solutions through layer by layer vacuum filtration method. The morphology and element composition of buckypapers were characterized by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction. The formation of flexible MWCNT buckypapers with Mn NPS (0-30 wt. %) interlayer was attributed to nanostructure and morphology of the samples. When the blended Mn NPS content in buckypapers is 20 wt. %, there are evidently two larger absorption peaks (-13.2 dB at 3.41 GHz, -15.6 dB at 3.52 GHz) of the buckypaper with an absorbing thickness of 0.1 mm. The fundamental microwave absorption mechanism of the buckypapers is discussed. This work opens a new pathway towards tuning microwave absorbers performance and this method can be extended to exploit other excellent microwave absorbers with interlayer.

  8. High-order passive photonic temporal integrators.

    Science.gov (United States)

    Asghari, Mohammad H; Wang, Chao; Yao, Jianping; Azaña, José

    2010-04-15

    We experimentally demonstrate, for the first time to our knowledge, an ultrafast photonic high-order (second-order) complex-field temporal integrator. The demonstrated device uses a single apodized uniform-period fiber Bragg grating (FBG), and it is based on a general FBG design approach for implementing optimized arbitrary-order photonic passive temporal integrators. Using this same design approach, we also fabricate and test a first-order passive temporal integrator offering an energetic-efficiency improvement of more than 1 order of magnitude as compared with previously reported passive first-order temporal integrators. Accurate and efficient first- and second-order temporal integrations of ultrafast complex-field optical signals (with temporal features as fast as approximately 2.5ps) are successfully demonstrated using the fabricated FBG devices.

  9. 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation

    International Nuclear Information System (INIS)

    Cai, Qi; Xu, Baojian; Ye, Lin; Di, Zengfeng; Huang, Shanluo; Du, Xiaowei; Zhang, Jishen; Jin, Qinghui; Zhao, Jianlong

    2015-01-01

    Highlights: • A simple and effective approach for higly stable germanium passivation. • 1-Dodecanethiol self-assembled monolayers for germanium oxidation resistance. • The influence factors of germanium passivation were systematically studied. • The stability of the passivated Ge was more than 10 days even in water conditions. - Abstract: As a typical semiconductor material, germanium has the potential to replace silicon for future-generation microelectronics, due to its better electrical properties. However, the lack of stable surface state has limited its extensive use for several decades. In this work, we demonstrated highly stable self-assembled monolayers (SAMs) on Ge surface to prevent oxidization for further applications. After the pretreatment in hydrochloric acid, the oxide-free and Cl-terminated Ge could be further coated with 1-dodecanethiol (NDM) SAMs. The influence factors including reaction time, solvent component and reaction temperature were optimized to obtain stable passivated monolayer for oxidation resistance. Contact angle analysis, atomic force microscopy, ellipsometer and X-ray photoelectron spectroscopy were performed to characterize the functionalized Ge surface respectively. Meanwhile, the reaction mechanism and stability of thiols SAMs on Ge (1 1 1) surface were investigated. Finally, highly stable passivated NDM SAMs on Ge surface could be formed through immersing oxide-free Ge in mixture solvent (water/ethanol, v/v = 1:1) at appropriately elevated temperature (∼80 °C) for 24 h. And the corresponding optimized passivated Ge surface was stable for more than 10 days even in water condition, which was much longer than the data reported and paved the way for the future practical applications of Ge.

  10. 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qi [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Xu, Baojian, E-mail: xbj@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Shanghai Internet of Things Co., LTD, No. 1455, Pingcheng Road, Shanghai 201899 (China); Ye, Lin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Di, Zengfeng [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Huang, Shanluo; Du, Xiaowei [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Zhang, Jishen; Jin, Qinghui [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Zhao, Jianlong, E-mail: jlzhao@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China)

    2015-10-30

    Highlights: • A simple and effective approach for higly stable germanium passivation. • 1-Dodecanethiol self-assembled monolayers for germanium oxidation resistance. • The influence factors of germanium passivation were systematically studied. • The stability of the passivated Ge was more than 10 days even in water conditions. - Abstract: As a typical semiconductor material, germanium has the potential to replace silicon for future-generation microelectronics, due to its better electrical properties. However, the lack of stable surface state has limited its extensive use for several decades. In this work, we demonstrated highly stable self-assembled monolayers (SAMs) on Ge surface to prevent oxidization for further applications. After the pretreatment in hydrochloric acid, the oxide-free and Cl-terminated Ge could be further coated with 1-dodecanethiol (NDM) SAMs. The influence factors including reaction time, solvent component and reaction temperature were optimized to obtain stable passivated monolayer for oxidation resistance. Contact angle analysis, atomic force microscopy, ellipsometer and X-ray photoelectron spectroscopy were performed to characterize the functionalized Ge surface respectively. Meanwhile, the reaction mechanism and stability of thiols SAMs on Ge (1 1 1) surface were investigated. Finally, highly stable passivated NDM SAMs on Ge surface could be formed through immersing oxide-free Ge in mixture solvent (water/ethanol, v/v = 1:1) at appropriately elevated temperature (∼80 °C) for 24 h. And the corresponding optimized passivated Ge surface was stable for more than 10 days even in water condition, which was much longer than the data reported and paved the way for the future practical applications of Ge.

  11. C-band Joint Active/Passive Dual Polarization Sea Ice Detection

    Science.gov (United States)

    Keller, M. R.; Gifford, C. M.; Winstead, N. S.; Walton, W. C.; Dietz, J. E.

    2017-12-01

    A technique for synergistically-combining high-resolution SAR returns with like-frequency passive microwave emissions to detect thin (Radar (SAR) is high resolution (5-100m) but because of cross section ambiguities automated algorithms have had difficulty separating thin ice types from water. The radiometric emissivity of thin ice versus water at microwave frequencies is generally unambiguous in the early stages of ice growth. The method, developed using RADARSAT-2 and AMSR-E data, uses higher-ordered statistics. For the SAR, the COV (coefficient of variation, ratio of standard deviation to mean) has fewer ambiguities between ice and water than cross sections, but breaking waves still produce ice-like signatures for both polarizations. For the radiometer, the PRIC (polarization ratio ice concentration) identifies areas that are unambiguously water. Applying cumulative statistics to co-located COV levels adaptively determines an ice/water threshold. Outcomes from extensive testing with Sentinel and AMSR-2 data are shown in the results. The detection algorithm was applied to the freeze-up in the Beaufort, Chukchi, Barents, and East Siberian Seas in 2015 and 2016, spanning mid-September to early November of both years. At the end of the melt, 6 GHz PRIC values are 5-10% greater than those reported by radiometric algorithms at 19 and 37 GHz. During freeze-up, COV separates grease ice (cross-pol/co-pol SAR ratio corrects for COV deficiencies. In general, the dual-sensor detection algorithm reports 10-15% higher total ice concentrations than operational scatterometer or radiometer algorithms, mostly from ice edge and coastal areas. In conclusion, the algorithm presented combines high-resolution SAR returns with passive microwave emissions for automated ice detection at SAR resolutions.

  12. Microwave-assisted rapid synthesis of birnessite-type MnO{sub 2} nanoparticles for high performance supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiong; Miao, Wang; Li, Chen; Sun, Xianzhong; Wang, Kai; Ma, Yanwei, E-mail: ywma@mail.iee.ac.cn

    2015-11-15

    Highlights: • Birnessite-type MnO{sub 2} nanoparticles were prepared by the microwave-assisted reflux. • The microwave reaction duration was only 5 min. • A specific capacitance of 329 F g{sup −1} was obtained for birnessite-type MnO{sub 2}. - Abstract: Birnessite-type MnO{sub 2} nanoparticles have been successfully synthesized by the microwave-assisted reflux as short as 5 min. The microstructure and morphology of the products were characterized by X-ray diffraction, N{sub 2} adsorption–desorption isotherms, scanning electron microscopy, transmission electron microscopy. The electrochemical properties of the as-prepared MnO{sub 2} as an electrode material for supercapacitor were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements in 1 M Na{sub 2}SO{sub 4} electrolyte, and a high specific capacitance of 329 F g{sup −1} was achieved at a current density of 0.2 A g{sup −1}. The specific capacitance retention was 92% after 1000 cycles at 2 A g{sup −1}, suggesting that it is a promising electrode material for supercapacitors.

  13. Sensitivity Analysis of b-factor in Microwave Emission Model for Soil Moisture Retrieval: A Case Study for SMAP Mission

    Directory of Open Access Journals (Sweden)

    Dugwon Seo

    2010-05-01

    Full Text Available Sensitivity analysis is critically needed to better understand the microwave emission model for soil moisture retrieval using passive microwave remote sensing data. The vegetation b-factor along with vegetation water content and surface characteristics has significant impact in model prediction. This study evaluates the sensitivity of the b-factor, which is function of vegetation type. The analysis is carried out using Passive and Active L and S-band airborne sensor (PALS and measured field soil moisture from Southern Great Plains experiment (SGP99. The results show that the relative sensitivity of the b-factor is 86% in wet soil condition and 88% in high vegetated condition compared to the sensitivity of the soil moisture. Apparently, the b-factor is found to be more sensitive than the vegetation water content, surface roughness and surface temperature; therefore, the effect of the b-factor is fairly large to the microwave emission in certain conditions. Understanding the dependence of the b-factor on the soil and vegetation is important in studying the soil moisture retrieval algorithm, which can lead to potential improvements in model development for the Soil Moisture Active-Passive (SMAP mission.

  14. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    Science.gov (United States)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  15. Performance Evaluation of SMART Passive Safety System for Small Break LOCA Using MARS Code

    International Nuclear Information System (INIS)

    Chun, Ji Han; Lee, Guy Hyung; Bae, Kyoo Hwan; Chung, Young Jong; Kim, Keung Koo

    2013-01-01

    SMART has significantly enhanced safety by reducing its core damage frequency to 1/10 that of a conventional nuclear power plant. KAERI is developing a passive safety injection system to replace the active safety injection pump in SMART. It consists of four trains, each of which includes gravity-driven core makeup tank (CMT) and safety injection tank (SIT). This system is required to meet the passive safety performance requirements, i.e., the capability to maintain a safe shutdown condition for a minimum of 72 hours without an AC power supply or operator action in the case of design basis accidents (DBAs). The CMT isolation valve is opened by the low pressurizer pressure signal, and the SIT isolation valve is opened at 2 MPa. Additionally, two stages of automatic depressurization systems are used for rapid depressurization. Preliminary safety analysis of SMART passive safety system in the event of a small-break loss-of-coolant accident (SBLOCA) was performed using MARS code. In this study, the safety analysis results of a guillotine break of safety injection line which was identified as the limiting SBLOCA in SMART are given. The preliminary safety analysis of a SBLOCA for the SMART passive safety system was performed using the MARS code. The analysis results of the most limiting SI line guillotine break showed that the collapsed liquid level inside the core support barrel was maintained sufficiently high above the top of core throughout the transient. This means that the passive safety injection flow from the CMT and SIT causes no core uncovery during the 72 hours following the break with no AC power supply or operator action, which in turn results in a consistent decrease in the fuel cladding temperature. Therefore, the SMART passive safety system can meet the passive safety performance requirement of maintaining the plant at a safe shutdown condition for a minimum of 72 hours without AC power or operator action for a representing accident of SBLOCA

  16. Advanced Microwave Circuits and Systems

    DEFF Research Database (Denmark)

    This book is based on recent research work conducted by the authors dealing with the design and development of active and passive microwave components, integrated circuits and systems. It is divided into seven parts. In the first part comprising the first two chapters, alternative concepts...... amplifier architectures. In addition, distortion analysis and power combining techniques are considered. Another key element in most microwave systems is a signal generator. It forms the heart of all kinds of communication and radar systems. The fourth part of this book is dedicated to signal generators...... push currently available technologies to the limits. Some considerations to meet the growing requirements are provided in the fifth part of this book. The following part deals with circuits based on LTCC and MEMS technologies. The book concludes with chapters considering application of microwaves...

  17. A passive on-chip, superconducting circulator using rings of tunnel junctions

    OpenAIRE

    Müller, Clemens; Guan, Shengwei; Vogt, Nicolas; Cole, Jared H.; Stace, Thomas M.

    2017-01-01

    We present the design of a passive, on-chip microwave circulator based on a ring of superconducting tunnel junctions. We investigate two distinct physical realisations, based on either Josephson junctions (JJ) or quantum phase slip elements (QPS), with microwave ports coupled either capacitively (JJ) or inductively (QPS) to the ring structure. A constant bias applied to the center of the ring provides the symmetry breaking (effective) magnetic field, and no microwave or rf bias is required. W...

  18. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  19. Foreword to the Special Issue on the 11th Specialist Meeting on Microwave Radiometry and Remote Sensing Applications (MicroRad 2010)

    Science.gov (United States)

    Le Vine, David M; Jackson, Thomas J.; Kim, Edward J.; Lang, Roger H.

    2011-01-01

    The Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad 2010) was held in Washington, DC from March 1 to 4, 2010. The objective of MicroRad 2010 was to provide an open forum to report and discuss recent advances in the field of microwave radiometry, particularly with application to remote sensing of the environment. The meeting was highly successful, with more than 200 registrations representing 48 countries. There were 80 oral presentations and more than 100 posters. MicroRad has become a venue for the microwave radiometry community to present new research results, instrument designs, and applications to an audience that is conversant in these issues. The meeting was divided into 16 sessions (listed in order of presentation): 1) SMOS Mission; 2) Future Passive Microwave Remote Sensing Missions; 3) Theory and Physical Principles of Electromagnetic Models; 4) Field Experiment Results; 5) Soil Moisture and Vegetation; 6) Snow and Cryosphere; 7) Passive/Active Microwave Remote Sensing Synergy; 8) Oceans; 9) Atmospheric Sounding and Assimilation; 10) Clouds and Precipitation; 11) Instruments and Advanced Techniques I; 12) Instruments and Advanced Techniques II; 13) Cross Calibration of Satellite Radiometers; 14) Calibration Theory and Methodology; 15) New Technologies for Microwave Radiometry; 16) Radio Frequency Interference.

  20. Microwave-assisted decomplexation and in-situ headspace in-syringe dynamic derivatization of dimethylamine borane with high performance liquid chromatography-fluorescence detection.

    Science.gov (United States)

    Muniraj, Sarangapani; Lee, Hua-Kwang; Hsiech, Chunming; Jen, Jen-Fon

    2018-02-16

    A rapid, sensitive, selective, and simple method for monitoring dimethylamine borane (DMAB) in aqueous sample is proposed by combining microwave-assisted de-complexation, headspace liquid phase in-situ derivatization extraction, and high-performance liquid chromatography-fluorescence detection for the determination of DMAB in samples. The present procedure involves de-complexation of DMAB using microwave irradiation, evolution of dimethylamine (DMA) to the headspace from an alkalized sample solution, and dynamic headspace liquid-phase derivatization extraction (Dy-HS-LPDE) of DMA with 9-fluorenylmethyl chloroformate in a syringe barrel. In addition to the optimal Dy-HS-LPDE and chromatographic parameters described in our previous study, the de-complexation of DMAB by thermal and microwave-assisted procedures and evolution of DMA into the headspace from an alkalized solution and modification of the Dy-HS-LPDE method are thoroughly investigated. The results indicate that complete de-complexation was obtained at 70 °C for 5 min, 30 °C for 10 min, or using microwave irradiation for 30 s at any applied power. It indicates that the DMAB complex easily undergoes de-complexation under microwave irradiation. The linearity range was 0.01-0.5 mg L -1 for DMAB and 0.0077-0.38 mg L -1 for DMA, with a coefficient of determination of 0.9995, and limit of detection of 3 μg L -1 (limit of quantitation of 10 μg L -1 ) for DMAB. The recoveries of DMAB are 95.3% (3.0% RSD) for waste water when spiked 0.05 mg L -1 and 93.5% (5.4% RSD) for the samples spiked with copper and nickel salts (5 mM each in the spiked waste sample). The whole analytical procedure can be completed within 25 min. The results confirm that the present method is a rapid, sensitive, selective, automated, low-cost and eco-friendly procedure to identify DMAB in samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Source analysis of spaceborne microwave radiometer interference over land

    Science.gov (United States)

    Guan, Li; Zhang, Sibo

    2016-03-01

    Satellite microwave thermal emissions mixed with signals from active sensors are referred to as radiofrequency interference (RFI). Based on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations from June 1 to 16, 2011, RFI over Europe was identified and analyzed using the modified principal component analysis algorithm in this paper. The X band AMSR-E measurements in England and Italy are mostly affected by the stable, persistent, active microwave transmitters on the surface, while the RFI source of other European countries is the interference of the reflected geostationary TV satellite downlink signals to the measurements of spaceborne microwave radiometers. The locations and intensities of the RFI induced by the geostationary TV and communication satellites changed with time within the observed period. The observations of spaceborne microwave radiometers in ascending portions of orbits are usually interfered with over European land, while no RFI was detected in descending passes. The RFI locations and intensities from the reflection of downlink radiation are highly dependent upon the relative geometry between the geostationary satellite and the measuring passive sensor. Only these fields of view of a spaceborne instrument whose scan azimuths are close to the azimuth relative to the geostationary satellite are likely to be affected by RFI.

  2. Sea Surface Salinity and Wind Retrieval Algorithm Using Combined Passive-Active L-Band Microwave Data

    Science.gov (United States)

    Yueh, Simon H.; Chaubell, Mario J.

    2011-01-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.

  3. The determination of organochlorine pesticides based on dynamic microwave-assisted extraction coupled with on-line solid-phase extraction of high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Chen Ligang; Ding Lan; Jin Haiyan; Song Daqian; Zhang Huarong; Li Jiantao; Zhang Kun; Wang Yutang; Zhang Hanqi

    2007-01-01

    A rapid technique based on dynamic microwave-assisted extraction coupled with on-line solid-phase extraction of high-performance liquid chromatography (DMAE-SPE-HPLC) has been developed. A TM 010 microwave resonance cavity built in the laboratory was applied to concentrate the microwave energy. The sample placed in the zone of microwave irradiation was extracted with 95% acetonitrile (ACN) aqueous solution which was driven by a peristaltic pump at a flow rate of 1.0 mL min -1 . The extraction can be completed in a recirculating system in 10 min. When a number of extraction cycles were completed, the extract (1 mL) was diluted on-line with water. Then the extract was loaded into an SPE column where the analytes were retained while the unretained matrix components were washed away. Subsequently, the analytes were automatically transferred from the SPE column to the analytical column and determined by UV detector at 238 nm. The technique was used for determination of organochlorine pesticides (OCPs) in grains, including wheat, rice, corn and bean. The limits of detection of OCPs are in the range of 19-37 ng g -1 . The recoveries obtained by analyzing the four spiked grain samples are in the range of 86-105%, whereas the relative standard deviation (R.S.D.) values are <8.7% ranging from 1.2 to 8.7%. Our method was demonstrated to be fast, accurate, and precise. In addition, only small quantities of solvent and sample were required

  4. Pre-Launch Calibration and Performance Study of the Polarcube 3u Temperature Sounding Radiometer Mission

    Science.gov (United States)

    Periasamy, L.; Gasiewski, A. J.; Sanders, B. T.; Rouw, C.; Alvarenga, G.; Gallaher, D. W.

    2016-12-01

    The positive impact of passive microwave observations of tropospheric temperature, water vapor and surface variables on short-term weather forecasts has been clearly demonstrated in recent forecast anomaly growth studies. The development of a fleet of such passive microwave sensors especially at V-band and higher frequencies in low earth orbit using 3U and 6U CubeSats could help accomplish the aforementioned objectives at low system cost and risk as well as provide for regularly updated radiometer technology. The University of Colorado's 3U CubeSat, PolarCube is intended to serve as a demonstrator for such a fleet of passive sounders and imagers. PolarCube supports MiniRad, an eight channel, double sideband 118.7503 GHz passive microwave sounder. The mission is focused primarily on sounding in Arctic and Antarctic regions with the following key remote sensing science and engineering objectives: (i) Collect coincident tropospheric temperature profiles above sea ice, open polar ocean, and partially open areas to develop joint sea ice concentration and lower tropospheric temperature mapping capabilities in clear and cloudy atmospheric conditions. This goal will be accomplished in conjunction with data from existing passive microwave sensors operating at complementary bands; and (ii) Assess the capabilities of small passive microwave satellite sensors for environmental monitoring in support of the future development of inexpensive Earth science missions. Performance data of the payload/spacecraft from pre-launch calibration will be presented. This will include- (i) characterization of the antenna sub-system comprising of an offset 3D printed feedhorn and spinning parabolic reflector and impact of the antenna efficiencies on radiometer performance, (ii) characterization of MiniRad's RF front-end and IF back-end with respect to temperature fluctuations and their impact on atmospheric temperature weighting functions and receiver sensitivity, (iii) results from roof

  5. High-Q microwave resonators with a photonic crystal structure

    International Nuclear Information System (INIS)

    Schuster, M.

    2001-08-01

    The localisation of electromagnetic energy at a defect in a photonic crystal is similar to a well known effect employed to construct high-Q microwave resonators: In a whispering gallery (WHG-) mode resonator the high Q-factor is achieved by localisation of the electromagnetic field energy by total reflection inside a disk made of dielectric material. The topic of this work is to demonstrate, that WHG-like modes can exist in an air defect in a photonic crystal that extends over several lattice periods; and that a high-Q microwave resonator can be made, utilizing these resonant modes. In numerical simulations, the transmission properties of a photonic crystal structure with hexagonal lattice symmetry have been investigated with a transfer-matrix-method. The eigenmodes of a defect structure in a photonic crystal have been calculated with a quasi-3d finite element integration technique. Experimental results confirm the simulated transmission properties and show the existence of modes inside the band gap, when a defect is introduced in the crystal. Resonator measurements show that a microwave resonator can be operated with those defect modes. It was found out that the main losses of the resonator were caused by bad microwave properties of the used dielectric material and by metal losses on the top and bottom resonator walls. Furthermore, it turned out that the detection of the photonic crystal defect mode was difficult because of a lack of simulation possibilities and high housing mode density in the resonator. (orig.)

  6. High-power microwave generation from a frequency-stabilized virtual cathode source

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.; Kinross-Wright, J.

    1988-01-01

    The evolution of virtual cathode based high-power microwave-source technology has been directed primarily toward achieving higher peak-power levels. As peak powers in excess of 10 GW have been reported, attention has begun to focus on techniques for producing a more frequency- and phase-stable virtual cathode source. Free-running virtual cathode microwave sources characteristically exhibit bandwidths in a single pulse of tens of percent, which makes them unsuitable for many applications such as power sources for phased array antennas and microwave linear accelerators. Presented here are results of an experimental approach utilizing a high-Q, resonant cavity surrounding the oscillating virtual cathode to achieve frequency stabilization and repeatable narrow-band operation. A cylindrical cavity resonator is used with the microwave power being extracted radially through circumferential slot apertures into L-band waveguide

  7. The use of commercial microwave dissolution equipment for the fast and reliable dissolution of high-fired POX and MOX samples

    International Nuclear Information System (INIS)

    Tushingham, J.; McInnes, C.; Firkin, S.

    1998-09-01

    The use of commercially available microwave dissolution equipment for the fast and reliable dissolution of high-fired plutonium dioxide (POX) and mixed oxide (MOX) samples has been evaluated for application to Safeguards Analysis. Under the auspices of the UK R and D Support Programme to the IAEA, equipment has been purchased and tested for the high-pressure microwave dissolution of POX samples fired to 1250 deg. C and MOX samples fired to 1600 deg. C, in concentrated nitric acid and hydrofluoric acid mixture. Considerable problems were encountered during development of procedures for microwave dissolution, resulting largely from sudden changes in pressure within dissolution vessels, which resulted in actuation of safety interlocks designed to prevent overpressurisation. These difficulties were alleviated by controlling the microwave power to reduce the reaction temperature and pressure, and also by introducing additional safety valves into the digestion vessels. Using microwave digestion, dissolution times for high fired POX and MOX samples were substantially reduced. Samples which required ca. 10 hours to dissolve by conventional means could be dissolved in ca. 80 minutes by microwave digestion. Whilst a similar performance in terms of plutonium recovery was achieved for some materials by microwave and conventional dissolution, for other materials microwave dissolution gave higher plutonium recoveries but with poorer precision. This suggests the possible presence of some plutonium oxide within high-fired materials which is more difficult to dissolve than the bulk, and which is perhaps dissolved to an additional but variable degree by the current microwave dissolution procedure. Microwave dissolution has been demonstrated to increase the speed of dissolution of high-fired POX and MOX materials, compared with conventional dissolution. However, the technique has not yet proved satisfactory for the complete dissolution of all high-fired materials tested because of

  8. High-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array

    Science.gov (United States)

    Guss, Paul; Rabin, Michael; Croce, Mark; Hoteling, Nathan; Schwellenbach, David; Kruschwitz, Craig; Mocko, Veronika; Mukhopadhyay, Sanjoy

    2017-09-01

    We demonstrate very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor (TES) array. The readout circuit consists of superconducting microwave resonators coupled to radio frequency superconducting-quantum-interference devices (RF-SQUIDs) and transduces changes in input current to changes in phase of a microwave signal. We used a flux-ramp modulation to linearize the response and avoid low-frequency noise. The result is a very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array. We performed and validated a small-scale demonstration and test of all the components of our concept system, which encompassed microcalorimetry, microwave multiplexing, RF-SQUIDs, and software-defined radio (SDR). We shall display data we acquired in the first simultaneous combination of all key innovations in a 4-pixel demonstration, including microcalorimetry, microwave multiplexing, RF-SQUIDs, and SDR. We present the energy spectrum of a gadolinium-153 (153Gd) source we measured using our 4-pixel TES array and the RF-SQUID multiplexer. For each pixel, one can observe the two 97.4 and 103.2 keV photopeaks. We measured the 153Gd photon source with an achieved energy resolution of 70 eV, full width half maximum (FWHM) at 100 keV, and an equivalent readout system noise of 90 pA/pHz at the TES. This demonstration establishes a path for the readout of cryogenic x-ray and gamma ray sensor arrays with more elements and spectral resolving powers. We believe this project has improved capabilities and substantively advanced the science useful for missions such as nuclear forensics, emergency response, and treaty verification through the explored TES developments.

  9. Electronic components with yttrium- and bismuth-based high-Tc superconductors

    International Nuclear Information System (INIS)

    Daginnus, M.; Guettler, B.

    1992-01-01

    This project investigates the fabrication of microwave components by use of high-Tc superconductors. Detailed descriptions are given of the manufacturing and use of active Y-Ba-Cu-O components. The surface resistance of thin films used in high-quality passive microwave components such as resonators and filters is measured and optimized. (orig./MM) [de

  10. A monolithic integrated photonic microwave filter

    Science.gov (United States)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2017-02-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  11. Microwave energy for post-calcination treatment of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary

  12. The Passive Microwave Neural Network Precipitation Retrieval (PNPR) for AMSU/MHS and ATMS cross-track scanning radiometers

    Science.gov (United States)

    Sano', Paolo; Casella, Daniele; Panegrossi, Giulia; Cinzia Marra, Anna; Dietrich, Stefano

    2016-04-01

    Spaceborne microwave cross-track scanning radiometers, originally developed for temperature and humidity sounding, have shown great capabilities to provide a significant contribution in precipitation monitoring both in terms of measurement quality and spatial/temporal coverage. The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for cross-track scanning radiometers, originally developed for the Advanced Microwave Sounding Unit/Microwave Humidity Sounder (AMSU-A/MHS) radiometers (on board the European MetOp and U.S. NOAA satellites), was recently newly designed to exploit the Advanced Technology Microwave Sounder (ATMS) on board the Suomi-NPP satellite and the future JPSS satellites. The PNPR algorithm is based on the Artificial Neural Network (ANN) approach. The main PNPR-ATMS algorithm changes with respect to PNPR-AMSU/MHS are the design and implementation of a new ANN able to manage the information derived from the additional ATMS channels (respect to the AMSU-A/MHS radiometer) and a new screening procedure for not-precipitating pixels. In order to achieve maximum consistency of the retrieved surface precipitation, both PNPR algorithms are based on the same physical foundation. The PNPR is optimized for the European and the African area. The neural network was trained using a cloud-radiation database built upon 94 cloud-resolving simulations over Europe and the Mediterranean and over the African area and radiative transfer model simulations of TB vectors consistent with the AMSU-A/MHS and ATMS channel frequencies, viewing angles, and view-angle dependent IFOV sizes along the scan projections. As opposed to other ANN precipitation retrieval algorithms, PNPR uses a unique ANN that retrieves the surface precipitation rate for all types of surface backgrounds represented in the training database, i.e., land (vegetated or arid), ocean, snow/ice or coast. This approach prevents different precipitation estimates from being inconsistent with one

  13. Inkjet Printed Radio Frequency Passive Components

    KAUST Repository

    McKerricher, Garret

    2015-12-01

    Inkjet printing is a mature technique for colourful graphic arts. It excels at customized, large area, high resolution, and small volume production. With the developments in conductive, and dielectric inks, there is potential for large area inkjet electronics fabrication. Passive radio frequency devices can benefit greatly from a printing process, since the size of these devices is defined by the frequency of operation. The large size of radio frequency passives means that they either take up expensive space “on chip” or that they are fabricated on a separate lower cost substrate and somehow bonded to the chips. This has hindered cost-sensitive high volume applications such as radio frequency identification tags. Substantial work has been undertaken on inkjet-printed conductors for passive antennas on microwave substrates and even paper, yet there has been little work on the printing of the dielectric materials aimed at radio frequency passives. Both the conductor and dielectric need to be integrated to create a multilayer inkjet printing process that is capable of making quality passives such as capacitors and inductors. Three inkjet printed dielectrics are investigated in this thesis: a ceramic (alumina), a thermal-cured polymer (poly 4 vinyl phenol), and a UV-cured polymer (acrylic based). For the conductor, both a silver nanoparticle ink as well as a custom in-house formulated particle-free silver ink are explored. The focus is on passives, mainly capacitors and inductors. Compared to low frequency electronics, radio frequency components have additional sensitivity regarding skin depth of the conductor and surface roughness, as well as dielectric constant and loss tangent of the dielectric. These concerns are investigated with the aim of making the highest quality components possible and to understand the current limitations of inkjet-fabricated radio frequency devices. An inkjet-printed alumina dielectric that provides quality factors of 200 and high

  14. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    International Nuclear Information System (INIS)

    Sudiana, I. Nyoman; Ngkoimani, La Ode; Usman, Ida; Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke; Aripin, H.

    2016-01-01

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  15. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida [Department of Physics, Faculty of Mathematic and Natural Science, Halu Oleo University, Kampus Bumi Tridharma Anduonohu, Kendari 93232 (Indonesia); Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan); Aripin, H. [Center for Material Processing and Renewable Energy, Faculty of Learning Teacher and Education Science, Siliwangi University, Jl. Siliwangi 24 Tasikmalaya 46115, West Java (Indonesia)

    2016-03-11

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  16. Enhanced photoelectrochemical water splitting performance of anodic TiO(2) nanotube arrays by surface passivation.

    Science.gov (United States)

    Gui, Qunfang; Xu, Zhen; Zhang, Haifeng; Cheng, Chuanwei; Zhu, Xufei; Yin, Min; Song, Ye; Lu, Linfeng; Chen, Xiaoyuan; Li, Dongdong

    2014-10-08

    One-dimensional anodic titanium oxide nanotube (TONT) arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for electrochemical energy conversion and storage devices. However, the prominent surface recombination due to the large amount surface defects hinders the performance improvement. In this work, the surface states of TONTs were passivated by conformal coating of high-quality Al2O3 onto the tubular structures using atomic layer deposition (ALD). The modified TONT films were subsequently employed as anodes for photoelectrochemical (PEC) water splitting. The photocurrent (0.5 V vs Ag/AgCl) recorded under air mass 1.5 global illumination presented 0.8 times enhancement on the electrode with passivation coating. The reduction of surface recombination rate is responsible for the substantially improved performance, which is proposed to have originated from a decreased interface defect density in combination with a field-effect passivation induced by a negative fixed charge in the Al2O3 shells. These results not only provide a physical insight into the passivation effect, but also can be utilized as a guideline to design other energy conversion devices.

