On high-order perturbative calculations at finite density
Energy Technology Data Exchange (ETDEWEB)
Ghişoiu, Ioan, E-mail: ioan.ghisoiu@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Gorda, Tyler, E-mail: tyler.gorda@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Department of Physics, University of Colorado Boulder, Boulder, CO (United States); Kurkela, Aleksi, E-mail: aleksi.kurkela@cern.ch [Theoretical Physics Department, CERN, Geneva (Switzerland); Faculty of Science and Technology, University of Stavanger, Stavanger (Norway); Romatschke, Paul, E-mail: paul.romatschke@colorado.edu [Department of Physics, University of Colorado Boulder, Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado, Boulder, CO (United States); Säppi, Matias, E-mail: matias.sappi@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Vuorinen, Aleksi, E-mail: aleksi.vuorinen@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland)
2017-02-15
We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes — a result reminiscent of a previously proposed “naive real-time formalism” for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.
High order singular rank one perturbations of a positive operator
Dijksma, A.; Kurasov, P.; Shondin, Yu.
2005-01-01
In this paper self-adjoint realizations in Hilbert and Pontryagin spaces of the formal expression Lα = L + α〈·, φ〉φ are discussed and compared. Here L is a positive self-adjoint operator in a Hilbert space H with inner product 〈· ,·〉, α is a real parameter, and φ in the rank one perturbation is a
Automated Lattice Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Convergence of high order perturbative expansions in open system quantum dynamics.
Xu, Meng; Song, Linze; Song, Kai; Shi, Qiang
2017-02-14
We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.
A high order theory for uniform and laminated plates
Lo, K. H.; Christensen, R. M.; Wu, E. M.
1976-01-01
A theory of plate deformation is derived which accounts for the effects of transverse shear deformation, transverse normal strain, and a nonlinear distribution of the in-plane displacements with respect to the thickness coordinate. The theory is compared with lower order plate theories through application to a particular problem involving a plate acted upon by a sinusoidal surface pressure. Comparison is also made with exact elasticity solution of this problem. It is found that when the ratio of the characteristic length of the load pattern to the plate thickness is of the order of unity, lower order theories are inadequate and the present high order theory is required to give meaningful results. Results are given for the bending of symmetric cross-ply and angle-ply laminates. Comparison with exact elasticity solutions indicates that the present plate theory is sufficiently accurate for predicting the behavior of thick laminates.
Applications Of Chiral Perturbation Theory
Mohta, V
2005-01-01
Effective field theory techniques are used to describe the spectrum and interactions of hadrons. The mathematics of classical field theory and perturbative quantum field theory are reviewed. The physics of effective field theory and, in particular, of chiral perturbation theory and heavy baryon chiral perturbation theory are also reviewed. The geometry underlying heavy baryon chiral perturbation theory is described in detail. Results by Coleman et. al. in the physics literature are stated precisely and proven. A chiral perturbation theory is developed for a multiplet containing the recently- observed exotic baryons. A small coupling expansion is identified that allows the calculation of self-energy corrections to the exotic baryon masses. Opportunities in lattice calculations are discussed. Chiral perturbation theory is used to study the possibility of two multiplets of exotic baryons mixed by quark masses. A new symmetry constraint on reduced partial widths is identified. Predictions in the literature based ...
MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS
Energy Technology Data Exchange (ETDEWEB)
Chu, Z.; Lin, W. P. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, G. L. [Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008 (China); Kang, X., E-mail: chuzhe@shao.ac.cn, E-mail: linwp@shao.ac.cn [Partner Group of MPI for Astronomy, Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008 (China)
2013-03-10
An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of caustic images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.
Perturbation Theory of Embedded Eigenvalues
DEFF Research Database (Denmark)
Engelmann, Matthias
project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group......We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...... of dilations is thereby replaced by the unitary group generated y the conjugate operator. This then allows to treat the perturbation problem with the usual Kato theory....
Review of chiral perturbation theory
Indian Academy of Sciences (India)
Abstract. A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.
Basics of QCD perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science
1997-06-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.
Logarithmic perturbation theory: Applications and limitations | Ndefru ...
African Journals Online (AJOL)
The time independent, non-degenerate standard perturbation theory is compared the alternate treatment of perturbation theory called logarithmic perturbation theory (LPT). For determining the non-degenerate ground state the LPT is, in principle, easier to apply than standard perturbation theory. This is because, as ...
Review of chiral perturbation theory
Indian Academy of Sciences (India)
the CLEO Collaboration. Other sources could be the decay τ →ππν. In the modern context, a fresh Roy equation analysis with the view of combining dis- persion relations with chiral perturbation theory has been carried out [20]. The evaluation of the inhomogeneous terms, the so-called 'driving terms' for the Roy equations ...
