WorldWideScience

Sample records for high-order stiff pdes

  1. Solution of continuous nonlinear PDEs through order completion

    CERN Document Server

    Oberguggenberger, MB

    1994-01-01

    This work inaugurates a new and general solution method for arbitrary continuous nonlinear PDEs. The solution method is based on Dedekind order completion of usual spaces of smooth functions defined on domains in Euclidean spaces. However, the nonlinear PDEs dealt with need not satisfy any kind of monotonicity properties. Moreover, the solution method is completely type independent. In other words, it does not assume anything about the nonlinear PDEs, except for the continuity of their left hand term, which includes the unkown function. Furthermore the right hand term of such nonlinear PDEs can in fact be given any discontinuous and measurable function.

  2. Solution of stochastic nonlinear PDEs using Wiener-Hermite expansion of high orders

    KAUST Repository

    El Beltagy, Mohamed

    2016-01-01

    In this work, the Wiener-Hermite Expansion (WHE) is used to solve stochastic nonlinear PDEs excited with noise. The generation of the equivalent set of deterministic integro-differential equations is automated and hence allows for high order terms of WHE. The automation difficulties are discussed, solved and implemented to output the final system to be solved. A numerical Pikard-like algorithm is suggested to solve the resulting deterministic system. The automated WHE is applied to the 1D diffusion equation and to the heat equation. The results are compared with previous solutions obtained with WHEP (WHE with perturbation) technique. The solution obtained using the suggested WHE technique is shown to be the limit of the WHEP solutions with infinite number of corrections. The automation is extended easily to account for white-noise of higher dimension and for general nonlinear PDEs.

  3. Solution of stochastic nonlinear PDEs using Wiener-Hermite expansion of high orders

    KAUST Repository

    El Beltagy, Mohamed

    2016-01-06

    In this work, the Wiener-Hermite Expansion (WHE) is used to solve stochastic nonlinear PDEs excited with noise. The generation of the equivalent set of deterministic integro-differential equations is automated and hence allows for high order terms of WHE. The automation difficulties are discussed, solved and implemented to output the final system to be solved. A numerical Pikard-like algorithm is suggested to solve the resulting deterministic system. The automated WHE is applied to the 1D diffusion equation and to the heat equation. The results are compared with previous solutions obtained with WHEP (WHE with perturbation) technique. The solution obtained using the suggested WHE technique is shown to be the limit of the WHEP solutions with infinite number of corrections. The automation is extended easily to account for white-noise of higher dimension and for general nonlinear PDEs.

  4. European Workshop on High Order Nonlinear Numerical Schemes for Evolutionary PDEs

    CERN Document Server

    Beaugendre, Héloïse; Congedo, Pietro; Dobrzynski, Cécile; Perrier, Vincent; Ricchiuto, Mario

    2014-01-01

    This book collects papers presented during the European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs (HONOM 2013) that was held at INRIA Bordeaux Sud-Ouest, Talence, France in March, 2013. The central topic is high order methods for compressible fluid dynamics. In the workshop, and in this proceedings, greater emphasis is placed on the numerical than the theoretical aspects of this scientific field. The range of topics is broad, extending through algorithm design, accuracy, large scale computing, complex geometries, discontinuous Galerkin, finite element methods, Lagrangian hydrodynamics, finite difference methods and applications and uncertainty quantification. These techniques find practical applications in such fields as fluid mechanics, magnetohydrodynamics, nonlinear solid mechanics, and others for which genuinely nonlinear methods are needed.

  5. Hyperbolic Method for Dispersive PDEs: Same High-Order of Accuracy for Solution, Gradient, and Hessian

    Science.gov (United States)

    Mazaheri, Alireza; Ricchiuto, Mario; Nishikawa, Hiroaki

    2016-01-01

    In this paper, we introduce a new hyperbolic first-order system for general dispersive partial differential equations (PDEs). We then extend the proposed system to general advection-diffusion-dispersion PDEs. We apply the fourth-order RD scheme of Ref. 1 to the proposed hyperbolic system, and solve time-dependent dispersive equations, including the classical two-soliton KdV and a dispersive shock case. We demonstrate that the predicted results, including the gradient and Hessian (second derivative), are in a very good agreement with the exact solutions. We then show that the RD scheme applied to the proposed system accurately captures dispersive shocks without numerical oscillations. We also verify that the solution, gradient and Hessian are predicted with equal order of accuracy.

  6. New integrable PDEs of boomeronic type

    International Nuclear Information System (INIS)

    Calogero, F; Degasperis, A

    2006-01-01

    Novel integrable systems of coupled first-order autonomous PDEs in 1 + 1 dimensions (space x and time t) are presented. Integrable covariant 2-vector and 3-vector PDEs, as well as higher-order integrable PDEs for a single, or a couple, of scalar-dependent variables (including an extension of the sine-Gordon equation and a remarkably neat, highly nonlinear third-order PDE), are also obtained by appropriate reductions of the basic matrix equations. The Lax pairs that characterize the integrable character of the basic matrix PDEs are also exhibited, as well as their single-soliton solutions. These solitons generally exhibit the boomeronic (and, less generically, the trapponic) phenomenology, namely they do not move uniformly, but rather (in an appropriate reference system) come in from one end in the remote past and boomerang back to that same end in the remote future (boomerons), or are trapped to oscillate around a value fixed by the initial data (trappons)

  7. An investigation into the accuracy, stability and parallel performance of a highly stable explicit technique for stiff reaction-transport PDEs

    Energy Technology Data Exchange (ETDEWEB)

    Franz, A., LLNL

    1998-02-17

    The numerical simulation of chemically reacting flows is a topic, that has attracted a great deal of current research At the heart of numerical reactive flow simulations are large sets of coupled, nonlinear Partial Differential Equations (PDES). Due to the stiffness that is usually present, explicit time differencing schemes are not used despite their inherent simplicity and efficiency on parallel and vector machines, since these schemes require prohibitively small numerical stepsizes. Implicit time differencing schemes, although possessing good stability characteristics, introduce a great deal of computational overhead necessary to solve the simultaneous algebraic system at each timestep. This thesis examines an algorithm based on a preconditioned time differencing scheme. The algorithm is explicit and permits a large stable time step. An investigation of the algorithm`s accuracy, stability and performance on a parallel architecture is presented

  8. High-order fractional partial differential equation transform for molecular surface construction.

    Science.gov (United States)

    Hu, Langhua; Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model

  9. An efficient algorithm for some highly nonlinear fractional PDEs in mathematical physics.

    Directory of Open Access Journals (Sweden)

    Jamshad Ahmad

    Full Text Available In this paper, a fractional complex transform (FCT is used to convert the given fractional partial differential equations (FPDEs into corresponding partial differential equations (PDEs and subsequently Reduced Differential Transform Method (RDTM is applied on the transformed system of linear and nonlinear time-fractional PDEs. The results so obtained are re-stated by making use of inverse transformation which yields it in terms of original variables. It is observed that the proposed algorithm is highly efficient and appropriate for fractional PDEs and hence can be extended to other complex problems of diversified nonlinear nature.

  10. LSODE, 1. Order Stiff or Non-Stiff Ordinary Differential Equations System Initial Value Problems

    International Nuclear Information System (INIS)

    Hindmarsh, A.C.; Petzold, L.R.

    2005-01-01

    1 - Description of program or function: LSODE (Livermore Solver for Ordinary Differential Equations) solves stiff and non-stiff systems of the form dy/dt = f. In the stiff case, it treats the Jacobian matrix df/dy as either a dense (full) or a banded matrix, and as either user-supplied or internally approximated by difference quotients. It uses Adams methods (predictor-corrector) in the non-stiff case, and Backward Differentiation Formula (BDF) methods (the Gear methods) in the stiff case. The linear systems that arise are solved by direct methods (LU factor/solve). The LSODE source is commented extensively to facilitate modification. Both a single-precision version and a double-precision version are available. 2 - Methods: It is assumed that the ODEs are given explicitly, so that the system can be written in the form dy/dt = f(t,y), where y is the vector of dependent variables, and t is the independent variable. LSODE contains two variable-order, variable- step (with interpolatory step-changing) integration methods. The first is the implicit Adams or non-stiff method, of orders one through twelve. The second is the backward differentiation or stiff method (or BDF method, or Gear's method), of orders one through five. 3 - Restrictions on the complexity of the problem: The differential equations must be given in explicit form, i.e., dy/dt = f(y,t). Problems with intermittent high-speed transients may cause inefficient or unstable performance

  11. Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order

    KAUST Repository

    Gottlieb, Sigal; Grant, Zachary; Higgs, Daniel

    2015-01-01

    High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search

  12. New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear PDEs

    Science.gov (United States)

    Venturi, D.; Karniadakis, G. E.

    2012-08-01

    By using functional integral methods we determine new evolution equations satisfied by the joint response-excitation probability density function (PDF) associated with the stochastic solution to first-order nonlinear partial differential equations (PDEs). The theory is presented for both fully nonlinear and for quasilinear scalar PDEs subject to random boundary conditions, random initial conditions or random forcing terms. Particular applications are discussed for the classical linear and nonlinear advection equations and for the advection-reaction equation. By using a Fourier-Galerkin spectral method we obtain numerical solutions of the proposed response-excitation PDF equations. These numerical solutions are compared against those obtained by using more conventional statistical approaches such as probabilistic collocation and multi-element probabilistic collocation methods. It is found that the response-excitation approach yields accurate predictions of the statistical properties of the system. In addition, it allows to directly ascertain the tails of probabilistic distributions, thus facilitating the assessment of rare events and associated risks. The computational cost of the response-excitation method is order magnitudes smaller than the one of more conventional statistical approaches if the PDE is subject to high-dimensional random boundary or initial conditions. The question of high-dimensionality for evolution equations involving multidimensional joint response-excitation PDFs is also addressed.

  13. Gibbs phenomenon for dispersive PDEs on the line

    OpenAIRE

    Biondini, Gino; Trogdon, Thomas

    2014-01-01

    We investigate the Cauchy problem for linear, constant-coefficient evolution PDEs on the real line with discontinuous initial conditions (ICs) in the small-time limit. The small-time behavior of the solution near discontinuities is expressed in terms of universal, computable special functions. We show that the leading-order behavior of the solution of dispersive PDEs near a discontinuity of the ICs is characterized by Gibbs-type oscillations and gives exactly the Wilbraham-Gibbs constant.

  14. Contact manifolds, Lagrangian Grassmannians and PDEs

    Directory of Open Access Journals (Sweden)

    Eshkobilov Olimjon

    2018-02-01

    Full Text Available In this paper we review a geometric approach to PDEs. We mainly focus on scalar PDEs in n independent variables and one dependent variable of order one and two, by insisting on the underlying (2n + 1-dimensional contact manifold and the so-called Lagrangian Grassmannian bundle over the latter. This work is based on a Ph.D course given by two of the authors (G. M. and G. M.. As such, it was mainly designed as a quick introduction to the subject for graduate students. But also the more demanding reader will be gratified, thanks to the frequent references to current research topics and glimpses of higher-level mathematics, found mostly in the last sections.

  15. Nonlinear PDEs a dynamical systems approach

    CERN Document Server

    Schneider, Guido

    2017-01-01

    This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced...

  16. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity

    Science.gov (United States)

    Bridges, Thomas J.; Reich, Sebastian

    2001-06-01

    The symplectic numerical integration of finite-dimensional Hamiltonian systems is a well established subject and has led to a deeper understanding of existing methods as well as to the development of new very efficient and accurate schemes, e.g., for rigid body, constrained, and molecular dynamics. The numerical integration of infinite-dimensional Hamiltonian systems or Hamiltonian PDEs is much less explored. In this Letter, we suggest a new theoretical framework for generalizing symplectic numerical integrators for ODEs to Hamiltonian PDEs in R2: time plus one space dimension. The central idea is that symplecticity for Hamiltonian PDEs is directional: the symplectic structure of the PDE is decomposed into distinct components representing space and time independently. In this setting PDE integrators can be constructed by concatenating uni-directional ODE symplectic integrators. This suggests a natural definition of multi-symplectic integrator as a discretization that conserves a discrete version of the conservation of symplecticity for Hamiltonian PDEs. We show that this approach leads to a general framework for geometric numerical schemes for Hamiltonian PDEs, which have remarkable energy and momentum conservation properties. Generalizations, including development of higher-order methods, application to the Euler equations in fluid mechanics, application to perturbed systems, and extension to more than one space dimension are also discussed.

  17. Reusable Object-Oriented Solutions for Numerical Simulation of PDEs in a High Performance Environment

    Directory of Open Access Journals (Sweden)

    Andrea Lani

    2006-01-01

    Full Text Available Object-oriented platforms developed for the numerical solution of PDEs must combine flexibility and reusability, in order to ease the integration of new functionalities and algorithms. While designing similar frameworks, a built-in support for high performance should be provided and enforced transparently, especially in parallel simulations. The paper presents solutions developed to effectively tackle these and other more specific problems (data handling and storage, implementation of physical models and numerical methods that have arisen in the development of COOLFluiD, an environment for PDE solvers. Particular attention is devoted to describe a data storage facility, highly suitable for both serial and parallel computing, and to discuss the application of two design patterns, Perspective and Method-Command-Strategy, that support extensibility and run-time flexibility in the implementation of physical models and generic numerical algorithms respectively.

  18. PDES, Fips Standard Data Encryption Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Nessett, D N [Lawrence Livermore National Laboratory (United States)

    1991-03-26

    Description of program or function: PDES performs the National Bureau of Standards FIPS Pub. 46 data encryption/decryption algorithm used for the cryptographic protection of computer data. The DES algorithm is designed to encipher and decipher blocks of data consisting of 64 bits under control of a 64-bit key. The key is generated in such a way that each of the 56 bits used directly by the algorithm are random and the remaining 8 error-detecting bits are set to make the parity of each 8-bit byte of the key odd, i. e. there is an odd number of '1' bits in each 8-bit byte. Each member of a group of authorized users of encrypted computer data must have the key that was used to encipher the data in order to use it. Data can be recovered from cipher only by using exactly the same key used to encipher it, but with the schedule of addressing the key bits altered so that the deciphering process is the reverse of the enciphering process. A block of data to be enciphered is subjected to an initial permutation, then to a complex key-dependent computation, and finally to a permutation which is the inverse of the initial permutation. Two PDES routines are included; both perform the same calculation. One, identified as FDES.MAR, is designed to achieve speed in execution, while the other identified as PDES.MAR, presents a clearer view of how the algorithm is executed

  19. PDES, Fips Standard Data Encryption Algorithm

    International Nuclear Information System (INIS)

    Nessett, D.N.

    1991-01-01

    Description of program or function: PDES performs the National Bureau of Standards FIPS Pub. 46 data encryption/decryption algorithm used for the cryptographic protection of computer data. The DES algorithm is designed to encipher and decipher blocks of data consisting of 64 bits under control of a 64-bit key. The key is generated in such a way that each of the 56 bits used directly by the algorithm are random and the remaining 8 error-detecting bits are set to make the parity of each 8-bit byte of the key odd, i. e. there is an odd number of '1' bits in each 8-bit byte. Each member of a group of authorized users of encrypted computer data must have the key that was used to encipher the data in order to use it. Data can be recovered from cipher only by using exactly the same key used to encipher it, but with the schedule of addressing the key bits altered so that the deciphering process is the reverse of the enciphering process. A block of data to be enciphered is subjected to an initial permutation, then to a complex key-dependent computation, and finally to a permutation which is the inverse of the initial permutation. Two PDES routines are included; both perform the same calculation. One, identified as FDES.MAR, is designed to achieve speed in execution, while the other identified as PDES.MAR, presents a clearer view of how the algorithm is executed

  20. Numerical Solution and Simulation of Second-Order Parabolic PDEs with Sinc-Galerkin Method Using Maple

    Directory of Open Access Journals (Sweden)

    Aydin Secer

    2013-01-01

    Full Text Available An efficient solution algorithm for sinc-Galerkin method has been presented for obtaining numerical solution of PDEs with Dirichlet-type boundary conditions by using Maple Computer Algebra System. The method is based on Whittaker cardinal function and uses approximating basis functions and their appropriate derivatives. In this work, PDEs have been converted to algebraic equation systems with new accurate explicit approximations of inner products without the need to calculate any numeric integrals. The solution of this system of algebraic equations has been reduced to the solution of a matrix equation system via Maple. The accuracy of the solutions has been compared with the exact solutions of the test problem. Computational results indicate that the technique presented in this study is valid for linear partial differential equations with various types of boundary conditions.

  1. Particle Systems and PDEs II

    CERN Document Server

    Soares, Ana

    2015-01-01

    This book focuses on mathematical problems concerning different applications in physics, engineering, chemistry and biology. It covers topics ranging from interacting particle systems to partial differential equations (PDEs), statistical mechanics and dynamical systems. The purpose of the second meeting on Particle Systems and PDEs was to bring together renowned researchers working actively in the respective fields, to discuss their topics of expertise and to present recent scientific results in both areas. Further, the meeting was intended to present the subject of interacting particle systems, its roots in and impacts on the field of physics, and its relation with PDEs to a vast and varied public, including young researchers. The book also includes the notes from two mini-courses presented at the conference, allowing readers who are less familiar with these areas of mathematics to more easily approach them. The contributions will be of interest to mathematicians, theoretical physicists and other researchers...

  2. Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Kim, C. H.; Han, S. C.; Du, S. G.; Han, Y. H.; Sung, T. H.

    2009-01-01

    A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  3. Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs

    International Nuclear Information System (INIS)

    Bollig, Evan F.; Flyer, Natasha; Erlebacher, Gordon

    2012-01-01

    This paper presents parallelization strategies for the radial basis function-finite difference (RBF-FD) method. As a generalized finite differencing scheme, the RBF-FD method functions without the need for underlying meshes to structure nodes. It offers high-order accuracy approximation and scales as O(N) per time step, with N being with the total number of nodes. To our knowledge, this is the first implementation of the RBF-FD method to leverage GPU accelerators for the solution of PDEs. Additionally, this implementation is the first to span both multiple CPUs and multiple GPUs. OpenCL kernels target the GPUs and inter-processor communication and synchronization is managed by the Message Passing Interface (MPI). We verify our implementation of the RBF-FD method with two hyperbolic PDEs on the sphere, and demonstrate up to 9x speedup on a commodity GPU with unoptimized kernel implementations. On a high performance cluster, the method achieves up to 7x speedup for the maximum problem size of 27,556 nodes.

  4. A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs

    Science.gov (United States)

    Zheng, Yisheng; Li, Qingpin; Yan, Bo; Luo, Yajun; Zhang, Xinong

    2018-05-01

    In order to improve the isolation performance of passive Stewart platforms, the negative stiffness magnetic spring (NSMS) is employed to construct high static low dynamic stiffness (HSLDS) struts. With the NSMS, the resonance frequencies of the platform can be reduced effectively without deteriorating its load bearing capacity. The model of the Stewart isolation platform with HSLDS struts is presented and the stiffness characteristic of its struts is studied firstly. Then the nonlinear dynamic model of the platform including both geometry nonlinearity and stiffness nonlinearity is established; and its simplified dynamic model is derived under the condition of small vibration. The effect of nonlinearity on the isolation performance is also evaluated. Finally, a prototype is built and the isolation performance is tested. Both simulated and experimental results demonstrate that, by using the NSMS, the resonance frequencies of the Stewart isolator are reduced and the isolation performance in all six directions is improved: the isolation frequency band is increased and extended to a lower-frequency level.

  5. Optimizing some 3-stage W-methods for the time integration of PDEs

    Science.gov (United States)

    Gonzalez-Pinto, S.; Hernandez-Abreu, D.; Perez-Rodriguez, S.

    2017-07-01

    The optimization of some W-methods for the time integration of time-dependent PDEs in several spatial variables is considered. In [2, Theorem 1] several three-parametric families of three-stage W-methods for the integration of IVPs in ODEs were studied. Besides, the optimization of several specific methods for PDEs when the Approximate Matrix Factorization Splitting (AMF) is used to define the approximate Jacobian matrix (W ≈ fy(yn)) was carried out. Also, some convergence and stability properties were presented [2]. The derived methods were optimized on the base that the underlying explicit Runge-Kutta method is the one having the largest Monotonicity interval among the thee-stage order three Runge-Kutta methods [1]. Here, we propose an optimization of the methods by imposing some additional order condition [7] to keep order three for parabolic PDE problems [6] but at the price of reducing substantially the length of the nonlinear Monotonicity interval of the underlying explicit Runge-Kutta method.

  6. Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order

    KAUST Repository

    Gottlieb, Sigal

    2015-04-10

    High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search for high order strong stability time-stepping methods with large allowable strong stability coefficient has been an active area of research over the last two decades. This research has shown that explicit SSP Runge-Kutta methods exist only up to fourth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and this order barrier is lifted: explicit SSP Runge-Kutta methods of any linear order exist. These methods reduce to second order when applied to nonlinear problems. In the current work we aim to find explicit SSP Runge-Kutta methods with large allowable time-step, that feature high linear order and simultaneously have the optimal fourth order nonlinear order. These methods have strong stability coefficients that approach those of the linear methods as the number of stages and the linear order is increased. This work shows that when a high linear order method is desired, it may still be worthwhile to use methods with higher nonlinear order.

  7. Explicit fourth-order stiffness representation in non-linear dynamics

    DEFF Research Database (Denmark)

    Krenk, Steen

    2013-01-01

    global form of the effective internal force is presented, in which it is represented by its algebraic mean value plus a higher order term in the form of the product of the increment of the tangent stiffness matrix at the interval end-points and the corresponding displacement increment. This explicit...

  8. Weak Second Order Explicit Stabilized Methods for Stiff Stochastic Differential Equations

    KAUST Repository

    Abdulle, Assyr; Vilmart, Gilles; Zygalakis, Konstantinos C.

    2013-01-01

    We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer

  9. Induced liquid-crystalline ordering in solutions of stiff and flexible amphiphilic macromolecules: Effect of mixture composition

    International Nuclear Information System (INIS)

    Glagolev, Mikhail K.; Vasilevskaya, Valentina V.; Khokhlov, Alexei R.

    2016-01-01

    Impact of mixture composition on self-organization in concentrated solutions of stiff helical and flexible macromolecules was studied by means of molecular dynamics simulation. The macromolecules were composed of identical amphiphilic monomer units but a fraction f of macromolecules had stiff helical backbones and the remaining chains were flexible. In poor solvents the compacted flexible macromolecules coexist with bundles or filament clusters from few intertwined stiff helical macromolecules. The increase of relative content f of helical macromolecules leads to increase of the length of helical clusters, to alignment of clusters with each other, and then to liquid-crystalline-like ordering along a single direction. The formation of filament clusters causes segregation of helical and flexible macromolecules and the alignment of the filaments induces effective liquid-like ordering of flexible macromolecules. A visual analysis and calculation of order parameter relaying the anisotropy of diffraction allow concluding that transition from disordered to liquid-crystalline state proceeds sharply at relatively low content of stiff components.

  10. Moving mesh generation with a sequential approach for solving PDEs

    DEFF Research Database (Denmark)

    In moving mesh methods, physical PDEs and a mesh equation derived from equidistribution of an error metrics (so-called the monitor function) are simultaneously solved and meshes are dynamically concentrated on steep regions (Lim et al., 2001). However, the simultaneous solution procedure...... a simple and robust moving mesh algorithm in one or multidimension. In this study, we propose a sequential solution procedure including two separate parts: prediction step to obtain an approximate solution to a next time level (integration of physical PDEs) and regriding step at the next time level (mesh...... generation and solution interpolation). Convection terms, which appear in physical PDEs and a mesh equation, are discretized by a WENO (Weighted Essentially Non-Oscillatory) scheme under the consrvative form. This sequential approach is to keep the advantages of robustness and simplicity for the static...

  11. Multiscale empirical interpolation for solving nonlinear PDEs

    KAUST Repository

    Calo, Victor M.

    2014-12-01

    In this paper, we propose a multiscale empirical interpolation method for solving nonlinear multiscale partial differential equations. The proposed method combines empirical interpolation techniques and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM). To solve nonlinear equations, the GMsFEM is used to represent the solution on a coarse grid with multiscale basis functions computed offline. Computing the GMsFEM solution involves calculating the system residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully-resolved fine scale one. The empirical interpolation method uses basis functions which are built by sampling the nonlinear function we want to approximate a limited number of times. The coefficients needed for this approximation are computed in the offline stage by inverting an inexpensive linear system. The proposed multiscale empirical interpolation techniques: (1) divide computing the nonlinear function into coarse regions; (2) evaluate contributions of nonlinear functions in each coarse region taking advantage of a reduced-order representation of the solution; and (3) introduce multiscale proper-orthogonal-decomposition techniques to find appropriate interpolation vectors. We demonstrate the effectiveness of the proposed methods on several nonlinear multiscale PDEs that are solved with Newton\\'s methods and fully-implicit time marching schemes. Our numerical results show that the proposed methods provide a robust framework for solving nonlinear multiscale PDEs on a coarse grid with bounded error and significant computational cost reduction.

  12. Optimization of a variable-stiffness skin for morphing high-lift devices

    NARCIS (Netherlands)

    Thuwis, G.A.A.; Abdalla, M.M.; Gürdal, Z.

    2010-01-01

    One of the possibilities for the next generation of smart high-lift devices is to use a seamless morphing structure. A passive composite variable-stiffness skin as a solution to the dilemma of designing the structure to have high enough stiffness to withstand aerodynamic loading and low stiffness to

  13. Simplified Least Squares Shadowing sensitivity analysis for chaotic ODEs and PDEs

    Energy Technology Data Exchange (ETDEWEB)

    Chater, Mario, E-mail: chaterm@mit.edu; Ni, Angxiu, E-mail: niangxiu@mit.edu; Wang, Qiqi, E-mail: qiqi@mit.edu

    2017-01-15

    This paper develops a variant of the Least Squares Shadowing (LSS) method, which has successfully computed the derivative for several chaotic ODEs and PDEs. The development in this paper aims to simplify Least Squares Shadowing method by improving how time dilation is treated. Instead of adding an explicit time dilation term as in the original method, the new variant uses windowing, which can be more efficient and simpler to implement, especially for PDEs.

  14. Stiff, light, strong and ductile: nano-structured High Modulus Steel.

    Science.gov (United States)

    Springer, H; Baron, C; Szczepaniak, A; Uhlenwinkel, V; Raabe, D

    2017-06-05

    Structural material development for lightweight applications aims at improving the key parameters strength, stiffness and ductility at low density, but these properties are typically mutually exclusive. Here we present how we overcome this trade-off with a new class of nano-structured steel - TiB 2 composites synthesised in-situ via bulk metallurgical spray-forming. Owing to the nano-sized dispersion of the TiB 2 particles of extreme stiffness and low density - obtained by the in-situ formation with rapid solidification kinetics - the new material has the mechanical performance of advanced high strength steels, and a 25% higher stiffness/density ratio than any of the currently used high strength steels, aluminium, magnesium and titanium alloys. This renders this High Modulus Steel the first density-reduced, high stiffness, high strength and yet ductile material which can be produced on an industrial scale. Also ideally suited for 3D printing technology, this material addresses all key requirements for high performance and cost effective lightweight design.

  15. Optimization of a variable-stiffness skin for morphing high-lift devices

    International Nuclear Information System (INIS)

    Thuwis, G A A; Abdalla, M M; Gürdal, Z

    2010-01-01

    One of the possibilities for the next generation of smart high-lift devices is to use a seamless morphing structure. A passive composite variable-stiffness skin as a solution to the dilemma of designing the structure to have high enough stiffness to withstand aerodynamic loading and low stiffness to enable morphing is proposed. The variable-stiffness skin is achieved by allowing for a spatial fibre angle and skin thickness variation on a morphing high-lift system. The stiffness distribution is tailored to influence the deformation of the structure beneficially. To design a realistic stiffness distribution, it is important to take aerodynamic and actuation loads into account during the optimization. A two-dimensional aero-servo-elastic framework is created for this purpose. Skin optimization is performed using a gradient-based optimizer, where sensitivity information is found through application of the adjoint method. The implementation of the aero-servo-elastic environment is addressed and initial optimization results presented. The results indicate that a variable-stiffness skin increases the design space. Moreover, the importance of taking the change in aerodynamic loads due to morphing skin deformation into account during optimization is demonstrated

  16. Accelerating solutions of one-dimensional unsteady PDEs with GPU-based swept time-space decomposition

    Science.gov (United States)

    Magee, Daniel J.; Niemeyer, Kyle E.

    2018-03-01

    The expedient design of precision components in aerospace and other high-tech industries requires simulations of physical phenomena often described by partial differential equations (PDEs) without exact solutions. Modern design problems require simulations with a level of resolution difficult to achieve in reasonable amounts of time-even in effectively parallelized solvers. Though the scale of the problem relative to available computing power is the greatest impediment to accelerating these applications, significant performance gains can be achieved through careful attention to the details of memory communication and access. The swept time-space decomposition rule reduces communication between sub-domains by exhausting the domain of influence before communicating boundary values. Here we present a GPU implementation of the swept rule, which modifies the algorithm for improved performance on this processing architecture by prioritizing use of private (shared) memory, avoiding interblock communication, and overwriting unnecessary values. It shows significant improvement in the execution time of finite-difference solvers for one-dimensional unsteady PDEs, producing speedups of 2 - 9 × for a range of problem sizes, respectively, compared with simple GPU versions and 7 - 300 × compared with parallel CPU versions. However, for a more sophisticated one-dimensional system of equations discretized with a second-order finite-volume scheme, the swept rule performs 1.2 - 1.9 × worse than a standard implementation for all problem sizes.

  17. On multilevel RBF collocation to solve nonlinear PDEs arising from endogenous stochastic volatility models

    Science.gov (United States)

    Bastani, Ali Foroush; Dastgerdi, Maryam Vahid; Mighani, Abolfazl

    2018-06-01

    The main aim of this paper is the analytical and numerical study of a time-dependent second-order nonlinear partial differential equation (PDE) arising from the endogenous stochastic volatility model, introduced in [Bensoussan, A., Crouhy, M. and Galai, D., Stochastic equity volatility related to the leverage effect (I): equity volatility behavior. Applied Mathematical Finance, 1, 63-85, 1994]. As the first step, we derive a consistent set of initial and boundary conditions to complement the PDE, when the firm is financed by equity and debt. In the sequel, we propose a Newton-based iteration scheme for nonlinear parabolic PDEs which is an extension of a method for solving elliptic partial differential equations introduced in [Fasshauer, G. E., Newton iteration with multiquadrics for the solution of nonlinear PDEs. Computers and Mathematics with Applications, 43, 423-438, 2002]. The scheme is based on multilevel collocation using radial basis functions (RBFs) to solve the resulting locally linearized elliptic PDEs obtained at each level of the Newton iteration. We show the effectiveness of the resulting framework by solving a prototypical example from the field and compare the results with those obtained from three different techniques: (1) a finite difference discretization; (2) a naive RBF collocation and (3) a benchmark approximation, introduced for the first time in this paper. The numerical results confirm the robustness, higher convergence rate and good stability properties of the proposed scheme compared to other alternatives. We also comment on some possible research directions in this field.

  18. High-Order Wave Propagation Algorithms for Hyperbolic Systems

    KAUST Repository

    Ketcheson, David I.

    2013-01-22

    We present a finite volume method that is applicable to hyperbolic PDEs including spatially varying and semilinear nonconservative systems. The spatial discretization, like that of the well-known Clawpack software, is based on solving Riemann problems and calculating fluctuations (not fluxes). The implementation employs weighted essentially nonoscillatory reconstruction in space and strong stability preserving Runge--Kutta integration in time. The method can be extended to arbitrarily high order of accuracy and allows a well-balanced implementation for capturing solutions of balance laws near steady state. This well-balancing is achieved through the $f$-wave Riemann solver and a novel wave-slope WENO reconstruction procedure. The wide applicability and advantageous properties of the method are demonstrated through numerical examples, including problems in nonconservative form, problems with spatially varying fluxes, and problems involving near-equilibrium solutions of balance laws.

  19. Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations, and filters.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lefantzi, Sophia; Najm, Habib N.; Kennedy, Christopher A.

    2006-01-01

    Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.

  20. Weak Second Order Explicit Stabilized Methods for Stiff Stochastic Differential Equations

    KAUST Repository

    Abdulle, Assyr

    2013-01-01

    We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer from the step size reduction faced by standard explicit methods. The family is based on the standard second order orthogonal Runge-Kutta-Chebyshev (ROCK2) methods for deterministic problems. The convergence, meansquare, and asymptotic stability properties of the methods are analyzed. Numerical experiments, including applications to nonlinear SDEs and parabolic stochastic partial differential equations are presented and confirm the theoretical results. © 2013 Society for Industrial and Applied Mathematics.

  1. Efficiency of High Order Spectral Element Methods on Petascale Architectures

    KAUST Repository

    Hutchinson, Maxwell; Heinecke, Alexander; Pabst, Hans; Henry, Greg; Parsani, Matteo; Keyes, David E.

    2016-01-01

    High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.

  2. Efficiency of High Order Spectral Element Methods on Petascale Architectures

    KAUST Repository

    Hutchinson, Maxwell

    2016-06-14

    High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.

  3. Multiscale high-order/low-order (HOLO) algorithms and applications

    International Nuclear Information System (INIS)

    Chacón, L.; Chen, G.; Knoll, D.A.; Newman, C.; Park, H.; Taitano, W.; Willert, J.A.; Womeldorff, G.

    2017-01-01

    We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.

  4. Multiscale high-order/low-order (HOLO) algorithms and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chacón, L., E-mail: chacon@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, G.; Knoll, D.A.; Newman, C.; Park, H.; Taitano, W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Willert, J.A. [Institute for Defense Analyses, Alexandria, VA 22311 (United States); Womeldorff, G. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-02-01

    We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.

  5. Coupling between the Output Force and Stiffness in Different Variable Stiffness Actuators

    Directory of Open Access Journals (Sweden)

    Amir Jafari

    2014-08-01

    Full Text Available The fundamental objective in developing variable stiffness actuators is to enable the actuator to deliberately tune its stiffness. This is done through controlling the energy flow extracted from internal power units, i.e., the motors of a variable stiffness actuator (VSA. However, the stiffness may also be unintentionally affected by the external environment, over which, there is no control. This paper analysis the correlation between the external loads, applied to different variable stiffness actuators, and their resultant output stiffness. Different types of variable stiffness actuators have been studied considering springs with different types of nonlinearity. The results provide some insights into how to design the actuator mechanism and nonlinearity of the springs in order to increase the decoupling between the load and stiffness in these actuators. This would significantly widen the application range of a variable stiffness actuator.

  6. Control of Higher–Dimensional PDEs Flatness and Backstepping Designs

    CERN Document Server

    Meurer, Thomas

    2013-01-01

    This monograph presents new model-based design methods for trajectory planning, feedback stabilization, state estimation, and tracking control of distributed-parameter systems governed by partial differential equations (PDEs). Flatness and backstepping techniques and their generalization to PDEs with higher-dimensional spatial domain lie at the core of this treatise. This includes the development of systematic late lumping design procedures and the deduction of semi-numerical approaches using suitable approximation methods. Theoretical developments are combined with both simulation examples and experimental results to bridge the gap between mathematical theory and control engineering practice in the rapidly evolving PDE control area. The text is divided into five parts featuring: - a literature survey of paradigms and control design methods for PDE systems - the first principle mathematical modeling of applications arising in heat and mass transfer, interconnected multi-agent systems, and piezo-actuated smar...

  7. On the Robustness and Prospects of Adaptive BDDC Methods for Finite Element Discretizations of Elliptic PDEs with High-Contrast Coefficients

    KAUST Repository

    Zampini, Stefano; Keyes, David E.

    2016-01-01

    Balancing Domain Decomposition by Constraints (BDDC) methods have proven to be powerful preconditioners for large and sparse linear systems arising from the finite element discretization of elliptic PDEs. Condition number bounds can be theoretically

  8. Compiler-Directed Transformation for Higher-Order Stencils

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Protonu [Univ. of Utah, Salt Lake City, UT (United States); Hall, Mary [Univ. of Utah, Salt Lake City, UT (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Straalen, Brian Van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Colella, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-07-20

    As the cost of data movement increasingly dominates performance, developers of finite-volume and finite-difference solutions for partial differential equations (PDEs) are exploring novel higher-order stencils that increase numerical accuracy and computational intensity. This paper describes a new compiler reordering transformation applied to stencil operators that performs partial sums in buffers, and reuses the partial sums in computing multiple results. This optimization has multiple effect son improving stencil performance that are particularly important to higher-order stencils: exploits data reuse, reduces floating-point operations, and exposes efficient SIMD parallelism to backend compilers. We study the benefit of this optimization in the context of Geometric Multigrid (GMG), a widely used method to solvePDEs, using four different Jacobi smoothers built from 7-, 13-, 27-and 125-point stencils. We quantify performance, speedup, andnumerical accuracy, and use the Roofline model to qualify our results. Ultimately, we obtain over 4× speedup on the smoothers themselves and up to a 3× speedup on the multigrid solver. Finally, we demonstrate that high-order multigrid solvers have the potential of reducing total data movement and energy by several orders of magnitude.

  9. A generic library for large scale solution of PDEs on modern heterogeneous architectures

    DEFF Research Database (Denmark)

    Glimberg, Stefan Lemvig; Engsig-Karup, Allan Peter

    2012-01-01

    Adapting to new programming models for modern multi- and many-core architectures requires code-rewriting and changing algorithms and data structures, in order to achieve good efficiency and scalability. We present a generic library for solving large scale partial differential equations (PDEs......), capable of utilizing heterogeneous CPU/GPU environments. The library can be used for fast proto-typing of PDE solvers, based on finite difference approximations of spatial derivatives in one, two, or three dimensions. In order to efficiently solve large scale problems, we keep memory consumption...... and memory access low, using a low-storage implementation of flexible-order finite difference operators. We will illustrate the use of library components by assembling such matrix-free operators to be used with one of the supported iterative solvers, such as GMRES, CG, Multigrid or Defect Correction...

  10. High order spectral difference lattice Boltzmann method for incompressible hydrodynamics

    Science.gov (United States)

    Li, Weidong

    2017-09-01

    This work presents a lattice Boltzmann equation (LBE) based high order spectral difference method for incompressible flows. In the present method, the spectral difference (SD) method is adopted to discretize the convection and collision term of the LBE to obtain high order (≥3) accuracy. Because the SD scheme represents the solution as cell local polynomials and the solution polynomials have good tensor-product property, the present spectral difference lattice Boltzmann method (SD-LBM) can be implemented on arbitrary unstructured quadrilateral meshes for effective and efficient treatment of complex geometries. Thanks to only first oder PDEs involved in the LBE, no special techniques, such as hybridizable discontinuous Galerkin method (HDG), local discontinuous Galerkin method (LDG) and so on, are needed to discrete diffusion term, and thus, it simplifies the algorithm and implementation of the high order spectral difference method for simulating viscous flows. The proposed SD-LBM is validated with four incompressible flow benchmarks in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the lid-driven cavity flow without singularity at the two top corners-Burggraf flow; and (c) the unsteady Taylor-Green vortex flow; (d) the Blasius boundary-layer flow past a flat plate. Computational results are compared with analytical solutions of these cases and convergence studies of these cases are also given. The designed accuracy of the proposed SD-LBM is clearly verified.

  11. Dynamic stiffness of suction caissons - vertical vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.; Andersen, Lars

    2006-12-15

    The dynamic response of offshore wind turbines are affected by the properties of the foundation and the subsoil. The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three-dimensional coupled Boundary Element/Finite Element model. Comparisons are made with known analytical and numerical solutions in order to evaluate the static and dynamic behaviour of the Boundary Element/Finite Element model. The vertical frequency dependent stiffness has been determined for different combinations of the skirt length, Poisson's ratio and the ratio between soil stiffness and skirt stiffness. Finally the dynamic behaviour at high frequencies is investigated. (au)

  12. Multilevel quadrature of elliptic PDEs with log-normal diffusion

    KAUST Repository

    Harbrecht, Helmut

    2015-01-07

    We apply multilevel quadrature methods for the moment computation of the solution of elliptic PDEs with lognormally distributed diffusion coefficients. The computation of the moments is a difficult task since they appear as high dimensional Bochner integrals over an unbounded domain. Each function evaluation corresponds to a deterministic elliptic boundary value problem which can be solved by finite elements on an appropriate level of refinement. The complexity is thus given by the number of quadrature points times the complexity for a single elliptic PDE solve. The multilevel idea is to reduce this complexity by combining quadrature methods with different accuracies with several spatial discretization levels in a sparse grid like fashion.

  13. Developments of the indirect method for measuring the high frequency dynamic stiffness of resilient elements

    NARCIS (Netherlands)

    Thompson, D.J.; Vliet, van W.J.; Verheij, J.W.

    1998-01-01

    The complex stiffness of resilient elements is an important parameter required in order to model vibration isolation for many applications. Measurement methods are being standardized which allow such a stiffness to be measured as a function of excitation frequency for known loading conditions. This

  14. A crossover from high stiffness to high hardness. The case of osmium and its borides

    International Nuclear Information System (INIS)

    Bian, Yongming; Li, Anhu; Liu, Xiaomei; Shanghai Univ. of Engineering Science; Liang, Yongcheng

    2016-01-01

    Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os_2B_3 and OsB_2) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.

  15. Evolution PDEs with nonstandard growth conditions existence, uniqueness, localization, blow-up

    CERN Document Server

    Antontsev, Stanislav

    2015-01-01

    This monograph offers the reader a treatment of the theory of evolution PDEs with nonstandard growth conditions. This class includes parabolic and hyperbolic equations with variable or anisotropic nonlinear structure. We develop methods for the study of such equations and present a detailed account of recent results. An overview of other approaches to the study of PDEs of this kind is provided. The presentation is focused on the issues of existence and uniqueness of solutions in appropriate function spaces, and on the study of the specific qualitative properties of solutions, such as localization in space and time, extinction in a finite time and blow-up, or nonexistence of global in time solutions. Special attention is paid to the study of the properties intrinsic to solutions of equations with nonstandard growth.

  16. A crossover from high stiffness to high hardness. The case of osmium and its borides

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yongming; Li, Anhu [Tongji Univ., Shanghai (China). School of Mechanical Engineering; Liu, Xiaomei [Tongji Univ., Shanghai (China). School of Mechanical Engineering; Shanghai Univ. of Engineering Science (China). College of Mechanical Engineering; Liang, Yongcheng [Shanghai Ocean Univ. (China). College of Engineering Science and Technology

    2016-07-01

    Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os{sub 2}B{sub 3} and OsB{sub 2}) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.

  17. An iterated Radau method for time-dependent PDE's

    NARCIS (Netherlands)

    S. Pérez-Rodríguez; S. González-Pinto; B.P. Sommeijer (Ben)

    2008-01-01

    htmlabstractThis paper is concerned with the time integration of semi-discretized, multi-dimensional PDEs of advection-diffusion-reaction type. To cope with the stiffness of these ODEs, an implicit method has been selected, viz., the two-stage, third-order Radau IIA method. The main topic of this

  18. EXTRA: a digital computer program for the solution of stiff sets of ordinary initial value, first order differential equations

    International Nuclear Information System (INIS)

    Sidell, J.

    1976-08-01

    EXTRA is a program written for the Winfrith KDF9 enabling the user to solve first order initial value differential equations. In this report general numerical integration methods are discussed with emphasis on their application to the solution of stiff sets of equations. A method of particular applicability to stiff sets of equations is described. This method is incorporated in the program EXTRA and full instructions for its use are given. A comparison with other methods of computation is included. (author)

  19. Current front stiffness of European vehicles with regard to compatibility

    NARCIS (Netherlands)

    Huibers, J.; Beer, E. de

    2001-01-01

    EuroNCAP tests are carried out since 1997. The test procedure in general is comparable to the EC Directive 96/79 with a test speed of 64 km/h. This increased test speed implies a higher frontal stiffness for new vehicle designs in order to achieve a high ranking. This frontal stiffness is one of the

  20. Research on a novel high stiffness axial passive magnetic bearing for DGMSCMG

    International Nuclear Information System (INIS)

    Sun, Jinji; Wang, Chun'e; Le, Yun

    2016-01-01

    To increase the displacement stiffness and decrease power loss of double gimbals magnetically suspended control momentum gyro (DGMSCMG), this paper researches a new structure of axial passive magnetic bearing (APMB). Different from the existing APMB, the proposed APMB is composed of segmented permanent magnets and magnetic rings. The displacement stiffness and angular stiffness expressions are derived by equivalent magnetic circuit method and infinitesimal method based on the end magnetic flux. The relationships are analyzed between stiffness and structure parameters such as length of air gap, length of permanent magnet, height of permanent magnet and end length of magnetic ring. Besides, the axial displacement stiffness measurement method of the APMB is proposed, and it verified the correctness of proposed theoretical method. The DGMSCMG prototype is manufactured and the slow-down characteristic experiment is carried out, and the experimental result reflects the low power loss feature of the APMB. - Highlights: • A novel high stiffness axial passive magnetic bearing for DGMSCMG. • The proposed APMB is composed of segmented permanent magnets and magnetic rings. • The APMB is analyzed by EMCM and infinitesimal method based on the end magnetic flux. • The axial displacement stiffness measurement method of the APMB is proposed. • The DGMSCMG is manufactured and proved the correctness of theoretical analysis.

  1. Limit cycles and stiffness control with variable stiffness actuators

    NARCIS (Netherlands)

    Carloni, Raffaella; Marconi, L.

    2012-01-01

    Variable stiffness actuators realize highly dynamic systems, whose inherent mechanical compliance can be properly exploited to obtain a robust and energy-efficient behavior. The paper presents a control strategy for variable stiffness actuators with the primarily goal of tracking a limit cycle

  2. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models

    International Nuclear Information System (INIS)

    Fakhar, K.; Kara, A. H.

    2012-01-01

    We study the symmetries, conservation laws and reduction of third-order equations that evolve from a prior reduction of models that arise in fluid phenomena. These could be the ordinary differential equations (ODEs) that are reductions of partial differential equations (PDEs) or, alternatively, PDEs related to given ODEs. In this class, the analysis includes the well-known Blasius, Chazy, and other associated third-order ODEs. (general)

  3. Application of QMC methods to PDEs with random coefficients : a survey of analysis and implementation

    KAUST Repository

    Kuo, Frances

    2016-01-05

    In this talk I will provide a survey of recent research efforts on the application of quasi-Monte Carlo (QMC) methods to PDEs with random coefficients. Such PDE problems occur in the area of uncertainty quantification. In recent years many papers have been written on this topic using a variety of methods. QMC methods are relatively new to this application area. I will consider different models for the randomness (uniform versus lognormal) and contrast different QMC algorithms (single-level versus multilevel, first order versus higher order, deterministic versus randomized). I will give a summary of the QMC error analysis and proof techniques in a unified view, and provide a practical guide to the software for constructing QMC points tailored to the PDE problems.

  4. Clawpack: Building an open source ecosystem for solving hyperbolic PDEs

    Science.gov (United States)

    Iverson, Richard M.; Mandli, K.T.; Ahmadia, Aron J.; Berger, M.J.; Calhoun, Donna; George, David L.; Hadjimichael, Y.; Ketcheson, David I.; Lemoine, Grady L.; LeVeque, Randall J.

    2016-01-01

    Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equations using high-resolution finite volume methods based on Riemann solvers and limiters. The package includes a number of variants aimed at different applications and user communities. Clawpack has been actively developed as an open source project for over 20 years. The latest major release, Clawpack 5, introduces a number of new features and changes to the code base and a new development model based on GitHub and Git submodules. This article provides a summary of the most significant changes, the rationale behind some of these changes, and a description of our current development model. Clawpack: building an open source ecosystem for solving hyperbolic PDEs.

  5. Quasi-invariant modified Sobolev norms for semi linear reversible PDEs

    International Nuclear Information System (INIS)

    Faou, Erwan; Grébert, Benoît

    2010-01-01

    We consider a general class of infinite dimensional reversible differential systems. Assuming a nonresonance condition on linear frequencies, we construct for such systems almost invariant pseudo-norms that are close to Sobolev-like norms. This allows us to prove that if the Sobolev norm of index s of the initial data z 0 is sufficiently small (of order ε) then the Sobolev norm of the solution is bounded by 2ε over a very long time interval (of order ε −r with r arbitrary). It turns out that this theorem applies to a large class of reversible semi-linear partial differential equations (PDEs) including the nonlinear Schrödinger (NLS) equation on the d-dimensional torus. We also apply our method to a system of coupled NLS equations which is reversible but not Hamiltonian. We also note that for the same class of reversible systems we can prove a Birkhoff normal form theorem, which in turn implies the same bounds on the Sobolev norms. Nevertheless the techniques that we use to prove the existence of quasi-invariant pseudo-norms are much more simple and direct

  6. Third Order Reconstruction of the KP Scheme for Model of River Tinnelva

    Directory of Open Access Journals (Sweden)

    Susantha Dissanayake

    2017-01-01

    Full Text Available The Saint-Venant equation/Shallow Water Equation is used to simulate flow of river, flow of liquid in an open channel, tsunami etc. The Kurganov-Petrova (KP scheme which was developed based on the local speed of discontinuity propagation, can be used to solve hyperbolic type partial differential equations (PDEs, hence can be used to solve the Saint-Venant equation. The KP scheme is semi discrete: PDEs are discretized in the spatial domain, resulting in a set of Ordinary Differential Equations (ODEs. In this study, the common 2nd order KP scheme is extended into 3rd order scheme while following the Weighted Essentially Non-Oscillatory (WENO and Central WENO (CWENO reconstruction steps. Both the 2nd order and 3rd order schemes have been used in simulation in order to check the suitability of the KP schemes to solve hyperbolic type PDEs. The simulation results indicated that the 3rd order KP scheme shows some better stability compared to the 2nd order scheme. Computational time for the 3rd order KP scheme for variable step-length ode solvers in MATLAB is less compared to the computational time of the 2nd order KP scheme. In addition, it was confirmed that the order of the time integrators essentially should be lower compared to the order of the spatial discretization. However, for computation of abrupt step changes, the 2nd order KP scheme shows a more accurate solution.

  7. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    Directory of Open Access Journals (Sweden)

    Runxiao Wang

    2016-01-01

    Full Text Available Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1 both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2 at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  8. Architected Lattices with High Stiffness and Toughness via Multicore-Shell 3D Printing.

    Science.gov (United States)

    Mueller, Jochen; Raney, Jordan R; Shea, Kristina; Lewis, Jennifer A

    2018-03-01

    The ability to create architected materials that possess both high stiffness and toughness remains an elusive goal, since these properties are often mutually exclusive. Natural materials, such as bone, overcome such limitations by combining different toughening mechanisms across multiple length scales. Here, a new method for creating architected lattices composed of core-shell struts that are both stiff and tough is reported. Specifically, these lattices contain orthotropic struts with flexible epoxy core-brittle epoxy shell motifs in the absence and presence of an elastomeric silicone interfacial layer, which are fabricated by a multicore-shell, 3D printing technique. It is found that architected lattices produced with a flexible core-elastomeric interface-brittle shell motif exhibit both high stiffness and toughness. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fast RBF OGr for solving PDEs on arbitrary surfaces

    Science.gov (United States)

    Piret, Cécile; Dunn, Jarrett

    2016-10-01

    The Radial Basis Functions Orthogonal Gradients method (RBF-OGr) was introduced in [1] to discretize differential operators defined on arbitrary manifolds defined only by a point cloud. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent complex geometries in any spatial dimension. A large limitation of the RBF-OGr method was its large computational complexity, which greatly restricted the size of the point cloud. In this paper, we apply the RBF-Finite Difference (RBF-FD) technique to the RBF-OGr method for building sparse differentiation matrices discretizing continuous differential operators such as the Laplace-Beltrami operator. This method can be applied to solving PDEs on arbitrary surfaces embedded in ℛ3. We illustrate the accuracy of our new method by solving the heat equation on the unit sphere.

  10. Classical Solutions of Path-Dependent PDEs and Functional Forward-Backward Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Shaolin Ji

    2013-01-01

    Full Text Available In this paper we study the relationship between functional forward-backward stochastic systems and path-dependent PDEs. In the framework of functional Itô calculus, we introduce a path-dependent PDE and prove that its solution is uniquely determined by a functional forward-backward stochastic system.

  11. Intestinal lymphangiectasia and reversible high liver stiffness.

    Science.gov (United States)

    Milazzo, Laura; Peri, Anna Maria; Lodi, Lucia; Gubertini, Guido; Ridolfo, Anna Lisa; Antinori, Spinello

    2014-08-01

    Primary intestinal lymphangiectasia (PIL) is a protein-losing enteropathy characterized by tortuous and dilated lymph channels of the small bowel. The main symptoms are bilateral lower limb edema, serosal effusions, and vitamin D malabsorption resulting in osteoporosis. We report here a case of long-lasting misdiagnosed PIL with a peculiar liver picture, characterized by a very high stiffness value at transient elastography, which decreased with clinical improvement. The complex interplay between lymphatic and hepatic circulatory system is discussed. © 2014 by the American Association for the Study of Liver Diseases.

  12. Linear and non-linear stability analysis for finite difference discretizations of high-order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.

    2004-01-01

    of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep-water non-linearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only...... insight into the numerical behaviour of this rather complicated system of non-linear PDEs....

  13. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Yan-Rui Li

    2015-06-01

    Full Text Available During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.

  14. Estimating Gear Teeth Stiffness

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The estimation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the boundary condition through the gear rim size included in the stiffness calculation...... and secondly the size of the contact. In the FE calculation the true gear tooth root profile is applied. The meshing stiffness’s of gears are highly non-linear, it is however found that the stiffness of an individual tooth can be expressed in a linear form assuming that the contact length is constant....

  15. Dual-shaped offset reflector antenna designs from solutions of the geometrical optics first-order partial differential equations

    Science.gov (United States)

    Galindo-Israel, V.; Imbriale, W.; Shogen, K.; Mittra, R.

    1990-01-01

    In obtaining solutions to the first-order nonlinear partial differential equations (PDEs) for synthesizing offset dual-shaped reflectors, it is found that previously observed computational problems can be avoided if the integration of the PDEs is started from an inner projected perimeter and integrated outward rather than starting from an outer projected perimeter and integrating inward. This procedure, however, introduces a new parameter, the main reflector inner perimeter radius p(o), when given a subreflector inner angle 0(o). Furthermore, a desired outer projected perimeter (e.g., a circle) is no longer guaranteed. Stability of the integration is maintained if some of the initial parameters are determined first from an approximate solution to the PDEs. A one-, two-, or three-parameter optimization algorithm can then be used to obtain a best set of parameters yielding a close fit to the desired projected outer rim. Good low cross-polarization mapping functions are also obtained. These methods are illustrated by synthesis of a high-gain offset-shaped Cassegrainian antenna and a low-noise offset-shaped Gregorian antenna.

  16. A high-order doubly asymptotic open boundary for scalar waves in semi-infinite layered systems

    International Nuclear Information System (INIS)

    Prempramote, S; Song, Ch; Birk, C

    2010-01-01

    Wave propagation in semi-infinite layered systems is of interest in earthquake engineering, acoustics, electromagnetism, etc. The numerical modelling of this problem is particularly challenging as evanescent waves exist below the cut-off frequency. Most of the high-order transmitting boundaries are unable to model the evanescent waves. As a result, spurious reflection occurs at late time. In this paper, a high-order doubly asymptotic open boundary is developed for scalar waves propagating in semi-infinite layered systems. It is derived from the equation of dynamic stiffness matrix obtained in the scaled boundary finite-element method in the frequency domain. A continued-fraction solution of the dynamic stiffness matrix is determined recursively by satisfying the scaled boundary finite-element equation at both high- and low-frequency limits. In the time domain, the continued-fraction solution permits the force-displacement relationship to be formulated as a system of first-order ordinary differential equations. Standard time-step schemes in structural dynamics can be directly applied to evaluate the response history. Examples of a semi-infinite homogeneous layer and a semi-infinite two-layered system are investigated herein. The displacement results obtained from the open boundary converge rapidly as the order of continued fractions increases. Accurate results are obtained at early time and late time.

  17. Multi-symplectic Birkhoffian structure for PDEs with dissipation terms

    International Nuclear Information System (INIS)

    Su Hongling; Qin Mengzhao; Wang Yushun; Scherer, Rudolf

    2010-01-01

    A generalization of the multi-symplectic form for Hamiltonian systems to self-adjoint systems with dissipation terms is studied. These systems can be expressed as multi-symplectic Birkhoffian equations, which leads to a natural definition of Birkhoffian multi-symplectic structure. The concept of Birkhoffian multi-symplectic integrators for Birkhoffian PDEs is investigated. The Birkhoffian multi-symplectic structure is constructed by the continuous variational principle, and the Birkhoffian multi-symplectic integrator by the discrete variational principle. As an example, two Birkhoffian multi-symplectic integrators for the equation describing a linear damped string are given.

  18. High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations

    KAUST Repository

    Abdulle, Assyr

    2012-01-01

    © 2012 Society for Industrial and Applied Mathematics. Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration of stochastic differential equations. This approach is illustrated with the constructions of new methods of weak order two, in particular, semi-implicit integrators well suited for stiff (meansquare stable) stochastic problems, and implicit integrators that exactly conserve all quadratic first integrals of a stochastic dynamical system. Numerical examples confirm the theoretical results and show the versatility of our methodology.

  19. Summary Report: Multigrid for Systems of Elliptic PDEs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Barry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-17

    We are interested in determining if multigrid can be effectively applied to the system. The conclusion that I seem to be drawn to is that it is impossible to develop a blackbox multigrid solver for these general systems. Analysis of the system of PDEs must be conducted first to determine pre-processing procedures on the continuous problem before applying a multigrid method. Determining this pre-processing is currently not incorporated in black-box multigrid strategies. Nevertheless, we characterize some system features that will make the system more amenable to multigrid approaches, techniques that may lead to more amenable systems, and multigrid procedures that are generally more appropriate for these systems.

  20. The study of stiffness modulus values for AC-WC pavement

    Science.gov (United States)

    Lubis, AS; Muis, Z. A.; Iskandar, T. D.

    2018-02-01

    One of the parameters of the asphalt mixture in order for the strength and durability to be achieved as required is the stress-and-strain showing the stiffness of a material. Stiffness modulus is a very necessary factor that will affect the performance of asphalt pavements. If the stiffness modulus value decreases there will be a cause of aging asphalt pavement crack easily when receiving a heavy load. The high stiffness modulus asphalt concrete causes more stiff and resistant to bending. The stiffness modulus value of an asphalt mixture material can be obtained from the theoretical (indirect methods) and laboratory test results (direct methods). For the indirect methods used Brown & Brunton method, and Shell Bitumen method; while for the direct methods used the UMATTA tool. This study aims to determine stiffness modulus values for AC-WC pavement. The tests were conducted in laboratory that used 3 methods, i.e. Brown & Brunton Method, Shell Bitumen Method and Marshall Test as a substitute tool for the UMATTA tool. Hotmix asphalt made from type AC-WC with pen 60/70 using a mixture of optimum bitumen content was 5.84% with a standard temperature variation was 60°C and several variations of temperature that were 30, 40, 50, 70 and 80°C. The stiffness modulus value results obtained from Brown & Brunton Method, Shell Bitumen Method and Marshall Test which were 1374,93 Mpa, 235,45 Mpa dan 254,96 Mpa. The stiffness modulus value decreases with increasing temperature of the concrete asphalt. The stiffness modulus value from the Bitumen Shell method and the Marshall Test has a relatively similar value.The stiffness modulus value from the Brown & Brunton method is greater than the Bitumen Shell method and the Marshall Test, but can not measure the stiffness modulus value at temperature above 80°C.

  1. Relationship between Static Stiffness and Modal Stiffness of Structures

    Directory of Open Access Journals (Sweden)

    Tianjian Ji Tianjian Ji

    2010-02-01

    Full Text Available This paper derives the relationship between the static stiffness and modal stiffness of a structure. The static stiffness and modal stiffness are two important concepts in both structural statics and dynamics. Although both stiffnesses indicate the capacity of the structure to resist deformation, they are obtained using different methods. The former is calculated by solving the equations of equilibrium and the latter can be obtained by solving an eigenvalue problem. A mathematical relationship between the two stiffnesses was derived based on the definitions of two stiffnesses. This relationship was applicable to a linear system and the derivation of relationships does not reveal any other limitations. Verification of the relationship was given by using several examples. The relationship between the two stiffnesses demonstrated that the modal stiffness of the fundamental mode was always larger than the static stiffness of a structure if the critical point and the maximum mode value are at the same node, i.e. for simply supported beam and seven storeys building are 1.5% and 15% respectively. The relationship could be applied into real structures, where the greater the number of modes being considered, the smaller the difference between the modal stiffness and the static stiffness of a structure.

  2. A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws

    Science.gov (United States)

    Lafitte, Pauline; Melis, Ward; Samaey, Giovanni

    2017-07-01

    We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.

  3. Iterative solution of high order compact systems

    Energy Technology Data Exchange (ETDEWEB)

    Spotz, W.F.; Carey, G.F. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    We have recently developed a class of finite difference methods which provide higher accuracy and greater stability than standard central or upwind difference methods, but still reside on a compact patch of grid cells. In the present study we investigate the performance of several gradient-type iterative methods for solving the associated sparse systems. Both serial and parallel performance studies have been made. Representative examples are taken from elliptic PDE`s for diffusion, convection-diffusion, and viscous flow applications.

  4. Measurement and Treatment of Passive Muscle Stiffness

    DEFF Research Database (Denmark)

    Kirk, Henrik

    , which aimed to investigate: 1) The development of a clinical method to evaluate and distinguish neural (reflex mediated stiffness) and non-neural (passive muscle stiffness) components of muscle stiffness in adults with CP by objective and reliable measurements. 2) The association between increased...... and reliability of the method, and argue for the use of the method in the clinical practice. The device is able to distinguish between passive muscle stiffness and reflex-mediated stiffness in subjects with CP. It shows good high intrarater and interrater reliability in evaluation of passive muscle stiffness...... to measure muscle stiffness, and distinguish between passive muscle stiffness and reflex-mediated stiffness. Furthermore, it is a reliable device to measure changes in passive ROM. Treatment of passive muscle stiffness should be directed towards intense training, comprising many repetitions with a functional...