  17. Urban rainfall estimation employing commercial microwave links

    Science.gov (United States)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire

    2015-04-01

    Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.

  18. Brookfield Homes Passive House Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Herk, A. [IBACOS, Inc., Pittsburgh, PA (United States); Poerschke, A. [IBACOS, Inc., Pittsburgh, PA (United States); Beach, R. [IBACOS, Inc., Pittsburgh, PA (United States)

    2016-02-04

    In 2012-2013, IBACOS worked with a builder, Brookfield Homes in Denver, Colorado, to design and construct a Passive House certified model home. IBACOS used several modeling programs and calculation methods to complete the final design package along with Brookfield's architect KGA Studio. This design package included upgrades to the thermal enclosure, basement insulation, windows, and heating, ventilation, and air conditioning. Short-term performance testing in the Passive House was done during construction and after construction. Testing with a blower door indicated that whole-building air leakage to the outside was 324 CFM and 0.60 ACH50. The other two test homes had little short-term testing done post-construction by the local energy rater. IBACOS then monitored the energy consumption and whole-house comfort conditions of that occupied Passive House after one year of operation and compared the monitoring results to those for two other occupied test houses in the same area with similar square footage but slightly different floor plans. IBACOS also assisted the builder, Brookfield Homes, in researching design scenarios for Zero Energy Ready Home and ENERGY STAR acceptance levels. IBACOS also assisted Brookfield in conceptualizing product for Denver's Brighton Heights area. Brookfield was considering building to Zero Energy Ready Home standards in that location. IBACOS provided strategies that Brookfield may draw from in the event the builder chooses to pursue a Zero Energy Ready Home plan for that market.

  19. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    François, B.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l' Epitaphe, 25030 Besançon (France); Calosso, C. E. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Danet, J. M. [LNE-SYRTE, Observatoire de Paris, CNRS-UPMC, 61 avenue de l' Observatoire, 75014 Paris (France)

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  20. RF and microwave engineering fundamentals of wireless communications

    CERN Document Server

    Gustrau, Frank

    2012-01-01

    This book provides a fundamental and practical introduction to radio frequency and microwave engineering and physical aspects of wireless communication In this book, the author addresses a wide range of radio-frequency and microwave topics with emphasis on physical aspects including EM and voltage waves, transmission lines, passive circuits, antennas, radio wave propagation. Up-to-date RF design tools like RF circuit simulation, EM simulation and computerized smith charts, are used in various examples to demonstrate how these methods can be applied effectively in RF engineering

  1. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nad, Shreya [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Gu, Yajun; Asmussen, Jes [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  2. Design and characteristics of L-C thin films filter at microwave frequency band

    Science.gov (United States)

    Kim, In-Sung; Min, Bok-Ki; Song, Jae-Sung

    2005-12-01

    Multifunction corresponding to multimedia age has furthermore required high integration to the devices at microwave band, so more evolution for multi-layer integration like system on chip(SoC) becomes to be necessary. In wireless mobile communication, portable mobile phones grew up to a huge market. Microwave devices have played an important role in the wireless communication systems. One challenge in the implementation of circuit integration is in the design of micro wave band pass filter with thin film MOM capacitor and spiral inductor. In this paper, Cu and TaO thin film with RF sputtering was deposited for inductor and capacitor on the SiO II/Si(100) substrate. MIM capacitor and spiral inductor was fabricated for L-C band pass filter by sputtering and lift-off. We are analyzed and designed thin films L-C passive components for band pass filter at 900 MHz and 1.8 GHz, an important devices for mobile communication. Based on the high-Q values of passive components, MIM capacitor and spiral inductors for L-C band pass filter, a low insertion loss of L-C passive components can be realized with a minimized chip area. The insertion loss was 3 dB for a 1.8 GHz filter, and was 5 dB for a 900 MHz filter. This paper also discusses a theoretical analysis and practical design to L-C band pass filter.

  3. Measurement of high-power microwave pulse under intense ...

    Indian Academy of Sciences (India)

    Abstract. KALI-1000 pulse power system has been used to generate single pulse nanosecond duration high-power microwaves (HPM) from a virtual cathode oscillator. (VIRCATOR) device. HPM power measurements were carried out using a transmitting– receiving system in the presence of intense high frequency (a few ...

  4. Multifrequency passive microwave remote sensing of soil moisture and roughness

    International Nuclear Information System (INIS)

    Paloscia, S.; Pampaloni, P.; Chiarantini, L.; Coppo, P.; Gagliani, S.; Luzi, G.

    1993-01-01

    The accuracy achievable in the surface soil moisture measurement of rough bare and vegetated soils, typical of the Italian landscape, has been investigated by using microwave experimental data collected by means of a multi-band sensor package (L, X, Ka and infrared bands). The thickness of soil that mainly affects the emission at the three microwave frequencies has been assessed. The sensitivity of L band emission to the moisture content of a soil layer about 5 cm thick has been confirmed, as well as the attenuation effect due to the surface roughness and presence of vegetation. A correction criterion based on the sensitivity to roughness and crop parameters of the highest frequencies (X and Ka bands) is proposed in order to increase the precision in soil moisture measurements

  5. Hood River Passive House

    Energy Technology Data Exchange (ETDEWEB)

    Hales, David [BA-PIRC, Spokane, WA (United States)

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  6. High-power microwave LDMOS transistors for wireless data transmission technologies (Review)

    International Nuclear Information System (INIS)

    Kuznetsov, E. V.; Shemyakin, A. V.

    2010-01-01

    The fields of the application, structure, fabrication, and packaging technology of high-power microwave LDMOS transistors and the main advantages of these devices were analyzed. Basic physical parameters and some technology factors were matched for optimum device operation. Solid-state microwave electronics has been actively developed for the last 10-15 years. Simultaneously with improvement of old devices, new devices and structures are actively being adopted and developed and new semiconductor materials are being commercialized. Microwave LDMOS technology is in demand in such fields as avionics, civil and military radars, repeaters, base stations of cellular communication systems, television and broadcasting transmitters, and transceivers for high-speed wireless computer networks (promising Wi-Fi and Wi-Max standards).

  7. Research on calorimeter for high-power microwave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi’an, Shaanxi 710024 (China)

    2015-12-15

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an “inline” calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an “offline” calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a “cold test” on a 9.3 GHz klystron show that the “inline” calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device’s power capacity is approximately 0.9 GW. The same experiments were also carried out for the “offline” calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the “cold tests,” and the experiments show good agreement.

  8. Research on calorimeter for high-power microwave measurements.

    Science.gov (United States)

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-01

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an "inline" calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an "offline" calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a "cold test" on a 9.3 GHz klystron show that the "inline" calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device's power capacity is approximately 0.9 GW. The same experiments were also carried out for the "offline" calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the "cold tests," and the experiments show good agreement.

  9. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications....

  10. Coupling the snow thermodynamic model SNOWPACK with the microwave emission model of layered snowpacks for subarctic and arctic snow water equivalent retrievals

    Science.gov (United States)

    Langlois, A.; Royer, A.; Derksen, C.; Montpetit, B.; Dupont, F.; GoïTa, K.

    2012-12-01

    Satellite-passive microwave remote sensing has been extensively used to estimate snow water equivalent (SWE) in northern regions. Although passive microwave sensors operate independent of solar illumination and the lower frequencies are independent of atmospheric conditions, the coarse spatial resolution introduces uncertainties to SWE retrievals due to the surface heterogeneity within individual pixels. In this article, we investigate the coupling of a thermodynamic multilayered snow model with a passive microwave emission model. Results show that the snow model itself provides poor SWE simulations when compared to field measurements from two major field campaigns. Coupling the snow and microwave emission models with successive iterations to correct the influence of snow grain size and density significantly improves SWE simulations. This method was further validated using an additional independent data set, which also showed significant improvement using the two-step iteration method compared to standalone simulations with the snow model.

  11. Objective Characterization of Snow Microstructure for Microwave Emission Modeling

    Science.gov (United States)

    Durand, Michael; Kim, Edward J.; Molotch, Noah P.; Margulis, Steven A.; Courville, Zoe; Malzler, Christian

    2012-01-01

    Passive microwave (PM) measurements are sensitive to the presence and quantity of snow, a fact that has long been used to monitor snowcover from space. In order to estimate total snow water equivalent (SWE) within PM footprints (on the order of approx 100 sq km), it is prerequisite to understand snow microwave emission at the point scale and how microwave radiation integrates spatially; the former is the topic of this paper. Snow microstructure is one of the fundamental controls on the propagation of microwave radiation through snow. Our goal in this study is to evaluate the prospects for driving the Microwave Emission Model of Layered Snowpacks with objective measurements of snow specific surface area to reproduce measured brightness temperatures when forced with objective measurements of snow specific surface area (S). This eliminates the need to treat the grain size as a free-fit parameter.

  12. Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations

    Science.gov (United States)

    Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.

    1983-01-01

    Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.

  13. Sexual function following high energy microwave thermotherapy: results of a randomized controlled study comparing transurethral microwave thermotherapy to transurethral prostatic resection

    NARCIS (Netherlands)

    Francisca, E. A.; D'Ancona, F. C.; Meuleman, E. J.; Debruyne, F. M.; de la Rosette, J. J.

    1999-01-01

    We evaluate changes in sexual function in patients treated with high energy transurethral microwave thermotherapy compared to transurethral resection of the prostate. A total of 147 patients randomized to undergo transurethral microwave thermotherapy or transurethral resection of the prostate were

  14. Microwave annealing effect for highly reliable biosensor: dual-gate ion-sensitive field-effect transistor using amorphous InGaZnO thin-film transistor.

    Science.gov (United States)

    Lee, In-Kyu; Lee, Kwan Hyi; Lee, Seok; Cho, Won-Ju

    2014-12-24

    We used a microwave annealing process to fabricate a highly reliable biosensor using amorphous-InGaZnO (a-IGZO) thin-film transistors (TFTs), which usually experience threshold voltage instability. Compared with furnace-annealed a-IGZO TFTs, the microwave-annealed devices showed superior threshold voltage stability and performance, including a high field-effect mobility of 9.51 cm(2)/V·s, a low threshold voltage of 0.99 V, a good subthreshold slope of 135 mV/dec, and an outstanding on/off current ratio of 1.18 × 10(8). In conclusion, by using the microwave-annealed a-IGZO TFT as the transducer in an extended-gate ion-sensitive field-effect transistor biosensor, we developed a high-performance biosensor with excellent sensing properties in terms of pH sensitivity, reliability, and chemical stability.

  15. Microwave assisted hydrothermal synthesis of Ni{sub 1.5}Co{sub 1.5}S{sub 4} as high-performance electrode material for lithium storage

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Dongxia; Wang, Xuxu; Yin, Dongming [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Liang, Fei [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 (China); Wang, Limin, E-mail: lmwang@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 (China)

    2017-08-31

    Highlights: • Bimetallic nickel cobalt sulfide (Ni{sub 1.5}Co{sub 1.5}S{sub 4}) was prepared by an ultrafast microwave-assisted hydrothermal method. • The Ni{sub 1.5}Co{sub 1.5}S{sub 4} was studied as cathode materials for lithium ion batteries in the ether-based electrolyte in the voltage range of 1.0–3.0 V,. • Compared with its corresponding single metal sulfides, the Ni{sub 1.5}Co{sub 1.5}S{sub 4} exhibits superior electrochemical performance for lithium storage. - Abstract: Bimetallic nickel cobalt sulfide (Ni{sub 1.5}Co{sub 1.5}S{sub 4}) is successfully fabricated by an ultrafast and cost-effective microwave assisted hydrothermal method. When used as electrode material for lithium-ion batteries, Ni{sub 1.5}Co{sub 1.5}S{sub 4} exhibits the remarkable electrochemical performance in terms of superior cycling stability, excellent specific capacity and good rate capability. A high specific capacity of 443 mA h g{sup −1} after 200 charge-discharge cycles at a current density of 0.5 A g{sup −1} is achieved. Even at 1 A g{sup −1}, the sample still delivers a discharge capacity of 386 mA h g{sup −1} with a high columbic efficiency of 99.6% after 500 cycles.

  16. Microwave Wire Interrogation Method Mapping Pressure under High Temperatures

    Directory of Open Access Journals (Sweden)

    Xiaoyong Chen

    2017-12-01

    Full Text Available It is widely accepted that wireless reading for in-situ mapping of pressure under high-temperature environments is the most feasible method, because it is not subject to frequent heterogeneous jointing failures and electrical conduction deteriorating, or even disappearing, under heat load. However, in this article, we successfully demonstrate an in-situ pressure sensor with wire interrogation for high-temperature applications. In this proof-of-concept study of the pressure sensor, we used a microwave resonator as a pressure-sensing component and a microwave transmission line as a pressure characteristic interrogation tunnel. In the sensor, the line and resonator are processed into a monolith, avoiding a heterogeneous jointing failure; further, microwave signal transmission does not depend on electrical conduction, and consequently, the sensor does not suffer from the heat load. We achieve pressure monitoring under 400 °C when employing the sensor simultaneously. Our sensor avoids restrictions that exist in wireless pressure interrogations, such as environmental noise and interference, signal leakage and security, low transfer efficiency, and so on.

  17. Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans

    International Nuclear Information System (INIS)

    Ranjbaran, M.; Zare, D.

    2013-01-01

    The performance of microwave-assisted fluidized bed drying of soybeans was simulated (using a previously validated mathematical model) and analyzed based on the first- and second law of thermodynamics. The energy and exergy analysis were carried out for several drying conditions. The effects of inlet air temperature, microwave power density, bed thickness and inlet air velocity on the efficiencies and inefficiencies of drying process have been simulated and discussed. Generally, application of microwave energy during fluidized bed drying enhanced the exergy efficiency of drying process. However, the results showed that it was more efficient not to apply microwave energy at the first stage of fluidized bed drying process. The application of higher levels of drying air temperature led in higher exergy efficiencies. The values of mean relative deviations for the predictions of efficiencies and inefficiencies of drying process were less than 14%, compared with those calculated using experimental data. - Highlights: • Introducing a mathematical model to predict the efficiency of microwave-assisted fluidized bed dryers. • Energy and exergy analysis in microwave-assisted fluidized bed drying of grains. • Providing practical recommendations for efficient use of microwave power during drying

  18. High performance passive solar heating system with heat pipe energy transfer

    NARCIS (Netherlands)

    Wit, de M.H.; Hensen, J.L.M.; Dijk, van H.A.L.; Brink, van den G.J.; Galen, van E; Ouden, den C.

    1984-01-01

    The aim of the project is to develop a passive solar heating system with a higher efficiency (regarding accumulation and transfer of solar heat into dwellings) than convential concrete thermal storage walls and with restricted extra costs for manufacturing the system. This is to be achieved by the

  19. Atmospheric water distribution in cyclones as seen with Scanning Multichannel Microwave Radiometers (SMMR)

    Science.gov (United States)

    Katsaros, K. B.; Mcmurdie, L. A.

    1983-01-01

    Passive microwave measurements are used to study the distribution of atmospheric water in midlatitude cyclones. The integrated water vapor, integrated liquid water, and rainfall rate are deduced from the brightness temperatures at microwave frequencies measured by the Scanning Multichannel Microwave Radiometer (SMRR) flown on both the Seasat and Nimbus 7 satellites. The practical application of locating fronts by the cyclone moisture pattern over oceans is shown, and the relationship between the quantity of coastal rainfall and atmospheric water content is explored.

  20. Monolithic microwave integrated circuit with integral array antenna

    International Nuclear Information System (INIS)

    Stockton, R.J.; Munson, R.E.

    1984-01-01

    A monolithic microwave integrated circuit including an integral array antenna. The system includes radiating elements, feed network, phasing network, active and/or passive semiconductor devices, digital logic interface circuits and a microcomputer controller simultaneously incorporated on a single substrate by means of a controlled fabrication process sequence

  1. Intermittent microwave heating synthesized high performance spherical LiFePO4/C for Li-ion batteries

    International Nuclear Information System (INIS)

    Zou, Hongli; Zhang, Guanghui; Shen, Pei Kang

    2010-01-01

    An intermittent microwave heating method was used to synthesize spherical LiFePO 4 /C in the presence of glucose as reductive agent and carbon source without the use of the inert gas in the oven processes. The FePO 4 was used as iron precursor to reduce the cost and three lithium salts of Li 2 CO 3 , LiOH and CH 3 COOLi were chosen for comparison of the resulting materials. The materials can be alternatively heated by this method at a temperature controllable mode for crystallization and phase transformation and to provide relaxation time for protecting particles growth. The X-ray diffraction and scanning electron microscope measurements confirmed that the LiFePO 4 /C is olivine structured with the average particle size of 50-100 nm. The spherical LiFePO 4 /C as cathode material showed better electrochemical performance in terms of the specific capacity and the cycling stability, which might be attributed to the highly crystallized phase, small particle distribution and improved conductivity by carbon connection.

  2. Tunable microwave signal generation based on an Opto-DMD processor and a photonic crystal fiber

    International Nuclear Information System (INIS)

    Wang Tao; Sang Xin-Zhu; Yan Bin-Bin; Li Yan; Song Fei-Jun; Zhang Xia; Wang Kui-Ru; Yuan Jin-Hui; Yu Chong-Xiu; Ai Qi; Chen Xiao; Zhang Ying; Chen Gen-Xiang; Xiao Feng; Kamal Alameh

    2014-01-01

    Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber (PCF). The high-nonlinear PCF is employed for the generation of the FWM to obtain stable and uniform dual-wavelength oscillation. Two different short passive sub-ring cavities in the main ring cavity serve as mode filters to make SLM lasing. The two lasing wavelengths are electronically selected by loading different gratings on the Opto-DMD processor controlled with a computer. The wavelength spacing can be smartly adjusted from 0.165 nm to 1.08 nm within a tuning accuracy of 0.055 nm. Two microwave signals at 17.23 GHz and 27.47 GHz are achieved. The stability of the microwave signal is discussed. The system has the ability to generate a 137.36-GHz photonic millimeter signal at room temperature

  3. Performance improvement of the finned passive PVT system using reflectors like removable insulation covers

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Palideh, Vahid; Mokhtari, Farhad

    2016-01-01

    Highlights: • A passive PVT system means the combination of a PV panel and a compact solar water heater. • Comparative study was done on performance characteristics in passive and hybrid PVT systems. • Reflectors effects on performance of a finned passive PVT system were numerically studied. • Results show that the finned passive PVT system has higher performance than the hybrid type. • Reflectors reduce the night heat losses and increase the solar radiation rate on PVT system. - Abstract: A passive photovoltaic–thermal system (PVT) is the combination of a photovoltaic (PV) panel and a compact solar water heater for co-generation of heat and electricity. This system bears considerable heat losses to ambient, particularly at noncollection times. One simple way to overcome this problem is to use a removable insulation cover on the collector's outer glazing. In this paper, the effects of the reflectors on day and night performance of a finned passive PVT system were numerically studied. At nonenergy collection time, the reflectors can turn and cover the collector cover glass as a nonconductor material. Simulation results showed that the reflectors reduce the night heat losses and increase the solar radiation rate on the absorber plate. The use of removable insulation reflectors resulted to saving extra sensibly thermal energy. Also, the solar cells power generation (P_s_c), in the case of reflectors installed, was reinforced.

  4. High resolution spectroscopy in the microwave and far infrared

    Science.gov (United States)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  5. RF Performance of Layer-Structured Broadband Passive Millimeter-Wave Imaging System

    Directory of Open Access Journals (Sweden)

    Kunio Sakakibara

    2016-01-01

    Full Text Available Low profile and simple configuration are advantageous for RF module in passive millimeter-wave imaging system. High sensitivity over broad operation bandwidth is also necessary to detect right information from weak signal. We propose a broadband layer-structured module with low profile, simple structure, and ease of manufacture. This module is composed of a lens antenna and a detector module that consists of a detector circuit and a broadband microstrip-to-waveguide transition. The module forms a layer structure as a printed substrate with detector circuit is fixed between two metal plates with horn antennas and back-short waveguides. We developed a broadband passive millimeter-wave imaging module composed of a lens antenna and a detector module in this work. The gain and the antenna efficiency were measured, and the broadband operation was observed for the lens antenna. For the detector module, peak sensitivity was 8100 V/W. Furthermore, the detector module recognized a difference in the absorber’s temperature. The designs of the lens antenna and the detector module are presented and the RF performances of these components are reported. Finally, passive millimeter-wave imaging of a car, a human, and a metal plate in clothes is demonstrated in this paper.

  6. Performance of passive solar and energy conserving houses in California

    Science.gov (United States)

    Mahajan, S.; Newcomb, C.; Shea, M.; Mort, D.

    1983-11-01

    This report provides a technical description of the methodology and the results of a two year effort to collect field data on the performance of passive solar and energy conserving houses in California. Sixty-three passive solar houses were visited and several hours were spent with the homeowner obtaining building details, management procedures, architectural plans, photographs, and at least a year of billing data. With this information thermal performance parameters were calculated for each of the houses. Eleven of the above sixty-three Class C sites (nine passive solar and two energy conserving houses) were instrumented and monitored using the SERI Class B methodology as a guideline. Continuous data were collected for one year using up to 18 different sensors to measure temperatures, electric power, insolation, and the status of fans, gas burners, and moveable insulation. In addition careful one time measurements were made to determine the loss coefficient, infiltration rate, and furnace efficiency. Analysis of this data giving comfort conditions maintained and energy uses for a complete heating and cooling season for each of the houses is presented.

  7. Rain-on-snow and ice layer formation detection using passive microwave radiometry: An arctic perspective

    Science.gov (United States)

    Langlois, A.; Royer, A.; Montpetit, B.; Johnson, C. A.; Brucker, L.; Dolant, C.; Richards, A.; Roy, A.

    2015-12-01

    With the current changes observed in the Arctic, an increase in occurrence of rain-on-snow (ROS) events has been reported in the Arctic (land) over the past few decades. Several studies have established that strong linkages between surface temperatures and passive microwaves do exist, but the contribution of snow properties under winter extreme events such as rain-on-snow events (ROS) and associated ice layer formation need to be better understood that both have a significant impact on ecosystem processes. In particular, ice layer formation is known to affect the survival of ungulates by blocking their access to food. Given the current pronounced warming in northern regions, more frequent ROS can be expected. However, one of the main challenges in the study of ROS in northern regions is the lack of meteorological information and in-situ measurements. The retrieval of ROS occurrence in the Arctic using satellite remote sensing tools thus represents the most viable approach. Here, we present here results from 1) ROS occurrence formation in the Peary caribou habitat using an empirically developed ROS algorithm by our group based on the gradient ratio, 2) ice layer formation across the same area using a semi-empirical detection approach based on the polarization ratio spanning between 1978 and 2013. A detection threshold was adjusted given the platform used (SMMR, SSM/I and AMSR-E), and initial results suggest high-occurrence years as: 1981-1982, 1992-1993; 1994-1995; 1999-2000; 2001-2002; 2002-2003; 2003-2004; 2006-2007; 2007-2008. A trend in occurrence for Banks Island and NW Victoria Island and linkages to caribou population is presented.

  8. A high-performance carbon derived from corn stover via microwave and slow pyrolysis for supercapacitors

    DEFF Research Database (Denmark)

    Jin, Hong; wang, Xiaomin; Shen, Yanbin

    2014-01-01

    Microwave and slow pyrolysis were conducted for converting corn stover to biochar. Chemical agents of sodium hydroxide and potassium hydroxide were used to progressively produce activated carbon. The pore structures and surface area of the samples were characterized by nitrogen adsorption....../desorption at 77 K. The results demonstrated that higher specific surface areas of activated carbons were obtained by microwave pyrolysis combined with potassium hydroxide activation. However, electrochemical measurements showed that the slow pyrolysis biochar treated with 0.05 mol g−1 (potassium hydroxide...

  9. Fast New Method for Temporary Chemical Passivation

    Directory of Open Access Journals (Sweden)

    Marek Solčanský

    2012-12-01

    Full Text Available The main material parameter of silicon, that influences the effectiveness of photovoltaic cells, is the minority carrier bulk lifetime.It may change in the technological process especially during high temperature operations. Monitoring of the carrier bulk-lifetimeis necessary for modifying the whole technological process of production. For the measurement of the minority carrier bulk-lifetimethe characterization method MW PCD (Microwave Photoconductance Decay is used, where the result of measurement is the effectivecarrier lifetime, which is very dependent on the surface recombination velocity and therefore on the quality of a silicon surfacepassivation.This work deals with an examination of a different solution types for the chemical passivation of a silicon surface. Varioussolutions are tested on silicon wafers for their consequent comparison. The main purpose of this work is to find optimal solution, whichsuits the requirements of a time stability and start-up velocity of passivation, reproducibility of the measurements and a possibilityof a perfect cleaning of a passivating solution remains from a silicon surface. Another purpose of this work is to identify the parametersof other quinhydrone solutions with different concentrations as compared with the quinhydrone solution in methanol witha concentration of 0.07 mol/dm³ marked QM007 (referential solution.The method of an effective chemical passivation with a quinhydrone in methanol solution was suggested. The solution witha concentration of 0.07 mol /dm3 fulfills all required criteria. The work also confirms the influence of increased concentrationquinhydrone on the temporal stability of the passivation layer and the effect for textured silicon wafers. In conclusion, the influenceof an illumination and the temperature on the properties of the passivating solution QM007 is discussed.

  10. Two-step simulation of velocity and passive scalar mixing at high Schmidt number in turbulent jets

    Science.gov (United States)

    Rah, K. Jeff; Blanquart, Guillaume

    2016-11-01

    Simulation of passive scalar in the high Schmidt number turbulent mixing process requires higher computational cost than that of velocity fields, because the scalar is associated with smaller length scales than velocity. Thus, full simulation of both velocity and passive scalar with high Sc for a practical configuration is difficult to perform. In this work, a new approach to simulate velocity and passive scalar mixing at high Sc is suggested to reduce the computational cost. First, the velocity fields are resolved by Large Eddy Simulation (LES). Then, by extracting the velocity information from LES, the scalar inside a moving fluid blob is simulated by Direct Numerical Simulation (DNS). This two-step simulation method is applied to a turbulent jet and provides a new way to examine a scalar mixing process in a practical application with smaller computational cost. NSF, Samsung Scholarship.

  11. Advanced passivation techniques for Si solar cells with high-κ dielectric materials

    International Nuclear Information System (INIS)

    Geng, Huijuan; Lin, Tingjui; Letha, Ayra Jagadhamma; Hwang, Huey-Liang; Kyznetsov, Fedor A.; Smirnova, Tamara P.; Saraev, Andrey A.; Kaichev, Vasily V.

    2014-01-01

    Electronic recombination losses at the wafer surface significantly reduce the efficiency of Si solar cells. Surface passivation using a suitable thin dielectric layer can minimize the recombination losses. Herein, advanced passivation using simple materials (Al 2 O 3 , HfO 2 ) and their compounds H (Hf) A (Al) O deposited by atomic layer deposition (ALD) was investigated. The chemical composition of Hf and Al oxide films were determined by X-ray photoelectron spectroscopy (XPS). The XPS depth profiles exhibit continuous uniform dense layers. The ALD-Al 2 O 3 film has been found to provide negative fixed charge (−6.4 × 10 11  cm −2 ), whereas HfO 2 film provides positive fixed charge (3.2 × 10 12  cm −2 ). The effective lifetimes can be improved after oxygen gas annealing for 1 min. I-V characteristics of Si solar cells with high-κ dielectric materials as passivation layers indicate that the performance is significantly improved, and ALD-HfO 2 film would provide better passivation properties than that of the ALD-Al 2 O 3 film in this research work.

  12. Design and analysis of 30 nm T-gate InAlN/GaN HEMT with AlGaN back-barrier for high power microwave applications

    Science.gov (United States)

    Murugapandiyan, P.; Ravimaran, S.; William, J.; Meenakshi Sundaram, K.

    2017-11-01

    In this article, we present the DC and microwave characteristics of a novel 30 nm T-gate InAlN/AlN/GaN HEMT with AlGaN back-barrier. The device structure is simulated by using Synopsys Sentaurus TCAD Drift-Diffusion transport model at room temperature. The device features are heavily doped (n++ GaN) source/drain regions with Si3N4 passivated device surface for reducing the contact resistances and gate capacitances of the device, which uplift the microwave characteristics of the HEMTs. 30 nm gate length D-mode (E-mode) HEMT exhibited a peak drain current density Idmax of 2.3 (2.42) A/mm, transconductance gm of 1.24(1.65) S/mm, current gain cut-off frequency ft of 262 (246) GHz, power gain cut-off frequency fmax of 246(290) GHz and the three terminal off-state breakdown voltage VBR of 40(38) V. The preeminent microwave characteristics with the higher breakdown voltage of the proposed GaN-based HEMT are the expected to be the most optimistic applicant for future high power millimeter wave applications.

  13. Soil moisture extremes drive tree canopy death in 2011 Texas drought: multispectral (Landsat, NAIP) and L-band passive microwave remote sensing (SMOS-IC)

    Science.gov (United States)

    Swenson, J. J.; Schwantes, A. M.; Johnson, D. M.; Domec, J. C.; Wigneron, J. P.

    2017-12-01

    Climate change is bringing more frequent and intense droughts that are causing broad scale tree mortality events. Detecting regional drought stress is now more frequently monitored with passive microwave satellite sensing of soil moisture (SM) and vegetation water status (through the vegetation optical depth (VOD) index), that can be validated with in-situ measurements of soil moisture or corroborated with satellite multispectral indices of greenness. The detection of canopy death however marks the passing of a definitive physiological threshold. We compare soil moisture from the L-band SMOS-IC passive microwave product (2010-20176) to an accurate and detailed (30-m spatial resolution) map of canopy loss across the US state of Texas during the record breaking 2011 drought. The SMOS-IC product (25 km) is a new and simpler product of soil moisture and VOD that has been shown to be more accurate than past SMOS products and it is independent of ancillary data. Canopy loss was mapped from Landsat imagery trained with 186, 41 km2 subplots of classified National Agriculture Inventory Program color infrared aerial imagery recorded before and after the drought. Bringing these two datasets of disparate spatial resolution together and averaging them across the state, we find that areas with at least 25% tree cover that experienced the most canopy loss (highest quartile) had lower soil moisture compared to areas with less canopy loss in 2011. These areas with the most loss, experienced up to 9 weeks of the growing season at stress as well as the effects of topography, soil, and climate. Having more information on plant hydraulic limits would lend itself to modeling and prediction of die offs based on satellite tracked SM.

  14. Reflection measurement of waveguide-injected high-power microwave antennas.

    Science.gov (United States)

    Yuan, Chengwei; Peng, Shengren; Shu, Ting; Zhang, Qiang; Zhao, Xuelong

    2015-12-01

    A method for reflection measurements of High-power Microwave (HPM) antennas excited with overmoded waveguides is proposed and studied systemically. In theory, principle of the method is proposed and the data processing formulas are developed. In simulations, a horn antenna excited by a TE11 mode exciter is examined and its reflection is calculated by CST Microwave Studio and by the method proposed in this article, respectively. In experiments, reflection measurements of two HPM antennas are conducted, and the measured results are well consistent with the theoretical expectations.

  15. Hydrothermal synthesis of magnetic Fe{sub 3}O{sub 4}/graphene composites with good electromagnetic microwave absorbing performances

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lingyu; Zeng, Xiaojun; Li, Xiaopan; Yang, B., E-mail: byang@buaa.edu.cn; Yu, Ronghai, E-mail: rhyu@buaa.edu.cn

    2017-03-15

    The Fe{sub 3}O{sub 4} sub-microspheres have been embedded uniformly into the reduced graphene oxide (rGO) to form a new-type Fe{sub 3}O{sub 4}/rGO composites through a one-pot solvothermal method. The dielectric properties for these magnetic Fe{sub 3}O{sub 4}/rGO composites can be greatly tuned by their different rGO additions. A good impedance matching from the balanced dielectric and magnetic loss is achieved in the Fe{sub 3}O{sub 4}/rGO composites with 4 wt% rGO addition, which dominates their excellent microwave absorbing performances including the minimum reflection loss (RL) value of −45 dB at a frequency of 8.96 GHz with a sample thickness of 3.5 mm and an effective absorption bandwidth of 3.2 GHz (below −10 dB) superior to those of the most magnetic materials and carbon-based composites. The controlled Fe{sub 3}O{sub 4}/rGO composite structure also exhibits high chemical stability and low density, which shows great potential application in high-performance electromagnetic microwave-absorbing materials. - Highlights: • Magnetic Fe{sub 3}O{sub 4}/rGO composites are fabricated by a facile solvothermal method. • The dielectric properties for the Fe{sub 3}O{sub 4}/rGO composites can be tuned. • The Fe{sub 3}O{sub 4}/rGO composites exhibits high chemical stability and low density. • Excellent microwave absorption performances for the composites are obtained.