Cosmological perturbation theory and quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)
2016-08-04
It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.
Cosmological perturbation theory and quantum gravity
Brunetti, Romeo; Hack, Thomas-Paul; Pinamonti, Nicola; Rejzner, Katarzyna
2016-01-01
It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.
High-order time-accurate schemes for parabolic singular perturbation problems with convection
P.W. Hemker (Piet); G.I. Shishkin (Gregori); L.P. Shishkina
2001-01-01
textabstractWe consider the first boundary value problem for a singularly perturbed para-bo-lic PDE with convection on an interval. For the case of sufficiently smooth data, it is easy to construct a standard finite difference operator and a piecewise uniform mesh, condensing in the boundary layer,
A High Order Theory for Linear Thermoelastic Shells: Comparison with Classical Theories
Directory of Open Access Journals (Sweden)
V. V. Zozulya
2013-01-01
Full Text Available A high order theory for linear thermoelasticity and heat conductivity of shells has been developed. The proposed theory is based on expansion of the 3-D equations of theory of thermoelasticity and heat conductivity into Fourier series in terms of Legendre polynomials. The first physical quantities that describe thermodynamic state have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby all equations of elasticity and heat conductivity including generalized Hooke's and Fourier's laws have been transformed to the corresponding equations for coefficients of the polynomial expansion. Then in the same way as in the 3D theories system of differential equations in terms of displacements and boundary conditions for Fourier coefficients has been obtained. First approximation theory is considered in more detail. The obtained equations for the first approximation theory are compared with the corresponding equations for Timoshenko's and Kirchhoff-Love's theories. Special case of plates and cylindrical shell is also considered, and corresponding equations in displacements are presented.
Perturbation theory and renormalisation group equations
Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.
2002-01-01
We discuss the perturbative expansion of several one-loop improved renormalisation group equations. It is shown that in general the integrated renormalisation group flows fail to reproduce perturbation theory beyond one loop.
A hierarchy of high-order theories for modes in an elastic layer
DEFF Research Database (Denmark)
Sorokin, Sergey V.; Chapman, C. John
2015-01-01
A hierarchy of high-order theories for symmetric and skew-symmetric modes in an infinitely long elastic layer of the constant thickness is derived. For each member of the hierarchy, boundary conditions for layers of the finite length are formulated. The forcing problems at several approximation...
Perturbation theory in light-cone quantization
Energy Technology Data Exchange (ETDEWEB)
Langnau, Alex [Stanford Univ., CA (United States)
1992-01-01
A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.
Perturbative spacetimes from Yang-Mills theory
Luna, Andrés; Nicholson, Isobel; Ochirov, Alexander; O'Connell, Donal; Westerberg, Niclas; White, Chris D.
2017-04-12
The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.
Closed form bound-state perturbation theory
Directory of Open Access Journals (Sweden)
Ollie J. Rose
1980-01-01
Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.
Nonequilibrium perturbation theory for complex scalar fields
Lawrie, I. D.; McKernan, D. B.
1996-01-01
Real-time perturbation theory is formulated for complex scalar fields away from thermal equilibrium in such a way that dissipative effects arising from the absorptive parts of loop diagrams are approximately resummed into the unperturbed propagators. Low order calculations of physical quantities then involve quasiparticle occupation numbers which evolve with the changing state of the field system, in contrast to standard perturbation theory, where these occupation numbers are frozen at their ...
The recursion relation in Lagrangian perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Rampf, Cornelius, E-mail: rampf@physik.rwth-aachen.de [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen, D-52056 Aachen (Germany)
2012-12-01
We derive a recursion relation in the framework of Lagrangian perturbation theory, appropriate for studying the inhomogeneities of the large scale structure of the universe. We use the fact that the perturbative expansion of the matter density contrast is in one-to-one correspondence with standard perturbation theory (SPT) at any order. This correspondence has been recently shown to be valid up to fourth order for a non-relativistic, irrotational and dust-like component. Assuming it to be valid at arbitrary (higher) order, we express the Lagrangian displacement field in terms of the perturbative kernels of SPT, which are itself given by their own and well-known recursion relation. We argue that the Lagrangian solution always contains more non-linear information in comparison with the SPT solution, (mainly) if the non-perturbative density contrast is restored after the displacement field is obtained.
't Hooft loops and perturbation theory
De Forcrand, Philippe; Noth, D; Forcrand, Philippe de; Lucini, Biagio; Noth, David
2005-01-01
We show that high-temperature perturbation theory describes extremely well the area law of SU(N) spatial 't Hooft loops, or equivalently the tension of the interface between different Z_N vacua in the deconfined phase. For SU(2), the disagreement between Monte Carlo data and lattice perturbation theory for sigma(T)/T^2 is less than 2%, down to temperatures O(10) T_c. For SU(N), N>3, the ratios of interface tensions, (sigma_k/sigma_1)(T), agree with perturbation theory, which predicts tiny deviations from the ratio of Casimirs, down to nearly T_c. In contrast, individual tensions differ markedly from the perturbative expression. In all cases, the required precision Monte Carlo measurements are made possible by a simple but powerful modification of the 'snake' algorithm.