  5. Identification of factors that influence the stiffness of high-damping elastomer seismic isolation bearings

    International Nuclear Information System (INIS)

    Kulak, R.F.; Hughes, T.H.

    1994-01-01

    During the past decade, high-damping elastomer, steel-laminated seismic isolation bearings have gained acceptance as a device for isolating large buildings and structures from earthquake damage. In the United States, architectural engineering firms custom design isolators for each project and ten have the isolators manufactured by one of less than a hand-full of manufactures. The stiffness of the bearing is the single most important design parameter that the molded bearing must meet because it determines the fundamental frequency of the isolation system. This paper reports on recent research that examined several factors that cause real and potential variations to the stiffness of the bearing. The resulting changes to the fundamental frequency of the isolated structure are quantified for each factor. The following were examined: (1) dimensional tolerances, (2) frequency effects, (3) temperature effects, (4) cyclical effects, and (5) aging effects. It was found that geometric variations barely affect the stiffness whereas temperature variations greatly affect the stiffness

  6. Evaluation of Stiffness Changes in a High-Rise Building by Measurements of Lateral Displacements Using GPS Technology

    Science.gov (United States)

    Choi, Se Woon; Kim, Ill Soo; Park, Jae Hwan; Kim, Yousok; Sohn, Hong Gyoo; Park, Hyo Seon

    2013-01-01

    The outrigger truss system is one of the most frequently used lateral load resisting structural systems. However, little research has been reported on the effect of installation of outrigger trusses on improvement of lateral stiffness of a high-rise building through full-scale measurements. In this paper, stiffness changes of a high-rise building due to installation of outrigger trusses have been evaluated by measuring lateral displacements using a global positioning system (GPS). To confirm the error range of the GPS measurement system used in the full-scale measurement tests, the GPS displacement monitoring system is investigated through a free vibration test of the experimental model. Then, for the evaluation of lateral stiffness of a high-rise building under construction, the GPS displacement monitoring system is applied to measurements of lateral displacements of a 66-story high-rise building before and after installation of outrigger truss. The stiffness improvement of the building before and after the installation is confirmed through the changes of the natural frequencies and the ratios of the base shear forces to the roof displacements. PMID:24233025

  7. Evaluation of Stiffness Changes in a High-Rise Building by Measurements of Lateral Displacements Using GPS Technology

    Directory of Open Access Journals (Sweden)

    Se Woon Choi

    2013-11-01

    Full Text Available The outrigger truss system is one of the most frequently used lateral load resisting structural systems. However, little research has been reported on the effect of installation of outrigger trusses on improvement of lateral stiffness of a high-rise building through full-scale measurements. In this paper, stiffness changes of a high-rise building due to installation of outrigger trusses have been evaluated by measuring lateral displacements using a global positioning system (GPS. To confirm the error range of the GPS measurement system used in the full-scale measurement tests, the GPS displacement monitoring system is investigated through a free vibration test of the experimental model. Then, for the evaluation of lateral stiffness of a high-rise building under construction, the GPS displacement monitoring system is applied to measurements of lateral displacements of a 66-story high-rise building before and after installation of outrigger truss. The stiffness improvement of the building before and after the installation is confirmed through the changes of the natural frequencies and the ratios of the base shear forces to the roof displacements.

  8. Measurement Research of Motorized Spindle Dynamic Stiffness under High Speed Rotating

    Directory of Open Access Journals (Sweden)

    Xiaopeng Wang

    2015-01-01

    Full Text Available High speed motorized spindle has become a key functional unit of high speed machine tools and effectively promotes the development of machine tool technology. The development of higher speed and more power puts forward the stricter requirement for the performance of motorized spindle, especially the dynamic performance which affects the machining accuracy, reliability, and production efficiency. To overcome the problems of ineffective loading and dynamic performance measurement of motorized spindle, a noncontact electromagnetic loading device is developed. The cutting load can be simulated by using electromagnetic force. A new method of measuring force by force sensors is presented, and the steady and transient loading force could be measured exactly. After the high speed machine spindle is tested, the frequency response curves of the spindle relative to machine table are collected at 0~12000 rpm; then the relationships between stiffness and speeds as well as between damping ratio and speeds are obtained. The result shows that not only the static and dynamic stiffness but also the damping ratio declined with the increase of speed.

  9. Single motor–variable stiffness actuator using bistable switching mechanisms for independent motion and stiffness control

    NARCIS (Netherlands)

    Groothuis, Stefan; Carloni, Raffaella; Stramigioli, Stefano

    This paper presents a proof of concept of a variable stiffness actuator (VSA) that uses only one (high power) input motor. In general, VSAs use two (high power) motors to be able to control both the output position and the output stiffness, which possibly results in a heavy, and bulky system. In

  10. Low-storage implicit/explicit Runge-Kutta schemes for the simulation of stiff high-dimensional ODE systems

    Science.gov (United States)

    Cavaglieri, Daniele; Bewley, Thomas

    2015-04-01

    Implicit/explicit (IMEX) Runge-Kutta (RK) schemes are effective for time-marching ODE systems with both stiff and nonstiff terms on the RHS; such schemes implement an (often A-stable or better) implicit RK scheme for the stiff part of the ODE, which is often linear, and, simultaneously, a (more convenient) explicit RK scheme for the nonstiff part of the ODE, which is often nonlinear. Low-storage RK schemes are especially effective for time-marching high-dimensional ODE discretizations of PDE systems on modern (cache-based) computational hardware, in which memory management is often the most significant computational bottleneck. In this paper, we develop and characterize eight new low-storage implicit/explicit RK schemes which have higher accuracy and better stability properties than the only low-storage implicit/explicit RK scheme available previously, the venerable second-order Crank-Nicolson/Runge-Kutta-Wray (CN/RKW3) algorithm that has dominated the DNS/LES literature for the last 25 years, while requiring similar storage (two, three, or four registers of length N) and comparable floating-point operations per timestep.

  11. Influence of TVT properties on outcomes of midurethral sling procedures: high-stiffness versus low-stiffness tape.

    Science.gov (United States)

    Prien-Larsen, Jens Christian; Prien-Larsen, Thomas; Cieslak, Lars; Dessau, Ram B

    2016-07-01

    Although there is clear consensus on the use of monofilament polypropylene tapes for treating stress urinary incontinence (SUI), tapes differ in weight, stiffness, and elasticity. In this study, we compared outcomes of two tape types: high-stiffness Intramesh SOFT L.I.F.T versus low-stiffness Intramesh L.I.F.T. tape. Our null hypothesis was that in terms of performance, SOFT tape equaled L.I.F.T. tape. Six hundred and sixty women underwent prospective transvaginal tape (TVT) surgery for SUI: 210 had the SOFT tape placed and 450 the L.I.F.T. tape. Follow-ups were scheduled at 3 and 12 months. Objective cure at 3-months' follow-up was 87 % in the SOFT group vs 94 % in the L.I.F.T. group (p = 0.003) and at 12 months 86 vs 96 % (p = 0.0004), respectively. Subjective outcomes were equal. For SOFT tape, the objective failure rate at 3 months was especially pronounced in women older than 70 years: 31 vs 10 % (p = 0.008), and subjective failure was 24 vs 7 % (p = 0.01). At 12 months, objective failure for the SOFT tape was significantly higher in both age groups compared with L.I.F.T. [odds ratio (OR) 2.17]. Multivariate analysis showed that body mass index (BMI) ≥30 (OR 2.41), mixed incontinence (MUI) (OR 2.24), use of SOFT tape (OR 2.17), and age ≥ 70 years are significant independent risk factors for surgical failure. Outcomes with SOFT tape are significantly inferior than with L.I.F.T. tape, especially among elderly women. Therefore, the two variants of monofilament polypropylene tape are not interchangeable.

  12. Stiffness Evolution in Frozen Sands Subjected to Stress Changes

    KAUST Repository

    Dai, Sheng; Santamarina, Carlos

    2017-01-01

    Sampling affects all soils, including frozen soils and hydrate-bearing sediments. The authors monitor the stiffness evolution of frozen sands subjected to various temperature and stress conditions using an oedometer cell instrumented with P-wave transducers. Experimental results show the stress-dependent stiffness of freshly remolded sands, the dominant stiffening effect of ice, creep after unloading, and the associated exponential decrease in stiffness with time. The characteristic time for stiffness loss during creep is of the order of tens of minutes; therefore it is inevitable that frozen soils experience sampling disturbances attributable to unloading. Slow unloading minimizes stiffness loss; conversely, fast unloading causes a pronounced reduction in stiffness probably attributable to the brittle failure of ice or ice-mineral bonding.

  13. Stiffness Evolution in Frozen Sands Subjected to Stress Changes

    KAUST Repository

    Dai, Sheng

    2017-04-21

    Sampling affects all soils, including frozen soils and hydrate-bearing sediments. The authors monitor the stiffness evolution of frozen sands subjected to various temperature and stress conditions using an oedometer cell instrumented with P-wave transducers. Experimental results show the stress-dependent stiffness of freshly remolded sands, the dominant stiffening effect of ice, creep after unloading, and the associated exponential decrease in stiffness with time. The characteristic time for stiffness loss during creep is of the order of tens of minutes; therefore it is inevitable that frozen soils experience sampling disturbances attributable to unloading. Slow unloading minimizes stiffness loss; conversely, fast unloading causes a pronounced reduction in stiffness probably attributable to the brittle failure of ice or ice-mineral bonding.

  14. Entropy Viscosity and L1-based Approximations of PDEs: Exploiting Sparsity

    Science.gov (United States)

    2015-10-23

    AFRL-AFOSR-VA-TR-2015-0337 Entropy Viscosity and L1-based Approximations of PDEs: Exploiting Sparsity Jean-Luc Guermond TEXAS A & M UNIVERSITY 750...REPORT DATE (DD-MM-YYYY) 09-05-2015 2. REPORT TYPE Final report 3. DATES COVERED (From - To) 01-07-2012 - 30-06-2015 4. TITLE AND SUBTITLE Entropy ...conservation equations can be stabilized by using the so-called entropy viscosity method and we proposed to to investigate this new technique. We

  15. Solvability, regularity, and optimal control of boundary value problems for pdes in honour of Prof. Gianni Gilardi

    CERN Document Server

    Favini, Angelo; Rocca, Elisabetta; Schimperna, Giulio; Sprekels, Jürgen

    2017-01-01

    This volume gathers contributions in the field of partial differential equations, with a focus on mathematical models in phase transitions, complex fluids and thermomechanics. These contributions are dedicated to Professor Gianni Gilardi on the occasion of his 70th birthday. It particularly develops the following thematic areas: nonlinear dynamic and stationary equations; well-posedness of initial and boundary value problems for systems of PDEs; regularity properties for the solutions; optimal control problems and optimality conditions; feedback stabilization and stability results. Most of the articles are presented in a self-contained manner, and describe new achievements and/or the state of the art in their line of research, providing interested readers with an overview of recent advances and future research directions in PDEs.

  16. Association of Gastrocnemius Muscle Stiffness With Passive Ankle Joint Stiffness and Sex-Related Difference in the Joint Stiffness.

    Science.gov (United States)

    Chino, Kintaro; Takashi, Hideyuki

    2017-11-15

    Passive ankle joint stiffness is affected by all structures located within and over the joint, and is greater in men than in women. Localized muscle stiffness can be assessed by ultrasound shear wave elastography, and muscle architecture such as fascicle length and pennation angle can be measured by B-mode ultrasonography. Thus, we assessed localized muscle stiffness of the medial gastrocnemius (MG) with consideration of individual variability in the muscle architecture, and examined the association of the muscle stiffness with passive ankle joint stiffness and the sex-related difference in the joint stiffness. Localized muscle stiffness of the MG in 16 men and 17 women was assessed at 10° and 20° plantar flexion, neutral anatomical position, 10° and 20° dorsiflexion. Fascicle length and pennation angle of the MG were measured at these joint positions. Passive ankle joint stiffness was determined by the ankle joint angle-torque relationship. Localized MG muscle stiffness was not significantly correlated with passive ankle joint stiffness, and did not show significant sex-related difference, even when considering the muscle architecture. This finding suggest that muscle stiffness of the MG would not be a prominent factor to determine passive ankle joint stiffness and the sex-related difference in the joint stiffness.

  17. Ball Bearing Stiffnesses- A New Approach Offering Analytical Expressions

    Science.gov (United States)

    Guay, Pascal; Frikha, Ahmed

    2015-09-01

    Space mechanisms use preloaded ball bearings in order to withstand the severe vibrations during launch.The launch strength requires the calculation of the bearing stiffness, but this calculation is complex. Nowadays, there is no analytical expression that gives the stiffness of a bearing. Stiffness is computed using an iterative algorithm such as Newton-Raphson, to solve the nonlinear system of equations.This paper aims at offering a simplified analytical approach, based on the assumption that the contact angle is constant. This approach gives analytical formulas of the stiffness of preloaded ball bearing.

  18. A multiwell platform for studying stiffness-dependent cell biology.

    Science.gov (United States)

    Mih, Justin D; Sharif, Asma S; Liu, Fei; Marinkovic, Aleksandar; Symer, Matthew M; Tschumperlin, Daniel J

    2011-01-01

    Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes.

  19. A multiwell platform for studying stiffness-dependent cell biology.

    Directory of Open Access Journals (Sweden)

    Justin D Mih

    Full Text Available Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes.

  20. On the Robustness and Prospects of Adaptive BDDC Methods for Finite Element Discretizations of Elliptic PDEs with High-Contrast Coefficients

    KAUST Repository

    Zampini, Stefano

    2016-06-02

    Balancing Domain Decomposition by Constraints (BDDC) methods have proven to be powerful preconditioners for large and sparse linear systems arising from the finite element discretization of elliptic PDEs. Condition number bounds can be theoretically established that are independent of the number of subdomains of the decomposition. The core of the methods resides in the design of a larger and partially discontinuous finite element space that allows for fast application of the preconditioner, where Cholesky factorizations of the subdomain finite element problems are additively combined with a coarse, global solver. Multilevel and highly-scalable algorithms can be obtained by replacing the coarse Cholesky solver with a coarse BDDC preconditioner. BDDC methods have the remarkable ability to control the condition number, since the coarse space of the preconditioner can be adaptively enriched at the cost of solving local eigenproblems. The proper identification of these eigenproblems extends the robustness of the methods to any heterogeneity in the distribution of the coefficients of the PDEs, not only when the coefficients jumps align with the subdomain boundaries or when the high contrast regions are confined to lie in the interior of the subdomains. The specific adaptive technique considered in this paper does not depend upon any interaction of discretization and partition; it relies purely on algebraic operations. Coarse space adaptation in BDDC methods has attractive algorithmic properties, since the technique enhances the concurrency and the arithmetic intensity of the preconditioning step of the sparse implicit solver with the aim of controlling the number of iterations of the Krylov method in a black-box fashion, thus reducing the number of global synchronization steps and matrix vector multiplications needed by the iterative solver; data movement and memory bound kernels in the solve phase can be thus limited at the expense of extra local ops during the setup of

  1. Comparison of Clenshaw–Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs

    KAUST Repository

    Nobile, Fabio; Tamellini, Lorenzo; Tempone, Raul

    2015-01-01

    In this work we compare different families of nested quadrature points, i.e. the classic Clenshaw–Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence

  2. Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations

    Science.gov (United States)

    Liu, Changying; Iserles, Arieh; Wu, Xinyuan

    2018-03-01

    The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.

  3. Observer-Based Human Knee Stiffness Estimation.

    Science.gov (United States)

    Misgeld, Berno J E; Luken, Markus; Riener, Robert; Leonhardt, Steffen

    2017-05-01

    We consider the problem of stiffness estimation for the human knee joint during motion in the sagittal plane. The new stiffness estimator uses a nonlinear reduced-order biomechanical model and a body sensor network (BSN). The developed model is based on a two-dimensional knee kinematics approach to calculate the angle-dependent lever arms and the torques of the muscle-tendon-complex. To minimize errors in the knee stiffness estimation procedure that result from model uncertainties, a nonlinear observer is developed. The observer uses the electromyogram (EMG) of involved muscles as input signals and the segmental orientation as the output signal to correct the observer-internal states. Because of dominating model nonlinearities and nonsmoothness of the corresponding nonlinear functions, an unscented Kalman filter is designed to compute and update the observer feedback (Kalman) gain matrix. The observer-based stiffness estimation algorithm is subsequently evaluated in simulations and in a test bench, specifically designed to provide robotic movement support for the human knee joint. In silico and experimental validation underline the good performance of the knee stiffness estimation even in the cases of a knee stiffening due to antagonistic coactivation. We have shown the principle function of an observer-based approach to knee stiffness estimation that employs EMG signals and segmental orientation provided by our own IPANEMA BSN. The presented approach makes realtime, model-based estimation of knee stiffness with minimal instrumentation possible.

  4. Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations

    KAUST Repository

    Alzahrani, Hasnaa H.

    2016-07-26

    A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge-Kutta- Chebyshev (RKC) scheme is adjusted to integrate diffusion. Spatial operator is de- scretised by second-order finite differences on a uniform grid. The overall solution is advanced over S fractional stiff integrations, where S corresponds to the number of RKC stages. The behavior of the scheme is analyzed by applying it to three simple problems. The results show that it achieves second-order accuracy, thus, preserving the formal accuracy of the original RKC. The presented development sets the stage for future extensions, particularly, to multidimensional reacting flows with detailed chemistry.

  5. Scalable algorithms for optimal control of stochastic PDEs

    KAUST Repository

    Ghattas, Omar

    2016-01-07

    We present methods for the optimal control of systems governed by partial differential equations with infinite-dimensional uncertain parameters. We consider an objective function that involves the mean and variance of the control objective, leading to a risk-averse optimal control formulation. To make the optimal control problem computationally tractable, we employ a local quadratic approximation of the objective with respect to the uncertain parameter. This enables computation of the mean and variance of the control objective analytically. The resulting risk-averse optimization problem is formulated as a PDE-constrained optimization problem with constraints given by the forward and adjoint PDEs for the first and second-order derivatives of the quantity of interest with respect to the uncertain parameter, and with an objective that involves the trace of a covariance-preconditioned Hessian (of the objective with respect to the uncertain parameters) operator. A randomized trace estimator is used to make tractable the trace computation. Adjoint-based techniques are used to derive an expression for the infinite-dimensional gradient of the risk-averse objective function via the Lagrangian, leading to a quasi-Newton method for solution of the optimal control problem. A specific problem of optimal control of a linear elliptic PDE that describes flow of a fluid in a porous medium with uncertain permeability field is considered. We present numerical results to study the consequences of the local quadratic approximation and the efficiency of the method.

  6. Scalable algorithms for optimal control of stochastic PDEs

    KAUST Repository

    Ghattas, Omar; Alexanderian, Alen; Petra, Noemi; Stadler, Georg

    2016-01-01

    We present methods for the optimal control of systems governed by partial differential equations with infinite-dimensional uncertain parameters. We consider an objective function that involves the mean and variance of the control objective, leading to a risk-averse optimal control formulation. To make the optimal control problem computationally tractable, we employ a local quadratic approximation of the objective with respect to the uncertain parameter. This enables computation of the mean and variance of the control objective analytically. The resulting risk-averse optimization problem is formulated as a PDE-constrained optimization problem with constraints given by the forward and adjoint PDEs for the first and second-order derivatives of the quantity of interest with respect to the uncertain parameter, and with an objective that involves the trace of a covariance-preconditioned Hessian (of the objective with respect to the uncertain parameters) operator. A randomized trace estimator is used to make tractable the trace computation. Adjoint-based techniques are used to derive an expression for the infinite-dimensional gradient of the risk-averse objective function via the Lagrangian, leading to a quasi-Newton method for solution of the optimal control problem. A specific problem of optimal control of a linear elliptic PDE that describes flow of a fluid in a porous medium with uncertain permeability field is considered. We present numerical results to study the consequences of the local quadratic approximation and the efficiency of the method.

  7. Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations

    KAUST Repository

    Alzahrani, Hasnaa H.

    2016-01-01

    A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge

  8. Local Properties of Solutions to Non-Autonomous Parabolic PDEs with State-Dependent Delays

    Czech Academy of Sciences Publication Activity Database

    Rezunenko, Oleksandr

    2012-01-01

    Roč. 2, č. 2 (2012), s. 56-71 ISSN 2158-611X R&D Projects: GA ČR(CZ) GAP103/12/2431 Institutional support: RVO:67985556 Keywords : partial differential equations * state-dependent delay * invariance principle Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/rezunenko- local properties of solutions to non-autonomous parabolic PDEs with state-dependent delay s.pdf

  9. Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution - Part II, higher order FVTD schemes

    Science.gov (United States)

    Balsara, Dinshaw S.; Garain, Sudip; Taflove, Allen; Montecinos, Gino

    2018-02-01

    The Finite Difference Time Domain (FDTD) scheme has served the computational electrodynamics community very well and part of its success stems from its ability to satisfy the constraints in Maxwell's equations. Even so, in the previous paper of this series we were able to present a second order accurate Godunov scheme for computational electrodynamics (CED) which satisfied all the same constraints and simultaneously retained all the traditional advantages of Godunov schemes. In this paper we extend the Finite Volume Time Domain (FVTD) schemes for CED in material media to better than second order of accuracy. From the FDTD method, we retain a somewhat modified staggering strategy of primal variables which enables a very beneficial constraint-preservation for the electric displacement and magnetic induction vector fields. This is accomplished with constraint-preserving reconstruction methods which are extended in this paper to third and fourth orders of accuracy. The idea of one-dimensional upwinding from Godunov schemes has to be significantly modified to use the multidimensionally upwinded Riemann solvers developed by the first author. In this paper, we show how they can be used within the context of a higher order scheme for CED. We also report on advances in timestepping. We show how Runge-Kutta IMEX schemes can be adapted to CED even in the presence of stiff source terms brought on by large conductivities as well as strong spatial variations in permittivity and permeability. We also formulate very efficient ADER timestepping strategies to endow our method with sub-cell resolving capabilities. As a result, our method can be stiffly-stable and resolve significant sub-cell variation in the material properties within a zone. Moreover, we present ADER schemes that are applicable to all hyperbolic PDEs with stiff source terms and at all orders of accuracy. Our new ADER formulation offers a treatment of stiff source terms that is much more efficient than previous ADER

  10. Climate science in the tropics: waves, vortices and PDEs

    International Nuclear Information System (INIS)

    Khouider, Boualem; Majda, Andrew J; Stechmann, Samuel N

    2013-01-01

    Clouds in the tropics can organize the circulation on planetary scales and profoundly impact long range seasonal forecasting and climate on the entire globe, yet contemporary operational computer models are often deficient in representing these phenomena. On the other hand, contemporary observations reveal remarkably complex coherent waves and vortices in the tropics interacting across a bewildering range of scales from kilometers to ten thousand kilometers. This paper reviews the interdisciplinary contributions over the last decade through the modus operandi of applied mathematics to these important scientific problems. Novel physical phenomena, new multiscale equations, novel PDEs, and numerical algorithms are presented here with the goal of attracting mathematicians and physicists to this exciting research area. (invited article)

  11. Climate science in the tropics: waves, vortices and PDEs

    Science.gov (United States)

    Khouider, Boualem; Majda, Andrew J.; Stechmann, Samuel N.

    2013-01-01

    Clouds in the tropics can organize the circulation on planetary scales and profoundly impact long range seasonal forecasting and climate on the entire globe, yet contemporary operational computer models are often deficient in representing these phenomena. On the other hand, contemporary observations reveal remarkably complex coherent waves and vortices in the tropics interacting across a bewildering range of scales from kilometers to ten thousand kilometers. This paper reviews the interdisciplinary contributions over the last decade through the modus operandi of applied mathematics to these important scientific problems. Novel physical phenomena, new multiscale equations, novel PDEs, and numerical algorithms are presented here with the goal of attracting mathematicians and physicists to this exciting research area.

  12. Stiff self-interacting strings at high temperature QCD

    Directory of Open Access Journals (Sweden)

    S Bakry A.

    2018-01-01

    Full Text Available We investigate the implications of Nambu-Goto (NG, Lüscher Weisz (LW and Polyakov-Kleinert (PK effective string actions for the Casimir energy and the width of the quantum delocalization of the string in 4-dim pure SU(3 Yang-Mills lattice gauge theory. At a temperature closer to the critical point T/Tc=0.9, we found that the next to leading-order (NLO contributions from the expansion of the NG string in addition to the boundary terms in LW action to decrease the deviations from the lattice data in the intermediate distance scales for both the quark-antiquark QQ̅ potential and broadening of the color tube compared to the free string approximation. We conjecture possible stiffness of the QCD string through studying the effects of extrinsic curvature term in PK action and find a good fitting behavior for the lattice Monte-Carlo data at both long and intermediate quark separations regions.

  13. Stiff self-interacting strings at high temperature QCD

    Science.gov (United States)

    S Bakry, A.; Chen, X.; Deliyergiyev, M.; Galal, A.; Khalaf, A.; M Pengming, P.

    2018-03-01

    We investigate the implications of Nambu-Goto (NG), Lüscher Weisz (LW) and Polyakov-Kleinert (PK) effective string actions for the Casimir energy and the width of the quantum delocalization of the string in 4-dim pure SU(3) Yang-Mills lattice gauge theory. At a temperature closer to the critical point T/Tc=0.9, we found that the next to leading-order (NLO) contributions from the expansion of the NG string in addition to the boundary terms in LW action to decrease the deviations from the lattice data in the intermediate distance scales for both the quark-antiquark QQ̅ potential and broadening of the color tube compared to the free string approximation. We conjecture possible stiffness of the QCD string through studying the effects of extrinsic curvature term in PK action and find a good fitting behavior for the lattice Monte-Carlo data at both long and intermediate quark separations regions.

  14. Hydration Status Is Associated with Aortic Stiffness, but Not with Peripheral Arterial Stiffness, in Chronically Hemodialysed Patients

    Directory of Open Access Journals (Sweden)

    Daniel Bia

    2015-01-01

    Full Text Available Background. Adequate fluid management could be essential to minimize high arterial stiffness observed in chronically hemodialyzed patients (CHP. Aim. To determine the association between body fluid status and central and peripheral arterial stiffness levels. Methods. Arterial stiffness was assessed in 65 CHP by measuring the pulse wave velocity (PWV in a central arterial pathway (carotid-femoral and in a peripheral pathway (carotid-brachial. A blood pressure-independent regional arterial stiffness index was calculated using PWV. Volume status was assessed by whole-body multiple-frequency bioimpedance. Patients were first observed as an entire group and then divided into three different fluid status-related groups: normal, overhydration, and dehydration groups. Results. Only carotid-femoral stiffness was positively associated (P<0.05 with the hydration status evaluated through extracellular/intracellular fluid, extracellular/Total Body Fluid, and absolute and relative overhydration. Conclusion. Volume status and overload are associated with central, but not peripheral, arterial stiffness levels with independence of the blood pressure level, in CHP.

  15. Relaxation approximations to second-order traffic flow models by high-resolution schemes

    International Nuclear Information System (INIS)

    Nikolos, I.K.; Delis, A.I.; Papageorgiou, M.

    2015-01-01

    A relaxation-type approximation of second-order non-equilibrium traffic models, written in conservation or balance law form, is considered. Using the relaxation approximation, the nonlinear equations are transformed to a semi-linear diagonilizable problem with linear characteristic variables and stiff source terms with the attractive feature that neither Riemann solvers nor characteristic decompositions are in need. In particular, it is only necessary to provide the flux and source term functions and an estimate of the characteristic speeds. To discretize the resulting relaxation system, high-resolution reconstructions in space are considered. Emphasis is given on a fifth-order WENO scheme and its performance. The computations reported demonstrate the simplicity and versatility of relaxation schemes as numerical solvers

  16. Disorder-induced stiffness degradation of highly disordered porous materials

    Science.gov (United States)

    Laubie, Hadrien; Monfared, Siavash; Radjaï, Farhang; Pellenq, Roland; Ulm, Franz-Josef

    2017-09-01

    The effective mechanical behavior of multiphase solid materials is generally modeled by means of homogenization techniques that account for phase volume fractions and elastic moduli without considering the spatial distribution of the different phases. By means of extensive numerical simulations of randomly generated porous materials using the lattice element method, the role of local textural properties on the effective elastic properties of disordered porous materials is investigated and compared with different continuum micromechanics-based models. It is found that the pronounced disorder-induced stiffness degradation originates from stress concentrations around pore clusters in highly disordered porous materials. We identify a single disorder parameter, φsa, which combines a measure of the spatial disorder of pores (the clustering index, sa) with the pore volume fraction (the porosity, φ) to scale the disorder-induced stiffness degradation. Thus, we conclude that the classical continuum micromechanics models with one spherical pore phase, due to their underlying homogeneity assumption fall short of addressing the clustering effect, unless additional texture information is introduced, e.g. in form of the shift of the percolation threshold with disorder, or other functional relations between volume fractions and spatial disorder; as illustrated herein for a differential scheme model representative of a two-phase (solid-pore) composite model material.

  17. Development and assessment of a practical stiffness reduction method for the in-plane design of steel frames

    OpenAIRE

    Kucukler, M; Gardner, L; Macorini, L

    2016-01-01

    In this paper, the development and assessment of a stiffness reduction method for the in-plane design of steel frames is presented. The adopted stiffness reduction approach is implemented by reducing the flexural stiffnesses (EI) of the members of a steel frame by considering the first-order forces they are subjected to through the stiffness reduction functions and performing Geometrically Nonlinear Analysis (i.e. second-order elastic analysis). Since the presented approach uses stiffness red...

  18. Analysis of Dynamic Stiffness of Bridge Cap-Pile System

    Directory of Open Access Journals (Sweden)

    Jinhui Chu

    2018-01-01

    Full Text Available In order to investigate the applicability of dynamic stiffness for bridge cap-pile system, a laboratory test was performed. A numerical model was also built for this type of system. The impact load was applied on the cap top and the dynamic stiffness was analysed. Then, the effect of the effective friction area between pile and soil was also considered. Finally, the dynamic stiffness relationship between the single pile and the cap-pile system was also compared. The results show that the dynamic stiffness is a sensitive index and can well reflect the static characteristics of the pile at the elastic stage. There is a significant positive correlation between the vertical dynamic stiffness index and bearing capacity of the cap-pile system in the similar formation environment. For the cap-pile system with four piles, the dynamic stiffness is about four times as large as the single pile between 10 and 20 Hz.

  19. Elastic dynamic research of high speed multi-link precision press considering structural stiffness of rotation joints

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Feng Feng; Sun, Yu; Peng, Bin Bin [School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing (China)

    2016-10-15

    An elastic dynamic model of high-speed multi-link precision press considering structural stiffness of rotation joints was established by the finite element method. In the finite element model, rotation joint was established by four bar elements with equivalent stiffness, and connected link was established by beam element. Then, the elastic dynamics equation of the system was established, and modal superposition method was used to solve the dynamic response. Compared with the traditional elastic dynamic model with perfect constraint of the rotation joints, the elastic dynamic response value of the improved model is larger. To validate the presented new method of elastic dynamics analysis with stiffness of rotation joints, a related test of slider Bottom dead center (BDC) position in different speed was designed. The test shows that the model with stiffness of rotation joints is more reasonable. So it provides a reasonable theory and method for dynamic characteristics research of such a multi-link machine.

  20. Flexural Stiffness of Myosin Va Subdomains as Measured from Tethered Particle Motion

    Science.gov (United States)

    Michalek, Arthur J.; Kennedy, Guy G.; Warshaw, David M.; Ali, M. Yusuf

    2015-01-01

    Myosin Va (MyoVa) is a processive molecular motor involved in intracellular cargo transport on the actin cytoskeleton. The motor's processivity and ability to navigate actin intersections are believed to be governed by the stiffness of various parts of the motor's structure. Specifically, changes in calcium may regulate motor processivity by altering the motor's lever arm stiffness and thus its interhead communication. In order to measure the flexural stiffness of MyoVa subdomains, we use tethered particle microscopy, which relates the Brownian motion of fluorescent quantum dots, which are attached to various single- and double-headed MyoVa constructs bound to actin in rigor, to the motor's flexural stiffness. Based on these measurements, the MyoVa lever arm and coiled-coil rod domain have comparable flexural stiffness (0.034 pN/nm). Upon addition of calcium, the lever arm stiffness is reduced 40% as a result of calmodulins potentially dissociating from the lever arm. In addition, the flexural stiffness of the full-length MyoVa construct is an order of magnitude less stiff than both a single lever arm and the coiled-coil rod. This suggests that the MyoVa lever arm-rod junction provides a flexible hinge that would allow the motor to maneuver cargo through the complex intracellular actin network. PMID:26770194

  1. Comparison of Clenshaw–Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs

    KAUST Repository

    Nobile, Fabio

    2015-11-26

    In this work we compare different families of nested quadrature points, i.e. the classic Clenshaw–Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that both families perform comparably within such framework.

  2. Discrete least squares polynomial approximation with random evaluations − application to parametric and stochastic elliptic PDEs

    KAUST Repository

    Chkifa, Abdellah

    2015-04-08

    Motivated by the numerical treatment of parametric and stochastic PDEs, we analyze the least-squares method for polynomial approximation of multivariate functions based on random sampling according to a given probability measure. Recent work has shown that in the univariate case, the least-squares method is quasi-optimal in expectation in [A. Cohen, M A. Davenport and D. Leviatan. Found. Comput. Math. 13 (2013) 819–834] and in probability in [G. Migliorati, F. Nobile, E. von Schwerin, R. Tempone, Found. Comput. Math. 14 (2014) 419–456], under suitable conditions that relate the number of samples with respect to the dimension of the polynomial space. Here “quasi-optimal” means that the accuracy of the least-squares approximation is comparable with that of the best approximation in the given polynomial space. In this paper, we discuss the quasi-optimality of the polynomial least-squares method in arbitrary dimension. Our analysis applies to any arbitrary multivariate polynomial space (including tensor product, total degree or hyperbolic crosses), under the minimal requirement that its associated index set is downward closed. The optimality criterion only involves the relation between the number of samples and the dimension of the polynomial space, independently of the anisotropic shape and of the number of variables. We extend our results to the approximation of Hilbert space-valued functions in order to apply them to the approximation of parametric and stochastic elliptic PDEs. As a particular case, we discuss “inclusion type” elliptic PDE models, and derive an exponential convergence estimate for the least-squares method. Numerical results confirm our estimate, yet pointing out a gap between the condition necessary to achieve optimality in the theory, and the condition that in practice yields the optimal convergence rate.

  3. High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids

    Energy Technology Data Exchange (ETDEWEB)

    Dumbser, Michael, E-mail: michael.dumbser@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Peshkov, Ilya, E-mail: peshkov@math.nsc.ru [Open and Experimental Center for Heavy Oil, Université de Pau et des Pays de l' Adour, Avenue de l' Université, 64012 Pau (France); Romenski, Evgeniy, E-mail: evrom@math.nsc.ru [Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk (Russian Federation); Zanotti, Olindo, E-mail: olindo.zanotti@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy)

    2016-06-01

    Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier

  4. High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids

    International Nuclear Information System (INIS)

    Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo

    2016-01-01

    Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier

  5. Sensitivity analysis of the stiffness between the frame structure and the frequency and vibration mode

    Science.gov (United States)

    Chen, Wenyuan

    2018-03-01

    The modal parameters such as natural frequency and vibration mode of the frame structure of the layer stiffness sensitivity is inconsistent. This article focuses on the theoretical derivation of the frequency and mode of the frame structure layer stiffness of the first-order sensitivity. The numerical examples show that the frame structure of layer stiffness higher than with the first order sensitivity vibration frequency.

  6. Co-periodic stability of periodic waves in some Hamiltonian PDEs

    Science.gov (United States)

    Benzoni-Gavage, S.; Mietka, C.; Rodrigues, L. M.

    2016-10-01

    The stability of periodic traveling wave solutions to dispersive PDEs with respect to ‘arbitrary’ perturbations is still widely open. The focus is put here on stability with respect to perturbations of the same period as the wave, for KdV-like systems of one-dimensional Hamiltonian PDEs. Stability criteria are derived and investigated first in a general abstract framework, and then applied to three basic examples that are very closely related, and ubiquitous in mathematical physics, namely, a quasilinear version of the generalized Korteweg-de Vries equation (qKdV), and the Euler-Korteweg system in both Eulerian coordinates (EKE) and in mass Lagrangian coordinates (EKL). Those criteria consist of a necessary condition for spectral stability, and of a sufficient condition for orbital stability. Both are expressed in terms of a single function, the abbreviated action integral along the orbits of waves in the phase plane, which is the counterpart of the solitary waves moment of instability introduced by Boussinesq. Regarding solitary waves, the celebrated Grillakis-Shatah-Strauss stability criteria amount to looking for the sign of the second derivative of the moment of instability with respect to the wave speed. For periodic waves, the most striking results obtained here can be summarized as: an odd value for the difference between N—the size of the PDE system—and the negative signature of the Hessian of the action implies spectral instability, whereas a negative signature of the same Hessian being equal to N implies orbital stability. Since these stability criteria are merely encoded by the negative signature of matrices, they can at least be checked numerically. Various numerical experiments are presented, which clearly discriminate between stable cases and unstable cases for (qKdV), (EKE) and (EKL).

  7. Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs

    KAUST Repository

    Chkifa, Abdellah

    2012-11-29

    The numerical approximation of parametric partial differential equations is a computational challenge, in particular when the number of involved parameter is large. This paper considers a model class of second order, linear, parametric, elliptic PDEs on a bounded domain D with diffusion coefficients depending on the parameters in an affine manner. For such models, it was shown in [9, 10] that under very weak assumptions on the diffusion coefficients, the entire family of solutions to such equations can be simultaneously approximated in the Hilbert space V = H0 1(D) by multivariate sparse polynomials in the parameter vector y with a controlled number N of terms. The convergence rate in terms of N does not depend on the number of parameters in V, which may be arbitrarily large or countably infinite, thereby breaking the curse of dimensionality. However, these approximation results do not describe the concrete construction of these polynomial expansions, and should therefore rather be viewed as benchmark for the convergence analysis of numerical methods. The present paper presents an adaptive numerical algorithm for constructing a sequence of sparse polynomials that is proved to converge toward the solution with the optimal benchmark rate. Numerical experiments are presented in large parameter dimension, which confirm the effectiveness of the adaptive approach. © 2012 EDP Sciences, SMAI.

  8. Escaping the Ashby limit for mechanical damping/stiffness trade-off using a constrained high internal friction interfacial layer.

    Science.gov (United States)

    Unwin, A P; Hine, P J; Ward, I M; Fujita, M; Tanaka, E; Gusev, A A

    2018-02-06

    The development of new materials with reduced noise and vibration levels is an active area of research due to concerns in various aspects of environmental noise pollution and its effects on health. Excessive vibrations also reduce the service live of the structures and limit the fields of their utilization. In oscillations, the viscoelastic moduli of a material are complex and it is their loss part - the product of the stiffness part and loss tangent - that is commonly viewed as a figure of merit in noise and vibration damping applications. The stiffness modulus and loss tangent are usually mutually exclusive properties so it is a technological challenge to develop materials that simultaneously combine high stiffness and high loss. Here we achieve this rare balance of properties by filling a solid polymer matrix with rigid inorganic spheres coated by a sub-micron layer of a viscoelastic material with a high level of internal friction. We demonstrate that this combination can be experimentally realised and that the analytically predicted behaviour is closely reproduced, thereby escaping the often termed 'Ashby' limit for mechanical stiffness/damping trade-off and offering a new route for manufacturing advanced composite structures with markedly reduced noise and vibration levels.

  9. OroSTIFF: Face-referenced measurement of perioral stiffness in health and disease.

    Science.gov (United States)

    Chu, Shin-Ying; Barlow, Steven M; Kieweg, Douglas; Lee, Jaehoon

    2010-05-28

    A new device and automated measurement technology known as OroSTIFF is described to characterize non-participatory perioral stiffness in healthy adults for eventual application to patients with orofacial movement disorders associated with neuromotor disease, traumatic injury, or congenital clefts of the upper lip. Previous studies of perioral biomechanics required head stabilization for extended periods of time during measurement, which precluded sampling patients with involuntary body/head movements (dyskinesias), or pediatric subjects. The OroSTIFF device is face-referenced and avoids the complications associated with head-restraint. Supporting data of non-participatory perioral tissue stiffness using OroSTIFF are included from 10 male and 10 female healthy subjects. The OroSTIFF device incorporates a pneumatic glass air cylinder actuator instrumented for pressure, and an integrated subminiature displacement sensor to encode lip aperture. Perioral electromyograms were simultaneously sampled to confirm passive muscle state for the superior and inferior divisions of the orbicularis oris muscles. Perioral stiffness, derived as a quotient from resultant force (DeltaF) and interangle span (DeltaX), was modeled with multilevel regression techniques. Real-time calculation of the perioral stiffness function demonstrated a significant quadratic relation between imposed interangle stretch and resultant force. This stiffness growth function also differed significantly between males and females. This study demonstrates the OroSTIFF 'proof-of-concept' for cost-effective non-invasive stimulus generation and derivation of perioral stiffness in a group of healthy unrestrained adults, and a case study to illustrate the dose-dependent effects of Levodopa on perioral stiffness in an individual with advanced Parkinson's disease who exhibited marked dyskinesia and rigidity. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Numerical Simulations of Reacting Flows Using Asynchrony-Tolerant Schemes for Exascale Computing

    Science.gov (United States)

    Cleary, Emmet; Konduri, Aditya; Chen, Jacqueline

    2017-11-01

    Communication and data synchronization between processing elements (PEs) are likely to pose a major challenge in scalability of solvers at the exascale. Recently developed asynchrony-tolerant (AT) finite difference schemes address this issue by relaxing communication and synchronization between PEs at a mathematical level while preserving accuracy, resulting in improved scalability. The performance of these schemes has been validated for simple linear and nonlinear homogeneous PDEs. However, many problems of practical interest are governed by highly nonlinear PDEs with source terms, whose solution may be sensitive to perturbations caused by communication asynchrony. The current work applies the AT schemes to combustion problems with chemical source terms, yielding a stiff system of PDEs with nonlinear source terms highly sensitive to temperature. Examples shown will use single-step and multi-step CH4 mechanisms for 1D premixed and nonpremixed flames. Error analysis will be discussed both in physical and spectral space. Results show that additional errors introduced by the AT schemes are negligible and the schemes preserve their accuracy. We acknowledge funding from the DOE Computational Science Graduate Fellowship administered by the Krell Institute.

  11. Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors.

    Science.gov (United States)

    Ha, Minjeong; Lim, Seongdong; Cho, Soowon; Lee, Youngoh; Na, Sangyun; Baig, Chunggi; Ko, Hyunhyub

    2018-04-24

    The gradient stiffness between stiff epidermis and soft dermis with interlocked microridge structures in human skin induces effective stress transmission to underlying mechanoreceptors for enhanced tactile sensing. Inspired by skin structure and function, we fabricate hierarchical nanoporous and interlocked microridge structured polymers with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors (TESs). The skin-inspired hierarchical polymers with gradient elastic modulus enhance the compressibility and contact areal differences due to effective transmission of the external stress from stiff to soft layers, resulting in highly sensitive TESs capable of detecting human vital signs and voice. In addition, the microridges in the interlocked polymers provide an effective variation of gap distance between interlocked layers without using the bulk spacer and thus facilitate the ultrathin and flexible design of TESs that could be worn on the body and detect a variety of pressing, bending, and twisting motions even in humid and underwater environments. Our TESs exhibit the highest power density (46.7 μW/cm 2 ), pressure (0.55 V/kPa), and bending (∼0.1 V/°) sensitivities ever reported on flexible TESs. The proposed design of hierarchical polymer architectures for the flexible and wearable TESs can find numerous applications in next-generation wearable electronics.

  12. Parametric study of roof diaphragm stiffness requirements

    International Nuclear Information System (INIS)

    Jones, W.D.; Tenbus, M.A.

    1991-01-01

    A common assumption made in performing a dynamic seismic analysis for a building is that the roof/floor system is open-quotes rigidclose quotes. This assumption would appear to be reasonable for many of the structures found in nuclear power plants, since many of these structures are constructed of heavily reinforced concrete having floor/roof slabs at least two feet in thickness, and meet the code requirements for structural detailing for seismic design. The roofs of many Department of Energy (DOE) buildings at the Oak Ridge Y-12 Plant in Oak Ridge, Tennessee, have roofs constructed of either metal, precast concrete or gypsum plank deck overlaid with rigid insulation, tar and gravel. In performing natural phenomena hazard assessments for one such facility, it was assumed that the existing roof performed first as a flexible diaphragm (zero stiffness) and then, rigid (infinitely stiff). For the flexible diaphragm model it was determined that the building began to experience significant damage around 0.09 g's. For the rigid diaphragm model it was determined that no significant damage was observed below 0.20 g's. A Conceptual Design Report has been prepared for upgrading/replacing the roof of this building. The question that needed to be answered here was, open-quotes How stiff should the new roof diaphragm be in order to satisfy the rigid diaphragm assumption and, yet, be cost effective?close quotes. This paper presents a parametric study of a very simple structural system to show that the design of roof diaphragms needs to consider both strength and stiffness (frequency) requirements. This paper shows how the stiffness of a roof system affects the seismically induced loads in the lateral, vertical load resisting elements of a building and provides guidance in determining how open-quotes rigidclose quotes a roof system should be in order to accomplish a cost effective design

  13. Hypothyroidism leads to increased collagen-based stiffness and re-expression of large cardiac titin isoforms with high compliance.

    Science.gov (United States)

    Wu, Yiming; Peng, Jun; Campbell, Kenneth B; Labeit, Siegfried; Granzier, Henk

    2007-01-01

    Because long-term hypothyroidism results in diastolic dysfunction, we investigated myocardial passive stiffness in hypothyroidism and focused on the possible role of titin, an important determinant of diastolic stiffness. A rat model of hypothyroidism was used, obtained by administering propylthiouracil (PTU) for times that varied from 1 month (short-term) to 4 months (long-term). Titin expression was determined by transcript analysis, gel electrophoresis and immunoelectron microscopy. Diastolic function was measured at the isolated heart, skinned muscle, and cardiac myocyte levels. We found that hypothyroidism resulted in expression of a large titin isoform, the abundance of which gradually increased with time to become the most dominant isoform in long-term hypothyroid rats. This isoform co-migrates on high-resolution gels with fetal cardiac titin. Transcript analysis on myocardium of long-term PTU rats, provided evidence for expression of additional PEVK and Ig domain exons, similar to what has been described in fetal myocardium. Consistent with the expression of a large titin isoform, titin-based restoring and passive forces were significantly reduced in single cardiac myocytes and muscle strips of long-term hypothyroid rats. Overall muscle stiffness and LV diastolic wall stiffness were increased, however, due to increased collagen-based stiffness. We conclude that long term hypothyroidism triggers expression of a large cardiac titin isoform and that the ensuing reduction in titin-based passive stiffness functions as a compensatory mechanism to reduce LV wall stiffness.

  14. On the Adhesive JKR Contact and Rolling Models for Reduced Particle Stiffness Discrete Element Simulations

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Kleinhans, Ulrich; Wieland, Christoph

    2017-01-01

    particle stiffness to experimental data. Then two well-defined test cases are investigated to show the applicability of the guidelines. When introducing a reduced particle stiffness in DEM simulations by reducing the effective Young's modulus from E to Emod, the surface energy density γ in the adhesive......, this criterion can be used to estimate how much the time step size can be changed when a reduced particle stiffness is introduced. Introducing particles with a reduced particle stiffness has some limitations when strong external forces are acting to break-up formed agglomerates or re-entrain particles deposited...... on a surface out into the free stream. Therefore, care should be taken in flows with high local shear to make sure that an external force, such as a fluid drag force, acting to separate agglomerated particles, is several orders of magnitude lower than the critical force required to separate particles....

  15. Rolling of molybdenum and niobium tubes on cold-rolling mill with high stiff stand

    Energy Technology Data Exchange (ETDEWEB)

    Potapov, I N; Shejkh-Ali, A D; Filimonov, G V; Lunev, A G

    1984-03-01

    To develop the technique of tube production the process of rolling is studied and comparative evaluation of the structure formed is carried out. It is shown that billets of rods deformed by screw rolling have the improved plastic properties and are deformed on cold-rolling mill (CRM) with a high degree of reduction without defect formation. High stiff stand of the CRM permits to produce high-quality molybdenum tubes.

  16. Observed variations of monopile foundation stiffness

    DEFF Research Database (Denmark)

    Kallehave, Dan; Thilsted, C.L.; Diaz, Alberto Troya

    2015-01-01

    full-scale measurements obtained from one offshore wind turbine structure located within Horns Reef II offshore wind farm. Data are presented for a 2.5 years period and covers normal operating conditions and one larger storm event. A reduction of the pile-soil stiffness was observed during the storm...... events, followed by a complete regain to a pre-storm level when the storm subsided. In additional, no long term variations of the pile-soil stiffness was observed. The wind turbine is located in dense to very dense sand deposits.......The soil-structure stiffness of monopile foundations for offshore wind turbines has a high impact on the fatigue loading during normal operating conditions. Thus, a robust design must consider the evolution of pile-soil stiffness over the lifetime of the wind farm. This paper present and discuss...

  17. Boundary Control of Linear Evolution PDEs - Continuous and Discrete

    DEFF Research Database (Denmark)

    Rasmussen, Jan Marthedal

    2004-01-01

    Consider a partial di erential equation (PDE) of evolution type, such as the wave equation or the heat equation. Assume now that you can influence the behavior of the solution by setting the boundary conditions as you please. This is boundary control in a broad sense. A substantial amount...... of literature exists in the area of theoretical results concerning control of partial differential equations. The results have included existence and uniqueness of controls, minimum time requirements, regularity of domains, and many others. Another huge research field is that of control theory for ordinary di...... erential equations. This field has mostly concerned engineers and others with practical applications in mind. This thesis makes an attempt to bridge the two research areas. More specifically, we make finite dimensional approximations to certain evolution PDEs, and analyze how properties of the discrete...

  18. Ultra-stiff metallic glasses through bond energy density design.

    Science.gov (United States)

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M

    2017-07-05

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  19. A compatible high-order meshless method for the Stokes equations with applications to suspension flows

    Science.gov (United States)

    Trask, Nathaniel; Maxey, Martin; Hu, Xiaozhe

    2018-02-01

    A stable numerical solution of the steady Stokes problem requires compatibility between the choice of velocity and pressure approximation that has traditionally proven problematic for meshless methods. In this work, we present a discretization that couples a staggered scheme for pressure approximation with a divergence-free velocity reconstruction to obtain an adaptive, high-order, finite difference-like discretization that can be efficiently solved with conventional algebraic multigrid techniques. We use analytic benchmarks to demonstrate equal-order convergence for both velocity and pressure when solving problems with curvilinear geometries. In order to study problems in dense suspensions, we couple the solution for the flow to the equations of motion for freely suspended particles in an implicit monolithic scheme. The combination of high-order accuracy with fully-implicit schemes allows the accurate resolution of stiff lubrication forces directly from the solution of the Stokes problem without the need to introduce sub-grid lubrication models.

  20. Identification of a parametric, discrete-time model of ankle stiffness.

    Science.gov (United States)

    Guarin, Diego L; Jalaleddini, Kian; Kearney, Robert E

    2013-01-01

    Dynamic ankle joint stiffness defines the relationship between the position of the ankle and the torque acting about it and can be separated into intrinsic and reflex components. Under stationary conditions, intrinsic stiffness can described by a linear second order system while reflex stiffness is described by Hammerstein system whose input is delayed velocity. Given that reflex and intrinsic torque cannot be measured separately, there has been much interest in the development of system identification techniques to separate them analytically. To date, most methods have been nonparametric and as a result there is no direct link between the estimated parameters and those of the stiffness model. This paper presents a novel algorithm for identification of a discrete-time model of ankle stiffness. Through simulations we show that the algorithm gives unbiased results even in the presence of large, non-white noise. Application of the method to experimental data demonstrates that it produces results consistent with previous findings.

  1. Non-probabilistic solutions of imprecisely defined fractional-order diffusion equations

    International Nuclear Information System (INIS)

    Chakraverty, S.; Tapaswini, Smita

    2014-01-01

    The fractional diffusion equation is one of the most important partial differential equations (PDEs) to model problems in mathematical physics. These PDEs are more practical when those are combined with uncertainties. Accordingly, this paper investigates the numerical solution of a non-probabilistic viz. fuzzy fractional-order diffusion equation subjected to various external forces. A fuzzy diffusion equation having fractional order 0 < α ≤ 1 with fuzzy initial condition is taken into consideration. Fuzziness appearing in the initial conditions is modelled through convex normalized triangular and Gaussian fuzzy numbers. A new computational technique is proposed based on double parametric form of fuzzy numbers to handle the fuzzy fractional diffusion equation. Using the single parametric form of fuzzy numbers, the original fuzzy diffusion equation is converted first into an interval-based fuzzy differential equation. Next, this equation is transformed into crisp form by using the proposed double parametric form of fuzzy numbers. Finally, the same is solved by Adomian decomposition method (ADM) symbolically to obtain the uncertain bounds of the solution. Computed results are depicted in terms of plots. Results obtained by the proposed method are compared with the existing results in special cases. (general)

  2. Association of Parental Hypertension With Arterial Stiffness in Nonhypertensive Offspring

    DEFF Research Database (Denmark)

    Andersson, Charlotte; Quiroz, Rene; Enserro, Danielle

    2016-01-01

    High arterial stiffness seems to be causally involved in the pathogenesis of hypertension. We tested the hypothesis that offspring of parents with hypertension may display higher arterial stiffness before clinically manifest hypertension, given that hypertension is a heritable condition. We compa......, in this community-based sample of young, nonhypertensive adults, we observed greater arterial stiffness in offspring of parents with hypertension. These observations are consistent with higher vascular stiffness at an early stage in the pathogenesis of hypertension.......High arterial stiffness seems to be causally involved in the pathogenesis of hypertension. We tested the hypothesis that offspring of parents with hypertension may display higher arterial stiffness before clinically manifest hypertension, given that hypertension is a heritable condition. We...... compared arterial tonometry measures in a sample of 1564 nonhypertensive Framingham Heart Study third-generation cohort participants (mean age: 38 years; 55% women) whose parents were enrolled in the Framingham Offspring Study. A total of 468, 715, and 381 participants had 0 (referent), 1, and 2 parents...

  3. Infinite-Order Symmetries for Quantum Separable Systems

    International Nuclear Information System (INIS)

    Miller, W.; Kalnins, E.G.; Kress, J.M.; Pogosyan, G.S.

    2005-01-01

    We develop a calculus to describe the (in general) infinite-order differential operator symmetries of a nonrelativistic Schroedinger eigenvalue equation that admits an orthogonal separation of variables in Riemannian n space. The infinite-order calculus exhibits structure not apparent when one studies only finite-order symmetries. The search for finite-order symmetries can then be reposed as one of looking for solutions of a coupled system of PDEs that are polynomial in certain parameters. Among the simple consequences of the calculus is that one can generate algorithmically a canonical basis for the space. Similarly, we can develop a calculus for conformal symmetries of the time-dependent Schroedinger equation if it admits R separation in some coordinate system. This leads to energy-shifting symmetries

  4. Infinite-order symmetries for quantum separable systems

    International Nuclear Information System (INIS)

    Miller, W.; Kalnins, E.G.; Kress, J.M.; Pogosyan, G.S.

    2005-01-01

    A calculus to describe the (in general) infinite-order differential operator symmetries of a nonrelativistic Schroedinger eigenvalue equation that admits an orthogonal separation of variables in Riemannian n space is developed. The infinite-order calculus exhibits structure not apparent when one studies only finite-order symmetries. The search for finite-order symmetries can then be reposed as one of looking for solutions of a coupled system of PDEs that are polynomial in certain parameters. Among the simple consequences of the calculus is that one can generate algorithmically a canonical basis for the space. Similarly, it can develop a calculus for conformal symmetries of the time-dependent Schroedinger equation if it admits R separation in some coordinate system. This leads to energy-shifting symmetries [ru

  5. Symmetric positive differential equations and first order hyperbolic systems

    International Nuclear Information System (INIS)

    Tangmanee, S.

    1981-12-01

    We prove that under some conditions the first order hyperbolic system and its associated mixed initial boundary conditions considered, for example, in Kreiss (Math. Comp. 22, 703-704 (1968)) and Kreiss and Gustafsson (Math. Comp. 26, 649-686 (1972)), can be transformed into a symmetric positive system of P.D.E.'s with admissible boundary conditions of Friedrich's type (Comm. Pure Appl. Math 11, 333-418 (1958)). (author)

  6. Development of a stiffness-angle law for simplifying the measurement of human hair stiffness.

    Science.gov (United States)

    Jung, I K; Park, S C; Lee, Y R; Bin, S A; Hong, Y D; Eun, D; Lee, J H; Roh, Y S; Kim, B M

    2018-04-01

    This research examines the benefits of caffeine absorption on hair stiffness. To test hair stiffness, we have developed an evaluation method that is not only accurate, but also inexpensive. Our evaluation method for measuring hair stiffness culminated in a model, called the Stiffness-Angle Law, which describes the elastic properties of hair and can be widely applied to the development of hair care products. Small molecules (≤500 g mol -1 ) such as caffeine can be absorbed into hair. A common shampoo containing 4% caffeine was formulated and applied to hair 10 times, after which the hair stiffness was measured. The caffeine absorption of the treated hair was observed using Fourier-transform infrared spectroscopy (FTIR) with a focal plane array (FPA) detector. Our evaluation method for measuring hair stiffness consists of a regular camera and a support for single strands of hair. After attaching the hair to the support, the bending angle of the hair was observed with a camera and measured. Then, the hair strand was weighed. The stiffness of the hair was calculated based on our proposed Stiffness-Angle Law using three variables: angle, weight of hair and the distance the hair was pulled across the support. The caffeine absorption was confirmed by FTIR analysis. The concentration of amide bond in the hair certainly increased due to caffeine absorption. After caffeine was absorbed into the hair, the bending angle and weight of the hair changed. Applying these measured changes to the Stiffness-Angle Law, it was confirmed that the hair stiffness increased by 13.2% due to caffeine absorption. The theoretical results using the Stiffness-Angle Law agree with the visual examinations of hair exposed to caffeine and also the known results of hair stiffness from a previous report. Our evaluation method combined with our proposed Stiffness-Angle Law effectively provides an accurate and inexpensive evaluation technique for measuring bending stiffness of human hair. © 2018

  7. Particular solutions to multidimensional PDEs with KdV-type nonlinearity

    International Nuclear Information System (INIS)

    Zenchuk, A.I.

    2014-01-01

    We consider a class of particular solutions to the (2+1)-dimensional nonlinear partial differential equation (PDE) u t +∂ x 2 n u x 1 −u x 1 u=0 (here n is any integer) reducing it to the ordinary differential equation (ODE). In a simplest case, n=1, the ODE is solvable in terms of elementary functions. Next choice, n=2, yields the cnoidal waves for the special case of Zakharov–Kuznetsov equation. The proposed method is based on the deformation of the characteristic of the equation u t −uu x 1 =0 and might also be useful in study of the higher-dimensional PDEs with arbitrary linear part and KdV-type nonlinearity (i.e. the nonlinear term is u x 1 u).

  8. Natural asphalt modified binders used for high stiffness modulus asphalt concrete

    Science.gov (United States)

    Bilski, Marcin; Słowik, Mieczysław

    2018-05-01

    This paper presents a set of test results supporting the possibility of replacing, in Polish climate conditions, hard road 20/30 penetration grade bitumen used in the binder course and/or base course made of high stiffness modulus asphalt concrete with binders comprising of 35/50 or 50/70 penetration grade bitumens and additives in the form of natural Gilsonite or Trinidad Epuré asphalts. For the purpose of comparing the properties of the discussed asphalt binders, values of the Performance Grade have been determined according to the American Superpave system criteria.

  9. Posttraumatic stiff elbow

    Directory of Open Access Journals (Sweden)

    Ravi Mittal

    2017-01-01

    Full Text Available Posttraumatic stiff elbow is a frequent and disabling complication and poses serious challenges for its management. In this review forty studies were included to know about the magnitude of the problem, causes, pathology, prevention, and treatment of posttraumatic stiff elbow. These studies show that simple measures such as internal fixation, immobilization in extension, and early motion of elbow joint are the most important steps that can prevent elbow stiffness. It also supports conservative treatment in selected cases. There are no clear guidelines about the choice between the numerous procedures described in literature. However, this review article disproves two major beliefs-heterotopic ossification is a bad prognostic feature, and passive mobilization of elbow causes elbow stiffness.

  10. Direct calculation of the spin stiffness on square, triangular and cubic lattices using the coupled cluster method

    OpenAIRE

    Krüger, S. E.; Darradi, R.; Richter, J.; Farnell, D. J. J

    2006-01-01

    We present a method for the direct calculation of the spin stiffness by means of the coupled cluster method. For the spin-half Heisenberg antiferromagnet on the square, the triangular and the cubic lattices we calculate the stiffness in high orders of approximation. For the square and the cubic lattices our results are in very good agreement with the best results available in the literature. For the triangular lattice our result is more precise than any other result obtained so far by other a...

  11. Vascular Stiffness and Increased Pulse Pressure in the Aging Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Jochen Steppan

    2011-01-01

    Full Text Available Aging leads to a multitude of changes in the cardiovascular system, including systolic hypertension, increased central vascular stiffness, and increased pulse pressure. In this paper we will review the effects of age-associated increased vascular stiffness on systolic blood pressure, pulse pressure, augmentation index, and cardiac workload. Additionally we will describe pulse wave velocity as a method to measure vascular stiffness and review the impact of increased vascular stiffness as an index of vascular health and as a predictor of adverse cardiovascular outcomes. Furthermore, we will discuss the underlying mechanisms and how these may be modified in order to change the outcomes. A thorough understanding of these concepts is of paramount importance and has therapeutic implications for the increasingly elderly population.