  16. Passive high-frequency devices based on superlattice ferromagnetic nanowires

    International Nuclear Information System (INIS)

    Ye, B.; Li, F.; Cimpoesu, D.; Wiley, J.B.; Jung, J.-S.; Stancu, A.; Spinu, L.

    2007-01-01

    In this paper we propose to tailor the bandwidth of a microwave filter by exploitation of shape anisotropy of nanowires. In order to achieve this control of shape anisotropy, we considered superlattice wires containing varying-sized ferromagnetic regions separated by nonferromagnetic regions. Superlattice wires of Ni and Au with a nominal diameter of 200 nm were grown using standard electrodeposition techniques. The microwave properties were probed using X-band (9.8 GHz) ferromagnetic resonance (FMR) experiments performed at room temperature. In order to investigate the effectiveness of the shape anisotropy on the superlattice nanowire based filter the FMR spectrum of superlattice structure is compared to the FMR spectra of nanowires samples with constant length

  17. Addition of Passive Dynamics to a Flapping Airfoil to Improve Performance

    Science.gov (United States)

    Asselin, Daniel; Young, Jay; Williamson, C. H. K.

    2017-11-01

    Animals which fly or swim typically employ flapping motions of their wings and fins in order to produce thrust and to maneuver. Small, unmanned vehicles might also exploit such motions and are of considerable interest for the purposes of surveillance, environmental monitoring, and search and rescue. Flapping refers to a combination of pitch and heave and has been shown to provide good thrust and efficiency (Read, et al. 2003) when both axes are independently controlled (an Active-Active system). In this study, we examine the performance of an airfoil actuated only in the heave direction but allowed to pitch passively under the control of a torsion spring (an Active-Passive system). The presence of the spring is simulated in software using a force-feedback control system called Cyber-Physical Fluid Dynamics, or CPFD (Mackowski & Williamson 2011, 2015, 2016). Adding passive pitch to active heave provides significantly improved thrust and efficiency compared with heaving alone, especially when the torsion spring stiffness is selected so that the system operates near resonance (in an Active-Passive system). In many cases, values of thrust and efficiency are comparable to or better than those obtained with two actively controlled degrees of freedom. By using carefully-designed passive dynamics in the pitch direction, we can eliminate one of the two actuators, saving cost, complexity, and weight, while maintaining performance. This work was supported by the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.

  18. Evaluation and application of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of polar heterocyclic aromatic amines in hamburger patties.

    Science.gov (United States)

    Aeenehvand, Saeed; Toudehrousta, Zahra; Kamankesh, Marzieh; Mashayekh, Morteza; Tavakoli, Hamid Reza; Mohammadi, Abdorreza

    2016-01-01

    This study developed an analytical method based on microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of three polar heterocyclic aromatic amines from hamburger patties. Effective parameters controlling the performance of the microextraction process, such as the type and volume of extraction and disperser solvents, microwave time, nature of alkaline aqueous solution, pH and salt amount, were optimized. The calibration graphs were linear in the range of 1-200 ng g(-1), with a coefficient of determination (R(2)) better than 0.9993. The relative standard deviations (RSD) for seven analyses were between 3.2% and 6.5%. The recoveries of those compounds in hamburger patties were from 90% to 105%. Detection limits were between 0.06 and 0.21 ng g(-1). A comparison of the proposed method with the existing literature demonstrates that it is a simple, rapid, highly selective and sensitive, and it gives good enrichment factors and detection limits for determining HAAs in real hamburger patties samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Assessing the relationship between microwave vegetation optical depth and gross primary production

    Science.gov (United States)

    Teubner, Irene E.; Forkel, Matthias; Jung, Martin; Liu, Yi Y.; Miralles, Diego G.; Parinussa, Robert; van der Schalie, Robin; Vreugdenhil, Mariette; Schwalm, Christopher R.; Tramontana, Gianluca; Camps-Valls, Gustau; Dorigo, Wouter A.

    2018-03-01

    At the global scale, the uptake of atmospheric carbon dioxide by terrestrial ecosystems through photosynthesis is commonly estimated through vegetation indices or biophysical properties derived from optical remote sensing data. Microwave observations of vegetated areas are sensitive to different components of the vegetation layer than observations in the optical domain and may therefore provide complementary information on the vegetation state, which may be used in the estimation of Gross Primary Production (GPP). However, the relation between GPP and Vegetation Optical Depth (VOD), a biophysical quantity derived from microwave observations, is not yet known. This study aims to explore the relationship between VOD and GPP. VOD data were taken from different frequencies (L-, C-, and X-band) and from both active and passive microwave sensors, including the Advanced Scatterometer (ASCAT), the Soil Moisture Ocean Salinity (SMOS) mission, the Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E) and a merged VOD data set from various passive microwave sensors. VOD data were compared against FLUXCOM GPP and Solar-Induced chlorophyll Fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2). FLUXCOM GPP estimates are based on the upscaling of flux tower GPP observations using optical satellite data, while SIF observations present a measure of photosynthetic activity and are often used as a proxy for GPP. For relating VOD to GPP, three variables were analyzed: original VOD time series, temporal changes in VOD (ΔVOD), and positive changes in VOD (ΔVOD≥0). Results show widespread positive correlations between VOD and GPP with some negative correlations mainly occurring in dry and wet regions for active and passive VOD, respectively. Correlations between VOD and GPP were similar or higher than between VOD and SIF. When comparing the three variables for relating VOD to GPP, correlations with GPP were higher for the original VOD time

  20. Design of a microwave calorimeter for the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Marinak, M.

    1988-01-01

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs

  1. A Prognostic Methodology for Precipitation Phase Detection using GPM Microwave Observations —With Focus on Snow Cover

    Science.gov (United States)

    Takbiri, Z.; Ebtehaj, A.; Foufoula-Georgiou, E.; Kirstetter, P.

    2017-12-01

    Improving satellite retrieval of precipitation requires increased understanding of its passive microwave signature over different land surfaces. Passive microwave signals over snow-covered surfaces are notoriously difficult to interpret because they record both emission from the land below and absorption/scattering from the liquid/ice crystals. Using data from the Global Precipitation Measurement (GPM) core satellite, we demonstrate that the microwave brightness temperatures of rain and snowfall shifts from a scattering to an emission regime from summer to winter, due to expansion of the less emissive snow cover underneath. We present evidence that the combination of low- (10-19 GHz) and high-frequency (89-166 GHz) channels provides the maximum amount of information for snowfall detection. The study also examines a prognostic nearest neighbor matching method for the detection of precipitation and its phase from passive microwave observations using GPM data. The nearest neighbor uses the weighted Euclidean distance metric to search through an a priori database that is populated with coincident GPM radiometer and radar data as well as ancillary snow cover fraction. The results demonstrate prognostic capabilities of the proposed method in detection of terrestrial snowfall. At the global scale, the average probability of hit and false alarm reaches to 0.80 and remains below 0.10, respectively. Surprisingly, the results show that the snow cover may help to better detect precipitation as the detection rate of terrestrial precipitation is increased from 0.75 (no snow cover) to 0.84 (snow-covered surfaces). For solid precipitation, this increased rate of detection is larger than its liquid counterpart by almost 8%. The main reasons are found to be related to the multi-frequency capabilities of the nearest neighbor matching that can properly isolate the atmospheric signal from the background emission and the fact that the precipitation can exhibit an emission-like (warmer

  2. Microwave-assisted ionic liquid homogeneous liquid-liquid microextraction coupled with high performance liquid chromatography for the determination of anthraquinones in Rheum palmatum L.

    Science.gov (United States)

    Wang, Zhibing; Hu, Jianxue; Du, Hongxia; He, Shuang; Li, Qing; Zhang, Hanqi

    2016-06-05

    The microwave-assisted ionic liquid homogeneous liquid-liquid microextraction (MA-IL-HLLME) coupled with high performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of anthraquinones, including aloe-emodin, emodin, chrysophanol and physcion in root of Rheum palmatum L. Several experimental parameters influencing the extraction efficiency, including amount of sample, type and volume of ionic liquid, volume and pH value of extraction medium, microwave power and extraction time, concentration of NH4PF6 as well as centrifugal condition were optimized. When 140μL of ionic liquid ([C8MIM][BF4]) was used as an extraction solvent, target analytes can be extracted from sample matrix in one minute with the help of microwave irradiation. The MA-IL-HLLME is simple and quick. The calibration curves exhibited good linear relationship (r>0.9984). The limits of detection and quantification were in the range of 0.015-0.026 and 0.051-0.088μgmL(-1), respectively. The spiked recovery for each analyte was in the range of 81.13-93.07% with relative standard deviations lower than 6.89%. The present method is free of volatile organic solvents, and represents lower expenditures of sample, extraction time and solvent, compared with ultrasonic and heat reflux extraction. The results indicated that the present method can be successfully applied to the determination of anthraquinones in medicinal plant. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Performance evaluation of a hybrid-passive landfill leachate treatment system using multivariate statistical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Jack, E-mail: jack.wallace@ce.queensu.ca [Department of Civil Engineering, Queen’s University, Ellis Hall, 58 University Avenue, Kingston, Ontario K7L 3N6 (Canada); Champagne, Pascale, E-mail: champagne@civil.queensu.ca [Department of Civil Engineering, Queen’s University, Ellis Hall, 58 University Avenue, Kingston, Ontario K7L 3N6 (Canada); Monnier, Anne-Charlotte, E-mail: anne-charlotte.monnier@insa-lyon.fr [National Institute for Applied Sciences – Lyon, 20 Avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2015-01-15

    Highlights: • Performance of a hybrid passive landfill leachate treatment system was evaluated. • 33 Water chemistry parameters were sampled for 21 months and statistically analyzed. • Parameters were strongly linked and explained most (>40%) of the variation in data. • Alkalinity, ammonia, COD, heavy metals, and iron were criteria for performance. • Eight other parameters were key in modeling system dynamics and criteria. - Abstract: A pilot-scale hybrid-passive treatment system operated at the Merrick Landfill in North Bay, Ontario, Canada, treats municipal landfill leachate and provides for subsequent natural attenuation. Collected leachate is directed to a hybrid-passive treatment system, followed by controlled release to a natural attenuation zone before entering the nearby Little Sturgeon River. The study presents a comprehensive evaluation of the performance of the system using multivariate statistical techniques to determine the interactions between parameters, major pollutants in the leachate, and the biological and chemical processes occurring in the system. Five parameters (ammonia, alkalinity, chemical oxygen demand (COD), “heavy” metals of interest, with atomic weights above calcium, and iron) were set as criteria for the evaluation of system performance based on their toxicity to aquatic ecosystems and importance in treatment with respect to discharge regulations. System data for a full range of water quality parameters over a 21-month period were analyzed using principal components analysis (PCA), as well as principal components (PC) and partial least squares (PLS) regressions. PCA indicated a high degree of association for most parameters with the first PC, which explained a high percentage (>40%) of the variation in the data, suggesting strong statistical relationships among most of the parameters in the system. Regression analyses identified 8 parameters (set as independent variables) that were most frequently retained for modeling

  4. Passive containment system in high earthquake motion

    International Nuclear Information System (INIS)

    Kleimola, F.W.; Falls, O.B. Jr.

    1977-01-01

    High earthquake motion necessitates major design modifications in the complex of plant structures, systems and components in a nuclear power plant. Distinctive features imposed by seismic category, safety class and quality classification requirements for the high seismic ground acceleration loadings significantly reflect in plant costs. The design features in the Passive Containment System (PCS) responding to high earthquake ground motion are described

  5. Highly reliable photosensitive organic-inorganic hybrid passivation layers for a-InGaZnO thin-film transistors

    Science.gov (United States)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Yamazaki, Haruka; Nonaka, Toshiaki; Fujii, Mami N.; Uraoka, Yukiharu

    2015-07-01

    We report the fabrication of a photosensitive hybrid passivation material on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) that greatly enhance its stability and improve its electrical characteristics. The hybrid passivation based on polysilsesquioxane is transparent and fabricated using a simple solution process. Because the passivation is photosensitive, dry etching was never performed during TFT fabrication. TFTs passivated with this material had a small threshold voltage shift of 0.5 V during positive bias stress, 0.5 V during negative bias stress, and -2.5 V during negative bias illumination stress. Furthermore, TFTs passivated by this layer were stable after being subjected to high relative humidity stress — confirming the superb barrier ability of the passivation. Analysis of secondary ion mass spectrometry showed that a large amount of hydrogen, carbon, and fluorine can be found in the channel region. We show that both hydrogen and fluorine reduced oxygen vacancies and that fluorine stabilized weak oxygen and hydroxide bonds. These results demonstrate the large potential of photosensitive hybrid passivation layers as effective passivation materials.

  6. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al_3Ni_2@Al nanoparticles as a high microwave absorption material

    International Nuclear Information System (INIS)

    Pang, Yu; Xie, Xiubo; Li, Da; Chou, Wusheng; Liu, Tong

    2017-01-01

    The Al_3Ni_2@Al nanoparticles (NPs) were prepared from Ni_4_5Al_5_5 master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m"2/g and big pore volume of 0.507 cc/g. The saturation magnetization (M_S) and coercivity (H_C) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of −86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤−10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance. - Graphical abstract: The microporous Ni/NiO nanoparticles prepared by chemically dealloying Al_3Ni_2@Al NPs exhibit high microwave absorption intensity (−86.9 dB) and wide absorption bandwidth (2.6 GHz for RC≤−10 dB). - Highlights: • Microporous Ni/NiO nanoparticals were prepared by chemically dealloying method. • They possessed micropores of 0.7–1.6 nm with a surface area of 69.5 m"2/g. • They showed high microwave absorption intensity and wide absorption bandwidth. • Microwave absorption mechanism was explained by micropore and core/shell structures.

  7. Microwave and millimeter-wave remote sensing for security applications

    CERN Document Server

    Nanzer, Jeffrey

    2012-01-01

    Microwave and millimeter-wave remote sensing techniques are fast becoming a necessity in many aspects of security as detection and classification of objects or intruders becomes more difficult. This groundbreaking resource offers you expert guidance in this burgeoning area. It provides you with a thorough treatment of the principles of microwave and millimeter-wave remote sensing for security applications, as well as practical coverage of the design of radiometer, radar, and imaging systems. You learn how to design active and passive sensors for intruder detection, concealed object detection,

  8. Using passive cavitation images to classify high-intensity focused ultrasound lesions.

    Science.gov (United States)

    Haworth, Kevin J; Salgaonkar, Vasant A; Corregan, Nicholas M; Holland, Christy K; Mast, T Douglas

    2015-09-01

    Passive cavitation imaging provides spatially resolved monitoring of cavitation emissions. However, the diffraction limit of a linear imaging array results in relatively poor range resolution. Poor range resolution has limited prior analyses of the spatial specificity and sensitivity of passive cavitation imaging in predicting thermal lesion formation. In this study, this limitation is overcome by orienting a linear array orthogonal to the high-intensity focused ultrasound propagation direction and performing passive imaging. Fourteen lesions were formed in ex vivo bovine liver samples as a result of 1.1-MHz continuous-wave ultrasound exposure. The lesions were classified as focal, "tadpole" or pre-focal based on their shape and location. Passive cavitation images were beamformed from emissions at the fundamental, harmonic, ultraharmonic and inharmonic frequencies with an established algorithm. Using the area under a receiver operating characteristic curve (AUROC), fundamental, harmonic and ultraharmonic emissions were found to be significant predictors of lesion formation for all lesion types. For both harmonic and ultraharmonic emissions, pre-focal lesions were classified most successfully (AUROC values of 0.87 and 0.88, respectively), followed by tadpole lesions (AUROC values of 0.77 and 0.64, respectively) and focal lesions (AUROC values of 0.65 and 0.60, respectively). Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. High Performance Low Mass Nanowire Enabled Heatpipe, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Heat pipes are widely used for passive, two-phase electronics cooling. As advanced high power, high performance electronics in space based and terrestrial...

  10. Highly air stable passivation of graphene based field effect devices.

    Science.gov (United States)

    Sagade, Abhay A; Neumaier, Daniel; Schall, Daniel; Otto, Martin; Pesquera, Amaia; Centeno, Alba; Elorza, Amaia Zurutuza; Kurz, Heinrich

    2015-02-28

    The sensitivity of graphene based devices to surface adsorbates and charge traps at the graphene/dielectric interface requires proper device passivation in order to operate them reproducibly under ambient conditions. Here we report on the use of atomic layer deposited aluminum oxide as passivation layer on graphene field effect devices (GFETs). We show that successful passivation produce hysteresis free DC characteristics, low doping level GFETs stable over weeks though operated and stored in ambient atmosphere. This is achieved by selecting proper seed layer prior to deposition of encapsulation layer. The passivated devices are also demonstrated to be robust towards the exposure to chemicals and heat treatments, typically used during device fabrication. Additionally, the passivation of high stability and reproducible characteristics is also shown for functional devices like integrated graphene based inverters.

  11. MOCVD with gas phase composition control for the growth of high quality YBa2Cu3O7-x thin films for microwave applications

    International Nuclear Information System (INIS)

    Musolf, J.

    1997-01-01

    The MOCVD growth technique has demonstrated YBa 2 Cu 3 O 7-x thin films with adequate transport properties (T c >90 K, J c > x 10 6 A cm -2 , R s p /C v ) and the species concentrations. After determining the correlation between gas phase and solid phase composition this technique enables the reproducible growth of YBa 2 Cu 3 O 7-x thin films by MOCVD with composition very close to 123. Further refinement of growth temperature, total pressure, oxygen partial pressure and total flow rates has produced films with excellent properties. Smooth surface morphology with a low density of outgrowths ( 4 cm -2 ), narrow XRD rocking curve peaks FWHM c =92 K), low surface resistance (device R s <350 μΩ at 77 K, 10 GHz) have been demonstrated using this growth concept. Special focus was placed on optimization of the performance of a microwave test device which serves as a process control monitor of the suitability of these films for passive microwave applications. (orig.)

  12. Synthesis of microporous Ni/NiO nanoparticles with enhanced microwave absorption properties

    International Nuclear Information System (INIS)

    Liu, Tong; Pang, Yu; Xie, Xiubo; Qi, Wen; Wu, Ying; Kobayashi, Satoru; Zheng, Jie; Li, Xingguo

    2016-01-01

    The fabrication of microporous metal materials with many potential applications is challenging due to their high chemical activities and the difficulty in controlling the pore size. By adjusting the reaction condition and the composition of the Ni–Al nanoparticle precursor, we have successfully produced the microporous Ni nanoparticles (NPs) of 22 nm by chemical dealloying method. During the passivation process, the microporous Ni NPs covered with NiO shell are generated as the result of surface oxidation. The micropores range from 0.6 to 1.2 nm in diameter with a large surface area of 68.9 m"2/g. Due to the elimination of Al atoms during dealloying process, the crystalline size of the microporous Ni NPs is sharply decreased to 2–5 nm. The specific architecture offers the microporous Ni/NiO NPs a small microwave reflection coefficient (RC) and a wide absorption bandwidth (RC ≤ −10 dB) of −49.1 dB and 5.8 GHz, much better than the nonporous counterpart of −24.1 dB and 3.7 GHz. The enhanced microwave absorption performance has been interpreted in terms of the micropore structure, core/shell structure and nanostructure effects. - Highlights: • Microporous Ni/NiO nanoparticles are prepared by chemical dealloying method. • They possess micropores of 0.6–1.2 nm with a surface area of 68.9 m"2/g. • They show minimum microwave reflection coefficient of −49.1 dB and bandwidth of 5.8 GHz. • Microwave absorption mechanism is explained by micropore and core/shell structures.

  13. Synthesis of microporous Ni/NiO nanoparticles with enhanced microwave absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong, E-mail: tongliu@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 (China); Pang, Yu; Xie, Xiubo [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 (China); Qi, Wen; Wu, Ying [China Iron & Steel Research Institute Group, Advanced Technology & Materials Co., Ltd, No.76 Xueyuannanlu, Haidian District, Beijing, 100081 (China); Kobayashi, Satoru [Faculty of Engineering, Iwate University, Ueda, Morioka, 020-8551 (Japan); Zheng, Jie; Li, Xingguo [Beijing National Laboratory for Molecular Sciences (BNLMS), The State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 (China)

    2016-05-15

    The fabrication of microporous metal materials with many potential applications is challenging due to their high chemical activities and the difficulty in controlling the pore size. By adjusting the reaction condition and the composition of the Ni–Al nanoparticle precursor, we have successfully produced the microporous Ni nanoparticles (NPs) of 22 nm by chemical dealloying method. During the passivation process, the microporous Ni NPs covered with NiO shell are generated as the result of surface oxidation. The micropores range from 0.6 to 1.2 nm in diameter with a large surface area of 68.9 m{sup 2}/g. Due to the elimination of Al atoms during dealloying process, the crystalline size of the microporous Ni NPs is sharply decreased to 2–5 nm. The specific architecture offers the microporous Ni/NiO NPs a small microwave reflection coefficient (RC) and a wide absorption bandwidth (RC ≤ −10 dB) of −49.1 dB and 5.8 GHz, much better than the nonporous counterpart of −24.1 dB and 3.7 GHz. The enhanced microwave absorption performance has been interpreted in terms of the micropore structure, core/shell structure and nanostructure effects. - Highlights: • Microporous Ni/NiO nanoparticles are prepared by chemical dealloying method. • They possess micropores of 0.6–1.2 nm with a surface area of 68.9 m{sup 2}/g. • They show minimum microwave reflection coefficient of −49.1 dB and bandwidth of 5.8 GHz. • Microwave absorption mechanism is explained by micropore and core/shell structures.

  14. Performance of fuel cell for energy supply of passive house

    Energy Technology Data Exchange (ETDEWEB)

    Badea, G.; Felseghi, R. A., E-mail: Raluca.FELSEGHI@insta.utcluj.ro; Mureşan, D.; Naghiu, G. [Technical University of Cluj-Napoca, Building Services Engineering Department, Bd. December 21, no. 128-130, 400600, Cluj-Napoca (Romania); Răboacă, S. M. [National R& D Institute for Cryogenic and Isotopic Technologies, str. Uzinei, no. 4, Rm. Vălcea, 240050 (Romania); Aşchilean, I. [SC ACI Cluj SA, Avenue Dorobanţilor, no. 70, 400609, Cluj-Napoca (Romania)

    2015-12-23

    Hydrogen technology and passive house represent two concepts with a remarkable role for the efficiency and decarbonisation of energy systems in the residential buildings area. Through design and functionality, the passive house can make maximum use of all available energy resources. One of the solutions to supply energy of these types of buildings is the fuel cell, using this technology integrated into a system for generating electricity from renewable primary sources, which take the function of backup power (energy reserve) to cover peak load and meteorological intermittents. In this paper is presented the results of the case study that provide an analysis of the energy, environmental and financial performances regarding energy supply of passive house by power generation systems with fuel cell fed with electrolytic hydrogen produced by harnessing renewable energy sources available. Hybrid systems have been configured and operate in various conditions of use for five differentiated locations according to the main areas of solar irradiation from the Romanian map. Global performance of hybrid systems is directly influenced by the availability of renewable primary energy sources - particular geo-climatic characteristics of the building emplacement.

  15. Variable frequency microwave heating apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Bible, D.W.; Lauf, R.J.; Johnson, A.C.; Thigpen, L.T.

    1999-10-05

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  16. Influence of a falling edge on high power microwave pulse combination

    Science.gov (United States)

    Li, Jiawei; Huang, Wenhua; Zhu, Qi; Xiao, Renzhen; Shao, Hao

    2016-07-01

    This paper presents an explanation of the influence of a microwave falling edge on high-power microwave pulse combination. Through particle-in-cell simulations, we discover that the falling edge is the driving factor that limits the output power of the combined pulses. We demonstrate that the space charge field, which accumulates to become comparable to the E-field at the falling edge of the former pulse, will trap the electrons in the gas layer and decrease its energy to attain a high ionization rate. Hence, avalanche discharge, caused by trapped electrons, makes the plasma density to approach the critical density and cuts off the latter microwave pulse. An X-band combination experiment is conducted with different pulse intervals. This experiment confirms that the high density plasma induced by the falling edge can cut off the latter pulse, and that the time required for plasma recombination in the transmission channel is several microseconds. To ensure a high output power for combined pulses, the latter pulse should be moved ahead of the falling edge of the former one, and consequently, a beat wave with high peak power becomes the output by adding two pulses with normal amplitudes.

  17. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.

    Science.gov (United States)

    Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing

    2015-03-12

    Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.

  18. Influence of the distribution of noncondensibles on passive containment condenser performance in PANDA

    International Nuclear Information System (INIS)

    Bandurski, T.; Huggenberger, M.; Dreier, J.; Aubert, C.; Putz, F.; Gamble, R.E.; Yadigaroglu, G.

    2001-01-01

    Recently, passive cooling systems have been designed for the long-term decay heat removal from the containment of Advanced Light Water Reactors. In particular, the long-term LOCA response of the Passive Containment Cooling System (PCCS) for the General Electric European Simplified Boiling Water Reactor (ESBWR) has been tested in the large scale PANDA facility. The PANDA tests achieved the dual objective of improving confidence in the performance of the passive heat removal mechanisms underlying the design of the tested systems and extending the data base available for containment analysis code qualification. The tests conducted subject the PCCS to a variety of conditions representing design-basis and beyond-design-basis accident conditions. These include operation in the presence of both heavier and lighter than steam noncondensible gases as well as a variety of asymmetric conditions and challenging start-up conditions. The present paper addresses the transient distribution of noncondensibles and their effect on the passive condenser performance in PANDA

  19. Influence of the distribution of noncondensibles on passive containment condenser performance in PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bandurski, T. E-mail: thomas.bandurski@psi.ch; Huggenberger, M.; Dreier, J.; Aubert, C.; Putz, F.; Gamble, R.E. E-mail: robert.gamble@gene.ge.com; Yadigaroglu, G. E-mail: yadigaroglu@iet.mavt.ethz.ch

    2001-02-01

    Recently, passive cooling systems have been designed for the long-term decay heat removal from the containment of Advanced Light Water Reactors. In particular, the long-term LOCA response of the Passive Containment Cooling System (PCCS) for the General Electric European Simplified Boiling Water Reactor (ESBWR) has been tested in the large scale PANDA facility. The PANDA tests achieved the dual objective of improving confidence in the performance of the passive heat removal mechanisms underlying the design of the tested systems and extending the data base available for containment analysis code qualification. The tests conducted subject the PCCS to a variety of conditions representing design-basis and beyond-design-basis accident conditions. These include operation in the presence of both heavier and lighter than steam noncondensible gases as well as a variety of asymmetric conditions and challenging start-up conditions. The present paper addresses the transient distribution of noncondensibles and their effect on the passive condenser performance in PANDA.

  20. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part II: Evaluation of Estimates Using Independent Data

    Science.gov (United States)

    Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.

    2006-01-01

    Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5 deg. -resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5 -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5 deg. -resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated

  1. Intense high-frequency gyrotron-based microwave beams for material processing

    Energy Technology Data Exchange (ETDEWEB)

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.

    1997-03-01

    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  2. High-frequency and microwave heating as a pretreatment to kiln drying of hollowed-out timber

    International Nuclear Information System (INIS)

    Yamada, N.; Okumura, S.; Taniguchi, Y.

    2001-01-01

    To dry hollowed-out timber without V-shaped drying checks, its inner part should be dried faster than the outer part. The feasibility of high frequency heating and microwave heating as a pretreatment of kiln drying of hollow timber was examined. During high frequency heating, the top and bottom parts of the timber were dried faster than the right and left parts because the central hollow acts as an air-gap. The outer part dried faster than the inner part during microwave heating, probably because of insufficient penetration of microwave energy into the inner part. The uneven heating of hollowed timber was improved by turning the specimen around its axis during high frequency heating and by setting the specimen upright in the microwave oven

  3. The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    Science.gov (United States)

    Alvarez-Muñiz, J.; Amaral Soares, E.; Berlin, A.; Bogdan, M.; Boháčová, M.; Bonifazi, C.; Carvalho, W. R.; de Mello Neto, J. R. T.; Facal San Luis, P.; Genat, J. F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P.; Ramos de Castro, A.; Reyes, L. C.; Richardson, M.; Rouille d'Orfeuil, B.; Santos, E. M.; Wayne, S.; Williams, C.; Zas, E.; Zhou, J.

    2013-08-01

    We present the design, implementation and data taking performance of the MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view imaging telescope designed to detect microwave radiation from extensive air showers induced by ultra-high energy cosmic rays. This novel technique may bring a tenfold increase in detector duty cycle when compared to the standard fluorescence technique based on detection of ultraviolet photons. The MIDAS telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera, instrumented with feed horns operating in the commercial extended C-Band (3.4-4.2 GHz). A self-trigger capability is implemented in the digital electronics. The main objectives of this first prototype of the MIDAS telescope - to validate the telescope design, and to demonstrate a large detector duty cycle - were successfully accomplished in a dedicated data taking run at the University of Chicago campus prior to installation at the Pierre Auger Observatory.

  4. High-efficiency passive full wave rectification for electromagnetic harvesters

    Science.gov (United States)

    Yilmaz, Mehmet; Tunkar, Bassam A.; Park, Sangtak; Elrayes, Karim; Mahmoud, Mohamed A. E.; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2014-10-01

    We compare the performance of four types of full-wave bridge rectifiers designed for electromagnetic energy harvesters based on silicon diodes, Schottky diodes, passive MOSFETs, and active MOSFETs. Simulation and experimental results show that MOSFET-type rectifiers are more efficient than diode-type rectifiers, reaching voltage and power efficiency of 99% for ideal voltage source with input amplitudes larger than 800 mV. Since active MOSFETs require extra components and an external DC power supply, we conclude that passive MOSFETs are superior for micro-power energy harvesting systems. We demonstrate passive MOSFET rectifiers implemented using discrete, off-shelf components and show that they outperform all electromagnetic harvester rectifiers hitherto reported obtaining a power efficiency of 95%. Furthermore, we show that passive MOSFET rectifiers do not affect the center frequency, harvesting bandwidth, or optimal resistance of electromagnetic harvesters. We demonstrate a complete power management module by adding a capacitor to the rectifier output terminal. We found that this configuration changed the optimal resistive load from 40 Ω to 55 Ω and decreased output power efficiency to 86%.

  5. Microwave-assisted Derivatization of Fatty Acids for Its Measurement in Milk Using High-Performance Liquid Chromatography.

    Science.gov (United States)

    Shrestha, Rojeet; Miura, Yusuke; Hirano, Ken-Ichi; Chen, Zhen; Okabe, Hiroaki; Chiba, Hitoshi; Hui, Shu-Ping

    2018-01-01

    Fatty acid (FA) profiling of milk has important applications in human health and nutrition. Conventional methods for the saponification and derivatization of FA are time-consuming and laborious. We aimed to develop a simple, rapid, and economical method for the determination of FA in milk. We applied a beneficial approach of microwave-assisted saponification (MAS) of milk fats and microwave-assisted derivatization (MAD) of FA to its hydrazides, integrated with HPLC-based analysis. The optimal conditions for MAS and MAD were determined. Microwave irradiation significantly reduced the sample preparation time from 80 min in the conventional method to less than 3 min. We used three internal standards for the measurement of short-, medium- and long-chain FA. The proposed method showed satisfactory analytical sensitivity, recovery and reproducibility. There was a significant correlation in the milk FA concentrations between the proposed and conventional methods. Being quick, economic, and convenient, the proposed method for the milk FA measurement can be substitute for the convention method.