World-line perturbation theory
van Holten, Jan-Willem
2016-01-01
The motion of a compact body in space and time is commonly described by the world line of a point representing the instantaneous position of the body. In General Relativity such a world-line formalism is not quite straightforward because of the strict impossibility to accommodate point masses and rigid bodies. In many situations of practical interest it can still be made to work using an effective hamiltonian or energy-momentum tensor for a finite number of collective degrees of freedom of the compact object. Even so exact solutions of the equations of motion are often not available. In such cases families of world lines of compact bodies in curved space-times can be constructed by a perturbative procedure based on generalized geodesic deviation equations. Examples for simple test masses and for spinning test bodies are presented.
Chiral Perturbation Theory With Lattice Regularization
Ouimet, P P A
2005-01-01
In this work, alternative methods to regularize chiral perturbation theory are discussed. First, Long Distance Regularization will be considered in the presence of the decuplet of the lightest spin 32 baryons for several different observables. This serves motivation and introduction to the use of the lattice regulator for chiral perturbation theory. The mesonic, baryonic and anomalous sectors of chiral perturbation theory will be formulated on a lattice of space time points. The consistency of the lattice as a regulator will be discussed in the context of the meson and baryon masses. Order a effects will also be discussed for the baryon masses, sigma terms and magnetic moments. The work will close with an attempt to derive an effective Wess-Zumino-Witten Lagrangian for Wilson fermions at non-zero a. Following this discussion, there will be a proposal for a phenomenologically useful WZW Lagrangian at non-zero a.
Unphysical states in staggered chiral perturbation theory
Aubin, Christopher; Davila, George
2015-01-01
We study the extended phase diagram for staggered quarks using chiral perturbation theory. Recent beyond-the-standard-model simulations have shown that broken phases occur for coarse enough lattice spacing, so long as the number of quark flavors in the simulation is large enough (greater than eight). One of the phases seen in these simulations can be studied in depth using chiral perturbation theory. We also show that there are only three broken phases for staggered quarks that can arise, at least for lattice spacings in the regime a^2<< Lambda^2_{QCD}.
Conservative perturbation theory for nonconservative systems.
Shah, Tirth; Chattopadhyay, Rohitashwa; Vaidya, Kedar; Chakraborty, Sagar
2015-12-01
In this paper, we show how to use canonical perturbation theory for dissipative dynamical systems capable of showing limit-cycle oscillations. Thus, our work surmounts the hitherto perceived barrier for canonical perturbation theory that it can be applied only to a class of conservative systems, viz., Hamiltonian systems. In the process, we also find Hamiltonian structure for an important subset of Liénard system-a paradigmatic system for modeling isolated and asymptotic oscillatory state. We discuss the possibility of extending our method to encompass an even wider range of nonconservative systems.
Geometric singular perturbation theory in biological practice
Hek, G.
2010-01-01
Geometric singular perturbation theory is a useful tool in the analysis of problems with a clear separation in time scales. It uses invariant manifolds in phase space in order to understand the global structure of the phase space or to construct orbits with desired properties. This paper explains
Chiral perturbation theory and nucleon polarizabilities
Energy Technology Data Exchange (ETDEWEB)
Babusci, D.; Giordano, G.; Matone, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)
1996-10-01
The available experimental data concerning the unpolarized cross section for the Compton scattering on the nucleon at low energy are compared with the predictions of the heavy baryon chiral perturbation theory (HBChPT) at the order q{sup 3}.
Renormalized Perturbation Theory A Missing Chapter
Stora, Raymond
2008-01-01
Renormalized perturbation theory à la BPHZ can be founded on causality as analyzed by H. Epstein and V. Glaser in the seventies. Here, we list and discuss a number of additional constraints of algebraic character some of which have to be considered as parts of the core of the BPHZ framework.
Covariant perturbation theory and chiral superpropagators
Ecker, G
1972-01-01
The authors use a covariant formulation of perturbation theory for the non-linear chiral invariant pion model to define chiral superpropagators leading to S-matrix elements which are independent of the choice of the pion field coordinates. The relation to the standard definition of chiral superpropagators is discussed. (11 refs).
Geometric perturbation theory and plasma physics
Energy Technology Data Exchange (ETDEWEB)
Omohundro, S.M.
1985-04-04
Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.