  12. Conditional symmetries for systems of PDEs: new definitions and their application for reaction-diffusion systems

    International Nuclear Information System (INIS)

    Cherniha, Roman

    2010-01-01

    New definitions of Q-conditional symmetry for systems of PDEs are presented, which generalize the standard notation of non-classical (conditional) symmetry. It is shown that different types of Q-conditional symmetry of a system generate a hierarchy of conditional symmetry operators. A class of two-component nonlinear reaction-diffusion systems is examined to demonstrate the applicability of the definitions proposed and it is shown when different definitions of Q-conditional symmetry lead to the same operators.

  13. Discrete computational mechanics for stiff phenomena

    KAUST Repository

    Michels, Dominik L.

    2016-11-28

    Many natural phenomena which occur in the realm of visual computing and computational physics, like the dynamics of cloth, fibers, fluids, and solids as well as collision scenarios are described by stiff Hamiltonian equations of motion, i.e. differential equations whose solution spectra simultaneously contain extremely high and low frequencies. This usually impedes the development of physically accurate and at the same time efficient integration algorithms. We present a straightforward computationally oriented introduction to advanced concepts from classical mechanics. We provide an easy to understand step-by-step introduction from variational principles over the Euler-Lagrange formalism and the Legendre transformation to Hamiltonian mechanics. Based on such solid theoretical foundations, we study the underlying geometric structure of Hamiltonian systems as well as their discrete counterparts in order to develop sophisticated structure preserving integration algorithms to efficiently perform high fidelity simulations.

  14. Lower Body Stiffness Modulation Strategies in Well Trained Female Athletes.

    Science.gov (United States)

    Millett, Emma L; Moresi, Mark P; Watsford, Mark L; Taylor, Paul G; Greene, David A

    2016-10-01

    Millett, EL, Moresi, MP, Watsford, ML, Taylor, PG, and Greene, DA. Lower body stiffness modulation strategies in well trained female athletes. J Strength Cond Res 30(10): 2845-2856, 2016-Lower extremity stiffness quantifies the relationship between the amount of leg compression and the external load to which the limb are subjected. This study aimed to assess differences in leg and joint stiffness and the subsequent kinematic and kinetic control mechanisms between athletes from various training backgrounds. Forty-seven female participants (20 nationally identified netballers, 13 high level endurance athletes and 14 age and gender matched controls) completed a maximal unilateral countermovement jump, drop jump and horizontal jump to assess stiffness. Leg stiffness, joint stiffness and associated mechanical parameters were assessed with a 10 camera motion analysis system and force plate. No significant differences were evident for leg stiffness measures between athletic groups for any of the tasks (p = 0.321-0.849). However, differences in joint stiffness and its contribution to leg stiffness, jump performance outcome measures and stiffness control mechanisms were evident between all groups. Practitioners should consider the appropriateness of the task utilised in leg stiffness screening. Inclusion of mechanistic and/or more sports specific tasks may be more appropriate for athletic groups.

  15. Extrapolated stabilized explicit Runge-Kutta methods

    Science.gov (United States)

    Martín-Vaquero, J.; Kleefeld, B.

    2016-12-01

    Extrapolated Stabilized Explicit Runge-Kutta methods (ESERK) are proposed to solve multi-dimensional nonlinear partial differential equations (PDEs). In such methods it is necessary to evaluate the function nt times per step, but the stability region is O (nt2). Hence, the computational cost is O (nt) times lower than for a traditional explicit algorithm. In that way stiff problems can be integrated by the use of simple explicit evaluations in which case implicit methods usually had to be used. Therefore, they are especially well-suited for the method of lines (MOL) discretizations of parabolic nonlinear multi-dimensional PDEs. In this work, first s-stages first-order methods with extended stability along the negative real axis are obtained. They have slightly shorter stability regions than other traditional first-order stabilized explicit Runge-Kutta algorithms (also called Runge-Kutta-Chebyshev codes). Later, they are used to derive nt-stages second- and fourth-order schemes using Richardson extrapolation. The stability regions of these fourth-order codes include the interval [ - 0.01nt2, 0 ] (nt being the number of total functions evaluations), which are shorter than stability regions of ROCK4 methods, for example. However, the new algorithms neither suffer from propagation of errors (as other Runge-Kutta-Chebyshev codes as ROCK4 or DUMKA) nor internal instabilities. Additionally, many other types of higher-order (and also lower-order) methods can be obtained easily in a similar way. These methods also allow adaptation of the length step with no extra cost. Hence, the stability domain is adapted precisely to the spectrum of the problem at the current time of integration in an optimal way, i.e., with minimal number of additional stages. We compare the new techniques with other well-known algorithms with good results in very stiff diffusion or reaction-diffusion multi-dimensional nonlinear equations.

  16. Arterial stiffness and cognitive impairment.

    Science.gov (United States)

    Li, Xiaoxuan; Lyu, Peiyuan; Ren, Yanyan; An, Jin; Dong, Yanhong

    2017-09-15

    Arterial stiffness is one of the earliest indicators of changes in vascular wall structure and function and may be assessed using various indicators, such as pulse-wave velocity (PWV), the cardio-ankle vascular index (CAVI), the ankle-brachial index (ABI), pulse pressure (PP), the augmentation index (AI), flow-mediated dilation (FMD), carotid intima media thickness (IMT) and arterial stiffness index-β. Arterial stiffness is generally considered an independent predictor of cardiovascular and cerebrovascular diseases. To date, a significant number of studies have focused on the relationship between arterial stiffness and cognitive impairment. To investigate the relationships between specific arterial stiffness parameters and cognitive impairment, elucidate the pathophysiological mechanisms underlying the relationship between arterial stiffness and cognitive impairment and determine how to interfere with arterial stiffness to prevent cognitive impairment, we searched PUBMED for studies regarding the relationship between arterial stiffness and cognitive impairment that were published from 2000 to 2017. We used the following key words in our search: "arterial stiffness and cognitive impairment" and "arterial stiffness and cognitive impairment mechanism". Studies involving human subjects older than 30years were included in the review, while irrelevant studies (i.e., studies involving subjects with comorbid kidney disease, diabetes and cardiac disease) were excluded from the review. We determined that arterial stiffness severity was positively correlated with cognitive impairment. Of the markers used to assess arterial stiffness, a higher PWV, CAVI, AI, IMT and index-β and a lower ABI and FMD were related to cognitive impairment. However, the relationship between PP and cognitive impairment remained controversial. The potential mechanisms linking arterial stiffness and cognitive impairment may be associated with arterial pulsatility, as greater arterial pulsatility

  17. An EKF-based approach for estimating leg stiffness during walking.

    Science.gov (United States)

    Ochoa-Diaz, Claudia; Menegaz, Henrique M; Bó, Antônio P L; Borges, Geovany A

    2013-01-01

    The spring-like behavior is an inherent condition for human walking and running. Since leg stiffness k(leg) is a parameter that cannot be directly measured, many techniques has been proposed in order to estimate it, most of them using force data. This paper intends to address this problem using an Extended Kalman Filter (EKF) based on the Spring-Loaded Inverted Pendulum (SLIP) model. The formulation of the filter only uses as measurement information the Center of Mass (CoM) position and velocity, no a priori information about the stiffness value is known. From simulation results, it is shown that the EKF-based approach can generate a reliable stiffness estimation for walking.

  18. Sway‐dependent changes in standing ankle stiffness caused by muscle thixotropy

    Science.gov (United States)

    Sakanaka, Tania E.; Lakie, Martin

    2016-01-01

    Key points The passive stiffness of the calf muscles contributes to standing balance, although the properties of muscle tissue are highly labile.We investigated the effect of sway history upon intrinsic ankle stiffness and demonstrated reductions in stiffness of up to 43% during conditions of increased baseline sway.This sway dependence was most apparent when using low amplitude stiffness‐measuring perturbations, and the short‐range stiffness component was smaller during periods of high sway.These characteristics are consistent with the thixotropic properties of the calf muscles causing the observed changes in ankle stiffness.Periods of increased sway impair the passive stabilization of standing, demanding more active neural control of balance. Abstract Quiet standing is achieved through a combination of active and passive mechanisms, consisting of neural control and intrinsic mechanical stiffness of the ankle joint, respectively. The mechanical stiffness is partly determined by the calf muscles. However, the viscoelastic properties of muscle are highly labile, exhibiting a strong dependence on movement history. By measuring the effect of sway history upon ankle stiffness, the present study determines whether this lability has consequences for the passive stabilization of human standing. Ten subjects stood quietly on a rotating platform whose axis was collinear with the ankle joint. Ankle sway was increased by slowly tilting this platform in a random fashion, or decreased by fixing the body to a board. Ankle stiffness was measured by using the same platform to simultaneously apply small, brief perturbations (ankle stiffness by up to 43% compared to the body‐fixed condition. Normal quiet stance was associated with intermediate values. The effect was most apparent when using smaller perturbation amplitudes to measure stiffness (0.1 vs. 0.6 deg). Furthermore, torque responses exhibited a biphasic pattern, consisting of an initial steep rise followed by a

  19. Inverse axial mounting stiffness design for lithographic projection lenses.

    Science.gov (United States)

    Wen-quan, Yuan; Hong-bo, Shang; Wei, Zhang

    2014-09-01

    In order to balance axial mounting stiffness of lithographic projection lenses and the image quality under dynamic working conditions, an easy inverse axial mounting stiffness design method is developed in this article. Imaging quality deterioration at the wafer under different axial vibration levels is analyzed. The desired image quality can be determined according to practical requirements, and axial vibrational tolerance of each lens is solved with the damped least-squares method. Based on adaptive interval adjustment, a binary search algorithm, and the finite element method, the axial mounting stiffness of each lens can be traveled in a large interval, and converges to a moderate numerical solution which makes the axial vibrational amplitude of the lens converge to its axial vibrational tolerance. Model simulation is carried out to validate the effectiveness of the method.

  20. Plant fibre composites - porosity and stiffness

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2009-01-01

    Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition...... of the composites with their mechanical properties. The fibre weight fraction is used as an independent parameter to calculate the complete volumetric composition. A maximum obtainable stiffness of the composites is calculated at a certain transition fibre weight fraction, which is characterised by a best possible...... combination of high fibre volume fraction and low porosity. The model is validated with experimental data from the literature on several types of composites. A stiffness diagram is presented to demonstrate that the calculations can be used for tailoring and design of composites with a given profile...

  1. Pre-diabetes and arterial stiffness in uraemic patients

    DEFF Research Database (Denmark)

    Hornum, Mads; Clausen, Peter; Kjaergaard, Jesper

    2010-01-01

    In order to address factors of relevance for new onset diabetes mellitus and cardiovascular disease after kidney transplantation, we investigated the presence of pre-diabetes, arterial stiffness and endothelial dysfunction in patients with end-stage renal disease (ESRD) accepted for kidney...

  2. Influence of stiffness on CHF for horizontal tubes under LPLF conditions

    Energy Technology Data Exchange (ETDEWEB)

    Baburajan, P.K. [Nuclear Safety Analysis Division, AERB, Niyamak Bhavan, 400094 (India); Bisht, Govind Singh [Department of Mechanical Engineering, IIT Bombay, 400076 (India); Gaikwad, Avinash J. [Nuclear Safety Analysis Division, AERB, Niyamak Bhavan, 400094 (India); Prabhu, S.V., E-mail: svprabhu@iitb.ac.in [Department of Mechanical Engineering, IIT Bombay, 400076 (India)

    2014-10-01

    Highlights: • Effect of stiffness on the CHF in horizontal tube under LPLF conditions is studied. • CHF increases with the increase in stiffness. • Correlation for the prediction of CHF as a function of stiffness is developed. • Correlation for mass flux at CHF in terms of stiffness and initial mass flux is given. • RELAP5 is capable of predicting the effect of stiffness on CHF. - Abstract: Studies reported in the past on critical heat flux (CHF) are mostly limited to vertical flow, large channel diameter, high pressure and high mass flux. Since horizontal flow is commonly encountered in boiler tubes, refrigerating equipments and nuclear reactor fuel channels (PHWR), there is a need to understand horizontal flow CHF, generate sufficient experimental database and to develop reliable predictive method. Few studies are reported on the effect of upstream flow restrictions on flow instabilities and CHF. The present work investigates the effect of upstream flow restriction on CHF in horizontal flow at near atmospheric pressure conditions. In the present study, stiffness is defined as the ratio of upstream flow restriction pressure drop to the test section pressure drop. The classification of a flow boiling system as soft or stiff on the basis of quantification of the stiffness is attempted. Experimental data shows an increase in the CHF with the increase in the stiffness for a given initial mass flux. A correlation for the prediction of CHF under various stiffness conditions is developed. A correlation is suggested to predict the mass flux at CHF as a function of stiffness and initial mass flux. Modeling and transient analysis of the stiffness effect on CHF is carried out using the thermal hydraulic system code RELAP5. The predicted phenomena are in agreement with the experimental observations.

  3. High risk of misinterpreting liver and spleen stiffness using 2D shear-wave and transient elastography after a moderate or high calorie meal

    DEFF Research Database (Denmark)

    Kjærgaard, Maria; Thiele, Maja; Jansen, Christian

    2017-01-01

    ) and real-time 2-dimensional shear wave elastography (2D-SWE). Patients ingested a 625 kcal and a 1250 kcal liquid meal on two consecutive days. We measured liver and spleen elasticity, Controlled attenuation parameter (CAP) and portal flow at baseline and after 20, 40, 60, 120 and 180 minutes. Sixty......Food intake increases liver stiffness, but it is believed that liver stiffness returns to baseline two hours after a meal. The aim of this study was to investigate the impact of different sized meals on liver stiffness. Liver and spleen stiffness was measured with transient elastography (TE...... patients participated, 83% with alcoholic liver disease. Twenty-eight patients had METAVIR fibrosis score F0-3 and 32 patients had cirrhosis. Liver stiffness, spleen stiffness and CAP increased after both meals for all stages of fibrosis. False positive 2D-SWE liver stiffness measurements caused 36% and 52...

  4. Trabecular meshwork stiffness in glaucoma.

    Science.gov (United States)

    Wang, Ke; Read, A Thomas; Sulchek, Todd; Ethier, C Ross

    2017-05-01

    Alterations in stiffness of the trabecular meshwork (TM) may play an important role in primary open-angle glaucoma (POAG), the second leading cause of blindness. Specifically, certain data suggest an association between elevated intraocular pressure (IOP) and increased TM stiffness; however, the underlying link between TM stiffness and IOP remains unclear and requires further study. We here first review the literature on TM stiffness measurements, encompassing various species and based on a number of measurement techniques, including direct approaches such as atomic force microscopy (AFM) and uniaxial tension tests, and indirect methods based on a beam deflection model. We also briefly review the effects of several factors that affect TM stiffness, including lysophospholipids, rho-kinase inhibitors, cytoskeletal disrupting agents, dexamethasone (DEX), transforming growth factor-β 2 (TGF-β 2 ), nitric oxide (NO) and cellular senescence. We then describe a method we have developed for determining TM stiffness measurement in mice using a cryosection/AFM-based approach, and present preliminary data on TM stiffness in C57BL/6J and CBA/J mouse strains. Finally, we investigate the relationship between TM stiffness and outflow facility between these two strains. The method we have developed shows promise for further direct measurements of mouse TM stiffness, which may be of value in understanding mechanistic relations between outflow facility and TM biomechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Extension of elastic stiffness formula for leaf type holddown spring assembly

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kang, Heung Seok; Yoon, Kyung Ho; Kim, Hyung Kyu [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-09-01

    Based on the Euler beam theory and the strain energy method, an elastic stiffness formula of the holddown spring assembly consisting of several leaves was previously derived. The formula was known to be useful to estimate the elastic stiffness of the holddown spring assembly only with the geometric data and the material properties of the leaf. Recently, it was reported that the elastic stiffness from the formula deviated much from the test results as the number of leaves was increased. In this study, in order to resolve such an increasing deviation as the increasing number of leaves, the formula has been extended to be able to consider normal forces and friction forces acting on interfaces between the leaves. The elastic stiffness analysis on specimens of leaf type holddown springs has been carried out using the extended formula and the analysis results are compared with the test results. As a result of comparisons, it is found that the extended formula is able to evaluate the elastic stiffness of the holddown spring assembly within an error range of 10%, irrespective of the number of leaves. In addition, it is found that the effect of shear forces and axial forces on the elastic stiffness of the holddown spring assembly is only below 0.2% of the elastic stiffness, and therefore the greatest portion of the elastic stiffness of the holddown spring assembly is attributed to the bending moment. (author). 13 refs., 10 figs., 12 tabs.

  6. Artificial muscles with adjustable stiffness

    International Nuclear Information System (INIS)

    Mutlu, Rahim; Alici, Gursel

    2010-01-01

    This paper reports on a stiffness enhancement methodology based on using a suitably designed contact surface with which cantilevered-type conducting polymer bending actuators are in contact during operation. The contact surface constrains the bending behaviour of the actuators. Depending on the topology of the contact surface, the resistance of the polymer actuators to deformation, i.e. stiffness, is varied. As opposed to their predecessors, these polymer actuators operate in air. Finite element analysis and modelling are used to quantify the effect of the contact surface on the effective stiffness of a trilayer cantilevered beam, which represents a one-end-free, the-other-end-fixed polypyrrole (PPy) conducting polymer actuator under a uniformly distributed load. After demonstrating the feasibility of the adjustable stiffness concept, experiments were conducted to determine the stiffness of bending-type conducting polymer actuators in contact with a range (20–40 mm in radius) of circular contact surfaces. The numerical and experimental results presented demonstrate that the stiffness of the actuators can be varied using a suitably profiled contact surface. The larger the radius of the contact surface is, the higher is the stiffness of the polymer actuators. The outcomes of this study suggest that, although the stiffness of the artificial muscles considered in this study is constant for a given geometric size, and electrical and chemical operation conditions, it can be changed in a nonlinear fashion to suit the stiffness requirement of a considered application. The stiffness enhancement methodology can be extended to other ionic-type conducting polymer actuators

  7. High Central Aortic Rather than Brachial Blood Pressure is Associated with Carotid Wall Remodeling and Increased Arterial Stiffness in Childhood.

    Science.gov (United States)

    Peluso, Gonzalo; García-Espinosa, Victoria; Curcio, Santiago; Marota, Marco; Castro, Juan; Chiesa, Pedro; Giachetto, Gustavo; Bia, Daniel; Zócalo, Yanina

    2017-03-01

    In adults, central blood pressure (cBP) is reported to associate target organ damages (TODs) rather than peripheral blood pressure (pBP). However, data regarding the association of pre-clinical TODs with cBP and pBP in pediatric populations are scarce. To evaluate in children and adolescents the importance of cBP and pBP levels, in terms of their association with hemodynamic and vascular changes. 315 subjects [age (mean/range) 12/8-18 years] were included. pBP (oscillometry, Omron-HEM433INT and Mobil-O-Graph), cBP levels and waveforms (oscillometry, Mobil-O-Graph; applanation tonometry, SphygmoCor), aortic wave reflection-related parameters, carotid intima-media thickness (CIMT) and carotid (elastic modulus, stiffness-index) and aortic stiffness (carotid-femoral pulse wave velocity, PWV). Four groups were defined considering pBP and cBP percentiles (th): cBP ≥90th, cBP th, pBP ≥90th, pBP th. In each group, haemodynamic and vascular parameters were compared for subgroups defined considering the level of the remaining blood pressure (cBP or pBP). Subgroups were matched for anthropometric and cardiovascular risk factors (propensity matching-score). Subjects with high cBP showed a worse cardiovascular risk profile in addition to worse peripheral hemodynamic conditions. The CIMT, carotid and aortic stiffness levels were also higher in those subjects. CIMT and carotid stiffness remained statistically higher when subjects were matched for pBP and other cardiovascular risk factors. There were no differences in arterial properties when subjects were analyzed (compared) considering similar pBP levels, during normal and high cBP conditions. Compared with pBP, the cBP levels show a greater association with vascular alterations (high CIMT and arterial stiffness), in children and adolescents.

  8. A variable stiffness joint with electrospun P(VDF-TrFE-CTFE) variable stiffness springs

    NARCIS (Netherlands)

    Carloni, Raffaella; Lapp, Valerie I.; Cremonese, Andrea; Belcari, Juri; Zucchelli, Andrea

    This letter presents a novel rotational variable stiffness joint that relies on one motor and a set of variable stiffness springs. The variable stiffness springs are leaf springs with a layered design, i.e., an electro-active layer of electrospun aligned nanofibers of poly(vinylidene

  9. Pharmacological modulation of arterial stiffness.

    LENUS (Irish Health Repository)

    Boutouyrie, Pierre

    2011-09-10

    Arterial stiffness has emerged as an important marker of cardiovascular risk in various populations and reflects the cumulative effect of cardiovascular risk factors on large arteries, which in turn is modulated by genetic background. Arterial stiffness is determined by the composition of the arterial wall and the arrangement of these components, and can be studied in humans non-invasively. Age and distending pressure are two major factors influencing large artery stiffness. Change in arterial stiffness with drugs is an important endpoint in clinical trials, although evidence for arterial stiffness as a therapeutic target still needs to be confirmed. Drugs that independently affect arterial stiffness include antihypertensive drugs, mostly blockers of the renin-angiotensin-aldosterone system, hormone replacement therapy and some antidiabetic drugs such as glitazones. While the quest continues for \\'de-stiffening drugs\\

  10. Using strong nonlinearity and high-frequency vibrations to control effective mechanical stiffness

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2008-01-01

    the method of direct separation of motions with results of a modified multiple scales ap-proach, valid also for strong nonlinearity, the stiffening ef-fect is predicted for a generic 1-dof system, and results are tested against numerical simulation and ((it is planned)) laboratory experiments.......High-frequency excitation (HFE) can be used to change the effective stiffness of an elastic structure, and related quanti-ties such as resonance frequencies, wave speed, buckling loads, and equilibrium states. There are basically two ways to do this: By using parametrical HFE (with or without non...

  11. Changes in endothelial function, arterial stiffness and blood pressure in pregnant women after consumption of high-flavanol and high-theobromine chocolate: a double blind randomized clinical trial.

    Science.gov (United States)

    Babar, Asma; Bujold, Emmanuel; Leblanc, Vicky; Lavoie-Lebel, Élise; Paquette, Joalee; Bazinet, Laurent; Lemieux, Simone; Marc, Isabelle; Abdous, Belkacem; Dodin, Sylvie

    2018-04-16

    The aim of this 2-group, parallel, double blind single-centre RCT was to evaluate the acute and chronic impacts of high flavanol high theobromine (HFHT) chocolate consumption on endothelial function, arterial stiffness and blood pressure (BP) in women at risk of preeclampsia. 131 pregnant women considered at risk of preeclampsia based on uterine artery Doppler ultrasound were divided into two groups (HFHT or low flavanol and theobromine chocolate (LFLT). Acute changes in plasma flavanol and theobromine, peripheral arterial tonometry and BP were evaluated at randomization (0, 60 and 120 min after a single 40-g dose of chocolate) and again 6 and 12 weeks after daily 30-g chocolate intake. The EndoPAT 2000 provided reactive hyperemia index (RHI) and adjusted augmentation index (AIx) as markers for endothelial function and arterial stiffness, respectively. Compared with LFLT, acute HFHT intake significantly increased plasma epicatechin and theobromine (p theobromine (p theobromine concentrations and decreased arterial stiffness, with no effect on endothelial function and a marginal increase in diastolic BP. Chronic HFHT intake increased plasma theobromine, though it did not have positive impacts on endothelial function, arterial stiffness or BP when compared to LFLT in pregnant women at risk of PE.

  12. An L-stable method for solving stiff hydrodynamics

    Science.gov (United States)

    Li, Shengtai

    2017-07-01

    We develop a new method for simulating the coupled dynamics of gas and multi-species dust grains. The dust grains are treated as pressure-less fluids and their coupling with gas is through stiff drag terms. If an explicit method is used, the numerical time step is subject to the stopping time of the dust particles, which can become extremely small for small grains. The previous semi-implicit method [1] uses second-order trapezoidal rule (TR) on the stiff drag terms and it works only for moderately small size of the dust particles. This is because TR method is only A-stable not L-stable. In this work, we use TR-BDF2 method [2] for the stiff terms in the coupled hydrodynamic equations. The L-stability of TR-BDF2 proves essential in treating a number of dust species. The combination of TR-BDF2 method with the explicit discretization of other hydro terms can solve a wide variety of stiff hydrodynamics equations accurately and efficiently. We have implemented our method in our LA-COMPASS (Los Alamos Computational Astrophysics Suite) package. We have applied the code to simulate some dusty proto-planetary disks and obtained very good match with astronomical observations.

  13. Experimental Challenges to Stiffness as a Transport Paradigm

    Science.gov (United States)

    Luce, T. C.

    2017-10-01

    Transport in plasmas is treated experimentally as a relationship between gradients and fluxes in analogy to the random-walk problem. Gyrokinetic models often predict strong increases in local flux for small increases in local gradient when above a threshold, holding all other parameters fixed. This has been named `stiffness'. The radial scalelength is then expected to vary little with source strength as a result of high stiffness. To probe the role of ExB shearing on stiffness in the DIII-D tokamak, two neutral beam injection power scans in H-mode plasmas were specially crafted-one with constant, low torque and one with increasing torque. The ion heat, electron heat, and ion toroidal momentum transport do not show expected signatures of stiffness, while the ion particle transport does. The ion heat transport shows the clearest discrepancy; the normalized heat flux drops with increasing inverse ion temperature scalelength. ExB shearing affects the transport magnitude, but not the scalelength dependence. Linear gyrofluid (TGLF) and nonlinear gyrokinetic (GYRO) predictions show stiff ion heat transport around the experimental profiles. The ion temperature gradient required to match the ion heat flux with increasing auxiliary power is not correctly described by TGLF, even when parameters are varied within the experimental uncertainties. TGLF also underpredicts transport at smaller radii, but overpredicts transport at larger radii. Independent of the theory/experiment comparison, it is not clear that the theoretical definition of stiffness yields any prediction about parameter scans such as the power scans here, because the quantities that must be held fixed to quantify stiffness are varied. A survey of recent literature indicated that profile resilience is routinely attributed to stiffness, but simple model calculations show profile resilience does not imply stiffness. Taken together, these observations challenge the use of local stiffness as a paradigm for explaining

  14. High-Order Hamilton's Principle and the Hamilton's Principle of High-Order Lagrangian Function

    International Nuclear Information System (INIS)

    Zhao Hongxia; Ma Shanjun

    2008-01-01

    In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.

  15. High-Dose versus Low-Dose Vitamin D Supplementation and Arterial Stiffness among Individuals with Prehypertension and Vitamin D Deficiency

    Directory of Open Access Journals (Sweden)

    Amanda Zaleski

    2015-01-01

    Full Text Available Introduction. Vitamin D deficiency is associated with the onset and progression of hypertension and cardiovascular disease (CVD. However, mechanisms underlying vitamin D deficiency-mediated increased risk of CVD remain unknown. We sought to examine the differential effect of high-dose versus low-dose vitamin D supplementation on markers of arterial stiffness among ~40 vitamin D deficient adults with prehypertension. Methods. Participants were randomized to high-dose (4000 IU/d versus low-dose (400 IU/d oral vitamin D3 for 6 months. 24 hr ambulatory blood pressure (BP, carotid-femoral pulse wave velocity, and pulse wave analyses were obtained at baseline and after 6 months of vitamin D supplementation. Results. There were no changes in resting BP or pulse wave velocity over 6 mo regardless of vitamin D dose (all p>0.202. High-dose vitamin D decreased augmentation index and pressure by 12.3 ± 5.3% (p=0.047 and 4.0 ± 1.5 mmHg (p=0.02, respectively. However, these decreases in arterial stiffness were not associated with increases in serum 25-hydroxyvitamin D over 6 mo (p=0.425. Conclusion. High-dose vitamin D supplementation appears to lower surrogate measures of arterial stiffness but not indices of central pulse wave velocity. Clinical Trial Registration. This trial is registered with www.clinicaltrials.gov (Unique Identifier: NCT01240512.

  16. Steel Rack Connections: Identification of Most Influential Factors and a Comparison of Stiffness Design Methods

    Science.gov (United States)

    Shah, S. N. R.; Sulong, N. H. Ramli; Shariati, Mahdi; Jumaat, M. Z.

    2015-01-01

    Steel pallet rack (SPR) beam-to-column connections (BCCs) are largely responsible to avoid the sway failure of frames in the down-aisle direction. The overall geometry of beam end connectors commercially used in SPR BCCs is different and does not allow a generalized analytic approach for all types of beam end connectors; however, identifying the effects of the configuration, profile and sizes of the connection components could be the suitable approach for the practical design engineers in order to predict the generalized behavior of any SPR BCC. This paper describes the experimental behavior of SPR BCCs tested using a double cantilever test set-up. Eight sets of specimens were identified based on the variation in column thickness, beam depth and number of tabs in the beam end connector in order to investigate the most influential factors affecting the connection performance. Four tests were repeatedly performed for each set to bring uniformity to the results taking the total number of tests to thirty-two. The moment-rotation (M-θ) behavior, load-strain relationship, major failure modes and the influence of selected parameters on connection performance were investigated. A comparative study to calculate the connection stiffness was carried out using the initial stiffness method, the slope to half-ultimate moment method and the equal area method. In order to find out the more appropriate method, the mean stiffness of all the tested connections and the variance in values of mean stiffness according to all three methods were calculated. The calculation of connection stiffness by means of the initial stiffness method is considered to overestimate the values when compared to the other two methods. The equal area method provided more consistent values of stiffness and lowest variance in the data set as compared to the other two methods. PMID:26452047

  17. Steel Rack Connections: Identification of Most Influential Factors and a Comparison of Stiffness Design Methods.

    Directory of Open Access Journals (Sweden)

    S N R Shah

    Full Text Available Steel pallet rack (SPR beam-to-column connections (BCCs are largely responsible to avoid the sway failure of frames in the down-aisle direction. The overall geometry of beam end connectors commercially used in SPR BCCs is different and does not allow a generalized analytic approach for all types of beam end connectors; however, identifying the effects of the configuration, profile and sizes of the connection components could be the suitable approach for the practical design engineers in order to predict the generalized behavior of any SPR BCC. This paper describes the experimental behavior of SPR BCCs tested using a double cantilever test set-up. Eight sets of specimens were identified based on the variation in column thickness, beam depth and number of tabs in the beam end connector in order to investigate the most influential factors affecting the connection performance. Four tests were repeatedly performed for each set to bring uniformity to the results taking the total number of tests to thirty-two. The moment-rotation (M-θ behavior, load-strain relationship, major failure modes and the influence of selected parameters on connection performance were investigated. A comparative study to calculate the connection stiffness was carried out using the initial stiffness method, the slope to half-ultimate moment method and the equal area method. In order to find out the more appropriate method, the mean stiffness of all the tested connections and the variance in values of mean stiffness according to all three methods were calculated. The calculation of connection stiffness by means of the initial stiffness method is considered to overestimate the values when compared to the other two methods. The equal area method provided more consistent values of stiffness and lowest variance in the data set as compared to the other two methods.

  18. On gear tooth stiffness evaluation

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Jørgensen, Martin Felix

    2014-01-01

    The estimation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the boundary condition through the gear rim size included in the stiffness calculation...

  19. Elastin in large artery stiffness and hypertension

    Science.gov (United States)

    Wagenseil, Jessica E.; Mecham, Robert P.

    2012-01-01

    Large artery stiffness, as measured by pulse wave velocity (PWV), is correlated with high blood pressure and may be a causative factor in essential hypertension. The extracellular matrix components, specifically the mix of elastin and collagen in the vessel wall, determine the passive mechanical properties of the large arteries. Elastin is organized into elastic fibers in the wall during arterial development in a complex process that requires spatial and temporal coordination of numerous proteins. The elastic fibers last the lifetime of the organism, but are subject to proteolytic degradation and chemical alterations that change their mechanical properties. This review discusses how alterations in the amount, assembly, organization or chemical properties of the elastic fibers affect arterial stiffness and blood pressure. Strategies for encouraging or reversing alterations to the elastic fibers are addressed. Methods for determining the efficacy of these strategies, by measuring elastin amounts and arterial stiffness, are summarized. Therapies that have a direct effect on arterial stiffness through alterations to the elastic fibers in the wall may be an effective treatment for essential hypertension. PMID:22290157

  20. Advanced damper with negative structural stiffness elements

    International Nuclear Information System (INIS)

    Dong, Liang; Lakes, Roderic S

    2012-01-01

    Negative stiffness is understood as the occurrence of a force in the same direction as the imposed deformation. Structures and composites with negative stiffness elements enable a large amplification in damping. It is shown in this work, using an experimental approach, that when a flexible flat-ends column is aligned in a post-buckled condition, a negative structural stiffness and large hysteresis (i.e., high damping) can be achieved provided the ends of the column undergo tilting from flat to edge contact. Stable axial dampers with initial modulus equivalent to that of the parent material and with enhanced damping were designed and built using constrained negative stiffness effects entailed by post-buckled press-fit flat-ends columns. Effective damping of approximately 1 and an effective stiffness–damping product of approximately 1.3 GPa were achieved in such stable axial dampers consisting of PMMA columns. This is a considerable improvement for this figure of merit (i.e., the stiffness–damping product), which generally cannot exceed 0.6 GPa for currently used damping layers. (paper)

  1. Custom 3D Printable Silicones with Tunable Stiffness.

    Science.gov (United States)

    Durban, Matthew M; Lenhardt, Jeremy M; Wu, Amanda S; Small, Ward; Bryson, Taylor M; Perez-Perez, Lemuel; Nguyen, Du T; Gammon, Stuart; Smay, James E; Duoss, Eric B; Lewicki, James P; Wilson, Thomas S

    2018-02-01

    Silicone elastomers have broad versatility within a variety of potential advanced materials applications, such as soft robotics, biomedical devices, and metamaterials. A series of custom 3D printable silicone inks with tunable stiffness is developed, formulated, and characterized. The silicone inks exhibit excellent rheological behavior for 3D printing, as observed from the printing of porous structures with controlled architectures. Herein, the capability to tune the stiffness of printable silicone materials via careful control over the chemistry, network formation, and crosslink density of the ink formulations in order to overcome the challenging interplay between ink development, post-processing, material properties, and performance is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dynamic stiffness of suction caissons

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten; Andersen, Lars

    The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear...... viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three...

  3. ARTERIAL STIFFNESS PARAMETERS IN PATIENTS WITH MODERATE/HIGH CARDIOVASCULAR RISK DURING LISINOPRIL AND SIMVASTATIN TREATMENT

    Directory of Open Access Journals (Sweden)

    V. N. Isakova

    2016-01-01

    Full Text Available Aim. To evaluate parameters of arterial stiffness by non-invasive arteriography in patients with moderate/high cardiovascular risk receiving lisinopril and simvastatin.Material and methods. 20 patients (aged 50-55 y.o. with arterial hypertension of the 1st degree and dislipidemia are included in the study. All patients had pulse wave velocity (PWV ≥ 10 m/s and/or the corrected index of pulse wave augmentation (AI × 80 ≥ -10% according to non-invasive arteriography data; and moderate-high cardiovascular risk (≥ 3%. Patients received therapy with lisinopril and simvastatin. Blood pressure (BP levels and lipid profiles were assessed before therapy and in 1, 2, 6 and 12 month of the observation. Non-invasive arteriography was performed before therapy and in 2, 6 and 12 months later.Results. BP target levels were reached within 1 month of treatment as well as improvement of lipid profile was reached within 2 months in majority of the patients. Reference PWV and AI were reached in 85,7% of patients within one year of treatment.Conclusion. Arterial stiffness parameters help to evaluate cardiovascular risk changes accurately as the results of treatment.

  4. Physical deposition behavior of stiff amphiphilic polyelectrolytes in an external electric field

    Science.gov (United States)

    Hu, Dongmei; Zuo, Chuncheng; Cao, Qianqian; Chen, Hongli

    2017-08-01

    Coarse-grained molecular dynamics simulations are conducted to study the physical deposition behavior of stiff amphiphilic polyelectrolytes (APEs) in an external electric field. The effects of chain stiffness, the charge distribution of a hydrophilic block, and electric field strength are investigated. Amphiphilic multilayers, which consist of a monolayer of adsorbed hydrophilic monomers (HLMs), a hydrophobic layer, and another hydrophilic layer, are formed in a selective solvent. All cases exhibit locally ordered hydrophilic monolayers. Two kinds of hydrophobic micelles are distinguished based on local structures. Stripe and network hydrophobic patterns are formed in individual cases. Increasing the chain stiffness decreases the thickness of the deposited layer, the lateral size of the hydrophobic micelles, and the amount of deposition. Increasing the number of positively charged HLMs in a single chain has the same effect as increasing chain stiffness. Moreover, when applied normally to the substrate, the electric field compresses the deposited structures and increases the amount of deposition by pulling more PEs toward the substrate. A stronger electric field also facilitates the formation of a thinner and more ordered hydrophilic adsorption layer. These estimates help us explore how to tailor patterned nano-surfaces, nano-interfaces, or amphiphilic nanostructures by physically depositing semi-flexible APEs which is of crucial importance in physical sciences, life sciences and nanotechnology.

  5. Preconditioning methods for high-order strongly stable time integration methods with an application for a DAE problem

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Blaheta, Radim; Kohut, Roman

    2015-01-01

    Roč. 22, č. 6 (2015), s. 930-949 ISSN 1070-5325 Institutional support: RVO:68145535 Keywords : partial differential equations (PDEs) * large-scale linear algebra ic system * poroelasticity Subject RIV: BA - General Mathematics Impact factor: 1.431, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/nla.2015/full

  6. Subspace methods for identification of human ankle joint stiffness.

    Science.gov (United States)

    Zhao, Y; Westwick, D T; Kearney, R E

    2011-11-01

    Joint stiffness, the dynamic relationship between the angular position of a joint and the torque acting about it, describes the dynamic, mechanical behavior of a joint during posture and movement. Joint stiffness arises from both intrinsic and reflex mechanisms, but the torques due to these mechanisms cannot be measured separately experimentally, since they appear and change together. Therefore, the direct estimation of the intrinsic and reflex stiffnesses is difficult. In this paper, we present a new, two-step procedure to estimate the intrinsic and reflex components of ankle stiffness. In the first step, a discrete-time, subspace-based method is used to estimate a state-space model for overall stiffness from the measured overall torque and then predict the intrinsic and reflex torques. In the second step, continuous-time models for the intrinsic and reflex stiffnesses are estimated from the predicted intrinsic and reflex torques. Simulations and experimental results demonstrate that the algorithm estimates the intrinsic and reflex stiffnesses accurately. The new subspace-based algorithm has three advantages over previous algorithms: 1) It does not require iteration, and therefore, will always converge to an optimal solution; 2) it provides better estimates for data with high noise or short sample lengths; and 3) it provides much more accurate results for data acquired under the closed-loop conditions, that prevail when subjects interact with compliant loads.

  7. Effect of particle stiffness on contact dynamics and rheology in a dense granular flow

    Science.gov (United States)

    Bharathraj, S.; Kumaran, V.

    2018-01-01

    Dense granular flows have been well described by the Bagnold rheology, even when the particles are in the multibody contact regime and the coordination number is greater than 1. This is surprising, because the Bagnold law should be applicable only in the instantaneous collision regime, where the time between collisions is much larger than the period of a collision. Here, the effect of particle stiffness on rheology is examined. It is found that there is a rheological threshold between a particle stiffness of 104-105 for the linear contact model and 105-106 for the Hertzian contact model above which Bagnold rheology (stress proportional to square of the strain rate) is valid and below which there is a power-law rheology, where all components of the stress and the granular temperature are proportional to a power of the strain rate that is less then 2. The system is in the multibody contact regime at the rheological threshold. However, the contact energy per particle is less than the kinetic energy per particle above the rheological threshold, and it becomes larger than the kinetic energy per particle below the rheological threshold. The distribution functions for the interparticle forces and contact energies are also analyzed. The distribution functions are invariant with height, but they do depend on the contact model. The contact energy distribution functions are well fitted by Gamma distributions. There is a transition in the shape of the distribution function as the particle stiffness is decreased from 107 to 106 for the linear model and 108 to 107 for the Hertzian model, when the contact number exceeds 1. Thus, the transition in the distribution function correlates to the contact regime threshold from the binary to multibody contact regime, and is clearly different from the rheological threshold. An order-disorder transition has recently been reported in dense granular flows. The Bagnold rheology applies for both the ordered and disordered states, even though

  8. The influence of removing sizing on strength and stiffness of conventional and high modulus E-glass fibres

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2016-01-01

    Two types of E-glass fibres, a conventional and a high modulus where the last one in the following will be denoted as ECR-glass fibre, were investigated regarding density, diameter, stiffness and strength. The fibres were analysed as pristine and after sizing removal treatments. The sizing was re...

  9. Passive stiffness of rat skeletal muscle undernourished during fetal development

    Directory of Open Access Journals (Sweden)

    Ana Elisa Toscano

    2010-01-01

    Full Text Available OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical properties of skeletal muscle of weaned and young adult rats. INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch. METHODS: Male Wistar rats were divided into two groups according to their mother's diet during pregnancy: a control group (mothers fed a 17% protein diet and an isocaloric low-protein group (mothers fed a 7.8% protein diet. At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle and extensor digitorum longus (EDL muscles were removed in order to test the passive mechanical properties. A first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s enabling us to measure, for each extension stepwise, the dynamic stress (σd and the steady stress (σs. A second test consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress-strain relationship. RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats. CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine undernutrition it is most likely due to changes in muscle passive stiffness.

  10. Physically Inspired Models for the Synthesis of Stiff Strings with Dispersive Waveguides

    Directory of Open Access Journals (Sweden)

    Testa I

    2004-01-01

    Full Text Available We review the derivation and design of digital waveguides from physical models of stiff systems, useful for the synthesis of sounds from strings, rods, and similar objects. A transform method approach is proposed to solve the classic fourth-order equations of stiff systems in order to reduce it to two second-order equations. By introducing scattering boundary matrices, the eigenfrequencies are determined and their dependency is discussed for the clamped, hinged, and intermediate cases. On the basis of the frequency-domain physical model, the numerical discretization is carried out, showing how the insertion of an all-pass delay line generalizes the Karplus-Strong algorithm for the synthesis of ideally flexible vibrating strings. Knowing the physical parameters, the synthesis can proceed using the generalized structure. Another point of view is offered by Laguerre expansions and frequency warping, which are introduced in order to show that a stiff system can be treated as a nonstiff one, provided that the solutions are warped. A method to compute the all-pass chain coefficients and the optimum warping curves from sound samples is discussed. Once the optimum warping characteristic is found, the length of the dispersive delay line to be employed in the simulation is simply determined from the requirement of matching the desired fundamental frequency. The regularization of the dispersion curves by means of optimum unwarping is experimentally evaluated.

  11. Properties and determination of the interface stiffness

    International Nuclear Information System (INIS)

    Du Danxu; Zhang Hao; Srolovitz, David J.

    2007-01-01

    The chemical potential of a curved interface contains a term that is proportional to the product of the interface curvature and the interface stiffness. In crystalline materials, the interface stiffness is a tensor. This paper examines several basic issues related to the properties of the interface stiffness, especially the determination of the interface stiffness in particular directions (i.e. the commonly used scalar form of the interface stiffness). Of the five parameters that describe an arbitrary grain boundary, only those describing the inclination are crucial for the scalar stiffness. We also examine the influence of crystal symmetry on the stiffness tensor for both free surfaces and grain boundaries. This results in substantial simplifications for cases in which interfaces possess mirror or rotational symmetries. An efficient method for determining the interface stiffness tensor using atomistic simulations is proposed

  12. Computational local stiffness analysis of biological cell: High aspect ratio single wall carbon nanotube tip

    Energy Technology Data Exchange (ETDEWEB)

    TermehYousefi, Amin, E-mail: at.tyousefi@gmail.com [Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology (Kyutech) (Japan); Bagheri, Samira; Shahnazar, Sheida [Nanotechnology & Catalysis Research Centre (NANOCAT), IPS Building, University Malaya, 50603 Kuala Lumpur (Malaysia); Rahman, Md. Habibur [Department of Computer Science and Engineering, University of Asia Pacific, Green Road, Dhaka-1215 (Bangladesh); Kadri, Nahrizul Adib [Department of Biomedical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-02-01

    Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nanoscale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cells. The proposed software was ABAQUS 6.13 CAE/CEL provided by Dassault Systems, which is a powerful finite element (FE) tool to perform the numerical analysis and visualize the interactions between proposed tip and membrane of the cell. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). Mooney–Rivlin hyperelastic model of the cell allows the simulation to obtain a new method for estimating the stiffness and spring constant of the cell. Stress and strain curve indicates the yield stress point which defines as a vertical stress and plan stress. Spring constant of the cell and the local stiffness was measured as well as the applied force of CNT-AFM tip on the contact area of the cell. This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cell analysis. - Graphical abstract: This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cells. The proposed software was ABAQUS 6.13 CAE/CEL provided by Dassault Systems. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). Mooney–Rivlin hyperelastic model of the cell allows the simulation to obtain a new method for estimating the stiffness and spring constant of the cell. Stress and strain curve indicates the yield stress point which defines as a vertical stress and plan stress. Spring constant of the cell and the local stiffness was measured as well

  13. Dynamic Bending and Torsion Stiffness Derivation from Modal Curvatures and Torsion Rates

    Science.gov (United States)

    MAECK, J.; DE ROECK, G.

    1999-08-01

    In order to maintain the reliability of civil engineering structures, considerable effort is currently spent on developing a non-destructive vibration testing method for monitoring the structural integrity of constructions. The technique must be able to observe damage, secondly to localize the damage; and finally to give an idea of the severity of the damage. Within the framework of relating changes of measured modal parameters to changes in the integrity of the structure, it is important to be able to determine the dynamic stiffness in each section of the structure from measured modal characteristics.A damaged structure results in a dynamic stiffness reduction of the cracked sections. The dynamic stiffnesses provide directly an indication of the extension of the cracked zones in the structure. The dynamic stiffness reduction can also be associated with a degree of cracking in a particular zone.In an experimental programme, a concrete beam of 6 m length is subjected to an increasing static load to produce cracks. After each static perload, the beam is tested dynamically in a free-free set-up. The change in modal parameters is then related to damage in the beam.The technique that will be presented in the paper to predict the damage location and intensity is a direct stiffness derivation from measured modal displacement derivatives. Using the bending modes, the dynamic bending stiffness can be derived from modal curvatures. Using the torsional modes, the dynamic torsion stiffness can be derived from modal torsion rates.

  14. A Novel Variable Stiffness Mechanism Capable of an Infinite Stiffness Range and Unlimited Decoupled Output Motion

    Directory of Open Access Journals (Sweden)

    Stefan Groothuis

    2014-06-01

    Full Text Available In this paper, a novel variable stiffness mechanism is presented, which is capable of achieving an output stiffness with infinite range and an unlimited output motion, i.e., the mechanism output is completely decoupled from the rotor motion, in the zero stiffness configuration. The mechanism makes use of leaf springs, which are engaged at different positions by means of two movable supports, to realize the variable output stiffness. The Euler–Bernoulli leaf spring model is derived and validated through experimental data. By shaping the leaf springs, it is shown that the stiffness characteristic of the mechanism can be changed to fulfill different application requirements. Alternative designs can achieve the same behavior with only one leaf spring and one movable support pin.

  15. Stiffness of desiccating insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Mittal, R

    2011-01-01

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 μN mm -1 h -1 . For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm -1 . (communication)

  16. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  17. Metabolic benefits of inhibiting cAMP-PDEs with resveratrol.

    Science.gov (United States)

    Chung, Jay H

    2012-10-01

    Calorie restriction (CR) extends lifespan in species ranging from yeast to mammals. There is evidence that CR also protects against aging-related diseases in non-human primates. This has led to an intense interest in the development of CR-mimetics to harness the beneficial effects of CR to treat aging-related diseases. One CR-mimetic that has received a great deal of attention is resveratrol. Resveratrol extends the lifespan of obese mice and protects against obesity-related diseases such as type 2 diabetes. The specific mechanism of resveratrol action has been difficult to elucidate because resveratrol has a promiscuous target profile. A recent finding indicates that the metabolic effects of resveratrol may result from competitive inhibition of cAMP-degrading phosphodiesterases (PDEs), which increases cAMP levels. The cAMP-dependent pathways activate AMP-activated protein kinase (AMPK), which is essential for the metabolic effects of resveratrol. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including protection against diet-induced obesity and an increase in mitochondrial function, physical stamina and glucose tolerance in mice. This discovery suggests that PDE inhibitors may be useful for treating metabolic diseases associated with aging.

  18. Relationship between neck circumference, insulin resistance and arterial stiffness in overweight and obese subjects.

    Science.gov (United States)

    Fantin, Francesco; Comellato, Gabriele; Rossi, Andrea P; Grison, Elisa; Zoico, Elena; Mazzali, Gloria; Zamboni, Mauro

    2017-09-01

    Background Only a few studies have investigated the relationship between neck circumference and cardiometabolic risk. The aim of this study was to assess the relationships between neck circumference, waist circumference, metabolic variables and arterial stiffness in a group of overweight and obese subjects evaluating a possible independent role of neck circumference in determining arterial stiffness. Methods and results We studied 95 subjects (53 women) with an age range of 20-77 years and body mass index range from 25.69 to 47.04 kg/m 2 . In each subject we evaluated body mass index, waist, hip and neck circumference, systolic and diastolic blood pressure, insulin, fasting glucose, cholesterol, low-density lipoprotein and high-density lipoprotein cholesterol and triglycerides. Arterial stiffness was assessed by carotid-femoral pulse wave velocity (PWVcf) and carotid-radial pulse wave velocity (PWVcr). Both PWVcf and PWVcr were higher in subjects with high values of neck circumference compared with subjects with normal values of neck circumference. Subjects with high values of neck circumference and abdominal obesity presented higher values of mean arterial pressure, PWVcr and homeostasis model assessment (HOMA) index and lower values of high-density lipoprotein than subjects with only abdominal obesity. Two models of stepwise multiple regression were performed in order to evaluate the combined effect of independent variables on arterial stiffness. In the first model PWVcf was considered a dependent variable, and age, gender, systolic blood pressure, triglycerides, high-density lipoprotein cholesterol, waist circumference, neck circumference, HOMA index and the use of anti-hypertensive medications were considered independent variables. Age, systolic blood pressure, triglycerides and waist circumference were significant predictors of PWVcf, explaining 65% of its variance. In the second model, in which PWVcr was considered a dependent variable, neck circumference

  19. Approximate Schur complement preconditioning of the lowest order nodal discretizations

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, J.D.; Ascher, U.M. [Univ. of British Columbia, Vancouver, British Columbia (Canada); Morel, J.E. [Los Alamos National Lab., NM (United States)

    1996-12-31

    Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.

  20. Vibration Isolation System Using Negative Stiffness(Advances in Motion and Vibration Control Technology)

    OpenAIRE

    水野, 毅; 高崎, 正也

    2003-01-01

    A new vibration isolation system using negative stiffness realized by active control technique is proposed in this paper. The serial connection of a normal spring and a suspension system with negative stiffness enables the isolation system to have low stiffness for vibration from the ground and high (theoretically infinite) stiffness against direct disturbance acting on the isolation table. A control method of realizing negative stiffness with a linear actuator is presented in an analytical f...

  1. Increase of horizontal stiffness for fixing mobile machine with vacuum pad by using filament tapes

    Science.gov (United States)

    Kim, H.-S.; Park, J.-K.; Ro, S.-K.

    2017-08-01

    This paper presents a method to increase fixing stiffness of mobile machine by using filament tapes. Mobile machine moves on a large workpiece for cutting, drilling, welding, and cleaning, etc., so for those works. The vacuum pads are generally used for attaching or detaching objects frequently. Of course, if the object is a metal body, the magnetic force can be used. The vacuum pads have an advantage that it can be used regardless of the magnetic property of the object, but it has a disadvantage that the fixing stiffness is not strong because the material is rubber. That’s why it is difficult to maintain the accurate position of the mobile machine as it could be shaken when being moved or fixed. Thus, this study proposed a method to increase the horizontal fixing stiffness of the mobile machine by using filament tapes to the side of the vacuum pads which compensate the shortcoming of the vacuum pads. Filament tapes are made by inserting special material filaments which have high rigidity into an existing tape to increase tensile strength. In the configuration of the proposed method, the vacuum pad forms the vertical fixing stiffness by suction force, and the filament tape forms the horizontal fixing stiffness by adhesive force. In order to verify the effectiveness of the proposed method, the experimental equipment to measure the fixing stiffness was fabricated, and the comparison experiment was carried out. First, the horizontal fixing stiffness of the vacuum pads and the filament tape was measured respectively as a baseline data, and then the same measurement of the combination of them was performed for the comparison. In addition, another experiment for comparison between Gecko films and filament tape was performed. The results showed that the horizontal fixing stiffness was significantly increased when the filament tape was used together with the vacuum pads, and the Gecko film was not as much effective as the filament tape in terms of the strength of the

  2. Shoulder Stiffness : Current Concepts and Concerns

    NARCIS (Netherlands)

    Itoi, Eiji; Arce, Guillermo; Bain, Gregory I.; Diercks, Ronald L.; Guttmann, Dan; Imhoff, Andreas B.; Mazzocca, Augustus D.; Sugaya, Hiroyuki; Yoo, Yon-Sik

    Shoulder stiffness can be caused by various etiologies such as immobilization, trauma, or surgical interventions. The Upper Extremity Committee of ISAKOS defined the term "frozen shoulder" as idiopathic stiff shoulder, that is, without a known cause. Secondary stiff shoulder is a term that should be

  3. Fuzzy variable impedance control based on stiffness identification for human-robot cooperation

    Science.gov (United States)

    Mao, Dachao; Yang, Wenlong; Du, Zhijiang

    2017-06-01

    This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.

  4. High-Density Lipoproteins-Associated Proteins and Subspecies Related to Arterial Stiffness in Young Adults with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Xiaoting Zhu

    2018-01-01

    Full Text Available Lower plasma levels of high-density lipoproteins (HDL in adolescents with type 2 diabetes (T2D have been associated with a higher pulse wave velocity (PWV, a marker of arterial stiffness. Evidence suggests that HDL proteins or particle subspecies are altered in T2D and these may drive these relationships. In this work, we set out to reveal any specific proteins and subspecies that are related to arterial stiffness in youth with T2D from proteomics data. Plasma and PWV measurements were previously acquired from lean and T2D adolescents. Each plasma sample was separated into 18 fractions and evaluated by mass spectrometry. Then, we applied a validated network-based computational approach to reveal HDL subspecies associated with PWV. Among 68 detected phospholipid-associated proteins, we found that seven were negatively correlated with PWV, indicating that they may be atheroprotective. Conversely, nine proteins show positive correlation with PWV, suggesting that they may be related to arterial stiffness. Intriguingly, our results demonstrate that apoA-I and histidine-rich glycoprotein may reverse their protective roles and become antagonistic in the setting of T2D. Furthermore, we revealed two arterial stiffness-associated HDL subspecies, each of which contains multiple PWV-related proteins. Correlation and disease association analyses suggest that these HDL subspecies might link T2D to its cardiovascular-related complications.

  5. Non-fragile consensus algorithms for a network of diffusion PDEs with boundary local interaction

    Science.gov (United States)

    Xiong, Jun; Li, Junmin

    2017-07-01

    In this study, non-fragile consensus algorithm is proposed to solve the average consensus problem of a network of diffusion PDEs, modelled by boundary controlled heat equations. The problem deals with the case where the Neumann-type boundary controllers are corrupted by additive persistent disturbances. To achieve consensus between agents, a linear local interaction rule addressing this requirement is given. The proposed local interaction rules are analysed by applying a Lyapunov-based approach. The multiplicative and additive non-fragile feedback control algorithms are designed and sufficient conditions for the consensus of the multi-agent systems are presented in terms of linear matrix inequalities, respectively. Simulation results are presented to support the effectiveness of the proposed algorithms.

  6. The link between exercise and titin passive stiffness.

    Science.gov (United States)

    Lalande, Sophie; Mueller, Patrick J; Chung, Charles S

    2017-09-01

    What is the topic of this review? This review focuses on how in vivo and molecular measurements of cardiac passive stiffness can predict exercise tolerance and how exercise training can reduce cardiac passive stiffness. What advances does it highlight? This review highlights advances in understanding the relationship between molecular (titin-based) and in vivo (left ventricular) passive stiffness, how passive stiffness modifies exercise tolerance, and how exercise training may be therapeutic for cardiac diseases with increased passive stiffness. Exercise can help alleviate the negative effects of cardiovascular disease and cardiovascular co-morbidities associated with sedentary behaviour; this may be especially true in diseases that are associated with increased left ventricular passive stiffness. In this review, we discuss the inverse relationship between exercise tolerance and cardiac passive stiffness. Passive stiffness is the physical property of cardiac muscle to produce a resistive force when stretched, which, in vivo, is measured using the left ventricular end diastolic pressure-volume relationship or is estimated using echocardiography. The giant elastic protein titin is the major contributor to passive stiffness at physiological muscle (sarcomere) lengths. Passive stiffness can be modified by altering titin isoform size or by post-translational modifications. In both human and animal models, increased left ventricular passive stiffness is associated with reduced exercise tolerance due to impaired diastolic filling, suggesting that increased passive stiffness predicts reduced exercise tolerance. At the same time, exercise training itself may induce both short- and long-term changes in titin-based passive stiffness, suggesting that exercise may be a treatment for diseases associated with increased passive stiffness. Direct modification of passive stiffness to improve exercise tolerance is a potential therapeutic approach. Titin passive stiffness itself may

  7. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Science.gov (United States)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  8. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2017-10-17

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  9. A comparison study of steady-state vibrations with single fractional-order and distributed-order derivatives

    Directory of Open Access Journals (Sweden)

    Duan Jun-Sheng

    2017-12-01

    Full Text Available We conduct a detailed study and comparison for the one-degree-of-freedom steady-state vibrations under harmonic driving with a single fractional-order derivative and a distributed-order derivative. For each of the two vibration systems, we consider the stiffness contribution factor and damping contribution factor of the term of fractional derivatives, the amplitude and the phase difference for the response. The effects of driving frequency on these response quantities are discussed. Also the influences of the order α of the fractional derivative and the parameter γ parameterizing the weight function in the distributed-order derivative are analyzed. Two cases display similar response behaviors, but the stiffness contribution factor and damping contribution factor of the distributed-order derivative are almost monotonic change with the parameter γ, not exactly like the case of single fractional-order derivative for the order α. The case of the distributed-order derivative provides us more options for the weight function and parameters.

  10. Modifiable risk factors for increased arterial stiffness in outpatient nephrology.

    Directory of Open Access Journals (Sweden)

    Usama Elewa

    Full Text Available Arterial stiffness, as measured by pulse wave velocity (PWV, is an independent predictor of cardiovascular events and mortality. Arterial stiffness increases with age. However, modifiable risk factors such as smoking, BP and salt intake also impact on PWV. The finding of modifiable risk factors may lead to the identification of treatable factors, and, thus, is of interest to practicing nephrologist. We have now studied the prevalence and correlates of arterial stiffness, assessed by PWV, in 191 patients from nephrology outpatient clinics in order to identify modifiable risk factors for arterial stiffness that may in the future guide therapeutic decision-making. PWV was above normal levels for age in 85/191 (44.5% patients. Multivariate analysis showed that advanced age, systolic BP, diabetes mellitus, serum uric acid and calcium polystyrene sulfonate therapy or calcium-containing medication were independent predictors of PWV. A new parameter, Delta above upper limit of normal PWV (Delta PWV was defined to decrease the weight of age on PWV values. Delta PWV was calculated as (measured PWV - (upper limit of the age-adjusted PWV values for the general population. Mean±SD Delta PWV was 0.76±1.60 m/sec. In multivariate analysis, systolic blood pressure, active smoking and calcium polystyrene sulfonate therapy remained independent predictors of higher delta PWV, while age, urinary potassium and beta blocker therapy were independent predictors of lower delta PWV. In conclusion, arterial stiffness was frequent in nephrology outpatients. Systolic blood pressure, smoking, serum uric acid, calcium-containing medications, potassium metabolism and non-use of beta blockers are modifiable factors associated with increased arterial stiffness in Nephrology outpatients.

  11. Efficient Method for Calculating the Composite Stiffness of Parabolic Leaf Springs with Variable Stiffness for Vehicle Rear Suspension

    Directory of Open Access Journals (Sweden)

    Wen-ku Shi

    2016-01-01

    Full Text Available The composite stiffness of parabolic leaf springs with variable stiffness is difficult to calculate using traditional integral equations. Numerical integration or FEA may be used but will require computer-aided software and long calculation times. An efficient method for calculating the composite stiffness of parabolic leaf springs with variable stiffness is developed and evaluated to reduce the complexity of calculation and shorten the calculation time. A simplified model for double-leaf springs with variable stiffness is built, and a composite stiffness calculation method for the model is derived using displacement superposition and material deformation continuity. The proposed method can be applied on triple-leaf and multileaf springs. The accuracy of the calculation method is verified by the rig test and FEA analysis. Finally, several parameters that should be considered during the design process of springs are discussed. The rig test and FEA analytical results indicate that the calculated results are acceptable. The proposed method can provide guidance for the design and production of parabolic leaf springs with variable stiffness. The composite stiffness of the leaf spring can be calculated quickly and accurately when the basic parameters of the leaf spring are known.