  6. High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal

    International Nuclear Information System (INIS)

    Qin, L J; Tang, D Y; Xie, G Q; Dong, C M; Jia, Z T; Tao, X T

    2008-01-01

    We report on the continuous wave (CW) and passive Q-switching performance of a high-power diode-pumped Nd:GGG laser. A CW output power of 7.20 W was obtained under an absorbed pump power of 14.97 W, which gives a slop efficiency of 52.7%. With a Cr 4+ doped yttrium aluminum garnet crystal as the saturable absorber, the shortest passively Q-switched pulse width, largest pulse energy, and highest peak power achieved were 7.7 ns, 126.25 μJ, and 15.5 kW, respectively

  7. Surface passivation of high purity granular metals: zinc, cadmium, lead

    Directory of Open Access Journals (Sweden)

    Pirozhenko L. A.

    2017-10-01

    Full Text Available For the high purity metals (99.9999%, such as zinc, cadmium, and lead, which are widely used as initial components in growing semiconductor and scintillation crystals (CdTe, CdZnTe, ZnSe, (Cd, Zn, Pb WO4, (Cd, Zn, Pb MoO4 et al., it is very important to ensure reliable protection of the surface from oxidation and adsorption of impurities from the atmosphere. The specific features of surface passivation of high purity cadmium, lead and zinc are not sufficiently studied and require specific methodologies for further studies. The use of organic solutions in the schemes of chemical passivation of the investigated metals avoids hydrolysis of the obtained protective films. The use of organic solvents with pure cation and anion composition as the washing liquid prevents chemisorption of ions present in the conventionally used distilled water. This keeps the original purity of the granular metals. Novel compositions of etchants and etching scheme providing simultaneous polishing and passivation of high purity granular Zn, Cd and Pb are developed. Chemical passivation allows storing metals in the normal atmospheric conditions for more than half a year for Zn and Cd and up to 30 days for Pb without changing the state of the surface. The use of the glycerol-DMF solution in the processes for obtaining Pb granules provides self-passivation of metal surfaces and eliminates the additional chemical processing while maintaining the quality of corrosion protection.

  8. Spectroscopic study of atmospheric pressure 915 MHz microwave plasma at high argon flow rate

    International Nuclear Information System (INIS)

    Miotk, R; Hrycak, B; Jasinski, M; Mizeraczyk, J

    2012-01-01

    In this paper results of optical emission spectroscopic (OES) study of atmospheric pressure microwave 915 MHz argon plasma are presented. The plasma was generated in microwave plasma source (MPS) cavity-resonant type. The aim of research was determination of electron excitation temperature T exc gas temperature Tg and electron number density n e . All experimental tests were performed with a gas flow rate of 100 and 200 l/min and absorbed microwave power PA from 0.25 to 0.9 kW. The emission spectra at the range of 300 – 600 nm were recorded. Boltzmann plot method for argon 5p – 4s and 5d – 4p transition lines allowed to determine T exc at level of 7000 K. Gas temperature was determined by comparing the measured and simulated spectra using LIFBASE program and by analyzing intensities of two groups of unresolved rotational lines of the OH band. Gas temperature ranged 600 – 800 K. The electron number density was determined using the method based on the Stark broadening of hydrogen H β line. The measured n e rang ed 2 × 10 15 − 3.5×10 15 cm −3 , depending on the absorbed microwave power. The described MPS works very stable with various working gases at high flow rates, that makes it an attractive tool for different gas processing.

  9. The 1988-2003 Greenland ice sheet melt extent using passive microwave satellite data and a regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Fettweis, Xavier; Ypersele, Jean-Pascal van [Universite Catholique de Louvain, Institut d' Astronomie et de Geophysique de G. Lemaitre, Louvain-La-Neuve (Belgium); Gallee, Hubert [CNRS, Laboratoire de Glaciologie et Geophysique de l' Environnement, Grenoble (France); Lefebre, Filip [Vito-IMS (Flemish Institute for Technological Research-Integral Environmental Studies), Mol (Belgium)

    2006-10-15

    Measurements from ETH-Camp and JAR1 AWS (West Greenland) as well as coupled atmosphere-snow regional climate simulations have highlighted flaws in the cross-polarized gradient ratio (XPGR) technique used to identify melt from passive microwave satellite data. It was found that dense clouds (causing notably rainfall) on the ice sheet severely perturb the XPGR melt signal. Therefore, the original XPGR melt detection algorithm has been adapted to better incorporate atmospheric variability over the ice sheet and an updated melt trend for the 1988-2003 period has been calculated. Compared to the original algorithm, the melt zone area increase is eight times higher (from 0.2 to 1.7% year{sup -1}). The increase is higher with the improved XPGR technique because rainfall also increased during this period. It is correlated to higher atmospheric temperatures. Finally, the model shows that the total ice sheet runoff is directly proportional to the melt extent surface detected by satellites. These results are important for the understanding of the effect of Greenland melting on the stability of the thermohaline circulation. (orig.)

  10. GHRSST L2P Gridded Global Subskin Sea Surface Temperature from the Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to SSM/I, that contains lower...

  11. Advanced RF and microwave functions based on an integrated optical frequency comb source.

    Science.gov (United States)

    Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2018-02-05

    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

  12. High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments

    National Research Council Canada - National Science Library

    Wilson, Clay

    2005-01-01

    .... This method is called High Power Microwave (HPM). Several nations, including reported sponsors of terrorism, may currently have a capability to use EMP as a weapon to disrupt communications and other parts of the U.S...

  13. Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries

    Science.gov (United States)

    Candia-Muñoz, N.; Ramirez-Bunster, M.; Vargas-Hernández, Y.; Gaete-Garretón, L.

    Interest in high quality foods: good taste and a high content of nutrients with healthy beneficial effects are increasing. Fruits have good properties but, they are lost because the oxidation process, additionally, for different reasons a 40% of harvested fruit are lost. To conserve the fruit properties an ultrasonic assisted spray dryer was developed and tested, comparing its results with microwave-vacuum drying technology. Results did shown taste, color, smell, particle shape and size distribution better than the conventional one. The antioxidants conservation were quite good except in the anthocyanins, in which the microwave and vacuum technology shown best results.

  14. Passive Microwave Observation of Soil Water Infiltration

    Science.gov (United States)

    Jackson, Thomas J.; Schmugge, Thomas J.; Rawls, Walter J.; ONeill, Peggy E.; Parlange, Marc B.

    1997-01-01

    Infiltration is a time varying process of water entry into soil. Experiments were conducted here using truck based microwave radiometers to observe small plots during and following sprinkler irrigation. Experiments were conducted on a sandy loam soil in 1994 and a silt loam in 1995. Sandy loam soils typically have higher infiltration capabilities than clays. For the sandy loam the observed brightness temperature (TB) quickly reached a nominally constant value during irrigation. When the irrigation was stopped the TB began to increase as drainage took place. The irrigation rates in 1995 with the silt loam soil exceeded the saturated conductivity of the soil. During irrigation the TB values exhibited a pattern that suggests the occurrence of coherent reflection, a rarely observed phenomena under natural conditions. These results suggested the existence of a sharp dielectric boundary (wet over dry soil) that was increasing in depth with time.

  15. Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    Harmonic stability problems caused by the resonance of high-order filters in power electronic systems are ever increasing. The use of passive damping does provide a robust solution to address these issues, but at the price of reduced efficiency due to the presence of additional passive components....... Hence, a new method is proposed in this paper to optimally design the passive damping circuit for the LCL filters and LCL with multi-tuned LC traps. In short, the optimization problem reduces to the proper choice of the multi-split capacitors or inductors in the high-order filter. Compared to existing...... filter resonance. The passive filters are designed, built and validated both analytically and experimentally for verification....

  16. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice

    DEFF Research Database (Denmark)

    andersen, susanne; Tonboe, R.; Kaleschke, L.

    2007-01-01

    [1] Measurements of sea ice concentration from the Special Sensor Microwave Imager (SSM/I) using seven different algorithms are compared to ship observations, sea ice divergence estimates from the Radarsat Geophysical Processor System, and ice and water surface type classification of 59 wide...... with sensor noise between 1.3 and 1.8%. This is in accord with variability estimated from analysis of SSM/I time series. Algorithms, which primarily use 85 GHz information, consistently give the best agreement with both SAR ice concentrations and ship observations. Although the 85 GHz information is more...... sensitive to atmospheric influences, it was found that the atmospheric contribution is secondary to the influence of the surface emissivity variability. Analysis of the entire SSM/I time series shows that there are significant differences in trend between sea ice extent and area, using different algorithms...

  17. High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments

    National Research Council Canada - National Science Library

    Wilson, Clay

    2006-01-01

    .... This method is called High Power Microwave (HPM). Several nations, including sponsors of terrorism, may currently have a capability to use EMP as a weapon for cyberterrorism to disrupt communications and other parts of the U.S...

  18. Achieving the interfacial polarization on C/Fe3C heterojunction structures for highly efficient lightweight microwave absorption.

    Science.gov (United States)

    Zhang, Yanan; Liu, Wei; Quan, Bin; Ji, Guangbin; Ma, Jianna; Li, Daoran; Meng, Wei

    2017-12-15

    Design of dielectric/magnetic heterostructure and multiple interfaces is a challenge for the microwave absorption. Thus, in this study, a novel C/Fe 3 C nanocomposites have been fabricated by annealing the precursors obtained by the facile chemical blowing of polyvinyl pyrrolidone (PVP) and Fe(NO 3 ) 3 ·9H 2 O. By changing the content of Fe(NO 3 ) 3 ·9H 2 O, the honeycomb-like structure with scads of pores and electromagnetic parameters could be successfully tailored. When the addition of Fe(NO 3 ) 3 ·9H 2 O is ranging from 1 to 2g, honeycomb-structured nanocomposites possess high performance microwave absorption when mixed with 90wt% paraffin. The minimal reflection loss is -37.4dB at 13.6GHz and effective bandwidth can reach to 5.6GHz when the thickness is 2.0mm, indicating its great potential in microwave absorbing field. Its outstanding microwave performance is tightly related to the porous structure and substantial interface such as carbon/air and carbon/Fe 3 C, which are in favor of the impedance matching and interfacial polarization. Thus, our study may provide a good reference for the facile synthesis of light-weight carbon-based nanocomposites with effective interfacial polarization. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. High-power microwave transmission and launching systems for fusion plasma heating systems

    International Nuclear Information System (INIS)

    Bigelow, T.S.

    1989-01-01

    Microwave power in the 30- to 300-GHz frequency range is becoming widely used for heating of plasma in present-day fusion energy magnetic confinement experiments. Microwave power is effective in ionizing plasma and heating electrons through the electron cyclotron heating (ECH) process. Since the power is absorbed in regions of the magnetic field where resonance occurs and launching antennas with narrow beam widths are possible, power deposition location can be highly controlled. This is important for maximizing the power utilization efficiency and improving plasma parameters. Development of the gyrotron oscillator tube has advanced in recent years so that a 1-MW continuous-wave, 140-GHz power source will soon be available. Gyrotron output power is typically in a circular waveguide propagating a circular electric mode (such as TE 0,2 ) or a whispering-gallery mode (such as TE 15,2 ), depending on frequency and power level. An alternative high-power microwave source currently under development is the free-electron laser (FEL), which may be capable of generating 2-10 MW of average power at frequencies of up to 500 GHz. The FEL has a rectangular output waveguide carrying the TE 0,1 mode. Because of its higher complexity and cost, the high-average-power FEL is not yet as extensively developed as the gyrotron. In this paper, several types of operating ECH transmission systems are discussed, as well systems currently being developed. The trend in this area is toward higher power and frequency due to the improvements in plasma density and temperature possible. Every system requires a variety of components, such as mode converters, waveguide bends, launchers, and directional couplers. Some of these components are discussed here, along with ongoing work to improve their performance. 8 refs

  20. Toward High-Performance Lithium-Sulfur Batteries: Upcycling of LDPE Plastic into Sulfonated Carbon Scaffold via Microwave-Promoted Sulfonation.

    Science.gov (United States)

    Kim, Patrick J; Fontecha, Harif D; Kim, Kyungho; Pol, Vilas G

    2018-05-02

    Lithium-sulfur batteries were intensively explored during the last few decades as next-generation batteries owing to their high energy density (2600 Wh kg -1 ) and effective cost benefit. However, systemic challenges, mainly associated with polysulfide shuttling effect and low Coulombic efficiency, plague the practical utilization of sulfur cathode electrodes in the battery market. To address the aforementioned issues, many approaches have been investigated by tailoring the surface characteristics and porosities of carbon scaffold. In this study, we first present an effective strategy of preparing porous sulfonated carbon (PSC) from low-density polyethylene (LDPE) plastic via microwave-promoted sulfonation. Microwave process not only boosts the sulfonation reaction of LDPE but also induces huge amounts of pores within the sulfonated LDPE plastic. When a PSC layer was utilized as an interlayer in lithium-sulfur batteries, the sulfur cathode delivered an improved capacity of 776 mAh g -1 at 0.5C and an excellent cycle retention of 79% over 200 cycles. These are mainly attributed to two materialistic benefits of PSC: (a) porous structure with high surface area and (b) negatively charged conductive scaffold. These two characteristics not only facilitate the improved electrochemical kinetics but also effectively block the diffusion of polysulfides via Coulomb interaction.

  1. Parylene-C passivation and effects on rectennas' wireless power transfer performance

    Science.gov (United States)

    Cooper, Camille; Eldridge, Keisharra; Kim, Min H.; Yoon, Hargsoon; Choi, Sang H.; Song, Kyo D.

    2014-04-01

    In this study, the effect of Parylene-C coated as a passivation layer on various rectennas is investigated in terms of their wireless power transfer performance. A passivation has been used for protection of rectenna circuits and their packaging in order for protection of the circuit elements and electrical insulation. Especially, wireless power receiving rectennas attached on sensors or on moving vehicles such as airship needs proper protection while they are exposed to harsh environment. In this research, a layer of Parylene-C thin film is used for passivation on rectennas and electromagnetic coupling by the coating is assessed by the measurement of receiving power levels. In this research, an electrochemical analysis method will also be introduced to measure the degree of water protection by a Parylene-C layer.

  2. Rapid microwave-assisted synthesis of mesoporous NiMoO_4 nanorod/reduced graphene oxide composites for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Liu, Ting; Chai, Hui; Jia, Dianzeng; Su, Ying; Wang, Tao; Zhou, Wanyong

    2015-01-01

    Graphical abstract: Mesoporous NiMoO_4-rGO shows high specific capacitance of 1274 F/g at 1 A/g and ultrahigh energy density of 30.3 Wh/kg at a power density of 187 W/kg. - Abstract: Mesoporous NiMoO_4 nanorods grown on the surface of reduced graphene oxide composites (NiMoO_4-rGO) were synthesized via a simple, rapidly, and environment-friendly microwave-solvothermal method. The structure and morphology of the composites were characterized by X-ray diffraction, Raman spectra, scanning electron microscopy, and transmission electron microscopy. The NiMoO_4-rGO composite exhibited high performance as an electrode material for supercapacitors. At a current density of 1 A g"−"1, the specific capacitance reached 1274 F g"−"1, which is higher than that of pure NiMoO_4 (800 F g"−"1). NiMoO_4-rGO can retain about 81.1% of its initial capacitance after 1000 charge/discharge cycles. Remarkably, NiMoO_4-rGO composites can be applied in asymmetric supercapacitors with ultrahigh energy density of 30.3 Wh kg"−"1 at a power density of 187 W kg"−"1. The enhanced electrochemical performance of NiMoO_4-rGO is mainly ascribed to the mesoporous-NiMoO_4 nanorods with large specific surface area, as well as high coupling with conductive rGO.

  3. Microwave synthesis of copper network onto lithium iron phosphate cathode materials for improved electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Liu, Juan-Ru [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Juang, Ruey-Shin [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan (China); Lee, Cheng-En; Chen, Yu-Fu [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China)

    2015-03-01

    Herein reported is an efficient microwave-assisted (MA) approach for growing Cu network onto LiFePO{sub 4} (LFP) powders as cathode materials for high-performance Li-ion batteries. The MA approach is capable of depositing highly-porous Cu network, fully covered the LFP powders. The electrochemical performance of Cu-coated LFP cathodes are well characterized by charge/discharge cycling and electrochemical impedance spectroscopy (EIS). The Cu network acts as the key role in improving the specific capacity, rate capability, electrode polarization, as compared to fresh LFP cathode without the Cu coating. The EIS incorporated with equivalent circuit reveals that the completed Cu network obviously suppresses the charge transfer resistance. This result can be attributed to the fact that the Cu network ensures the LFP crystals to get electron easily, alleviating the electrode polarization in view of one-dimensional Li{sup +} ion mobility in the olivine crystals. Based on the analysis of Randles plots, the relatively higher Li{sup +} diffusion coefficient reflects the more efficient Li{sup +} pathway in the LFP powders through the aid of porous Cu network. - Highlights: • An efficient route was used to prepare Cu/LiFePO{sub 4} (LFP) hybrid as cathode material. • The Cu/LFP cathodes exhibit an improved performance as compared to fresh LFP one. • The microwave approach can deposit Cu network, fully covered the LFP powders. • The Cu network ensures LFP to get electrons, alleviating electrode polarization.

  4. Microwave synthesis of copper network onto lithium iron phosphate cathode materials for improved electrochemical performance

    International Nuclear Information System (INIS)

    Hsieh, Chien-Te; Liu, Juan-Ru; Juang, Ruey-Shin; Lee, Cheng-En; Chen, Yu-Fu

    2015-01-01

    Herein reported is an efficient microwave-assisted (MA) approach for growing Cu network onto LiFePO 4 (LFP) powders as cathode materials for high-performance Li-ion batteries. The MA approach is capable of depositing highly-porous Cu network, fully covered the LFP powders. The electrochemical performance of Cu-coated LFP cathodes are well characterized by charge/discharge cycling and electrochemical impedance spectroscopy (EIS). The Cu network acts as the key role in improving the specific capacity, rate capability, electrode polarization, as compared to fresh LFP cathode without the Cu coating. The EIS incorporated with equivalent circuit reveals that the completed Cu network obviously suppresses the charge transfer resistance. This result can be attributed to the fact that the Cu network ensures the LFP crystals to get electron easily, alleviating the electrode polarization in view of one-dimensional Li + ion mobility in the olivine crystals. Based on the analysis of Randles plots, the relatively higher Li + diffusion coefficient reflects the more efficient Li + pathway in the LFP powders through the aid of porous Cu network. - Highlights: • An efficient route was used to prepare Cu/LiFePO 4 (LFP) hybrid as cathode material. • The Cu/LFP cathodes exhibit an improved performance as compared to fresh LFP one. • The microwave approach can deposit Cu network, fully covered the LFP powders. • The Cu network ensures LFP to get electrons, alleviating electrode polarization

  5. The Rush to Remediate: Long Term Performance Favors Passive Systems at SRS

    International Nuclear Information System (INIS)

    Hoffman, D.; Cauthen, K.; Beul, R. R.

    2003-01-01

    The purpose of this paper is to describe the long-term performance of groundwater remediation systems at SRS and compare active versus passive systems. The presentation will focus on the limited effectiveness of active pump and treat systems and share the experience with more passive and natural systems such as soil vapor extraction, barometric pumping, bioremediation, and phytoremediation. Three remediation projects are presented. In each case the waste source is capped with clay or synthetic barriers; however, extensive groundwater contamination remains. The first project features the cleanup of the largest plume in the United States. The second project entails solvent and vinyl chloride remediation of groundwater beneath a hazardous waste landfill. The third project discusses tritium containment from a 160-acre radioactive waste disposal area. Special emphasis is placed on performance data from alternate technology cleanup. The goals are to share remediation data, successes and lessons learned, while making a case for passive systems use in groundwater remediation

  6. The Effect of Three Different Data Fusion Approaches on the Quality of Soil Moisture Retrievals from Multiple Passive Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Robin van der Schalie

    2018-01-01

    Full Text Available Long-term climate records of soil moisture are of increased importance to climate researchers. In this study, we aim to evaluate the quality of three different fusion approaches that combine soil moisture retrieval from multiple satellite sensors. The arrival of L-band missions has led to an increased focus on the integration of L-band-based soil moisture retrievals in climate records, emphasizing the need to improve our understanding based on its added value within a multi-sensor framework. The three evaluated approaches were developed on 10-year passive microwave data (2003–2013 from two different satellite sensors, i.e., SMOS (2010–2013 and AMSR-E (2003–2011, and are based on a neural network (NN, regressions (REG, and the Land Parameter Retrieval Model (LPRM. The ability of the different approaches to best match AMSR-E and SMOS in their overlapping period was tested using an inter-comparison exercise between the SMOS and AMSR-E datasets, while the skill of the individual soil moisture products, based on anomalies, was evaluated using two verification techniques; first, a data assimilation technique that links precipitation information to the quality of soil moisture (expressed as the Rvalue, and secondly the triple collocation analysis (TCA. ASCAT soil moisture was included in the skill evaluation, representing the active microwave-based counterpart of soil moisture retrievals. Besides a semi-global analysis, explicit focus was placed on two regions that have strong land–atmosphere coupling, the Sahel (SA and the central Great Plains (CGP of North America. The NN approach gives the highest correlation coefficient between SMOS and AMSR-E, closely followed by LPRM and REG, while the absolute error is approximately the same for all three approaches. The Rvalue and TCA show the strength of using different satellite sources and the impact of different merging approaches on the skill to correctly capture soil moisture anomalies. The

  7. Synthesis of ethylene glycol-treated Graphene Nanoplatelets with one-pot, microwave-assisted functionalization for use as a high performance engine coolant

    International Nuclear Information System (INIS)

    Amiri, Ahmad; Sadri, Rad; Shanbedi, Mehdi; Ahmadi, Goodarz; Kazi, S.N.; Chew, B.T.; Zubir, Mohd Nashrul Mohd

    2015-01-01

    Highlights: • A potentially mass production method is introduced for preparing EG-treated GNP. • A promising car radiator coolant in the presence of neutral media synthesized. • Car engine can work in lower temperature via high-performance coolant. • The ratio of convective to conductive heat transfer is unique. • New economical product with high performance index is introduced. - Abstract: An electrophilic addition reaction under microwave irradiation was developed as a promising, quick and cost-effective approach to functionalize Graphene Nanoplatelets (GNP) with ethylene glycol (EG). EG-treated GNP was synthesized to reach a promising dispersibility in the water–EG media without negative effects of acid-treatment. Surface functionality groups and the morphology of chemically-functionalized GNP were characterized by the vibration spectroscopies, temperature-programmed study, and microscopic method. Despite the fact that the main structures of GNP were remained reasonably intact, characterization results consistently verified the functionalization of GNP with EG functionalities. As new kinds of high-performance engine coolant, the EG-treated GNP based water–EG coolant (GNP-WEG) was prepared and its thermo-physical and rheological properties are evaluated. In particular, the thermal conductivity, viscosity, specific heat capacity, and density of all samples were experimentally measured to evaluate the thermal performance of the GNP-WEG coolant. The data showed insignificant increases in the pressure drop at different temperatures and concentrations, low friction factor, lack of corrosive condition, and the performance index larger than 1. In addition, no momentous change in the pumping power in the presence of GNP-WEG confirmed that it can be an appropriate alternative coolant for different thermal equipment in terms of economy and performance

  8. Generation of “gigantic” ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop

    International Nuclear Information System (INIS)

    Ginzburg, N. S.; Denisov, G. G.; Vilkov, M. N.; Zotova, I. V.; Sergeev, A. S.

    2016-01-01

    A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated “gigantic” pulses can exceed not only the level of steady-state generation but also, in the optimal case, the power of the driving electron beam.

  9. Noise performance of microwave humidity sounders over their lifetime

    Science.gov (United States)

    Hans, Imke; Burgdorf, Martin; John, Viju O.; Mittaz, Jonathan; Buehler, Stefan A.

    2017-12-01

    The microwave humidity sounders Special Sensor Microwave Water Vapor Profiler (SSMT-2), Advanced Microwave Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) to date have been providing data records for 25 years. So far, the data records lack uncertainty information essential for constructing consistent long time data series. In this study, we assess the quality of the recorded data with respect to the uncertainty caused by noise. We calculate the noise on the raw calibration counts from the deep space views (DSVs) of the instrument and the noise equivalent differential temperature (NEΔT) as a measure for the radiometer sensitivity. For this purpose, we use the Allan deviation that is not biased from an underlying varying mean of the data and that has been suggested only recently for application in atmospheric remote sensing. Moreover, we use the bias function related to the Allan deviation to infer the underlying spectrum of the noise. As examples, we investigate the noise spectrum in flight for some instruments. For the assessment of the noise evolution in time, we provide a descriptive and graphical overview of the calculated NEΔT over the life span of each instrument and channel. This overview can serve as an easily accessible information for users interested in the noise performance of a specific instrument, channel and time. Within the time evolution of the noise, we identify periods of instrumental degradation, which manifest themselves in an increasing NEΔT, and periods of erratic behaviour, which show sudden increases of NEΔT interrupting the overall smooth evolution of the noise. From this assessment and subsequent exclusion of the aforementioned periods, we present a chart showing available data records with NEΔT processing to provide input values for the uncertainty propagation in the generation of a new set of Fundamental Climate Data Records (FCDRs) that are currently produced in the project Fidelity and Uncertainty in Climate data

  10. Influence of the distribution of non-condensables on passive containment condenser performance in PANDA

    International Nuclear Information System (INIS)

    Bandurski, Th.; Huggenberger, M.; Dreier, J.; Aubert, C.; Putz, F.; Gamble, R.E.; Yadigaroglu, G.

    2001-01-01

    Recently passive cooling systems have been designed for the long-term decay heat removal from the containment of Advanced Light Water Reactors. In particular, the long-term LOCA response of the Passive Containment Cooling System (PCCS) for the General Electric European Simplified Boiling Water Reactor (ESBWR) has been tested in the large-scale PANDA facility. The PANDA tests achieved the dual objectives of improving confidence in the performance of the passive heat removal mechanisms underlying the design of the system, and extending the database available for containment analysis code qualification. The tests conducted subject the PCCS to a variety of conditions representing design-basis and beyond-design-basis accident conditions. These include operation in the presence of both heavier and lighter than steam non-condensable gases, as well as a variety of asymmetric and challenging start-up conditions. The present paper addresses the transient distribution of non-condensables in PANDA, and their effect on (passive) condenser performance. (author)

  11. Influence of the distribution of non-condensables on passive containment condenser performance in PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bandurski, Th.; Huggenberger, M.; Dreier, J.; Aubert, C.; Putz, F.; Gamble, R.E.; Yadigaroglu, G

    2001-03-01

    Recently passive cooling systems have been designed for the long-term decay heat removal from the containment of Advanced Light Water Reactors. In particular, the long-term LOCA response of the Passive Containment Cooling System (PCCS) for the General Electric European Simplified Boiling Water Reactor (ESBWR) has been tested in the large-scale PANDA facility. The PANDA tests achieved the dual objectives of improving confidence in the performance of the passive heat removal mechanisms underlying the design of the system, and extending the database available for containment analysis code qualification. The tests conducted subject the PCCS to a variety of conditions representing design-basis and beyond-design-basis accident conditions. These include operation in the presence of both heavier and lighter than steam non-condensable gases, as well as a variety of asymmetric and challenging start-up conditions. The present paper addresses the transient distribution of non-condensables in PANDA, and their effect on (passive) condenser performance. (author)

  12. IRIS - A concept for microwave sensing of soil moisture and ocean salinity

    Science.gov (United States)

    Moghaddam, M.; Njoku, E.

    1997-01-01

    A concept is described for passive microwave sensing of soil moisture and ocean salinity from space. The Inflatable Radiometric Imaging System (IRIS) makes use of a large-diameter, offset-fed, parabolic-torus antenna with multiple feeds, in a conical pushbroom configuration.

  13. Microwave bonding of MWNTs and fabrication of a low-cost, high-performance polymer pressure sensor

    International Nuclear Information System (INIS)

    Gau, C; Chen, H T; Ko, H S

    2010-01-01

    This paper describes the fabrication of a simple, low-cost pressure sensor that can be readily mass produced. Microwave-induced heating is used to bond a multiwall carbon nanotube (MWNT) network to a poly(ethylene terephthalate) substrate that serves as a pressure diaphragm. The MWNT network can be patterned with a damascene process and used as the sensor material. The pressure diaphragm with the MWNT network can be bonded with any flexible substrate pre-drilled with a cavity that allows a deflection of the diaphragm. Design and fabrication considerations for the sensor are discussed and its performance is demonstrated and evaluated. The sensor is thermally stable and has a much higher sensitivity and gauge factor than polysilicon sensors. In addition to the simple fabrication process, the sensor can be widely applied and integrated into microfluidic systems or biochips where pressure information is required.

  14. Performance of passive samplers for monitoring estuarine water column concentrations: 2. Emerging contaminants.

    Science.gov (United States)

    Perron, Monique M; Burgess, Robert M; Suuberg, Eric M; Cantwell, Mark G; Pennell, Kelly G

    2013-10-01

    Measuring dissolved concentrations of emerging contaminants, such as polybrominated diphenyl ethers (PBDEs) and triclosan, can be challenging due to their physicochemical properties resulting in low aqueous solubilities and association with particles. Passive sampling methods have been applied to assess dissolved concentrations in water and sediments primarily for legacy contaminants. Although the technology is applicable to some emerging contaminants, the use of passive samplers with emerging contaminants is limited. In the present study, the performance of 3 common passive samplers was evaluated for sampling PBDEs and triclosan. Passive sampling polymers included low-density polyethylene (PE) and polyoxymethylene (POM) sheets, and polydimethylsiloxane (PDMS)-coated solid-phase microextraction (SPME) fibers. Dissolved concentrations were calculated using measured sampler concentrations and laboratory-derived partition coefficients. Dissolved tri-, tetra-, and pentabrominated PBDE congeners were detected at several of the study sites at very low pg/L concentrations using PE and POM. Calculated dissolved water concentrations of triclosan ranged from 1.7 ng/L to 18 ng/L for POM and 8.8 ng/L to 13 ng/L for PE using performance reference compound equilibrium adjustments. Concentrations in SPME were not reported due to lack of detectable chemical in the PDMS polymer deployed. Although both PE and POM were found to effectively accumulate emerging contaminants from the water column, further research is needed to determine their utility as passive sampling devices for emerging contaminants. © 2013 SETAC.

  15. The performance of passive flow monitors and phosphate accumulating passive samplers when exposed to pulses in external water flow rate and/or external phosphate concentrations

    International Nuclear Information System (INIS)

    O'Brien, Dominique; Hawker, Darryl; Shaw, Melanie; Mueller, Jochen F.

    2011-01-01

    Passive samplers are typically calibrated under constant flow and concentration conditions. This study assessed whether concentration and/or flow pulses could be integrated using a phosphate passive sampler (P-sampler). Assessment involved three 21-day experiments featuring a pulse in flow rate, a pulse of filterable reactive phosphate (FRP) concentration and a simultaneous concentration and flow pulse. FRP concentrations were also determined by parallel grab sampling and the P-sampler calibrated with passive flow monitors (PFMs) and direct measurement of flow rates. The mass lost from the PFM over the deployment periods predicted water velocity to within 5.1, 0.48 and 7.1% when exposed to a flow rate pulse (7.5-50 cm s -1 ), concentration pulse (5-100 μg P L -1 ), or both simultaneously. For the P-sampler, good agreement was observed between the grab and passive measurements of FRP concentration when exposed to a pulse in flow (6% overestimation) or concentration (2% underestimation). - Highlights: → We assess the performance of the passive flow monitor and a phosphate passive sampler when exposed to changing environmental conditions. → The PFM responded quickly and accurately to a pulse in flow rate but showed little response to an external FRP pulse. → The ability of the sampler to provide an integrated measure of the average phosphate concentrations has been demonstrated. → The results presented demonstrate under which conditions the greatest accuracy is achieved when employing passive samplers. - The performance of an integrative phosphate passive sampler has been assessed when exposed to pulses in flow rate and concentration, both individually and simultaneously.

  16. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper.

    Science.gov (United States)

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-05-26

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

  17. Real-time computer treatment of THz passive device images with the high image quality

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  18. Passive containment cooling system performance in the simplified boiling water reactor

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Gamble, R.E.; Yadigaroglu, G.