SPT 2004: Symmetry and Perturbation Theory
Prinari, Barbara; Rauch-Wojciechowski, Stefan; Terracini, Susanna
2005-01-01
This proceedings volume is a collection of papers presented at the International Conference on SPT2004 focusing on symmetry, perturbation theory, and integrability. The book provides an updated overview of the recent developments in the various different fields of nonlinear dynamics, covering both theory and applications. Special emphasis is given to algebraic and geometric integrability, solutions to the N-body problem of the “choreography” type, geometry and symmetry of dynamical systems, integrable evolution equations, various different perturbation theories, and bifurcation analysis. The contributors to this volume include some of the leading scientists in the field, among them: I Anderson, D Bambusi, S Benenti, S Bolotin, M Fels, W Y Hsiang, V Matveev, A V Mikhailov, P J Olver, G Pucacco, G Sartori, M A Teixeira, S Terracini, F Verhulst and I Yehorchenko.
A primer for Chiral Perturbative Theory
Energy Technology Data Exchange (ETDEWEB)
Scherer, Stefan [Mainz Univ. (Germany). Inst. fuer Kernphysik; Schindler, Matthias R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics; George Washington Univ., Washington, DC (United States). Dept. of Physics
2012-07-01
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)
A primer for chiral perturbation theory
Scherer, Stefan
2012-01-01
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.
The Beauty of Lattice Perturbation Theory: the Role of Lattice Perturbation Theory in B Physics
Monahan, C. J.
2012-12-01
As new experimental data arrive from the LHC the prospect of indirectly detecting new physics through precision tests of the Standard Model grows more exciting. Precise experimental and theoretical inputs are required to test the unitarity of the CKM matrix and to search for new physics effects in rare decays. Lattice QCD calculations of non-perturbative inputs have reached a precision at the level of a few percent; in many cases aided by the use of lattice perturbation theory. This review examines the role of lattice perturbation theory in B physics calculations on the lattice in the context of two questions: how is lattice perturbation theory used in the different heavy quark formalisms implemented by the major lattice collaborations? And what role does lattice perturbation theory play in determinations of non-perturbative contributions to the physical processes at the heart of the search for new physics? Framing and addressing these questions reveals that lattice perturbation theory is a tool with a spectrum of applications in lattice B physics.
Convergence of coupled cluster perturbation theory
Eriksen, Janus J.; Kristensen, Kasper; Matthews, Devin A.; Jørgensen, Poul; Olsen, Jeppe
2016-12-01
The convergence of a recently proposed coupled cluster (CC) family of perturbation series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)], in which the energetic difference between two CC models—a low-level parent and a high-level target model—is expanded in orders of the Møller-Plesset (MP) fluctuation potential, is investigated for four prototypical closed-shell systems (Ne, singlet CH2, distorted HF, and F-) in standard and augmented basis sets. In these investigations, energy corrections of the various series have been calculated to high orders and their convergence radii have been determined by probing for possible front- and back-door intruder states, the existence of which would make the series divergent. In summary, we conclude how it is primarily the choice of the target state, and not the choice of the parent state, which ultimately governs the convergence behavior of a given series. For example, restricting the target state to, say, triple or quadruple excitations might remove intruders present in series which target the full configuration interaction limit, such as the standard MP series. Furthermore, we find that whereas a CC perturbation series might converge within standard correlation consistent basis sets, it may start to diverge whenever these become augmented by diffuse functions, similar to the MP case. However, unlike for the MP case, such potential divergences are not found to invalidate the practical use of the low-order corrections of the CC perturbation series.
Acoustic anisotropic wavefields through perturbation theory
Alkhalifah, Tariq Ali
2013-09-01
Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.
Perturbation theory for cosmologies with nonlinear structure
Goldberg, Sophia R.; Gallagher, Christopher S.; Clifton, Timothy
2017-11-01
The next generation of cosmological surveys will operate over unprecedented scales, and will therefore provide exciting new opportunities for testing general relativity. The standard method for modelling the structures that these surveys will observe is to use cosmological perturbation theory for linear structures on horizon-sized scales, and Newtonian gravity for nonlinear structures on much smaller scales. We propose a two-parameter formalism that generalizes this approach, thereby allowing interactions between large and small scales to be studied in a self-consistent and well-defined way. This uses both post-Newtonian gravity and cosmological perturbation theory, and can be used to model realistic cosmological scenarios including matter, radiation and a cosmological constant. We find that the resulting field equations can be written as a hierarchical set of perturbation equations. At leading-order, these equations allow us to recover a standard set of Friedmann equations, as well as a Newton-Poisson equation for the inhomogeneous part of the Newtonian energy density in an expanding background. For the perturbations in the large-scale cosmology, however, we find that the field equations are sourced by both nonlinear and mode-mixing terms, due to the existence of small-scale structures. These extra terms should be expected to give rise to new gravitational effects, through the mixing of gravitational modes on small and large scales—effects that are beyond the scope of standard linear cosmological perturbation theory. We expect our formalism to be useful for accurately modeling gravitational physics in universes that contain nonlinear structures, and for investigating the effects of nonlinear gravity in the era of ultra-large-scale surveys.