  12. Fitness as a determinant of arterial stiffness in healthy adult men: a cross-sectional study.

    Science.gov (United States)

    Chung, Jinwook; Kim, Milyang; Jin, Youngsoo; Kim, Yonghwan; Hong, Jeeyoung

    2018-01-01

    Fitness is known to influence arterial stiffness. This study aimed to assess differences in cardiorespiratory endurance, muscular strength, and flexibility according to arterial stiffness, based on sex and age. We enrolled 1590 healthy adults (men: 1242, women: 348) who were free of metabolic syndrome. We measured cardiorespiratory endurance in an exercise stress test on a treadmill, muscular strength by a grip test, and flexibility by upper body forward-bends from a standing position. The brachial-ankle pulse wave velocity test was performed to measure arterial stiffness before the fitness test. Cluster analysis was performed to divide the patients into groups with low (Cluster 1) and high (Cluster 2) arterial stiffness. According to the k-cluster analysis results, Cluster 1 included 624 men and 180 women, and Cluster 2 included 618 men and 168 women. Men in the middle-aged group with low arterial stiffness demonstrated higher cardiorespiratory endurance, muscular strength, and flexibility than those with high arterial stiffness. Similarly, among men in the old-aged group, the cardiorespiratory endurance and muscular strength, but not flexibility, differed significantly according to arterial stiffness. Women in both clusters showed similar cardiorespiratory endurance, muscular strength, and flexibility regardless of their arterial stiffness. Among healthy adults, arterial stiffness was inversely associated with fitness in men but not in women. Therefore, fitness seems to be a determinant for arterial stiffness in men. Additionally, regular exercise should be recommended for middle-aged men to prevent arterial stiffness.

  13. Experimental study on vertical static stiffnesses of polycal wire rope isolators

    Science.gov (United States)

    Balaji, P. S.; Moussa, Leblouba; Khandoker, Noman; Yuk Shyh, Ting; Rahman, M. E.; Hieng Ho, Lau

    2017-07-01

    Wire rope isolator is one of the most effective isolation system that can be used to attenuate the vibration disturbances and shocks during the operation of machineries. This paper presents the results of investigation on static elastic stiffnesses (both in tension and in compression) of Polycal Wire Rope Isolator (PWRI) under quasi-static monotonic loading conditions. It also studied effect of variations in height and width of PWRI on its static stiffnesses. Suitable experimental setup was designed and manufactured to meet the test conditions. The results show that their elastic stiffnesses for both tension and compression loading conditions are highly influenced by their geometric dimensions. It is found that their compressive stiffness reduced by 55% for an increment of 20% in their height to width ratio. Therefore, the stiffness of PWRI can be fine-tuned by controlling their dimensions according to the requirements of the application.

  14. Self-reported knee joint instability is related to passive mechanical stiffness in medial knee osteoarthritis.

    Science.gov (United States)

    Creaby, Mark W; Wrigley, Tim V; Lim, Boon-Whatt; Hinman, Rana S; Bryant, Adam L; Bennell, Kim L

    2013-11-20

    Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P 0.05). Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability.

  15. VCODE, Ordinary Differential Equation Solver for Stiff and Non-Stiff Problems

    International Nuclear Information System (INIS)

    Cohen, Scott D.; Hindmarsh, Alan C.

    2001-01-01

    1 - Description of program or function: CVODE is a package written in ANSI standard C for solving initial value problems for ordinary differential equations. It solves both stiff and non stiff systems. In the stiff case, it includes a variety of options for treating the Jacobian of the system, including dense and band matrix solvers, and a preconditioned Krylov (iterative) solver. 2 - Method of solution: Integration is by Adams or BDF (Backward Differentiation Formula) methods, at user option. Corrector iteration is by functional iteration or Newton iteration. For the solution of linear systems within Newton iteration, users can select a dense solver, a band solver, a diagonal approximation, or a preconditioned Generalized Minimal Residual (GMRES) solver. In the dense and band cases, the user can supply a Jacobian approximation or let CVODE generate it internally. In the GMRES case, the pre-conditioner is user-supplied

  16. Force and stiffness characteristics of superconducting bearing prototype

    International Nuclear Information System (INIS)

    Matveev, V.; Nizhelskiy, N.; Poluschenko, O.

    2004-01-01

    The radial-axial superconducting bearing prototype was designed, fabricated and tested. The YBaCuO high-temperature superconducting (HTS) monodomain disks diameter 28 mm and thickness of h = 4; 6; 8; 10 mm, capable to trap magnetic field 1 T, were fabricated to be employed in bearing prototype. Force interaction of single field cooled HTS disks with NdFeB magnets depending on disk thickness under 1 mm magnet air gap was studied. It was found that the increase in disk thickness results in reducing radial stiffness and in growing axial one. The results obtained were used for optimization of HTS-PM arrangement, and for developing the bearing design. The designed bearing incorporates a rotor with 7 HTS disks of 4 mm thickness, total mass 90 g, and stator with two pairs of permanent annular magnets of NdFeB. It is established that the force-displacement dependencies of the bearing have three zones: non-hysteresis (elastic) zone with high stiffness up to 560 N/mm; zone of elastic interaction with stiffness 190 N/mm; hysteretic zone with stiffness 150 N/mm in which a rotor residual displacement being observed after unloading. The outer bearing diameter is 130 mm, thickness 30 mm, and mass 1.8 kg. The maximal radial load capacity of the bearing is 190 N at the rotor displacement of 1.3 mm, and the maximal axial load capacity is 85 N at the displacement of 1 mm

  17. Mass and stiffness calibration of nanowires using thermally driven vibration

    International Nuclear Information System (INIS)

    Kiracofe, D R; Raman, A; Yazdanpanah, M M

    2011-01-01

    Cantilevered or suspended nanowires show promise for force or mass sensing applications due to their small mass, high force sensitivity and high frequency bandwidth. To use these as quantitative sensors, their bending stiffness or mass must be calibrated experimentally, often using thermally driven vibration. However, this can be difficult because nanowires are slightly asymmetric, which results in two spatially orthogonal bending eigenmodes with closely spaced frequencies. This asymmetry presents problems for traditional stiffness calibration methods, which equate the measured thermal vibration spectrum near a resonance to that of a single eigenmode. Moreover, the principal axes may be arbitrarily rotated with respect to the measurement direction. In this work, the authors propose a method for calibrating the bending stiffness and mass of such nanowires' eigenmodes using a single measurement taken at an arbitrary orientation with respect to the principal axes.

  18. Stiffness Matters: Part II - The Effects of Plate Stiffness on Load-Sharing and the Progression of Fusion Following ACDF In Vivo.

    Science.gov (United States)

    Peterson, Joshua M; Chlebek, Carolyn; Clough, Ashley M; Wells, Alexandra K; Batzinger, Kathleen E; Houston, John M; Kradinova, Katerina; Glennon, Joseph C; DiRisio, Darryl J; Ledet, Eric H

    2018-03-19

    Real time in vivo measurement of forces in the cervical spine of goats following anterior cervical discectomy and fusion (ACDF). To measure interbody forces in the cervical spine during the time course of fusion following ACDF with plates of different stiffnesses. Following ACDF, the biomechanics of the arthrodesis is largely dictated by the plate. The properties of the plate prescribe the extent of load-sharing through the disc space versus the extent of stress-shielding. Load-sharing promotes interbody bone formation and stress-shielding can inhibit maturation of bone. However, these principles have never been validated in vivo. Measuring in vivo biomechanics of the cervical spine is critical to understanding the complex relationships between implant design, interbody loading, load-sharing, and the progression of fusion. Anterior cervical plates of distinct bending stiffnesses were placed surgically following ACDF in goats. A validated custom force-sensing interbody implant was placed in the disc space to measure load-sharing in the spine. Interbody loads were measured in vivo in real time during the course of fusion for each plate. Interbody forces during flexion/extension were highly dynamic. In animals that received high stiffness plates, maximum forces were in extension whereas in animals that received lower stiffness plates, maximum forces were in flexion. As fusion progressed, interbody load magnitude decreased. The magnitude of interbody forces in the cervical spine is dynamic and correlates to activity and posture of the head and neck. The magnitude and consistency of forces in the interbody space correlates to plate stiffness with more compliant plates resulting in more consistent load-sharing. The magnitude of interbody forces decreases as fusion matures suggesting that smart interbody implants may be used as a diagnostic tool to indicate the progression of interbody fusion. N/A.

  19. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.

    Science.gov (United States)

    Peng, Shan; Tian, Dong; Yang, Xiaojun; Deng, Wenli

    2014-04-09

    In this study, a large-area superhydrophobic alumina surface with a series of superior properties was fabricated via an economical, simple, and highly effective one-step anodization process, and subsequently modified with low-surface-energy film. The effects of the anodization parameters including electrochemical anodization time, current density, and electrolyte temperature on surface morphology and surface wettability were investigated in detail. The hierarchical alumina pyramids-on-pores (HAPOP) rough structure which was produced quickly through the one-step anodization process together with a low-surface-energy film deposition [1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES) and stearic acid (STA)] confer excellent superhydrophobicity and an extremely low sliding angle. Both the PDES-modified superhydrophobic (PDES-MS) and the STA-modified superhydrophobic (STA-MS) surfaces present fascinating nonwetting and extremely slippery behaviors. The chemical stability and mechanical durability of the PDES-MS and STA-MS surfaces were evaluated and discussed. Compared with the STA-MS surface, the as-prepared PDES-MS surface possesses an amazing chemical stability which not only can repel cool liquids (water, HCl/NaOH solutions, around 25 °C), but also can show excellent resistance to a series of hot liquids (water, HCl/NaOH solutions, 30-100 °C) and hot beverages (coffee, milk, tea, 80 °C). Moreover, the PDES-MS surface also presents excellent stability toward immersion in various organic solvents, high temperature, and long time period. In particular, the PDES-MS surface achieves good mechanical durability which can withstand ultrasonication treatment, finger-touch, multiple fold, peeling by adhesive tape, and even abrasion test treatments without losing superhydrophobicity. The corrosion resistance and durability of the diverse-modified superhydrophobic surfaces were also examined. These fascinating performances makes the present method suitable for large

  20. The role of cable stiffness in the dynamic behaviours of submerged floating tunnel

    Directory of Open Access Journals (Sweden)

    Muhammad Naik

    2017-01-01

    Full Text Available Submerged floating tunnel (SFT is a new solution for the transportation infrastructure through sea straits, fjords, and inland waters and can be a good alternative to long span suspension bridges and immersed tunnels. The mooring cables/anchors are main structural components to provide restoring capacity to the SFT. The time domain dynamic problem of SFT moored by vertical and inclined mooring cables/anchors is formulated. The dynamic analysis of SFT subjected to hydrodynamic and seismic excitations is performed. As the cable stiffness determines the deformation ability of SFT, therefore it becomes crucial to evaluate the effect of mooring cable stiffness on the response of SFT. The displacements and internal forces of SFT clearly specify that the vertical/tension leg mooring cables provide very small stiffness as compared to inclined mooring cables. In order to keep the SFT displacements within an acceptable limit, the effect of cable stiffness should be properly evaluated for practical design of SFT.

  1. Ambulatory arterial stiffness index in chronic kidney disease stage 2-5. Reproducibility and relationship with pulse wave parameters and kidney function

    DEFF Research Database (Denmark)

    Boesby, Lene; Thijs, Lutgarde; Elung-Jensen, Thomas

    2012-01-01

    Arterial stiffness contributes to the increased cardiovascular risk in patients with chronic kidney disease (CKD). Reproducible and easily obtainable indices of arterial stiffness are needed in order to monitor therapeutic strategies. The ambulatory arterial stiffness index (AASI) has been propos...... as such a marker. The present study investigated the day-to-day reproducibility of AASI in CKD stage 2-5 and its relationship with other markers of arterial stiffness as well as with kidney function....

  2. Effect of Acute Resistance Exercise on Carotid Artery Stiffness and Cerebral Blood Flow Pulsatility

    Directory of Open Access Journals (Sweden)

    Wesley K Lefferts

    2014-03-01

    Full Text Available Arterial stiffness is associated with cerebral flow pulsatility. Arterial stiffness increases following acute resistance exercise (RE. Whether this acute RE-induced vascular stiffening affects cerebral pulsatility remains unknown. Purpose: To investigate the effects of acute RE on common carotid artery (CCA stiffness and cerebral blood flow velocity (CBFv pulsatility. Methods: Eighteen healthy men (22 ± 1 yr; 23.7 ± 0.5 kg∙m-2 underwent acute RE (5 sets, 5-RM bench press, 5 sets 10-RM bicep curls with 90 s rest intervals or a time control condition (seated rest in a randomized order. CCA stiffness (β-stiffness, Elastic Modulus (Ep and hemodynamics (pulsatility index, forward wave intensity and reflected wave intensity were assessed using a combination of Doppler ultrasound, wave intensity analysis and applanation tonometry at baseline and 3 times post-RE. CBFv pulsatility index was measured with transcranial Doppler at the middle cerebral artery (MCA. Results: CCA β-stiffness, Ep and CCA pulse pressure significantly increased post-RE and remained elevated throughout post-testing (p 0.05. There were significant increases in forward wave intensity post-RE (p0.05. Conclusion: Although acute RE increases CCA stiffness and pressure pulsatility, it may not affect CCA or MCA flow pulsatility. Increases in pressure pulsatility may be due to increased forward wave intensity and not pressure from wave reflections.

  3. Efficient reanalysis of structures by a direct modification method. [local stiffness modifications of large structures

    Science.gov (United States)

    Raibstein, A. I.; Kalev, I.; Pipano, A.

    1976-01-01

    A procedure for the local stiffness modifications of large structures is described. It enables structural modifications without an a priori definition of the changes in the original structure and without loss of efficiency due to multiple loading conditions. The solution procedure, implemented in NASTRAN, involved the decomposed stiffness matrix and the displacement vectors of the original structure. It solves the modified structure exactly, irrespective of the magnitude of the stiffness changes. In order to investigate the efficiency of the present procedure and to test its applicability within a design environment, several real and large structures were solved. The results of the efficiency studies indicate that the break-even point of the procedure varies between 8% and 60% stiffness modifications, depending upon the structure's characteristics and the options employed.

  4. Influence of Tension Stiffening on the Flexural Stiffness of Reinforced Concrete Circular Sections.

    Science.gov (United States)

    Morelli, Francesco; Amico, Cosimo; Salvatore, Walter; Squeglia, Nunziante; Stacul, Stefano

    2017-06-18

    Within this paper, the assessment of tension stiffening effects on a reinforced concrete element with the circular sections subjected to axial and bending loads is presented. To this purpose, an enhancement of an analytical model already present within the actual technical literature is proposed. The accuracy of the enhanced method is assessed by comparing the experimental results carried out in past research and the numerical ones obtained by the model. Finally, a parametric study is executed in order to study the influence of axial compressive force on the flexural stiffness of reinforced concrete elements that are characterized by a circular section, comparing the secant stiffness evaluated at yielding and at maximum resistance, considering and not considering the effects of tension stiffness.

  5. Influence of Tension Stiffening on the Flexural Stiffness of Reinforced Concrete Circular Sections

    Directory of Open Access Journals (Sweden)

    Francesco Morelli

    2017-06-01

    Full Text Available Within this paper, the assessment of tension stiffening effects on a reinforced concrete element with the circular sections subjected to axial and bending loads is presented. To this purpose, an enhancement of an analytical model already present within the actual technical literature is proposed. The accuracy of the enhanced method is assessed by comparing the experimental results carried out in past research and the numerical ones obtained by the model. Finally, a parametric study is executed in order to study the influence of axial compressive force on the flexural stiffness of reinforced concrete elements that are characterized by a circular section, comparing the secant stiffness evaluated at yielding and at maximum resistance, considering and not considering the effects of tension stiffness.

  6. Bayesian techniques for fatigue life prediction and for inference in linear time dependent PDEs

    KAUST Repository

    Scavino, Marco

    2016-01-08

    In this talk we introduce first the main characteristics of a systematic statistical approach to model calibration, model selection and model ranking when stress-life data are drawn from a collection of records of fatigue experiments. Focusing on Bayesian prediction assessment, we consider fatigue-limit models and random fatigue-limit models under different a priori assumptions. In the second part of the talk, we present a hierarchical Bayesian technique for the inference of the coefficients of time dependent linear PDEs, under the assumption that noisy measurements are available in both the interior of a domain of interest and from boundary conditions. We present a computational technique based on the marginalization of the contribution of the boundary parameters and apply it to inverse heat conduction problems.

  7. Arterial stiffness in junior high school students: Longitudinal observations.

    Science.gov (United States)

    Fujiwara, Hiroshi; Nakajima, Hisakazu; Inoue, Fumio; Kosaka, Kitaro; Asano, Hiroaki; Yoshii, Kengo

    2018-02-01

    Early atherosclerotic change is found even in childhood, and there is an urgent need to clarify the factors causing childhood atherosclerosis and take preventive measures. Early detection of the contributing risk factors is crucial to facilitate preventive measures. Pulse wave velocity (PWV) is a widely used technique for the assessment of atherosclerosis in children. Lifestyle questionnaire, brachio-ankle PWV (baPWV) and anthropometric data were obtained from junior high school students in an urban area of Japan between 2006 and 2008, from seventh to ninth grades. Mean baPWV increased from 867.4 ± 99.5 m/s to 944.5 ± 117.5 m/s in boys, and from 864.0 ± 99.5 m/s to 923.0 ± 101.3 m/s in girls. Obese students had higher baPWV than non-obese students in both genders across each grade. On logistic regression analysis of ninth grade student data, high baPWV was dependent on systolic blood pressure (SBP), time watching television (TV) and symptoms of depression and anxiety, whereas low baPWV was dependent on time playing video games, light exercise, sleep and indoor play, as well as good friendship and motivation. Systolic blood pressure, time watching TV, and symptoms of depression and anxiety may contribute to arterial stiffness and be related to obesity in junior high school students. © 2017 The Authors Pediatrics International published by John Wiley & Sons Australia, Ltd on behalf of Japan Pediatric Society.

  8. A Discrete-Time Algorithm for Stiffness Extraction from sEMG and Its Application in Antidisturbance Teleoperation

    Directory of Open Access Journals (Sweden)

    Peidong Liang

    2016-01-01

    Full Text Available We have developed a new discrete-time algorithm of stiffness extraction from muscle surface electromyography (sEMG collected from human operator’s arms and have applied it for antidisturbance control in robot teleoperation. The variation of arm stiffness is estimated from sEMG signals and transferred to a telerobot under variable impedance control to imitate human motor control behaviours, particularly for disturbance attenuation. In comparison to the estimation of stiffness from sEMG, the proposed algorithm is able to reduce the nonlinear residual error effect and to enhance robustness and to simplify stiffness calibration. In order to extract a smoothing stiffness enveloping from sEMG signals, two enveloping methods are employed in this paper, namely, fast linear enveloping based on low pass filtering and moving average and amplitude monocomponent and frequency modulating (AM-FM method. Both methods have been incorporated into the proposed stiffness variance estimation algorithm and are extensively tested. The test results show that stiffness variation extraction based on the two methods is sensitive and robust to attenuation disturbance. It could potentially be applied for teleoperation in the presence of hazardous surroundings or human robot physical cooperation scenarios.

  9. Real-Time Vision-Based Stiffness Mapping †.

    Science.gov (United States)

    Faragasso, Angela; Bimbo, João; Stilli, Agostino; Wurdemann, Helge Arne; Althoefer, Kaspar; Asama, Hajime

    2018-04-26

    This paper presents new findings concerning a hand-held stiffness probe for the medical diagnosis of abnormalities during palpation of soft-tissue. Palpation is recognized by the medical community as an essential and low-cost method to detect and diagnose disease in soft-tissue. However, differences are often subtle and clinicians need to train for many years before they can conduct a reliable diagnosis. The probe presented here fills this gap providing a means to easily obtain stiffness values of soft tissue during a palpation procedure. Our stiffness sensor is equipped with a multi degree of freedom (DoF) Aurora magnetic tracker, allowing us to track and record the 3D position of the probe whilst examining a tissue area, and generate a 3D stiffness map in real-time. The stiffness probe was integrated in a robotic arm and tested in an artificial environment representing a good model of soft tissue organs; the results show that the sensor can accurately measure and map the stiffness of a silicon phantom embedded with areas of varying stiffness.

  10. Real-Time Vision-Based Stiffness Mapping †

    Directory of Open Access Journals (Sweden)

    Angela Faragasso

    2018-04-01

    Full Text Available This paper presents new findings concerning a hand-held stiffness probe for the medical diagnosis of abnormalities during palpation of soft-tissue. Palpation is recognized by the medical community as an essential and low-cost method to detect and diagnose disease in soft-tissue. However, differences are often subtle and clinicians need to train for many years before they can conduct a reliable diagnosis. The probe presented here fills this gap providing a means to easily obtain stiffness values of soft tissue during a palpation procedure. Our stiffness sensor is equipped with a multi degree of freedom (DoF Aurora magnetic tracker, allowing us to track and record the 3D position of the probe whilst examining a tissue area, and generate a 3D stiffness map in real-time. The stiffness probe was integrated in a robotic arm and tested in an artificial environment representing a good model of soft tissue organs; the results show that the sensor can accurately measure and map the stiffness of a silicon phantom embedded with areas of varying stiffness.

  11. Pseudo-transient Continuation Based Variable Relaxation Solve in Nonlinear Magnetohydrodynamic Simulations

    International Nuclear Information System (INIS)

    Chen, Jin

    2009-01-01

    Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.

  12. Stiffness of sphere–plate contacts at MHz frequencies: dependence on normal load, oscillation amplitude, and ambient medium

    Directory of Open Access Journals (Sweden)

    Jana Vlachová

    2015-03-01

    Full Text Available The stiffness of micron-sized sphere–plate contacts was studied by employing high frequency, tangential excitation of variable amplitude (0–20 nm. The contacts were established between glass spheres and the surface of a quartz crystal microbalance (QCM, where the resonator surface had been coated with either sputtered SiO2 or a spin-cast layer of poly(methyl methacrylate (PMMA. The results from experiments undertaken in the dry state and in water are compared. Building on the shifts in the resonance frequency and resonance bandwidth, the instrument determines the real and the imaginary part of the contact stiffness, where the imaginary part quantifies dissipative processes. The method is closely analogous to related procedures in AFM-based metrology. The real part of the contact stiffness as a function of normal load can be fitted with the Johnson–Kendall–Roberts (JKR model. The contact stiffness was found to increase in the presence of liquid water. This finding is tentatively explained by the rocking motion of the spheres, which couples to a squeeze flow of the water close to the contact. The loss tangent of the contact stiffness is on the order of 0.1, where the energy losses are associated with interfacial processes. At high amplitudes partial slip was found to occur. The apparent contact stiffness at large amplitude depends linearly on the amplitude, as predicted by the Cattaneo–Mindlin model. This finding is remarkable insofar, as the Cattaneo–Mindlin model assumes Coulomb friction inside the sliding region. Coulomb friction is typically viewed as a macroscopic concept, related to surface roughness. An alternative model (formulated by Savkoor, which assumes a constant frictional stress in the sliding zone independent of the normal pressure, is inconsistent with the experimental data. The apparent friction coefficients slightly increase with normal force, which can be explained by nanoroughness. In other words, contact splitting

  13. Inheritance and performance of the stiff-strawed mutant in Vicia faba L

    International Nuclear Information System (INIS)

    Frauen, M.; Sass, O.

    1990-01-01

    Full text: The tall and leafy types are considered to produce more vegetative mass than is necessary for high grain yield. A mutant with stunted growth, smaller leaves with dark green colour, and a stiff stem showing excellent lodging resistance, found special interest among breeders. This stiff-stem growth-type was selected as a spontaneous mutation in a breeding population. A stiff-stem line was crossed with the varieties 'Alfred' and 'Minica'. The stiff-stem recombinants showed a 20% shorter plant height, excellent lodging resistance, higher harvest index and a promise of 30% yield increase. The monogenic inheritance of the mutant trait is an advantage for further breeding work. We propose the symbol st for the new allele. (author)

  14. Convergence of quasi-optimal Stochastic Galerkin methods for a class of PDES with random coefficients

    KAUST Repository

    Beck, Joakim; Nobile, Fabio; Tamellini, Lorenzo; Tempone, Raul

    2014-01-01

    In this work we consider quasi-optimal versions of the Stochastic Galerkin method for solving linear elliptic PDEs with stochastic coefficients. In particular, we consider the case of a finite number N of random inputs and an analytic dependence of the solution of the PDE with respect to the parameters in a polydisc of the complex plane CN. We show that a quasi-optimal approximation is given by a Galerkin projection on a weighted (anisotropic) total degree space and prove a (sub)exponential convergence rate. As a specific application we consider a thermal conduction problem with non-overlapping inclusions of random conductivity. Numerical results show the sharpness of our estimates. © 2013 Elsevier Ltd. All rights reserved.

  15. Convergence of quasi-optimal Stochastic Galerkin methods for a class of PDES with random coefficients

    KAUST Repository

    Beck, Joakim

    2014-03-01

    In this work we consider quasi-optimal versions of the Stochastic Galerkin method for solving linear elliptic PDEs with stochastic coefficients. In particular, we consider the case of a finite number N of random inputs and an analytic dependence of the solution of the PDE with respect to the parameters in a polydisc of the complex plane CN. We show that a quasi-optimal approximation is given by a Galerkin projection on a weighted (anisotropic) total degree space and prove a (sub)exponential convergence rate. As a specific application we consider a thermal conduction problem with non-overlapping inclusions of random conductivity. Numerical results show the sharpness of our estimates. © 2013 Elsevier Ltd. All rights reserved.

  16. High-order dynamic modeling and parameter identification of structural discontinuities in Timoshenko beams by using reflection coefficients

    Science.gov (United States)

    Fan, Qiang; Huang, Zhenyu; Zhang, Bing; Chen, Dayue

    2013-02-01

    Properties of discontinuities, such as bolt joints and cracks in the waveguide structures, are difficult to evaluate by either analytical or numerical methods due to the complexity and uncertainty of the discontinuities. In this paper, the discontinuity in a Timoshenko beam is modeled with high-order parameters and then these parameters are identified by using reflection coefficients at the discontinuity. The high-order model is composed of several one-order sub-models in series and each sub-model consists of inertia, stiffness and damping components in parallel. The order of the discontinuity model is determined based on the characteristics of the reflection coefficient curve and the accuracy requirement of the dynamic modeling. The model parameters are identified through the least-square fitting iteration method, of which the undetermined model parameters are updated in iteration to fit the dynamic reflection coefficient curve with the wave-based one. By using the spectral super-element method (SSEM), simulation cases, including one-order discontinuities on infinite- and finite-beams and a two-order discontinuity on an infinite beam, were employed to evaluate both the accuracy of the discontinuity model and the effectiveness of the identification method. For practical considerations, effects of measurement noise on the discontinuity parameter identification are investigated by adding different levels of noise to the simulated data. The simulation results were then validated by the corresponding experiments. Both the simulation and experimental results show that (1) the one-order discontinuities can be identified accurately with the maximum errors of 6.8% and 8.7%, respectively; (2) and the high-order discontinuities can be identified with the maximum errors of 15.8% and 16.2%, respectively; and (3) the high-order model can predict the complex discontinuity much more accurately than the one-order discontinuity model.

  17. The effect of RNA stiffness on the self-assembly of virus particles

    Science.gov (United States)

    Li, Siyu; Erdemci-Tandogan, Gonca; van der Schoot, Paul; Zandi, Roya

    2018-01-01

    Under many in vitro conditions, some small viruses spontaneously encapsidate a single stranded (ss) RNA into a protein shell called the capsid. While viral RNAs are found to be compact and highly branched because of long distance base-pairing between nucleotides, recent experiments reveal that in a head-to-head competition between an ssRNA with no secondary or higher order structure and a viral RNA, the capsid proteins preferentially encapsulate the linear polymer! In this paper, we study the impact of genome stiffness on the encapsidation free energy of the complex of RNA and capsid proteins. We show that an increase in effective chain stiffness because of base-pairing could be the reason why under certain conditions linear chains have an advantage over branched chains when it comes to encapsidation efficiency. While branching makes the genome more compact, RNA base-pairing increases the effective Kuhn length of the RNA molecule, which could result in an increase of the free energy of RNA confinement, that is, the work required to encapsidate RNA, and thus less efficient packaging.

  18. A STUDY OF DISPLACEMENT-LEVEL DEPENDENCY OF VERTICAL STIFFNESS OF PILE - COMPARISONS BETWEEN STATIC LOADING TEST AND MEASUREMENTS DURING TRAIN PASSING -

    Science.gov (United States)

    Nihei, Tatsuya; Nishioka, Hidetoshi; Kawamura, Chikara; Nishimura, Masahiro; Edamatsu, Masayuki; Koda, Masayuki

    In order to introduce the performance based design of pile foundation, vertical stiffness of pile is one of the important design factors. Although it had been es timated the vertical stiffness of pile had the displacement-level dependency, it had been not clarified. We compared the vertical stiffness of pile measured by two loading conditions at pile foundation of the railway viaduct. Firstly, we measured the vertical stiffness at static loading test under construction of the viaduct. Secondly, we measured the vertical stiffness at the time of train passing. So, we recognized that the extrapolation of the displacement level dependency in static loading test could evaluate the vertical stiffness of pile during train passing.

  19. High dynamic stiffness mechanical structures with nanostructured composite coatings deposited by high power impulse magnetron sputtering

    Czech Academy of Sciences Publication Activity Database

    Fu, Q.; Lorite, G.S.; Rashid, M.M.U.; Neuhaus, G.; Čada, Martin; Hubička, Zdeněk; Pitkänen, O.; Selkälä, T.; Uusitalo, J.; Glanz, C.; Kolaric, I.; Kordas, G.; Nicolescu, C.M.; Toth, G.

    2016-01-01

    Roč. 98, Mar (2016), 24-33 ISSN 0008-6223 EU Projects: European Commission(XE) 608800 - HIPPOCAMP Institutional support: RVO:68378271 Keywords : stiffness * HiPIMS * CuCN * loss modulus Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 6.337, year: 2016

  20. Electrothermally Actuated Microbeams With Varying Stiffness

    KAUST Repository

    Tella, Sherif Adekunle

    2017-11-03

    We present axially loaded clamped-guided microbeams that can be used as resonators and actuators of variable stiffness, actuation, and anchor conditions. The applied axial load is implemented by U-shaped electrothermal actuators stacked at one of the beams edges. These can be configured and wired in various ways, which serve as mechanical stiffness elements that control the operating resonance frequency of the structures and their static displacement. The experimental results have shown considerable increase in the resonance frequency and mid-point deflection of the microbeam upon changing the end conditions of the beam. These results can be promising for applications requiring large deflection and high frequency tunability, such as filters, memory devices, and switches. The experimental results are compared to multi-physics finite-element simulations showing good agreement among them.

  1. Optimization of a quasi-zero-stiffness isolator

    International Nuclear Information System (INIS)

    Carrella, A.; Brennan, M. J.; Waters, T. P.

    2007-01-01

    The frequency range over which a mount can isolate a mass from a vibrating base (or vice versa) is often limited by the mount stiffness required to support the weight of the mass. This compromise can be made more favourable by employing non-linear mounts with a softening spring characteristic such that small excursions about the static equilibrium position result in small dynamic spring forces and a correspondingly low natural frequency. This paper concerns the force-displacement characteristic of a so-called quasi-zero-stiffness (QZS) mechanism which is characterised by an appreciable static stiffness but very small (theoretically zero) dynamic stiffness. The mechanism studied comprises a vertical spring acting in parallel with two further springs which, when inclined at an appropriate angle to the vertical, produce a cancelling negative stiffness effect. Analysis of the system shows that a QZS characteristic can be obtained if the systems parameters (angle of inclination and ratio of spring stiffness) are opportunely chosen. By introducing the additional criterion that the displacement of the system be largest without exceeding a desired (low) value of stiffness an optimal set of parameter values is derived. Under sufficiently large displacements the stiffness of the QZS mechanism can eventually exceed that of the simple mass-spring system and criteria for this detrimental scenario to arise are presented

  2. Variable stiffness corrugated composite structure with shape memory polymer for morphing skin applications

    Science.gov (United States)

    Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju

    2017-03-01

    This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.

  3. Stiffness, resilience, compressibility

    Energy Technology Data Exchange (ETDEWEB)

    Leu, Bogdan M. [Argonne National Laboratory, Advanced Photon Source (United States); Sage, J. Timothy, E-mail: jtsage@neu.edu [Northeastern University, Department of Physics and Center for Interdisciplinary Research on Complex Systems (United States)

    2016-12-15

    The flexibility of a protein is an important component of its functionality. We use nuclear resonance vibrational spectroscopy (NRVS) to quantify the flexibility of the heme iron environment in the electron-carrying protein cytochrome c by measuring the stiffness and the resilience. These quantities are sensitive to structural differences between the active sites of different proteins, as illustrated by a comparative analysis with myoglobin. The elasticity of the entire protein, on the other hand, can be probed quantitatively from NRVS and high energy-resolution inelastic X-ray scattering (IXS) measurements, an approach that we used to extract the bulk modulus of cytochrome c.

  4. Human arm stiffness and equilibrium-point trajectory during multi-joint movement.

    Science.gov (United States)

    Gomi, H; Kawato, M

    1997-03-01

    By using a newly designed high-performance manipulandum and a new estimation algorithm, we measured human multi-joint arm stiffness parameters during multi-joint point-to-point movements on a horizontal plane. This manipulandum allows us to apply a sufficient perturbation to subject's arm within a brief period during movement. Arm stiffness parameters were reliably estimated using a new algorithm, in which all unknown structural parameters could be estimated independent of arm posture (i.e., constant values under any arm posture). Arm stiffness during transverse movement was considerably greater than that during corresponding posture, but not during a longitudinal movement. Although the ratios of elbow, shoulder, and double-joint stiffness were varied in time, the orientation of stiffness ellipses during the movement did not change much. Equilibrium-point trajectories that were predicted from measured stiffness parameters and actual trajectories were slightly sinusoidally curved in Cartesian space and their velocity profiles were quite different from the velocity profiles of actual hand trajectories. This result contradicts the hypothesis that the brain does not take the dynamics into account in movement control depending on the neuromuscular servo mechanism; rather, it implies that the brain needs to acquire some internal models of controlled objects.

  5. Measuring multi-joint stiffness during single movements: numerical validation of a novel time-frequency approach.

    Science.gov (United States)

    Piovesan, Davide; Pierobon, Alberto; DiZio, Paul; Lackner, James R

    2012-01-01

    This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases.

  6. Measuring multi-joint stiffness during single movements: numerical validation of a novel time-frequency approach.

    Directory of Open Access Journals (Sweden)

    Davide Piovesan

    Full Text Available This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases.

  7. Bianchi Type-I cosmological mesonic stiff fluid models in Lyra's ...

    Indian Academy of Sciences (India)

    Some physical and kinematical properties of the models are also discussed. Keywords. Cosmology; Bianchi-I ... Here ρ, p and ui are respectively the energy density, equilibrium pressure and four-velocity vector of the .... In order to obtain an explicit form of physical parameters, we consider here stiff fluid distribution given by ...

  8. Strong, tough and stiff bioinspired ceramics from brittle constituents

    Science.gov (United States)

    Bouville, Florian; Maire, Eric; Meille, Sylvain; van de Moortèle, Bertrand; Stevenson, Adam J.; Deville, Sylvain

    2014-05-01

    High strength and high toughness are usually mutually exclusive in engineering materials. In ceramics, improving toughness usually relies on the introduction of a metallic or polymeric ductile phase, but this decreases the material’s strength and stiffness as well as its high-temperature stability. Although natural materials that are both strong and tough rely on a combination of mechanisms operating at different length scales, the relevant structures have been extremely difficult to replicate. Here, we report a bioinspired approach based on widespread ceramic processing techniques for the fabrication of bulk ceramics without a ductile phase and with a unique combination of high strength (470 MPa), high toughness (22 MPa m1/2), and high stiffness (290 GPa). Because only mineral constituents are needed, these ceramics retain their mechanical properties at high temperatures (600 °C). Our bioinspired, material-independent approach should find uses in the design and processing of materials for structural, transportation and energy-related applications.

  9. Constitutive Modelling of Resins in the Stiffness Domain

    Science.gov (United States)

    Klasztorny, M.

    2004-09-01

    An analytic method for inverting the constitutive compliance equations of viscoelasticity for resins is developed. These equations describe the HWKK/H rheological model, which makes it possible to simulate, with a good accuracy, short-, medium- and long-term viscoelastic processes in epoxy and polyester resins. These processes are of first-rank reversible isothermal type. The time histories of deviatoric stresses are simulated with three independent strain history functions of fractional and normal exponential types. The stiffness equations are described by two elastic and six viscoelastic constants having a clear physic meaning (three long-term relaxation coefficients and three relaxation times). The time histories of axiatoric stresses are simulated as perfectly elastic. The inversion method utilizes approximate constitutive stiffness equations of viscoelasticity for the HWKK/H model. The constitutive compliance equations for the model are a basis for determining the exact complex shear stiffness, whereas the approximate constitutive stiffness equations are used for determining the approximate complex shear stiffness. The viscoelastic constants in the stiffness domain are derived by equating the exact and approximate complex shear stiffnesses. The viscoelastic constants are obtained for Epidian 53 epoxy and Polimal 109 polyester resins. The accuracy of the approximate constitutive stiffness equations are assessed by comparing the approximate and exact complex shear stiffnesses. The constitutive stiffness equations for the HWKK/H model are presented in uncoupled (shear/bulk) and coupled forms. Formulae for converting the constants of shear viscoelasticity into the constants of coupled viscoelasticity are given as well.

  10. Spin-wave stiffness in the Dzyaloshinskii-Moriya helimagnets Mn1 -xFexSi

    Science.gov (United States)

    Grigoriev, S. V.; Altynbaev, E. V.; Siegfried, S.-A.; Pschenichnyi, K. A.; Menzel, D.; Heinemann, A.; Chaboussant, G.

    2018-01-01

    The small-angle neutron scattering is used to measure the spin-wave stiffness in the field-polarized state of the Dzyaloshinskii-Moriya helimagnets Mn1 -xFexSi with x =0.03 , 0.06, 0.09, and 0.10. The Mn1 -xFexSi compounds are helically ordered below Tc and show a helical fluctuation regime above Tc in a wide range up to TDM. The critical temperatures Tc and TDM decrease with x and tend to 0 at x =0.11 and 0.17, respectively. We have found that the spin-wave stiffness A change weakly with temperature for each individual Fe-doped compound. On the other hand, the spin-wave stiffness A decreases with x duplicating the TDM dependence on x , rather than Tc(x ) . These findings classify the thermal phase transition in all Mn1 -xFexSi compounds as an abrupt change in the spin state caused, most probably, by the features of an electronic band structure. Moreover, the criticality in these compounds is not related to the value of the ferromagnetic interaction but demonstrates the remarkable role of the Dzyaloshinskii-Moriya interaction as a factor destabilizing the magnetic order.

  11. Discrete least squares polynomial approximation with random evaluations - application to PDEs with Random parameters

    KAUST Repository

    Nobile, Fabio

    2015-01-07

    We consider a general problem F(u, y) = 0 where u is the unknown solution, possibly Hilbert space valued, and y a set of uncertain parameters. We specifically address the situation in which the parameterto-solution map u(y) is smooth, however y could be very high (or even infinite) dimensional. In particular, we are interested in cases in which F is a differential operator, u a Hilbert space valued function and y a distributed, space and/or time varying, random field. We aim at reconstructing the parameter-to-solution map u(y) from random noise-free or noisy observations in random points by discrete least squares on polynomial spaces. The noise-free case is relevant whenever the technique is used to construct metamodels, based on polynomial expansions, for the output of computer experiments. In the case of PDEs with random parameters, the metamodel is then used to approximate statistics of the output quantity. We discuss the stability of discrete least squares on random points show convergence estimates both in expectation and probability. We also present possible strategies to select, either a-priori or by adaptive algorithms, sequences of approximating polynomial spaces that allow to reduce, and in some cases break, the curse of dimensionality

  12. The stiffness change and the increase in the ultimate capacity for a stiff pile resulting from a cyclic loading

    DEFF Research Database (Denmark)

    Lada, Aleksandra; Ibsen, Lars Bo; Nicolai, Giulio

    In the paper the experimental results of small-scale tests on a stiff monopile are presented to outline the change in stiffness during the cyclic loading and the change in the ultimate pile capacity. The results confirm the increase of stiffness and the increase in bearing capacity resulting from...

  13. High-order finite volume advection

    OpenAIRE

    Shaw, James

    2018-01-01

    The cubicFit advection scheme is limited to second-order convergence because it uses a polynomial reconstruction fitted to point values at cell centres. The highOrderFit advection scheme achieves higher than second order by calculating high-order moments over the mesh geometry.

  14. Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness

    Science.gov (United States)

    Zheng, Yisheng; Zhang, Xinong; Luo, Yajun; Zhang, Yahong; Xie, Shilin

    2018-02-01

    By now, many translation quasi-zero stiffness (QZS) mechanisms have been proposed to overcome the restriction between the isolation frequency range and the load bearing capacity of linear isolators. The couplings of rotor systems undertake the functions of transmitting static driving torque and isolating disturbing torque simultaneously, which creates the demand of torsion QZS mechanisms. Hence a QZS coupling is presented in this paper, where a torsion magnetic spring (TMS) composed of two coaxial ring magnet arrangements in repulsive configuration is employed to produce negative torsion stiffness to counteract the positive stiffness of a rubber spring. In this paper, the expressions of magnetic torque and stiffness are given firstly and verified by finite element simulations; and the effect of geometric parameters of the TMS on its stiffness characteristic is analyzed in detail, which contributes to the optimal design of the TMS. Then dynamic analysis of the QZS coupling is performed and the analytical expression of the torque transmissibility is achieved based on the Harmonic Balance Method. Finally, simulation of the torque transmissibility is carried out to reveal how geometric parameters of the TMS affect the isolation performance.

  15. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness

    Directory of Open Access Journals (Sweden)

    Janice Kal Van Tam, Koichiro Uto, Mitsuhiro Ebara, Stefania Pagliari, Giancarlo Forte and Takao Aoyagi

    2012-01-01

    Full Text Available The acknowledged ability of synthetic materials to induce cell-specific responses regardless of biological supplies provides tissue engineers with the opportunity to find the appropriate materials and conditions to prepare tissue-targeted scaffolds. Stem and mature cells have been shown to acquire distinct morphologies in vitro and to modify their phenotype when grown on synthetic materials with tunable mechanical properties. The stiffness of the substrate used for cell culture is likely to provide cells with mechanical cues mimicking given physiological or pathological conditions, thus affecting the biological properties of cells. The sensitivity of cells to substrate composition and mechanical properties resides in multiprotein complexes called focal adhesions, whose dynamic modification leads to cytoskeleton remodeling and changes in gene expression. In this study, the remodeling of focal adhesions in human mesenchymal stem cells in response to substrate stiffness was followed in the first phases of cell–matrix interaction, using poly-ε-caprolactone planar films with similar chemical composition and different elasticity. As compared to mature dermal fibroblasts, mesenchymal stem cells showed a specific response to substrate stiffness, in terms of adhesion, as a result of differential focal adhesion assembly, while their multipotency as a bulk was not significantly affected by matrix compliance. Given the sensitivity of stem cells to matrix mechanics, the mechanobiology of such cells requires further investigations before preparing tissue-specific scaffolds.

  16. Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions.

    Science.gov (United States)

    He, Xiao-Tao; Wu, Rui-Xin; Xu, Xin-Yue; Wang, Jia; Yin, Yuan; Chen, Fa-Ming

    2018-04-15

    Accumulating evidence indicates that the physicochemical properties of biomaterials exert profound influences on stem cell fate decisions. However, matrix-based regulation selected through in vitro analyses based on a given cell population do not genuinely reflect the in vivo conditions, in which multiple cell types are involved and interact dynamically. This study constitutes the first investigation of how macrophages (Mφs) in stiffness-tunable transglutaminase cross-linked gelatin (TG-gel) affect the osteogenesis of bone marrow-derived mesenchymal stem cells (BMMSCs). When a single cell type was cultured, low-stiffness TG-gels promoted BMMSC proliferation, whereas high-stiffness TG-gels supported cell osteogenic differentiation. However, Mφs in high-stiffness TG-gels were more likely to polarize toward the pro-inflammatory M1 phenotype. Using either conditioned medium (CM)-based incubation or Transwell-based co-culture, we found that Mφs encapsulated in the low-stiffness matrix exerted a positive effect on the osteogenesis of co-cultured BMMSCs. Conversely, Mφs in high-stiffness TG-gels negatively affected cell osteogenic differentiation. When both cell types were cultured in the same TG-gel type and placed into the Transwell system, the stiffness-related influences of Mφs on BMMSCs were significantly altered; both the low- and high-stiffness matrix induced similar levels of BMMSC osteogenesis. Although the best material parameter for synergistically affecting Mφs and BMMSCs remains unknown, our data suggest that Mφ involvement in the co-culture system alters previously identified material-related influences on BMMSCs, such as matrix stiffness-related effects, which were identified based on a culture system involving a single cell type. Such Mφ-stem cell interactions should be considered when establishing proper matrix parameter-associated cell regulation in the development of biomimetic biomaterials for regenerative applications. The substrate stiffness

  17. The behaviour of the local error in splitting methods applied to stiff problems

    International Nuclear Information System (INIS)

    Kozlov, Roman; Kvaernoe, Anne; Owren, Brynjulf

    2004-01-01

    Splitting methods are frequently used in solving stiff differential equations and it is common to split the system of equations into a stiff and a nonstiff part. The classical theory for the local order of consistency is valid only for stepsizes which are smaller than what one would typically prefer to use in the integration. Error control and stepsize selection devices based on classical local order theory may lead to unstable error behaviour and inefficient stepsize sequences. Here, the behaviour of the local error in the Strang and Godunov splitting methods is explained by using two different tools, Lie series and singular perturbation theory. The two approaches provide an understanding of the phenomena from different points of view, but both are consistent with what is observed in numerical experiments

  18. Stiffness of Railway Soil-Steel Structures

    Directory of Open Access Journals (Sweden)

    Machelski Czesław

    2015-12-01

    Full Text Available The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces, as in bridges. The analyzed cases show that the shell’s span, geometry (static scheme and the height of earth fill influence the stiffness of the structure. The soil-steel structure’s characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  19. Stiffness of Railway Soil-Steel Structures

    Science.gov (United States)

    Machelski, Czesław

    2015-12-01

    The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness) become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces), as in bridges. The analyzed cases show that the shell's span, geometry (static scheme) and the height of earth fill influence the stiffness of the structure. The soil-steel structure's characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  20. A Trigonometrically Fitted Block Method for Solving Oscillatory Second-Order Initial Value Problems and Hamiltonian Systems

    OpenAIRE

    Ngwane, F. F.; Jator, S. N.

    2017-01-01

    In this paper, we present a block hybrid trigonometrically fitted Runge-Kutta-Nyström method (BHTRKNM), whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs), including Hamiltonian systems such as the energy conserving equations and systems arising from the semidiscretization of partial differential equations (PDEs). Four discrete hybrid formulas used to formulate the BHTRKNM are provided by a continuous one...

  1. High-Order Frequency-Locked Loops

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In very recent years, some attempts for designing high-order frequency-locked loops (FLLs) have been made. Nevertheless, the advantages and disadvantages of these structures, particularly in comparison with a standard FLL and high-order phase-locked loops (PLLs), are rather unclear. This lack...... study, and its small-signal modeling, stability analysis, and parameter tuning are presented. Finally, to gain insight about advantages and disadvantages of high-order FLLs, a theoretical and experimental performance comparison between the designed second-order FLL and a standard FLL (first-order FLL...

  2. Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic PDEs with variable coefficients

    KAUST Repository

    Chavez Chavez, Gustavo Ivan

    2017-12-07

    We present a robust and scalable preconditioner for the solution of large-scale linear systems that arise from the discretization of elliptic PDEs amenable to rank compression. The preconditioner is based on hierarchical low-rank approximations and the cyclic reduction method. The setup and application phases of the preconditioner achieve log-linear complexity in memory footprint and number of operations, and numerical experiments exhibit good weak and strong scalability at large processor counts in a distributed memory environment. Numerical experiments with linear systems that feature symmetry and nonsymmetry, definiteness and indefiniteness, constant and variable coefficients demonstrate the preconditioner applicability and robustness. Furthermore, it is possible to control the number of iterations via the accuracy threshold of the hierarchical matrix approximations and their arithmetic operations, and the tuning of the admissibility condition parameter. Together, these parameters allow for optimization of the memory requirements and performance of the preconditioner.

  3. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy.

    Science.gov (United States)

    de Gooijer-van de Groep, Karin L; de Vlugt, Erwin; de Groot, Jurriaan H; van der Heijden-Maessen, Hélène C M; Wielheesen, Dennis H M; van Wijlen-Hempel, Rietje M S; Arendzen, J Hans; Meskers, Carel G M

    2013-07-23

    Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: "spasticity" vs. "contracture"). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p therapy.

  4. On the summability of divergent power series solutions for certain first-order linear PDEs

    Directory of Open Access Journals (Sweden)

    Masaki Hibino

    2015-01-01

    Full Text Available This article is concerned with the study of the Borel summability of divergent power series solutions for certain singular first-order linear partial differential equations of nilpotent type. Our main purpose is to obtain conditions which coefficients of equations should satisfy in order to ensure the Borel summability of divergent solutions. We will see that there is a close affinity between the Borel summability of divergent solutions and global analytic continuation properties for coefficients of equations.

  5. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    Science.gov (United States)

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Visceral adiposity index may be a surrogate marker for the assessment of the effects of obesity on arterial stiffness.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available The relationship between obesity and cardiovascular disease (CVD remains unclear. This study aims to describe the relationship between arterial stiffness and obesity in order to investigate the effects of obesity on CVD.We collected data from 5,158 individuals over 40 years of age from a cross-sectional study in Nanjing, China. Anthropometric, demographic, hemodynamic measurements and arterial stiffness measured through brachial-ankle pulse wave velocity (baPWV were obtained. Subjects were grouped by body mass index (BMI, waist circumference (WC and visceral adiposity index (VAI, a sex-specific index based on BMI, WC, triglyceride (TG and high-density lipoprotein cholesterol (HDL-C.The multivariate regression analysis revealed a negative but weak effect of BMI (β = -0.047, P0.05, it was still obtained between baPWV and VAI quartile (P0.05. However, baPWV significantly increased across groups with higher VAI categories even in the same metabolic category (P<0.01.This study supports the concept of heterogeneity of metabolic status among individuals within the same obesity range. Obese individuals are at an increased risk of arterial stiffness regardless of their metabolic conditions. VAI may be a surrogate marker for the assessment of obesity and the effects of obesity on arterial stiffness.

  7. Big bang nucleosynthesis with a stiff fluid

    International Nuclear Information System (INIS)

    Dutta, Sourish; Scherrer, Robert J.

    2010-01-01

    Models that lead to a cosmological stiff fluid component, with a density ρ S that scales as a -6 , where a is the scale factor, have been proposed recently in a variety of contexts. We calculate numerically the effect of such a stiff fluid on the primordial element abundances. Because the stiff fluid energy density decreases with the scale factor more rapidly than radiation, it produces a relatively larger change in the primordial helium-4 abundance than in the other element abundances, relative to the changes produced by an additional radiation component. We show that the helium-4 abundance varies linearly with the density of the stiff fluid at a fixed fiducial temperature. Taking ρ S10 and ρ R10 to be the stiff fluid energy density and the standard density in relativistic particles, respectively, at T=10 MeV, we find that the change in the primordial helium abundance is well-fit by ΔY p =0.00024(ρ S10 /ρ R10 ). The changes in the helium-4 abundance produced by additional radiation or by a stiff fluid are identical when these two components have equal density at a 'pivot temperature', T * , where we find T * =0.55 MeV. Current estimates of the primordial 4 He abundance give the constraint on a stiff fluid energy density of ρ S10 /ρ R10 <30.

  8. Direct measurement of the intrinsic ankle stiffness during standing.

    Science.gov (United States)

    Vlutters, M; Boonstra, T A; Schouten, A C; van der Kooij, H

    2015-05-01

    Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic ankle-foot stiffness to balance, and the ankle-foot stiffness amplitude dependency remain a topic of debate in the literature. We therefore developed an experimental protocol to directly measure the bilateral intrinsic ankle-foot stiffness during standing balance, and determine its amplitude dependency. By applying fast (40 ms) ramp-and-hold support surface rotations (0.005-0.08 rad) during standing, reflexive contributions could be excluded, and the amplitude dependency of the intrinsic ankle-foot stiffness was investigated. Results showed that reflexive activity could not have biased the torque used for estimating the intrinsic stiffness. Furthermore, subjects required less recovery action to restore balance after bilateral rotations in opposite directions compared to rotations in the same direction. The intrinsic ankle-foot stiffness appears insufficient to ensure balance, ranging from 0.93±0.09 to 0.44±0.06 (normalized to critical stiffness 'mgh'). This implies that changes in muscle activation are required to maintain balance. The non-linear stiffness decrease with increasing rotation amplitude supports the previous published research. With the proposed method reflexive effects can be ruled out from the measured torque without any model assumptions, allowing direct estimation of intrinsic stiffness during standing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Load bearing and stiffness tailored NiTi implants produced by additive manufacturing: a simulation study

    Science.gov (United States)

    Rahmanian, Rasool; Shayesteh Moghaddam, Narges; Haberland, Christoph; Dean, David; Miller, Michael; Elahinia, Mohammad

    2014-03-01

    Common metals for stable long-term implants (e.g. stainless steel, Titanium and Titanium alloys) are much stiffer than spongy cancellous and even stiffer than cortical bone. When bone and implant are loaded this stiffness mismatch results in stress shielding and as a consequence, degradation of surrounding bony structure can lead to disassociation of the implant. Due to its lower stiffness and high reversible deformability, which is associated with the superelastic behavior, NiTi is an attractive biomaterial for load bearing implants. However, the stiffness of austenitic Nitinol is closer to that of bone but still too high. Additive manufacturing provides, in addition to the fabrication of patient specific implants, the ability to solve the stiffness mismatch by adding engineered porosity to the implant. This in turn allows for the design of different stiffness profiles in one implant tailored to the physiological load conditions. This work covers a fundamental approach to bring this vision to reality. At first modeling of the mechanical behavior of different scaffold designs are presented as a proof of concept of stiffness tailoring. Based on these results different Nitinol scaffolds can be produced by additive manufacturing.

  10. Linear and nonlinear Stability analysis for finite difference discretizations of higher order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrmann, David R.; Bingham, Harry B.; Madsen, Per A.

    2004-01-01

    of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep-water nonlinearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only...... insight into into the numerical behavior of this rather complicated system of nonlinear PDEs....

  11. Comparative study on stiffness properties of WOODCAST and conventional casting materials.

    Science.gov (United States)

    Pirhonen, Eija; Pärssinen, Antti; Pelto, Mika

    2013-08-01

    Plaster-of-Paris and synthetic materials (e.g. fibreglass) have been in clinical use as casting materials for decades. An innovative casting material, WOODCAST, brings interesting alternatives to the traditional materials. The aim of this study was to compare the stiffness properties of the WOODCAST material to traditional casting materials. In immobilization by casting, materials with variable stiffness properties are required. Ring stiffness of cylindrical samples correlates well with cast rigidity. For load-bearing structures, the use of the WOODCAST Splint is recommended as equally high stiffness was obtained with the WOODCAST Splint as was with fibreglass. The WOODCAST 2 mm product is optimal for structures where some elasticity is required, and WOODCAST Ribbon can be used in any WOODCAST structure where further reinforcement is needed. The results show that WOODCAST material can be used in replacing traditional casting materials used in extremity immobilization. The mechanical properties of casting material play an important role in safe and effective fracture immobilization. Stiffness properties of the WOODCAST casting material and conventional materials - fibreglass and plaster-of-Paris - were analysed in this study. The WOODCAST Splint appears to compare favorably with traditional materials such as Scotchcast.

  12. Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy

    Science.gov (United States)

    Dinelli, F.; Biswas, S. K.; Briggs, G. A. D.; Kolosov, O. V.

    2000-05-01

    Ultrasonic force microscopy (UFM) was introduced to probe nanoscale mechanical properties of stiff materials. This was achieved by vibrating the sample far above the first resonance of the probing atomic force microscope cantilever where the cantilever becomes dynamically rigid. By operating UFM at different set force values, it is possible to directly measure the absolute values of the tip-surface contact stiffness. From this an evaluation of surface elastic properties can be carried out assuming a suitable solid-solid contact model. In this paper we present curves of stiffness as a function of the normal load in the range of 0-300 nN. The dependence of stiffness on the relative humidity has also been investigated. Materials with different elastic constants (such as sapphire lithium fluoride, and silicon) have been successfully differentiated. Continuum mechanics models cannot however explain the dependence of stiffness on the normal force and on the relative humidity. In this high-frequency regime, it is likely that viscous forces might play an important role modifying the tip-surface interaction. Plastic deformation might also occur due to the high strain rates applied when ultrasonically vibrating the sample. Another possible cause of these discrepancies might be the presence of water in between the two bodies in contact organizing in a solidlike way and partially sustaining the load.

  13. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    REN ChaoFeng; HOU ZhenDe; ZHAO Wei

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies, bone tissues will grow into their porous structure, which will reinforce their strength and stiffness. The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around, as if they were part of the bone. The mechanical compatibility of bone substitutes includes both static and dynamic behavior, due to the mechanical properties of bone depending on the strain rate. In this study, split Hopkinson pressure bar technique (SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite, bones with and bones without organic com-ponents, and their dynamic stress-strain curves of the three materials were obtained. The mechanical effects of collagens in bone were assessed, by comparing the difference between the Young's moduli of the three materials. As the implanted bone substitute becomes a part of bone, it can be regarded as an inclusion composite. The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness. The evaluated result shows that the suitable porosity of HA is0.8, which is in favor of both static and dynamic stiffness compatibility.

  14. Stiff Hands

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Stiff Hands Email to a friend * required fields ...

  15. Evaluation of arterial stiffness in nondiabetic chronic kidney disease patients

    Directory of Open Access Journals (Sweden)

    Bodanapu Mastanvalli

    2017-01-01

    Full Text Available Chronic kidney disease (CKD is a growing problem worldwide. Clinical and epidemiologic studies have shown that structural and functional changes that occur in major arteries are a major contributing factor to the high mortality in uremic patients. Recent studies have shown a stepwise increase of the carotid-femoral pulse wave velocity (cfPWV from CKD Stage 1 to Stage 5. We evaluated the cfPWV and augmentation index (AIx, as indirect markers of arterial stiffness in patients with nondiabetic CKD and compared the values with normal population; we also evaluated the relationship between various stages of CKD and arterial stiffness markers. This cross-sectional study was carried out in the Department of Nephrology for a duration of two years from January 15, 2012, to January 14, 2014. Fifty patients with nondiabetic CKD were studied along with 50 healthy volunteers who did not have CKD, who served as controls. Assessment of arterial stiffness (blood pressure, PWV, heart rate, aortic augmentation pressure, and AIx was performed using the PeriScope device. PWV positively correlated with systolic and diastolic blood pressure, mean aortic arterial pressure, serum creatinine, and serum uric acid and negatively correlated with estimated glomerular filtration rate. Arterial stiffness increased as CKD stage increased and was higher in nondiabetic CKD group than in the general population. Arterial stiffness progressed gradually from CKD Stage 2 to 5, and then abruptly, in dialysis patients. Measures to decrease the arterial stiffness and its influence on decreasing cardiovascular events need further evaluation.

  16. An Approach to Evaluate Stability for Cable-Based Parallel Camera Robots with Hybrid Tension-Stiffness Properties

    Directory of Open Access Journals (Sweden)

    Huiling Wei

    2015-12-01

    Full Text Available This paper focuses on studying the effect of cable tensions and stiffness on the stability of cable-based parallel camera robots. For this purpose, the tension factor and the stiffness factor are defined, and the expression of stability is deduced. A new approach is proposed to calculate the hybrid-stability index with the minimum cable tension and the minimum singular value. Firstly, the kinematic model of a cable-based parallel camera robot is established. Based on the model, the tensions are solved and a tension factor is defined. In order to obtain the tension factor, an optimization of the cable tensions is carried out. Then, an expression of the system's stiffness is deduced and a stiffness factor is defined. Furthermore, an approach to evaluate the stability of the cable-based camera robots with hybrid tension-stiffness properties is presented. Finally, a typical three-degree-of-freedom cable-based parallel camera robot with four cables is studied as a numerical example. The simulation results show that the approach is both reasonable and effective.

  17. Soft Robotic Haptic Interface with Variable Stiffness for Rehabilitation of Neurologically Impaired Hand Function

    Directory of Open Access Journals (Sweden)

    Frederick Sebastian

    2017-12-01

    Full Text Available The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness so that affected persons can experience a wide range of strength training. These devices have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This paper presents a novel soft robotic haptic device for neuromuscular rehabilitation of the hand, which is designed to offer adjustable stiffness and can be utilized in both clinical and home settings. The device eliminates the need for multiple objects by employing a pneumatic soft structure made with highly compliant materials that act as the actuator of the haptic interface. It is made with interchangeable sleeves that can be customized to include materials of varying stiffness to increase the upper limit of the stiffness range. The device is fabricated using existing 3D printing technologies, and polymer molding and casting techniques, thus keeping the cost low and throughput high. The haptic interface is linked to either an open-loop system that allows for an increased pressure during usage or closed-loop system that provides pressure regulation in accordance to the stiffness the user specifies. Preliminary evaluation is performed to characterize the effective controllable region of variance in stiffness. It was found that the region of controllable stiffness was between points 3 and 7, where the stiffness appeared to plateau with each increase in pressure. The two control systems are tested to derive relationships between internal pressure, grasping force exertion on the surface, and displacement using

  18. Long-term use of first-line highly active antiretroviral therapy is not associated with carotid artery stiffness in human immunodeficiency virus-positive patients

    Directory of Open Access Journals (Sweden)

    Haohui Zhu

    2014-09-01

    Conclusion: The first-line highly active antiretroviral therapy currently used in China is not associated with carotid artery stiffness in human immunodeficiency virus-positive patients with good highly active antiretroviral therapy compliance. Human immunodeficiency virus may play a role in the development of atherosclerosis.