    1997-01-01

    The Simplified Boiling Water Reactor (SBWR) incorporates a passive system for decay heat removal from the containment in the event of a postulated Loss-of-Coolant Accident (LOCA). Decay heat is removed by condensation of the steam discharged from the reactor pressure vessel (RPV) in three condensers which comprise the Passive Containment Cooling System (PCCS). These condensers are designed to carry the heat load while transporting a mixture of steam and noncondensible gas (primarily nitrogen) from the drywell to the suppression chamber. This paper describes the expected LOCA response of the SBWR with respect to the PCCS performance, based on analysis and test results. The results confirm that the PCCS has excess capacity for decay heat removal and that overall system performance is very robust. 12 refs., 8 figs

  19. Radiation-hardened microwave communications system

    Science.gov (United States)

    Smith, S. F.; Bible, D. W.; Crutcher, R. I.; Hannah, J. H.; Moore, J. A.; Nowlin, C. H.; Vandermolen, R. I.; Chagnot, D.; Leroy, A.

    1993-03-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10(exp 7) rads and at elevated ambient temperatures.

  20. Radiation-hardened microwave communications system

    International Nuclear Information System (INIS)

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Hannah, J.H.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I.; Chagnot, D.; LeRoy, A.

    1993-01-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10 7 rads and at elevated ambient temperatures

  1. An extraordinary transmission analogue for enhancing microwave antenna performance

    Directory of Open Access Journals (Sweden)

    Sarin V. Pushpakaran

    2015-10-01

    Full Text Available The theory of diffraction limit proposed by H.A Bethe limits the total power transfer through a subwavelength hole. Researchers all over the world have gone through different techniques for boosting the transmission through subwavelength holes resulting in the Extraordinary Transmission (EOT behavior. We examine computationally and experimentally the concept of EOT nature in the microwave range for enhancing radiation performance of a stacked dipole antenna working in the S band. It is shown that the front to back ratio of the antenna is considerably enhanced without affecting the impedance matching performance of the design. The computational analysis based on Finite Difference Time Domain (FDTD method reveals that the excitation of Fabry-Perot resonant modes on the slots is responsible for performance enhancement.

  2. The Nanophysics of Electron Emission and Breakdown for High Power Microwave Source

    Science.gov (United States)

    2009-12-21

    coaxial anode/collector. 3.1.2. Formation of  plasma  filaments during w‐band microwave breakdown  Regular, two-dimensional plasma ...Injection Gun ," IEEE Trans. Elec. Devices (May, 2005). 2. Booske, John H., “ Plasma physics and related challenges of millimeter-to-terahertz and...high power microwave (HPM) device technologies by establishing new physical understanding of electron emission/absorption and plasma breakdown

  3. Lipid-Based Passivation in Nanofluidics

    Science.gov (United States)

    2012-01-01

    Stretching DNA in nanochannels is a useful tool for direct, visual studies of genomic DNA at the single molecule level. To facilitate the study of the interaction of linear DNA with proteins in nanochannels, we have implemented a highly effective passivation scheme based on lipid bilayers. We demonstrate virtually complete long-term passivation of nanochannel surfaces to a range of relevant reagents, including streptavidin-coated quantum dots, RecA proteins, and RecA–DNA complexes. We show that the performance of the lipid bilayer is significantly better than that of standard bovine serum albumin-based passivation. Finally, we show how the passivated devices allow us to monitor single DNA cleavage events during enzymatic degradation by DNase I. We expect that our approach will open up for detailed, systematic studies of a wide range of protein–DNA interactions with high spatial and temporal resolution. PMID:22432814

  4. Performance test of passive radon–thoron discriminative detectors on environmental parameters

    International Nuclear Information System (INIS)

    Sorimachi, Atsuyuki; Tokonami, Shinji; Omori, Yasutaka; Ishikawa, Tetsuo

    2012-01-01

    This paper describes how humidity, wind and ambient aerosols in air influence the detection responses of passive detectors. Two types of alpha track detectors based on a passive radon ( 222 Rn)–thoron ( 220 Rn) discriminative measurement technique were used: the Raduet and Radopot detectors that were developed and calibrated by the National Institute of Radiological Sciences, Japan. The initial experiment showed that the infiltration rate of 220 Rn onto sponges with a high air exchange rate for the Raduet detectors was one third lower than that onto filters for the Radopot detectors. Little distinct dependence on humidity was observed for the 222 Rn detection responses of both detectors. For 220 Rn, the detection responses of both detectors for the high air exchange rate seemed to decrease slightly at high humidity conditions. The 220 Rn detection responses of the Radopot detectors had little influence from wind speed. The 220 Rn detection responses of the Raduet detectors for the high air exchange rate seemed to decrease at low wind speeds. Furthermore, there was little difference between the detection responses in the presence and absence of ambient aerosol particles because the ambient aerosols were filtered out during their passive diffusion through the sponges and filters for the Raduet and Radopot detectors, respectively.

  5. Performance of an on-chip superconducting circulator for quantum microwave systems

    Science.gov (United States)

    Chapman, Benjamin; Rosenthal, Eric; Moores, Bradley; Kerckhoff, Joseph; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; LalumíEre, Kevin; Blais, Alexandre; Lehnert, K. W.

    Microwave circulators enforce a single propagation direction for signals in an electrical network. Unfortunately, commercial circulators are bulky, lossy, and cannot be integrated close to superconducting circuits because they require strong ( kOe) magnetic fields produced by permanent magnets. Here we report on the performance of an on-chip, active circulator for superconducting microwave circuits, which uses no permanent magnets. Non-reciprocity is achieved by actively modulating reactive elements around 100 MHz, giving roughly a factor of 50 in the separation between signal and control frequencies, which facilitates filtering. The circulator's active components are dynamically tunable inductors constructed with arrays of dc-SQUIDs in series. Array inductance is tuned by varying the magnetic flux through the SQUIDs with fields weaker than 1 Oe. Although the instantaneous bandwidth of the device is narrow, the operation frequency is tunable between 4 and 8 GHz. This presentation will describe the device's theory of operation and compare its measured performance to design goals. This work is supported by the ARO under contract W911NF-14-1-0079 and the National Science Foundation under Grant Number 1125844.

  6. GHRSST Level 2P Regional Subskin Sea Surface Temperature from the Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) for the Atlantic Ocean (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to SSM/I, that contains lower...

  7. Review of Microwave Photonics Technique to Generate the Microwave Signal by Using Photonics Technology

    Science.gov (United States)

    Raghuwanshi, Sanjeev Kumar; Srivastav, Akash

    2017-12-01

    Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.

  8. Passive microwave remote sensing of soil moisture - The effect of tilled row structure

    Science.gov (United States)

    Wang, J. R.; Newton, R. W.; Rouse, J. W., Jr.

    1980-01-01

    The tilled row structure in agricultural fields is one of the important factors affecting observations of microwave emission from such fields. Measurements of this effect were performed with L-band and X-band radiometers mounted on a mobile truck on a bare 40 m x 45 m row tilled field; the soil moisture content during measurements ranged from 10 to 30% by dry weight. Results showed that the variations of the antenna temperatures with incident angle changed with the azimuth angle measured from the row direction. It is found that the observed difference between horizontally and vertically polarized antenna temperatures is due to the change in the local angle of field emission within the antenna field of view caused by the large-scale row structure.

  9. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  10. Monolithic Microwave Integrated Circuits Based on GaAs Mesfet Technology

    Science.gov (United States)

    Bahl, Inder J.

    Advanced military microwave systems are demanding increased integration, reliability, radiation hardness, compact size and lower cost when produced in large volume, whereas the microwave commercial market, including wireless communications, mandates low cost circuits. Monolithic Microwave Integrated Circuit (MMIC) technology provides an economically viable approach to meeting these needs. In this paper the design considerations for several types of MMICs and their performance status are presented. Multifunction integrated circuits that advance the MMIC technology are described, including integrated microwave/digital functions and a highly integrated transceiver at C-band.

  11. Satellite passive microwaves for monitoring deforestation and drought-induced carbon losses in sub-Saharan Africa

    Science.gov (United States)

    Brandt, M.; Wigneron, J. P.; Chave, J.; Tagesson, T.; Penuelas, J.; Ciais, P.; Rasmussen, K.; Tian, F.; Mbow, C.; Al-Yaari, A.; Rodriguez-Fernandez, N.; Zhang, W.; Kerr, Y. H.; Tucker, C. J.; Mialon, A.; Verger, A.; Fensholt, R.

    2017-12-01

    The African continent is facing one of the driest periods in the past three decades and continuing deforestation. These disturbances threaten vegetation carbon (C) stocks and highlight the need for an operational tool for monitoring carbon stock dynamics. Knowledge of the amount, distribution, and turnover of carbon in African vegetation is crucial for understanding the effects of human pressure and climate change, but the shortcomings of optical and radar satellite products and the lack of systematic field inventories have led to considerable uncertainty in documenting patterns and dynamics of carbon stocks, in particular for drylands. Static carbon maps have been developed, but the temporal dynamics of carbon stocks cannot be derived from the benchmark maps, impeding timely, repeated, and reliable carbon assessments. The Soil Moisture and Ocean Salinity (SMOS) mission launched in 2009 was the first passive microwave-based satellite system operating at L-band (1.4 GHz) frequency. The low frequencies allow the satellite to sense deep within the canopy layer with less influence by the green non-woody plant components. The vegetation optical depth (VOD) derived from SMOS, henceforth L-VOD, is thus less sensitive to saturation effects, marking an important step forward in the monitoring of carbon as a natural resource. In this study, we apply for the first time L-VOD to quantify the inter-annual dynamics of aboveground carbon stocks for the period 2010-2016. We use this new technique to document patterns of carbon gains and losses in sub-Saharan Africa with a focus of dryland response to recent dry years. Results show that drylands lost carbon at a rate of -0.06 Pg C y-1 associated with drying trends, while humid areas lost only -0.02 Pg C y-1. These trends reflect a high inter-annual variability with a very wet (2011) and a very dry year (2016) associated with carbon gains and losses respectively. This study demonstrates, first, the operational applicability of L

  12. Self-Assembled Hierarchical Formation of Conjugated 3D Cobalt Oxide Nanobead-CNT-Graphene Nanostructure Using Microwaves for High-Performance Supercapacitor Electrode.

    Science.gov (United States)

    Kumar, Rajesh; Singh, Rajesh Kumar; Dubey, Pawan Kumar; Singh, Dinesh Pratap; Yadav, Ram Manohar

    2015-07-15

    Here we report the electrochemical performance of a interesting three-dimensional (3D) structures comprised of zero-dimensional (0D) cobalt oxide nanobeads, one-dimensional (1D) carbon nanotubes and two-dimensional (2D) graphene, stacked hierarchically. We have synthesized 3D self-assembled hierarchical nanostructure comprised of cobalt oxide nanobeads (Co-nb), carbon nanotubes (CNTs), and graphene nanosheets (GNSs) for high-performance supercapacitor electrode application. This 3D self-assembled hierarchical nanostructure Co3O4 nanobeads-CNTs-GNSs (3D:Co-nb@CG) is grown at a large scale (gram) through simple, facile, and ultrafast microwave irradiation (MWI). In 3D:Co-nb@CG nanostructure, Co3O4 nanobeads are attached to the CNT surfaces grown on GNSs. Our ultrafast, one-step approach not only renders simultaneous growth of cobalt oxide and CNTs on graphene nanosheets but also institutes the intrinsic dispersion of carbon nanotubes and cobalt oxide within a highly conductive scaffold. The 3D:Co-nb@CG electrode shows better electrochemical performance with a maximum specific capacitance of 600 F/g at the charge/discharge current density of 0.7A/g in KOH electrolyte, which is 1.56 times higher than that of Co3O4-decorated graphene (Co-np@G) nanostructure. This electrode also shows a long cyclic life, excellent rate capability, and high specific capacitance. It also shows high stability after few cycles (550 cycles) and exhibits high capacitance retention behavior. It was observed that the supercapacitor retained 94.5% of its initial capacitance even after 5000 cycles, indicating its excellent cyclic stability. The synergistic effect of the 3D:Co-nb@CG appears to contribute to the enhanced electrochemical performances.

  13. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al{sub 3}Ni{sub 2}@Al nanoparticles as a high microwave absorption material

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yu; Xie, Xiubo; Li, Da [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191 (China); Chou, Wusheng [School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Liu, Tong, E-mail: tongliu@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191 (China)

    2017-03-15

    The Al{sub 3}Ni{sub 2}@Al nanoparticles (NPs) were prepared from Ni{sub 45}Al{sub 55} master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m{sup 2}/g and big pore volume of 0.507 cc/g. The saturation magnetization (M{sub S}) and coercivity (H{sub C}) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of −86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤−10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance. - Graphical abstract: The microporous Ni/NiO nanoparticles prepared by chemically dealloying Al{sub 3}Ni{sub 2}@Al NPs exhibit high microwave absorption intensity (−86.9 dB) and wide absorption bandwidth (2.6 GHz for RC≤−10 dB). - Highlights: • Microporous Ni/NiO nanoparticals were prepared by chemically dealloying method. • They possessed micropores of 0.7–1.6 nm with a surface area of 69.5 m{sup 2}/g. • They showed high microwave absorption intensity and wide absorption bandwidth. • Microwave absorption mechanism was explained by micropore and core/shell structures.

  14. Investigation of Hybrid Pseudo Bipolar HVDC Performances Supply Power to Passive AC Network

    Directory of Open Access Journals (Sweden)

    Kuan Li

    2014-07-01

    Full Text Available The traditional HVDC plays an important role in the development of power grid. But the traditional HVDC cannot supply power either to entirely passive AC network or to weak AC system. In fact, an entirely passive AC network can be effectively powered through VSC-HVDC. However, the cost of investment in VSC-HVDC is amazingly high due to the limitation of power electronics technology. Based on CSC and VSC, this paper proposes a method to build Hybrid HVDC, which makes the power supply to the passive AC network come true and, at the same time, lowers the investment cost. The effect of topology, steady mathematical model, startup characteristic, steady and transient characteristics in Hybrid HVDC system are systematically studied in this paper. The simulation result shows that Hybrid HVDC can supply power to the passive AC network with high stability. This study provides a theoretical basis for the further development of HVDC.

  15. GHRSST Level 2P Global Subskin Sea Surface Temperature from TRMM Microwave Imager (TMI) onboard Tropical Rainfall Measurement Mission (TRMM) satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GDS2 Version -The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to the Special Sensor...

  16. A study of multilayer passive components for uniplanar MMICs

    International Nuclear Information System (INIS)

    Gokdemir, T.

    2000-01-01

    This thesis is concerned with the modelling, design, and characterisation of passive components on Gallium Arsenide (GaAs) and silicon substrates at microwave and millimeter-wave frequencies. The passive components are a vital part of all monolithic microwave integrated circuits (MMICs) because they are used as building blocks to design much larger and more complicated circuits which may employ many active devices. The initial building blocks not only shape the overall performance but also contribute to the final layout and cost depending on how compact these components are. Therefore, this thesis looks at techniques that can be used to achieve higher levels of integration of microwave circuitry and to overcome the need for through-substrate via holes and related back-face processing steps. Topics such as coplanar waveguide (CPW) and multilayer techniques have been covered with this aim. This work begins with an introduction to MMIC design. This is followed by a look at how computer aided design (CAD) packages can be used to enhance circuit design at microwave frequencies. A detailed practical investigation into multilayer structures on GaAs and silicon substrates is undertaken. In order to analyse these structures test masks have been prepared and fabricated. These structures have been characterised and verified with measurements where possible. For the first time, two types of novel multilayer 14-36 GHz MMIC CPW coupled-line 3 dB directional couplers have been realised by using a three metal level MMIC process. The couplers incorporate both broadside and edge coupling in order to obtain a tight coupling. A new method of realising compact baluns at millimeter-wave frequencies is presented and its operation is explained. The analysis has been verified with practical baluns which employed multilayer CPW directional couplers. An alternative balun for lower frequencies has also been proposed and successfully demonstrated experimentally using compact spiral couplers

  17. On-chip microwave circulators using quantum Hall plasmonics

    Science.gov (United States)

    Mahoney, Alice; Colless, James; Pauka, Sebastian; Hornibrook, John; Doherty, Andrew; Reilly, David; Peeters, Lucas; Fox, Eli; Goldhaber-Gordon, David; Kou, Xuefeng; Pan, Lei; Wang, Kang; Watson, John; Gardner, Geoffrey; Manfra, Michael

    Circulators are directional circuit elements integral to technologies including radar systems, microwave communication transceivers and the readout of quantum information devices. Their non-reciprocity commonly arises from the interference of microwaves over the centimetre-scale of the signal wavelength in the presence of bulky magnetic media that breaks time-reversal symmetry. We present a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, `slow-light' response of a GaAs/AlGaAs 2-dimensional electron gas in the quantum Hall regime. Further, by implementing this circulator design on a thin film of a magnetic topological insulator (Cr0.12(Bi0.26Sb0.62)2Te3), we show that similar non-reciprocity can be achieved at zero magnetic field. This additional mode of operation serves as a non-invasive probe of edge states in the quantum anomalous Hall effect, while also extending the possibility for integration with superconducting devices.

  18. Remote measurement of microwave distribution based on optical detection

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhong; Ding, Wenzheng; Yang, Sihua; Chen, Qun, E-mail: redrocks-chenqun@hotmail.com, E-mail: xingda@scnu.edu.cn; Xing, Da, E-mail: redrocks-chenqun@hotmail.com, E-mail: xingda@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China)

    2016-01-04

    In this letter, we present the development of a remote microwave measurement system. This method employs an arc discharge lamp that serves as an energy converter from microwave to visible light, which can propagate without transmission medium. Observed with a charge coupled device, quantitative microwave power distribution can be achieved when the operators and electronic instruments are in a distance from the high power region in order to reduce the potential risk. We perform the experiments using pulsed microwaves, and the results show that the system response is dependent on the microwave intensity over a certain range. Most importantly, the microwave distribution can be monitored in real time by optical observation of the response of a one-dimensional lamp array. The characteristics of low cost, a wide detection bandwidth, remote measurement, and room temperature operation make the system a preferred detector for microwave applications.

  19. Passive performance monitoring and traffic characteristics on the SLAC internet border

    International Nuclear Information System (INIS)

    Logg, C.; Cottrell, L.

    2001-01-01

    Understanding how the Internet is used by HEP is critical to optimizing the performance of the inter-lab computing environment. Typically use requirements have been defined by discussions between collaborators. However, later analysis of the actual traffic has show this is often misunderstood and actual use is significantly different to that predicted. Passive monitoring of the real traffic provides insight into the true communications requirements and the performance of a large number of inter-communicating nodes. It may be useful in identifying performance problems that are due to factors other than Internet congestion, especially when compared to other methods such as active monitoring where traffic is generated specifically to measure its performance. Controlled active monitoring between dedicated servers often gives an indication of what can be achieved on a network. Passive monitoring of the real traffic gives a picture of the true performance. The authors will discuss the method and results of collecting and analyzing flows of data obtained from the SLAC Internet border. The insights this has brought to understanding the network will be reviewed and the benefit it can bring to engineering networks will be discussed

  20. Passive solar technology

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D

    1981-04-01

    The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

  1. Synthesized and characterization of AI and Gd substitute ferrite for microwave

    International Nuclear Information System (INIS)

    Sudjono, Hans K.; Muljadi; Soepriyanto, Syony

    2000-01-01

    Ferrite for microwave components has been synthesized from garnet ceramics (YIG)substituted by AI and Gd. Magnetic permeability and magnetic polarization changes according to the AI 3+ ion addition. XRD is performed to determined the sintering products at various temperatures. For some samples the magnetic property and performance in microwave region was tested. The testing is conducted in the form of completely assembled circulator which gives data on isolation, insertion loss when microwave circuit analyzer was employed. Due to high level of porosity insertion lost is still to large, improved process is necessary

  2. Microwave performance of photoresist-alumina microcomposites for batch fabrication of thick polymer-based dielectric structures

    International Nuclear Information System (INIS)

    Rashidian, Atabak; Klymyshyn, David M; Aligodarz, Mohammadreza Tayfeh; Boerner, Martin; Mohr, Jürgen

    2012-01-01

    The goal of this paper is to investigate the electrical properties of photoresist-alumina microcomposites with different portions of ceramic content. Substrates of photoresist-alumina microcomposites are fabricated and a comprehensive analysis is performed to characterize their dielectric constant and dielectric loss tangent at microwave frequencies up to 40 GHz. To evaluate the performance of these materials for microwave applications, the properties of various lithographically fabricated antenna elements are examined and analysed based on the measured electrical properties. The experimental results show that the electrical properties of the photoresist composite are nonlinearly affected by ceramic content and also a minimum percentage of ceramic portion is required to improve the electrical properties of the photoresist composite. For instance, comparison of 0 wt% with 23 wt% SU8-alumina shows that no reduction is achieved for the dielectric loss tangent. Comparison of 38 wt% with 48 wt% SU8-alumina microcomposite shows that the dielectric loss tangent is improved from 0.03 to 0.01 and the dielectric constant is increased from 3.8 to 5.0 at 25 GHz. These improvements can result in superior performance for the photoresist-based microwave components. (paper)

  3. Microwave performance of photoresist-alumina microcomposites for batch fabrication of thick polymer-based dielectric structures

    Science.gov (United States)

    Rashidian, Atabak; Klymyshyn, David M.; Tayfeh Aligodarz, Mohammadreza; Boerner, Martin; Mohr, Jürgen

    2012-10-01

    The goal of this paper is to investigate the electrical properties of photoresist-alumina microcomposites with different portions of ceramic content. Substrates of photoresist-alumina microcomposites are fabricated and a comprehensive analysis is performed to characterize their dielectric constant and dielectric loss tangent at microwave frequencies up to 40 GHz. To evaluate the performance of these materials for microwave applications, the properties of various lithographically fabricated antenna elements are examined and analysed based on the measured electrical properties. The experimental results show that the electrical properties of the photoresist composite are nonlinearly affected by ceramic content and also a minimum percentage of ceramic portion is required to improve the electrical properties of the photoresist composite. For instance, comparison of 0 wt% with 23 wt% SU8-alumina shows that no reduction is achieved for the dielectric loss tangent. Comparison of 38 wt% with 48 wt% SU8-alumina microcomposite shows that the dielectric loss tangent is improved from 0.03 to 0.01 and the dielectric constant is increased from 3.8 to 5.0 at 25 GHz. These improvements can result in superior performance for the photoresist-based microwave components.

  4. Monitoring of "all-weather" evapotranspiration using optical and passive microwave remote sensing imagery over the River Source Region in Southwest China

    Science.gov (United States)

    Ma, Y.; Liu, S.

    2017-12-01

    Accurate estimation of surface evapotranspiration (ET) with high quality is one of the biggest obstacles for routine applications of remote sensing in eco-hydrological studies and water resource management at basin scale. However, many aspects urgently need to deeply research, such as the applicability of the ET models, the parameterization schemes optimization at the regional scale, the temporal upscaling, the selecting and developing of the spatiotemporal data fusion method and ground-based validation over heterogeneous land surfaces. This project is based on the theoretically robust surface energy balance system (SEBS) model, which the model mechanism need further investigation, including the applicability and the influencing factors, such as local environment, and heterogeneity of the landscape, for improving estimation accuracy. Due to technical and budget limitations, so far, optical remote sensing data is missing due to frequent cloud contamination and other poor atmospheric conditions in Southwest China. Here, a multi-source remote sensing data fusion method (ESTARFM: Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) method will be proposed through blending multi-source remote sensing data acquired by optical, and passive microwave remote sensors on board polar satellite platforms. The accurate "all-weather" ET estimation will be carried out for daily ET of the River Source Region in Southwest China, and then the remotely sensed ET results are overlapped with the footprint-weighted images of EC (eddy correlation) for ground-based validation.

  5. A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields

    International Nuclear Information System (INIS)

    Wigneron, J.P.; Chanzy, A.; Calvet, J.C.; Bruguier, N.

    1995-01-01

    A simple algorithm to retrieve sail moisture and vegetation water content from passive microwave measurements is analyzed in this study. The approach is based on a zeroth-order solution of the radiative transfer equations in a vegetation layer. In this study, the single scattering albedo accounts for scattering effects and two parameters account for the dependence of the optical thickness on polarization, incidence angle, and frequency. The algorithm requires only ancillary information about crop type and surface temperature. Retrievals of the surface parameters from two radiometric data sets acquired over a soybean and a wheat crop have been attempted. The model parameters have been fitted in order to achieve best match between measured and retrieved surface data. The results of the inversion are analyzed for different configurations of the radiometric observations: one or several look angles, L-band, C-band or (L-band and C-band). Sensitivity of the retrievals to the best fit values of the model parameters has also been investigated. The best configurations, requiring simultaneous measurements at L- and C-band, produce retrievals of soil moisture and biomass with a 15% estimated precision (about 0.06 m 3 /m 3 for soil moisture and 0.3 kg/m 2 for biomass) and exhibit a limited sensitivity to the best fit parameters. (author)

  6. Low temperature cured poly-siloxane passivation for highly reliable a-InGaZnO thin-film transistors

    Science.gov (United States)

    Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu

    2018-05-01

    Low temperature processable passivation materials are necessary to fabricate highly reliable amorphous InGaZnO (a-IGZO) thin-film transistors (TFT) on organic substrates for flexible device applications. We investigated 3 types of poly-siloxane (Poly-SX) passivation layers fabricated by a solution process and cured at low temperatures (180 °C) for a-IGZO TFTs. This passivation layer greatly improves the stability of the a-IGZO device even after being subjected to positive (PBS) and negative bias stress (NBS). The field effect mobility (μ) of MePhQ504010 passivated on the TFT reached 8.34 cm2/Vs and had a small threshold voltage shift of 0.9 V after PBS, -0.8 V after NBS without the hump phenomenon. Furthermore, we analyzed the hydrogen and hydroxide states in the a-IGZO layer by secondary ion mass spectrometry and X-ray photoelectron spectroscopy to determine the cause of excellent electrical properties despite the curing performed at a low temperature. These results show the potential of the solution processed Poly-SX passivation layer for flexible devices.

  7. Noise and correlations in a microwave-mechanical-optical transducer

    Science.gov (United States)

    Higginbotham, Andrew P.; Burns, Peter S.; Peterson, Robert W.; Urmey, Maxwell D.; Kampel, Nir S.; Menke, Timothy; Cicak, Katarina; Simmonds, Raymond W.; Regal, Cindy A.; Lehnert, Konrad W.

    Viewed as resources for quantum information processing, microwave and optical fields offer complementary strengths. We simultaneously couple one mode of a micromechanical oscillator to a resonant microwave circuit and a high-finesse optical cavity. In previous work, this system was operated as a classical converter between microwave and optical signals at 4 K, operating with 10% efficiency and 1500 photons of added noise. To improve noise performance, we now operate the converter at 0.1 K. We have observed order-of-magnitude improvement in noise performance, and quantified effects from undesired interactions between the laser and superconducting circuit. Correlations between the microwave and optical fields have also been investigated, serving as a precursor to upcoming quantum operation. We acknowledge support from AFOSR MURI Grant FA9550-15-1-0015 and PFC National Science Foundation Grant 1125844.

  8. Antenna for passive RFID tags

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  9. Passive House Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Strom, I.; Joosten, L.; Boonstra, C. [DHV Sustainability Consultants, Eindhoiven (Netherlands)

    2006-05-15

    PEP stands for 'Promotion of European Passive Houses' and is a consortium of European partners, supported by the European Commission, Directorate General for Energy and Transport. In this working paper an overview is given of Passive House solutions. An inventory has been made of Passive House solutions for new build residences applied in each country. Based on this, the most common basic solutions have been identified and described in further detail, including the extent to which solutions are applied in common and best practice and expected barriers for the implementation in each country. An inventory per country is included in the appendix. The analysis of Passive House solutions in partner countries shows high priority with regard to the performance of the thermal envelope, such as high insulation of walls, roofs, floors and windows/ doors, thermal bridge-free construction and air tightness. Due to the required air tightness, special attention must be paid to indoor air quality through proper ventilation. Finally, efficient ((semi-)solar) heating systems for combined space and DHW heating still require a significant amount of attention in most partner countries. Other basic Passive House solutions show a smaller discrepancy with common practice and fewer barriers have been encountered in partner countries. In the next section, the general barriers in partner countries have been inventoried. For each type of barrier a suggested approach has been given. Most frequently encountered barriers in partner countries are: limited know-how; limited contractor skills; and acceptation of Passive Houses in the market. Based on the suggested approaches to overcoming barriers, this means that a great deal of attention must be paid to providing practical information and solutions to building professionals, providing practical training to installers and contractors and communication about the Passive House concept to the market.

  10. A Regulatory Perspective on the Performance and Reliability of Nuclear Passive Safety Systems

    International Nuclear Information System (INIS)

    Quan, Pham Trung; Lee, Sukho

    2016-01-01

    Passive safety systems have been proven to enhance the safety of NPPs. When an accident such as station blackout occurs, these systems can perform the following functions: the decay heat removal, passive safety injection, containment cooling, and the retention of radioactive materials. Following the IAEA definitions, using passive safety systems reduces reliance on active components to achieve proper actuation and not requiring operator intervention in accident conditions. That leads to the deviations in boundary conditions of the critical process or geometric parameters, which activate and operate the system to perform accident prevention and mitigation functions. The main difficulties in evaluation of functional failure of passive systems arise because of (a) lack of plant operational experience; (b) scarcity of adequate experimental data from integral test facilities or from separate effect tests in order to understand the performance characteristics of these passive systems, not only at normal operation but also during accidents and transients; (c) lack of accepted definitions of failure modes for these systems; and (d) difficulty in modeling certain physical behavior of these systems. Reliability assessment of the PSS is still one of the important issues. Several reliability methodologies such as REPAS, RMPS and ASPRA have been applied to the reliability assessments. However, some issues are remained unresolved due to lack of understanding of the treatment of dynamic failure characteristics of components of the PSS, the treatment of dynamic variation of independence process parameters such as ambient temperature and the functional failure criteria of the PSS. Dynamic reliability methodologies should be integrated in the PSS reliability analysis to have a true estimate of system failure probability. The methodology should estimate the physical variation of the parameters and the frequency of the accident sequences when the dynamic effects are considered

  11. Performance Evaluation of Automated Passive Capillary Sampler for Estimating Water Drainage in the Vadose Zone

    Science.gov (United States)

    Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...

  12. Preparation and characterization of a new microwave immobilized poly(2-phenylpropyl)methylsiloxane stationary phase for reversed phase high-performance liquid chromatography.

    Science.gov (United States)

    Begnini, Fernanda R; Jardim, Isabel C S F

    2013-07-05

    A new reversed phase high-performance liquid chromatography (RP-HPLC) stationary phase was prepared and its chromatographic and physical-chemical properties were evaluated. The new stationary phase was prepared with a silica support and poly(2-phenylpropyl)methylsiloxane (PPPMS), a phenyl type polysiloxane copolymer. Since this is a new copolymer and there is little information in the literature, it was submitted to physical-chemical characterization by infrared spectroscopy and thermogravimetry. The chromatographic phase was prepared through sorption and microwave immobilization of the copolymer onto a silica support. The chromatographic performance was evaluated by employing test procedures suggested by Engelhardt and Jungheim, Tanaka and co-workers, Neue, and Szabó and Csató. These test mixtures provide information about the hydrophobic selectivity, silanophilic activity, ion-exchange capacity, shape selectivity and interaction with polar analytes of the new Si-PPPMS reversed phase. Stability tests were developed using accelerated aging tests under both basic and acidic conditions to provide information about the lifetime of the packed columns. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Evaluation the microwave heating of spinel crystals in high-level waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Washington, A. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL)

    2015-08-18

    In this report, the microwave heating of a crystal-free and a partially (24 wt%) trevorite-crystallized waste glass simulant were evaluated. The results show that a 500 mg piece of partially crystallized waste glass can be heated from room-temperature to above 1600 °C (as measured by infrared radiometry) within 2 minutes using a single mode, highly focused, 2.45 GHz microwave, operating at 300 W. X-ray diffraction measurements show that the partially crystallized glass experiences an 87 % reduction in trevorite following irradiation and thermal quenching. When a crystal-free analogue of the same waste glass simulant composition is exposed to the same microwave radiation it could not be heated above 450 °C regardless of the heating time.