Molecular Cluster Perturbation Theory. I. Formalism
Byrd, Jason N; Molt,, Robert W; Bartlett, Rodney J; Sanders, Beverly A; Lotrich, Victor F
2014-01-01
We present second-order molecular cluster perturbation theory (MCPT(2)), a methodology to calculate arbitrarily large systems with explicit calculation of individual wavefunctions in a coupled cluster framework. This new MCPT(2) framework uses coupled cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wavefunctions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/ACES parallel architecture, making use of the advanced dynamic memory control and fine grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts and lattice site dipole moments for the polar and non-polar configurations of solid hydrogen fluoride by scaling an explicit lattice to the bulk limit. The explicit lattice size without periodic boundary conditions was scal...
Hadron Structure in Chiral Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Aleksejevs, A. [Grenfell campus of Memorial University, Newfoundland (Canada); Barkanova, S. [Acadia University, Nova Scotia (Canada)
2013-12-15
We present our predictions for meson form factors for the SU(3) octet and investigate their impact on the pion electroproduction cross sections. The electric and magnetic polarizabilities of the SU(3) octet of mesons and baryons are analyzed in detail. These extensive calculations are made possible by the recent implementation of semi-automatized calculations in fully-relativistic chiral perturbation theory, which allows evaluation of polarizabilities from Compton scattering up to next-to-the-leading order.
Convergence of coupled cluster perturbation theory
Eriksen, Janus Juul; Matthews, Devin A; Jørgensen, Poul; Olsen, Jeppe
2016-01-01
The convergence of a recently proposed coupled cluster (CC) family of perturbation series [Eriksen et al., J. Chem. Phys. 140, 064108 (2014)], in which the energetic difference between a parent and a target CC model is expanded in orders of the M{\\o}ller-Plesset (MP) fluctuation potential, is investigated for four prototypical closed-shell systems (Ne, singlet methylene, distorted HF, and the fluoride anion) in standard and augmented basis sets. In these investigations, energy corrections of the various series have been calculated to high orders and their convergence radii determined by probing for possible front- and back-door intruder states. In summary, we conclude how it is primarily the choice of target state, and not the choice of parent state, which ultimately governs the convergence behavior of a given series. For example, restricting the target state to, say, triple or quadruple excitations might remove intruders present in series that target the full configuration interaction (FCI) limit, such as th...
Lagrangian perturbation theory for modified gravity
Aviles, Alejandro; Cervantes-Cota, Jorge L.
2017-12-01
We present a formalism to compute Lagrangian displacement fields for a wide range of cosmologies in the context of perturbation theory up to third order. We emphasize the case of theories with scale-dependent gravitational strengths, such as chameleons, but our formalism can be accommodated to other modified gravity theories. In the nonlinear regime, two qualitative features arise. One, as is well known, is that nonlinearities lead to a screening of the force mediated by the scalar field. The second is a consequence of the transformation of the Klein-Gordon equation from Eulerian to Lagrangian coordinates, producing frame lagging terms that are important especially at large scales, and if not considered, the theory does not reduce to the Λ CDM model in that limit. We apply our formalism to compute the one-loop power spectrum and the correlation function in f (R ) gravity by using different resummation schemes. We further discuss the IR divergences of these formalisms.
Perturbative quantum gravity in double field theory
Energy Technology Data Exchange (ETDEWEB)
Boels, Rutger H.; Horst, Christoph [II. Institut für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, D- 22761 Hamburg (Germany)
2016-04-19
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
Chiral perturbation theory for lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Baer, Oliver
2010-07-21
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
Perturbation theory for plasmonic modulation and sensing
Raman, Aaswath
2011-05-25
We develop a general perturbation theory to treat small parameter changes in dispersive plasmonic nanostructures and metamaterials. We specifically apply it to dielectric refractive index and metallic plasma frequency modulation in metal-dielectric nanostructures. As a numerical demonstration, we verify the theory\\'s accuracy against direct calculations for a system of plasmonic rods in air where the metal is defined by a three-pole fit of silver\\'s dielectric function. We also discuss new optical behavior related to plasma frequency modulation in such systems. Our approach provides new physical insight for the design of plasmonic devices for biochemical sensing and optical modulation and future active metamaterial applications. © 2011 American Physical Society.