  19. Cancer Cell Migration within 3D Layer-By-Layer Microfabricated Photocrosslinked PEG Scaffolds with Tunable Stiffness

    OpenAIRE

    Soman, Pranav; Kelber, Jonathan A.; Lee, Jin Woo; Wright, Tracy; Vecchio, Kenneth S.; Klemke, Richard L.; Chen, Shaochen

    2012-01-01

    Our current understanding of 3-dimensional (3D) cell migration is primarily based on results from fibrous scaffolds with randomly organized internal architecture. Manipulations that change the stiffness of these 3D scaffolds often alter other matrix parameters that can modulate cell motility independently or synergistically, making observations less predictive of how cells behave when migrating in 3D. In order to decouple microstructural influences and stiffness effects, we have designed and ...

  20. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice.

    Science.gov (United States)

    Vanleene, Maximilien; Porter, Alexandra; Guillot, Pascale-Valerie; Boyde, Alan; Oyen, Michelle; Shefelbine, Sandra

    2012-06-01

    Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. [Odontoid bending stiffness after anterior fixation with a single lag screw: biomechanical study].

    Science.gov (United States)

    Buchvald, P; Čapek, L; Barsa, P

    2015-01-01

    PURPOSE OF THE STUDY The aim of the experiment was to compare the bending stiffness of an intact odontoid process with bending stiffness after its simulated type II fracture was fixed with a single lag screw. The experiment was done with a desire to answer the question of whether a single osteosynthetic screw is sufficient for good fixation of a type II odontoid fracture. MATERIAL AND METHODS The C2 vertebrae of six cadavers were used. With simultaneous measurement of odontoid bending stiffness, the occurrence of a fracture (type IIA, Grauer's modification of the Anderson- D'Alonzo classification) was simulated using action exerted by a tearing machine in the direction perpendicular to the odontoid axis. Each odontoid fracture was subsequently treated by direct osteosynthesis with a single lag screw inserted in the axial direction by a standard surgical procedure in order to provide conditions similar to those achieved by routine surgical management. The treated odontoid process was subsequently subjected to the same tearing machine loading as applied to it at the start of the experiment. The bending stiffness measured was then compared with that found before the fracture occurred. The results were statistically evaluated by the t-test for paired samples at the level of significance α = 0.05. RESULTS The average value of bending stiffness for odontoid processes of intact vertebrae at the moment of fracture occurrence was 318.3 N/mm. After single axial lag screw fixation of the fracture, the average bending stiffness for the odontoid processes treated was 331.3 N/mm. DISCUSSION Higher values of bending stiffness after screw fixation were found in all specimens and, in comparison with the values recorded before simulated fractures, the increase was statistically significant. CONCLUSIONS The results of our measurements suggest that the single lag screw fixation of a type IIA odontoid fracture will provide better stability for the fracture fragment-C2 body complex on

  2. Sex-specific genetic determinants for arterial stiffness in Dahl salt-sensitive hypertensive rats.

    Science.gov (United States)

    Decano, Julius L; Pasion, Khristine A; Black, Nicole; Giordano, Nicholas J; Herrera, Victoria L; Ruiz-Opazo, Nelson

    2016-01-11

    Arterial stiffness is an independent predictor of cardiovascular outcomes in hypertensive patients including myocardial infarction, fatal stroke, cerebral micro-bleeds which predicts cerebral hemorrhage in hypertensive patients, as well as progression to hypertension in non-hypertensive subjects. The association between arterial stiffness and various cardiovascular outcomes (coronary heart disease, stroke) remains after adjusting for age, sex, blood pressure, body mass index and other known predictors of cardiovascular disease, suggesting that arterial stiffness, measured via carotid-femoral pulse wave velocity, has a better predictive value than each of these factors. Recent evidence shows that arterial stiffening precedes the onset of high blood pressure; however their molecular genetic relationship (s) and sex-specific determinants remain uncertain. We investigated whether distinct or shared genetic determinants might underlie susceptibility to arterial stiffening in male and female Dahl salt-sensitive rats. Thus, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting arterial stiffness in six-week old F2 (Dahl S x R)-intercross male and female rats characterized for abdominal aortic pulse wave velocity and aortic strain by high-resolution ultrasonography. We detected five highly significant QTLs affecting aortic stiffness: two interacting QTLs (AS-m1 on chromosome 4 and AS-m2 on chromosome16, LOD 8.8) in males and two distinct interacting QTLs (AS-f1 on chromosome 9 and AS-f2 on chromosome11, LOD 8.9) in females affecting pulse wave velocity. One QTL (AS-1 on chromosome 3, LOD 4.3) was found to influence aortic strain in a sex-independent manner. None of these arterial stiffness QTLs co-localized with previously reported blood pressure QTLs detected in equivalent genetic intercrosses. These data reveal sex-specific genetic determinants for aortic pulse wave velocity and suggest distinct polygenic susceptibility for arterial stiffness and

  3. A novel energy-efficient rotational variable stiffness actuator

    NARCIS (Netherlands)

    Rao, S.; Carloni, Raffaella; Stramigioli, Stefano

    This paper presents the working principle, the design and realization of a novel rotational variable stiffness actuator, whose stiffness can be varied independently of its output angular position. This actuator is energy-efficient, meaning that the stiffness of the actuator can be varied by keeping

  4. Ingesting a small amount of beer reduces arterial stiffness in healthy humans.

    Science.gov (United States)

    Nishiwaki, Masato; Kora, Naoki; Matsumoto, Naoyuki

    2017-08-01

    Epidemiological studies reveal a J-shaped association between alcohol consumption and arterial stiffness, with arterial stiffening lower among mild-to-moderate drinkers than heavy drinkers or nondrinkers. This study aimed to examine the effects of ingesting a small amount of beer, corresponding to the amount consumed per day by a mild drinker, on arterial stiffness. Eleven men (20-22 years) participated, in random order and on different days, in four separate trials. The participants each drank 200 or 350 mL of alcohol-free beer (AFB200 and AFB350) or beer (B200 and B350), and were monitored for 90 min postingestion. There were no significant changes in arterial stiffness among trials that ingested AF200 or AF350. However, among trials ingesting B200 and B350, breath alcohol concentrations increased significantly, while indexes of arterial stiffness decreased significantly for approximately 60 min: carotid-femoral pulse wave velocity (B200: -0.6 ± 0.2 m/sec; B350: -0.6 ± 0.2 m/sec); brachial-ankle pulse wave velocity (B200: -53 ± 18 cm/sec; B350: -57 ± 19 cm/sec); and cardio-ankle vascular index (B200: -0.4 ± 0.1 unit; B350: -0.3 ± 0.1 unit). Furthermore, AFB showed no effect on arterial stiffness, regardless of whether or not it contained sugar, and no significant difference in antioxidant capacity was found between AFB and B. This is the first study to demonstrate that acute ingestion of relatively small amounts of beer reduces arterial stiffness (for approximately 60 min). Our data also suggest that the reduction in arterial stiffness induced by ingestion of beer is largely attributable to the effects of alcohol. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  5. Stiffness and the automatic selection of ODE codes

    International Nuclear Information System (INIS)

    Shampine, L.F.

    1984-01-01

    The author describes the basic ideas behind the most popular methods for the numerical solution of ordinary differential equations (ODEs). He takes up the qualitative behavior of solutions of ODEs and its relation ot the propagation of numerical error. Codes for ODEs are intended either for stiff problems or for non-stiff problems. The difference is explained. Users of codes do not have the information needed to recognize stiffness. A code, DEASY, which automatically recognizes stiffness and selects a suitable method is described

  6. Derivation of the extended elastic stiffness formula of the holddown spring assembly comprised of several leaves

    International Nuclear Information System (INIS)

    Song, Kee Nam; Kang, H. S.; Yoon, K. H.

    1999-01-01

    Based on the Euler beam theory and the elastic strain energy method, the elastic stiffness formula of the holddown spring assembly consisting of several leaves was previously derived. Even though the previous formula was known to be useful to estimate the elastic stiffness of the holddown spring assembly, recently it was reported that the elastic stiffness from the previous formula deviated greatly from the test results as the number of leaves was increased. The objective of this study is to extend the previous formula in order to resolve such an increasing deviation when increasing the number of leaves. Additionally, considering the friction forces acting on the interfaces between the leaves, we obtained an extended elastic stiffness formula. The characteristic test and the elastic stiffness analysis on the various kinds of specimens of the holddown spring assembly have been carried out; the validity of the extended formula has been verified by the comparison of their results. As a result of comparisons, it is found that the extended formula is able to evaluate the elastic stiffness of the holddown spring assembly within the maximum error range of +12%, irrespective of the number of the leaves. (author). 9 refs., 5 figs., 1 tab

  7. Final Report - Subcontract B6183769

    Energy Technology Data Exchange (ETDEWEB)

    Bank, R. [Univ. of California, San Diego, CA (United States)

    2017-06-12

    During my visit to LLNL during July 5{15, 2016, we worked on linear system solvers. The two level hierarchical solver that initiated our study was developed to solve linear system arising from hp adaptive finite element calculations, and is implemented in the PLTMG software package, version 12 [1]. This preconditioner typically requires 3-20% of the space used by the stiffness matrix for higher order elements. It has multigrid like convergence rates for a wide variety of PDEs (self-adjoint positive definite elliptic equations, convection dominated convection-diffusion equations, and highly inde nite Helmholtz equations, among others). The convergence rate is not independent of the polynomial degree p as p ! 1, but but remains strong for p 9, which is the highest polynomial degree allowed in PLTMG, due to limitations of numerical quadrature formulae. A more complete description of the method and some numerical experiments illustrating its effectiveness appear in [2]. Like traditional geometric multilevel methods, this scheme relies on extensive knowledge of the underlying finite element space in order to construct both the smoother and the coarse grid correction components.

  8. Final Report - Subcontract B623760

    Energy Technology Data Exchange (ETDEWEB)

    Bank, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-17

    During my visit to LLNL during July 17{27, 2017, I worked on linear system solvers. The two level hierarchical solver that initiated our study was developed to solve linear systems arising from hp adaptive finite element calculations, and is implemented in the PLTMG software package, version 12. This preconditioner typically requires 3-20% of the space used by the stiffness matrix for higher order elements. It has multigrid like convergence rates for a wide variety of PDEs (self-adjoint positive de nite elliptic equations, convection dominated convection-diffusion equations, and highly indefinite Helmholtz equations, among others). The convergence rate is not independent of the polynomial degree p as p ! 1, but but remains strong for p 9, which is the highest polynomial degree allowed in PLTMG, due to limitations of the numerical quadrature rules implemented in the software package. A more complete description of the method and some numerical experiments illustrating its effectiveness appear in. Like traditional geometric multilevel methods, this scheme relies on knowledge of the underlying finite element space in order to construct the smoother and the coarse grid correction.

  9. Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (-)-epigallocatechin gallate-treated cells.

    Science.gov (United States)

    Watanabe, Tatsuro; Kuramochi, Hiromi; Takahashi, Atsushi; Imai, Kazue; Katsuta, Naoko; Nakayama, Tomonobu; Fujiki, Hirota; Suganuma, Masami

    2012-05-01

    To understand how nanomechanical stiffness affects metastatic potential, we studied the relationship between cell migration, a characteristic of metastasis, and cell stiffness using atomic force microscopy (AFM), which can measure stiffness (elasticity) of individual living cells. Migration and cell stiffness of three metastatic B16 melanoma variants (B16-F10, B16-BL6, and B16-F1 cells), and also effects of (-)-epigallocatechin gallate (EGCG), were studied using Transwell assay and AFM. Migration of B16-F10 and B16-BL6 cells was 3 and 2 times higher than that of B16-F1 cells in Transwell assay, and cell stiffness determined by AFM was also different among the three variants, although they have similar morphologies and the same growth rates: Means of Young's modulus were 350.8 ± 4.8 Pa for B16-F10 cells, 661.9 ± 16.5 Pa for B16-BL6 cells, and 727.2 ± 13.0 Pa for B16-F1 cells. AFM measurements revealed that highly motile B16-F10 cells have low cell stiffness, and low motile and metastatic B16-F1 cells have high cell stiffness: Nanomechanical stiffness is inversely correlated with migration potential. Treatment of highly motile B16-F10 cells with EGCG increased cell stiffness 2-fold and inhibited migration of the cells. Our study with AFM clearly demonstrates that cell stiffness is a reliable quantitative indicator of migration potential, and very likely metastatic potential, even in morphologically similar cells. And increased cell stiffness may be a key nanomechanical feature in inhibition of metastasis.

  10. A linear stepping endovascular intervention robot with variable stiffness and force sensing.

    Science.gov (United States)

    He, Chengbin; Wang, Shuxin; Zuo, Siyang

    2018-03-08

    Robotic-assisted endovascular intervention surgery has attracted significant attention and interest in recent years. However, limited designs have focused on the variable stiffness mechanism of the catheter shaft. Flexible catheter needs to be partially switched to a rigid state that can hold its shape against external force to achieve a stable and effective insertion procedure. Furthermore, driving catheter in a similar way with manual procedures has the potential to make full use of the extensive experience from conventional catheter navigation. Besides driving method, force sensing is another significant factor for endovascular intervention. This paper presents a variable stiffness catheterization system that can provide stable and accurate endovascular intervention procedure with a linear stepping mechanism that has a similar operation mode to the conventional catheter navigation. A specially designed shape-memory polymer tube with water cooling structure is used to achieve variable stiffness of the catheter. Hence, four FBG sensors are attached to the catheter tip in order to monitor the tip contact force situation with temperature compensation. Experimental results show that the actuation unit is able to deliver linear and rotational motions. We have shown the feasibility of FBG force sensing to reduce the effect of temperature and detect the tip contact force. The designed catheter can change its stiffness partially, and the stiffness of the catheter can be remarkably increased in rigid state. Hence, in the rigid state, the catheter can hold its shape against a [Formula: see text] load. The prototype has also been validated with a vascular phantom, demonstrating the potential clinical value of the system. The proposed system provides important insights into the design of compact robotic-assisted catheter incorporating effective variable stiffness mechanism and real-time force sensing for intraoperative endovascular intervention.

  11. Multi-fingered haptic palpation utilizing granular jamming stiffness feedback actuators

    International Nuclear Information System (INIS)

    Li, Min; Sareh, Sina; Seneviratne, Lakmal D; Wurdemann, Helge A; Althoefer, Kaspar; Ranzani, Tommaso; Dasgupta, Prokar

    2014-01-01

    This paper describes a multi-fingered haptic palpation method using stiffness feedback actuators for simulating tissue palpation procedures in traditional and in robot-assisted minimally invasive surgery. Soft tissue stiffness is simulated by changing the stiffness property of the actuator during palpation. For the first time, granular jamming and pneumatic air actuation are combined to realize stiffness modulation. The stiffness feedback actuator is validated by stiffness measurements in indentation tests and through stiffness discrimination based on a user study. According to the indentation test results, the introduction of a pneumatic chamber to granular jamming can amplify the stiffness variation range and reduce hysteresis of the actuator. The advantage of multi-fingered palpation using the proposed actuators is proven by the comparison of the results of the stiffness discrimination performance using two-fingered (sensitivity: 82.2%, specificity: 88.9%, positive predicative value: 80.0%, accuracy: 85.4%, time: 4.84 s) and single-fingered (sensitivity: 76.4%, specificity: 85.7%, positive predicative value: 75.3%, accuracy: 81.8%, time: 7.48 s) stiffness feedback. (paper)

  12. A novel variable stiffness mechanism for dielectric elastomer actuators

    Science.gov (United States)

    Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-08-01

    In this paper, a novel variable stiffness mechanism is proposed for the design of a variable stiffness dielectric elastomer actuator (VSDEA) which combines a flexible strip with a DEA in a dielectric elastomer minimum energy structure. The DEA induces an analog tuning of the transverse curvature of the strip, thus conveniently providing a voltage-controllable flexural rigidity. The VSDEA tends to be a fully flexible and compact structure with the advantages of simplicity and fast response. Both experimental and theoretical investigations are carried out to reveal the variable stiffness performances of the VSDEA. The effect of the clamped location on the bending stiffness of the VSDEA is analyzed, and then effects of the lengths, the loading points and the applied voltages on the bending stiffness are experimentally investigated. An analytical model is developed to verify the availability of this variable stiffness mechanism, and the theoretical results demonstrate that the bending stiffness of the VSDEA decreases as the applied voltage increases, which agree well with the experimental data. Moreover, the experimental results show that the maximum change of the relative stiffness can reach about 88.80%. It can be useful for the design and optimization of active variable stiffness structures and DEAs for soft robots, vibration control, and morphing applications.

  13. Does experimental low back pain change posteroanterior lumbar spinal stiffness and trunk muscle activity? A randomized crossover study.

    Science.gov (United States)

    Wong, Arnold Y L; Parent, Eric C; Prasad, Narasimha; Huang, Christopher; Chan, K Ming; Kawchuk, Gregory N

    2016-05-01

    While some patients with low back pain demonstrate increased spinal stiffness that decreases as pain subsides, this observation is inconsistent. Currently, the relation between spinal stiffness and low back pain remains unclear. This study aimed to investigate the effects of experimental low back pain on temporal changes in posteroanterior spinal stiffness and concurrent trunk muscle activity. In separate sessions five days apart, nine asymptomatic participants received equal volume injections of hypertonic or isotonic saline in random order into the L3-L5 interspinous ligaments. Pain intensity, spinal stiffness (global and terminal stiffness) at the L3 level, and the surface electromyographic activity of six trunk muscles were measured before, immediately after, and 25-minute after injections. These outcome measures under different saline conditions were compared by generalized estimating equations. Compared to isotonic saline injections, hypertonic saline injections evoked significantly higher pain intensity (mean difference: 5.7/10), higher global (mean difference: 0.73N/mm) and terminal stiffness (mean difference: 0.58N/mm), and increased activity of four trunk muscles during indentation (Ppain subsided. While previous clinical research reported inconsistent findings regarding the association between spinal stiffness and low back pain, our study revealed that experimental pain caused temporary increases in spinal stiffness and concurrent trunk muscle co-contraction during indentation, which helps explain the temporal relation between spinal stiffness and low back pain observed in some clinical studies. Our results substantiate the role of spinal stiffness assessments in monitoring back pain progression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Key Insights into Hand Biomechanics: Human Grip Stiffness Can Be Decoupled from Force by Cocontraction and Predicted from Electromyography

    Directory of Open Access Journals (Sweden)

    Hannes Höppner

    2017-05-01

    Full Text Available We investigate the relation between grip force and grip stiffness for the human hand with and without voluntary cocontraction. Apart from gaining biomechanical insight, this issue is particularly relevant for variable-stiffness robotic systems, which can independently control the two parameters, but for which no clear methods exist to design or efficiently exploit them. Subjects were asked in one task to produce different levels of force, and stiffness was measured. As expected, this task reveals a linear coupling between force and stiffness. In a second task, subjects were then asked to additionally decouple stiffness from force at these force levels by using cocontraction. We measured the electromyogram from relevant groups of muscles and analyzed the possibility to predict stiffness and force. Optical tracking was used for avoiding wrist movements. We found that subjects were able to decouple grip stiffness from force when using cocontraction on average by about 20% of the maximum measured stiffness over all force levels, while this ability increased with the applied force. This result contradicts the force–stiffness behavior of most variable-stiffness actuators. Moreover, we found the thumb to be on average twice as stiff as the index finger and discovered that intrinsic hand muscles predominate our prediction of stiffness, but not of force. EMG activity and grip force allowed to explain 72 ± 12% of the measured variance in stiffness by simple linear regression, while only 33 ± 18% variance in force. Conclusively the high signal-to-noise ratio and the high correlation to stiffness of these muscles allow for a robust and reliable regression of stiffness, which can be used to continuously teleoperate compliance of modern robotic hands.

  15. Contact stiffness considerations when simulating tyre/road noise

    Science.gov (United States)

    Winroth, Julia; Kropp, Wolfgang; Hoever, Carsten; Höstmad, Patrik

    2017-11-01

    Tyre/road simulation tools that can capture tyre vibrations, rolling resistance and noise generation are useful for understanding the complex processes that are involved and thereby promoting further development and optimisation. The most detailed tyre/road contact models use a spatial discretisation of the contact and assume an interfacial stiffness to account for the small-scale roughness within the elements. This interfacial stiffness has been found to have a significant impact on the simulated noise emissions but no thorough investigations of this sensitivity have been conducted. Three mechanisms are thought to be involved: The horn effect, the modal composition of the vibrational field of the tyre and the contact forces exciting the tyre vibrations. This study used a numerical tyre/road noise simulation tool based on physical relations to investigate these aspects. The model includes a detailed time-domain contact model with linear or non-linear contact springs that accounts for the effect of local tread deformation on smaller length scales. Results confirm that an increase in contact spring stiffness causes a significant increase of the simulated tyre/road noise. This is primarily caused by a corresponding increase in the contact forces, resulting in larger vibrational amplitudes. The horn effect and the modal composition are relatively unaffected and have minor effects on the radiated noise. A more detailed non-linear contact spring formulation with lower stiffness at small indentations results in a reduced high-frequency content in the contact forces and the simulated noise.

  16. Pseudo-transient Continuation Based Variable Relaxation Solve in Nonlinear Magnetohydrodynamic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jin Chen

    2009-12-07

    Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.

  17. Interfacial free energy and stiffness of aluminum during rapid solidification

    International Nuclear Information System (INIS)

    Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin

    2017-01-01

    Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculation of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.

  18. Multifunctional Stiff Carbon Foam Derived from Bread.

    Science.gov (United States)

    Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin

    2016-07-06

    The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.

  19. Tuning the Stiffness Balance Using Characteristic Frequencies as a Criterion for a Superconducting Gravity Gradiometer

    Science.gov (United States)

    Liu, Xikai; Ma, Dong; Chen, Liang; Liu, Xiangdong

    2018-01-01

    Tuning the stiffness balance is crucial to full-band common-mode rejection for a superconducting gravity gradiometer (SGG). A reliable method to do so has been proposed and experimentally tested. In the tuning scheme, the frequency response functions of the displacement of individual test mass upon common-mode accelerations were measured and thus determined a characteristic frequency for each test mass. A reduced difference in characteristic frequencies between the two test masses was utilized as the criterion for an effective tuning. Since the measurement of the characteristic frequencies does not depend on the scale factors of displacement detection, stiffness tuning can be done independently. We have tested this new method on a single-component SGG and obtained a reduction of two orders of magnitude in stiffness mismatch. PMID:29419796

  20. Stiffness and damping in mechanical design

    National Research Council Canada - National Science Library

    Rivin, Eugene I

    1999-01-01

    ... important conceptual issues are stiffness of mechanical structures and their components and damping in mechanical systems sensitive to and/or generating vibrations. Stiffness and strength are the most important criteria for many mechanical designs. However, although there are hundreds of books on various aspects of strength, and strength issues ar...

  1. Stiffness control of a nylon twisted coiled actuator for use in mechatronic rehabilitation devices.

    Science.gov (United States)

    Edmonds, Brandon P R; Trejos, Ana Luisa

    2017-07-01

    Mechatronic rehabilitation devices, especially wearables, have been researched extensively and proven to be promising additions to physical therapy, but most designs utilize traditional actuators providing unnatural, robot-like movements. Therefore, many researchers have focused on the development of actuators that mimic biological properties to provide patients with improved results, safety, and comfort. Recently, a twisted-coiled actuator (TCA) made from nylon thread has been found to possess many of these important properties when heated, such as variable stiffness, flexibility, and high power density. So far, TCAs have been characterized in controlled environments to define their fundamental properties under simple loading configurations. However, for an actuator like this to be implemented in a biomimetic design such as an exoskeleton, it needs to be characterized and controlled as a biological muscle. One major control law that natural muscles exhibit is stiffness control, allowing humans to passively avoid injury from external forces, or move the limbs in a controlled or high impact motion. This type of control is created by the antagonistic muscle arrangement. In this paper, an antagonistic apparatus was developed to model the TCAs from a biological standpoint, the stiffness was characterized with respect to the TCA temperature, and a fully functional stiffness and position controller was implemented with an incorporated TCA thermal model. The stiffness was found to have a linear relationship to the TCA temperatures (R 2 =0.95). The controller performed with a stiffness accuracy of 98.95% and a position accuracy of 92.7%. A final trial with varying continuous position input and varying stepped stiffness input exhibited position control with R 2 =0.9638.

  2. The Stress and Stiffness Analysis of Diaphragm

    Directory of Open Access Journals (Sweden)

    Qu Dongyue

    2017-01-01

    Full Text Available Diaphragm coupling with its simple structure, small size, high reliability, which can compensate for its input and output displacement deviation by its elastic deformation, is widely used in aerospace, marine, and chemical etc. This paper uses the ANSYS software and its APDL language to analysis the stress distribution when the diaphragm under the load of torque, axial deviation, centrifugal force, angular deviation and multiple loads. We find that the value of maximum stress usually appears in the outer or inner transition region and the axial deviation has a greater influence to the distribution of the stress. Based on above, we got three kinds of stiffness for axial, angular and torque, which the stiffness of diaphragm is nearly invariable. The results can be regard as an important reference for design and optimization of diaphragm coupling.

  3. Defining normal liver stiffness range in a normal healthy Chinese population without liver disease.

    Directory of Open Access Journals (Sweden)

    James Fung

    Full Text Available BACKGROUND: For patients with chronic liver disease, different optimal liver stiffness cut-off values correspond to different stages of fibrosis, which are specific for the underlying liver disease and population. AIMS: To establish the normal ranges of liver stiffness in the healthy Chinese population without underlying liver disease. METHODS: This is a prospective cross sectional study of 2,528 healthy volunteers recruited from the general population and the Red Cross Transfusion Center in Hong Kong. All participants underwent a comprehensive questionnaire survey, measurement of weight, height, and blood pressure. Fasting liver function tests, glucose and cholesterol was performed. Abdominal ultrasound and transient elastography were performed on all participants. RESULTS: Of the 2,528 subjects, 1,998 were excluded with either abnormal liver parenchyma on ultrasound, chronic medical condition, abnormal blood tests including liver enzymes, fasting glucose, fasting cholesterol, high body mass index, high blood pressure, or invalid liver stiffness scan. The reference range for the 530 subjects without known liver disease was 2.3 to 5.9 kPa (mean 4.1, SD 0.89. The median liver stiffness was higher in males compared with females (4.3 vs 4.0 kPa respectively, p55 years (p=0.001. CONCLUSIONS: The healthy reference range for liver stiffness in the Chinese population is 2.3 to 5.9 kPa. Female gender and older age group was associated with a lower median liver stiffness.

  4. The Effect of Shoe Insole Stiffness on Leg Stiffness during Stance Phase of Running in Two Different Speeds ‎among Active Men

    Directory of Open Access Journals (Sweden)

    Zeinab Tazike-Lemeski

    2016-08-01

    Full Text Available Introduction: The effect of shoe insoles with different characteristics and in different running speeds on lower-limb stiffness is still ‎controversial. The aim of this study was to investigate the effect of two types of insoles (soft and semi-rigid in two ‎different running speeds on leg stiffness during stance phase of running among active men.‎ Materials and Methods: ‎15 male students without any background of lower extremity injury were selected. Subjects were asked to run with ‎two controlled velocities of 3.0 ± 0.2 and 5.0 ± 0.1 m/s in control and insole conditions (soft and semi-rigid on a ‎force plate, placed on the middle of 15-meter runway. The cinematics and cinetics of motion were measured and ‎calculated using 5 video cameras and one force plate. The leg stiffness was achieved via dividing the vertical ‎ground reaction force by leg compression. Two-factor repeated measures ANOVA was used to test the hypothesis at ‎the significance level of P £ 0.050.‎ Results: There was a significant difference between the two types of insoles on leg stiffness. In fact, semi-rigid insole significantly increased leg stiffness (P < 0.001. However, this discrepancy was not related to the running speed (P = 0.999. In addition, there was no significant difference between the two different speeds on leg stiffness (P = 0.632. Conclusion: It seems that the increase in shoe insole stiffness may increase the leg stiffness. Furthermore, the effect of insole ‎stiffness is not related to the running speed, and leg stiffness will remains constant in low to medium running speeds.‎

  5. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies,bone tissues will grow into their porous structure,which will reinforce their strength and stiffness.The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around,as if they were part of the bone.The mechanical compatibility of bone substitutes includes both static and dynamic behavior,due to the mechanical properties of bone depending on the strain rate.In this study,split Hopkinson pressure bar technique(SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite,bones with and bones without organic com-ponents,and their dynamic stress-strain curves of the three materials were obtained.The mechanical effects of collagens in bone were assessed,by comparing the difference between the Young’s moduli of the three materials.As the implanted bone substitute becomes a part of bone,it can be regarded as an inclusion composite.The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness.The evaluated result shows that the suitable porosity of HA is 0.8,which is in favor of both static and dynamic stiffness compatibility.

  6. Effect of cinnamon on gastric emptying, arterial stiffness, postprandial lipemia, glycemia, and appetite responses to high-fat breakfast

    OpenAIRE

    Markey, Oonagh; McClean, Conor M; Medlow, Paul; Davison, Gareth W; Trinick, Tom R; Duly, Ellie; Shafat, Amir

    2011-01-01

    Abstract Background Cinnamon has been shown to delay gastric emptying of a high-carbohydrate meal and reduce postprandial glycemia in healthy adults. However, it is dietary fat which is implicated in the etiology and is associated with obesity, type 2 diabetes and cardiovascular disease. We aimed to determine the effect of 3 g cinnamon (Cinnamomum zeylanicum) on GE, postprandial lipemic and glycemic responses, oxidative stress, arterial stiffness, as well as appetite sensations and subsequent...

  7. Exact Stiffness for Beams on Kerr-Type Foundation: The Virtual Force Approach

    Directory of Open Access Journals (Sweden)

    Suchart Limkatanyu

    2013-01-01

    Full Text Available This paper alternatively derives the exact element stiffness equation for a beam on Kerr-type foundation. The shear coupling between the individual Winkler-spring components and the peripheral discontinuity at the boundaries between the loaded and the unloaded soil surfaces are taken into account in this proposed model. The element flexibility matrix is derived based on the virtual force principle and forms the core of the exact element stiffness matrix. The sixth-order governing differential compatibility of the problem is revealed using the virtual force principle and solved analytically to obtain the exact force interpolation functions. The matrix virtual force equation is employed to obtain the exact element flexibility matrix based on the exact force interpolation functions. The so-called “natural” element stiffness matrix is obtained by inverting the exact element flexibility matrix. One numerical example is utilized to confirm the accuracy and the efficiency of the proposed beam element on Kerr-type foundation and to show a more realistic distribution of interactive foundation force.

  8. Arterial stiffness, central hemodynamics, and cardiovascular risk in hypertension

    Science.gov (United States)

    Palatini, Paolo; Casiglia, Edoardo; Gąsowski, Jerzy; Głuszek, Jerzy; Jankowski, Piotr; Narkiewicz, Krzysztof; Saladini, Francesca; Stolarz-Skrzypek, Katarzyna; Tikhonoff, Valérie; Van Bortel, Luc; Wojciechowska, Wiktoria; Kawecka-Jaszcz, Kalina

    2011-01-01

    This review summarizes several scientific contributions at the recent Satellite Symposium of the European Society of Hypertension, held in Milan, Italy. Arterial stiffening and its hemodynamic consequences can be easily and reliably measured using a range of noninvasive techniques. However, like blood pressure (BP) measurements, arterial stiffness should be measured carefully under standardized patient conditions. Carotid-femoral pulse wave velocity has been proposed as the gold standard for arterial stiffness measurement and is a well recognized predictor of adverse cardiovascular outcome. Systolic BP and pulse pressure in the ascending aorta may be lower than pressures measured in the upper limb, especially in young individuals. A number of studies suggest closer correlation of end-organ damage with central BP than with peripheral BP, and central BP may provide additional prognostic information regarding cardiovascular risk. Moreover, BP-lowering drugs can have differential effects on central aortic pressures and hemodynamics compared with brachial BP. This may explain the greater beneficial effect provided by newer antihypertensive drugs beyond peripheral BP reduction. Although many methodological problems still hinder the wide clinical application of parameters of arterial stiffness, these will likely contribute to cardiovascular assessment and management in future clinical practice. Each of the abovementioned parameters reflects a different characteristic of the atherosclerotic process, involving functional and/or morphological changes in the vessel wall. Therefore, acquiring simultaneous measurements of different parameters of vascular function and structure could theoretically enhance the power to improve risk stratification. Continuous technological effort is necessary to refine our methods of investigation in order to detect early arterial abnormalities. Arterial stiffness and its consequences represent the great challenge of the twenty-first century for

  9. A mechanical model of stereocilia that demonstrates a shift in the high-sensitivity region due to the interplay of a negative stiffness and an adaptation mechanism

    International Nuclear Information System (INIS)

    Lee, Changwon; Park, Sukyung

    2012-01-01

    Stereocilia are the basic sensory units of nature's inertial sensors and are highly sensitive over broad dynamic ranges, which is a major challenge in the design of conventional engineering sensors. The high sensitivity that is maintained by stereocilia was hypothesized to exist due to a combination of adaptation and negative stiffness mechanisms, which shift the region of highest sensitivity toward the active operation range of the stereocilia bundle. To examine the adaptation hypothesis in terms of its potential applicability to future applications regarding the design of inertial sensors, we developed a mechanical mimicry of the interplay between negative stiffness and the adaptation of the stereocilia that produces spontaneous oscillation of the hair bundle. The mechanical model consists of an inverted pendulum and a fixed T-bar that mimic the interaction of two adjacent stereocilia. To focus on the interaction of one gating spring and the corresponding adaptation motor without the effect of coupling from the other gating springs attached to the neighboring stereocilia, we fixed one bar that contains the adaptation motor. To emulate the negative resistance of the tip-link due to the transient stiffness softening by the gating ion channel, a magnet pair was attached to the top of the inverted pendulum and the fixed T-bar. Readjustment of the tip-link tension by the ‘slipping down and climbing up’ motion of the adaptation molecular motors was demonstrated by the side-to-side movement of the magnet by a step motor. The negative stiffness region was observed near the equilibrium position and shifted with the activation of the adaptation motor. The temporal demonstration of the stiffness shift was measured as a spontaneous oscillation. The results showed that the interplay between the negative stiffness and the adaptation mechanism was mechanically produced by the combination of a repulsive force and its continuous readjustment and is better understood through a

  10. Measure solutions for non-local interaction PDEs with two species

    Energy Technology Data Exchange (ETDEWEB)

    Francesco, Marco Di [Department of Mathematical and Statistical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom); Fagioli, Simone [DISIM—Department of Information Engineering, Computer Science and Mathematics, University of L' Aquila, Via Vetoio 1 (Coppito) 67100 L' Aquila (AQ) (Italy)

    2013-10-01

    This paper presents a systematic existence and uniqueness theory of weak measure solutions for systems of non-local interaction PDEs with two species, which are the PDE counterpart of systems of deterministic interacting particles with two species. The main motivations behind those models arise in cell biology, pedestrian movements, and opinion formation. In case of symmetrizable systems (i.e. with cross-interaction potentials one multiple of the other), we provide a complete existence and uniqueness theory within (a suitable generalization of) the Wasserstein gradient flow theory in Ambrosio et al (2008 Gradient Flows in Metric Spaces and in the Space of Probability Measures (Lectures in Mathematics ETH Zürich) 2nd edn (Basel: Birkhäuser)) and Carrillo et al (2011 Duke Math. J. 156 229–71), which allows the consideration of interaction potentials with a discontinuous gradient at the origin. In the general case of non-symmetrizable systems, we provide an existence result for measure solutions which uses a semi-implicit version of the Jordan–Kinderlehrer–Otto (JKO) scheme (Jordan et al 1998 SIAM J. Math. Anal. 29 1–17), which holds in a reasonable non-smooth setting for the interaction potentials. Uniqueness in the non-symmetrizable case is proven for C{sup 2} potentials using a variant of the method of characteristics. (paper)

  11. Measure solutions for non-local interaction PDEs with two species

    International Nuclear Information System (INIS)

    Francesco, Marco Di; Fagioli, Simone

    2013-01-01

    This paper presents a systematic existence and uniqueness theory of weak measure solutions for systems of non-local interaction PDEs with two species, which are the PDE counterpart of systems of deterministic interacting particles with two species. The main motivations behind those models arise in cell biology, pedestrian movements, and opinion formation. In case of symmetrizable systems (i.e. with cross-interaction potentials one multiple of the other), we provide a complete existence and uniqueness theory within (a suitable generalization of) the Wasserstein gradient flow theory in Ambrosio et al (2008 Gradient Flows in Metric Spaces and in the Space of Probability Measures (Lectures in Mathematics ETH Zürich) 2nd edn (Basel: Birkhäuser)) and Carrillo et al (2011 Duke Math. J. 156 229–71), which allows the consideration of interaction potentials with a discontinuous gradient at the origin. In the general case of non-symmetrizable systems, we provide an existence result for measure solutions which uses a semi-implicit version of the Jordan–Kinderlehrer–Otto (JKO) scheme (Jordan et al 1998 SIAM J. Math. Anal. 29 1–17), which holds in a reasonable non-smooth setting for the interaction potentials. Uniqueness in the non-symmetrizable case is proven for C 2 potentials using a variant of the method of characteristics. (paper)

  12. Analysis of suspension with variable stiffness and variable damping force for automotive applications

    Directory of Open Access Journals (Sweden)

    Lalitkumar Maikulal Jugulkar

    2016-05-01

    Full Text Available Passive shock absorbers are designed for standard load condition. These give better vibration isolation performance only for the standard load condition. However, if the sprung mass is lesser than the standard mass, comfort and road holding ability is affected. It is demonstrated that sprung mass acceleration increases by 50%, when the vehicle mass varies by 100 kg. In order to obtain consistent damping performance from the shock absorber, it is essential to vary its stiffness and damping properties. In this article, a variable stiffness system is presented, which comprises of two helical springs and a variable fluid damper. Fluid damper intensity is changed in four discrete levels to achieve variable stiffness of the prototype. Numerical simulations have been performed with MATLAB Simscape and Simulink which have been with experimentation on a prototype. Furthermore, the numerical model of the prototype is used in design of real size shock absorber with variable stiffness and damping. Numerical simulation results on the real size model indicate that the peak acceleration will improve by 15% in comparison to the conventional passive solution, without significant deterioration of road holding ability. Arrangement of sensors and actuators for incorporating the system in a vehicle suspension has also been discussed.

  13. Artificial neural networks for stiffness estimation in magnetic resonance elastography.

    Science.gov (United States)

    Murphy, Matthew C; Manduca, Armando; Trzasko, Joshua D; Glaser, Kevin J; Huston, John; Ehman, Richard L

    2018-07-01

    To investigate the feasibility of using artificial neural networks to estimate stiffness from MR elastography (MRE) data. Artificial neural networks were fit using model-based training patterns to estimate stiffness from images of displacement using a patch size of ∼1 cm in each dimension. These neural network inversions (NNIs) were then evaluated in a set of simulation experiments designed to investigate the effects of wave interference and noise on NNI accuracy. NNI was also tested in vivo, comparing NNI results against currently used methods. In 4 simulation experiments, NNI performed as well or better than direct inversion (DI) for predicting the known stiffness of the data. Summary NNI results were also shown to be significantly correlated with DI results in the liver (R 2  = 0.974) and in the brain (R 2  = 0.915), and also correlated with established biological effects including fibrosis stage in the liver and age in the brain. Finally, repeatability error was lower in the brain using NNI compared to DI, and voxel-wise modeling using NNI stiffness maps detected larger effects than using DI maps with similar levels of smoothing. Artificial neural networks represent a new approach to inversion of MRE data. Summary results from NNI and DI are highly correlated and both are capable of detecting biologically relevant signals. Preliminary evidence suggests that NNI stiffness estimates may be more resistant to noise than an algebraic DI approach. Taken together, these results merit future investigation into NNIs to improve the estimation of stiffness in small regions. Magn Reson Med 80:351-360, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. The stable stiffness triangle - drained sand during deformation cycles

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2017-01-01

    Cyclic, drained sand stiffness was observed using the Danish triaxial appa- ratus. New, deformation dependant soil property (the stable stiffness triangle) was detected. Using the the stable stiffness triangle, secant stiffness of drained sand was plausible to predict (and control) even during ir...... findings can find application in off-shore, seismic and other engi- neering practice, or inspire new branches of research and modelling wherever dynamic, cyclic or transient loaded sand is encountered....

  15. Pipe elbow stiffness coefficients including shear and bend flexibility factors for use in direct stiffness codes

    International Nuclear Information System (INIS)

    Perry, R.F.

    1977-01-01

    Historically, developments of computer codes used for piping analysis were based upon the flexibility method of structural analysis. Because of the specialized techniques employed in this method, the codes handled systems composed of only piping elements. Over the past ten years, the direct stiffness method has gained great popularity because of its systematic solution procedure regardless of the type of structural elements composing the system. A great advantage is realized with a direct stiffness code that combines piping elements along with other structural elements such as beams, plates, and shells, in a single model. One common problem, however, has been the lack of an accurate pipe elbow element that would adequately represent the effects of transverse shear and bend flexibility factors. The purpose of the present paper is to present a systematic derivation of the required 12x12 stiffness matrix and load vectors for a three dimensional pipe elbow element which includes the effects of transverse shear and pipe bend flexibility according to the ASME Boiler and Pressure Vessel Code, Section III. The results are presented analytically and as FORTRAN subroutines to be directly incorporated into existing direct stiffness codes. (Auth.)

  16. Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering

    Science.gov (United States)

    Lee, Hyuk; Lee, Jun Kyu; Seung, Hong Min; Kim, Yoon Young

    2018-03-01

    The metasurface concept has a significant potential due to its novel wavefront-shaping functionalities that can be critically useful for ultrasonic and solid wave-based applications. To achieve the desired functionalities, elastic metasurfaces should cover full 2π phase shift and also acquire full transmission within subwavelength scale. However, they have not been explored much with respect to the elastic regime, because the intrinsic proportionality of mass-stiffness within the continuum elastic media causes an inevitable trade-off between abrupt phase shift and sufficient transmission. Our goal is to engineer an elastic metasurface that can realize an inverse relation between (amplified) effective mass and (weakened) stiffness in order to satisfy full 2π phase shift as well as full transmission. To achieve this goal, we propose a continuum elastic metasurface unit cell that is decomposed into two substructures, namely a mass-tuning substructure with a local dipolar resonator and a stiffness-tuning substructure composed of non-resonant multiply-perforated slits. We demonstrate analytically, numerically, and experimentally that this unique substructured unit cell can satisfy the required phase shift with high transmission. The substructuring enables independent tuning of the elastic properties over a wide range of values. We use a mass-spring model of the proposed continuum unit cell to investigate the working mechanism of the proposed metasurface. With the designed metasurface consisting of substructured unit cells embedded in an aluminum plate, we demonstrate that our metasurface can successfully realize anomalous steering and focusing of in-plane longitudinal ultrasonic beams. The proposed substructuring concept is expected to provide a new principle for the design of general elastic metasurfaces that can be used to efficiently engineer arbitrary wave profiles.

  17. Direct measurement of the intrinsic ankle stiffness during standing

    NARCIS (Netherlands)

    Vlutters, Mark; Vlutters, M.; Boonstra, Tjitske; Schouten, Alfred Christiaan; van der Kooij, Herman

    2015-01-01

    Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic

  18. Operator-Based Preconditioning of Stiff Hyperbolic Systems

    International Nuclear Information System (INIS)

    Reynolds, Daniel R.; Samtaney, Ravi; Woodward, Carol S.

    2009-01-01

    We introduce an operator-based scheme for preconditioning stiff components encountered in implicit methods for hyperbolic systems of partial differential equations posed on regular grids. The method is based on a directional splitting of the implicit operator, followed by a characteristic decomposition of the resulting directional parts. This approach allows for solution to any number of characteristic components, from the entire system to only the fastest, stiffness-inducing waves. We apply the preconditioning method to stiff hyperbolic systems arising in magnetohydro- dynamics and gas dynamics. We then present numerical results showing that this preconditioning scheme works well on problems where the underlying stiffness results from the interaction of fast transient waves with slowly-evolving dynamics, scales well to large problem sizes and numbers of processors, and allows for additional customization based on the specific problems under study

  19. Biomechanical constraints on the feedforward regulation of endpoint stiffness.

    Science.gov (United States)

    Hu, Xiao; Murray, Wendy M; Perreault, Eric J

    2012-10-01

    Although many daily tasks tend to destabilize arm posture, it is still possible to have stable interactions with the environment by regulating the multijoint mechanics of the arm in a task-appropriate manner. For postural tasks, this regulation involves the appropriate control of endpoint stiffness, which represents the stiffness of the arm at the hand. Although experimental studies have been used to evaluate endpoint stiffness control, including the orientation of maximal stiffness, the underlying neural strategies remain unknown. Specifically, the relative importance of feedforward and feedback mechanisms has yet to be determined due to the difficulty separately identifying the contributions of these mechanisms in human experiments. This study used a previously validated three-dimensional musculoskeletal model of the arm to quantify the degree to which the orientation of maximal endpoint stiffness could be changed using only steady-state muscle activations, used to represent feedforward motor commands. Our hypothesis was that the feedforward control of endpoint stiffness orientation would be significantly constrained by the biomechanical properties of the musculoskeletal system. Our results supported this hypothesis, demonstrating substantial biomechanical constraints on the ability to regulate endpoint stiffness throughout the workspace. The ability to regulate stiffness orientation was further constrained by additional task requirements, such as the need to support the arm against gravity or exert forces on the environment. Together, these results bound the degree to which slowly varying feedforward motor commands can be used to regulate the orientation of maximum arm stiffness and provide a context for better understanding conditions in which feedback control may be needed.

  20. Simvastatin Ameliorates Matrix Stiffness-Mediated Endothelial Monolayer Disruption.

    Directory of Open Access Journals (Sweden)

    Marsha C Lampi

    Full Text Available Arterial stiffening accompanies both aging and atherosclerosis, and age-related stiffening of the arterial intima increases RhoA activity and cell contractility contributing to increased endothelium permeability. Notably, statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase inhibitors whose pleiotropic effects include disrupting small GTPase activity; therefore, we hypothesized the statin simvastatin could be used to attenuate RhoA activity and inhibit the deleterious effects of increased age-related matrix stiffness on endothelial barrier function. Using polyacrylamide gels with stiffnesses of 2.5, 5, and 10 kPa to mimic the physiological stiffness of young and aged arteries, endothelial cells were grown to confluence and treated with simvastatin. Our data indicate that RhoA and phosphorylated myosin light chain activity increase with matrix stiffness but are attenuated when treated with the statin. Increases in cell contractility, cell-cell junction size, and indirect measurements of intercellular tension that increase with matrix stiffness, and are correlated with matrix stiffness-dependent increases in monolayer permeability, also decrease with statin treatment. Furthermore, we report that simvastatin increases activated Rac1 levels that contribute to endothelial barrier enhancing cytoskeletal reorganization. Simvastatin, which is prescribed clinically due to its ability to lower cholesterol, alters the endothelial cell response to increased matrix stiffness to restore endothelial monolayer barrier function, and therefore, presents a possible therapeutic intervention to prevent atherogenesis initiated by age-related arterial stiffening.

  1. Optimal control of coupled parabolic-hyperbolic non-autonomous PDEs: infinite-dimensional state-space approach

    Science.gov (United States)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2018-04-01

    This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.

  2. The Characteristics of Vibration Isolation System with Damping and Stiffness Geometrically Nonlinear

    Science.gov (United States)

    Lu, Ze-Qi; Chen, Li-Qun; Brennan, Michael J.; Li, Jue-Ming; Ding, Hu

    2016-09-01

    The paper concerns an investigation into the use of both stiffness and damping nonlinearity in the vibration isolator to improve its effectiveness. The nonlinear damping and nonlinear stiffness are both achieved by horizontal damping and stiffness as the way of the geometrical nonlinearity. The harmonic balance method is used to analyze the force transmissibility of such vibration isolation system. It is found that as the horizontal damping increasing, the height of the force transmissibility peak is decreased and the high-frequency force transmissibility is almost the same. The results are also validated by some numerical method. Then the RMS of transmissibility under Gaussian white noise is calculated numerically, the results demonstrate that the beneficial effects of the damping nonlinearity can be achieved under random excitation.

  3. Model Reduction Using Proper Orthogonal Decomposition and Predictive Control of Distributed Reactor System

    Directory of Open Access Journals (Sweden)

    Alejandro Marquez

    2013-01-01

    Full Text Available This paper studies the application of proper orthogonal decomposition (POD to reduce the order of distributed reactor models with axial and radial diffusion and the implementation of model predictive control (MPC based on discrete-time linear time invariant (LTI reduced-order models. In this paper, the control objective is to keep the operation of the reactor at a desired operating condition in spite of the disturbances in the feed flow. This operating condition is determined by means of an optimization algorithm that provides the optimal temperature and concentration profiles for the system. Around these optimal profiles, the nonlinear partial differential equations (PDEs, that model the reactor are linearized, and afterwards the linear PDEs are discretized in space giving as a result a high-order linear model. POD and Galerkin projection are used to derive the low-order linear model that captures the dominant dynamics of the PDEs, which are subsequently used for controller design. An MPC formulation is constructed on the basis of the low-order linear model. The proposed approach is tested through simulation, and it is shown that the results are good with regard to keep the operation of the reactor.

  4. Effects of Core Softness and Bimodularity of Fibreglass Layers on Flexural Stiffness of Polymer Sandwich Structures

    Directory of Open Access Journals (Sweden)

    Šuba Oldřich

    2017-01-01

    Full Text Available This paper deals with the study of the flexural stiffness of the sandwich structures based on fibreglass and polymeric foams. The influence of geometrical and material parameters on the resulting effective flexural stiffness of the sandwich structure is being studied experimentally, analytically and by using FEM models. The effective modulus of elasticity of the sandwich-structured element is being studied and its theoretical and model dependencies on the flexibility of the foam core and bimodularity of the fibreglass layers are being investigated. The achieved results are compared with the experimentally observed values. This study shows that it is necessary to pay special attention to the issue of flexural stiffness of the walls when designing sandwich shell products in order to prevent possible failures in the practical applications of these types of structures.

  5. Cocoa intake and arterial stiffness in subjects with cardiovascular risk factors

    Directory of Open Access Journals (Sweden)

    Recio-Rodríguez José

    2012-02-01

    Full Text Available Abstract Background To analyze the relationship of cocoa intake to central and peripheral blood pressure, arterial stiffness, and carotid intima-media thickness in subjects with some cardiovascular risk factor. Findings Design: A cross-sectional study of 351 subjects (mean age 54.76 years, 62.4% males. Measurements: Intake of cocoa and other foods using a food frequency questionnaire, central and peripheral (ambulatory and office blood pressure, central and peripheral augmentation index, pulse wave velocity, ambulatory arterial stiffness index, carotid intima-media thickness, and ankle-brachial index. Results: Higher pulse wave velocity and greater cardiovascular risk were found in non-cocoa consumers as compared to high consumers (p Conclusions In subjects with some cardiovascular risk factors, cocoa consumption does not imply improvement in the arterial stiffness values. Trial Registration Clinical Trials.gov Identifier: NCT01325064.

  6. Whole-body vibration as a potential countermeasure for dynapenia and arterial stiffness

    Directory of Open Access Journals (Sweden)

    Arturo Figueroa

    2016-09-01

    Full Text Available Age-related decreases in muscle mass and strength are associated with decreased mobility, quality of life, and increased cardiovascular risk. Coupled with the prevalence of obesity, the risk of death becomes substantially greater. Resistance training (RT has a well-documented beneficial impact on muscle mass and strength in young and older adults, although the high-intensity needed to elicit these adaptations may have a detrimental or negligible impact on vascular function, specifically on arterial stiffness. Increased arterial stiffness is associated with systolic hypertension, left ventricular hypertrophy, and myocardial ischemia. Therefore, improvements of muscle strength and arterial function are important in older adults. Recently, whole-body vibration (WBV exercise, a novel modality of strength training, has shown to exhibit similar results on muscle strength as RT in a wide-variety of populations, with the greatest impact in elderly individuals with limited muscle function. Additionally, WBV training has been shown to have beneficial effects on vascular function by reducing arterial stiffness. This article reviews relevant publications reporting the effects of WBV on muscle strength and/or arterial stiffness. Findings from current studies suggest the use of WBV training as an alternative modality to traditional RT to countermeasure the age-related detriments in muscle strength and arterial stiffness in older adults.

  7. Whole-body vibration as a potential countermeasure for dynapenia and arterial stiffness.

    Science.gov (United States)

    Figueroa, Arturo; Jaime, Salvador J; Alvarez-Alvarado, Stacey

    2016-09-01

    Age-related decreases in muscle mass and strength are associated with decreased mobility, quality of life, and increased cardiovascular risk. Coupled with the prevalence of obesity, the risk of death becomes substantially greater. Resistance training (RT) has a well-documented beneficial impact on muscle mass and strength in young and older adults, although the high-intensity needed to elicit these adaptations may have a detrimental or negligible impact on vascular function, specifically on arterial stiffness. Increased arterial stiffness is associated with systolic hypertension, left ventricular hypertrophy, and myocardial ischemia. Therefore, improvements of muscle strength and arterial function are important in older adults. Recently, whole-body vibration (WBV) exercise, a novel modality of strength training, has shown to exhibit similar results on muscle strength as RT in a wide-variety of populations, with the greatest impact in elderly individuals with limited muscle function. Additionally, WBV training has been shown to have beneficial effects on vascular function by reducing arterial stiffness. This article reviews relevant publications reporting the effects of WBV on muscle strength and/or arterial stiffness. Findings from current studies suggest the use of WBV training as an alternative modality to traditional RT to countermeasure the age-related detriments in muscle strength and arterial stiffness in older adults.

  8. Stiff quantum polymers

    OpenAIRE

    Kleinert, H.

    2009-01-01

    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  9. Arterial Stiffness in Children: Pediatric Measurement and Considerations

    Science.gov (United States)

    Savant, Jonathan D.; Furth, Susan L.; Meyers, Kevin E.C.

    2014-01-01

    Background Arterial stiffness is a natural consequence of aging, accelerated in certain chronic conditions, and predictive of cardiovascular events in adults. Emerging research suggests the importance of arterial stiffness in pediatric populations. Methods There are different indices of arterial stiffness. The present manuscript focuses on carotid-femoral pulse wave velocity and pulse wave analysis, although other methodologies are discussed. Also reviewed are specific measurement considerations for pediatric populations and the literature describing arterial stiffness in children with certain chronic conditions (primary hypertension, obesity, diabetes, chronic kidney disease, hypercholesterolemia, genetic syndromes involving vasculopathy, and solid organ transplant recipients). Conclusions The measurement of arterial stiffness in children is feasible and, under controlled conditions, can give accurate information about the underlying state of the arteries. This potentially adds valuable information about the functionality of the cardiovascular system in children with a variety of chronic diseases well beyond that of the brachial artery blood pressure. PMID:26587447

  10. Arterial stiffness in 10-year-old children: current and early determinants.

    Science.gov (United States)

    Schack-Nielsen, Lene; Mølgaard, Christian; Larsen, Dorthe; Martyn, Christopher; Michaelsen, Kim Fleischer

    2005-12-01

    It has been suggested that CVD has its origins in early life. An impairment of fetal growth and early postnatal nutrition may have programming effects on cardiovascular physiology. In addition, traditional risk factors for CVD may initiate the atherosclerotic process during childhood. We explored the effect of fat intake, physical activity and lipid profile in childhood, and birth weight, growth during infancy and breast-feeding on arterial stiffness in a cohort study of ninety-three 10-year-old children followed during infancy and re-examined at the age of 10 years. Arterial stiffness in two arterial segments (aorto-radial and aorto-femoral) was measured as pulse wave velocity. Arterial stiffness was inversely associated with physical activity (a regression coefficient in cm/s (95 % CI) of -6.8 (-11.2, -2.4) and -3.9 (-6.9, -0.8) per h of high physical activity/d in the aorto-radial and aorto-femoral segments, respectively). Arterial stiffness was also positively associated with dietary fat energy percentage (3.1 (95 % CI 0.9, 5.2) and 1.8 (95 % CI 0.2, 3.2) per fat energy percentage in the aorto-radial and aorto-femoral segments, respectively) but was not related to body composition, insulin resistance or lipid profile. Arterial stiffness was also positively associated with duration of breast-feeding for the aorto-femoral segment only (2.1 (95 % CI 0.4, 3.7) per month) but was not associated with growth in early life. In conclusion, patterns of physical activity and diet, and history of breast-feeding in infancy, have an influence on the stiffness of the large arteries in children. The long-term effects of this are unknown.

  11. Influences of the guide bearing stiffness on the critical speed of rotation in the main shaft system

    International Nuclear Information System (INIS)

    Bai, B; Zhang, L X; Zhao, L

    2012-01-01

    An analysis is carried out on the natural vibration characteristics of the main shaft system of a hydro-turbine generating set. The critical speed of rotation in different orders are calculated based on simplified real parameters and the influences of different guide bearing stiffness on the critical speed are analyzed. The results show that the up guide bearing has little influence on the critical speed; however, the down and the water guide bearings strongly affect the critical speed and to a certain extent the 'saturation' phenomenon happens; as all of these three bearings stiffness become larger at the same time, the critical speed also increases significantly. So it is necessary to consider the effect of the bearing stiffness when doing an estimation of the critical speed.

  12. Relation of the aortic stiffness with the GRACE risk score in patients with the non ST-segment elevation myocardial infarction.

    Science.gov (United States)

    Omer, Gedikli; Gokhan, Aksan; Adem, Uzun; Sabri, Demircan; Korhan, Soylu

    2014-01-01

    Current guidelines recommend clinical risk scoring systems for the patients diagnosed and determinated treatment strategy with in Non-ST-elevation elevation myocardial infarction (NSTEMI). Previous studies demonstrated association between aortic elasticity properties, stiffness and severity CAD. However, the associations between Aortic stiffness, elasticity properties and clinical risk scores have not been investigated. In the present study we have evaluated the relation between the Global Registry of Acute Coronary Events (GRACE) risk score and aortic stiffness in patients with NSTEMI. We prospectively analyzed 87 consecutive patients with NSTEMI. Aortic elastic parameter and stiffness parameter were calculated from the echocardiographically derived thoracic aortic diameters (mm/m(2)), and the measurement of pulse pressure obtained by cuff sphygmomanometry. We have categorized the patients in to two groups as low ((n = 45) (GRACE risk score ≤ 140)) and high ((n = 42) (GRACE risk score > 140)) risk group according to GRACE risk score and compare the both groups. Table 1 shows baseline characteristics of patients. Our study showed that Aortic strain was significantly low (3.5 ± 1.4, 7.9 ± 2.3 respectively, p < 0.001) and aortic stiffness index was significantly high (3.9 ± 0.38; 3 ± 0.35, respectively, p < 0.001) in the high risk group values compared to those with low risk group. The aortic stiffness index was the only independent predictor of GRACE risk score (OR: 119.390; 95% CI: 2.925-4872.8; p = 0.011) in multivariate analysis. We found a significant correlation between aortic stiffness, impaired elasticity and GRACE risk score. Aortic stiffness index was the only independent variable of the high GRACE risk score. The inclusion of aortic stiffness into the GRACE risk score could allow improved risk classification of patients with ACS at admission and this may be important in the diagnosis, follow up and treatment of the patients.

  13. Numerical investigation of the relationship between magnetic stiffness and minor loop size in the HTS levitation system

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2017-10-01

    Full Text Available The effect of minor loop size on the magnetic stiffness has not been paid attention to by most researchers in experimental and theoretical studies about the high temperature superconductor (HTS magnetic levitation system. In this work, we numerically investigate the average magnetic stiffness obtained by the minor loop traverses Δz (or Δx varying from 0.1 mm to 2 mm in zero field cooling and field cooling regimes, respectively. The approximate values of the magnetic stiffness with zero traverse are obtained using the method of linear extrapolation. Compared with the average magnetic stiffness gained by any minor loop traverse, these approximate values are Not always close to the average magnetic stiffness produced by the smallest size of minor loops. The relative deviation ranges of average magnetic stiffness gained by the usually minor loop traverse (1 or 2 mm are presented by the ratios of approximate values to average stiffness for different moving processes and two typical cooling conditions. The results show that most of average magnetic stiffness are remarkably influenced by the sizes of minor loop, which indicates that the magnetic stiffness obtained by a single minor loop traverse Δz or Δx, for example, 1 or 2 mm, can be generally caused a large deviation.

  14. Late gestational hypoxia and a postnatal high salt diet programs endothelial dysfunction and arterial stiffness in adult mouse offspring.

    Science.gov (United States)

    Walton, Sarah L; Singh, Reetu R; Tan, Tiffany; Paravicini, Tamara M; Moritz, Karen M

    2016-03-01

    Gestational hypoxia and high dietary salt intake have both been associated with impaired vascular function in adulthood. Using a mouse model of prenatal hypoxia, we examined whether a chronic high salt diet had an additive effect in promoting vascular dysfunction in offspring. Pregnant CD1 dams were placed in a hypoxic chamber (12% O2) or housed under normal conditions (21% O2) from embryonic day 14.5 until birth. Gestational hypoxia resulted in a reduced body weight for both male and female offspring at birth. This restriction in body weight persisted until weaning, after which the animals underwent catch-up growth. At 10 weeks of age, a subset of offspring was placed on a high salt diet (5% NaCl). Pressurized myography of mesenteric resistance arteries at 12 months of age showed that both male and female offspring exposed to maternal hypoxia had significantly impaired endothelial function, as demonstrated by impaired vasodilatation to ACh but not sodium nitroprusside. Endothelial dysfunction caused by prenatal hypoxia was not exacerbated by postnatal consumption of a high salt diet. Prenatal hypoxia increased microvascular stiffness in male offspring. The combination of prenatal hypoxia and a postnatal high salt diet caused a leftward shift in the stress-strain relationship in both sexes. Histopathological analysis of aortic sections revealed a loss of elastin integrity and increased collagen, consistent with increased vascular stiffness. These results demonstrate that prenatal hypoxia programs endothelial dysfunction in both sexes. A chronic high salt diet in postnatal life had an additive deleterious effect on vascular mechanics and structural characteristics in both sexes. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  15. Research on the Vibration Insulation of High-Speed Train Bogies in Mid and High Frequency

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2018-01-01

    Full Text Available According to a large amount of the test data, the mid and high frequency vibrations of high-speed bogies are very notable, especially in the 565~616 Hz range, which are just the passing frequencies corresponding to the 22nd to 24th polygonal wear of the wheel. In order to investigate the main cause of wheel higher-order polygon formation, a 3D flexible model of a Chinese high-speed train bogie is developed using the explicit finite element method. The results show that the couple vibration of bogie and wheelset may lead to the high-order wears of wheel. In order to reduce the coupled resonance of the wheelset and the bogie frame, the effects of the stiffness and damping of the primary suspensions, wheelset axle radius, and bogie frame strength on the vibration transmissibility are discussed carefully. The numerical results show that the resonance peaks in high frequency range can be reduced by reducing the stiffness of axle box rotary arm joint, reducing the wheelset axle radius or strengthening the bogie frame location. The related results may provide a reference for structure improvement of the existing bogies and structure design of the new high-speed bogies.