  14. Microwave-Hydrothermal Synthesis and Characterization of High-Purity Nb Doped BaTiO3 Nanocrystals

    Directory of Open Access Journals (Sweden)

    A. Khanfekr

    2014-01-01

    Full Text Available The synthesis of Nb doped BaTiO3 has been investigated under Microwave-Hydrothermal (MH conditions in the temperature of 150°C for only 2 h using C16H36O4Ti, BaH2O2.8H2O and NbCl5 as Ba, Ti and  Nb sources, respectively.  Typical experiments performed on MH processing have not yet reported for Nb doped BaTiO3.  In the MH process, the formation of high purity nano tetragonal Nb-BaTiO3 was strongly enhanced. New hydrothermal method was used instead of the previous solid state reaction for the BaTiO3±Nb2O3 system. The new method uses high pressure to create nano dimension particles in a lower time and temperature. In case of the phase evolution studies, the XRD pattern measurements and Raman spectroscopy were performed. TEM and FE-SEM images were taken for the detailed analysis of the particle size, surface and morphology.  Synthesis of Nb doped BaTiO3 with the Microwave-hydrothermal provides an advantage of fast crystallization and reduced crystal size when compared to existing methods.

  15. Microwave energy transmission

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi [Kyoto Univ. (Japan)

    1989-03-05

    Laying stress on the technological problems and effect on the environment of microwave energy transmission, recent scientific and engineering problems and related subjects are described. Because no fuel is required for the solar power generation, the power generation system can not be considered as an expensive one when the unit cost of energy is taken into consideration. Some of the important technological problems in the microwave energy transmission are accurate microwave beam control technology to receiving stations and improvement in the efficiency of transmission system. Microwave energy beam has effects on living bodies, communication, and plasma atmosphere of the earth. Microwave energy transmission using a space flyer unit is scheduled. Its objective is the development of microwave wireless transmission technology and the study of the correlation between high power microwave and ionosphere plasma. Experiments on such a small scale application as a microwave driven space ship to bring results seem also important. 12 refs., 13 figs.

  16. Enhanced performance of C60 N-type organic field-effect transistors using a pentacene passivation layer

    International Nuclear Information System (INIS)

    Liang Xiaoyu; Cheng Xiaoman; Du Boqun; Bai Xiao; Fan Jianfeng

    2013-01-01

    We investigated the properties of C 60 -based organic field-effect transistors (OFETs) with a pentacene passivation layer inserted between the C 60 active layer and the gate dielectric. After modification of the pentacene passivation layer, the performance of the devices was considerably improved compared to C 60 -based OFETs with only a PMMA dielectric. The peak field-effect mobility was up to 1.01 cm 2 /(V·s) and the on/off ratio shifted to 10 4 . This result indicates that using a pentacene passivation layer is an effective way to improve the performance of N-type OFETs. (semiconductor devices)

  17. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    Energy Technology Data Exchange (ETDEWEB)

    François, B. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France); INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Calosso, C. E.; Micalizio, S. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Abdel Hafiz, M.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France)

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  18. Microwave testing of high-Tc based direct current to a single flux quantum converter

    DEFF Research Database (Denmark)

    Kaplunenko, V. K.; Fischer, Gerd Michael; Ivanov, Z. G.

    1994-01-01

    Design, simulation, and experimental investigations of a direct current to a single flux quantum converter loaded with a Josephson transmission line and driven by an external 70 GHz microwave oscillator are reported. The test circuit includes nine YBaCuO Josephson junctions aligned on the grain...... boundary of a 0°–32° asymmetric Y-ZrO2 bicrystal substrate. The performance of such converters is important for the development of the fast Josephson samplers required for testing of high-Tc rapid single flux quantum circuits in high-speed digital superconducting electronics. Journal of Applied Physics...

  19. Advanced Passivation Technology and Loss Factor Minimization for High Efficiency Solar Cells.

    Science.gov (United States)

    Park, Cheolmin; Balaji, Nagarajan; Jung, Sungwook; Choi, Jaewoo; Ju, Minkyu; Lee, Seunghwan; Kim, Jungmo; Bong, Sungjae; Chung, Sungyoun; Lee, Youn-Jung; Yi, Junsin

    2015-10-01

    High-efficiency Si solar cells have attracted great attention from researchers, scientists, photovoltaic (PV) industry engineers for the past few decades. With thin wafers, surface passivation becomes necessary to increase the solar cells efficiency by overcoming several induced effects due to associated crystal defects and impurities of c-Si. This paper discusses suitable passivation schemes and optimization techniques to achieve high efficiency at low cost. SiNx film was optimized with higher transmittance and reduced recombination for using as an effective antireflection and passivation layer to attain higher solar cell efficiencies. The higher band gap increased the transmittance with reduced defect states that persisted at 1.68 and 1.80 eV in SiNx films. The thermal stability of SiN (Si-rich)/SiN (N-rich) stacks was also studied. Si-rich SiN with a refractive index of 2.7 was used as a passivation layer and N-rich SiN with a refractive index of 2.1 was used for thermal stability. An implied Voc of 720 mV with a stable lifetime of 1.5 ms was obtained for the stack layer after firing. Si-N and Si-H bonding concentration was analyzed by FTIR for the correlation of thermally stable passivation mechanism. The passivation property of spin coated Al2O3 films was also investigated. An effective surface recombination velocity of 55 cm/s with a high density of negative fixed charges (Qf) on the order of 9 x 10(11) cm(-2) was detected in Al2O3 films.

  20. Microwave-induced electrostatic etching: generation of highly reactive magnesium for application in Grignard reagent formation.

    Science.gov (United States)

    van de Kruijs, Bastiaan H P; Dressen, Mark H C L; Meuldijk, Jan; Vekemans, Jef A J M; Hulshof, Lumbertus A

    2010-04-07

    A detailed study regarding the influence of microwave irradiation on the formation of a series of Grignard reagents in terms of rates and selectivities has revealed that these heterogeneous reactions may display a beneficial microwave effect. The interaction between microwaves and magnesium turnings generates violent electrostatic discharges. These discharges on magnesium lead to melting of the magnesium surface, thus generating highly active magnesium particles. As compared to conventional operation the microwave-induced discharges on the magnesium surface lead to considerably shorter initiation times for the insertion of magnesium in selected substrates (i.e. halothiophenes, halopyridines, octyl halides, and halobenzenes). Thermographic imaging and surface characterization by scanning electron microscopy showed that neither selective heating nor a "specific" microwave effect was causing the reduction in initiation times. This novel and straightforward initiation method eliminates the use of toxic and environmentally adverse initiators. Thus, this initiation method limits the formation of by-products. We clearly demonstrated that microwave irradiation enables fast Grignard reagent formation. Therefore, microwave technology is promising for process intensification of Grignard based coupling reactions.

  1. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    Science.gov (United States)

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  2. Passive cooling of condensate chambers as retrofitting measure in boiling water reactors; Passive Kuehlung der Kondensationskammern in Siedewasserreaktoren als Nachruestmassnahme

    Energy Technology Data Exchange (ETDEWEB)

    Freis, Daniel; Nachtrodt, Frederik; Sporn, Michael; Tietsch, Wolfgang; Sassen, Felix [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2012-11-01

    Westinghouse Electric Germany GmbH has developed a concept for passive cooling of condensate chambers of BWR-type reactors. Due to its compactness the system is feasible as retrofitting measure. The passive condensate chamber cooling system is based on a cooling module with ascending and down pipe that are connected with the evaporation condenser to form a cooling circuit. Based on the consequent use of high-effective heat transport mechanisms, as boiling, condensation without non-condensable gases and mass transport a high cooling performance and compact construction is possible. The system is completely passive and completely diverse to existing active cooling systems. In the frame of a true-scale experiment the significant cooling performance was demonstrated. RELAP5 calculations confirmed the functionality of the cooling module.

  3. Trends vs. reactor size of passive reactivity shutdown and control performance

    International Nuclear Information System (INIS)

    Wade, D.C.; Fujita, E.K.

    1987-01-01

    For LMR concepts, the goal of passive reactivity shutdown has been approached in the US by designing the reactors for favorable relationships among the power, power/flow, and inlet temperature coefficients of reactivity, for high internal conversion ratio (yielding small burnup control swing), and for a primary pump coastdown time appropriately matched to the delayed neutron hold back of power decay upon negative reactivity input. The use of sodium bonded metallic fuel pins has facilitated the achievement of the massive shutdown design goals as a consequence of their high thermal conductivity and high effective heavy metal density. Alternately, core designs based on derated oxide pins may be able to achieve the passive shutdown features at the cost of larger core volume and increased initial fissile inventory. For LMR concepts, the passive decay heat removal goal of inherent safety has been approached in US designs by use of pool layouts, larger surface to volume ratio of the reactor vessel with natural draft air cooling of the vessel surface, elevations and redans which promote natural circulation through the core, and thermal mass of the pool contents sufficient to absorb that initial transient decay heat which exceeds the natural draft air cooling capacity. This paper describes current US ''inherently safe'' reactor design

  4. 8 GHz, high power, microwave system for heating of thermonuclear plasmas

    International Nuclear Information System (INIS)

    Di Giovenale, S.; Fortunato, T.; Mirizzi, F.; Roccon, M.; Sassi, M.; Tuccillo, A.A.; Maffia, G.; Baldi, L.

    1993-01-01

    The Frascati Tokamak Upgrade (FTU) is a machine included in the European Thermonuclear Fusion Program aimed at investigating high density plasmas in the presence of powerful additional RF heating systems. The Lower Hybrid Resonant Heating (LHRH) system, based on 9 independent modules, works at 8 GHz, and will generate, at full performances, a total amount of 9 MW, in the pulsed regime (pulse length = 1 s, duty cycle = 1/600). The microwave power source is a gyrotron oscillator, developed by Thomson Tubes Electroniques (France) for this specific application, and capable of producing up to 1 MW. An overmoded, low loss, circular waveguide transmits the RF power toward the plasma; an array of 12x4 rectangular waveguides (the 'grill') launches this power into the plasma. The paper describes the LHRH system for FTU and analyses both its main performances and experimental results

  5. Thick-Film and LTCC Passive Components for High-Temperature Electronics

    Directory of Open Access Journals (Sweden)

    A. Dziedzic

    2013-04-01

    Full Text Available At this very moment an increasing interest in the field of high-temperature electronics is observed. This is a result of development in the area of wide-band semiconductors’ engineering but this also generates needs for passives with appropriate characteristics. This paper presents fabrication as well as electrical and stability properties of passive components (resistors, capacitors, inductors made in thick-film or Low-Temperature Co-fired Ceramics (LTCC technologies fulfilling demands of high-temperature electronics. Passives with standard dimensions usually are prepared by screen-printing whereas combination of standard screen-printing with photolithography or laser shaping are recommenced for fabrication of micropassives. Attainment of proper characteristics versus temperature as well as satisfactory long-term high-temperature stability of micropassives is more difficult than for structures with typical dimensions for thick-film and LTCC technologies because of increase of interfacial processes’ importance. However it is shown that proper selection of thick-film inks together with proper deposition method permit to prepare thick-film micropassives (microresistors, air-cored microinductors and interdigital microcapacitors suitable for the temperature range between 150°C and 400°C.

  6. The Physics of Superconducting Microwave Resonators

    Science.gov (United States)

    Gao, Jiansong

    Over the past decade, low temperature detectors have brought astronomers revolutionary new observational capabilities and led to many great discoveries. Although a single low temperature detector has very impressive sensitivity, a large detector array would be much more powerful and are highly demanded for the study of more difficult and fundamental problems in astronomy. However, current detector technologies, such as transition edge sensors and superconducting tunnel junction detectors, are difficult to integrate into a large array. The microwave kinetic inductance detector (MKID) is a promising new detector technology invented at Caltech and JPL which provides both high sensitivity and an easy solution to the detector integration. It senses the change in the surface impedance of a superconductor as incoming photons break Cooper pairs, by using high-Q superconducting microwave resonators capacitively coupled to a common feedline. This architecture allows thousands of detectors to be easily integrated through passive frequency domain multiplexing. In this thesis, we explore the rich and interesting physics behind these superconducting microwave resonators. The first part of the thesis discusses the surface impedance of a superconductor, the kinetic inductance of a superconducting coplanar waveguide, and the circuit response of a resonator. These topics are related with the responsivity of MKIDs. The second part presents the study of the excess frequency noise that is universally observed in these resonators. The properties of the excess noise, including power, temperature, material, and geometry dependence, have been quantified. The noise source has been identified to be the two-level systems in the dielectric material on the surface of the resonator. A semi-empirical noise model has been developed to explain the power and geometry dependence of the noise, which is useful to predict the noise for a specified resonator geometry. The detailed physical noise

  7. Waste minimization through high-pressure microwave digestion of soils for gross α/β analyses

    International Nuclear Information System (INIS)

    Yaeger, J.S.; Smith, L.L.

    1995-04-01

    As a result of the U.S. Department of Energy's (DOE) environmental restoration and waste management activities, laboratories receive numerous analytical requests for gross α/β analyses. Traditional sample preparation methods for gross α/β analysis of environmental and mixed waste samples require repetitive leaching, which is time consuming and generates large volumes of secondary wastes. An alternative to leaching is microwave digestion. In the past. microwave technology has had limited application in the radiochemical laboratory because of restrictions on sample size resulting from vessel pressure limitations. However, new microwave vessel designs allow for pressures on the order of 11 MPa (1500 psi). A procedure is described in which microwave digestion is used to prepare environmental soil samples for gross α/β analysis. Results indicate that the described procedure meets performance requirements for several soil types and is equivalent to traditional digestion techniques. No statistical differences at the 95% confidence interval exist between the measurement on samples prepared from the hot plate and microwave digestion procedures for those soils tested. Moreover, microwave digestion allows samples to be prepared in a fraction of the time with significantly less acid and with lower potential of cross-contamination. In comparison to the traditional hot plate method, the waste volumes required for the microwave procedure are a factor of 10 lower, while the analyst time for sample processing is at least a factor of three lower

  8. Thiol passivation of MWIR type II superlattice photodetectors

    Science.gov (United States)

    Salihoglu, O.; Muti, A.; Aydinli, A.

    2013-06-01

    Poor passivation on photodetectors can result in catastrophic failure of the device. Abrupt termination of mesa side walls during pixel definition generates dangling bonds that lead to inversion layers and surface traps leading to surface leakage currents that short circuit diode action. Good passivation, therefore, is critical in the fabrication of high performance devices. Silicondioxide has been the main stay of passivation for commercial photodetectors, deposited at high temperatures and high RF powers using plasma deposition techniques. In photodetectors based on III-V compounds, sulphur passivation has been shown to replace oxygen and saturate the dangling bonds. Despite its effectiveness, it degrades over time. More effort is required to create passivation layers which eliminate surface leakage current. In this work, we propose the use of sulphur based octadecanethiol (ODT), CH3(CH2)17SH, as a passivation layer for the InAs/GaSb superlattice photodetectors that acts as a self assembled monolayer (SAM). ODT SAMs consist of a chain of 18 carbon atoms with a sulphur atom at its head. ODT Thiol coating is a simple process that consist of dipping the sample into the solution for a prescribed time. Excellent electrical performance of diodes tested confirm the effectiveness of the sulphur head stabilized by the intermolecular interaction due to van der Walls forces between the long chains of ODT SAM which results in highly stable ultrathin hydrocarbon layers without long term degradation.

  9. Microwave Activation of Drug Release

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór

    Due to current limitations in control of pharmaceutical drug release in the body along with increasing medicine use, methods of externally-controlled drug release are of high interest. In this thesis, the use of microwaves is proposed as a technique with the purpose of externally activating...... setup, called the microwave activation system has been developed and tested on a body phantom that emulates the human torso. The system presented in this thesis, operates unobtrusively, i.e. without physically interfering with the target (patient). The torso phantom is a simple dual-layered cylindrical...... the phantom is of interest for disclosing essential information about the limitations of the concept, the phantom and the system. For these purposes, a twofold operation of the microwave activation system was performed, which are reciprocal of each other. In the first operation phase, named mapping...

  10. The microwave market

    International Nuclear Information System (INIS)

    Bybokas, J.

    1989-01-01

    As superconductors move from the laboratory to the marketplace, it becomes more important for researchers and manufacturers to understand the markets for this technology. The large market for microwave systems represents a major opportunity for high-T c superconductors. Conductor losses are a primary design limitation in conventional microwave systems. The low losses of superconductors at microwave frequencies will allow component designers and system designers to improve their products in many ways. The most important market segments for microwave systems are outlined in this discussion

  11. Effects of silicon-nitride passivation on the electrical behavior of 0.1-μm pseudomorphic high-electron-mobility transistors

    International Nuclear Information System (INIS)

    Oh, Jung-Hun; Sul, Woo-Suk; Han, Hyo-Jong; Jang, Hae-Kang; Son, Myung-Sik; Rhee, Jin-Koo; Kim, Sam- Dong

    2004-01-01

    We examine the effects of surface state formation due to silicon-nitride passivation on the electrical characteristics of GaAs-based 0.1-μm pseudomorphic high-electron-mobility transistors (pHEMTs). In this study, DC and noise characteristic are investigated before and after the passivation of the pHEMTs. After the passivation, we observe significant degradation of noise performance in the frequency range of 55 - 62 GHz. We also observe clear increases in the drain-source saturation current at a gate voltage of 0 V and in the extrinsic transconductance at a drain voltage of 1 V from 325 and 264 to 365 mA/mm and 304 mS/mm, respectively, with no significant variation in pinchoff voltage. We propose that the observed variations in the DC and the noise characteristics are due to the positively charged surface state after deposition of the silicon nitride passivation film. Hydrodynamic device model simulations were performed based upon the proposed mechanisms for the change in electrical behavior, and the calculated results show good agreement with the experimental results.

  12. Lunar Heat Flux Measurements Enabled by a Microwave Radiometer Aboard the Deep Space Gateway

    Science.gov (United States)

    Siegler, M.; Ruf, C.; Putzig, N.; Morgan, G.; Hayne, P.; Paige, D.; Nagihara, S.; Weber, R.

    2018-02-01

    We would like to present a concept to use the Deep Space Gateway as a platform for constraining the geothermal heat production, surface, and near-surface rocks, and dielectric properties of the Moon from orbit with passive microwave radiometery.

  13. Materials for passively safe reactors

    International Nuclear Information System (INIS)

    Simnad, T.

    1993-01-01

    Future nuclear power capacity will be based on reactor designs that include passive safety features if recent progress in advanced nuclear power developments is realized. There is a high potential for nuclear systems that are smaller and easier to operate than the current generation of reactors, especially when passive or intrinsic characteristics are applied to provide inherent stability of the chain reaction and to minimize the burden on equipment and operating personnel. Taylor, has listed the following common generic technical features as the most important goals for the principal reactor development systems: passive stability, simplification, ruggedness, case of operation, and modularity. Economic competitiveness also depends on standardization and assurance of licensing. The performance of passively safe reactors will be greatly influenced by the successful development of advanced fuels and materials that will provide lower fuel-cycle costs. A dozen new designs of advanced power reactors have been described recently, covering a wide spectrum of reactor types, including pressurized water reactors, boiling water reactors, heavy-water reactors, modular high-temperature gas-cooled reactors (MHTGRs), and fast breeder reactors. These new designs address the need for passive safety features as well as the requirement of economic competitiveness

  14. Parameter Scaling in Non-Linear Microwave Tomography

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar

    2012-01-01

    Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....

  15. Performance of ALMR passive decay heat removal system

    International Nuclear Information System (INIS)

    Boardman, C.E.; Hunsbedt, A.

    1991-01-01

    The Advanced Liquid Metal Reactor (ALMR) concept has a totally passive safety-grade decay heat removal system referred to as the Reactor Vessel Auxiliary Cooling System (RVACS) that rejects heat from the small (471 MWt) modular reactor to the environmental air by natural convection heat transfer. The system has no active components, requires no operator action to initiate, and is inherently reliable. The RVACS can perform its function under off-normal or degraded operating conditions without significant loss in performance. Several such events are described and the RVACS thermal performance for each is given and compared to the normal operation performance. The basic RVACS performance as well as the performance during several off-normal events have been updated to reflect design changes for recycled fuel with minor actinides for end of equilibrium cycle conditions. The performance results for several other off-normal events involving various degrees of RVACS air flow passage blockages are presented. The results demonstrated that the RVACS is unusually tolerant to a wide range of postulated faults. (author)

  16. Microwave detection of air showers with the MIDAS experiment

    International Nuclear Information System (INIS)

    Privitera, Paolo; Alekotte, I.; Alvarez-Muniz, J.; Berlin, A.; Bertou, X.; Bogdan, M.; Bohacova, M.; Bonifazi, C.; Carvalho, W.R.; Mello Neto, J.R.T. de; Facal San Luis, P.; Genat, J.F.; Hollon, N.; Mills, E.; Monasor, M.; Reyes, L.C.; Rouille d'Orfeuil, B.; Santos, E.M.; Wayne, S.; Williams, C.

    2011-01-01

    Microwave emission from Extensive Air Showers could provide a novel technique for ultra-high energy cosmic rays detection over large area and with 100% duty cycle. We describe the design, performance and first results of the MIDAS (MIcrowave Detection of Air Showers) detector, a 4.5 m parabolic dish with 53 feeds in its focal plane, currently installed at the University of Chicago.

  17. Low content Ag-coated poly(acrylonitrile) microspheres and graphene for enhanced microwave absorption performance epoxy composites

    Science.gov (United States)

    Zhang, Bin; Wang, Jun; Chen, Xiaocheng; Su, Xiaogang; Zou, Yi; Huo, Siqi; Chen, Wei; Wang, Junpeng

    2018-04-01

    Silver nanoparticles was uniformly anchored on the surface of hollow poly(acrylonitrile) microspheres with a facile chemical method using hydrazine hydrate as reductant. Integrating these conducting hollow spheres (PANS@Ag) with chemical reduced graphene oxide (RGO) dispersed in epoxy resin, a lightweight microwave absorber was successfully prepared with enhanced microwave absorption performance. The chemical constitution and surface morphology of as-synthesized RGO and PANS@Ag powders were characterized by XRD, XPS, FE-SEM and SAED, while the electromagnetic properties of these different proportion PANS@Ag-RGO/EP samples were analyzed through vector network analyzer (VNA). The minimum reflection loss (RL) could reach up to ‑28.1 dB at 8.8 GHz with a layer thickness of 2 mm, and the corresponding effective absorption bandwidth (RL values less than ‑10 dB) was from 7.9 GHz to 9.8 GHz. However, the dosage of PANS@Ag and RGO was merely 3 wt% and 1 wt%, respectively. As the content of PANS@Ag powders decreased to 1 wt%, the PANS@Ag-RGO/EP samples still retained effective microwave absorption performance and the optimal RL was ‑14.7 dB. The density of as-prepared absorbers was in the range of 0.49 ∼ 0.87 g cm‑3. The low content, low density and enhanced microwave absorption performance endow the hybrid composites with competitive application prospect in stealth technology field.

  18. Porous carbon spheres via microwave-assisted synthesis for capacitive deionization

    International Nuclear Information System (INIS)

    Liu, Yong; Pan, Likun; Chen, Taiqiang; Xu, Xingtao; Lu, Ting; Sun, Zhuo; Chua, Daniel H.C.

    2015-01-01

    Highlights: • Porous carbon spheres were fabricated through a fast microwave-assisted approach. • The capacitive deionization performance of Porous carbon spheres was studied. • Porous carbon spheres exhibit a high NaCl removal with good regeneration ability. - Abstract: Porous carbon spheres (PCSs) were fabricated through a fast microwave-assisted approach using sucrose as the precursor in a microwave system and subsequent thermal treatment at 600, 800 and 1000 °C. The morphology, structure and electrochemical performance of the PCSs were characterized by scanning electron microscopy, Raman spectroscopy, nitrogen adsorption-desorption, cyclic voltammetry and electrochemical impedance spectroscopy. Their electrosorption performance in NaCl solution was studied and compared with activated carbon, carbon nanotubes, reduced graphene and carbon aerogels. The results show that due to their high specific surface area and low charge transfer resistance, PCSs treated at 1000 °C exhibit high electrosorption capacity of 5.81 m g g −1 when the initial solution concentration is 500 mg l −1 , which is higher than those of other carbon materials

  19. High-electric-field-stress-induced degradation of SiN passivated AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Wen-Ping, Gu; Huan-Tao, Duan; Jin-Yu, Ni; Yue, Hao; Jin-Cheng, Zhang; Qian, Feng; Xiao-Hua, Ma

    2009-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) are fabricated by employing SiN passivation, this paper investigates the degradation due to the high-electric-field stress. After the stress, a recoverable degradation has been found, consisting of the decrease of saturation drain current I Dsat , maximal transconductance g m , and the positive shift of threshold voltage V TH at high drain-source voltage V DS . The high-electric-field stress degrades the electric characteristics of AlGaN/GaN HEMTs because the high field increases the electron trapping at the surface and in AlGaN barrier layer. The SiN passivation of AlGaN/GaN HEMTs decreases the surface trapping and 2DEG depletion a little during the high-electric-field stress. After the hot carrier stress with V DS = 20 V and V GS = 0 V applied to the device for 10 4 sec, the SiN passivation decreases the stress-induced degradation of I Dsat from 36% to 30%. Both on-state and pulse-state stresses produce comparative decrease of I Dsat , which shows that although the passivation is effective in suppressing electron trapping in surface states, it does not protect the device from high-electric-field degradation in nature. So passivation in conjunction with other technological solutions like cap layer, prepassivation surface treatments, or field-plate gate to weaken high-electric-field degradation should be adopted. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Microwave pulse generation by photoconductive switching

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L.

    1989-03-14

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories (1) the frozen wave generator or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200..mu..J optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency. 3 refs., 6 figs.

  1. Microwave pulse generation by photoconductive switching

    Science.gov (United States)

    Pocha, M. D.; Druce, R. L.

    1989-03-01

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories: (1) the frozen wave generator, or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200 microJ optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency.

  2. Converting a Microwave Oven into a Plasma Reactor: A Review

    Directory of Open Access Journals (Sweden)

    Victor J. Law

    2018-01-01

    Full Text Available This paper reviews the use of domestic microwave ovens as plasma reactors for applications ranging from surface cleaning to pyrolysis and chemical synthesis. This review traces the developments from initial reports in the 1980s to today’s converted ovens that are used in proof-of-principle manufacture of carbon nanostructures and batch cleaning of ion implant ceramics. Information sources include the US and Korean patent office, peer-reviewed papers, and web references. It is shown that the microwave oven plasma can induce rapid heterogeneous reaction (solid to gas and liquid to gas/solid plus the much slower plasma-induced solid state reaction (metal oxide to metal nitride. A particular focus of this review is the passive and active nature of wire aerial electrodes, igniters, and thermal/chemical plasma catalyst in the generation of atmospheric plasma. In addition to the development of the microwave oven plasma, a further aspect evaluated is the development of methodologies for calibrating the plasma reactors with respect to microwave leakage, calorimetry, surface temperature, DUV-UV content, and plasma ion densities.

  3. Integrated-circuit microwave detector based on granular high-Tc thin films. [Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Drobinin, A.V.; Lutovinov, V.S.; Starostenko, I.V. (Moscow Inst. of Radioengineering, Electronics and Automation, (MIREA), Moscow (USSR))

    1991-12-01

    A highly sensitive integrative-circuit microwave detector based on granular High-Tc film has been designed. All matching circuits and High-Tc microbridge are located on the same substrate. The voltage responsivity 10{sup 3} V/W has been found at 65 K and frequency 5 GHz. Different modes of microwave detection have been observed: bolometric response near Tc in high-quality films, rectification mode caused by an array of weak links dominating in low-quality films, detection caused by nonlinear magnetic flux motion. (orig.).

  4. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.

    Science.gov (United States)

    Huang, Jing; Xu, Bo; Yuan, Chunze; Chen, Hong; Sun, Junliang; Sun, Licheng; Agren, Hans

    2014-11-12

    A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution can be an effective approach to introduce different ligands.

  5. Description and Performance of an L-Band Radiometer with Digital Beamforming

    Directory of Open Access Journals (Sweden)

    Juan F. Marchan-Hernandez

    2010-12-01

    Full Text Available This paper presents the description and performance tests of an L-band microwave radiometer with Digital Beamforming (DBF, developed for the Passive Advanced Unit (PAU for ocean monitoring project. PAU is an instrument that combines, in a single receiver and without time multiplexing, a microwave radiometer at L-band (PAU-RAD and a GPS-reflectometer (PAU-GNSS-R. This paper focuses on the PAU‑RAD beamformer’s first results, analyzing the hardware and software required for the developed prototype. Finally, it discusses the first results measured in the Universitat Politècnica de Catalunya (UPC anechoic chamber.

  6. Microwave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performance

    International Nuclear Information System (INIS)

    Xu, Xiaowei; Shen, Jianfeng; Li, Na; Ye, Mingxin

    2014-01-01

    Highlights: • RGO/CoMoO 4 nanocomposites are prepared by microwave irradiation for the first time. • RGO/CoMoO 4 nanocomposites show a high specific capacitance of 322.5 F g −1 . • Enhanced electrical conductivity leads to superior electrochemical performance. • Low crystallinity of CoMoO 4 is favorable to improve the electrochemical performance. - Abstract: A facile and efficient strategy for preparing reduced graphene oxide–cobalt molybdate (RGO/CoMoO 4 ) nanocomposites assisted by microwave irradiation for the first time is demonstrated. The resulting nanocomposites are comprised of CoMoO 4 nanoparticles that are well-anchored on graphene sheets by in situ reducing. The prepared RGO/CoMoO 4 nanocomposites have been thoroughly characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, scanning electron microscopy and X-ray photoelectron spectroscopy. Importantly, the prepared nanocomposites exhibit excellent electrochemical performance for supercapacitors. Results show that RGO/CoMoO 4 nanocomposites exhibited much better electrochemical capability than pure-CoMoO 4 and RGO/CoMoO 4 for annealing. RGO/CoMoO 4 nanocomposites with 37.4 wt% CoMoO 4 content achieved a specific capacitance about 322.5 F g −1 calculated from the CV plots at 5 mV s −1 , which was higher than that of pure-CoMoO 4 (95.0 F g −1 ) and RGO/CoMoO 4 for annealing (102.5 F g −1 ). The good electrochemical performance can be attributed to the synergistic effects of the individual components

  7. Hyperparameter Classification of Arctic Sea Ice and Snow Based on Aerial Laser Data, Passive Microwave Data and Field Data

    Science.gov (United States)

    Herzfeld, U. C.; Maslanik, J.; Williams, S.; Sturm, M.; Cavalieri, D.

    2006-12-01

    In the past year, the Arctic sea-ice cover has been shrinking at an alarming rate. Remote-sensing technologies provide opportunities for observations of the sea ice at unprecedented repetition rates and spatial resolutions. The advance of new observational technologies is not only fascinating, it also brings with it the challenge and necessity to derive adequate new geoinformatical and geomathematical methods as a basis for analysis and geophysical interpretation of new data types. Our research includes validation and analysis of NASA EOS data, development of observational instrumentation and advanced geoinformatics. In this talk we emphasize the close linkage between technological development and geoinformatics along case studies of sea-ice near Point Barrow, Alaska, based on the following data types: AMSR-E and PSR passive microwave data, RADARSAT and ERS SAR data, manually-collected snow-depth data and laser-elevation data from unmanned aerial vehicles. The hyperparameter concept is introduced to facilitate characterization and classification of the same sea-ice properties and spatial structures from these data sets, which differ with respect to spatial resolution, measured parameters and observed geophysical variables. Mathematically, this requires parameter identification in undersampled, oversampled or overprinted situations.

  8. Calibration of passive remote observing optical and microwave instrumentation; Proceedings of the Meeting, Orlando, FL, Apr. 3-5, 1991

    Science.gov (United States)

    Guenther, Bruce W.