Homological Perturbation Theory for Nonperturbative Integrals
Johnson-Freyd, Theo
2015-11-01
We use the homological perturbation lemma to produce explicit formulas computing the class in the twisted de Rham complex represented by an arbitrary polynomial. This is a non-asymptotic version of the method of Feynman diagrams. In particular, we explain that phenomena usually thought of as particular to asymptotic integrals in fact also occur exactly: integrals of the type appearing in quantum field theory can be reduced in a totally algebraic fashion to integrals over an Euler-Lagrange locus, provided this locus is understood in the scheme-theoretic sense, so that imaginary critical points and multiplicities of degenerate critical points contribute.
Tests of Chiral perturbation theory with COMPASS
Directory of Open Access Journals (Sweden)
Friedrich Jan M.
2014-06-01
Full Text Available The COMPASS experiment at CERN accesses pion-photon reactions via the Primakoff effect., where high-energetic pions react with the quasi-real photon field surrounding the target nuclei. When a single real photon is produced, pion Compton scattering is accessed and from the measured cross-section shape, the pion polarisability is determined. The COMPASS measurement is in contradiction to the earlier dedicated measurements, and rather in agreement with the theoretical expectation from ChPT. In the same experimental data taking, reactions with neutral and charged pions in the final state are measured and analyzed in the context of chiral perturbation theory.
Chiral Random Matrix Theory and Chiral Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Damgaard, Poul H, E-mail: phdamg@nbi.dk [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)
2011-04-01
Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.
Inflationary perturbations in no-scale theories
Energy Technology Data Exchange (ETDEWEB)
Salvio, Alberto [CERN, Theoretical Physics Department, Geneva (Switzerland)
2017-04-15
We study the inflationary perturbations in general (classically) scale-invariant theories. Such scenario is motivated by the hierarchy problem and provides natural inflationary potentials and dark matter candidates. We analyse in detail all sectors (the scalar, vector and tensor perturbations) giving general formulae for the potentially observable power spectra, as well as for the curvature spectral index n{sub s} and the tensor-to-scalar ratio r. We show that the conserved Hamiltonian for all perturbations does not feature negative energies even in the presence of the Weyl-squared term if the appropriate quantisation is performed and argue that this term does not lead to phenomenological problems at least in some relevant setups. The general formulae are then applied to a concrete no-scale model, which includes the Higgs and a scalar, ''the planckion'', whose vacuum expectation value generates the Planck mass. Inflation can be triggered by a combination of the planckion and the Starobinsky scalar and we show that no tension with observations is present even in the case of pure planckion inflation, if the coefficient of the Weyl-squared term is large enough. In general, even quadratic inflation is allowed in this case. Moreover, the Weyl-squared term leads to an isocurvature mode, which currently satisfies the observational bounds, but it may be detectable with future experiments. (orig.)
SMD-based numerical stochastic perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Dalla Brida, Mattia [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano-Bicocca (Italy); Luescher, Martin [CERN, Theoretical Physics Department, Geneva (Switzerland); AEC, Institute for Theoretical Physics, University of Bern (Switzerland)
2017-05-15
The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schroedinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit. (orig.)
Perturbation Theory of the Cosmological Log-Density Field
DEFF Research Database (Denmark)
Wang, Xin; Neyrinck, Mark; Szapudi, István
2011-01-01
, motivating an analytic study of it. In this paper, we develop cosmological perturbation theory for the power spectrum of this field. Our formalism is developed in the context of renormalized perturbation theory, which helps to regulate the convergence behavior of the perturbation series, and of the Taylor...
New Approaches and Applications for Monte Carlo Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Aufiero, Manuele; Bidaud, Adrien; Kotlyar, Dan; Leppänen, Jaakko; Palmiotti, Giuseppe; Salvatores, Massimo; Sen, Sonat; Shwageraus, Eugene; Fratoni, Massimiliano
2017-02-01
This paper presents some of the recent and new advancements in the extension of Monte Carlo Perturbation Theory methodologies and application. In particular, the discussed problems involve Brunup calculation, perturbation calculation based on continuous energy functions, and Monte Carlo Perturbation Theory in loosely coupled systems.
Fermion perturbations in string theory black holes
Energy Technology Data Exchange (ETDEWEB)
Piedra, Owen Pavel Fernandez; De Oliveira, Jeferson, E-mail: opavel@ucf.edu.cu, E-mail: jeferson@fma.if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05315-970, Sao Paulo (Brazil)
2011-04-21
In this paper we study fermion perturbations in four-dimensional black holes of string theory, obtained either from a non-extreme configuration of three intersecting five-branes with a boost along the common string or from a non-extreme intersecting system of two two-branes and two five-branes. The Dirac equation for the massless neutrino field, after conformal re-scaling of the metric, is written as a wave equation suitable to study the time evolution of the perturbation. We perform a numerical integration of the evolution equation, and with the aid of Prony fitting of the time-domain profile, we calculate the complex frequencies that dominate the quasinormal ringing stage, and also determine these quantities by the semi-analytical sixth-order WKB method. We also find numerically the decay factor of fermion fields at very late times, and show that the falloff is identical to those showing for massless fields in other four-dimensional black hole spacetimes.