  16. Classification of stable solutions for non-homogeneous higher-order elliptic PDEs

    Directory of Open Access Journals (Sweden)

    Abdellaziz Harrabi

    2017-04-01

    Full Text Available Abstract Under some assumptions on the nonlinearity f, we will study the nonexistence of nontrivial stable solutions or solutions which are stable outside a compact set of R n $\\mathbb {R}^{n}$ for the following semilinear higher-order problem: ( − Δ k u = f ( u in  R n , $$\\begin{aligned} (-\\Delta^{k} u= f(u \\quad \\mbox{in }\\mathbb {R}^{n}, \\end{aligned}$$ with k = 1 , 2 , 3 , 4 $k=1,2,3,4$ . The main methods used are the integral estimates and the Pohozaev identity. Many classes of nonlinearity will be considered; even the sign-changing nonlinearity, which has an adequate subcritical growth at zero as for example f ( u = − m u + λ | u | θ − 1 u − μ | u | p − 1 u $f(u= -m u +\\lambda|u|^{\\theta-1}u-\\mu |u|^{p-1}u$ , where m ≥ 0 $m\\geq0$ , λ > 0 $\\lambda>0$ , μ > 0 $\\mu>0$ , p , θ > 1 $p, \\theta>1$ . More precisely, we shall revise the nonexistence theorem of Berestycki and Lions (Arch. Ration. Mech. Anal. 82:313-345, 1983 in the class of smooth finite Morse index solutions as the well known work of Bahri and Lions (Commun. Pure Appl. Math. 45:1205-1215, 1992. Also, the case when f ( u u $f(uu$ is a nonnegative function will be studied under a large subcritical growth assumption at zero, for example f ( u = | u | θ − 1 u ( 1 + | u | q $f(u=|u|^{\\theta-1}u(1 + |u|^{q}$ or f ( u = | u | θ − 1 u e | u | q $f(u= |u|^{\\theta-1}u e^{|u|^{q}}$ , θ > 1 $\\theta>1$ and q > 0 $q>0$ . Extensions to solutions which are merely stable are discussed in the case of supercritical growth with k = 1 $k=1$ .

  17. The role of tissue renin angiotensin aldosterone system in the development of endothelial dysfunction and arterial stiffness

    Directory of Open Access Journals (Sweden)

    Annayya R Aroor

    2013-10-01

    Full Text Available Epidemiological studies support the notion that arterial stiffness is an independent predictor of adverse cardiovascular events contributing significantly to systolic hypertension, impaired ventricular-arterial coupling and diastolic dysfunction, impairment in myocardial oxygen supply and demand, and progression of kidney disease. Although arterial stiffness is associated with aging, it is accelerated in the presence of obesity and diabetes. The prevalence of arterial stiffness parallels the increase of obesity that is occurring in epidemic proportions and is partly driven by a sedentary life style and consumption of a high fructose, high salt and high fat western diet. Although the underlying mechanisms and mediators of arterial stiffness are not well understood, accumulating evidence supports the role of insulin resistance and endothelial dysfunction. The local tissue renin angiotensin aldosterone system (RAAS in the vascular tissue and immune cells and perivascular adipose tissue is recognized as an important element involved in endothelial dysfunction which contributes significantly to arterial stiffness. Activation of vascular RAAS is seen in humans and animal models of obesity and diabetes, and associated with enhanced oxidative stress and inflammation in the vascular tissue. The cross talk between angiotensin and aldosterone underscores the importance of mineralocorticoid receptors in modulation of insulin resistance, decreased bioavailability of nitric oxide, endothelial dysfunction and arterial stiffness. In addition, both innate and adaptive immunity are involved in this local tissue activation of RAAS. In this review we will attempt to present a unifying mechanism of how environmental and immunological factors are involved in this local tissue RAAS activation, and the role of this process in the development of endothelial dysfunction and arterial stiffness and targeting tissue RAAS activation.

  18. Effect of cinnamon on gastric emptying, arterial stiffness, postprandial lipemia, glycemia, and appetite responses to high-fat breakfast

    Directory of Open Access Journals (Sweden)

    Trinick Tom R

    2011-09-01

    Full Text Available Abstract Background Cinnamon has been shown to delay gastric emptying of a high-carbohydrate meal and reduce postprandial glycemia in healthy adults. However, it is dietary fat which is implicated in the etiology and is associated with obesity, type 2 diabetes and cardiovascular disease. We aimed to determine the effect of 3 g cinnamon (Cinnamomum zeylanicum on GE, postprandial lipemic and glycemic responses, oxidative stress, arterial stiffness, as well as appetite sensations and subsequent food intake following a high-fat meal. Methods A single-blind randomized crossover study assessed nine healthy, young subjects. GE rate of a high-fat meal supplemented with 3 g cinnamon or placebo was determined using the 13C octanoic acid breath test. Breath, blood samples and subjective appetite ratings were collected in the fasted and during the 360 min postprandial period, followed by an ad libitum buffet meal. Gastric emptying and 1-day fatty acid intake relationships were also examined. Results Cinnamon did not change gastric emptying parameters, postprandial triacylglycerol or glucose concentrations, oxidative stress, arterial function or appetite (p half and 1-day palmitoleic acid (r = -0.78, eiconsenoic acid (r = -0.84 and total omega-3 intake (r = -0.72. The ingestion of 3 g cinnamon had no effect on GE, arterial stiffness and oxidative stress following a HF meal. Conclusions 3 g cinnamon did not alter the postprandial response to a high-fat test meal. We find no evidence to support the use of 3 g cinnamon supplementation for the prevention or treatment of metabolic disease. Dietary fatty acid intake requires consideration in future gastrointestinal studies. Trial registration Trial registration number: at http://www.clinicaltrial.gov: NCT01350284

  19. Active Magnetic Bearings Stiffness and Damping Identification from Frequency Characteristics of Control System

    Directory of Open Access Journals (Sweden)

    Chaowu Jin

    2016-01-01

    Full Text Available At present, the stiffness and damping identification for active magnetic bearings (AMBs are still in the stage of theoretical analysis. The theoretical analysis indicates that if the mechanical structure and system parameters are determined, AMBs stiffness and damping are only related to frequency characteristic of control system, ignoring operating condition. More importantly, few verification methods are proposed. Considering the shortcomings of the theoretical identification, this paper obtains these coefficients from the experiment by using the magnetic bearing as a sine exciter. The identification results show that AMBs stiffness and damping have a great relationship with the control system and rotating speed. Specifically, at low rotating speed, the stiffness and damping can be obtained from the rotor static suspension by adding the same excitation frequency. However, at high speed, different from the static suspension situation, the AMBs supporting coefficients are not only related to the frequency characteristics of control system, but also related to the system operating conditions.

  20. Mathematical representation of bolted-joint stiffness: A new suggested model

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, Nawras; Obeed, Salwan; Jawad, Mohamed [College of Engineering, University of Babylon, Babel (Iraq)

    2011-11-15

    Joint member stiffness in a bolted connection directly influences the safety of a design in regard to both static and fatigue loading, as well as in the prevention of separation in the connection. This work provides a new simple model for computing the member stiffness in bolted connections for both fully and partially developed stress envelope fields. The new model is built using a stress distribution polynomial of third order. Finite element analysis (FEA) is performed for some joints geometries, and the results are used to estimate the best analytical envelope angle in the proposed analytical model that gives suitable convergence between the compared results. An experimental effort is exerted to validate the accuracy of a suggested model. When analytical results are compared with FEA results and experimental data, the maximum absolute percentage errors are found to be 2.69 and 14.69, respectively. Also, a good agreement is obtained when the analytical results are compared with other researchers' results.

  1. Influence of Passive Joint Stiffness on Proprioceptive Acuity in Individuals With Functional Instability of the Ankle.

    Science.gov (United States)

    Marinho, Hellen Veloso Rocha; Amaral, Giovanna Mendes; de Souza Moreira, Bruno; Araújo, Vanessa Lara; Souza, Thales Rezende; Ocarino, Juliana Melo; da Fonseca, Sérgio Teixeira

    2017-12-01

    Study Design Controlled laboratory study, cross-sectional. Background Deficits in ankle proprioceptive acuity have been reported in persons with functional instability of the ankle. Passive stiffness has been proposed as a possible mechanism underlying proprioceptive acuity. Objective To compare proprioceptive acuity and passive ankle stiffness in persons with and without functional ankle instability, and to assess the influence of passive joint stiffness on proprioceptive acuity in persons with functional ankle instability. Methods A sample of 18 subjects with and 18 without complaints of functional ankle instability following lateral ankle sprain participated. An isokinetic dynamometer was used to compare motion perception threshold, passive position sense, and passive ankle stiffness between groups. To evaluate the influence of passive stiffness on proprioceptive acuity, individuals in the lateral functional ankle instability group were divided into 2 subgroups: "high" and "low" passive ankle stiffness. Results The functional ankle instability group exhibited increased motion perception threshold when compared with the corresponding limb of the control group. Between-group differences were not found for passive position sense and passive ankle stiffness. Those in the functional ankle instability group with higher passive ankle stiffness had smaller motion perception thresholds than those with lower passive ankle stiffness. Conclusion Unlike motion perception threshold, passive position sense is not affected by the presence of functional ankle instability. Passive ankle stiffness appears to influence proprioceptive acuity in persons with functional ankle instability. J Orthop Sports Phys Ther 2017;47(12):899-905. Epub 7 Oct 2017. doi:10.2519/jospt.2017.7030.

  2. Molecular Cues Guiding Matrix Stiffness in Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Takaoki Saneyasu

    2016-01-01

    Full Text Available Tissue and matrix stiffness affect cell properties during morphogenesis, cell growth, differentiation, and migration and are altered in the tissue remodeling following injury and the pathological progression. However, detailed molecular mechanisms underlying alterations of stiffness in vivo are still poorly understood. Recent engineering technologies have developed powerful techniques to characterize the mechanical properties of cell and matrix at nanoscale levels. Extracellular matrix (ECM influences mechanical tension and activation of pathogenic signaling during the development of chronic fibrotic diseases. In this short review, we will focus on the present knowledge of the mechanisms of how ECM stiffness is regulated during the development of liver fibrosis and the molecules involved in ECM stiffness as a potential therapeutic target for liver fibrosis.

  3. Time-Discrete Higher-Order ALE Formulations: Stability

    KAUST Repository

    Bonito, Andrea

    2013-01-01

    Arbitrary Lagrangian Eulerian (ALE) formulations deal with PDEs on deformable domains upon extending the domain velocity from the boundary into the bulk with the purpose of keeping mesh regularity. This arbitrary extension has no effect on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time-dependent advection-diffusion-model problem in moving domains, and study their stability properties. The analysis hinges on the validity of the Reynold\\'s identity for dG. Exploiting the variational structure and assuming exact integration, we prove that our conservative and nonconservative dG schemes are equivalent and unconditionally stable. The same results remain true for piecewise polynomial ALE maps of any degree and suitable quadrature that guarantees the validity of the Reynold\\'s identity. This approach generalizes the so-called geometric conservation law to higher-order methods. We also prove that simpler Runge-Kutta-Radau methods of any order are conditionally stable, that is, subject to a mild ALE constraint on the time steps. Numerical experiments corroborate and complement our theoretical results. © 2013 Society for Industrial and Applied Mathematics.

  4. The effects of resistance exercise training on arterial stiffness in metabolic syndrome.

    Science.gov (United States)

    DeVallance, E; Fournier, S; Lemaster, K; Moore, C; Asano, S; Bonner, D; Donley, D; Olfert, I M; Chantler, P D

    2016-05-01

    Arterial stiffness is a strong independent risk factor for cardiovascular disease and is elevated in individuals with metabolic syndrome (MetS). Resistance training is a popular form of exercise that has beneficial effects on muscle mass, strength, balance and glucose control. However, it is unknown whether resistance exercise training (RT) can lower arterial stiffness in patients with MetS. Thus, the aim of this study was to examine whether a progressive RT program would improve arterial stiffness in MetS. A total of 57 subjects (28 healthy sedentary subjects; 29 MetS) were evaluated for arterial structure and function, including pulse wave velocity (cfPWV: arterial stiffness), before and after an 8-week period of RT or continuation of sedentary lifestyle. We found that 8 weeks of progressive RT increased skeletal muscle strength in both Con and MetS, but did not change arterial stiffness in either MetS (cfPWV; Pre 7.9 ± 0.4 m/s vs. Post 7.7 ± 0.4 m/s) or healthy controls (cfPWV; Pre 6.9 ± 0.3 m/s vs. Post 7.0 ± 0.3 m/s). However, when cfPWV is considered as a continuous variable, high baseline measures of cfPWV tended to show a decrease in cfPWV following RT. Eight weeks of progressive RT did not decrease the group mean values of arterial stiffness in individuals with MetS or healthy controls.

  5. Effect of chain stiffness on the structure of single-chain polymer nanoparticles

    Science.gov (United States)

    Moreno, Angel J.; Bacova, Petra; Lo Verso, Federica; Arbe, Arantxa; Colmenero, Juan; Pomposo, José A.

    2018-01-01

    Polymeric single-chain nanoparticles (SCNPs) are soft nano-objects synthesized by purely intramolecular cross-linking of single polymer chains. By means of computer simulations, we investigate the conformational properties of SCNPs as a function of the bending stiffness of their linear polymer precursors. We investigate a broad range of characteristic ratios from the fully flexible case to those typical of bulky synthetic polymers. Increasing stiffness hinders bonding of groups separated by short contour distances and increases looping over longer distances, leading to more compact nanoparticles with a structure of highly interconnected loops. This feature is reflected in a crossover in the scaling behaviour of several structural observables. The scaling exponents change from those characteristic for Gaussian chains or rings in θ-solvents in the fully flexible limit, to values resembling fractal or ‘crumpled’ globular behaviour for very stiff SCNPs. We characterize domains in the SCNPs. These are weakly deformable regions that can be seen as disordered analogues of domains in disordered proteins. Increasing stiffness leads to bigger and less deformable domains. Surprisingly, the scaling behaviour of the domains is in all cases similar to that of Gaussian chains or rings, irrespective of the stiffness and degree of cross-linking. It is the spatial arrangement of the domains which determines the global structure of the SCNP (sparse Gaussian-like object or crumpled globule). Since intramolecular stiffness can be varied through the specific chemistry of the precursor or by introducing bulky side groups in its backbone, our results propose a new strategy to tune the global structure of SCNPs.

  6. Unidirectional variable stiffness hydraulic actuator for load-carrying knee exoskeleton

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    2017-01-01

    Full Text Available This article presents the design and experimental testing of a unidirectional variable stiffness hydraulic actuator for load-carrying knee exoskeleton. The proposed actuator is designed for mimicking the high-efficiency passive behavior of biological knee and providing actively assistance in locomotion. The adjustable passive compliance of exoskeletal knee is achieved through a variable ratio lever mechanism with linear elastic element. A compact customized electrohydraulic system is also designed to accommodate application demands. Preliminary experimental results show the prototype has good performances in terms of stiffness regulation and joint torque control. The actuator is also implemented in an exoskeleton knee joint, resulting in anticipant human-like passive compliance behavior.

  7. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics [High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-09-20

    The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered

  8. Is chronic obstructive pulmonary disease associated with increased arterial stiffness?

    DEFF Research Database (Denmark)

    Janner, Julie H; McAllister, David A; Godtfredsen, Nina S

    2012-01-01

    We hypothesize that airflow limitation is associated with increasing arterial stiffness and that having COPD increases a non-invasive measure of arterial stiffness - the aortic augmentation index (AIx) - independently of other CVD risk factors.......We hypothesize that airflow limitation is associated with increasing arterial stiffness and that having COPD increases a non-invasive measure of arterial stiffness - the aortic augmentation index (AIx) - independently of other CVD risk factors....

  9. A Rapid Aeroelasticity Optimization Method Based on the Stiffness characteristics

    OpenAIRE

    Yuan, Zhe; Huo, Shihui; Ren, Jianting

    2018-01-01

    A rapid aeroelasticity optimization method based on the stiffness characteristics was proposed in the present study. Large time expense in static aeroelasticity analysis based on traditional time domain aeroelasticity method is solved. Elastic axis location and torsional stiffness are discussed firstly. Both torsional stiffness and the distance between stiffness center and aerodynamic center have a direct impact on divergent velocity. The divergent velocity can be adjusted by changing the cor...

  10. Revealing the relationships between chemistry, topology and stiffness of ultrastrong Co-based metallic glass thin films: A combinatorial approach

    International Nuclear Information System (INIS)

    Schnabel, Volker; Köhler, Mathias; Evertz, Simon; Gamcova, Jana; Bednarcik, Jozef; Music, Denis; Raabe, Dierk; Schneider, Jochen M.

    2016-01-01

    An efficient way to study the relationship between chemical composition and mechanical properties of thin films is to utilize the combinatorial approach, where spatially resolved mechanical property measurements are conducted along a concentration gradient. However, for thin film glasses many properties including the mechanical response are affected by chemical topology. Here a novel method is introduced which enables spatially resolved short range order analysis along concentration gradients of combinatorially synthesized metallic glass thin films. For this purpose a CoZrTaB metallic glass film of 3 μm thickness is deposited on a polyimide foil, which is investigated by high energy X-ray diffraction in transmission mode. Through the correlative chemistry-topology-stiffness investigation, we observe that an increase in metalloid concentration from 26.4 to 32.7 at% and the associated formation of localized (hybridized) metal – metalloid bonds induce a 10% increase in stiffness. Concomitantly, along the same composition gradient, a metalloid-concentration-induced increase in first order metal - metal bond distances of 1% is observed, which infers itinerant (metallic) bond weakening. Hence, the metalloid concentration induced increase in hybridized bonding dominates the corresponding weakening of metallic bonds.

  11. Damper modules with adapted stiffness ratio

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenburg, R.; Stretz, A. [ZF Sachs AG, Entwicklungszentrum, Schweinfurt (Germany)

    2011-07-15

    A mechanism for the excitation of piston rod vibrations in automotive damper modules is discussed by a simple model. An improved nonlinear model based on elasticity effects leads to good simulation results. It is shown theoretically and experimentally that the adaptation of the stiffness of the piston rod bushing to the ''stiffness'' of the damper force characteristic can eliminate the piston rod oscillations completely. (orig.)

  12. Rotational and peak torque stiffness of rugby shoes.

    Science.gov (United States)

    Ballal, Moez S; Usuelli, Federico Giuseppe; Montrasio, Umberto Alfieri; Molloy, Andy; La Barbera, Luigi; Villa, Tomaso; Banfi, Giuseppe

    2014-09-01

    Sports people always strive to avoid injury. Sports shoe designs in many sports have been shown to affect traction and injury rates. The aim of this study is to demonstrate the differing stiffness and torque in rugby boots that are designed for the same effect. Five different types of rugby shoes commonly worn by scrum forwards were laboratory tested for rotational stiffness and peak torque on a natural playing surface generating force patterns that would be consistent with a rugby scrum. The overall internal rotation peak torque was 57.75±6.26 Nm while that of external rotation was 56.55±4.36 Nm. The Peak internal and external rotational stiffness were 0.696±0.1 and 0.708±0.06 Nm/deg respectively. Our results, when compared to rotational stiffness and peak torques of football shoes published in the literature, show that shoes worn by rugby players exert higher rotational and peak torque stiffness compared to football shoes when tested on the same natural surfaces. There was significant difference between the tested rugby shoes brands. In our opinion, to maximize potential performance and lower the potential of non-contact injury, care should be taken in choosing boots with stiffness appropriate to the players main playing role. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Static stiffness modeling of a novel hybrid redundant robot machine

    International Nuclear Information System (INIS)

    Li Ming; Wu Huapeng; Handroos, Heikki

    2011-01-01

    This paper presents a modeling method to study the stiffness of a hybrid serial-parallel robot IWR (Intersector Welding Robot) for the assembly of ITER vacuum vessel. The stiffness matrix of the basic element in the robot is evaluated using matrix structural analysis (MSA); the stiffness of the parallel mechanism is investigated by taking account of the deformations of both hydraulic limbs and joints; the stiffness of the whole integrated robot is evaluated by employing the virtual joint method and the principle of virtual work. The obtained stiffness model of the hybrid robot is analytical and the deformation results of the robot workspace under certain external load are presented.

  14. Stiffness requirement of flexible skin for variable trailing-edge camber wing

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The method for analyzing the deformation of flexible skin under the air loads was developed based on the panel method and finite element method.The deformation of flexible skin under air pressures and effects of the local deformation on the aerodynamic characteristics were discussed.Numerical results show that the flexible skin on the upper surface of trailing-edge will bubble under the air loads and the bubble has a powerful effect on the aerodynamic pressure near the surface of local deforma-tion.Then the stiffness requirements for flexible skin of variable trailing-edge were given by using the Jacobs rule,i.e.,the maximum displacement of skin is not greater than 0.1% of wing chord.Results show that the in-plane stiffness can be reduced by increasing the ratio of bending stiffness to in-plane stiffness.Although the deformation of flexible skin increases with the in-plane stiffness decreasing,it depends on the bending stiffness.When the bending stiffness exceeds critical value,the deformation of flexible skin only depends on the bending stiffness and has nothing to do with the in-plane stiffness.The conclusions can be used for the structural design of flexible skin.

  15. Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2017-02-01

    A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.

  16. Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2016-01-01

    space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.

  17. Stiffness-Independent Highly Efficient On-Chip Extraction of Cell-Laden Hydrogel Microcapsules from Oil Emulsion into Aqueous Solution by Dielectrophoresis.

    Science.gov (United States)

    Huang, Haishui; Sun, Mingrui; Heisler-Taylor, Tyler; Kiourti, Asimina; Volakis, John; Lafyatis, Gregory; He, Xiaoming

    2015-10-28

    A dielectrophoresis (DEP)-based method achieves highly efficient on-chip extraction of cell-laden microcapsules of any stiffness from oil into aqueous solution. The hydrogel microcapsules can be extracted into the aqueous solution by DEP and interfacial tension forces with no trapped oil, while the encapsulated cells are free from electrical damage due to the Faraday cage effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. On the elastic stiffness of grain boundaries

    International Nuclear Information System (INIS)

    Zhang Tongyi; Hack, J.E.

    1992-01-01

    The elastic softening of grain boundaries is evaluated from the starting point of grain boundary energy. Several examples are given to illustrate the relationship between boundary energy and the extent of softening. In general, a high grain boundary energy is associated with a large excess atomic volume in the boundary region. The consequent reduction in grain boundary stiffness can represent a significant fraction of that observed in bulk crystals. (orig.)

  19. Effect of Stiffness of Rolling Joints on the Dynamic Characteristic of Ball Screw Feed Systems in a Milling Machine

    Directory of Open Access Journals (Sweden)

    Dazhong Wang

    2015-01-01

    Full Text Available Dynamic characteristic of ball screw feed system in a milling machine is studied numerically in this work. In order to avoid the difficulty in determining the stiffness of rolling joints theoretically, a dynamic modeling method for analyzing the feed system is discussed, and a stiffness calculation method of the rolling joints is proposed based on the Hertz contact theory. Taking a 3-axis computer numerical control (CNC milling machine set ermined as a research object, the stiffness of its fixed joint between the column and the body together with the stiffness parameters of the rolling joints is evaluated according to the Takashi Yoshimura method. Then, a finite element (FE model is established for the machine tool. The correctness of the FE model and the stiffness calculation method of the rolling joints are validated by theoretical and experimental modal analysis results of the machine tool’s workbench. Under the two modeling methods of joints incorporating the stiffness parameters and rigid connection, a theoretical modal analysis is conducted for the CNC milling machine. The natural frequencies and modal shapes reveal that the joints’ dynamic characteristic has an important influence on the dynamic performance of a whole machine tool, especially for the case with natural frequency and higher modes.

  20. Pulling a polymer with anisotropic stiffness near a sticky wall

    International Nuclear Information System (INIS)

    Tabbara, R; Owczarek, A L

    2012-01-01

    We solve exactly a two-dimensional partially directed walk model of a semi-flexible polymer that has one end tethered to a sticky wall, while a pulling force away from the adsorbing surface acts on the free end of the walk. This model generalizes a number of previously considered adsorption models by incorporating individual horizontal and vertical stiffness effects, in competition with a variable pulling angle. A solution to the corresponding generating function is found by means of the kernel method. While the phases and related phase transitions are similar in nature to those found previously the analysis of the model in terms of its physical variables highlights various novel structures in the shapes of the phase diagrams and related behaviour of the polymer. We review the results of previously considered sub-cases, augmenting these findings to include analysis with respect to the model’s physical variables—namely, temperature, pulling force, pulling angle away from the surface, stiffness strength and the ratio of vertical to horizontal stiffness potentials, with our subsequent analysis for the general model focusing on the effect that stiffness has on this pulling angle range. In analysing the model with stiffness we also pay special attention to the case where only vertical stiffness is included. The physical analysis of this case reveals behaviour more closely resembling that of an upward pulling force acting on a polymer than it does of a model where horizontal stiffness acts. The stiffness–temperature phase diagram exhibits re-entrance for low temperatures, previously only seen for three-dimensional or co-polymer models. For the most general model we delineate the shift in the physical behaviour as we change the ratio of vertical to horizontal stiffness between the horizontal-only and the vertical-only stiffness regimes. We find that a number of distinct physical characteristics will only be observed for a model where the vertical stiffness dominates

  1. Variable Stiffness Actuators: Modeling, Control, and Application to Compliant Bipedal Walking

    NARCIS (Netherlands)

    Visser, L.C.

    2013-01-01

    Robots are traditionally used in factory environments, where they perform tasks with high precision and speed. This kind of robots is designed to have a high mechanical stiffness and with powerful motors, so that the required precision and speed can be achieved. However, such designs are inherently

  2. Variable stiffness actuators : modeling, control, and application to compliant bipedal walking

    NARCIS (Netherlands)

    Visser, L.C.

    2013-01-01

    Robots are traditionally used in factory environments, where they perform tasks with high precision and speed. This kind of robots is designed to have a high mechanical stiffness and with powerful motors, so that the required precision and speed can be achieved. However, such designs are inherently

  3. Knee joint laxity and passive stiffness in meniscectomized patients compared with healthy controls.

    Science.gov (United States)

    Thorlund, Jonas B; Creaby, Mark W; Wrigley, Tim V; Metcalf, Ben R; Bennell, Kim L

    2014-10-01

    Passive mechanical behavior of the knee in the frontal plane, measured as angular laxity and mechanical stiffness, may play an important role in the pathogenesis of knee osteoarthritis (OA). Little is known about knee laxity and stiffness prior to knee OA onset. We investigated knee joint angular laxity and passive stiffness in meniscectomized patients at high risk of knee OA compared with healthy controls. Sixty patients meniscectomized for a medial meniscal tear (52 men, 41.4 ± 5.5 years, 175.3 ± 7.9 cm, 83.6 ± 12.8 kg, mean ± SD) and 21 healthy controls (18 men, 42.0 ± 6.7 years, 176.8 ± 5.7 cm, 77.8 ± 13.4 kg) had their knee joint angular laxity and passive stiffness assessed twice ~2.3 years apart. Linear regression models including age, sex, height and body mass as covariates in the adjusted model were used to assess differences between groups. Greater knee joint varus (-10.1 vs. -7.3°, pknee joint angular laxity and reduced passive stiffness ~3 months post surgery compared with controls. In addition, the results indicated that knee joint laxity may increase over time in meniscectomized patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Fatigue crack paths under the influence of changes in stiffness

    Directory of Open Access Journals (Sweden)

    G. Kullmer

    2016-02-01

    Full Text Available An important topic of the Collaborative Research Centre TRR 30 of the Deutsche Forschungsgemeinschaft (DFG is the crack growth behaviour in graded materials. In addition, the growth of cracks in the neighbourhood of regions and through regions with different material properties belongs under this topic. Due to the different material properties, regions with differing stiffness compared to the base material may arise. Regions with differing stiffness also arise from ribs, grooves or boreholes. Since secure findings on the propagation behaviour of fatigue cracks are essential for the evaluation of the safety of components and structures, the growth of cracks near changes in stiffness has to be considered, too. Depending on the way a crack penetrates the zone of influence of such a change in stiffness and depending on whether this region is more compliant or stiffer than the surrounding area the crack may grow towards or away from this region. Both cases result in curved crack paths that cannot be explained only by the global loading situation. To evaluate the influence of regions with differing stiffness on the path of fatigue cracks the paths and the stress intensity factors of cracks growing near and through regions with differing stiffness are numerically determined with the program system ADAPCRACK3D. Therefore, arrangements of changes in stiffness modelled as material inclusions with stiffness properties different from the base material or modelled as ribs and grooves are systematically varied to develop basic conclusions about the crack growth behaviour near and through changes in stiffness.

  5. On prestress stiffness analysis of bolt-plate contact assemblies

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Pedersen, Pauli

    2008-01-01

    , but with finite element (FE) and contact analysis, it is possible to find the stiffness of the member. In the case of many connections and for practical applications, it is not suitable to make a full FE analysis. The purpose of the present paper is to find simplified expressions for the stiffness of the member......, including the case when the width of the member is limited. The calculation of the stiffness is based on the FE, including the solution to the contact problem, and we express the stiffness as a function of the elastic energy in the structure, whereby the definition of the displacements related...

  6. Low frequency noise reduction using stiff light composite panels

    Institute of Scientific and Technical Information of China (English)

    DENG Yongchang; LIN Weizheng

    2003-01-01

    The experiment presented in this paper is to investigate and analyze the noise reduction at low frequency using stiff light composite panels. Since these composite panels are made of lightweight and stiff materials, this actuation strategy will enable the creation of composite panels for duct noise control without using traditional heavy structural mass. The results suggest that the mass-spring resonance absorption in the case of a comparatively stiff thick panel with a thin flexible plate is more efficient with minimum weight, when subjected to low-frequency (<500 Hz). The efficiency of the panel absorber depends on the mass of the thin flexible plate and the stiffness of the panel.

  7. High order depletion sensitivity analysis

    International Nuclear Information System (INIS)

    Naguib, K.; Adib, M.; Morcos, H.N.

    2002-01-01

    A high order depletion sensitivity method was applied to calculate the sensitivities of build-up of actinides in the irradiated fuel due to cross-section uncertainties. An iteration method based on Taylor series expansion was applied to construct stationary principle, from which all orders of perturbations were calculated. The irradiated EK-10 and MTR-20 fuels at their maximum burn-up of 25% and 65% respectively were considered for sensitivity analysis. The results of calculation show that, in case of EK-10 fuel (low burn-up), the first order sensitivity was found to be enough to perform an accuracy of 1%. While in case of MTR-20 (high burn-up) the fifth order was found to provide 3% accuracy. A computer code SENS was developed to provide the required calculations

  8. Airfoil design: Finding the balance between design lift and structural stiffness

    International Nuclear Information System (INIS)

    Bak, Christian; Gaudern, Nicholas; Zahle, Frederik; Vronsky, Tomas

    2014-01-01

    When upscaling wind turbine blades there is an increasing need for high levels of structural efficiency. In this paper the relationships between the aerodynamic characteristics; design lift and lift-drag ratio; and the structural characteristics were investigated. Using a unified optimization setup, airfoils were designed with relative thicknesses between 18% and 36%, a structural box height of 85% of the relative thickness, and varying box widths in chordwise direction between 20% and 40% of the chord length. The results from these airfoil designs showed that for a given flapwise stiffness, the design lift coefficient increases if the box length reduces and at the same time the relative thickness increases. Even though the conclusions are specific to the airfoil design approach used, the study indicated that an increased design lift required slightly higher relative thickness compared to airfoils with lower design lift to maintain the flapwise stiffness. Also, the study indicated that the lift-drag ratio as a function of flapwise stiffness was relatively independent of the airfoil design with a tendency that the lift-drag ratio decreased for large box lengths. The above conclusions were supported by an analysis of the three airfoil families Riso-C2, DU and FFA, where the lift-drag ratio as a function of flapwise stiffness was decreasing, but relatively independent of the airfoil design, and the design lift coefficient was varying depending on the design philosophy. To make the analysis complete also design lift and lift- drag ratio as a function of edgewise and torsional stiffness were shown

  9. Generation of intense high-order vortex harmonics.

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2015-05-01

    This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.

  10. High-order beam optics - an overview

    International Nuclear Information System (INIS)

    Heighway, E.A.

    1989-01-01

    Beam-transport codes have been around for as long as thirty years and high order codes, second-order at least, for close to twenty years. Before this period of design-code development, there was considerable high-order treatment, but it was almost entirely analytical. History has a way of repeating itself, and the current excitement in the field of high-order optics is based on the application of Lie algebra and the so-called differential algebra to beam-transport codes, both of which are highly analytical in foundation. The author will describe some of the main design tools available today, giving a little of their history, and will conclude by trying to convey some of the excitement in the field through a brief description of Lie and differential algebra. 30 refs., 7 figs., 1 tab

  11. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain.

    Science.gov (United States)

    Iwashita, Misato; Kataoka, Noriyuki; Toida, Kazunori; Kosodo, Yoichi

    2014-10-01

    Accumulating evidence implicates the significance of the physical properties of the niche in influencing the behavior, growth and differentiation of stem cells. Among the physical properties, extracellular stiffness has been shown to have direct effects on fate determination in several cell types in vitro. However, little evidence exists concerning whether shifts in stiffness occur in vivo during tissue development. To address this question, we present a systematic strategy to evaluate the shift in stiffness in a developing tissue using the mouse embryonic cerebral cortex as an experimental model. We combined atomic force microscopy measurements of tissue and cellular stiffness with immunostaining of specific markers of neural differentiation to correlate the value of stiffness with the characteristic features of tissues and cells in the developing brain. We found that the stiffness of the ventricular and subventricular zones increases gradually during development. Furthermore, a peak in tissue stiffness appeared in the intermediate zone at E16.5. The stiffness of the cortical plate showed an initial increase but decreased at E18.5, although the cellular stiffness of neurons monotonically increased in association with the maturation of the microtubule cytoskeleton. These results indicate that tissue stiffness cannot be solely determined by the stiffness of the cells that constitute the tissue. Taken together, our method profiles the stiffness of living tissue and cells with defined characteristics and can therefore be utilized to further understand the role of stiffness as a physical factor that determines cell fate during the formation of the cerebral cortex and other tissues. © 2014. Published by The Company of Biologists Ltd.

  12. Evaluation of patient-rated stiffness associated with fibromyalgia: a post-hoc analysis of 4 pooled, randomized clinical trials of duloxetine.

    Science.gov (United States)

    Bennett, Robert; Russell, I Jon; Choy, Ernest; Spaeth, Michael; Mease, Philip; Kajdasz, Daniel; Walker, Daniel; Wang, Fujun; Chappell, Amy

    2012-04-01

    Patients with fibromyalgia (FM) rate stiffness as one of the most troublesome symptoms of the disorder. However, there are few published studies that have focused on better understanding the nature of stiffness in FM. The primary objectives of these analyses were to characterize the distribution of stiffness severity in patients at baseline, evaluate changes in stiffness after 12 weeks of treatment with duloxetine, and determine which outcomes were correlated with stiffness. These were post-hoc analyses of 3-month data from 4 randomized, double-blind, placebo-controlled studies that assessed efficacy of duloxetine in adults with FM. Severity of stiffness was assessed by using the Fibromyalgia Impact Questionnaire (FIQ) on a scale from 0 (no stiffness) to 10 (most severe stiffness). The association between changes in stiffness and other measures was evaluated by using Pearson's correlation coefficient. The FIQ total score and items, the Brief Pain Inventory (BPI-modified short form), the Clinical Global Impression-Severity scale, the Multidimensional Fatigue Inventory, the 17-item Hamilton Depression Rating Scale, the Sheehan Disability Scale, the 36-item Short-Form Health Survey, and the EuroQoL Questionnaire-5 Dimensions were evaluated in the correlation analyses. Stepwise linear regression was used to identify the variables that were most highly predictive of the changes in FIQ stiffness. The analysis included 1332 patients (mean age, 50.2 years; 94.7% female; and 87.8% white). The mean (SD) baseline FIQ stiffness score was 7.7 (2.0), and this score correlated with baseline BPI pain score and FIQ function. Duloxetine significantly improved the FIQ stiffness score compared with placebo (P FIQ pain and interference scores, FIQ nonrefreshing sleep, FIQ anxiety, 36-item Short-Form Health Survey bodily pain, and Sheehan Disability Scale total score. Variables related to severity of pain, pain interfering with daily activities, and physical functioning were predictors

  13. Evaluating pulp stiffness from fibre bundles by ultrasound

    Science.gov (United States)

    Karppinen, Timo; Montonen, Risto; Määttänen, Marjo; Ekman, Axel; Myllys, Markko; Timonen, Jussi; Hæggström, Edward

    2012-06-01

    A non-destructive ultrasonic tester was developed to measure the stiffness of pulp bundles. The mechanical properties of pulp are important when estimating the behaviour of paper under stress. Currently available pulp tests are tedious and alter the fibres structurally and mechanically. The developed tester employs (933 ± 15) kHz tweezer-like ultrasonic transducers and time-of-flight measurement through (9.0 ± 2.5) mm long and (0.8 ± 0.1) mm thick fibre bundles kept at (19.1 ± 0.4) °C and (62 ± 1)% RH. We determined the stiffness of soft wood pulps produced by three kraft pulping modifications: standard kraft pulp, (5.2 ± 0.4) GPa, prehydrolysis kraft pulp, (4.3 ± 0.4) GPa, and alkali extracted prehydrolysis kraft pulp, (3.3 ± 0.4) GPa. Prehydrolysis and alkali extraction processes mainly lowered the hemicellulose content of the pulps, which essentially decreased the fibre-wall stiffness hence impairing the stiffness of the fibre networks. Our results indicate that the method allows ranking of pulps according to their stiffness determined from bundle-like samples taken at an early phase of the papermaking process.

  14. Effect of cinnamon on gastric emptying, arterial stiffness, postprandial lipemia, glycemia, and appetite responses to high-fat breakfast

    LENUS (Irish Health Repository)

    Markey, Oonagh

    2011-09-07

    Abstract Background Cinnamon has been shown to delay gastric emptying of a high-carbohydrate meal and reduce postprandial glycemia in healthy adults. However, it is dietary fat which is implicated in the etiology and is associated with obesity, type 2 diabetes and cardiovascular disease. We aimed to determine the effect of 3 g cinnamon (Cinnamomum zeylanicum) on GE, postprandial lipemic and glycemic responses, oxidative stress, arterial stiffness, as well as appetite sensations and subsequent food intake following a high-fat meal. Methods A single-blind randomized crossover study assessed nine healthy, young subjects. GE rate of a high-fat meal supplemented with 3 g cinnamon or placebo was determined using the 13C octanoic acid breath test. Breath, blood samples and subjective appetite ratings were collected in the fasted and during the 360 min postprandial period, followed by an ad libitum buffet meal. Gastric emptying and 1-day fatty acid intake relationships were also examined. Results Cinnamon did not change gastric emptying parameters, postprandial triacylglycerol or glucose concentrations, oxidative stress, arterial function or appetite (p < 0.05). Strong relationships were evident (p < 0.05) between GE Thalf and 1-day palmitoleic acid (r = -0.78), eiconsenoic acid (r = -0.84) and total omega-3 intake (r = -0.72). The ingestion of 3 g cinnamon had no effect on GE, arterial stiffness and oxidative stress following a HF meal. Conclusions 3 g cinnamon did not alter the postprandial response to a high-fat test meal. We find no evidence to support the use of 3 g cinnamon supplementation for the prevention or treatment of metabolic disease. Dietary fatty acid intake requires consideration in future gastrointestinal studies. Trial registration Trial registration number: at http:\\/\\/www.clinicaltrial.gov: NCT01350284

  15. Experimental study on efficacy of compression systems with a high static stiffness index for treatment of venous ulcer patients

    Directory of Open Access Journals (Sweden)

    Anneke Andriessen

    2013-03-01

    Full Text Available The experimental study measured interface pressure and static stiffness index of four different compression systems in fifty-two healthy volunteers. For the study interface pressure (3 cm ø probe was placed at the anatomical B1 point was recorded on application of the compression systems every 15 min for 4 h, in supine, standing, while sitting and during walking. For this purpose a portable Kikuhime (Harada Corp., Osaka, Japan device was used. Further static stiffness index (SSI was calculated. The evaluated systems were: short stretch bandage system (SSB Rosidal sys (Lohmann & Rauscher, Rengsdorf, Germany, multi-layer bandaging (LSB Profore (Smith & Nephew, Hull, UK, varistretch bandage (VSB Proguide (Smith & Nephew and tubular compression (CS Rosidal mobil (Lohmann & Rauscher. The mean interface pressure of SSB, LSB and VSB was significantly higher (P<0.05 in each position measured over 4 h, compared to CS. In supine VSB showed high-pressure levels, up to 60 mmHg, which remained high. The other systems had more tolerable levels of about 30 mmHg. Interface pressure exerted on limbs is an indicator of their clinical effect. The experimental study results showed different patterns of interface pressure and SSI, which may enable clinicians to predict the frequency of bandage application, supporting an adequate and safe choice of bandage system.

  16. Application of a local linearization technique for the solution of a system of stiff differential equations associated with the simulation of a magnetic bearing assembly

    Science.gov (United States)

    Kibler, K. S.; Mcdaniel, G. A.

    1981-01-01

    A digital local linearization technique was used to solve a system of stiff differential equations which simulate a magnetic bearing assembly. The results prove the technique to be accurate, stable, and efficient when compared to a general purpose variable order Adams method with a stiff option.

  17. A new variable stiffness suspension system: passive case

    Directory of Open Access Journals (Sweden)

    O. M. Anubi

    2013-02-01

    Full Text Available This paper presents the design, analysis, and experimental validation of the passive case of a variable stiffness suspension system. The central concept is based on a recently designed variable stiffness mechanism. It consists of a horizontal control strut and a vertical strut. The main idea is to vary the load transfer ratio by moving the location of the point of attachment of the vertical strut to the car body. This movement is controlled passively using the horizontal strut. The system is analyzed using an L2-gain analysis based on the concept of energy dissipation. The analyses, simulation, and experimental results show that the variable stiffness suspension achieves better performance than the constant stiffness counterpart. The performance criteria used are; ride comfort, characterized by the car body acceleration, suspension deflection, and road holding, characterized by tire deflection.

  18. Biomechanical Effect of Margin Convergence Techniques: Quantitative Assessment of Supraspinatus Muscle Stiffness.

    Directory of Open Access Journals (Sweden)

    Taku Hatta

    Full Text Available Although the margin convergence (MC technique has been recognized as an option for rotator cuff repair, little is known about the biomechanical effect on repaired rotator cuff muscle, especially after supplemented footprint repair. The purpose of this study was to assess the passive stiffness changes of the supraspinatus (SSP muscle after MC techniques using shear wave elastography (SWE. A 30 × 40-mm U-shaped rotator cuff tear was created in 8 cadaveric shoulders. Each specimen was repaired with 6 types of MC technique (1-, 2-, 3-suture MC with/without footprint repair, in a random order at 30° glenohumeral abduction. Passive stiffness of four anatomical regions in the SSP muscle was measured based on an established SWE method. Data were obtained from the SSP muscle at 0° abduction under 8 different conditions: intact (before making a tear, torn, and postoperative conditions with 6 techniques. MC techniques using 1-, or 2-suture combined with footprint repair showed significantly higher stiffness values than the intact condition. Passive stiffness of the SSP muscle was highest after a 1-suture MC with footprint repair for all regions when compared among all repair procedures. There was no significant difference between the intact condition and a 3-suture MC with footprint repair. MC techniques with single stitch and subsequent footprint repair may have adverse effects on muscle properties and tensile loading on repair, increasing the risk of retear of repairs. Adding more MC stitches could reverse these adverse effects.

  19. On stress/strain shielding and the material stiffness paradigm for dental implants.

    Science.gov (United States)

    Korabi, Raoof; Shemtov-Yona, Keren; Rittel, Daniel

    2017-10-01

    Stress shielding considerations suggest that the dental implant material's compliance should be matched to that of the host bone. However, this belief has not been confirmed from a general perspective, either clinically or numerically. To characterize the influence of the implant stiffness on its functionality using the failure envelope concept that examines all possible combinations of mechanical load and application angle for selected stress, strain and displacement-based bone failure criteria. Those criteria represent bone yielding, remodeling, and implant primary stability, respectively MATERIALS AND METHODS: We performed numerical simulations to generate failure envelopes for all possible loading configurations of dental implants, with stiffness ranging from very low (polymer) to extremely high, through that of bone, titanium, and ceramics. Irrespective of the failure criterion, stiffer implants allow for improved implant functionality. The latter reduces with increasing compliance, while the trabecular bone experiences higher strains, albeit of an overall small level. Micromotions remain quite small irrespective of the implant's stiffness. The current paradigm favoring reduced implant material's stiffness out of concern for stress or strain shielding, or even excessive micromotions, is not supported by the present calculations, that point exactly to the opposite. © 2017 Wiley Periodicals, Inc.

  20. Numerical solution of one-dimensional transient, two-phase flows with temporal fully implicit high order schemes: Subcooled boiling in pipes

    Energy Technology Data Exchange (ETDEWEB)

    López, R., E-mail: ralope1@ing.uc3m.es; Lecuona, A., E-mail: lecuona@ing.uc3m.es; Nogueira, J., E-mail: goriba@ing.uc3m.es; Vereda, C., E-mail: cvereda@ing.uc3m.es

    2017-03-15

    Highlights: • A two-phase flows numerical algorithm with high order temporal schemes is proposed. • Transient solutions route depends on the temporal high order scheme employed. • ESDIRK scheme for two-phase flows events exhibits high computational performance. • Computational implementation of the ESDIRK scheme can be done in a very easy manner. - Abstract: An extension for 1-D transient two-phase flows of the SIMPLE-ESDIRK method, initially developed for incompressible viscous flows by Ijaz is presented. This extension is motivated by the high temporal order of accuracy demanded to cope with fast phase change events. This methodology is suitable for boiling heat exchangers, solar thermal receivers, etc. The methodology of the solution consist in a finite volume staggered grid discretization of the governing equations in which the transient terms are treated with the explicit first stage singly diagonally implicit Runge-Kutta (ESDIRK) method. It is suitable for stiff differential equations, present in instant boiling or condensation processes. It is combined with the semi-implicit pressure linked equations algorithm (SIMPLE) for the calculation of the pressure field. The case of study consists of the numerical reproduction of the Bartolomei upward boiling pipe flow experiment. The steady-state validation of the numerical algorithm is made against these experimental results and well known numerical results for that experiment. In addition, a detailed study reveals the benefits over the first order Euler Backward method when applying 3rd and 4th order schemes, making emphasis in the behaviour when the system is subjected to periodic square wave wall heat function disturbances, concluding that the use of the ESDIRK method in two-phase calculations presents remarkable accuracy and computational advantages.

  1. Stiffness and Damping related to steady state soil-structure Interaction of monopiles

    DEFF Research Database (Denmark)

    Bayat, Mehdi

    The present thesis concerns soil–structure interaction affecting the dynamic structural response of offshore wind turbines with focus on soil stiffness and seepage damping due to pore water flow generated by cyclic motion of a monopile. The thesis aims to improve modelling of the dynamic...... and dashpots. An appropriate model based on considering the effect of dynamic behaviour of soil–structure interaction has been explored. In this regard, the coupled equations for porous media have been employed in order to account for soil deformation as well as pore pressure. The effects of drained versus...... undrained behaviour of the soil and the impact of this behaviour on the stiffness and damping related to soil–structure interaction at different load frequencies have been illustrated. Based on the poroelastic and Kelvin models, more realistic dynamic properties have been presented by considering the effect...

  2. Asynchronous and corrected-asynchronous numerical solutions of parabolic PDES on MIMD multiprocessors

    Science.gov (United States)

    Amitai, Dganit; Averbuch, Amir; Itzikowitz, Samuel; Turkel, Eli

    1991-01-01

    A major problem in achieving significant speed-up on parallel machines is the overhead involved with synchronizing the concurrent process. Removing the synchronization constraint has the potential of speeding up the computation. The authors present asynchronous (AS) and corrected-asynchronous (CA) finite difference schemes for the multi-dimensional heat equation. Although the discussion concentrates on the Euler scheme for the solution of the heat equation, it has the potential for being extended to other schemes and other parabolic partial differential equations (PDEs). These schemes are analyzed and implemented on the shared memory multi-user Sequent Balance machine. Numerical results for one and two dimensional problems are presented. It is shown experimentally that the synchronization penalty can be about 50 percent of run time: in most cases, the asynchronous scheme runs twice as fast as the parallel synchronous scheme. In general, the efficiency of the parallel schemes increases with processor load, with the time level, and with the problem dimension. The efficiency of the AS may reach 90 percent and over, but it provides accurate results only for steady-state values. The CA, on the other hand, is less efficient, but provides more accurate results for intermediate (non steady-state) values.

  3. VARIABLE STIFFNESS HAND PROSTHESIS: A SYSTEMATIC REVIEW

    Directory of Open Access Journals (Sweden)

    S. Cecilia Tapia-Siles

    2017-06-01

    Full Text Available Prosthetics is an important field in engineering due to the large number of amputees worldwide and the associated problems such as limited functionality of the state of the art. An important functionality of the human hand is its capability of adjusting the stiffness of the joints depending on the currently performed task. For the development of new technology it is important to understand the limitations of existing resources. As part of our efforts to develop a variable stiffness grasper for developing countries a systematic review was performed covering technology of body powered and myoelectric hand prosthesis. Focus of the review is readiness of prosthetic hands regarding their capability of controlling the stiffness of the end effector. Publications sourced through three different digital libraries were systematically reviewed on the basis of the PRISMA standard. We present a search strategy as well as the PRISMA assessment of the resulting records which covered 321 publications. The records were assessed and the results are presented for the ability of devices to control their joint stiffness. The review indicates that body powered prosthesis are preferred to myoelectric hands due to the reduced cost, the simplicity of use and because of their inherent ability to provide feedback to the user. Stiffness control was identified but has not been fully covered in the current state of the art. In addition we summarise the identified requirements on prosthetic hands as well as related information which can support the development of new prosthetics.

  4. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    Science.gov (United States)

    Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.

    2017-02-01

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple

  5. Equilibria and Free Vibration of a Two-Pulley Belt-Driven System with Belt Bending Stiffness

    Directory of Open Access Journals (Sweden)

    Jieyu Ding

    2014-01-01

    Full Text Available Nonlinear equilibrium curvatures and free vibration characteristics of a two-pulley belt-driven system with belt bending stiffness and a one-way clutch are investigated. With nonlinear dynamical tension, the transverse vibrations of the translating belt spans and the rotation motions of the pulleys and the accessory shaft are coupled. Therefore, nonlinear piecewise discrete-continuous governing equations are established. Considering the bending stiffness of the translating belt spans, the belt spans are modeled as axially moving beams. The pattern of equilibria is a nontrivial solution. Furthermore, the nontrivial equilibriums of the dynamical system are numerically determined by using two different approaches. The governing equations of the vibration near the equilibrium solutions are derived by introducing a coordinate transform. The natural frequencies of the dynamical systems are studied by using the Galerkin method with various truncations and the differential and integral quadrature methods. Moreover, the convergence of the Galerkin truncation is investigated. Numerical results reveal that the study needs 16 terms after truncation in order to determine the free vibration characteristics of the pulley-belt system with the belt bending stiffness. Furthermore, the first five natural frequencies are very sensitive to the bending stiffness of the translating belt.

  6. Effect of long-term isometric training on core/torso stiffness.

    Science.gov (United States)

    Lee, Benjamin C Y; McGill, Stuart M

    2015-06-01

    Although core stiffness enhances athletic performance traits, controversy exists regarding the effectiveness of isometric vs. dynamic core training methods. This study aimed to determine whether long-term changes in stiffness can be trained, and if so, what is the most effective method. Twenty-four healthy male subjects (23 ± 3 years; 1.8 ± 0.06 m; 77.5 ± 10.8 kg) were recruited for passive and active stiffness measurements before and after a 6-week core training intervention. Twelve subjects (22 ± 2 years; 1.8 ± 0.08 m; 78.3 ± 12.3 kg) were considered naive to physical and core exercise. The other 12 subjects (24 ± 3 years; 1.8 ± 0.05 m; 76.8 ± 9.7 kg) were Muay Thai athletes (savvy). A repeated-measures design compared core training methods (isometric vs. dynamic, with a control group) and subject training experience (naive vs. savvy) before and after a 6-week training period. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed through a quick release mechanism. Passive stiffness increased after the isometric training protocol. Dynamic training produced a smaller effect, and as expected, there was no change in the control group. Active stiffness did not change in any group. Comparisons between subject and training groups did not reveal any interactions. Thus, an isometric training approach was superior in terms of enhancing core stiffness. This is important since increased core stiffness enhances load bearing ability, arrests painful vertebral micromovements, and enhances ballistic distal limb movement. This may explain the efficacy reported for back and knee injury reduction.

  7. Effects of circumferential ankle pressure on ankle proprioception, stiffness, and postural stability: a preliminary investigation.

    Science.gov (United States)

    You, Sung H; Granata, Kevin P; Bunker, Linda K

    2004-08-01

    Cross-sectional repeated-measures design. Determine the effects of circumferential ankle pressure (CAP) intervention on proprioceptive acuity, ankle stiffness, and postural stability. The application of CAP using braces, taping, and adaptive shoes or military boots is widely used to address chronic ankle instability (CAI). An underlying assumption is that the CAP intervention might improve ankle stability through increased proprioceptive acuity and stiffness in the ankle. METHOD AND MEASURES: A convenience sample of 10 subjects was recruited from the local university community and categorized according to proprioceptive acuity (high, low) and ankle stability (normal, CAI). Proprioceptive acuity was measured when blindfolded subjects were asked to accurately reproduce a self-selected target ankle position before and after the application of CAP. Proprioceptive acuity was determined in 5 different ankle joint position sense tests: neutral, inversion, eversion, plantar flexion, and dorsiflexion. Joint position angles were recorded electromechanically using a potentiometer. Passive ankle stiffness was computed from the ratio of applied static moment versus angular displacement. Active ankle stiffness was determined from biomechanical analyses of ankle motion following a mediolateral perturbation. Postural stability was quantified from the center of pressure displacement in the mediolateral and the anteroposterior directions in unipedal stance. All measurements were recorded with and without CAP applied by a pediatric blood pressure cuff. Data were analyzed using a separate mixed-model analysis of variance (ANOVA) for each dependent variable. Post hoc comparison using Tukey's honestly significant difference (HSD) test was performed if significant interactions were obtained. Significance level was set at P<.05 for all analyses. Significant group (high versus low proprioceptive acuity) x CAP interactions were identified for postural stability. Passive ankle stiffness was

  8. The Stiffness and Damping Characteristics of a Dual-Chamber Air Spring Device Applied to Motion Suppression of Marine Structures

    Directory of Open Access Journals (Sweden)

    Xiaohui Zeng

    2016-03-01

    Full Text Available Dual-chamber air springs are used as a key component for vibration isolation in some industrial applications. The working principle of the dual-chamber air spring device as applied to motion suppression of marine structures is similar to that of the traditional air spring, but they differ in their specific characteristics. The stiffness and damping of the dual-chamber air spring device determine the extent of motion suppression. In this article, we investigate the stiffness and damping characteristics of a dual-chamber air spring device applied to marine structure motion suppression using orthogonal analysis and an experimental method. We measure the effects of volume ratio, orifice ratio, excitation amplitude, and frequency on the stiffness and damping of the dual-chamber vibration absorber. Based on the experimental results, a higher-order non-linear regression method is obtained. We achieve a rapid calculation model for dual-chamber air spring stiffness and damping, which can provide guidance to project design.

  9. [Metabolic syndrome and aortic stiffness].

    Science.gov (United States)

    Simková, A; Bulas, J; Murín, J; Kozlíková, K; Janiga, I

    2010-09-01

    The metabolic syndrome (MS) is a cluster of risk factors that move the patient into higher level of risk category of cardiovascular disease and the probability of type 2 diabetes mellitus manifestation. Definition of MS is s based on the presence of selected risk factors as: abdominal obesity (lager waist circumpherence), atherogenic dyslipidemia (low value of HDL-cholesterol and increased level of triglycerides), increased fasting blood glucose (or type 2 DM diagnosis), higher blood pressure or antihypertensive therapy. In 2009 there were created harmonizing criteria for MS definition; the condition for assignment of MS is the presence of any 3 criteria of 5 mentioned above. The underlying disorder of MS is an insulin resistance or prediabetes. The patients with MS more frequently have subclinical (preclinical) target organ disease (TOD) which is the early sings of atherosclerosis. Increased aortic stiffness is one of the preclinical diseases and is defined by pathologically increased carotidofemoral pulse wave velocity in aorta (PWV Ao). With the aim to assess the influence of MS on aortic stiffness we examined the group of women with arterial hypertension and MS and compare them with the group of women without MS. The aortic stiffness was examined by Arteriograph--Tensiomed, the equipment working on the oscillometric principle in detection of pulsations of brachial artery. This method determines the global aortic stiffness based on the analysis of the shape of pulse curve of brachial artery. From the cohort of 49 pts 31 had MS, the subgroups did not differ in age or blood pressure level. The mean number of risk factors per person in MS was 3.7 comparing with 1.7 in those without MS. In the MS group there was more frequently abdominal obesity present (87% vs 44%), increased fasting blood glucose (81% vs 22%) and low HDL-cholesterol level. The pulse wave velocity in aorta, PWV Ao, was significantly higher in patients with MS (mean value 10,19 m/s vs 8,96 m

  10. THE EFFECT OF GOLIMUMAB ON ARTERIAL STIFFNESS IN PATIENTS WITH RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    L. A. Knyazeva

    2018-01-01

    Full Text Available Objective: to evaluate the effect of golimumab (GLM on arterial stiffness in patients with different clinical and immunological subtypes of rheumatoid arthritis (RA.Material and methods. Examinations were made in 48 patients with RA meeting the 1987 ACR/2010 EULAR classification criteria. The investigators visualized carotid arteries with determination of local vessel wall stiffness and studied regional arterial stiffness with assessment of contour pulse wave analysis before and 52 weeks after initiation of therapy.Results and discussion. Young and middle-aged RA patients without any concomitant cardiovascular diseases were found to have subclinical great artery involvement that was characterized by increases in intima-media thickness (IMT and stiffness index β of the common carotid artery (CCA; by rises in peripheral augmentation index (AIp, stiffness index (SI, and reflection index (RI, the intensity of a change in which was associated with high DAS28 and seropositivity for rheumatoid factor (RF and/or anti-cyclic citrullinated peptide (antiCCP antibodies. GLM treatment in patients with RA was accompanied by a statistically significant decrease in DAS28 and a reduction in CCA IMT and local (carotid stiffness of the vascular bed. More significant correction of the investigated parameters was achieved in patients with the seronegative subtype of the disease; in this group of patients, CCA IMT decreased by 29% by the end of observation (p=0.01, CCA SI β reduced by an average of 28.7% (p=0.0001. At 52 weeks after GLM therapy initiation, contour pulse wave analysis indicated that this subgroup of patients was observed to have decreases in AIp, SI, and RI to the control level; in RA seropositive for RF and/or anti-CCP, they reduced by an average of 1.8 (p=0.0001, 1.2 (p=0.005 and 1.6 (p=0.001 times, respectively.Conclusion. Along with high anti-inflammatory activity, GLM therapy in patients with RA has a vasoprotective effect on the walls of large

  11. Interaction of the human body and surfaces of different stiffness during drop jumps.

    Science.gov (United States)

    Arampatzis, Adamantios; Stafilidis, Savvas; Morey-Klapsing, Gaspar; Brüggemann, Gert-peter

    2004-03-01

    The purpose of this study was to examine two hypotheses: (a) the stiffness of the surface influences the leg stiffness of the subjects during drop jumps, and (b) drop jumping performance (jumping height and energy rates of the subject's center of mass during the contact phase) increases when decreasing surface stiffness due to a greater energy storage capacity of the surface for a given acting force. Ten female subjects performed a series of drop jumps from 40-cm height onto two sprung surfaces with different stiffness. Those trials of each subject displaying the maximal mechanical power during the upward phase were analyzed. The ground reaction forces were measured using a force plate. Sagittal kinematics of the subject's body positions and the deformation of the surface were recorded using two high-speed video cameras. On the soft surface, the jumping height and the energy rates of the subjects during the contact phase were greater than on the hard one. The energy delivered by the subjects during the upward phase, the leg and joint stiffness, as well as the range of motion of the subjects remained unchanged for both surfaces. The absolute energy loss is lower for the hard surface, but the jumping performance is greater for the soft one. The reason is a higher ratio of positive to negative mechanical work done by the subjects during the contact phase. The adjustment of the subjects to different surfaces is not only dependent on the stiffness of the surface but also on the intensity of the movement.