    Various papers on the calibration of passive remote observing optical and microwave instrumentation are presented. Individual topics addressed include: on-board calibration device for a wide field-of-view instrument, calibration for the medium-resolution imaging spectrometer, cryogenic radiometers and intensity-stabilized lasers for EOS radiometric calibrations, radiometric stability of the Shuttle-borne solar backscatter ultraviolet spectrometer, ratioing radiometer for use with a solar diffuser, requirements of a solar diffuser and measurements of some candidate materials, reflectance stability analysis of Spectralon diffuse calibration panels, stray light effects on calibrations using a solar diffuser, radiometric calibration of SPOT 23 HRVs, surface and aerosol models for use in radiative transfer codes. Also addressed are: calibrated intercepts for solar radiometers used in remote sensor calibration, radiometric calibration of an airborne multispectral scanner, in-flight calibration of a helicopter-mounted Daedalus multispectral scanner, technique for improving the calibration of large-area sphere sources, remote colorimetry and its applications, spatial sampling errors for a satellite-borne scanning radiometer, calibration of EOS multispectral imaging sensors and solar irradiance variability. (For individual items see A93-23576 to A93-23603)

  9. Assessment of the effect of nitrogen gas on passive containment cooling system performance

    International Nuclear Information System (INIS)

    Ha, Huiun; Suh, Jungsoo

    2016-01-01

    As a part of the passive containment cooling system (PCCS) of Innovative PWR development project, we have been investigating the effect of the nitrogen gas released from safety injection tank (SIT) on PCCS performance. With the design characteristics of APR1400 and conceptual design of PCCS, we developed a GOTHIC model of the APR1400 containment with PCCS. The calculation model is described herein, and representative results from the calculation are presented as well. The results of the present work will be used for the design of PCCS. APR1400 GOTHIC model was developed for assessment on the effect of SIT nitrogen gas on passive containment cooling system performance. Calculation results confirmed that influence of nitrogen gas release is negligible; however, further studies should be performed to confirm effect of non-condensable gas on the final performance of PCCS. These insights are important for developing the PCCS of Innovative PWR

  10. Assessment of the effect of nitrogen gas on passive containment cooling system performance

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Huiun; Suh, Jungsoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    As a part of the passive containment cooling system (PCCS) of Innovative PWR development project, we have been investigating the effect of the nitrogen gas released from safety injection tank (SIT) on PCCS performance. With the design characteristics of APR1400 and conceptual design of PCCS, we developed a GOTHIC model of the APR1400 containment with PCCS. The calculation model is described herein, and representative results from the calculation are presented as well. The results of the present work will be used for the design of PCCS. APR1400 GOTHIC model was developed for assessment on the effect of SIT nitrogen gas on passive containment cooling system performance. Calculation results confirmed that influence of nitrogen gas release is negligible; however, further studies should be performed to confirm effect of non-condensable gas on the final performance of PCCS. These insights are important for developing the PCCS of Innovative PWR.

  11. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: Initial Comprehensive Performance Test Report, P/N 1331200-2-IT, S/N 105/A2

    Science.gov (United States)

    Platt, R.

    1999-01-01

    This is the Performance Verification Report, Initial Comprehensive Performance Test Report, P/N 1331200-2-IT, S/N 105/A2, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). The specification establishes the requirements for the Comprehensive Performance Test (CPT) and Limited Performance Test (LPT) of the Advanced Microwave Sounding, Unit-A2 (AMSU-A2), referred to herein as the unit. The unit is defined on Drawing 1331200. 1.2 Test procedure sequence. The sequence in which the several phases of this test procedure shall take place is shown in Figure 1, but the sequence can be in any order.

  12. A reflexing electron microwave amplifier for rf particle accelerator applications

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.

    1988-01-01

    The evolution of rf-accelerator technology toward high-power, high-current, low-emittance beams produces an ever-increasing demand for efficient, very high power microwave power sources. The present klystron technology has performed very well but is not expected to produce reliable gigawatt peak-power units in the 1- to 10-GHz regime. Further major advancements must involve other types of sources. The reflexing-electron class of sources can produce microwave powers at the gigawatt level and has demonstrated operation from 800-MHz to 40-GHz. The pulse length appears to be limited by diode closure, and reflexing-electron devices have been operated in a repetitively pulsed mode. A design is presented for a reflexing electron microwave amplifier that is frequency and phase locked. In this design, the generated microwave power can be efficiently coupled to one or several accelerator loads. Frequency and phase-locking capability may permit parallel-source operation for higher power. The low-frequency (500-MHz to 10-GHz) operation at very high power required by present and proposed microwave particle accelerators makes an amplifier, based on reflexing electron phenomena, a candidate for the development of new accelerator power sources. (author)

  13. Performance of the PBX-M passive plate stabilization system

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, R.; Bernabei, S.

    1994-02-01

    The PBX-M passive plate stabilization system provides significant stabilization of long-wavelength external kink modes, the slowing of vertical instability growth rates, and the amelioration of disruption characteristics. The passive plate stabilization system has allowed the use of LHCD and IBW to induce current density and pressure profile modifications, and m = 1 divertor biasing for modifying edge plasma transport. Improvements in the passive plate system insulators and support structures have provided reliable operation. Impurity influxes with the close-fitting passive plates are low. Solid target boronization is applied routinely to reduce conditioning time and maintain clean conditions

  14. Trends vs. reactor size of passive reactivity shutdown and control performance

    International Nuclear Information System (INIS)

    Wade, D.C.; Fujita, E.K.

    1988-01-01

    The focus of the US advanced reactor program since the cancellation of CRBR has been on inherent safety and cost reduction. The notion is to so design the reactor that in the event of an off normal condition, it brings itself to a safe shutdown condition and removes decay heat by reliance on ''inherent processes'' i.e., without reliance on devices requiring switching and outside sources of power. Such a reactor design would offer the potential to eliminate costly ''Engineered Safety Features,'' to lower capital costs, and to assuage public unease concerning reactor safety. For LMR concepts, the goal of passive reactivity shutdown has been approached in the US by designing the reactors for favorable relationships among the power, power/flow, and inlet temperature coefficients of reactivity, for high internal conversion ratio (yielding small burnup control swing), and for a primary pump coastdown time appropriately matched to the delayed neutron hold back of power decay upon negative reactivity input. The use of sodium bonded metallic fuel pins has facilitated the achievement of the passive shutdown design goals as a consequence of their high thermal conductivity and high effective heavy metal density. Alternately, core designs based on derated oxide pins may be able to achieve the passive shutdown features at the cost of larger core volume and increased initial fissile inventory. 8 refs., 12 figs., 1 tab

  15. The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    Czech Academy of Sciences Publication Activity Database

    Alvarez-Muñiz, J.; Soares, E.A.; Berlin, A.; Bogdan, M.; Boháčová, Martina; Bonifazi, C.; Carvalho, W.R.; de Mello Neto, J.R.T.; San Luis, P.F.; Genat, J.F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P.; Ramos de Castro, A.; Reyes, L.C.; Richardson, M.; Rouille D’Orfeuil, B.; Santos, E.M.; Wayne, S.; Williams, C.; Zas, E.; Zhou, J.

    2013-01-01

    Roč. 719, Aug (2013), s. 70-80 ISSN 0168-9002 Institutional support: RVO:68378271 Keywords : ultra high energy cosmic rays * radio-detection * microwave * GHz Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.316, year: 2013

  16. Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater

    International Nuclear Information System (INIS)

    Yang Yu; Wang Peng; Shi Shujie; Liu Yuan

    2009-01-01

    This paper explored a novel process for wastewater treatment, i.e. microwave enhanced Fenton-like process. This novel process was introduced to treat high concentration pharmaceutical wastewater with initial COD loading of 49,912.5 mg L -1 . Operating parameters were investigated and the optimal condition included as follows: microwave power was 300 W, radiation time was 6 min, initial pH was 4.42, H 2 O 2 dosage was 1300 mg L -1 and Fe 2 (SO 4 ) 3 dosage was 4900 mg L -1 , respectively. Within the present experimental condition used, the COD removal and UV 254 removal reached to 57.53% and 55.06%, respectively, and BOD 5 /COD was enhanced from 0.165 to 0.470. The variation of molecular weight distribution indicated that both macromolecular substances and micromolecular substances were eliminated quite well. The structure of flocs revealed that one ferric hydrated ion seemed to connect with another ferric hydrated ion and/or organic compound molecule to form large-scale particles by means of van der waals force and/or hydrogen bond. Subsequently, these particles aggregated to form flocs and settled down. Comparing with traditional Fenton-like reaction and conventional heating assisted Fenton-like reaction, microwave enhanced Fenton-like process displayed superior treatment efficiency. Microwave was in favor of improving the degradation efficiency, the settling quality of sludge, as well as reducing the yield of sludge and enhancing the biodegradability of effluent. Microwave enhanced Fenton-like process is believed to be a promising treatment technology for high concentration and biorefractory wastewater.

  17. Performance Improvement of a Centrifugal Compressor by Passive Means

    Directory of Open Access Journals (Sweden)

    N. Sitaram

    2012-01-01

    Full Text Available The present experimental investigation deals with performance improvement of a low-speed centrifugal compressor by inexpensive passive means such as turbulence generator placed at different positions and partial shroud near the rotor blade tip. The experiments are carried out at three values of tip clearance, namely 2.2%, 5.1%, and 7.9% of rotor blade height at the exit. Performance tests are carried out for a total of 13 configurations. From these measurements, partial shroud is found to give the best performance. The improvement in the compressor performance may be due to the reduction of tip leakage flows by the small extension of partial shroud (2 mm on the pressure surface side. Although there is nominal change in performance due to turbulence generator (TG, TG has beneficial effect of increased operating range.

  18. Application of HTSC-thin films in microwave bandpass filters

    International Nuclear Information System (INIS)

    Jha, A.R.

    1993-01-01

    This paper reveals unique performance capabilities of High-Temperature Superconducting Thin-Film (HTSCTFs) for possible applications in microwave bandpass filters (BPFs). Microwave filters fabricated with HTSCTFs have demonstrated lowest insertion loss, highest rejection, and sharpest skirt selectivity. Thin films of Yttrium Barium Copper Oxide (YBCO), Bismuth Strontium Calcium Copper Oxide (BSCCO) and Thallium Calcium Barium Copper Oxide (TCBCO) will be most attractive for filters

  19. Technical - Economic Research for Passive Buildings

    Science.gov (United States)

    Miniotaite, Ruta

    2017-10-01

    A newly constructed passive house must save 80 % of heat resources; otherwise it is not a passive house. The heating energy demand of a passive building is less than 15 kWh/m2 per year. However, a passive house is something more than just an energy-saving house. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Features of a passive house: high insulation of envelope components, high-quality windows, good tightness of the building, regenerative ventilation system and elimination of thermal bridges. The Energy Performance of Buildings Directive (EPBD) 61 requires all new public buildings to become near-zero energy buildings by 2019 and will be extended to all new buildings by 2021. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Foundation, walls and roofs are the most essential elements of a house. The type of foundation for a private house is selected considering many factors. The article examines technological and structural solutions for passive buildings foundation, walls and roofs. The technical-economic comparison of the main structures of a passive house revealed that it is cheaper to install an adequately designed concrete slab foundation than to build strip or pile foundation and the floor separately. Timber stud walls are the cheapest wall option for a passive house and 45-51% cheaper compared to other options. The comparison of roofs and ceilings showed that insulation of the ceiling is 25% more efficient than insulation of the roof. The comparison of the main envelope elements efficiency by multiple-criteria evaluation methods showed that it is economically feasible to install concrete slab on ground foundation, stud walls with sheet cladding and a pitched roof with insulated ceiling.

  20. Rapid and Decentralized Human Waste Treatment by Microwave Radiation.

    Science.gov (United States)

    Nguyen, Tu Anh; Babel, Sandhya; Boonyarattanakalin, Siwarutt; Koottatep, Thammarat

    2017-07-01

      This study evaluates the technical feasibility of using microwave radiation for the rapid treatment of human feces. Human feces of 1000 g were radiated with a commercially available household microwave oven (with rotation) at different exposure time lengths (30, 50, 60, 70, and 75 mins) and powers (600, 800, and 1000 W). Volume reduction over 90% occurred after 1000 W microwave radiation for 75 mins. Pathogen eradiation performances of six log units or more at a high range of microwave powers were achieved. Treatments with the same energy input of 1000 Wh, but at lower powers with prolonged exposure times, significantly enhanced moisture removal and volume reduction. Microwave radiation caused carbonization and resulted in a more stable end product. The energy content of the samples after microwave treatment at 1000 W and 75 mins is 3517 ± 8.85 calories/g of dried sample, and the product can also be used as compost.

  1. The influences of microwave irradiation and polyol precursor pH on Cu/AC catalyst and its CO oxidation performance

    Science.gov (United States)

    Chuang, Kui-Hao; Shih, Kaimin; Wey, Ming-Yen

    2012-10-01

    This study evaluated the effects of microwave irradiation parameters and the pH of the polyol precursor on the morphological features and catalytic performances of Cu/activated carbon (AC) catalysts. Experimental results of carbon monoxide (CO) oxidation indicated that the highest catalytic activity is achieved when the Cu/AC catalyst is prepared with microwave irradiation at 700 W for 60 s. Scanning electron microscopy revealed the presence of beneficial small copper aciculae on the Cu/AC catalyst under such a microwave irradiation scheme. Further investigation of operational parameters found that the performance of Cu/AC catalysts is enhanced by adopting a pH = 12 polyol precursor solution. With the observation that small cube copper ( 16 nm) aggregates form when a pH = 12 polyol precursor solution is used, this study also demonstrated the importance of controlling the morphology of metal nanoparticles on Cu/AC catalysts when using the microwave-assisted polyol method.

  2. The influences of microwave irradiation and polyol precursor pH on Cu/AC catalyst and its CO oxidation performance

    International Nuclear Information System (INIS)

    Chuang, Kui-Hao; Shih, Kaimin; Wey, Ming-Yen

    2012-01-01

    This study evaluated the effects of microwave irradiation parameters and the pH of the polyol precursor on the morphological features and catalytic performances of Cu/activated carbon (AC) catalysts. Experimental results of carbon monoxide (CO) oxidation indicated that the highest catalytic activity is achieved when the Cu/AC catalyst is prepared with microwave irradiation at 700 W for 60 s. Scanning electron microscopy revealed the presence of beneficial small copper aciculae on the Cu/AC catalyst under such a microwave irradiation scheme. Further investigation of operational parameters found that the performance of Cu/AC catalysts is enhanced by adopting a pH = 12 polyol precursor solution. With the observation that small cube copper (∼16 nm) aggregates form when a pH = 12 polyol precursor solution is used, this study also demonstrated the importance of controlling the morphology of metal nanoparticles on Cu/AC catalysts when using the microwave-assisted polyol method.

  3. Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita'92

    International Nuclear Information System (INIS)

    Jackson, T.J.; Le Vine, D.M.; Swift, C.T.; Schmugge, T.J.; Schiebe, F.R.

    1995-01-01

    Washita'92 was a large-scale study of remote sensing and hydrology conducted on the Little Washita watershed in southwest Oklahoma. Data collection during the experiment included passive microwave observations using an L-band electronically scanned thinned array radiometer (ESTAR) and surface soil moisture observations at sites distributed over the area. Data were collected on 8 days over a 9-day period in June 1992. The watershed was saturated with a great deal of standing water at the outset of the study. During the experiment there was no rainfall and surface soil moisture observations exhibited a drydown pattern over the period. Significant variations in the level and rate of change in surface soil moisture were noted over areas dominated by different soil textures. ESTAR data were processed to produce brightness temperature maps of a 740 sq. km. area on each of the 8 days. These data exhibited significant spatial and temporal patterns. Spatial patterns were clearly associated with soil textures and temporal patterns with drainage and evaporative processes. Relationships between the ground sampled soil moisture and the brightness temperatures were consistent with previous results. Spatial averaging of both variables was analyzed to study scaling of soil moisture over a mixed landscape. Results of these studies showed that a strong correlation is retained at these scales, suggesting that mapping surface moisture for large footprints may provide important information for regional studies. (author)

  4. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex

    2012-07-29

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  5. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex; Thon, Susanna; Hoogland, Sjoerd H.; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan K.; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin H.; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, E. H.

    2012-01-01

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  6. Commercial microwave space power

    International Nuclear Information System (INIS)

    Siambis, J.; Gregorwich, W.; Walmsley, S.; Shockey, K.; Chang, K.

    1991-01-01

    This paper reports on central commercial space power, generating power via large scale solar arrays, and distributing power to satellites via docking, tethering or beamed power such as microwave or laser beams, that is being investigated as a potentially advantageous alternative to present day technology where each satellite carries its own power generating capability. The cost, size and weight for electrical power service, together with overall mission requirements and flexibility are the principal selection criteria, with the case of standard solar array panels based on the satellite, as the reference point. This paper presents and investigates a current technology design point for beamed microwave commercial space power. The design point requires that 25 kW be delivered to the user load with 30% overall system efficiency. The key elements of the design point are: An efficient rectenna at the user end; a high gain, low beam width, efficient antenna at the central space power station end, a reliable and efficient cw microwave tube. Design trades to optimize the proposed near term design point and to explore characteristics of future systems were performed. Future development for making the beamed microwave space power approach more competitive against docking and tethering are discussed

  7. Passivity and passivity breakdown of 304L stainless steel in hot and concentrated nitric acid

    International Nuclear Information System (INIS)

    Gillard-Tcharkhtchi, Elsa

    2014-01-01

    The objective of this study is to characterize the oxidation behavior of 304L stainless steel (SS) in representative conditions of spent nuclear fuel reprocessing, i.e. in hot and concentrated nitric acid. In these conditions the SS electrochemical potential is in the passive domain and its corrosion rate is low. However when the media becomes more aggressive, the potential may be shifted towards the trans-passive domain characterized with a high corrosion rate. Passivity and passivity breakdown in the trans-passive domain are of a major interest for the industry. So as to characterize these phenomenons, this work was undertaken with the following representative conditions: a 304L SS from an industrial sheet was studied, the media was hot and concentrated HNO 3 , long term tests were performed. First, the surface of an immersed 304L SS was characterized with several complementary techniques from the micro to the nanometer scale. Then oxidation kinetics was studied in the passive and in the trans-passive domain. The oxidation behavior was studied thanks to weight loss determination and surface analysis. Finally, oxidation evolution as a function of the potential was studied from the passive to the trans-passive domain. In particular, this allowed us to obtain the anodic curve of 304L SS in hot and concentrated and to define precisely the 304L SS limits of in such conditions. (author) [fr

  8. Microwave Impedance Measurement for Nanoelectronics

    Directory of Open Access Journals (Sweden)

    M. Randus

    2011-04-01

    Full Text Available The rapid progress in nanoelectronics showed an urgent need for microwave measurement of impedances extremely different from the 50Ω reference impedance of measurement instruments. In commonly used methods input impedance or admittance of a device under test (DUT is derived from measured value of its reflection coefficient causing serious accuracy problems for very high and very low impedances due to insufficient sensitivity of the reflection coefficient to impedance of the DUT. This paper brings theoretical description and experimental verification of a method developed especially for measurement of extreme impedances. The method can significantly improve measurement sensitivity and reduce errors caused by the VNA. It is based on subtraction (or addition of a reference reflection coefficient and the reflection coefficient of the DUT by a passive network, amplifying the resulting signal by an amplifier and measuring the amplified signal as a transmission coefficient by a common vector network analyzer (VNA. A suitable calibration technique is also presented.

  9. TRAC analysis of passive containment cooling system performance

    International Nuclear Information System (INIS)

    Arai, Kenji; Kataoka, Kazuyoshi; Nagasaka, Hideo

    1993-01-01

    A passive containment cooling system (PCCS) is a promising concept to improve the reliability of decay heat removal during an accident. Toshiba has carried out analytical studies for PCCS development in addition to experimental studies, using a best estimate thermal hydraulic computer code TRAC. In order to establish an analytical model for the PCCS performance analysis, it is necessary for the analytical model to be qualified against experimental results and thoroughly address the phenomena important for PCCS performance analysis. In this paper, the TRAC qualification for PCCS application is reported. A TRAC model has been verified against a drain line break simulation test conducted at the PCCS integral test facility, GIRAFFE. The result shows that the TRAC model can accurately predict the major system response and the PCCS performance in the drain line break test. In addition, the results of several sensitivity analyses, showing various points concerning the modeling in the PCCS performance analysis, have been reported. The analyses have been carried out for the SBWR and the analytical points are closely related to important phenomena which can affect PCCS performance

  10. Satellite microwave remote sensing of North Eurasian inundation dynamics: development of coarse-resolution products and comparison with high-resolution synthetic aperture radar data

    International Nuclear Information System (INIS)

    Schroeder, R; Rawlins, M A; McDonald, K C; Podest, E; Zimmermann, R; Kueppers, M

    2010-01-01

    Wetlands are not only primary producers of atmospheric greenhouse gases but also possess unique features that are favourable for application of satellite microwave remote sensing to monitoring their status and trend. In this study we apply combined passive and active microwave remote sensing data sets from the NASA sensors AMSR-E and QuikSCAT to map surface water dynamics over Northern Eurasia. We demonstrate our method on the evolution of large wetland complexes for two consecutive years from January 2006 to December 2007. We apply river discharge measurements from the Ob River along with land surface runoff simulations derived from the Pan-Arctic Water Balance Model during and after snowmelt in 2006 and 2007 to interpret the abundance of widespread flooding along the River Ob in early summer of 2007 observed in the remote sensing products. The coarse-resolution, 25 km, surface water product is compared to a high-resolution, 30 m, inundation map derived from ALOS PALSAR (Advanced Land Observation Satellite phased array L-band synthetic aperture radar) imagery acquired for 11 July 2006, and extending along a transect in the central Western Siberian Plain. We found that the surface water fraction derived from the combined AMSR-E/QuikSCAT data sets closely tracks the inundation mapped using higher-resolution ALOS PALSAR data.

  11. Noise performance of microwave humidity sounders over their lifetime

    Directory of Open Access Journals (Sweden)

    I. Hans

    2017-12-01

    Full Text Available The microwave humidity sounders Special Sensor Microwave Water Vapor Profiler (SSMT-2, Advanced Microwave Sounding Unit-B (AMSU-B and Microwave Humidity Sounder (MHS to date have been providing data records for 25 years. So far, the data records lack uncertainty information essential for constructing consistent long time data series. In this study, we assess the quality of the recorded data with respect to the uncertainty caused by noise. We calculate the noise on the raw calibration counts from the deep space views (DSVs of the instrument and the noise equivalent differential temperature (NEΔT as a measure for the radiometer sensitivity. For this purpose, we use the Allan deviation that is not biased from an underlying varying mean of the data and that has been suggested only recently for application in atmospheric remote sensing. Moreover, we use the bias function related to the Allan deviation to infer the underlying spectrum of the noise. As examples, we investigate the noise spectrum in flight for some instruments. For the assessment of the noise evolution in time, we provide a descriptive and graphical overview of the calculated NEΔT over the life span of each instrument and channel. This overview can serve as an easily accessible information for users interested in the noise performance of a specific instrument, channel and time. Within the time evolution of the noise, we identify periods of instrumental degradation, which manifest themselves in an increasing NEΔT, and periods of erratic behaviour, which show sudden increases of NEΔT interrupting the overall smooth evolution of the noise. From this assessment and subsequent exclusion of the aforementioned periods, we present a chart showing available data records with NEΔT  <  1 K. Due to overlapping life spans of the instruments, these reduced data records still cover without gaps the time since 1994 and may therefore serve as a first step for constructing long time

  12. Resonant and Ground Experimental Study on the Microwave Plasma Thruster

    Science.gov (United States)

    Yang, Juan; He, Hongqing; Mao, Genwang; Qu, Kun; Tang, Jinlan; Han, Xianwei

    2002-01-01

    chemistry. Therefore, the application of EP for the attitude control and station keeping of satellite, the propulsion of deep space exploration craft allows to reduce substantially the mass of on-board propellant and the launching cost. The EP research is now receiving high interest everywhere. microwave generating subsystem, the propellant supplying subsystem and the resonator (the thruster). Its principle is that the magnetron of the microwave generating subsystem transfers electric energy into microwave energy at given frequency which is introduced into a resonant cavity. Microwave will resonate within the cavity when it is adjusted. When the propellant gas (N2, Ar, He, NH3 or H2) is put into the cavity and coupled with microwave energy at the maximal electric intensity place, it will be broken down to form free-floating plasma, which flows from nozzle with high speed to produce thrust. Its characteristic is high efficiency, simple power supply and without electrode ablation, its specific impulse is greater than arcjet. 2450MHz, have been developed. The microwave generating subsystem and resonator of lower power MPT, 70-200W, are coaxial. The resonator with TEM resonating mode is section of coaxial wave-guide, of which one end is shorted, another is semi-opened. The maximal electric intensity field is in the lumped capacity formed between the end surface of inner conductor, retracting in the cavity, and the semi-opened surface of outer conductor. It provides favorable condition for gas breakdown. The microwave generating system and resonator of middle power MPT, 500-1,000W, are wave-guide cavity. The resonator with TM011 resonating mode is cylinder wave-guide cavity, of which two end surface are shorted. The distribution of electromagnetic field is axial symmetry, its maximal electric intensity field locates on the axis and closes to the exit of nozzle, where the propellant gas is breakdown to form free floating plasma. The plasma is free from the wall of

  13. Microwave radiative transfer intercomparison study for 3-D dichroic media

    International Nuclear Information System (INIS)

    Battaglia, A.; Davis, C.P.; Emde, C.; Simmer, C.

    2007-01-01

    Three different numerical methods capable of solving the radiative transfer of microwave radiation within 3-D dichroic media are compared. A case study, represented by an intense rain shaft populated by perfectly oriented oblate raindrops, is analysed in detail, including a discussion of the behaviour of all four Stokes components. Results demonstrate an acceptable agreement between all Monte Carlo methods. The method based on a discrete ordinates scheme agrees only qualitatively with the Monte Carlo outputs. Because of its lower computational cost the backward Monte Carlo technique based on importance sampling represents the most efficient way to face passive microwave radiative transfer problems related to optically thick 3-D structured clouds including non-spherical preferentially oriented hydrometeors

  14. Enhanced high-frequency microwave absorption of Fe3O4 architectures based on porous nanoflake

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Liu, Yanguo; Han, Hongyan

    2017-01-01

    Hierarchical Fe3O4 architectures assembled with porous nanoplates (p-Fe3O4) were synthesized. Due to the strong shape anisotropy of the nanoplates, the p-Fe3O4 exhibits increased microwave resonance towards high frequency range. The improved microwave absorption properties of the p-Fe3O4, including...

  15. Enhanced high-frequency microwave absorption of Fe3O4 architectures based on porous nanoflake

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Liu, Yanguo; Han, Hongyan

    2017-01-01

    Hierarchical Fe3O4 architectures assembled with porous nanoplates (p-Fe3O4) were synthesized. Due to the strong shape anisotropy of the nanoplates, the p-Fe3O4 exhibits increased microwave resonance towards high frequency range. The improved microwave absorption properties of the p-Fe3O4, includi...

  16. Investigation of the delay time distribution of high power microwave surface flashover

    Science.gov (United States)

    Foster, J.; Krompholz, H.; Neuber, A.

    2011-01-01

    Characterizing and modeling the statistics associated with the initiation of gas breakdown has proven to be difficult due to a variety of rather unexplored phenomena involved. Experimental conditions for high power microwave window breakdown for pressures on the order of 100 to several 100 torr are complex: there are little to no naturally occurring free electrons in the breakdown region. The initial electron generation rate, from an external source, for example, is time dependent and so is the charge carrier amplification in the increasing radio frequency (RF) field amplitude with a rise time of 50 ns, which can be on the same order as the breakdown delay time. The probability of reaching a critical electron density within a given time period is composed of the statistical waiting time for the appearance of initiating electrons in the high-field region and the build-up of an avalanche with an inherent statistical distribution of the electron number. High power microwave breakdown and its delay time is of critical importance, since it limits the transmission through necessary windows, especially for high power, high altitude, low pressure applications. The delay time distribution of pulsed high power microwave surface flashover has been examined for nitrogen and argon as test gases for pressures ranging from 60 to 400 torr, with and without external UV illumination. A model has been developed for predicting the discharge delay time for these conditions. The results provide indications that field induced electron generation, other than standard field emission, plays a dominant role, which might be valid for other gas discharge types as well.

  17. Microwave hydrothermal synthesis of urchin-like NiO nanospheres as electrode materials for lithium-ion batteries and supercapacitors with enhanced electrochemical performances

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Anjon Kumar, E-mail: Anjon.K.Mondal@student.uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia); Su, Dawei; Wang, Ying; Chen, Shuangqiang [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia); Liu, Qi [School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Wang, Guoxiu, E-mail: Guoxiu.wang@uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia)

    2014-01-05

    Highlights: • Urchin-like NiO nanospheres were synthesised by a microwave hydrothermal method. • The NiO nanospheres consist of nanocrystals and porous structure. • NiO nanospheres exhibited a high reversible specific capacity of 1027 mA h g{sup −1}. • The NiO nanospheres also delivered a high supercapacitance of 736 F g{sup −1}. -- Abstract: Urchin-like NiO nanospheres were synthesised by a microwave hydrothermal method. The as-synthesised NiO nanospheres were characterised by X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. It was found that NiO nanosphere consists of a nanoporous structure and nanosize crystals. When applied as anode materials in lithium-ion batteries, NiO nanospheres exhibited a high reversible specific capacity of 1027 mA h g{sup −1}, an excellent cycling performance and a good high rate capability. NiO nanospheres also showed a high specific capacitance as electrode materials for supercapacitors.

  18. Method to Increase Performance of Foil Bearings Through Passive Thermal Management

    Science.gov (United States)

    Bruckner, Robert

    2013-01-01

    This invention is a new approach to designing foil bearings to increase their load capacity and improve their reliability through passive thermal management. In the present case, the bearing is designed in such a way as to prevent the carryover of lubricant from the exit of one sector to the inlet of the ensuing sector of the foil bearing. When such passive thermal management techniques are used, bearing load capacity is improved by multiples, and reliability is enhanced when compared to current foil bearings. This concept has recently been tested and validated, and shows that load capacity performance of foil bearings can be improved by a factor of two at relatively low speeds with potentially greater relative improvements at higher speeds. Such improvements in performance with respect to speed are typical of foil bearings. Additionally, operation of these newly conceived bearings shows much more reliability and repeatable performance. This trait can be exploited in machine design to enhance safety, reliability, and overall performance. Finally, lower frictional torque has been demonstrated when operating at lower (non-load capacity) loads, thus providing another improvement above the current state of the art. The objective of the invention is to incorporate features into a foil bearing that both enhance passive thermal management and temperature control, while at the same time improve the hydrodynamic (load capacity) performance of the foil bearing. Foil bearings are unique antifriction devices that can utilize the working fluid of a machine as a lubricant (typically air for turbines and motors, liquids for pumps), and as a coolant to remove excess energy due to frictional heating. The current state of the art of foil bearings utilizes forced cooling of the bearing and shaft, which represents poor efficiency and poor reliability. This invention embodies features that utilize the bearing geometry in such a manner as to both support load and provide an inherent and

  19. Determination of steroid hormones in fish tissues by microwave-assisted extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Guedes-Alonso, Rayco; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2017-12-15

    Steroid hormones produce adverse effects on biota as well as bioaccumulation in fish and seafood, making it necessary to develop methodologies to evaluate these compounds in samples related to the food chain. This work presents an analytical method for evaluating 15 steroid hormones in fish tissue. It is based on microwave-assisted extraction and solid-phase extraction coupled to ultra-high-performance liquid chromatography tandem mass spectrometry (MAE-SPE-UHPLC-MS/MS). The proposed method shows appropriate detection limits (0.14-49.0ngg -1 ), recoveries in the range of 50% and good repeatability. After optimization, the method was applied to different tissues from two small fishes of the Canary Islands that constitute an important level of the food web (Boops boops and Sphoeroides marmoratus) and were exposed to the outfall of the Las Palmas de Gran Canaria wastewater treatment plant. The concentrations of eight detected compounds ranged from below the quantification limits to 3.95μgg -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  1. Interaction of microwave radiation with the high mobility two-dimensional electron system in GaAs/AlGaAs heterostructures

    International Nuclear Information System (INIS)

    Ramanayaka, A.N.; Ye, Tianyu; Liu, H.-C.; Wegscheider, W.; Mani, R.G.