Fermion perturbations in string theory black holes
Pavel Fernández Piedra, Owen; de Oliveira, Jeferson
2011-04-01
In this paper we study fermion perturbations in four-dimensional black holes of string theory, obtained either from a non-extreme configuration of three intersecting five-branes with a boost along the common string or from a non-extreme intersecting system of two two-branes and two five-branes. The Dirac equation for the massless neutrino field, after conformal re-scaling of the metric, is written as a wave equation suitable to study the time evolution of the perturbation. We perform a numerical integration of the evolution equation, and with the aid of Prony fitting of the time-domain profile, we calculate the complex frequencies that dominate the quasinormal ringing stage, and also determine these quantities by the semi-analytical sixth-order WKB method. We also find numerically the decay factor of fermion fields at very late times, and show that the falloff is identical to those showing for massless fields in other four-dimensional black hole spacetimes.
Hadronic Lorentz violation in chiral perturbation theory
Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.
2017-03-01
Any possible Lorentz violation in the hadron sector must be tied to Lorentz violation at the underlying quark level. The relationships between the theories at these two levels are studied using chiral perturbation theory. Starting from a two-flavor quark theory that includes dimension-4 Lorentz-violation operators, the effective Lagrangians are derived for both pions and nucleons, with novel terms appearing in both sectors. Since the Lorentz-violation coefficients for nucleons and pions are all related to a single set of underlying quark coefficients, one can compare the sensitivity of different types of experiments. Our analysis shows that atomic physics experiments currently provide constraints on the quark parameters that are stronger by about 10 orders of magnitude than astrophysical experiments with relativistic pions. Alternatively, it is possible to place approximate bounds on pion Lorentz violation using only proton and neutron observations. Under the assumption that the Lorentz-violating operators considered here are the only ones contributing to the relevant observables and taking the currently unknown hadronic low-energy constants to be of natural size, the resulting estimated bounds on four pion parameters are at the 10-23 level, representing improvements of 10 orders of magnitude.
Energy Technology Data Exchange (ETDEWEB)
Herbert, John M. [Kansas State Univ., Manhattan, KS (United States). Dept. of Chemistry
1997-01-01
Rayleigh-Schroedinger perturbation theory is an effective and popular tool for describing low-lying vibrational and rotational states of molecules. This method, in conjunction with ab initio techniques for computation of electronic potential energy surfaces, can be used to calculate first-principles molecular vibrational-rotational energies to successive orders of approximation. Because of mathematical complexities, however, such perturbation calculations are rarely extended beyond the second order of approximation, although recent work by Herbert has provided a formula for the nth-order energy correction. This report extends that work and furnishes the remaining theoretical details (including a general formula for the Rayleigh-Schroedinger expansion coefficients) necessary for calculation of energy corrections to arbitrary order. The commercial computer algebra software Mathematica is employed to perform the prohibitively tedious symbolic manipulations necessary for derivation of generalized energy formulae in terms of universal constants, molecular constants, and quantum numbers. As a pedagogical example, a Hamiltonian operator tailored specifically to diatomic molecules is derived, and the perturbation formulae obtained from this Hamiltonian are evaluated for a number of such molecules. This work provides a foundation for future analyses of polyatomic molecules, since it demonstrates that arbitrary-order perturbation theory can successfully be applied with the aid of commercially available computer algebra software.
Hong, Youngjoon; Nicholls, David P.
2017-09-01
The capability to rapidly and robustly simulate the scattering of linear waves by periodic, multiply layered media in two and three dimensions is crucial in many engineering applications. In this regard, we present a High-Order Perturbation of Surfaces method for linear wave scattering in a multiply layered periodic medium to find an accurate numerical solution of the governing Helmholtz equations. For this we truncate the bi-infinite computational domain to a finite one with artificial boundaries, above and below the structure, and enforce transparent boundary conditions there via Dirichlet-Neumann Operators. This is followed by a Transformed Field Expansion resulting in a Fourier collocation, Legendre-Galerkin, Taylor series method for solving the problem in a transformed set of coordinates. Assorted numerical simulations display the spectral convergence of the proposed algorithm.
Density Perturbations in the Brans-Dicke Theory
Baptista, J. P.; Fabris, J. C.; Goncalves, S. V. B.
1996-01-01
We analyse the fate of density perturbation in the Brans-Dicke Theory, giving a general classification of the solutions of the perturbed equations when the scale factor of the background evolves as a power law. We study with details the cases of vacuum, inflation, radiation and incoherent matter. We find, for the a negative Brans-Dicke parameter, a significant amplification of perturbations.