  12. Spectrum reconstruction of quasi-zero stiffness floating raft systems

    International Nuclear Information System (INIS)

    Li, Yingli; Xu, Daolin

    2016-01-01

    Chaos control can be utilized to reform the response spectra of a dynamic system, potentially useful for the acoustic reconstruction of underwater vehicles. Introduction of the quasi-zero stiffness (QZS) isolators into the chaotification system can greatly reduce the emission of vibration signals from vehicles. In this study, the QZS isolators is adopted with combination of chaotification expecting to achieve excellent performances in both vibration isolation and the camouflage of vibration signal features. A nonlinear time delay control scheme is proposed to chaotify the QZS system in order to reconstruct the output spectrum features of the acoustic noise induced by the machinery vibration. A high dimensional nonlinear model of the QZS system is developed to understand the spectrum characteristics of the system. From the spectrum patterns, a specific performance index is formulated to evaluate the significance of signal-noise ratio. Based on this index, the Generic Algorithm method is employed to seek the optimal control parameters which enable to eliminate the feature of line spikes emerged from broad-band spectra. The results show that the unique combination of QZS system and time delay control can effectively reform the power spectra, especially for the case with relatively high frequency.

  13. Determination of the elastic and stiffness characteristics of cross-laminated timber plates from flexural wave velocity measurements

    Science.gov (United States)

    Santoni, Andrea; Schoenwald, Stefan; Van Damme, Bart; Fausti, Patrizio

    2017-07-01

    Cross-laminated timber (CLT) is an engineered wood with good structural properties and it is also economically competitive with the traditional building construction materials. However, due to its low volume density combined with its high stiffness, it does not provide sufficient sound insulation, thus it is necessary to develop specific acoustic treatments in order to increase the noise reduction performance. The material's mechanical properties are required as input data to perform the vibro-acoustic analyses necessary during the design process. In this paper the elastic constants of a CLT plate are derived by fitting the real component of the experimental flexural wave velocity with Mindlin's dispersion relation for thick plates, neglecting the influence of the plate's size and boundary conditions. Furthermore, its apparent elastic and stiffness properties are derived from the same set of experimental data, for the plate considered to be thin. Under this latter assumption the orthotropic behaviour of an equivalent thin CLT plate is described by using an elliptic model and verified with experimental results.

  14. Determination of Ankle and Metatarsophalangeal Stiffness During Walking and Jogging.

    Science.gov (United States)

    Mager, Fabian; Richards, Jim; Hennies, Malika; Dötzel, Eugen; Chohan, Ambreen; Mbuli, Alex; Capanni, Felix

    2018-05-29

    Forefoot stiffness has been shown to influence joint biomechanics. However, little or no data exists on metatarsophalangeal stiffness. Twenty-four healthy rearfoot strike runners were recruited from a staff and student population at the University of Central Lancashire. Five repetitions of shod, self-selected speed level walking and jogging were performed. Kinetic and kinematic data were collected using retro-reflective markers placed on the lower limb and foot, to create a three-segment foot model using the Calibrated Anatomical System Technique. Ankle and metatarsophalangeal moments and angles were calculated. Stiffness values were calculated using a linear best fit line of moment versus of angle plots. Paired t-tests were used to compare values between walking and jogging conditions. Significant differences were seen in ankle range of motion (ROM), but not in metatarsophalangeal ROM. Maximum moments were significantly greater in the ankle during jogging, but these were not significantly different at the metatarsophalangeal joint. Average ankle joint stiffness exhibited significantly lower stiffness when walking compared to jogging. However, the metatarsophalangeal joint exhibited significantly greater stiffness when walking compared to jogging. A greater understanding of forefoot stiffness may inform the development of footwear, prosthetic feet and orthotic devices, such as ankle-foot orthoses for walking and sporting activities.

  15. Parametric control of structural vibrations and sound radiation by fast time-space variation of distributed stiffness parameters

    International Nuclear Information System (INIS)

    Krylov, V.I.; Sorokin, S.V.

    1998-01-01

    The dynamics of a Euler-Bernoulli beam with a time-and-space dependent bending stiffness is studied. The , problem is considered in connection with the application of noise control using smart structures. It is shown that a control for the vibrations of the beam can be achieved by varying the bending stiffness. The technique of direct separation of fast and slow motion coupled with a Green's function method is used to analyze the dynamics of the beam with high-frequency modulation of the stiffness

  16. Dynamically tuned magnetostrictive spring with electrically controlled stiffness

    Science.gov (United States)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-03-01

    This paper presents the design and testing of an electrically controllable magnetostrictive spring that has a dynamically tunable stiffness (i.e., a magnetostrictive Varispring). The device enables in situ stiffness tuning or stiffness switching for vibration control applications. Using a nonlinear electromechanical transducer model and an analytical solution of linear, mechanically induced magnetic diffusion, Terfenol-D is shown to have a faster rise time to stepped voltage inputs and a significantly higher magnetic diffusion cut-off frequency relative to Galfenol. A Varispring is manufactured using a laminated Terfenol-D rod. Further rise time reductions are achieved by minimizing the rod’s diameter and winding the electromagnet with larger wire. Dynamic tuning of the Varispring’s stiffness is investigated by measuring the Terfenol-D rod’s strain response to dynamic, compressive, axial forces in the presence of sinusoidal or square wave control currents. The Varispring’s rise time is \\lt 1 ms for 1 A current switches. Continuous modulus changes up to 21.9 GPa and 500 Hz and square wave modulus changes (dynamic {{Δ }}E effect) up to 12.3 GPa and 100 Hz are observed. Stiffness tunability and tuning bandwidth can be considerably increased by operating about a more optimal bias stress and improving the control of the electrical input.

  17. Experimental study on efficacy of compression systems with a high static stiffness index for treatment of venous ulcer patients

    OpenAIRE

    Anneke Andriessen; Martin Abel

    2013-01-01

    The experimental study measured interface pressure and static stiffness index of four different compression systems in fifty-two healthy volunteers. For the study interface pressure (3 cm ø probe was placed at the anatomical B1 point) was recorded on application of the compression systems every 15 min for 4 h, in supine, standing, while sitting and during walking. For this purpose a portable Kikuhime (Harada Corp., Osaka, Japan) device was used. Further static stiffness index (SSI) was...

  18. A family of high-order gas-kinetic schemes and its comparison with Riemann solver based high-order methods

    Science.gov (United States)

    Ji, Xing; Zhao, Fengxiang; Shyy, Wei; Xu, Kun

    2018-03-01

    Most high order computational fluid dynamics (CFD) methods for compressible flows are based on Riemann solver for the flux evaluation and Runge-Kutta (RK) time stepping technique for temporal accuracy. The advantage of this kind of space-time separation approach is the easy implementation and stability enhancement by introducing more middle stages. However, the nth-order time accuracy needs no less than n stages for the RK method, which can be very time and memory consuming due to the reconstruction at each stage for a high order method. On the other hand, the multi-stage multi-derivative (MSMD) method can be used to achieve the same order of time accuracy using less middle stages with the use of the time derivatives of the flux function. For traditional Riemann solver based CFD methods, the lack of time derivatives in the flux function prevents its direct implementation of the MSMD method. However, the gas kinetic scheme (GKS) provides such a time accurate evolution model. By combining the second-order or third-order GKS flux functions with the MSMD technique, a family of high order gas kinetic methods can be constructed. As an extension of the previous 2-stage 4th-order GKS, the 5th-order schemes with 2 and 3 stages will be developed in this paper. Based on the same 5th-order WENO reconstruction, the performance of gas kinetic schemes from the 2nd- to the 5th-order time accurate methods will be evaluated. The results show that the 5th-order scheme can achieve the theoretical order of accuracy for the Euler equations, and present accurate Navier-Stokes solutions as well due to the coupling of inviscid and viscous terms in the GKS formulation. In comparison with Riemann solver based 5th-order RK method, the high order GKS has advantages in terms of efficiency, accuracy, and robustness, for all test cases. The 4th- and 5th-order GKS have the same robustness as the 2nd-order scheme for the capturing of discontinuous solutions. The current high order MSMD GKS is a

  19. Effects of mechanical properties and geometric conditions on stiffness of Hyperboloid Shallow Shell

    Directory of Open Access Journals (Sweden)

    Zhao Lihong

    2015-01-01

    Full Text Available The experiment models based on the hyperboloid shallow shells that represent automobile panel's surface features are established. The effects of material properties and geometric conditions condition on the stiffness of hyperboloid shallow shell are investigated experimentally. The influences of panel thickness and geometric conditions on stiffness are very obvious. Stiffness increases with increasing of the panel thickness, and stiffness doubled as increasing in thickness with 0.1 mm. The effect of thickness on stiffness is far greater than that of blank holding force. The greater the arc height of punch, the greater the stiffness. And stiffness increases nearly by five times with arc height of punch is from 3mm to 9mm. The effect of arc height of punch on stiffness is far greater than that of materials mechanical properties. The stiffness is varied with different panel material properties by the same forming and stiffness test conditions. The decrease of yield strength is beneficial to the panel stiffness. The appropriate choice of materials and forming process condition is important in meeting necessary requirements for the energy-saving, lightweight and reducing wind resistance design in automotive industry.

  20. Distributed simulation of large computer systems

    International Nuclear Information System (INIS)

    Marzolla, M.

    2001-01-01

    Sequential simulation of large complex physical systems is often regarded as a computationally expensive task. In order to speed-up complex discrete-event simulations, the paradigm of Parallel and Distributed Discrete Event Simulation (PDES) has been introduced since the late 70s. The authors analyze the applicability of PDES to the modeling and analysis of large computer system; such systems are increasingly common in the area of High Energy and Nuclear Physics, because many modern experiments make use of large 'compute farms'. Some feasibility tests have been performed on a prototype distributed simulator

  1. Intraventricular filling under increasing left ventricular wall stiffness and heart rates

    Science.gov (United States)

    Samaee, Milad; Lai, Hong Kuan; Schovanec, Joseph; Santhanakrishnan, Arvind; Nagueh, Sherif

    2015-11-01

    Heart failure with normal ejection fraction (HFNEF) is a clinical syndrome that is prevalent in over 50% of heart failure patients. HFNEF patients show increased left ventricle (LV) wall stiffness and clinical diagnosis is difficult using ejection fraction (EF) measurements. We hypothesized that filling vortex circulation strength would decrease with increasing LV stiffness irrespective of heart rate (HR). 2D PIV and hemodynamic measurements were acquired on LV physical models of varying wall stiffness under resting and exercise HRs. The LV models were comparatively tested in an in vitro flow circuit consisting of a two-element Windkessel model driven by a piston pump. The stiffer LV models were tested in comparison with the least stiff baseline model without changing pump amplitude, circuit compliance and resistance. Increasing stiffness at resting HR resulted in diminishing cardiac output without lowering EF below 50% as in HFNEF. Increasing HR to 110 bpm in addition to stiffness resulted in lowering EF to less than 50%. The circulation strength of the intraventricular filling vortex diminished with increasing stiffness and HR. The results suggest that filling vortex circulation strength could be potentially used as a surrogate measure of LV stiffness. This research was supported by the Oklahoma Center for Advancement of Science and Technology (HR14-022).

  2. The effect of short-term isometric training on core/torso stiffness.

    Science.gov (United States)

    Lee, Benjamin; McGill, Stuart

    2017-09-01

    "Core" exercise is a basic part of many physical training regimens with goals ranging from rehabilitation of spine and knee injuries to improving athletic performance. Core stiffness has been proposed to perform several functions including reducing pain by minimising joint micro-movements, and enhancing strength and speed performance. This study probes the links between a training approach and immediate but temporary changes in stiffness. Passive and active stiffness was measured on 24 participants; 12 having little to no experience in core training (inexperienced), and the other 12 being athletes experienced to core training methods; before and after a 15 min bout of isometric core exercises. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed via a quick release mechanism. Short-term isometric core training increased passive and active stiffness in most directions for both inexperienced and experienced participants, passive left lateral bend among experienced participants being the exception (P core stiffness, in this case following a single session. This may influence performance and injury resilience for a brief period.

  3. Dynamic Stiffness Transfer Function of an Electromechanical Actuator Using System Identification

    Science.gov (United States)

    Kim, Sang Hwa; Tahk, Min-Jea

    2018-04-01

    In the aeroelastic analysis of flight vehicles with electromechanical actuators (EMAs), an accurate prediction of flutter requires dynamic stiffness characteristics of the EMA. The dynamic stiffness transfer function of the EMA with brushless direct current (BLDC) motor can be obtained by conducting complicated mathematical calculations of control algorithms and mechanical/electrical nonlinearities using linearization techniques. Thus, system identification approaches using experimental data, as an alternative, have considerable advantages. However, the test setup for system identification is expensive and complex, and experimental procedures for data collection are time-consuming tasks. To obtain the dynamic stiffness transfer function, this paper proposes a linear system identification method that uses information obtained from a reliable dynamic stiffness model with a control algorithm and nonlinearities. The results of this study show that the system identification procedure is compact, and the transfer function is able to describe the dynamic stiffness characteristics of the EMA. In addition, to verify the validity of the system identification method, the simulation results of the dynamic stiffness transfer function and the dynamic stiffness model were compared with the experimental data for various external loads.

  4. Cancer cell migration within 3D layer-by-layer microfabricated photocrosslinked PEG scaffolds with tunable stiffness.

    Science.gov (United States)

    Soman, Pranav; Kelber, Jonathan A; Lee, Jin Woo; Wright, Tracy N; Vecchio, Kenneth S; Klemke, Richard L; Chen, Shaochen

    2012-10-01

    Our current understanding of 3-dimensional (3D) cell migration is primarily based on results from fibrous scaffolds with randomly organized internal architecture. Manipulations that change the stiffness of these 3D scaffolds often alter other matrix parameters that can modulate cell motility independently or synergistically, making observations less predictive of how cells behave when migrating in 3D. In order to decouple microstructural influences and stiffness effects, we have designed and fabricated 3D polyethylene glycol (PEG) scaffolds that permit orthogonal tuning of both elastic moduli and microstructure. Scaffolds with log-pile architectures were used to compare the 3D migration properties of normal breast epithelial cells (HMLE) and Twist-transformed cells (HMLET). Our results indicate that the nature of cell migration is significantly impacted by the ability of cells to migrate in the third dimension. 2D ECM-coated PEG substrates revealed no statistically significant difference in cell migration between HMLE and HMLET cells among substrates of different stiffness. However, when cells were allowed to move along the third dimension, substantial differences were observed for cell displacement, velocity and path straightness parameters. Furthermore, these differences were sensitive to both substrate stiffness and the presence of the Twist oncogene. Importantly, these 3D modes of migration provide insight into the potential for oncogene-transformed cells to migrate within and colonize tissues of varying stiffness. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Scalable BDDC Algorithms for Cardiac Electromechanical Coupling

    KAUST Repository

    Pavarino, L. F.

    2017-03-17

    The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.

  6. Scalable BDDC Algorithms for Cardiac Electromechanical Coupling

    KAUST Repository

    Pavarino, L. F.; Scacchi, S.; Verdi, C.; Zampieri, E.; Zampini, Stefano

    2017-01-01

    The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.

  7. Generation of high order modes

    CSIR Research Space (South Africa)

    Ngcobo, S

    2012-07-01

    Full Text Available with the location of the Laguerre polynomial zeros. The Diffractive optical element is used to shape the TEM00 Gassian beam and force the laser to operate on a higher order TEMp0 Laguerre-Gaussian modes or high order superposition of Laguerre-Gaussian modes...

  8. An experimental investigation on bending stiffness and neutral axis depth variation of over-reinforced high strength concrete beams

    International Nuclear Information System (INIS)

    Mohammadhassani, Mohammad; Bin Jumaat, Mohd Zamin; Chemrouk, Mohamed; Akbar Maghsoudi, Ali; Jameel, Mohammed; Akib, Shatirah

    2011-01-01

    Highlights: → Improvement of the assessment of correspond stress for calculation of modules of elasticity → better evaluation of cracked moment of inertia. → Low distinction of neutral axis depth → low bending stiffness variation. → Rate of slope in the line connecting the origin of first crack to yield point of N.A.D-LOAD graph → rate of ductility of beam section. - Abstract: The present work is an attempt to study the neutral axis variation and the evolution of the moment inertia with the loading of over reinforced high strength concrete sections in conjunction with ACI 318-05. In this sense, four high strength concrete beams, having different tension reinforcement quantities expressed as proportions of the balanced steel ratio (0.75ρ b , 0.85ρ b , ρ b , 1.2ρ b ) were tested. Measurements of the deflection and the reinforcement and concrete strains of all specimens were made during the loading process. The load-neutral axis depth variation and the load-section stiffness curves were drawn. The slope of the line connecting the origin of the first crack to the initial yielding of the failure point in the neutral axis depth-load graphs shows the rate of ductility; ductile behaviour in the beam increases as the slope becomes steeper. Based on the results of this study, it is recommended that the modulus of elasticity of concrete E c be reviewed and evaluated at a stress higher than 0.5f ' c for the determination of the cracked moment of inertia.

  9. A gradual update method for simulating the steady-state solution of stiff differential equations in metabolic circuits.

    Science.gov (United States)

    Shiraishi, Emi; Maeda, Kazuhiro; Kurata, Hiroyuki

    2009-02-01

    Numerical simulation of differential equation systems plays a major role in the understanding of how metabolic network models generate particular cellular functions. On the other hand, the classical and technical problems for stiff differential equations still remain to be solved, while many elegant algorithms have been presented. To relax the stiffness problem, we propose new practical methods: the gradual update of differential-algebraic equations based on gradual application of the steady-state approximation to stiff differential equations, and the gradual update of the initial values in differential-algebraic equations. These empirical methods show a high efficiency for simulating the steady-state solutions for the stiff differential equations that existing solvers alone cannot solve. They are effective in extending the applicability of dynamic simulation to biochemical network models.

  10. Second-order oriented partial-differential equations for denoising in electronic-speckle-pattern interferometry fringes.

    Science.gov (United States)

    Tang, Chen; Han, Lin; Ren, Hongwei; Zhou, Dongjian; Chang, Yiming; Wang, Xiaohang; Cui, Xiaolong

    2008-10-01

    We derive the second-order oriented partial-differential equations (PDEs) for denoising in electronic-speckle-pattern interferometry fringe patterns from two points of view. The first is based on variational methods, and the second is based on controlling diffusion direction. Our oriented PDE models make the diffusion along only the fringe orientation. The main advantage of our filtering method, based on oriented PDE models, is that it is very easy to implement compared with the published filtering methods along the fringe orientation. We demonstrate the performance of our oriented PDE models via application to two computer-simulated and experimentally obtained speckle fringes and compare with related PDE models.

  11. Martial arts training attenuates arterial stiffness in middle aged adults.

    Science.gov (United States)

    Douris, Peter C; Ingenito, Teresa; Piccirillo, Barbara; Herbst, Meredith; Petrizzo, John; Cherian, Vincen; McCutchan, Christopher; Burke, Caitlin; Stamatinos, George; Jung, Min-Kyung

    2013-09-01

    Arterial stiffness increases with age and is related to an increased risk of coronary artery disease. Poor trunk flexibility has been shown to be associated with arterial stiffness in middle-aged subjects. The purpose of our research study was to measure arterial stiffness and flexibility in healthy middle-aged martial artists compared to age and gender matched healthy sedentary controls. Ten martial artists (54.0 ± 2.0 years), who practice Soo Bahk Do (SBD), a Korean martial art, and ten sedentary subjects (54.7 ± 1.8 years) for a total of twenty subjects took part in this cross-sectional study. Arterial stiffness was assessed in all subjects using pulse wave velocity (PWV), a recognized index of arterial stiffness. Flexibility of the trunk and hamstring were also measured. The independent variables were the martial artists and matched sedentary controls. The dependent variables were PWV and flexibility. There were significant differences, between the SBD practitioners and sedentary controls, in PWV (P = 0.004), in trunk flexibility (P= 0.002), and in hamstring length (P= 0.003). The middle-aged martial artists were more flexible in their trunk and hamstrings and had less arterial stiffness compared to the healthy sedentary controls. The flexibility component of martial art training or flexibility exercises in general may be considered as a possible intervention to reduce the effects of aging on arterial stiffness.

  12. Assessment of the impact of degraded shear wall stiffnesses on seismic plant risk and seismic design loads

    International Nuclear Information System (INIS)

    Klamerus, E.W.; Bohn, M.P.; Johnson, J.J.; Asfura, A.P.; Doyle, D.J.

    1994-02-01

    Test results sponsored by the USNRC have shown that reinforced shear wall (Seismic Category I) structures exhibit stiffnesses and natural frequencies which are smaller than those calculated in the design process. The USNRC has sponsored Sandia National Labs to perform an evaluation of the effects of the reduced frequencies on several existing seismic PRAs in order to determine the seismic risk implications inherent in these test results. This report presents the results for the re-evaluation of the seismic risk for three nuclear power plants: the Peach Bottom Atomic Power Station, the Zion Nuclear Power Plant, and Arkansas Nuclear One -- Unit 1 (ANO-1). Increases in core damage frequencies for seismic initiated events at Peach Bottom were 25 to 30 percent (depending on whether LLNL or EPRI hazard curves were used). At the ANO-1 site, the corresponding increases in plant risk were 10 percent (for each set of hazard curves). Finally, at Zion, there was essentially no change in the computed core damage frequency when the reduction in shear wall stiffness was included. In addition, an evaluation of deterministic ''design-like'' structural dynamic calculations with and without the shear stiffness reductions was made. Deterministic loads calculated for these two cases typically increased on the order of 10 to 20 percent for the affected structures

  13. Stiffness Coefficients of Mortise and Tenon Joints used on Wooden Window Profiles

    Directory of Open Access Journals (Sweden)

    Milan Podlena

    2016-04-01

    Full Text Available Samples of corner joints of wooden rectangular windows, with widths of 78 and 92 mm, were used to determine the stiffness of tenon and mortise joints. Two series of samples were loaded statically in the angular plane of compression and tension, so that the bending moment could be derived. The objective of the experiment was to determine the existing correlations between the stiffness in maximum strength and the stiffness in the elastic area for both types of tests. After strength tests were carried out, the annual ring width of the samples was measured to determine whether this factor affects the stiffness of the joints. The results showed that there was a relatively strong correlation between the stiffness in the elastic area and the maximum load. A two-factor analysis of variance confirmed that the type of load did not affect the stiffness of the joint, but the type of joint (width does significantly affect the stiffness. Therefore, the width of annual rings was positively correlated with the stiffness of the joints.

  14. Free vibration analysis of multi-span pipe conveying fluid with dynamic stiffness method

    International Nuclear Information System (INIS)

    Li Baohui; Gao Hangshan; Zhai Hongbo; Liu Yongshou; Yue Zhufeng

    2011-01-01

    Research highlights: → The dynamic stiffness method was proposed to analysis the free vibration of multi-span pipe conveying fluid. → The main advantage of the proposed method is that it can hold a high precision even though the element size is large. → The flowing fluid can weaken the pipe stiffness, when the fluid velocity increases, the natural frequencies of pipe are decreasing. - Abstract: By taking a pipe as Timoshenko beam, in this paper the original 4-equation model of pipe conveying fluid was modified by taking the dynamic effects of fluid into account. The shape function that always used in the finite element method was replaced by the exact wave solution of the modified four equations. And then the dynamic stiffness was deduced for the free vibration of pipe conveying fluid. The proposed method was validated by comparing the results of critical velocity with analytical solution for a simply supported pipe at both ends. In the example, the proposed method was applied to calculate the first three natural frequencies of a three span pipe with twelve meters long in three different cases. The results of natural frequency for the pipe conveying stationary fluid fitted well with that calculated by finite element software Abaqus. It was shown that the dynamic stiffness method can still hold high precision even though the element's size was quite large. And this is the predominant advantage of the proposed method comparing with conventional finite element method.

  15. Variable stiffness and damping MR isolator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X Z; Wang, X Y; Li, W H; Kostidis, K [University of Wollongong, School of Mechanical, Materials and Mechatronic Engineering, NSW 2522 (Australia)], E-mail: weihuali@uow.edu.au

    2009-02-01

    This paper presents the development of a magnetorheological (MR) fluid-based variable stiffness and damping isolator for vibration suppressions. The MR fluid isolator used a sole MR control unit to achieve the variable stiffness and damping in stepless and relative large scope. A mathematical model of the isolator was derived, and a prototype of the MR fluid isolator was fabricated and its dynamic behavior was measured in vibration under various applied magnetic fields. The parameters of the model under various magnetic fields were identified and the dynamic performances of isolator were evaluated.

  16. Postoperative stiff shoulder after open rotator cuff repair: a 3- to 20-year follow-up study.

    Science.gov (United States)

    Vastamäki, H; Vastamäki, M

    2014-12-01

    Stiffness after a rotator cuff tear is common. So is stiffness after an arthroscopic rotator cuff repair. In the literature, however, postoperative restriction of passive range of motion after open rotator cuff repair in shoulders with free passive range of motion at surgery has seldom been recognized. We hypothesize that this postoperative stiffness is more frequent than recognized and slows the primary postoperative healing after a rotator cuff reconstruction. We wondered how common is postoperative restriction of both active and passive range of motion after open rotator cuff repair in shoulders with free passive preoperative range of motion, how it recovers, and whether this condition influences short- and long-term results of surgery. We also explored factors predicting postoperative shoulder stiffness. We retrospectively identified 103 postoperative stiff shoulders among 416 consecutive open rotator cuff repairs, evaluating incidence and duration of stiffness, short-term clinical results and long-term range of motion, pain relief, shoulder strength, and functional results 3-20 (mean 8.7) years after surgery in 56 patients. The incidence of postoperative shoulder stiffness was 20%. It delayed primary postoperative healing by 3-6 months and resolved during a mean 6.3 months postoperatively. External rotation resolved first, corresponding to that of the controls at 3 months; flexion and abduction took less than 1 year after surgery. The mean summarized range of motion (flexion + abduction + external rotation) increased as high as 93% of the controls' range of motion by 6 months and 100% by 1 year. Flexion, abduction, and internal rotation improved to the level of the contralateral shoulders as did pain, strength, and function. Age at surgery and condition of the biceps tendon were related to postoperative stiffness. Postoperative stiff shoulder after open rotator cuff repair is a common complication resolving in 6-12 months with good long-term results. © The

  17. Mammalian Auditory Hair Cell Bundle Stiffness Affects Frequency Tuning by Increasing Coupling along the Length of the Cochlea.

    Science.gov (United States)

    Dewey, James B; Xia, Anping; Müller, Ulrich; Belyantseva, Inna A; Applegate, Brian E; Oghalai, John S

    2018-06-05

    The stereociliary bundles of cochlear hair cells convert mechanical vibrations into the electrical signals required for auditory sensation. While the stiffness of the bundles strongly influences mechanotransduction, its influence on the vibratory response of the cochlear partition is unclear. To assess this, we measured cochlear vibrations in mutant mice with reduced bundle stiffness or with a tectorial membrane (TM) that is detached from the sensory epithelium. We found that reducing bundle stiffness decreased the high-frequency extent and sharpened the tuning of vibratory responses obtained postmortem. Detaching the TM further reduced the high-frequency extent of the vibrations but also lowered the partition's resonant frequency. Together, these results demonstrate that the bundle's stiffness and attachment to the TM contribute to passive longitudinal coupling in the cochlea. We conclude that the stereociliary bundles and TM interact to facilitate passive-wave propagation to more apical locations, possibly enhancing active-wave amplification in vivo. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.

    Science.gov (United States)

    Maquer, Ghislain; Laurent, Marc; Brandejsky, Vaclav; Pretterklieber, Michael L; Zysset, Philippe K

    2014-06-01

    Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently

  19. Effect of lumped mass and support stiffness on pipe seismic response

    International Nuclear Information System (INIS)

    Chang, P.S.Y.

    1986-01-01

    In performing pipe stress analysis, generic support stiffness values are typically used to predict the response of the piping systems. Consistent design of every support to match the generic stiffness value is difficult. The difference between the actual and generic stiffness may affect the results of pipe stresses and support reactions. The objective of this study is to develop an acceptance criteria for the actual support stiffness and to avoid unnecessary reanalysis. The support mass in the restraint direction and mass within the pipe span can also affect the piping system behavior and this study will discuss this mass effect as well. Added mass and change in support stiffness will cause the piping system to shift frequency

  20. Discriminating the role of rotation and its gradient in determining ion stiffness mitigation in JET

    DEFF Research Database (Denmark)

    Baiocchi, B.; Mantica, P.; Giroud, C.

    2013-01-01

    Starting from recent JET experimental results that show a significant reduction of ion stiffness in the plasma core region due to plasma rotation in the presence of low magnetic shear, an experiment was carried out at JET in order to separate the role of rotation and rotation gradient in mitigati...

  1. Discriminating the role of rotation and its gradient in determining ion stiffness mitigation in JET

    NARCIS (Netherlands)

    Baiocchi, B.; Mantica, P.; Giroud, C.; Johnson, T.; Naulin, V.; Salmi, A.; Tala, T.; Tsalas, M.

    2013-01-01

    Starting from recent JET experimental results that show a significant reduction of ion stiffness in the plasma core region due to plasma rotation in the presence of low magnetic shear, an experiment was carried out at JET in order to separate the role of rotation and rotation gradient in mitigating

  2. Conservative fourth-order time integration of non-linear dynamic systems

    DEFF Research Database (Denmark)

    Krenk, Steen

    2015-01-01

    An energy conserving time integration algorithm with fourth-order accuracy is developed for dynamic systems with nonlinear stiffness. The discrete formulation is derived by integrating the differential state-space equations of motion over the integration time increment, and then evaluating...... the resulting time integrals of the inertia and stiffness terms via integration by parts. This process introduces the time derivatives of the state space variables, and these are then substituted from the original state-space differential equations. The resulting discrete form of the state-space equations...... is a direct fourth-order accurate representation of the original differential equations. This fourth-order form is energy conserving for systems with force potential in the form of a quartic polynomial in the displacement components. Energy conservation for a force potential of general form is obtained...

  3. Relationships between high-sensitive C-reactive protein and markers of arterial stiffness in hypertensive patients. Differences by sex

    Directory of Open Access Journals (Sweden)

    Gomez-Marcos Manuel A

    2012-06-01

    Full Text Available Abstract Background The present study was designed to evaluate the relationship between high-sensitivity C-reactive protein (hs-CRP and arterial stiffness according to sex in patients with arterial hypertension. Methods A case-series study was carried out in 258 hypertensive patients without antecedents of cardiovascular disease or diabetes mellitus. Nephelometry was used to determine hs-CRP. Office or clinical and home blood pressures were measured with a validated OMRON model M10 sphygmomanometer. Ambulatory blood pressure monitoring was performed with the SpaceLabs 90207 system. Pulse wave velocity (PWV and central and peripheral augmentation index (AIx were measured with the SphygmoCor system, and a Sonosite Micromax ultrasound unit was used for automatic measurements of carotid intima-media thickness (IMT. Ambulatory arterial stiffness index and home arterial stiffness index were calculated as “1-slope” from the within-person regression analysis of diastolic-on-systolic ambulatory blood pressure. Results Central and peripheral AIx were greater in women than in men: 35.31 ± 9.95 vs 26.59 ± 11.45 and 102.06 ± 20.47 vs 85.97 ± 19.13, respectively. IMT was greater in men (0.73 ± 0.13 vs 0.69 ± 0.10. hs-CRP was positively correlated to IMT (r = 0.261, maximum (r = 0.290 and to peripheral AIx (r = 0.166 in men, and to PWV in both men (r = 0.280 and women (r = 0.250. In women, hs-CRP was negatively correlated to central AIx (r = −0.222. For each unit increase in hs-CRP, carotid IMT would increase 0.05 mm in men, and PWV would increase 0.07 m/sec in men and 0.08 m/sec in women, while central AIx would decrease 2.5 units in women. In the multiple linear regression analysis, hs-CRP explained 10.2% and 6.7% of PWV variability in women and men, respectively, 8.4% of carotid IMT variability in men, and 4.9% of central AIx variability in women. Conclusions After adjusting for age, other

  4. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Grutzik, Scott J.; Zehnder, Alan T. [Field of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853 (United States); Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F. [Nanomechanical Properties Group, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2013-11-15

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included.

  5. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    International Nuclear Information System (INIS)

    Grutzik, Scott J.; Zehnder, Alan T.; Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F.

    2013-01-01

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included

  6. Exchange stiffness of Ca-doped YIG

    Science.gov (United States)

    Avgin, I.; Huber, D. L.

    1994-05-01

    An effective medium theory for the zero-temperature exchange stiffness of uncompensated Ca-doped YIG is presented. The theory is based on the assumption that the effect of the Ca impurities is to produce strong, random ferromagnetic interactions between spins on the a and d sublattices. In the simplest version of the theory, a fraction, x, of the ad exchange integrals are large and positive, x being related to the Ca concentration. The stiffness is calculated as function of x for arbitrary perturbed ad exchange integral, Jxad. For Jxad≳(1/5)‖8Jaa+3Jdd‖, with Jaa and Jdd denoting the aa and dd exchange integrals, respectively, there is a critical concentration, Xc, such that when x≳Xc, the stiffness is complex. It is suggested that Xc delineates the region where there are significant departures from colinearity in the ground state of the Fe spins. Extension of the theory to a model where the Ca doping is assumed to generate Fe4+ ions on the tetrahedral sites is discussed. Possible experimental tests of the theory are mentioned.

  7. Generating random walks and polygons with stiffness in confinement

    International Nuclear Information System (INIS)

    Diao, Y; Ernst, C; Saarinen, S; Ziegler, U

    2015-01-01

    The purpose of this paper is to explore ways to generate random walks and polygons in confinement with a bias toward stiffness. Here the stiffness refers to the curvature angle between two consecutive edges along the random walk or polygon. The stiffer the walk (polygon), the smaller this angle on average. Thus random walks and polygons with an elevated stiffness have lower than expected curvatures. The authors introduced and studied several generation algorithms with a stiffness parameter s>0 that regulates the expected curvature angle at a given vertex in which the random walks and polygons are generated one edge at a time using conditional probability density functions. Our generating algorithms also allow the generation of unconfined random walks and polygons with any desired mean curvature angle. In the case of random walks and polygons confined in a sphere of fixed radius, we observe that, as expected, stiff random walks or polygons are more likely to be close to the confinement boundary. The methods developed here require that the random walks and random polygons be rooted at the center of the confinement sphere. (paper)

  8. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior.

    Science.gov (United States)

    Oh, Se Heang; An, Dan Bi; Kim, Tae Ho; Lee, Jin Ho

    2016-04-15

    Although stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior and function, the use of separate substrates with different degrees of stiffness, substrates with a narrow range stiffness gradient, toxicity of residues, different surface composition, complex fabrication procedures/devices, and low cell adhesion are still considered as hurdles of conventional techniques. In this study, a cylindrical polyvinyl alcohol (PVA)/hyaluronic acid (HA) hydrogel with a wide-range stiffness gradient (between ∼20kPa and ∼200kPa) and cell adhesiveness was prepared by a liquid nitrogen (LN2)-contacting gradual freezing-thawing method that does not use any additives or specific devices to produce the stiffness gradient hydrogel. From an in vitro cell culture using the stiffness gradient PVA/HA hydrogel, it was observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve cell, ∼40kPa for muscle cell, ∼80kPa for chondrocyte, and ∼190kPa for osteoblast). The PVA/HA hydrogel with a wide range of stiffness spectrum can be a useful tool for basic studies related with the stem cell differentiation, cell reprogramming, cell migration, and tissue regeneration in terms of substrate stiffness. It is postulated that the stiffness of the extracellular matrix influences cell behavior. To prove this concept, various techniques to prepare substrates with a stiffness gradient have been developed. However, the narrow ranges of stiffness gradient and complex fabrication procedures/devices are still remained as limitations. Herein, we develop a substrate (hydrogel) with a wide-range stiffness gradient using a gradual freezing-thawing method which does not need specific devices to produce a stiffness gradient hydrogel. From cell culture experiments using the hydrogel, it is observed that human bone marrow mesenchymal stem cells have

  9. An Adaptive Sparse Grid Algorithm for Elliptic PDEs with Lognormal Diffusion Coefficient

    KAUST Repository

    Nobile, Fabio

    2016-03-18

    In this work we build on the classical adaptive sparse grid algorithm (T. Gerstner and M. Griebel, Dimension-adaptive tensor-product quadrature), obtaining an enhanced version capable of using non-nested collocation points, and supporting quadrature and interpolation on unbounded sets. We also consider several profit indicators that are suitable to drive the adaptation process. We then use such algorithm to solve an important test case in Uncertainty Quantification problem, namely the Darcy equation with lognormal permeability random field, and compare the results with those obtained with the quasi-optimal sparse grids based on profit estimates, which we have proposed in our previous works (cf. e.g. Convergence of quasi-optimal sparse grids approximation of Hilbert-valued functions: application to random elliptic PDEs). To treat the case of rough permeability fields, in which a sparse grid approach may not be suitable, we propose to use the adaptive sparse grid quadrature as a control variate in a Monte Carlo simulation. Numerical results show that the adaptive sparse grids have performances similar to those of the quasi-optimal sparse grids and are very effective in the case of smooth permeability fields. Moreover, their use as control variate in a Monte Carlo simulation allows to tackle efficiently also problems with rough coefficients, significantly improving the performances of a standard Monte Carlo scheme.

  10. Design of a Variable Stiffness Soft Dexterous Gripper

    Science.gov (United States)

    Nefti-Meziani, Samia; Davis, Steve

    2017-01-01

    Abstract This article presents the design of a variable stiffness, soft, three-fingered dexterous gripper. The gripper uses two designs of McKibben muscles. Extensor muscles that increase in length when pressurized are used to form the fingers of the gripper. Contractor muscles that decrease in length when pressurized are then used to apply forces to the fingers through tendons, which cause flexion and extension of the fingers. The two types of muscles are arranged to act antagonistically and this means that by raising the pressure in all of the pneumatic muscles, the stiffness of the system can be increased without a resulting change in finger position. The article presents the design of the gripper, some basic kinematics to describe its function, and then experimental results demonstrating the ability to adjust the bending stiffness of the gripper's fingers. It has been demonstrated that the fingers' bending stiffness can be increased by more than 150%. The article concludes by demonstrating that the fingers can be closed loop position controlled and are able to track step and sinusoidal inputs. PMID:29062630

  11. Bone metabolism and arterial stiffness after renal transplantation.

    Science.gov (United States)

    Cseprekál, Orsolya; Kis, Eva; Dégi, Arianna A; Kerti, Andrea; Szabó, Attila J; Reusz, György S

    2014-01-01

    To assess the relationship between bone and vascular disease and its changes over time after renal transplantation. Metabolic bone disease (MBD) is common in chronic kidney disease (CKD) and is associated with cardiovascular (CV) disease. Following transplantation (Tx), improvement in CV disease has been reported; however, data regarding changes in bone disease remain controversial. Bone turnover and arterial stiffness (pulse wave velocity (PWV)) were assessed in 47 Tx patients (38 (3-191) months after Tx). Bone alkaline phosphatase (BALP), osteocalcin (OC) and beta-crosslaps were significantly higher in Tx patients, and decreased significantly after one year. There was a negative correlation between BALP, OC and steroid administered (r = -0.35; r = -0.36 respectively). PWV increased in the Tx group (1.15 SD). In patients with a follow up of bone turnover and arterial stiffness are present following kidney transplantation. While bone turnover decreases with time, arterial stiffness correlates initially with bone turnover, after which the influence of cholesterol becomes significant. Non-invasive estimation of bone metabolism and arterial stiffness may help to assess CKD-MBD following renal transplantation.

  12. Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures.

    Science.gov (United States)

    Zhao, Ziguang; Fang, Ruochen; Rong, Qinfeng; Liu, Mingjie

    2017-12-01

    In the human body, many soft tissues with hierarchically ordered composite structures, such as cartilage, skeletal muscle, the corneas, and blood vessels, exhibit highly anisotropic mechanical strength and functionality to adapt to complex environments. In artificial soft materials, hydrogels are analogous to these biological soft tissues due to their "soft and wet" properties, their biocompatibility, and their elastic performance. However, conventional hydrogel materials with unordered homogeneous structures inevitably lack high mechanical properties and anisotropic functional performances; thus, their further application is limited. Inspired by biological soft tissues with well-ordered structures, researchers have increasingly investigated highly ordered nanocomposite hydrogels as functional biological engineering soft materials with unique mechanical, optical, and biological properties. These hydrogels incorporate long-range ordered nanocomposite structures within hydrogel network matrixes. Here, the critical design criteria and the state-of-the-art fabrication strategies of nanocomposite hydrogels with highly ordered structures are systemically reviewed. Then, recent progress in applications in the fields of soft actuators, tissue engineering, and sensors is highlighted. The future development and prospective application of highly ordered nanocomposite hydrogels are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Brain tissue stiffness is a sensitive marker for acidosis.

    Science.gov (United States)

    Holtzmann, Kathrin; Gautier, Hélène O B; Christ, Andreas F; Guck, Jochen; Káradóttir, Ragnhildur Thóra; Franze, Kristian

    2016-09-15

    Carbon dioxide overdose is frequently used to cull rodents for tissue harvesting. However, this treatment may lead to respiratory acidosis, which potentially could change the properties of the investigated tissue. Mechanical tissue properties often change in pathological conditions and may thus offer a sensitive generic readout for changes in biological tissues with clinical relevance. In this study, we performed force-indentation measurements with an atomic force microscope on acute cerebellar slices from adult rats to test if brain tissue undergoes changes following overexposure to CO2 compared to other methods of euthanasia. The pH significantly decreased in brain tissue of animals exposed to CO2. Concomitant with the drop in pH, cerebellar grey matter significantly stiffened. Tissue stiffening was reproduced by incubation of acute cerebellar slices in acidic medium. Tissue stiffness provides an early, generic indicator for pathophysiological changes in the CNS. Atomic force microscopy offers unprecedented high spatial resolution to detect such changes. Our results indicate that the stiffness particularly of grey matter strongly correlates with changes of the pH in the cerebellum. Furthermore, the method of tissue harvesting and preparation may not only change tissue stiffness but very likely also other physiologically relevant parameters, highlighting the importance of appropriate sample preparation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Dynamic Functional Stiffness Index of the Ankle Joint During Daily Living.

    Science.gov (United States)

    Argunsah Bayram, Hande; Bayram, Mehmed B

    2018-03-30

    Exploring ankle joint physiologic functional stiffness is crucial for improving the design of prosthetic feet that aim to mimic normal gait. We hypothesized that ankle joint stiffness would vary among the different activities of daily living and that the magnitude of the stiffness would indicate the degree of energy storage element sufficiency in terms of harvesting and returning energy. We examined sagittal plane ankle moment versus flexion angle curves from 12 healthy subjects during the daily activities. The slopes of these curves were assessed to find the calculated stiffness during the peak energy return and harvest phases. For the energy return and harvest phases, stiffness varied from 0.016 to 0.283 Nm/kg° and 0.025 and 0.858 Nm/kg°, respectively. The optimum stiffness during the energy return phase was 0.111 ± 0.117 Nm/kg° and during the energy harvest phase was 0.234 ± 0.327 Nm/kg°. Ankle joint stiffness varied significantly during the activities of daily living, indicating that an energy storage unit with a constant stiffness would not be sufficient in providing energy regenerative gait during all activities. The present study was directed toward the development of a complete data set to determine the torque-angle properties of the ankle joint to facilitate a better design process. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Stability of generalized Runge-Kutta methods for stiff kinetics coupled differential equations

    International Nuclear Information System (INIS)

    Aboanber, A E

    2006-01-01

    A stability and efficiency improved class of generalized Runge-Kutta methods of order 4 are developed for the numerical solution of stiff system kinetics equations for linear and/or nonlinear coupled differential equations. The determination of the coefficients required by the method is precisely obtained from the so-called equations of condition which in turn are derived by an approach based on Butcher series. Since the equations of condition are fewer in number, free parameters can be chosen for optimizing any desired feature of the process. A further related coefficient set with different values of these parameters and the region of absolute stability of the method have been introduced. In addition, the A(α) stability properties of the method are investigated. Implementing the method in a personal computer estimated the accuracy and speed of calculations and verified the good performances of the proposed new schemes for several sample problems of the stiff system point kinetics equations with reactivity feedback

  16. Minor loop dependence of the magnetic forces and stiffness in a PM-HTS levitation system

    Science.gov (United States)

    Yang, Yong; Li, Chengshan

    2017-12-01

    Based upon the method of current vector potential and the critical state model of Bean, the vertical and lateral forces with different sizes of minor loop are simulated in two typical cooling conditions when a rectangular permanent magnet (PM) above a cylindrical high temperature superconductor (HTS) moves vertically and horizontally. The different values of average magnetic stiffness are calculated by various sizes of minor loop changing from 0.1 to 2 mm. The magnetic stiffness with zero traverse is obtained by using the method of linear extrapolation. The simulation results show that the extreme values of forces decrease with increasing size of minor loop. The magnetic hysteresis of the force curves also becomes small as the size of minor loop increases. This means that the vertical and lateral forces are significantly influenced by the size of minor loop because the forces intensely depend on the moving history of the PM. The vertical stiffness at every vertical position when the PM vertically descends to 1 mm is larger than that as the PM vertically ascents to 30 mm. When the PM moves laterally, the lateral stiffness during the PM passing through any horizontal position in the first time almost equal to the value during the PM passing through the same position in the second time in zero-field cooling (ZFC), however, the lateral stiffness in field cooling (FC) and the cross stiffness in ZFC and FC are significantly affected by the moving history of the PM.

  17. The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion.

    Science.gov (United States)

    Oh, Keonyoung; Park, Sukyung

    2017-02-28

    A local minimum for running energetics has been reported for a specific bending stiffness, implying that shoe stiffness assists in running propulsion. However, the determinant of the metabolic optimum remains unknown. Highly stiff shoes significantly increase the moment arm of the ground reaction force (GRF) and reduce the leverage effect of joint torque at ground push-off. Inspired by previous findings, we hypothesized that the restriction of the natural metatarsophalangeal (MTP) flexion caused by stiffened shoes and the corresponding joint torque changes may reduce the benefit of shoe bending stiffness to running energetics. We proposed the critical stiffness, k cr , which is defined as the ratio of the MTP joint (MTPJ) torque to the maximal MTPJ flexion angle, as a possible threshold of the elastic benefit of shoe stiffness. 19 subjects participated in a running test while wearing insoles with five different bending stiffness levels. Joint angles, GRFs, and metabolic costs were measured and analyzed as functions of the shoe stiffness. No significant changes were found in the take-off velocity of the center of mass (CoM), but the horizontal ground push-offs were significantly reduced at different shoe stiffness levels, indicating that complementary changes in the lower-limb joint torques were introduced to maintain steady running. Slight increases in the ankle, knee, and hip joint angular impulses were observed at stiffness levels exceeding the critical stiffness, whereas the angular impulse at the MTPJ was significantly reduced. These results indicate that the shoe bending stiffness is beneficial to running energetics if it does not disturb the natural MTPJ flexion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Strength and stiffness reduction factors for infilled frames with openings

    Science.gov (United States)

    Decanini, Luis D.; Liberatore, Laura; Mollaioli, Fabrizio

    2014-09-01

    Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the system. On the other hand, irregular arrangements of the masonry panels may lead to the concentration of damage in some regions, with negative effects; for example soft story mechanisms and shear failures in short columns. Therefore, the presence of infill walls should not be neglected, especially in regions of moderate and high seismicity. To this aim, simple models are available for solid infills walls, such as the diagonal no-tension strut model, while infilled frames with openings have not been adequately investigated. In this study, the effect of openings on the strength and stiffness of infilled frames is investigated by means of about 150 experimental and numerical tests. The main parameters involved are identified and a simple model to take into account the openings in the infills is developed and compared with other models proposed by different researchers. The model, which is based on the use of strength and stiffness reduction factors, takes into account the opening dimensions and presence of reinforcing elements around the opening. An example of an application of the proposed reduction factors is also presented.

  19. Associations between Job Strain and Arterial Stiffness: A Large Survey among Enterprise Employees from Thailand

    Directory of Open Access Journals (Sweden)

    Orawan Kaewboonchoo

    2018-04-01

    Full Text Available As an intermediate endpoint to cardiovascular disease, arterial stiffness has received much attention recently. So far, the research on work stress and arterial stiffness is still sparse and inconsistent, and no investigations on work stress and cardiovascular health among the Thai working population have been reported. Therefore, we conducted an epidemiological study among 2141 Thai enterprise employees (858 men and 1283 women who were free from any diagnosed cardiovascular disease. Work stress was measured using Karasek’s Job Demand–Control model for job strain (a combination of high demand and low control. Arterial stiffness was evaluated by a non-invasive approach using pulse-wave analysis based on a finger photoplethysmogram. Multivariable linear regression was applied to examine associations between job strain and arterial stiffness. In men, job strain was significantly associated with arterial stiffness (β  =  0.078, 95% confidence interval  =  0.026 to 0.130, after accounting for sociodemographic, behavioral, dietary and biomedical factors. However, the association in women was not significant. As the first study in Thailand on work stress and cardiovascular risk, we found that job strain might be an important risk factor for cardiovascular disease among Thai working men. Further studies with longitudinal design are warranted.

  20. Effects of Different Exercise Modes on Arterial Stiffness and Nitric Oxide Synthesis.

    Science.gov (United States)

    Hasegawa, Natsuki; Fujie, Shumpei; Horii, Naoki; Miyamoto-Mikami, Eri; Tsuji, Katsunori; Uchida, Masataka; Hamaoka, Takafumi; Tabata, Izumi; Iemitsu, Motoyuki

    2018-06-01

    Aerobic training (AT) and high-intensity intermittent training (HIIT) reduce arterial stiffness, whereas resistance training (RT) induces deterioration of or no change in arterial stiffness. However, the molecular mechanism of these effects of different exercise modes remains unclear. This study aimed to clarify the difference of different exercise effects on endothelial nitric oxide synthase (eNOS) signaling pathway and arterial stiffness in rats and humans. In the animal study, forty 10-wk-old male Sprague-Dawley rats were randomly divided into four groups: sedentary control (CON), AT (treadmill running, 60 min at 30 m·min, 5 d·wk for 8 wk), RT (ladder climbing, 8-10 sets per day, 3 d·wk for 8 wk), and HIIT (14 repeats of 20-s swimming session with 10-s pause between sessions, 4 d·wk for 6 wk from 12-wk-old) groups (n = 10 in each group). In the human study, we confirmed the effects of 6-wk HIIT and 8-wk AT interventions on central arterial stiffness and plasma nitrite/nitrate level in untrained healthy young men in randomized controlled trial (HIIT, AT, and CON; n = 7 in each group). In the animal study, the effect on aortic pulse wave velocity (PWV), as an index of central arterial stiffness, after HIIT was the same as the decrease in aortic PWV and increase in arterial eNOS/Akt phosphorylation after AT, which was not changed by RT. A negative correlation between aortic PWV and eNOS phosphorylation was observed (r = -0.38, P HIIT- and AT-induced changes in carotid-femoral PWV (HIIT -115.3 ± 63.4 and AT -157.7 ± 45.7 vs CON 71.3 ± 61.1 m·s, each P HIIT may reduce central arterial stiffness via the increase in aortic nitric oxide bioavailability despite it being done in a short time and short term and has the same effects as AT.

  1. Comparative study of diastolic filling under varying left ventricular wall stiffness

    Science.gov (United States)

    Mekala, Pritam; Santhanakrishnan, Arvind

    2014-11-01

    Pathological remodeling of the human cardiac left ventricle (LV) is observed in hypertensive heart failure as a result of pressure overload. Myocardial stiffening occurs in these patients prior to chronic maladaptive changes, resulting in increased LV wall stiffness. The goal of this study was to investigate the change in intraventricular filling fluid dynamics inside a physical model of the LV as a function of wall stiffness. Three LV models of varying wall stiffness were incorporated into an in vitro flow circuit driven by a programmable piston pump. Windkessel elements were used to tune the inflow and systemic pressure in the model with least stiffness to match healthy conditions. Models with stiffer walls were comparatively tested maintaining circuit compliance, resistance and pump amplitude constant. 2D phase-locked PIV measurements along the central plane showed that with increase in wall stiffness, the peak velocity and cardiac output inside the LV decreased. Further, inflow vortex ring propagation toward the LV apex was reduced with increasing stiffness. The above findings indicate the importance of considering LV wall relaxation characteristics in pathological studies of filling fluid dynamics.

  2. Comparison of Nonequilibrium Solution Algorithms Applied to Chemically Stiff Hypersonic Flows

    Science.gov (United States)

    Palmer, Grant; Venkatapathy, Ethiraj

    1995-01-01

    Three solution algorithms, explicit under-relaxation, point implicit, and lower-upper symmetric Gauss-Seidel, are used to compute nonequilibrium flow around the Apollo 4 return capsule at the 62-km altitude point in its descent trajectory. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness.The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15 and 30, the lower-upper symmetric Gauss-Seidel method produces an eight order of magnitude drop in the energy residual in one-third to one-half the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 30 and above. At Mach 40 the performance of the lower-upper symmetric Gauss-Seidel algorithm deteriorates to the point that it is out performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.

  3. Leg stiffness during phases of countermovement and take-off in vertical jump.

    Science.gov (United States)

    Struzik, Artur; Zawadzki, Jerzy

    2013-01-01

    With respect to cyclic movements such as human gait, running or hopping, leg stiffness is a little variable parameter. The aim of this study was to investigate changes in leg stiffness during the phase of countermovement and take-off when performing a single maximum counter-movement jump. Kistler force plates and a BTS SMART system for comprehensive motion analysis were employed in the study. The study covered a group of 12 athletes from university basketball teams. Leg stiffness was calculated in those parts of countermovement and take-off phases where its level is relatively constant and the relationship F(Δl) is similar to linear one. Mean total stiffness (±SD) in both legs in the countermovement phase amounted to 6.5 ± 1.5 kN/m, whereas during the take-off phase this value was 6.9 ± 1 kN/m. No statistically significant differences were found between leg stiffness during the countermovement phase and takeoff phase in the study group at the level of significance set at α = 0.05. This suggests that the leg stiffness in phase of countermovement and phase of take-off are much similar to each other, despite different function of both phases. Similar to cyclic movements, leg stiffness turned out relatively constant when performing a single vertical jump. There are also reported statistically significant correlations between body mass, body height, length of lower limbs and leg stiffness. The stiffness analysed by the authors should be understood as quasi-stiffness because the measurements of ΔF(Δl) were made during transient states where inertia and dumping forces are likely to affect the final result.

  4. Critical appraisal of the differential effects of antihypertensive agents on arterial stiffness

    Directory of Open Access Journals (Sweden)

    Francesca Kum

    2010-06-01

    Full Text Available Francesca Kum, Janaka KarallieddeUnit for Metabolic Medicine, Cardiovascular Division, Kings College-Waterloo Campus, King’s College London, United KingdomAbstract: Increased central arterial stiffness, involving accelerated vascular ageing of the aorta, is a powerful and independent risk factor for early mortality and provides prognostic information above and beyond traditional risk factors for cardiovascular disease (CVD. Central arterial stiffness is an important determinant of pulse pressure; therefore, any pathological increase may result in left ventricular hypertrophy and impaired coronary perfusion. Central artery stiffness can be assessed noninvasively by measurement of aortic pulse wave velocity, which is the gold standard for measurement of arterial stiffness. Earlier, it was believed that changes in arterial stiffness, which are primarily influenced by long-term pressure-dependent structural changes, may be slowed but not reversed by pharmacotherapy. Recent studies with drugs that inhibit the renin–angiotensin–aldosterone system, advanced glycation end products crosslink breakers, and endothelin antagonists suggest that blood pressure (BP-independent reduction and reversal of arterial stiffness are feasible. We review the recent literature on the differential effect of antihypertensive agents either as monotherapy or combination therapy on arterial stiffness. Arterial stiffness is an emerging therapeutic target for CVD risk reduction; however, further clinical trials are required to confirm whether BP-independent changes in arterial stiffness directly translate to a reduction in CVD events.Keywords: aortic pulse wave velocity, augmentation index, blood pressure, renin–angiotensin–aldosterone system

  5. Integrator Performance Analysis In Solving Stiff Differential Equation System

    International Nuclear Information System (INIS)

    B, Alhadi; Basaruddin, T.

    2001-01-01

    In this paper we discuss the four-stage index-2 singly diagonally implicit Runge-Kutta method, which is used to solve stiff ordinary differential equations (SODE). Stiff problems require a method where step size is not restricted by the method's stability. We desire SDIRK to be A-stable that has no stability restrictions when solving y'= λy with Reλ>0 and h>0, so by choosing suitable stability function we can determine appropriate constant g) to formulate SDIRK integrator to solve SODE. We select the second stage of the internal stage as embedded method to perform low order estimate for error predictor. The strategy for choosing the step size is adopted from the strategy proposed by Hall(1996:6). And the algorithm that is developed in this paper is implemented using MATLAB 5.3, which is running on Window's 95 environment. Our performance measurement's local truncation error accuracy, and efficiency were evaluated by statistical results of sum of steps, sum of calling functions, average of Newton iterations and elapsed times.As the results, our numerical experiment show that SDIRK is unconditionally stable. By using Hall's step size strategy, the method can be implemented efficiently, provided that suitable parameters are used

  6. Metal Sounds Stiffer than Drums for Ears, but Not Always for Hands: Low-Level Auditory Features Affect Multisensory Stiffness Perception More than High-Level Categorical Information

    Science.gov (United States)

    Liu, Juan; Ando, Hiroshi

    2016-01-01

    Most real-world events stimulate multiple sensory modalities simultaneously. Usually, the stiffness of an object is perceived haptically. However, auditory signals also contain stiffness-related information, and people can form impressions of stiffness from the different impact sounds of metal, wood, or glass. To understand whether there is any interaction between auditory and haptic stiffness perception, and if so, whether the inferred material category is the most relevant auditory information, we conducted experiments using a force-feedback device and the modal synthesis method to present haptic stimuli and impact sound in accordance with participants’ actions, and to modulate low-level acoustic parameters, i.e., frequency and damping, without changing the inferred material categories of sound sources. We found that metal sounds consistently induced an impression of stiffer surfaces than did drum sounds in the audio-only condition, but participants haptically perceived surfaces with modulated metal sounds as significantly softer than the same surfaces with modulated drum sounds, which directly opposes the impression induced by these sounds alone. This result indicates that, although the inferred material category is strongly associated with audio-only stiffness perception, low-level acoustic parameters, especially damping, are more tightly integrated with haptic signals than the material category is. Frequency played an important role in both audio-only and audio-haptic conditions. Our study provides evidence that auditory information influences stiffness perception differently in unisensory and multisensory tasks. Furthermore, the data demonstrated that sounds with higher frequency and/or shorter decay time tended to be judged as stiffer, and contact sounds of stiff objects had no effect on the haptic perception of soft surfaces. We argue that the intrinsic physical relationship between object stiffness and acoustic parameters may be applied as prior

  7. Technical Validation of ARTSENS–An Image Free Device for Evaluation of Vascular Stiffness

    Science.gov (United States)

    Radhakrishnan, Ravikumar; Kusmakar, Shitanshu; Thrivikraman, Arya Sree; Sivaprakasam, Mohanasankar

    2015-01-01

    Vascular stiffness is an indicator of cardiovascular health, with carotid artery stiffness having established correlation to coronary heart disease and utility in cardiovascular diagnosis and screening. State of art equipment for stiffness evaluation are expensive, require expertise to operate and not amenable for field deployment. In this context, we developed ARTerial Stiffness Evaluation for Noninvasive Screening (ARTSENS), a device for image free, noninvasive, automated evaluation of vascular stiffness amenable for field use. ARTSENS has a frugal hardware design, utilizing a single ultrasound transducer to interrogate the carotid artery, integrated with robust algorithms that extract arterial dimensions and compute clinically accepted measures of arterial stiffness. The ability of ARTSENS to measure vascular stiffness in vivo was validated by performing measurements on 125 subjects. The accuracy of results was verified with the state-of-the-art ultrasound imaging-based echo-tracking system. The relation between arterial stiffness measurements performed in sitting posture for ARTSENS measurement and sitting/supine postures for imaging system was also investigated to examine feasibility of performing ARTSENS measurements in the sitting posture for field deployment. This paper verified the feasibility of the novel ARTSENS device in performing accurate in vivo measurements of arterial stiffness. As a portable device that performs automated measurement of carotid artery stiffness with minimal operator input, ARTSENS has strong potential for use in large-scale screening. PMID:27170892

  8. Superfluid phase stiffness in electron doped superconducting Gd-123

    Science.gov (United States)

    Das, P.; Ghosh, Ajay Kumar

    2018-05-01

    Current-voltage characteristics of Ce substituted Gd-123 superconductor exhibits nonlinearity below a certain temperature below the critical temperature. An exponent is extracted using the nonlinearity of current-voltage relation. Superfluid phase stiffness has been studied as a function of temperature following the Ambegaokar-Halperin-Nelson-Siggia (AHNS) theory. Phase stiffness of the superfluid below the superconducting transition is found to be sensitive to the change in the carrier concentration in superconducting system. There may be a crucial electron density which affects superfluid stiffness strongly. Electron doping is found to be effective even if the coupling of the superconducting planes is changed.

  9. Ambulatory Arterial Stiffness Indexes in Cushing's Syndrome.

    Science.gov (United States)

    Battocchio, Marialberta; Rebellato, Andrea; Grillo, Andrea; Dassie, Francesca; Maffei, Pietro; Bernardi, Stella; Fabris, Bruno; Carretta, Renzo; Fallo, Francesco

    2017-03-01

    Long-standing exposure to endogenous cortisol excess is associated with high cardiovascular risk. The aim of our study was to investigate arterial stiffness, which has been recognized as an independent predictor of adverse cardiovascular outcome, in a group of patients with Cushing's syndrome. Twenty-four patients with Cushing's syndrome (3 males, mean age 49±13 years; 20 pituitary-dependent Cushing's disease and 4 adrenal adenoma) underwent 24-h ambulatory blood pressure monitoring (ABPM) and evaluation of cardiovascular risk factors. The Ambulatory Arterial Stiffness Index (AASI) and symmetric AASI (sAASI) were derived from ABPM tracings. Cushing patients were divided into 8 normotensive (NOR-CUSH) and 16 hypertensive (HYP-CUSH) patients, and were compared with 8 normotensive (NOR-CTR) and 16 hypertensive (HYP-CTR) control subjects, matched for demographic characteristics, 24-h ABPM and cardiometabolic risk factors. The AASI and sAASI indexes were significantly higher in Cushing patients than in controls, either in the normotensive (p=0.048 for AASI and p=0.013 for sAASI) or in the hypertensive (p=0.004 for AASI and p=0.046 for sAASI) group. No difference in metabolic parameters was observed between NOR-CUSH and NOR-CTR or between HYP-CUSH and HYP-CTR groups. AASI and sAASI were both correlated with urinary cortisol in patients with endogenous hypercortisolism (Spearman's rho=0.40, p=0.05, and 0.61, p=0.003, respectively), while no correlation was found in controls. Both AASI and sAASI are increased in Cushing syndrome, independent of BP elevation, and may represent an additional cardiovascular risk factor in this disease. The role of excess cortisol in arterial stiffness has to be further clarified. © Georg Thieme Verlag KG Stuttgart · New York.