    2014-01-01

    The influence of microwave excitation on the magnetotransport properties of the high mobility two-dimensional electron system (2DES) in the GaAs/AlGaAs heterostructure system is investigated by exploring (a) the dependence of the amplitude of the microwave-induced magnetoresistance-oscillations on the polarization direction of the linearly polarized microwaves and (b) the microwave reflection from the 2DES. The polarization study indicates that the amplitude of the magnetoresistance oscillations is remarkably responsive to the relative orientation between the linearly polarized microwaves and the current-axis in the specimen. At low microwave power, P, experiments indicate a strong sinusoidal variation in the diagonal resistance R xx vs. θ at the oscillatory extrema of the microwave-induced magnetoresistance oscillations. The reflection study indicates strong correlations between the microwave induced magnetoresistance oscillations and oscillatory features in the microwave reflection in a concurrent measurement of the magnetoresistance and the microwave magnetoreflection from the 2DES. The correlations are followed as a function of the microwave frequency and the microwave power, and the results are reported

  2. Interaction of microwave radiation with the high mobility two-dimensional electron system in GaAs/AlGaAs heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ramanayaka, A.N.; Ye, Tianyu; Liu, H.-C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Wegscheider, W. [Laboratorium fuer Festkoerperphysik, ETH Zurich, 8093 Zurich (Switzerland); Mani, R.G., E-mail: rmani@gsu.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2014-11-15

    The influence of microwave excitation on the magnetotransport properties of the high mobility two-dimensional electron system (2DES) in the GaAs/AlGaAs heterostructure system is investigated by exploring (a) the dependence of the amplitude of the microwave-induced magnetoresistance-oscillations on the polarization direction of the linearly polarized microwaves and (b) the microwave reflection from the 2DES. The polarization study indicates that the amplitude of the magnetoresistance oscillations is remarkably responsive to the relative orientation between the linearly polarized microwaves and the current-axis in the specimen. At low microwave power, P, experiments indicate a strong sinusoidal variation in the diagonal resistance R{sub xx} vs. θ at the oscillatory extrema of the microwave-induced magnetoresistance oscillations. The reflection study indicates strong correlations between the microwave induced magnetoresistance oscillations and oscillatory features in the microwave reflection in a concurrent measurement of the magnetoresistance and the microwave magnetoreflection from the 2DES. The correlations are followed as a function of the microwave frequency and the microwave power, and the results are reported.

  3. Research on the conversion of highly enriched uranium (HEU) nitrate by using the microwave denitration

    International Nuclear Information System (INIS)

    Bao Weimin; Song Chongli

    1998-08-01

    In order to simplify the denitration process by microwave heating, the uranyl nitrate is firstly denitrated and converted into UO 3 . The produced UO 3 was then further heated in the microwave field to transfer UO 3 to U 3 O 8 and to form a single product of U 3 O 8 . When the phase transfer from UO 3 to U 3 O 8 occurs, the temperature of the product increases 200∼300 degree C in two minutes. The phase-transfer temperature can be controlled by the input power of microwave. High quality U 3 O 8 can be obtained at a denitration temperature about 500 degree C. It contains no residual NO x and has a specific surface area great than 3 m 2 /g. The denitration temperature is measured with an IR-thermometer and checked with an optic fiber thermometer. The working curve and process parameter were studied in a microwave denitration unit for high enriched uranyl nitrate solution (90 g(U)/L, 4 mol/L HNO 3 and 1.2 L per batch)

  4. Passivated emitters in silicon solar cells

    International Nuclear Information System (INIS)

    King, R.R.; Gruenbaum, P.E.; Sinton, R.A.; Swanson, R.M.

    1990-01-01

    In high-efficiency silicon solar cells with low metal contact coverage fractions and high bulk lifetimes, cell performance is often dominated by recombination in the oxide-passivated diffusions on the cell surface. Measurements of the emitter saturation current density, J o , of oxide-passivated, boron and phosphorus diffusions are presented, and from these measurements, the dependence of surface recombination velocity on dopant concentration was extracted. The lowest observed values of J o which are stable under UV light are given for both boron- and phosphorus-doped, oxide-passivated diffusions, for both textured and untextured surfaces. Contour plots which incorporate the above data have been applied to two types of backside-contact solar cells with large area (37.5 cm 2 ) and one-sun efficiencies up to 22.7%

  5. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  6. Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity.

    Science.gov (United States)

    Jewett, Scott A; Ivanisevic, Albena

    2012-09-18

    In a variety of applications where the electronic and optical characteristics of traditional, siliconbased materials are inadequate, recently researchers have employed semiconductors made from combinations of group III and V elements such as InAs. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it an attractive material for high performance transistors, optical applications, and chemical sensing. However, silicon-based materials remain the top semiconductors of choice for biological applications, in part because of their relatively low toxicity. In contrast to silicon, InAs forms an unstable oxide layer under ambient conditions, which can corrode over time and leach toxic indium and arsenic components. To make InAs more attractive for biological applications, researchers have investigated passivation, chemical and electronic stabilization, of the surface by adlayer adsorption. Because of the simplicity, low cost, and flexibility in the type of passivating molecule used, many researchers are currently exploring wet-chemical methods of passivation. This Account summarizes much of the recent work on the chemical passivation of InAs with a particular focus on the chemical stability of the surface and prevention of oxide regrowth. We review the various methods of surface preparation and discuss how crystal orientation affects the chemical properties of the surface. The correct etching of InAs is critical as researchers prepare the surface for subsequent adlayer adsorption. HCl etchants combined with a postetch annealing step allow the tuning of the chemical properties in the near-surface region to either arsenic- or indium-rich environments. Bromine etchants create indium-rich surfaces and do not require annealing after etching; however, bromine etchants are harsh and potentially destructive to the surface. The simultaneous use of NH(4)OH etchants with passivating molecules prevents contact with ambient air that can

  7. Microwave metamaterials made by fused deposition 3D printing of a highly conductive copper-based filament

    Science.gov (United States)

    Xie, Yangbo; Ye, Shengrong; Reyes, Christopher; Sithikong, Pariya; Popa, Bogdan-Ioan; Wiley, Benjamin J.; Cummer, Steven A.

    2017-05-01

    This work reports a method for fabricating three-dimensional microwave metamaterials by fused deposition modeling 3D printing of a highly conductive polymer composite filament. The conductivity of such a filament is shown to be nearly equivalent to that of a perfect conductor for microwave metamaterial applications. The expanded degrees-of-freedom made available by 3D metamaterial designs are demonstrated by designing, fabricating, and testing a 3D-printed unit cell with a broadband permittivity as high as 14.4. The measured and simulated S-parameters agree well with a mean squared error smaller than 0.1. The presented method not only allows reliable and convenient fabrication of microwave metamaterials with high conductivity but also opens the door to exploiting the third dimension of the unit cell design space to achieve enhanced electromagnetic properties.

  8. An extended Kalman-Bucy filter for atmospheric temperature profile retrieval with a passive microwave sounder

    Science.gov (United States)

    Ledsham, W. H.; Staelin, D. H.

    1978-01-01

    An extended Kalman-Bucy filter has been implemented for atmospheric temperature profile retrievals from observations made using the Scanned Microwave Spectrometer (SCAMS) instrument carried on the Nimbus 6 satellite. This filter has the advantage that it requires neither stationary statistics in the underlying processes nor linear production of the observed variables from the variables to be estimated. This extended Kalman-Bucy filter has yielded significant performance improvement relative to multiple regression retrieval methods. A multi-spot extended Kalman-Bucy filter has also been developed in which the temperature profiles at a number of scan angles in a scanning instrument are retrieved simultaneously. These multi-spot retrievals are shown to outperform the single-spot Kalman retrievals.

  9. S-band 300 W pulsed solid state microwave amplifier development for driving high power klystrons for electron accelerators

    International Nuclear Information System (INIS)

    Mohania, Praveen; Shrivastava, Purushottam; Hannurkar, P.R.

    2005-01-01

    S-Band Microwave electron accelerators like microtrons and linear accelerators need pulsed microwaves from few megawatts to tens of megawatts to accelerator the electrons to desired energy and intensity. Klystron tube based driver amplifiers were used to drive the high power klystrons, which need microwave power from few tens of watts to 1 kW depending on tube output power and gain. A endeavour was initiated at Centre for Advanced Technology to develop state of art solid state S-band microwave amplifiers indigenously to drive the klystron tubes. A modular design approach was used and individual modules up to 160 W power levels were developed and tested. Finally combining 160 W modules will give up to 300 W output power. Several more modules can be combined to achieve even high power levels. Present paper describes the developmental efforts of 300 W S-band solid-state amplifiers and related microwave technologies. (author)

  10. Investigation of the use of microwave image line integrated circuits for use in radiometers and other microwave devices in X-band and above

    Science.gov (United States)

    Knox, R. M.; Toulios, P. P.; Onoda, G. Y.

    1972-01-01

    Program results are described in which the use of a/high permittivity rectangular dielectric image waveguide has been investigated for use in microwave and millimeter wavelength circuits. Launchers from rectangular metal waveguide to image waveguide are described. Theoretical and experimental evaluations of the radiation from curved image waveguides are given. Measurements of attenuation due to conductor and dielectric losses, adhesives, and gaps between the dielectric waveguide and the image plane are included. Various passive components are described and evaluations given. Investigations of various techniques for fabrication of image waveguide circuits using ceramic waveguides are also presented. Program results support the evaluation of the image line approach as an advantageous method for realizing low loss integrated electronic circuits for X-band and above.

  11. Microwave system of the 7-10 MeV electron linear accelerator ALIN for medical applications

    International Nuclear Information System (INIS)

    Martin, D.; Iliescu, E.; Stirbet, M.; Oproiu, C.; Vintan, I.

    1978-01-01

    A detailed description of the Central Institute of Physics 10 MeV linear microwave system and its associated subsystems are presented. Methods of impedance matching to obtain maximum power transfer are described along with broadband design methods for transmission-line impedance transformers. Experimental results for such microwave devices are included. With respect to microwave device performances, simultaneous high efficiency and high power capability with reliability and long life at relatively low unit cost have only recently been achieved as typical device characteristics. Industrial, medical and scientific application of microwave electron accelerators have markedly influenced microwave research progress. Radiographic linear accelerators have grown substantially mainly during the past few years. Following this, the improvements of microwave device performances solicit our attention. The first electron therapy Linear Accelerator ALIN 10 marks a new stage in the development of such instrumentation. Its subsequent ALIN 15 is designed to produce a maximum energy of 18 MeV to widen its applicability in radiotherapy. In addition, a new electron linear accelerator of 8 MeV for nondestructive testing has been started. (author)

  12. A passive CMOS pixel sensor for the high luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Daas, Michael; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Janssen, Jens; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    The high luminosity upgrade for the Large Hadron Collider at CERN requires a new inner tracking detector for the ATLAS experiment. About 200 m{sup 2} of silicon detectors are needed demanding new, low cost hybridization- and sensor technologies. One promising approach is to use commercial CMOS technologies to produce the passive sensor for a hybrid pixel detector design. In this talk a fully functional prototype of a 300 μm thick, backside biased CMOS pixel sensor in 150 nm LFoundry technology is presented. The sensor is bump bonded to the ATLAS FE-I4 with AC and DC coupled pixels. Results like leakage current, noise performance, and charge collection efficiency are presented and compared to the actual ATLAS pixel sensor design.

  13. Combination microwave ovens: an innovative design strategy.

    Science.gov (United States)

    Tinga, Wayne R; Eke, Ken

    2012-01-01

    Reducing the sensitivity of microwave oven heating and cooking performance to load volume, load placement and load properties has been a long-standing challenge for microwave and microwave-convection oven designers. Conventional design problem and solution methods are reviewed to provide greater insight into the challenge and optimum operation of a microwave oven after which a new strategy is introduced. In this methodology, a special load isolating and energy modulating device called a transducer-exciter is used containing an iris, a launch box, a phase, amplitude and frequency modulator and a coupling plate designed to provide spatially distributed coupling to the oven. This system, when applied to a combined microwave-convection oven, gives astounding performance improvements to all kinds of baked and roasted foods including sensitive items such as cakes and pastries, with the only compromise being a reasonable reduction in the maximum available microwave power. Large and small metal utensils can be used in the oven with minimal or no performance penalty on energy uniformity and cooking results. Cooking times are greatly reduced from those in conventional ovens while maintaining excellent cooking performance.

  14. Pneumatic Muscle Actuated Equipment for Continuous Passive Motion

    Science.gov (United States)

    Deaconescu, Tudor T.; Deaconescu, Andrea I.

    2009-10-01

    Applying continuous passive rehabilitation movements as part of the recovery programme of patients with post-traumatic disabilities of the bearing joints of the inferior limbs requires the development of new high performance equipment. This chapter discusses a study of the kinematics and performance of such a new, continuous passive motion based rehabilitation system actuated by pneumatic muscles. The utilized energy source is compressed air ensuring complete absorption of the end of stroke shocks, thus minimizing user discomfort.

  15. Postexercise cold-water immersion improves intermittent high-intensity exercise performance in normothermia.

    Science.gov (United States)

    McCarthy, Avina; Mulligan, James; Egaña, Mikel

    2016-11-01

    A brief cold water immersion between 2 continuous high-intensity exercise bouts improves the performance of the latter compared with passive recovery in the heat. We investigated if this effect is apparent in normothermic conditions (∼19 °C), employing an intermittent high-intensity exercise designed to reflect the work performed at the high-intensity domain in team sports. Fifteen young active men completed 2 exhaustive cycling protocols (Ex1 and Ex2: 12 min at 85% ventilatory threshold (VT) and then an intermittent exercise alternating 30-s at 40% peak power (P peak ) and 30 s at 90% P peak to exhaustion) separated by 15 min of (i) passive rest, (ii) 5-min cold-water immersion at 8 °C, and (iii) 10-min cold-water immersion at 8 °C. Core temperature, heart rate, rates of perceived exertion, and oxygen uptake kinetics were not different during Ex1 among conditions. Time to failure during the intermittent exercise was significantly (P immersions (7.2 ± 3.5 min and 7.3 ± 3.3 min, respectively) compared with passive rest (5.8 ± 3.1 min). Core temperature, heart rate, and rates of perceived exertion were significantly (P immersions compared with passive rest. The time constant of phase II oxygen uptake response during the 85% VT bout of Ex2 was not different among the 3 conditions. A postexercise, 5- to 10-min cold-water immersion increases subsequent intermittent high-intensity exercise compared with passive rest in normothermia due, at least in part, to reductions in core temperature, circulatory strain, and effort perception.

  16. Remote operation of microwave systems for solids content analysis and chemical dissolution in highly radioactive environments

    International Nuclear Information System (INIS)

    Sturcken, E.F.; Floyd, T.S.; Manchester, D.P.

    1986-10-01

    Microwave systems provide quick and easy determination of solids content of samples in high-level radioactive cells. In addition, dissolution of samples is much faster when employing microwave techniques. These are great advantages because work in cells,using master-slave manipulators through leaded glass walls, is normally slower by an order of magnitude than direct contact methods. This paper describes the modifiction of a moisture/solids analyzer microwave system and a drying/digestion microwave system for remote operation in radiation environments. The moisture/solids analyzer has operated satisfactorily for over a year in a gamma radiation field of 1000 roentgens per hour and the drying/digestion system is ready for installation in a cell

  17. Development of an Internally-Calibrated Wide-Band Airborne Microwave Radiometer to Provide High-Resolution Wet-Tropospheric Path Delay Measurements for SWOT (HAMMR - High-frequency Airborne Microwave and Millimeter-wave Radiometer)

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Internally-Calibrated Wide-Band Airborne Microwave Radiometer to Provide High-Resolution Wet-Tropospheric Path Delay Measurements for SWOT (HAMMR -...

  18. Satellite passive microwave rain rate measurement over croplands during spring, summer and fall

    International Nuclear Information System (INIS)

    Spencer, R.W.

    1984-01-01

    Rain rate algorithms for spring, summer and fall that have been developed from comparisons between the brightness temperatures measured by the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and rain rates derived from operational WSR-57 radars over land are described. Data were utilized from a total of 25 SMMR passes and 234 radars, resulting in ∼12 000 observations of ∼1600 km 2 areas. Multiple correlation coefficients of 0.63, 0.80 and 0.75 are achieved for the spring, summer and fall algorithms, respectively. Most of this information is in the form of multifrequency contrast in brightness temperature, which is interpreted as a measurement of the degree to which the land-emitted radiation is attenuated by the rain systems. The SMMR 37 GHz channel has more information on rain rate than any other channel. By combining the lower frequency channels with the 37 GHz observations, variations in land and precipitation thermometric temperatures can be removed, leaving rain attenuation as the major effect on brightness temperature. Polarization screening at 37 GHz is found to be sufficient to screen out cases of wet ground, which is only important when the ground is relatively vegetation free. Heavy rain cases are found to be a significant part of the algorithms' success, because of the strong microwave signatures (low brightness temperatures) that result from the presence of precipitation-sized ice in the upper portions of heavily precipitating storms. If IR data are combined with the summer microwave data, an improved (0.85) correlation with radar rain rates is achieved

  19. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    Science.gov (United States)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  20. Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation.

    Science.gov (United States)

    Na, Junhong; Joo, Min-Kyu; Shin, Minju; Huh, Junghwan; Kim, Jae-Sung; Piao, Mingxing; Jin, Jun-Eon; Jang, Ho-Kyun; Choi, Hyung Jong; Shim, Joon Hyung; Kim, Gyu-Tae

    2014-01-07

    Diagnosing of the interface quality and the interactions between insulators and semiconductors is significant to achieve the high performance of nanodevices. Herein, low-frequency noise (LFN) in mechanically exfoliated multilayer molybdenum disulfide (MoS2) (~11.3 nm-thick) field-effect transistors with back-gate control was characterized with and without an Al2O3 high-k passivation layer. The carrier number fluctuation (CNF) model associated with trapping/detrapping the charge carriers at the interface nicely described the noise behavior in the strong accumulation regime both with and without the Al2O3 passivation layer. The interface trap density at the MoS2-SiO2 interface was extracted from the LFN analysis, and estimated to be Nit ~ 10(10) eV(-1) cm(-2) without and with the passivation layer. This suggested that the accumulation channel induced by the back-gate was not significantly influenced by the passivation layer. The Hooge mobility fluctuation (HMF) model implying the bulk conduction was found to describe the drain current fluctuations in the subthreshold regime, which is rarely observed in other nanodevices, attributed to those extremely thin channel sizes. In the case of the thick-MoS2 (~40 nm-thick) without the passivation, the HMF model was clearly observed all over the operation regime, ensuring the existence of the bulk conduction in multilayer MoS2. With the Al2O3 passivation layer, the change in the noise behavior was explained from the point of formation of the additional top channel in the MoS2 because of the fixed charges in the Al2O3. The interface trap density from the additional CNF model was Nit = 1.8 × 10(12) eV(-1) cm(-2) at the MoS2-Al2O3 interface.

  1. Probing the local microwave properties of superconducting thin films by a scanning microwave near-field microscope

    CERN Document Server

    Wu, L Y; Wang, K L; Jiang, T; Kang, L; Yang, S Z; Wu, P H

    2002-01-01

    In this paper, we present our approach to probe the local microwave properties of superconducting thin films by using the microwave near-field scanning technique. We have employed a coaxial cavity together with a niobium tip as the probe and established a scanning sample stage cooled by liquid nitrogen to study thin film devices at low temperature in our scanning microwave near-field microscope. Nondestructive images have been obtained on the inhomogeneity of the YBaCuO superconducting thin films at microwave frequency. We believe that these results would be helpful in evaluating the microwave performance of the devices.

  2. Microwave firing of MnZn-ferrites

    International Nuclear Information System (INIS)

    Tsakaloudi, V.; Papazoglou, E.; Zaspalis, V.T.

    2004-01-01

    Microwave firing is evaluated in comparison to conventional firing for MnZn-ferrites. For otherwise identical conditions, microwave firing results to higher densities and coarser microstructures. Initial magnetic permeability values (25 kHz, 25 deg. C, <0.1 mT) after conventional firing are approximately 5000, but the corresponding values after microwave firing are approximately 6000. Unlike the conventional firing process, the final density after microwave firing is increased by increasing the prefiring temperature. As appears from the results of this study, microwave firing could be in principle a promising MnZn-ferrite firing technology for materials to be used in high magnetic permeability applications. No advantages of microwave firing are evident for materials intended to be used in high field power applications

  3. Status of experiments at LLNL on high-power X-band microwave generators

    International Nuclear Information System (INIS)

    Houck, T.L.; Westenskow, G.A.

    1994-01-01

    The Microwave Source Facility at the Lawrence Livermore National Laboratory (LLNL) is studying the application of induction accelerator technology to high-power microwave generators suitable for linear collider power sources. The authors report on the results of two experiments, both using the Choppertron's 11.4 GHz modulator and a 5-MeV, 1-kA induction beam. The first experimental configuration has a single traveling wave output structure designed to produce in excess of 300 MW in a single fundamental waveguide. This output structure consists of 12 individual cells, the first two incorporating de-Q-ing circuits to dampen higher order resonant modes. The second experiment studies the feasibility of enhancing beam to microwave power conversion by accelerating a modulated beam with induction cells. Referred to as the ''Reacceleration Experiment,'' this experiment consists of three traveling-wave output structures designed to produce about 125 MW per output and two induction cells located between the outputs. Status of current and planned experiments are presented

  4. Kinetic advantages of using microwaves in the emulsion polymerization of MMA

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C. [Departamento de Engenharia Quimica, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-900, Florianopolis, SC (Brazil); Santos, A.F.; Fortuny, M. [Programa de Mestrado em Engenharia de Processos, Universidade Tiradentes, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300, CEP: 49032-490, Aracaju, SE (Brazil); Araujo, P.H.H. [Departamento de Engenharia Quimica, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-900, Florianopolis, SC (Brazil); Sayer, C. [Departamento de Engenharia Quimica, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-900, Florianopolis, SC (Brazil)], E-mail: csayer@enq.ufsc.br

    2009-03-01

    Microwave irradiation has been an interesting alternative for heating systems and several chemical reactions. In polymerization processes, microwaves can enhance reaction rates or improve specific characteristics of the formed polymer. In this work, the use of microwave irradiation in emulsion polymerization reactions has been studied, using a commercial microwave reactor, which is able to perform syntheses under controlled conditions of temperature and power. Methyl methacrylate emulsion polymerization reactions were faster, resulting in smaller polymer particles, in comparison to the conventional heating method (reactions in a jacketed reactor). Different effects were observed in the emulsion polymerization of butyl acrylate. To study the effect of high power microwave irradiation upon the emulsion polymerization, a pulsed irradiation strategy was developed, in which the samples were repeatedly heated within short intervals of time (about 27 s) at the maximum microwave power. A significant reduction of the total time of irradiation was observed in reactions carried out under the pulsed scheme, showing the kinetic advantages of using microwaves in emulsion polymerization processes.

  5. Computerized portable microwave hyperthermia quality assurance kit

    International Nuclear Information System (INIS)

    Cheung, A.Y.; Neyzari, A.

    1985-01-01

    A computerized quality assurance kit to provide precise measurement and calibration of microwave power and temperature, as well as capabilities to map SAR (Specific absorption rate) distribution in phantoms; and survey of hazardous microwave leakage has been designed. The kit is also capable of performing corelation studies on the relationship between SAR and net microwave power delivered at various anatomical sites. The kit consists of a portable microcomputer, a time-multiplexed A/D converter, a 4-channel dual directional microwave power monitor, a 4-channel thin-wire thermocouple thermometry system, an electronic thermal calibrator, a microwave leakage hazard survey meter, and a dynamic phantom tank for dosimetric analysis. Comparative performance studies were made against NBS-traceable power and temperature standards, non-perturbing optical temperature sensors, and established power and temperature measurement devices. The test results indicate that this instrument is providing its user with measurement accuracy of 0.1 0 C in temperature, 10% accuracy in power. The thin-wire thermocouple, with computer assisted error compensation, performs equally well in a strong microwave field in comparison with non-perturbing optical temperature sensors

  6. Estimation of improved resolution soil moisture in vegetated areas using passive AMSR-E data

    Science.gov (United States)

    Moradizadeh, Mina; Saradjian, Mohammad R.

    2018-03-01

    Microwave remote sensing provides a unique capability for soil parameter retrievals. Therefore, various soil parameters estimation models have been developed using brightness temperature (BT) measured by passive microwave sensors. Due to the low resolution of satellite microwave radiometer data, the main goal of this study is to develop a downscaling approach to improve the spatial resolution of soil moisture estimates with the use of higher resolution visible/infrared sensor data. Accordingly, after the soil parameters have been obtained using Simultaneous Land Parameters Retrieval Model algorithm, the downscaling method has been applied to the soil moisture estimations that have been validated against in situ soil moisture data. Advance Microwave Scanning Radiometer-EOS BT data in Soil Moisture Experiment 2003 region in the south and north of Oklahoma have been used to this end. Results illustrated that the soil moisture variability is effectively captured at 5 km spatial scales without a significant degradation of the accuracy.

  7. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation

    Directory of Open Access Journals (Sweden)

    Smolen D

    2013-02-01

    Full Text Available Dariusz Smolen1, Tadeusz Chudoba1, Iwona Malka1, Aleksandra Kedzierska1, Witold Lojkowski1, Wojciech Swieszkowski2, Krzysztof Jan Kurzydlowski2, Malgorzata Kolodziejczyk-Mierzynska3, Malgorzata Lewandowska-Szumiel31Polish Academy of Science, Institute of High Pressure Physics, Warsaw, Poland; 2Faculty of Materials Engineering, Warsaw University of Technology, Warsaw, Poland; 3Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, PolandAbstract: A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM. The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 µmol/dm3 in the tris(hydroxymethylaminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material

  8. Gyrocon: a deflection-modulated, high-power microwave amplifier

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1977-10-01

    A large-signal, relativistic theory of the electron-field interaction in a new class of microwave amplifiers is presented and applied to the analysis of a high-power, 450-MHz amplifier for accelerator applications. The analysis indicates that electronic efficiencies in excess of 90 percent are obtainable and that overall efficiencies of 90 percent are possible. The amplifier is unique in several respects; the electron velocity is perpendicular to the circuit energy flow, the device uses a fast-wave circuit, and the electron beam is deflection modulated

  9. Passive-solar construction handbook

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.; Evans, D.; Gardstein, C.

    1981-02-01

    Many of the basic elements of passive solar design are reviewed. Passive solar construction is covered according to system type, each system type discussion including a general discussion of the important design and construction issues which apply to the particular system and case studies illustrating designed and built examples of the system type. The three basic types of passive solar systems discussed are direct gain, thermal storage wall, and attached sunspace. Thermal performance and construction information is presented for typical materials used in passive solar collector components, storage components, and control components. Appended are an overview of analysis methods and a technique for estimating performance. (LEW)

  10. Superconductivity applications for infrared and microwave devices II; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Heinen, Vernon O.; Bhasin, Kul B.

    Topics discussed include thin-film technology, microwave transmission lines and resonators, microwave devices and circuits, infrared detectors and bolometers, and superconducting junctions. Papers are presented on possible enhancement in bolometric response using free-standing film of YBa2Cu3O(x), aging and surface instability in high-Tc superconductors, epitaxial Tl2Ba2CaCu2O8 thin films on LaAlO3 and their microwave device properties, the performance of stripline resonators using sputtered YBCO films, and a coplanar waveguide microwave filter of YBa2Cu3O7. Attention is also given to the performance characteristics of Y-Ba-Cu-O microwave superconducting detectors, high-Tc bolometer developments for planetary missions, infrared detectors from YBaCuO thin films, high-temperature superconductor junction technology, and submillimeter receiver components using superconducting tunnel junctions. (For individual items see A93-27244 to A93-27248)

  11. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Noroozian, Omid [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, Colorado 80309 (United States); Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Kang, Zhao [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States)

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  12. Demonstration of Passive Fuel Cell Thermal Management Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  13. Monotron and azimuthally corrugated: application to the high power microwaves generation

    International Nuclear Information System (INIS)

    Castro, Pedro Jose de

    2003-01-01

    The present document reports the activity of construction and initial operation of 6.7 GHz operation for high power microwave generation, the study on cylindrical resonators with azimuthally corrugated cross section, the determination of electrical conductivity of metallic materials and development of dielectric resonators for telecommunication applications

  14. Innovative Facet Passivation for High-Brightness Laser Diodes

    Science.gov (United States)

    2016-02-05

    processing will prevent oxidation of the front facet, the leading contaminant from the ambient. By keeping the MBE growth temperatures between 400 and 500 ...suitably adjusted Al mole fraction and growth recipes . Specifically, MBE-AlGaAs passivation can apply to slab pumped lasers (e.g. 808 nm), fiber...li ty OHMIC CONTACTS PASSIVATION LAYER 400 OC 500 OC THERMAL “ SWEET SPOT ” POLYCRYTALLINE / LATTICE MIS-MATCHED PASSIVATION OHMIC CONTACT DEGRADATION

  15. Photon-Counting Microwave Kinetic Inductance Detectors (MKIDs) for High Resolution Far-Infrared Spectroscopy

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing ultrasensitive Microwave Kinetic Inductance Detectors (MKIDs) for high resolution far-infrared spectroscopy applications, with a long-term goal of...

  16. Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey

    Science.gov (United States)

    Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin

    2018-04-01

    Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f-v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.

  17. Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey

    Science.gov (United States)

    Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin

    2018-07-01

    Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f- v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.

  18. N-parameter retrievals from L-band microwave observations acquired over a variety of crop fields

    DEFF Research Database (Denmark)

    Pardé, M.; Wigneron, J-P.; Waldteufel, P.

    2004-01-01

    A number of studies have shown the feasibility of estimating surface soil moisture from L-band passive microwave measurements. Such measurements should be acquired in the near future by the Soil Moisture and Ocean Salinity (SMOS) mission. The SMOS measurements will be done at many incidence angles...

  19. Free amino acids, biogenic amines, and ammonium profiling in tobacco from different geographical origins using microwave-assisted extraction followed by ultra high performance liquid chromatography.

    Science.gov (United States)

    Cai, Kai; Xiang, Zhangmin; Li, Hongqin; Zhao, Huina; Lin, Yechun; Pan, Wenjie; Lei, Bo

    2017-12-01

    This work describes a rapid, stable, and accurate method for determining the free amino acids, biogenic amines, and ammonium in tobacco. The target analytes were extracted with microwave-assisted extraction and then derivatized with diethyl ethoxymethylenemalonate, followed by ultra high performance liquid chromatography analysis. The experimental design used to optimize the microwave-assisted extraction conditions showed that the optimal extraction time was 10 min with a temperature of 60°C. The stability of aminoenone derivatives was improved by keeping the pH near 9.0, and there was no obvious degradation during the 80°C heating and room temperature storage. Under optimal conditions, this method showed good linearity (R 2 > 0.999) and sensitivity (limits of detection 0.010-0.081 μg/mL). The extraction recoveries were between 88.4 and 106.5%, while the repeatability and reproducibility ranged from 0.48 to 5.12% and from 1.56 to 6.52%, respectively. The newly developed method was employed to analyze the tobacco from different geographical origins. Principal component analysis showed that four geographical origins of tobacco could be clearly distinguished and that each had their characteristic components. The proposed method also showed great potential for further investigations on nitrogen metabolism in plants. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The population transfer of high excited states of Rydberg lithium atoms in a microwave field

    International Nuclear Information System (INIS)

    Jiang Lijuan; Zhang Xianzhou; Ma Huanqiang; Jia Guangrui; Zhang Yonghui; Xia Lihua

    2012-01-01

    Using the time-dependent multilevel approach (TDMA), the properties of high excited Rydberg lithium atom have been obtained in the microwave field. The population transfer of lithium atom are studied on numerical calculation, quantum states are controlled and manipulated by microwave field. It shows that the population can be completely transferred to the target state by changing the chirped rate and field amplitude. (authors)