  10. A Subspace Approach to the Structural Decomposition and Identification of Ankle Joint Dynamic Stiffness.

    Science.gov (United States)

    Jalaleddini, Kian; Tehrani, Ehsan Sobhani; Kearney, Robert E

    2017-06-01

    The purpose of this paper is to present a structural decomposition subspace (SDSS) method for decomposition of the joint torque to intrinsic, reflexive, and voluntary torques and identification of joint dynamic stiffness. First, it formulates a novel state-space representation for the joint dynamic stiffness modeled by a parallel-cascade structure with a concise parameter set that provides a direct link between the state-space representation matrices and the parallel-cascade parameters. Second, it presents a subspace method for the identification of the new state-space model that involves two steps: 1) the decomposition of the intrinsic and reflex pathways and 2) the identification of an impulse response model of the intrinsic pathway and a Hammerstein model of the reflex pathway. Extensive simulation studies demonstrate that SDSS has significant performance advantages over some other methods. Thus, SDSS was more robust under high noise conditions, converging where others failed; it was more accurate, giving estimates with lower bias and random errors. The method also worked well in practice and yielded high-quality estimates of intrinsic and reflex stiffnesses when applied to experimental data at three muscle activation levels. The simulation and experimental results demonstrate that SDSS accurately decomposes the intrinsic and reflex torques and provides accurate estimates of physiologically meaningful parameters. SDSS will be a valuable tool for studying joint stiffness under functionally important conditions. It has important clinical implications for the diagnosis, assessment, objective quantification, and monitoring of neuromuscular diseases that change the muscle tone.

  11. Observer-Based Bilinear Control of First-Order Hyperbolic PDEs: Application to the Solar Collector

    KAUST Repository

    Mechhoud, Sarra

    2015-12-18

    In this paper, we investigate the problem of bilinear control of a solar collector plant using the available boundary and solar irradiance measurements. The solar collector is described by a first-order 1D hyperbolic partial differential equation where the pump volumetric flow rate acts as the plant control input. By combining a boundary state observer and an internal energy-based control law, a nonlinear observer based feedback controller is proposed. With a feed-forward control term, the effect of the solar radiation is cancelled. Using the Lyapunov approach we prove that the proposed control guarantees the global exponential stability of both the plant and the tracking error. Simulation results are provided to illustrate the performance of the proposed method.

  12. Water retention properties of stiff silt

    Directory of Open Access Journals (Sweden)

    Barbara Likar

    2017-06-01

    Full Text Available Recent research into the behaviour of soils has shown that it is in fact much more complex than can be described by the mechanics of saturated soils. Nowadays the trend of investigations has shifted towards the unsaturated state. Despite the signifiant progress that has been made so far, there are still a lot of unanswered questions related to the behaviour of unsaturated soils. For this reason, in the fild of geotechnics some new concepts are developed, which include the study of soil suction. Most research into soil suction has involved clayey and silty material, whereas up until recently no data have been available about measurements in very stiff preconsolidated sandy silt. Very stiff preconsolidated sandy silt is typical of the Krško Basin, where it is planned that some very important geotechnical structures will be built, so that knowledge about the behaviour of such soils at increased or decreased water content is essential. Several different methods can be used for soil suction measurements. In the paper the results of measurements carried out on very stiff preconsolidated sandy silt in a Bishop - Wesley double-walled triaxial cell are presented and compared with the results of soil suction measurements performed by means of a potentiometer (WP4C. All the measurement results were evaluated taking into account already known results given in the literature, using the three most commonly used mathematical models. Until now a lot of papers dealing with suction measurements in normal consolidated and preconsolidated clay have been published. Measurements on very stiff preconsolidated sandy silt, as presented in this paper were not supported before.

  13. Modelling, simulation and experiment of the spherical flexible joint stiffness

    Directory of Open Access Journals (Sweden)

    S. Li

    2018-02-01

    Full Text Available The spherical flexible joint is extensively used in engineering. It is designed to provide flexibility in rotation while bearing vertical compression load. The linear rotational stiffness of the flexible joint is formulated. The rotational stiffness of the bonded rubber layer is related to inner radius, thickness and two edge angles. FEM is used to verify the analytical solution and analyze the stiffness. The Mooney–Rivlin, Neo Hooke and Yeoh constitutive models are used in the simulation. The experiment is taken to obtain the material coefficient and validate the analytical and FEM results. The Yeoh model can reflect the deformation trend more accurately, but the error in the nearly linear district is bigger than the Mooney–Rivlin model. The Mooney–Rivlin model can fit the test result very well and the analytical solution can also be used when the rubber deformation in the flexible joint is small. The increase of Poisson's ratio of the rubber layers will enhance the vertical compression stiffness but barely have effect on the rotational stiffness.

  14. A METHOD OF DETERMINING THE COORDINATES OF THE STIFFNESS CENTER AND THE STIFFNESS PRINCIPAL AXIS OF THE VIBRATING SYSTEM WITH DAMPING

    OpenAIRE

    Dang Xuan Truong; Tran Duc Chinh

    2014-01-01

    The report presents a methodology to determine the directions of the stiffness principal axis (in this case subject to the linear displacement and forced rotation angle) of a solid object interact with the surrounding environment by resilient bearing supports. The results also show that determining the coordinates of the stiffness center in the vibrating system with damping factors is necessary in our research.

  15. Dynamic stiffness of suction caissons

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten; Andersen, Lars

    This report concerns the dynamic soil-structure interaction of steel suction caissons applied as foundations for offshore wind turbines. An emphasis is put on torsional vibrations and coupled sliding/rocking motion, and the influence of the foundation geometry and the properties of the surrounding...... soil is examined. The soil is simplified as a homogenous linear viscoelastic material and the dynamic stiffness of the suction caisson is expressed in terms of dimensionless frequency-dependent coefficients corresponding to the different degrees of freedom. The dynamic stiffness coefficients...... for the skirted foundation are evaluated by means of a three-dimensional coupled boundary element/finite element model. Comparisons with known analytical and numerical solutions indicate that the static and dynamic behaviour of the foundation are predicted accurately with the applied model. The analysis has been...

  16. Substrate stiffness affects skeletal myoblast differentiation in vitro

    Directory of Open Access Journals (Sweden)

    Sara Romanazzo, Giancarlo Forte, Mitsuhiro Ebara, Koichiro Uto, Stefania Pagliari, Takao Aoyagi, Enrico Traversa and Akiyoshi Taniguchi

    2012-01-01

    Full Text Available To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ε-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  17. Finding trap stiffness of optical tweezers using digital filters.

    Science.gov (United States)

    Almendarez-Rangel, Pedro; Morales-Cruzado, Beatriz; Sarmiento-Gómez, Erick; Pérez-Gutiérrez, Francisco G

    2018-02-01

    Obtaining trap stiffness and calibration of the position detection system is the basis of a force measurement using optical tweezers. Both calibration quantities can be calculated using several experimental methods available in the literature. In most cases, stiffness determination and detection system calibration are performed separately, often requiring procedures in very different conditions, and thus confidence of calibration methods is not assured due to possible changes in the environment. In this work, a new method to simultaneously obtain both the detection system calibration and trap stiffness is presented. The method is based on the calculation of the power spectral density of positions through digital filters to obtain the harmonic contributions of the position signal. This method has the advantage of calculating both trap stiffness and photodetector calibration factor from the same dataset in situ. It also provides a direct method to avoid unwanted frequencies that could greatly affect calibration procedure, such as electric noise, for example.

  18. Potential Relationship between Passive Plantar Flexor Stiffness and Running Performance.

    Science.gov (United States)

    Ueno, Hiromasa; Suga, Tadashi; Takao, Kenji; Tanaka, Takahiro; Misaki, Jun; Miyake, Yuto; Nagano, Akinori; Isaka, Tadao

    2018-02-01

    The present study aimed to determine the relationship between passive stiffness of the plantar flexors and running performance in endurance runners. Forty-eight well-trained male endurance runners and 24 untrained male control subjects participated in this study. Plantar flexor stiffness during passive dorsiflexion was calculated from the slope of the linear portion of the torque-angle curve. Of the endurance runners included in the present study, running economy in 28 endurance runners was evaluated by measuring energy cost during three 4-min trials (14, 16, and 18 km/h) of submaximal treadmill running. Passive stiffness of the plantar flexors was significantly higher in endurance runners than in untrained subjects. Moreover, passive plantar flexor stiffness in endurance runners was significantly correlated with a personal best 5000-m race time. Furthermore, passive plantar flexor stiffness in endurance runners was significantly correlated with energy cost during submaximal running at 16 km/h and 18 km/h, and a trend towards such significance was observed at 14 km/h. The present findings suggest that stiffer plantar flexors may help achieve better running performance, with greater running economy, in endurance runners. Therefore, in the clinical setting, passive stiffness of the plantar flexors may be a potential parameter for assessing running performance. © Georg Thieme Verlag KG Stuttgart · New York.

  19. A Variable Stiffness Analysis Model for Large Complex Thin-Walled Guide Rail

    Directory of Open Access Journals (Sweden)

    Wang Xiaolong

    2016-01-01

    Full Text Available Large complex thin-walled guide rail has complicated structure and no uniform low rigidity. The traditional cutting simulations are time consuming due to huge computation especially in large workpiece. To solve these problems, a more efficient variable stiffness analysis model has been propose, which can obtain quantitative stiffness value of the machining surface. Applying simulate cutting force in sampling points using finite element analysis software ABAQUS, the single direction variable stiffness rule can be obtained. The variable stiffness matrix has been propose by analyzing multi-directions coupling variable stiffness rule. Combining with the three direction cutting force value, the reasonability of existing processing parameters can be verified and the optimized cutting parameters can be designed.

  20. Portal Hypertension in Patients with Liver Cirrhosis: Diagnostic Accuracy of Spleen Stiffness.

    Science.gov (United States)

    Takuma, Yoshitaka; Nouso, Kazuhiro; Morimoto, Youichi; Tomokuni, Junko; Sahara, Akiko; Takabatake, Hiroyuki; Matsueda, Kazuhiro; Yamamoto, Hiroshi

    2016-05-01

    To evaluate the accuracy of spleen stiffness (SS) and liver stiffness (LS) measured by using acoustic radiation force impulse imaging in the diagnosis of portal hypertension in patients with liver cirrhosis, with the hepatic venous pressure gradient (HVPG) as a reference standard. Institutional review board approval and informed consent were obtained for this prospective single-center study. From February 2012 to August 2013, 60 patients with liver cirrhosis (mean age, 70.8 years; age range, 34-88 years; 34 men, 26 women) with HVPG, LS, and SS measurements and gastrointestinal endoscopy and laboratory data were included if they met the following criteria: no recent episodes of gastrointestinal bleeding, no history of splenectomy, no history of partial splenic embolization, no history of β-blocker therapy, and absence of portal thrombosis. The efficacy of the parameters for the evaluation of portal hypertension was analyzed by using the Spearman rank-order correlation coefficient and receiver operating characteristic (ROC) curve analysis. The correlation coefficient between SS and HVPG (r = 0.876) was significantly better than that between LS and HVPG (r = 0.609, P portal hypertension (HVPG ≥ 10 mm Hg), severe portal hypertension (HVPG ≥ 12 mm Hg), esophageal varices (EVs), and high-risk EVs were significantly higher (0.943, 0.963, 0.937, and 0.955, respectively) than those of LS, spleen diameter, platelet count, and platelet count to spleen diameter ratio (P portal hypertension, severe portal hypertension, EVs, and high-risk EVs (negative likelihood ratios, 0.051, 0.056, 0.054, and 0.074, respectively). SS is reliable and has better diagnostic performance than LS for identifying portal hypertension in liver cirrhosis. (©) RSNA, 2015 Online supplemental material is available for this article.

  1. Novel Design of a Soft Lightweight Pneumatic Continuum Robot Arm with Decoupled Variable Stiffness and Positioning.

    Science.gov (United States)

    Giannaccini, Maria Elena; Xiang, Chaoqun; Atyabi, Adham; Theodoridis, Theo; Nefti-Meziani, Samia; Davis, Steve

    2018-02-01

    Soft robot arms possess unique capabilities when it comes to adaptability, flexibility, and dexterity. In addition, soft systems that are pneumatically actuated can claim high power-to-weight ratio. One of the main drawbacks of pneumatically actuated soft arms is that their stiffness cannot be varied independently from their end-effector position in space. The novel robot arm physical design presented in this article successfully decouples its end-effector positioning from its stiffness. An experimental characterization of this ability is coupled with a mathematical analysis. The arm combines the light weight, high payload to weight ratio and robustness of pneumatic actuation with the adaptability and versatility of variable stiffness. Light weight is a vital component of the inherent safety approach to physical human-robot interaction. To characterize the arm, a neural network analysis of the curvature of the arm for different input pressures is performed. The curvature-pressure relationship is also characterized experimentally.

  2. Arterial stiffness in normotensive and hypertensive subjects: Frequency in community pharmacies.

    Science.gov (United States)

    Rodilla Sala, Enrique; Adell Alegre, Manuel; Giner Galvañ, Vicente; Perseguer Torregrosa, Zeneida; Pascual Izuel, Jose Maria; Climent Catalá, María Teresa

    2017-12-07

    Arterial stiffness (AS) is a well-recognized target organ lesion. This study aims to determine: 1) the frequency of AS in community pharmacies; 2) if stiffened subjects identified by brachial oscillometry have more CV risk factors than normal subjects, and 3) the dependence of stiffness on using either age-adjusted values or a fixed threshold. Observational, cross-sectional study in 32 community pharmacies of the Valencia Community, between November/2015 and April/2016. Stiffness was as pulse wave velocity (PWV) measured with a semi-automatic, validated device (Mobil-O-Graph ® , IEM), followed by a 10-item questionnaire. Mean age of the 1,427 consecutive recruited patients was 56.6 years. Overall proportion of patients with AS was 17.4% with age-adjusted PWV (9.4% in normotensives, 28.3% in hypertensives). Multivariate logistic regression showed independent association of stiffness in normotensives with male gender, obesity, higher pulse pressure and heart rate, in hypertensives, with higher pulse pressure and lower age. AS was globally found in 20.5% of subjects, defining stiffness by PWV>10m/s (6.2% in normotensives, 40.2% in hypertensives). It was associated with higher age and pulse pressure in both groups. Concordance in classifying stiffness was 74.6%. Frequency of AS varied between 17.4-20.5%. Age-adjusted stiffness is associated in normotensives with male gender, pulse pressure, obesity and heart rate, in hypertensives with pulse pressure and inversely to age. Stiffness by 10m/s is determined by higher pulse pressure and higher age. Both definitions of PWV are not interchangeable. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  3. MGLab3D: An interactive environment for iterative solvers for elliptic PDEs in two and three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bordner, J.; Saied, F. [Univ. of Illinois, Urbana, IL (United States)

    1996-12-31

    GLab3D is an enhancement of an interactive environment (MGLab) for experimenting with iterative solvers and multigrid algorithms. It is implemented in MATLAB. The new version has built-in 3D elliptic pde`s and several iterative methods and preconditioners that were not available in the original version. A sparse direct solver option has also been included. The multigrid solvers have also been extended to 3D. The discretization and pde domains are restricted to standard finite differences on the unit square/cube. The power of this software studies in the fact that no programming is needed to solve, for example, the convection-diffusion equation in 3D with TFQMR and a customized V-cycle preconditioner, for a variety of problem sizes and mesh Reynolds, numbers. In addition to the graphical user interface, some sample drivers are included to show how experiments can be composed using the underlying suite of problems and solvers.

  4. The Additively Manufactured Porous NiTi and Ti-6Al-4V in Mandibular Reconstruction: Introducing the Stiffness-Matched and the Variable Stiffness Options for the Reconstruction Plates

    Science.gov (United States)

    Jahadakbar, Ahmadreza

    Mandibular reconstruction surgery is a part of treatment for cancer, tumor, and all the cases that involve segmental defects. One of the most common approaches for the reconstruction surgery is to resect the segmental defect and use a double barrel fibula graft to fill the resected region and recover the mandible's normal functions, such as chewing. The grafted bone is connected to the host mandible, using the standard of the care Ti-6Al-4V fixation plates. The fixation plates are available in the form of prefabricated plates and also patient-specific plates in the market. Due to the high stiffness of the Ti-6Al-4V plates in comparison with the mandible bone and the grafted bone, the loading distribution on the whole reconstructed mandible will be different from a healthy mandible. The high stiffness fixation hardware carries a great portion of the loading and causes stress shielding on the grafted bone and the surrounding host bone. Based on the bone remodeling theory, the stress shielding on the cortical bone causes bone resorption and may lead to implant failure. A solution to reduce the risk of implant failure is to use a low stiffness biocompatible material for the mandibular fixation plates. We have proposed the use of stiffness-matched, porous NiTi fixation plates either in the form of patient-specific or prefabricated, instead of the standard of the care Ti-6Al-4V plates. NiTi is a biocompatible material that has a low stiffness in comparison with Ti-6Al-4V and also benefits from the superelastic feature. Superelasticity, which can also be found in bone tissues, allows the material to recover large strains (up to 8%) and increases the shock absorption. In this thesis, we have evaluated the use of proposed fixation hardware by comparing it with a healthy mandible and a reconstructed mandible using the standard method. To this end, first different models including a healthy mandible, a reconstructed mandible using patient-specific Ti-6Al-4V fixation hardware

  5. Minor loop dependence of the magnetic forces and stiffness in a PM-HTS levitation system

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2017-12-01

    Full Text Available Based upon the method of current vector potential and the critical state model of Bean, the vertical and lateral forces with different sizes of minor loop are simulated in two typical cooling conditions when a rectangular permanent magnet (PM above a cylindrical high temperature superconductor (HTS moves vertically and horizontally. The different values of average magnetic stiffness are calculated by various sizes of minor loop changing from 0.1 to 2 mm. The magnetic stiffness with zero traverse is obtained by using the method of linear extrapolation. The simulation results show that the extreme values of forces decrease with increasing size of minor loop. The magnetic hysteresis of the force curves also becomes small as the size of minor loop increases. This means that the vertical and lateral forces are significantly influenced by the size of minor loop because the forces intensely depend on the moving history of the PM. The vertical stiffness at every vertical position when the PM vertically descends to 1 mm is larger than that as the PM vertically ascents to 30 mm. When the PM moves laterally, the lateral stiffness during the PM passing through any horizontal position in the first time almost equal to the value during the PM passing through the same position in the second time in zero-field cooling (ZFC, however, the lateral stiffness in field cooling (FC and the cross stiffness in ZFC and FC are significantly affected by the moving history of the PM.

  6. Detailed investigation on the effect of wall spring stiffness on velocity profile in molecular dynamics simulation

    International Nuclear Information System (INIS)

    Namvar, S; Karimian, S M H

    2012-01-01

    In this paper, motion of 576 monatomic argon molecules is studied in a channel with two 2-layered wall molecules. The effect of wall spring stiffness (K) on maximum value of velocity profile is investigated in the channel. It was observed that for K −2 , there is a decrease in the maximum value of velocity profile with an increase in K. This observation has been already reported by Sofos et al. To investigate a wider range of spring stiffness, in this paper the value of K was increased to more than 500εσ −2 . In this range of wall spring stiffness the behavior of maximum value of velocity profile changed; it increased with an increase in K. In a separate simulation the external force applied to the molecules was also increased and the same non-monotonic behavior of maximum value of velocity was observed. To clarify the reason of this behavior, the concepts of original and effective wall are introduced and through several test it is inferred that the mentioned concepts are not successful to demonstrate the reason of such behavior. It is suggested to obtain non-dimensional parameters governing the simulation in order to investigate the effect of every involved parameter on such a behavior. It is finally concluded that while wall spring stiffness affects the maximum velocity magnitude within the flow, the interaction of the two has not been clearly shown yet. The behavior of the maximum velocity is non-monotonic with the change of K. This is why no specific criterion has been reported for suitable value of wall spring stiffness in molecular dynamics simulation.

  7. A METHOD OF DETERMINING THE COORDINATES OF THE STIFFNESS CENTER AND THE STIFFNESS PRINCIPAL AXIS OF THE VIBRATING SYSTEM WITH DAMPING

    Directory of Open Access Journals (Sweden)

    Dang Xuan Truong

    2014-12-01

    Full Text Available The report presents a methodology to determine the directions of the stiffness principal axis (in this case subject to the linear displacement and forced rotation angle of a solid object interact with the surrounding environment by resilient bearing supports. The results also show that determining the coordinates of the stiffness center in the vibrating system with damping factors is necessary in our research.

  8. Discrimination of individuals in a general population at high-risk for alcoholic and non-alcoholic fatty liver disease based on liver stiffness: a cross section study

    Directory of Open Access Journals (Sweden)

    Kasai Kenji

    2011-06-01

    Full Text Available Abstract Background Factors associated with liver stiffness (LS are unknown and normal reference values for LS have not been established. Individuals at high risk for alcoholic (ALD and non-alcoholic fatty (NAFLD liver disease need to be non-invasively discriminated during routine health checks. Factors related to LS measured using a FibroScan and normal reference values for LS are presented in this report. Methods We measured LS using a FibroScan in 416 consecutive individuals who presented for routine medical checks. We also investigated the relationship between LS and age, body mass index (BMI, liver function (LF, alcohol consumption, and fatty liver determined by ultrasonography. We identified individuals at high-risk for ALD and NAFLD as having a higher LS value than the normal upper limit detected in 171 healthy controls. Results The LS value for all individuals was 4.7 +/- 1.5 kPa (mean +/- SD and LS significantly and positively correlated with BMI and LF test results. The LS was significantly higher among individuals with, than without fatty liver. Liver stiffness in the 171 healthy controls was 4.3 +/- 0.81 kPa and the upper limit of LS in the normal controls was 5.9 kPa. We found that 60 (14.3% of 416 study participants had abnormal LS. The proportion of individuals whose LS values exceeded the normal upper limit was over five-fold higher among those with, than without fatty liver accompanied by abnormal LF test results. Conclusions Liver stiffness could be used to non-invasively monitor the progression of chronic liver diseases and to discriminate individuals at high risk for ALD and NAFLD during routine health assessments.

  9. Acute changes in arterial stiffness following exercise in people with metabolic syndrome.

    Science.gov (United States)

    Radhakrishnan, Jeyasundar; Swaminathan, Narasimman; Pereira, Natasha M; Henderson, Keiran; Brodie, David A

    This study aims to examine the changes in arterial stiffness immediately following sub-maximal exercise in people with metabolic syndrome. Ninety-four adult participants (19-80 years) with metabolic syndrome gave written consent and were measured for arterial stiffness using a SphygmoCor (SCOR-PVx, Version 8.0, Atcor Medical Private Ltd, USA) immediately before and within 5-10min after an incremental shuttle walk test. The arterial stiffness measures used were pulse wave velocity (PWV), aortic pulse pressure (PP), augmentation pressure, augmentation index (AI), subendocardial viability ratio (SEVR) and ejection duration (ED). There was a significant increase (pexercise. Exercise capacity had a strong inverse correlation with arterial stiffness and age (pExercise capacity is inversely related to arterial stiffness and age in people with metabolic syndrome. Exercise induced changes in arterial stiffness measured using pulse wave analysis is an important tool that provides further evidence in studying cardiovascular risk in metabolic syndrome. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  10. Spatially varying small-strain stiffness in soils subjected to K0 loading

    KAUST Repository

    Kim, Hyun-Ki; Santamarina, Carlos

    2017-01-01

    Grain-scale characteristics and formation history determine spatial variability in granular masses. We investigate the effect of spatially varying stiffness on the load-deformation response under zero-lateral strain conditions using numerical simulations of correlated random fields, where the granular medium is represented by a non-linear stress-dependent meso-scale model. Results show that stiffness heterogeneity results in higher global compressibility as compared to the homogeneous medium with the same arithmetic mean stiffness. Furthermore, the non-homogeneous stress field that develops inside the granular mass is characterized by focused load transfer along columnar regions, higher stress anisotropy and lower horizontal-to-vertical stress ratio K0 than in a granular medium of homogenous stiffness. As the applied stress increases, the inherent stress-dependent response of the granular material leads to a more homogenous stress field. While greater variance in stiffness causes lower global stiffness, a longer correlation length results in greater variance in global mechanical response among multiple realizations.

  11. Spatially varying small-strain stiffness in soils subjected to K0 loading

    KAUST Repository

    Kim, Hyun-Ki

    2017-08-08

    Grain-scale characteristics and formation history determine spatial variability in granular masses. We investigate the effect of spatially varying stiffness on the load-deformation response under zero-lateral strain conditions using numerical simulations of correlated random fields, where the granular medium is represented by a non-linear stress-dependent meso-scale model. Results show that stiffness heterogeneity results in higher global compressibility as compared to the homogeneous medium with the same arithmetic mean stiffness. Furthermore, the non-homogeneous stress field that develops inside the granular mass is characterized by focused load transfer along columnar regions, higher stress anisotropy and lower horizontal-to-vertical stress ratio K0 than in a granular medium of homogenous stiffness. As the applied stress increases, the inherent stress-dependent response of the granular material leads to a more homogenous stress field. While greater variance in stiffness causes lower global stiffness, a longer correlation length results in greater variance in global mechanical response among multiple realizations.

  12. Parametric instability of spinning elastic rings excited by fluctuating space-fixed stiffnesses

    Science.gov (United States)

    Liu, Chunguang; Cooley, Christopher G.; Parker, Robert G.

    2017-07-01

    This study investigates the vibration of rotating elastic rings that are dynamically excited by an arbitrary number of space-fixed discrete stiffnesses with periodically fluctuating stiffnesses. The rotating, elastic ring is modeled using thin-ring theory with radial and tangential deformations. Primary and combination instability regions are determined in closed-form using the method of multiple scales. The ratio of peak-to-peak fluctuation to average discrete stiffness is used as the perturbation parameter, so the resulting perturbation analysis is not limited to small mean values of discrete stiffnesses. The natural frequencies and vibration modes are determined by discretizing the governing equations using Galerkin's method. Results are demonstrated for compliant gear applications. The perturbation results are validated by direct numerical integration of the equations of motion and Floquet theory. The bandwidths of the instability regions correlate with the fractional strain energy stored in the discrete stiffnesses. For rings with multiple discrete stiffnesses, the phase differences between them can eliminate large amplitude response under certain conditions.

  13. Arterial stiffness

    Directory of Open Access Journals (Sweden)

    Ursula Quinn

    2012-09-01

    Full Text Available Measurements of biomechanical properties of arteries have become an important surrogate outcome used in epidemiological and interventional cardiovascular research. Structural and functional differences of vessels in the arterial tree result in a dampening of pulsatility and smoothing of blood flow as it progresses to capillary level. A loss of arterial elastic properties results a range of linked pathophysiological changes within the circulation including increased pulse pressure, left ventricular hypertrophy, subendocardial ischaemia, vessel endothelial dysfunction and cardiac fibrosis. With increased arterial stiffness, the microvasculature of brain and kidneys are exposed to wider pressure fluctuations and may lead to increased risk of stroke and renal failure. Stiffening of the aorta, as measured by the gold-standard technique of aortic Pulse Wave Velocity (aPWV, is independently associated with adverse cardiovascular outcomes across many different patient groups and in the general population. Therefore, use of aPWV has been proposed for early detection of vascular damage and individual cardiovascular risk evaluation and it seems certain that measurement of arterial stiffness will become increasingly important in future clinical care. In this review we will consider some of the pathophysiological processes that result from arterial stiffening, how it is measured and factors that may drive it as well as potential avenues for therapy. In the face of an ageing population where mortality from atheromatous cardiovascular disease is falling, pathology associated with arterial stiffening will assume ever greater importance. Therefore, understanding these concepts for all clinicians involved in care of patients with cardiovascular disease will become vital.

  14. Multigrid for high dimensional elliptic partial differential equations on non-equidistant grids

    NARCIS (Netherlands)

    bin Zubair, H.; Oosterlee, C.E.; Wienands, R.

    2006-01-01

    This work presents techniques, theory and numbers for multigrid in a general d-dimensional setting. The main focus is the multigrid convergence for high-dimensional partial differential equations (PDEs). As a model problem we have chosen the anisotropic diffusion equation, on a unit hypercube. We

  15. High-order passive photonic temporal integrators.

    Science.gov (United States)

    Asghari, Mohammad H; Wang, Chao; Yao, Jianping; Azaña, José

    2010-04-15

    We experimentally demonstrate, for the first time to our knowledge, an ultrafast photonic high-order (second-order) complex-field temporal integrator. The demonstrated device uses a single apodized uniform-period fiber Bragg grating (FBG), and it is based on a general FBG design approach for implementing optimized arbitrary-order photonic passive temporal integrators. Using this same design approach, we also fabricate and test a first-order passive temporal integrator offering an energetic-efficiency improvement of more than 1 order of magnitude as compared with previously reported passive first-order temporal integrators. Accurate and efficient first- and second-order temporal integrations of ultrafast complex-field optical signals (with temporal features as fast as approximately 2.5ps) are successfully demonstrated using the fabricated FBG devices.

  16. Increase in Leg Stiffness Reduces Joint Work During Backpack Carriage Running at Slow Velocities.

    Science.gov (United States)

    Liew, Bernard; Netto, Kevin; Morris, Susan

    2017-10-01

    Optimal tuning of leg stiffness has been associated with better running economy. Running with a load is energetically expensive, which could have a significant impact on athletic performance where backpack carriage is involved. The purpose of this study was to investigate the impact of load magnitude and velocity on leg stiffness. We also explored the relationship between leg stiffness and running joint work. Thirty-one healthy participants ran overground at 3 velocities (3.0, 4.0, 5.0 m·s -1 ), whilst carrying 3 load magnitudes (0%, 10%, 20% weight). Leg stiffness was derived using the direct kinetic-kinematic method. Joint work data was previously reported in a separate study. Linear models were used to establish relationships between leg stiffness and load magnitude, velocity, and joint work. Our results found that leg stiffness did not increase with load magnitude. Increased leg stiffness was associated with reduced total joint work at 3.0 m·s -1 , but not at faster velocities. The association between leg stiffness and joint work at slower velocities could be due to an optimal covariation between skeletal and muscular components of leg stiffness, and limb attack angle. When running at a relatively comfortable velocity, greater leg stiffness may reflect a more energy efficient running pattern.

  17. Tailoring the mechanical properties by molecular integration of flexible and stiff polymer networks.

    Science.gov (United States)

    Wan, Haixiao; Shen, Jianxiang; Gao, Naishen; Liu, Jun; Gao, Yangyang; Zhang, Liqun

    2018-03-28

    Designing a multiple-network structure at the molecular level to tailor the mechanical properties of polymeric materials is of great scientific and technological importance. Through the coarse-grained molecular dynamics simulation, we successfully construct an interpenetrating polymer network (IPN) composed of a flexible polymer network and a stiff polymer network. First, we find that there is an optimal chain stiffness for a single network (SN) to achieve the best stress-strain behavior. Then we turn to study the mechanical behaviors of IPNs. The result shows that the stress-strain behaviors of the IPNs appreciably exceed the sum of that of the corresponding single flexible and stiff network, which highlights the advantage of the IPN structure. By systematically varying the stiffness of the stiff polymer network of the IPNs, optimal stiffness also exists to achieve the best performance. We attribute this to a much larger contribution of the non-bonded interaction energy. Last, the effect of the component concentration ratio is probed. With the increase of the concentration of the flexible network, the stress-strain behavior of the IPNs is gradually enhanced, while an optimized concentration (around 60% molar ration) of the stiff network occurs, which could result from the dominant role of the enthalpy rather than the entropy. In general, our work is expected to provide some guidelines to better tailor the mechanical properties of the IPNs made of a flexible network and a stiff network, by manipulating the stiffness of the stiff polymer network and the component concentration ratio.

  18. Triceps-surae musculotendinous stiffness: relative differences between obese and non-obese postmenopausal women.

    Science.gov (United States)

    Faria, Aurélio; Gabriel, Ronaldo; Abrantes, João; Brás, Rui; Moreira, Helena

    2009-12-01

    There is a lack of research into the relationship between obesity and muscle-tendon unit stiffness in postmenopausal women. Muscle-tendon unit stiffness appears to affect human motion performance and excessive and insufficient stiffness can increase the risk of bone and soft tissue injuries, respectively. The aim of this study was to investigate the relationship between muscle-tendon unit stiffness and obesity in postmenopausal women. 105 postmenopausal women (58 [SD 5.5] years) participated. Four groups (normal weight, pre-obese, obesity class I and obesity class II) were defined according World Health Organization classification of body mass index. The ankle muscle-tendon unit stiffness was assessed in vivo with a free oscillation technique using a load of 30% of maximal voluntary isometric contraction. ANOVA shows significant difference in muscle-tendon unit stiffness among the groups defined (Pnormal weight-pre-obese; normal weight-obesity class I and normal weight-obesity class II. The normal weight group had stiffness of 15789 (SD 2969) N/m, pre-obese of 19971 (SD 3678) N/m, obesity class I of 21435 (SD 4295) N/m, and obesity class II of 23497 (SD 1776) N/m. Obese subjects may have increased muscle-tendon unit stiffness because of fat infiltration in leg skeletal muscles, range of motion restrictions and stability/posture reasons and might be more predisposed to develop musculoskeletal injuries. Normal weight group had identical stiffness values to those reported in studies where subjects were not yet menopausal, suggesting that stiffness might not be influenced by menopause.

  19. Sex differences in flexibility-arterial stiffness relationship and its application for diagnosis of arterial stiffening: a cross-sectional observational study.

    Directory of Open Access Journals (Sweden)

    Masato Nishiwaki

    Full Text Available Arterial stiffness might be related to trunk flexibility in middle-aged and older participants, but it is also affected by age, sex, and blood pressure. This cross-sectional observational study investigated whether trunk flexibility is related to arterial stiffness after considering the major confounding factors of age, sex, and blood pressure. We further investigated whether a simple diagnostic test of flexibility could be helpful to screen for increased arterial stiffening.According to age and sex, we assigned 1150 adults (male, n = 536; female, n = 614; age, 18-89 y to groups with either high- or poor-flexibility based on the sit-and-reach test. Arterial stiffness was assessed by cardio-ankle vascular index.In all categories of men and in older women, arterial stiffness was higher in poor-flexibility than in high-flexibility (P<0.05. This difference remained significant after normalizing arterial stiffness for confounding factors such as blood pressure, but it was not found among young and middle-aged women. Stepwise multiple-regression analysis also supported the notion of the sex differences in flexibility-arterial stiffness relationship. Receiver operating characteristic curve analysis revealed that cut-off values for sit-and-reach among men and women were 33.2 (area under the curve [AUC], 0.711; 95% confidence interval [CI], 0.666-0.756; sensitivity, 61.7%; specificity, 69.7% and 39.2 (AUC, 0.639; 95% CI, 0.592-0.686; sensitivity, 61.1%; specificity, 62.0% cm, respectively.Our results indicate that flexibility-arterial stiffness relationship is not affected by BP, which is a major confounding factor. In addition, sex differences are observed in this relationship; poor trunk flexibility increases arterial stiffness in young, middle-aged, and older men, whereas the relationship in women is found only in the elderly. Also, the sit-and-reach test can offer a simple method of predicting arterial stiffness at home or elsewhere.

  20. Prediction of Bending Stiffness for Laminated CFRP and Its Application to Manufacturing of Roof Reinforcement

    Directory of Open Access Journals (Sweden)

    Jeong-Min Lee

    2014-05-01

    Full Text Available Recently, carbon fiber reinforced plastic (CFRP with high strength, stiffness, and lightweight is used widely in number of composite applications such as commercial aircraft, transportation, machinery, and sports equipment. Especially, it is necessary to apply lightweight materials to car components for reducing energy consumption and CO2 emissions. In case of car roof reinforcement manufactured using CFRP, superior strength and bending stiffness are required for the safety of drivers in the rollover accident. Mechanical properties of CFRP laminates are generally dependent on the stacking sequence. Therefore, research of stacking sequence using CFRP prepreg is required for superior bending stiffness. In this study, the 3-point bending FE-analysis for predicting the bending stiffness of CFRP roof reinforcement was carried out on three cases [0PW∘]5, [0PW°/0UD°/0-PW°]s, and [0UD∘]5. Material properties that the six independent elastic constants are E11, E22, G12, G23, G13, and ν12 used in FE-analysis were evaluated by the tensile test in 0°, 45°, and 90° directions. Through structural strength analysis of the automobile roof reinforcement fabricated using CFRP, the effect of the stacking sequence on the bending stiffness was evaluated and validated through experiments under the same conditions as the analysis.

  1. Betel nut chewing associated with increased risk of arterial stiffness.

    Science.gov (United States)

    Wei, Yu-Ting; Chou, Yu-Tsung; Yang, Yi-Ching; Chou, Chieh-Ying; Lu, Feng-Hwa; Chang, Chih-Jen; Wu, Jin-Shang

    2017-11-01

    Betel nut chewing is associated with certain cardiovascular outcomes. Subclinical atherosclerosis may be one link between betel nut chewing and cardiovascular risk. Few studies have examined the association between chewing betel nut and arterial stiffness. The aim of this study was thus to determine the relationship between betel nut chewing and arterial stiffness in a Taiwanese population. We enrolled 7540 eligible subjects in National Cheng Kung University Hospital from October 2006 to August 2009. The exclusion criteria included history of cerebrovascular events, coronary artery disease, and taking lipid-lowering drugs, antihypertensives, and hypoglycemic agents. Increased arterial stiffness was defined as brachial-ankle pulse wave velocity (baPWV) ≥1400cm/s. According to their habit of betel nut use, the subjects were categorized into non-, ex-, and current chewers. The prevalence of increased arterial stiffness was 32.7, 43.3, and 43.2% in non-, ex- and current chewers, respectively (p=0.011). Multiple logistic regression analysis revealed that ex-chewers (odds ratio [OR] 1.69, 95% confidence interval (CI)=1.08-2.65) and current chewers (OR 2.29, 95% CI=1.05-4.99) had elevated risks of increased arterial stiffness after adjustment for co-variables. Both ex- and current betel nut chewing were associated with a higher risk of increased arterial stiffness. Stopping betel nut chewing may thus potentially be beneficial to reduce cardiovascular risk, based on the principals of preventive medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sex Differences in Limb and Joint Stiffness in Recreational Runners

    Directory of Open Access Journals (Sweden)

    Sinclair Jonathan

    2015-09-01

    Full Text Available Purpose. Female runners are known to be at greater risk from chronic running injuries than age-matched males, although the exact mechanisms are often poorly understood. The aim of the current investigation was to determine if female recreational runners exhibit distinct limb and joint stiffness characteristics in relation to their male counterparts. Methods. Fourteen male and fourteen female runners ran over a force platform at 4.0 m · s-1. Lower limb kinematics were collected using an eight-camera optoelectric motion capture system operating at 250 Hz. Measures of limb and joint stiffness were calculated as a function of limb length and joint moments divided by the extent of limb and joint excursion. All stiffness and joint moment parameters were normalized to body mass. Sex differences in normalized limb and knee and ankle joint stiffness were examined statistically using independent samples t tests. Results. The results indicate that normalized limb (male = 0.18 ± 0.07, female = 0.37 ± 0.10 kN · kg · m-1 and knee stiffness (male = 5.59 ± 2.02, female = 7.34 ± 1.78 Nm · kg · rad-1 were significantly greater in female runners. Conclusions. On the basis that normalized knee and limb stiffness were shown to be significantly greater in female runners, the findings from the current investigation may provide further insight into the aetiology of the distinct injury patterns observed between sexes.

  3. Mechanical stiffness of TMJ condylar cartilage increases after artificial aging by ribose.

    Science.gov (United States)

    Mirahmadi, Fereshteh; Koolstra, Jan Harm; Lobbezoo, Frank; van Lenthe, G Harry; Ghazanfari, Samaneh; Snabel, Jessica; Stoop, Reinout; Everts, Vincent

    2018-03-01

    Aging is accompanied by a series of changes in mature tissues that influence their properties and functions. Collagen, as one of the main extracellular components of cartilage, becomes highly crosslinked during aging. In this study, the aim was to examine whether a correlation exists between collagen crosslinking induced by artificial aging and mechanical properties of the temporomandibular joint (TMJ) condyle. To evaluate this hypothesis, collagen crosslinks were induced using ribose incubation. Porcine TMJ condyles were incubated for 7 days with different concentrations of ribose. The compressive modulus and stiffness ratio (incubated versus control) was determined after loading. Glycosaminoglycan and collagen content, and the number of crosslinks were analyzed. Tissue structure was visualized by microscopy using different staining methods. Concomitant with an increasing concentration of ribose, an increase of collagen crosslinks was found. The number of crosslinks increased almost 50 fold after incubation with the highest concentration of ribose. Simultaneously, the stiffness ratio of the samples showed a significant increase after incubation with the ribose. Pearson correlation analyses showed a significant positive correlation between the overall stiffness ratio and the crosslink level; the higher the number of crosslinks the higher the stiffness. The present model, in which ribose was used to mimic certain aspects of age-related changes, can be employed as an in vitro model to study age-related mechanical changes in the TMJ condyle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Liver stiffness plus platelet count can be used to exclude high-risk oesophageal varices.

    Science.gov (United States)

    Ding, Nik S; Nguyen, Tin; Iser, David M; Hong, Thai; Flanagan, Emma; Wong, Avelyn; Luiz, Lauren; Tan, Jonathan Y C; Fulforth, James; Holmes, Jacinta; Ryan, Marno; Bell, Sally J; Desmond, Paul V; Roberts, Stuart K; Lubel, John; Kemp, William; Thompson, Alexander J

    2016-02-01

    Endoscopic screening for high-risk gastro-oesophageal varices (GOV) is recommended for compensated cirrhotic patients with transient elastography identifying increasing numbers of patients with cirrhosis without portal hypertension. Using liver stiffness measurement (LSM) ± platelet count, the aim was to develop a simple clinical rule to exclude the presence of high-risk GOV in patients with Child-Pugh A cirrhosis. A retrospective analysis of 71 patients with Child-Pugh A cirrhosis diagnosed by transient elastography (LSM >13.6 kPa) who underwent screening gastroscopy was conducted. A predictive model using LSM ± platelet count was assessed to exclude the presence of high-risk GOV (diameter >5 mm and/or the presence of high-risk stigmata) and validated using a second cohort of 200 patients from two independent centres. High-risk GOV were present in 10 (15%) and 16 (8%) of the training and validation cohorts, respectively, which was associated with LSM and Pl count (P < 0.05). A combined model based on LSM and Pl count was more accurate for excluding the presence of high-risk GOV than either alone (training cohort AUROC: 0.87 [0.77-0.96] vs. 0.78 [0.65-0.92] for LSM and 0.71 [0.52-0.90] for platelets) with the combination of LSM ≤25 kPa and Pl ≥100 having a NPV of 100% in both the training and validation cohorts. A total of 107 (39%) patients meet this criterion. The combination of LSM ≤25 kPa and Pl ≥100 can be used in clinical practice to exclude the presence of high-risk GOV in patients with Child-Pugh A cirrhosis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Shear stiffness in nanolaminar Ti3SiC2 challenges ab initio calculations

    International Nuclear Information System (INIS)

    Kisi, E H; Zhang, J F; Kirstein, O; Riley, D P; Styles, M J; Paradowska, A M

    2010-01-01

    Nanolaminates such as the M n+1 AX n (MAX) phases are a material class with ab initio derived elasticity tensors published for over 250 compounds. We have for the first time experimentally determined the full elasticity tensor of the archetype MAX phase, Ti 3 SiC 2 , using polycrystalline samples and in situ neutron diffraction. The experimental elastic constants show extreme shear stiffness, with c 44 more than five times greater than expected for an isotropic material. Such shear stiffness is quite rare in hexagonal materials and strongly contradicts the predictions of all published MAX phase elastic constants derived from ab initio calculations. It is concluded that second order properties such as elastic moduli derived from ab initio calculations require careful experimental verification. The diffraction technique used currently provides the only method of verification for the elasticity tensor for the majority of new materials where single crystals are not available. (fast track communication)

  6. Multi-layered controllable stiffness beams for morphing: energy, actuation force, and material strain considerations

    International Nuclear Information System (INIS)

    Murray, Gabriel; Gandhi, Farhan

    2010-01-01

    Morphing aerospace structures could benefit from the ability of structural elements to transition from a stiff load-bearing state to a relatively compliant state that can undergo large deformation at low actuation cost. The present paper focuses on multi-layered beams with controllable flexural stiffness—comprising polymer layers affixed to the surfaces of a base beam and cover layers, in turn, affixed to the surfaces of the polymer layers. Heating the polymer through the glass transition reduces its shear modulus, decouples the cover layers from the base beam and reduces the overall flexural stiffness. Although the stiffness and actuation force required to bend the beam reduce, the energy required to heat the polymer layer must also be considered. Results show that for beams with low slenderness ratios, relatively thick polymer layers, and cover layers whose extensional stiffness is high, the decoupling of the cover layers through softening of the polymer layers can result in flexural stiffness reductions of over 95%. The energy savings are also highest for these configurations, and will increase as the deformation of the beam increases. The decoupling of the cover layers from the base beam through the softening of the polymer reduces the axial strains in the cover layers significantly; otherwise material failure would prevent large deformation. Results show that when the polymer layer is stiff, the cover layers are the dominant contributors to the total energy in the beam, and the energy in the polymer layers is predominantly axial strain energy. When the polymer layers are softened the energy in the cover layers is a small contributor to the total energy which is dominated by energy in the base beam and shear strain energy in the polymer layer

  7. Quantitative Maximum Shear-Wave Stiffness of Breast Masses as a Predictor of Histopathologic Severity.

    Science.gov (United States)

    Berg, Wendie A; Mendelson, Ellen B; Cosgrove, David O; Doré, Caroline J; Gay, Joel; Henry, Jean-Pierre; Cohen-Bacrie, Claude

    2015-08-01

    The objective of our study was to compare quantitative maximum breast mass stiffness on shear-wave elastography (SWE) with histopathologic outcome. From September 2008 through September 2010, at 16 centers in the United States and Europe, 1647 women with a sonographically visible breast mass consented to undergo quantitative SWE in this prospective protocol; 1562 masses in 1562 women had an acceptable reference standard. The quantitative maximum stiffness (termed "Emax") on three acquisitions was recorded for each mass with the range set from 0 (very soft) to 180 kPa (very stiff). The median Emax and interquartile ranges (IQRs) were determined as a function of histopathologic diagnosis and were compared using the Mann-Whitney U test. We considered the impact of mass size on maximum stiffness by performing the same comparisons for masses 9 mm or smaller and those larger than 9 mm in diameter. The median patient age was 50 years (mean, 51.8 years; SD, 14.5 years; range, 21-94 years), and the median lesion diameter was 12 mm (mean, 14 mm; SD, 7.9 mm; range, 1-53 mm). The median Emax of the 1562 masses (32.1% malignant) was 71 kPa (mean, 90 kPa; SD, 65 kPa; IQR, 31-170 kPa). Of 502 malignancies, 23 (4.6%) ductal carcinoma in situ (DCIS) masses had a median Emax of 126 kPa (IQR, 71-180 kPa) and were less stiff than 468 invasive carcinomas (median Emax, 180 kPa [IQR, 138-180 kPa]; p = 0.002). Benign lesions were much softer than malignancies (median Emax, 43 kPa [IQR, 24-83 kPa] vs 180 kPa [IQR, 129-180 kPa]; p masses. Despite overlap in Emax values, maximum stiffness measured by SWE is a highly effective predictor of the histopathologic severity of sonographically depicted breast masses.

  8. High-Throughput Screening of Vascular Endothelium-Destructive or Protective Microenvironments: Cooperative Actions of Extracellular Matrix Composition, Stiffness, and Structure.

    Science.gov (United States)

    Ding, Yonghui; Floren, Michael; Tan, Wei

    2017-06-01

    Pathological modification of the subendothelial extracellular matrix (ECM) has closely been associated with endothelial activation and subsequent cardiovascular disease progression. To understand regulatory mechanisms of these matrix modifications, the majority of previous efforts have focused on the modulation of either chemical composition or matrix stiffness on 2D smooth surfaces without simultaneously probing their cooperative effects on endothelium function on in vivo like 3D fibrous matrices. To this end, a high-throughput, combinatorial microarray platform on 2D and 3D hydrogel settings to resemble the compositions, stiffness, and structure of healthy and diseased subendothelial ECM has been established, and further their respective and combined effects on endothelial attachment, proliferation, inflammation, and junctional integrity have been investigated. For the first time, the results demonstrate that 3D fibrous structure resembling native ECM is a critical endothelium-protective microenvironmental factor by maintaining the stable, quiescent endothelium with strong resistance to proinflammatory stimuli. It is also revealed that matrix stiffening, in concert with chemical compositions resembling diseased ECM, particularly collagen III, could aggravate activation of nuclear factor kappa B, disruption of endothelium integrity, and susceptibility to proinflammatory stimuli. This study elucidates cooperative effects of various microenvironmental factors on endothelial activation and sheds light on new in vitro model for cardiovascular diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Static and dynamic analysis of high-rise building with consideration of two different values of subsoil stiffness coefficients

    Directory of Open Access Journals (Sweden)

    Ivankova Olga

    2017-01-01

    Full Text Available This paper deals with the analysis of 21-storeyed cast in-situ reinforced concrete high-rise building. Two different 3D models were created, because of two considered values of subsoil stiffness coefficient -fixed structure (alt. 1 and the structure supported by elastic soil (alt. 2. For both alternatives of foundation of structure, required analyses (static and dynamic were done and obtained results were compared in this paper. Short description of the structure, applied loads and other input parameters are also mentioned here. The main purpose of this analysis was to provide more information to planning engineers about the behaviour of structure exposed the wind load or seismic load when different soil conditions were considered.

  10. Stiff-Person Syndrome and Graves’ Disease

    Directory of Open Access Journals (Sweden)

    Lais Moreira Medeiros MD

    2016-12-01

    Full Text Available A 9-year-old female child presented with a history of falls, weight loss, diffuse leg pain, and progressive gait disorder, following 1 previous event described as a tonic–clonic seizure. She had increased thyroid volume, brisk symmetric reflexes, abnormal gait, and painful spasms of the paraspinal musculature. Thyroid function tests indicated biochemical hyperthyroidism, and thyrotropin receptor antibodies were positive. Her electromyography showed continuous activation of normal motor units of the paraspinal and proximal lower extremity muscles. The patient had a diagnosis of Graves’ disease with associated stiff-person syndrome, with elevated anti–glutamic acid decarboxylase antibody levels. After intravenous immunoglobulin therapy, her ambulation was substantially improved and the symptoms of stiff-person syndrome decreased dramatically.

  11. Hormones and arterial stiffness in patients with chronic kidney disease.

    Science.gov (United States)

    Gungor, Ozkan; Kircelli, Fatih; Voroneanu, Luminita; Covic, Adrian; Ok, Ercan

    2013-01-01

    Cardiovascular disease constitutes the major cause of mortality in patients with chronic kidney disease. Arterial stiffness is an important contributor to the occurrence and progression of cardiovascular disease. Various risk factors, including altered hormone levels, have been suggested to be associated with arterial stiffness. Based on the background that chronic kidney disease predisposes individuals to a wide range of hormonal changes, we herein review the available data on the association between arterial stiffness and hormones in patients with chronic kidney disease and summarize the data for the general population.

  12. Cellular shear stiffness reflects progression of arsenic-induced transformation during G1

    DEFF Research Database (Denmark)

    Muñoz, Alexandra; Eldridge, Will J; Jakobsen, Nina Munkholt

    2017-01-01

    epithelial cells were exposed to sodium arsenite to initiate early stages of transformation. Exposed cells were cultured in soft agar to further transformation and select for clonal populations exhibiting anchorage independent growth. Shear stiffness of various cell populations in G1 was assessed using...... reduced stiffness relative to control clonal lines, which were cultured in soft agar but did not receive arsenic treatment. The relative standard deviation of the stiffness of Arsenic clones was reduced compared to control clones, as well as to the arsenic exposed cell population. Cell stiffness...

  13. Associations between lower extremity muscle mass and multiplanar knee laxity and stiffness: a potential explanation for sex differences in frontal and transverse plane knee laxity.

    Science.gov (United States)

    Shultz, Sandra J; Pye, Michele L; Montgomery, Melissa M; Schmitz, Randy J

    2012-12-01

    Compared with men, women have disproportionally greater frontal (varus-valgus) and transverse (internal-external) plane laxity and lower stiffness, despite having similar sagittal (anterior-posterior) plane laxity and stiffness. While the underlying cause is unclear, the amount of lower extremity lean mass (LELM) may be a contributing factor. Lower extremity lean mass would be a stronger predictor of frontal and transverse plane laxity and incremental stiffness than the sagittal plane. Associations between LELM and stiffness would be stronger at lower force increments. Descriptive laboratory study. Sixty-three women and 30 men with no history of ligament injury were measured for knee laxity and incremental stiffness in the sagittal (-90- to 130-N posterior-to-anterior directed loads), frontal (±10-N·m varus-valgus torques), and transverse (±5-N·m internal-external rotation torques) planes and underwent dual-energy X-ray absorptiometry scans to measure LELM. Linear regressions examined the extent to which LELM predicted each laxity and stiffness value, while also accounting for a person's sex. Females (vs males) had greater laxity and less stiffness in the frontal and transverse planes but not the sagittal plane. Lower extremity lean mass was a poor predictor of sagittal laxity and stiffness (R (2) range = .021-.081; P > .06) but was a stronger predictor of frontal (R (2) range = .215-.567; P plane laxity and stiffness. Associations were stronger for low (R (2) = .495-.504) versus high (R (2) = .215-.435) frontal plane stiffness but were similar for low (R (2) = .233-.293) versus high (R (2) = .224-.356) transverse plane stiffness. Once we accounted for a person's LELM, sex had little effect on laxity and stiffness (change in R (2) after removal = .01-.08; P = .027-.797). Less LELM was associated with greater laxity and less stiffness in frontal and transverse planes, which may contribute to the disproportionally higher laxities and reduced stiffnesses observed

  14. Ultrasound shear wave elastography in the assessment of passive biceps brachii muscle stiffness: influences of sex and elbow position.

    Science.gov (United States)

    Chen, Johnson; O'Dell, Michael; He, Wen; Du, Li-Juan; Li, Pai-Chi; Gao, Jing

    To assess differences in biceps brachii muscle (BBM) stiffness as evaluated by ultrasound shear wave elastography (SWE). The passive stiffness of the BBM was quantified with shear wave velocity (SWV) measurements obtained from 10 healthy volunteers (5 men and 5 women, mean age 50years, age range 42-63 years) with the elbow at full extension and 30° flexion in this IRB-approved study. Potential differences between two depths within the muscle, two elbow positions, the two arms, and sexes were assessed by using two-tailed t-test. The reproducibility of SWV measurements was tested by using intraclass correlation coefficient (ICC). Significantly higher passive BBM stiffness was found at full elbow extension compared to 30° of flexion (p≤0.00006 for both arms). Significantly higher passive stiffness in women was seen for the right arm (p=0.04 for both elbow positions). Good correlation of shear wave velocity measured at the different depths. The ICC for interobserver and intraobserver variation was high. SWE is a reliable quantitative tool for assessing BBM stiffness, with differences in stiffness based on elbow position demonstrated and based on sex suggested. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Theoretical and experimental studies on in-plane stiffness of integrated container structure

    Directory of Open Access Journals (Sweden)

    Xiaoxiong Zha

    2016-03-01

    Full Text Available This article presents analytical, numerical, and experimental studies on the in-plane stiffness of container buildings. First, based on diaphragm theory, parallel corrugated direction stiffness of corrugated sheet has been deduced, and based on energy method, shear modulus of two elastic principal directions of orthotropic plate has been deduced, and through stiffness conversion method, the stiffness relationship between parallel corrugated direction and vertical corrugated direction has been obtained. Combined with container frame, the container stiffness of loading end and non-loading end, as bottom side beam fixed, has been obtained. Second, through the software Abaqus, full-scale container model has been established. The loading–displacement curve of finite element model has been compared with theoretical analysis and has a good agreement. Third, through 20 and 40 ft container, corresponding experimental verification has been done, and by comparison of container stiffness, the theoretical analysis and finite element simulation have been verified. Finally, based on verified finite element model, parametric analysis of corrugated sheet size, corrugated sheeting cross section, elasticity modulus of top side beam, and every plate action for container stiffness have been given. Research result has made feasible in design and construction of container buildings and can provide some references to corresponding specification preparation.

  16. Airfoil noise computation use high-order schemes

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2007-01-01

    High-order finite difference schemes with at least 4th-order spatial accuracy are used to simulate aerodynamically generated noise. The aeroacoustic solver with 4th-order up to 8th-order accuracy is implemented into the in-house flow solver, EllipSys2D/3D. Dispersion-Relation-Preserving (DRP) fin...

  17. Prevalence of arterial stiffness in North China, and associations with risk factors of cardiovascular disease: a community-based study

    Directory of Open Access Journals (Sweden)

    Wang Jin-Wen

    2012-12-01

    Full Text Available Abstract Background Brachial-ankle pulse wave velocity (baPWV, which reflects the stiffness of both central and peripheral muscular arteries, has been frequently used as a simple index for assessing arterial stiffness. The aim of the present study was to investigate the prevalence of arterial stiffness in North China based on baPWV measurements, and explore the associations between increased arterial stiffness and risk factors of cardiovascular diseases (CVD. Methods Twenty-three community populations were established in North China. For each participant, parameters for calculating baPWV, including blood pressures and pressure waveforms, were measured using a non-invasive automatic device. All participants were required to respond to an interviewer-led questionnaire including medical histories and demographic data, and to receive blood tests on biochemical indictors. Results A total of 2,852 participants were finally investigated. Among them, 1,201 people with low burden of CVD risk factors were chosen to be the healthy reference sample. The cut-off point of high baPWV was defined as age-specific 90th percentile of the reference sample. Thus, the prevalence of high baPWV was found to be 22.3% and 26.4% in men and women respectively. After adjusted for age, heart rate (HR, systolic blood pressure (SBP, fasting glucose level, and smoking were significantly associated with high baPWV in men; while level of serum total cholesterol (TC, HR, SBP, and diabetes were significantly associated with high baPWV in women. Conclusions Based on the age-specific cut-off points, the middle-aged population has a higher prevalence of high baPWV in North China. There exists a difference between men and women in terms of the potential risk factors associated with arterial stiffness.

  18. Sabot Front Borerider Stiffness vs. Dispersion: Finding the Knee in the Curve

    Directory of Open Access Journals (Sweden)

    Alan F. Hathaway

    2001-01-01

    Full Text Available In the design of armor piercing, fin-stabilized, discarding sabot projectiles, the radial stiffness of the sabot front borerider has a significant impact on the projectile's dispersion and is, therefore, an important design consideration. Whether designing a new projectile or trying to improve an existing design, projectile designers can achieve front borerider stiffness without understanding its affect on dispersion characteristics. There is a knee in the stiffness vs. dispersion curve at which a change in the sabot front borerider stiffness will have a significant impact on dispersion or no impact at all depending on whether the stiffness is increased or decreased. The subject of this paper is an analytical approach to quantitatively determine the knee in the curve. Results from using this approach on the M865 APFSDS projectile are also presented.

  19. Knee joint stiffness in individuals with and without knee osteoarthritis: a preliminary study.

    Science.gov (United States)

    Oatis, Carol A; Wolff, Edward F; Lennon, Sandra K

    2006-12-01

    Descriptive, case-matched comparison. To compare the knee joint stiffness and damping coefficients of individuals with knee osteoarthritis (KOA) to those of age- and gender-matched individuals without KOA. A secondary purpose was to investigate relationships between these coefficients and complaints of stiffness in individuals with KOA. KOA is a leading cause of disability, and stiffness is a common complaint in individuals with KOA. Yet the most common method of assessing knee joint stiffness is through a self-report questionnaire. Stiffness and damping coefficients at the knee were calculated in 10 volunteers (mean age +/- SD, 64.1+/-15.5 years) with KOA and compared to coefficients from age-and gender-matched individuals without KOA, collected in a previous study (mean age +/- SD, 62.1+/-13.9 years). Stiffness and damping coefficients were calculated from the angular motion of the knee during a relaxed oscillation. Spearman correlation coefficients were calculated between stiffness and damping coefficients and WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) scores for subjects with KOA. Independent 2-tailed t tests revealed significantly larger damping coefficients (P = .035) among those with KOA (95% CI, 0.10-2.32 Nm s/rad). Spearman rank correlations revealed a significant positive relationship (r = .85, P = .003) between the damping coefficient and the stiffness subscore of the WOMAC. This study offers preliminary data demonstrating the feasibility of measuring stiffness and damping coefficients in individuals with KOA. Additionally, the damping coefficient is increased in people with KOA when compared to age- and gender-matched individuals without KOA. The damping coefficient appears to be associated with the complaints of stiffness reported by the WOMAC.

  20. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model.

    Science.gov (United States)

    Li, Min; Konstantinova, Jelizaveta; Xu, Guanghua; He, Bo; Aminzadeh, Vahid; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2017-01-01

    Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.