Energy Technology Data Exchange (ETDEWEB)
Farzad Rahnema
2003-09-30
Most modern nodal methods in use by the reactor vendors and utilities are based on the generalized equivalence theory (GET) that uses homogenized cross sections and flux discontinuity factors. These homogenized parameters, referred to as infinite medium parameters, are precomputed by performing single bundle fine-mesh calculations with zero current boundary conditions. It is known that for configurations in which the node-to-node leakage (e.g., surface current-to-flux ratio) is large the use of the infinite medium parameters could lead to large errors in the nodal solution. This would be the case for highly heterogeneous core configurations, typical of modern reactor core designs.
Stochastic many-body perturbation theory for anharmonic molecular vibrations
Energy Technology Data Exchange (ETDEWEB)
Hermes, Matthew R. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)
2014-08-28
A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.
Couple stress theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models
Directory of Open Access Journals (Sweden)
Zozulya V.V.
2017-01-01
Full Text Available New models for plane curved rods based on linear couple stress theory of elasticity have been developed.2-D theory is developed from general 2-D equations of linear couple stress elasticity using a special curvilinear system of coordinates related to the middle line of the rod as well as special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and rotation along with body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby, all equations of elasticity including Hooke’s law have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of elasticity, a system of differential equations in terms of displacements and boundary conditions for Fourier coefficients have been obtained. Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear couple stress theory of elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scales when taking into account couple stress and rotation effects.
Nonlocal theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models
Directory of Open Access Journals (Sweden)
Zozulya V.V.
2017-09-01
Full Text Available New models for plane curved rods based on linear nonlocal theory of elasticity have been developed. The 2-D theory is developed from general 2-D equations of linear nonlocal elasticity using a special curvilinear system of coordinates related to the middle line of the rod along with special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby, all equations of elasticity including nonlocal constitutive relations have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of local elasticity, a system of differential equations in terms of displacements for Fourier coefficients has been obtained. First and second order approximations have been considered in detail. Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear nonlocal theory of elasticity which are considered in a special curvilinear system of coordinates related to the middle line of the rod. The obtained equations can be used to calculate stress-strain and to model thin walled structures in micro- and nanoscales when taking into account size dependent and nonlocal effects.
Perturbative Gravity and Gauge Theory Relations: A Review
Directory of Open Access Journals (Sweden)
Thomas Søndergaard
2012-01-01
Full Text Available This paper is dedicated to the amazing Kawai-Lewellen-Tye relations, connecting perturbative gravity and gauge theories at tree level. The main focus is on n-point derivations and general properties both from a string theory and pure field theory point of view. In particular, the field theory part is based on some very recent developments.
Massive renormalization scheme and perturbation theory at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Blaizot, Jean-Paul, E-mail: jean-paul.blaizot@cea.fr [Institut de Physique Théorique, CNRS/URA2306, CEA-Saclay, 91191 Gif-sur-Yvette (France); Wschebor, Nicolás [Instituto de Fìsica, Faculdad de Ingeniería, Universidade de la República, 11000 Montevideo (Uruguay)
2015-02-04
We argue that the choice of an appropriate, massive, renormalization scheme can greatly improve the apparent convergence of perturbation theory at finite temperature. This is illustrated by the calculation of the pressure of a scalar field theory with quartic interactions, at 2-loop order. The result, almost identical to that obtained with more sophisticated resummation techniques, shows a remarkable stability as the coupling constant grows, in sharp contrast with standard perturbation theory.
Numerical stochastic perturbation theory in the Schroedinger functional
Energy Technology Data Exchange (ETDEWEB)
Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk [Parma Univ. (Italy); INFN, Parma (Italy); Dalla Brida, Mattia [Trinity College Dublin (Ireland). School of Mathematics; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2013-11-15
The Schroedinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.
Perturbation theory for the Fokker-Planck operator in chaos
Heninger, Jeffrey M.; Lippolis, Domenico; Cvitanović, Predrag
2018-02-01
The stationary distribution of a fully chaotic system typically exhibits a fractal structure, which dramatically changes if the dynamical equations are even slightly modified. Perturbative techniques are not expected to work in this situation. In contrast, the presence of additive noise smooths out the stationary distribution, and perturbation theory becomes applicable. We show that a perturbation expansion for the Fokker-Planck evolution operator yields surprisingly accurate estimates of long-time averages in an otherwise unlikely scenario.
Perturbation theory for intermolecular forces including exchange
Lekkerkerker, H.N.W.; Laidlaw, W.G.
1970-01-01
Generalized solutions to the Kisenschitz and London perturbation equations are derived. It is pointed out that the results obtained in the formalisms proposed by Hirschfelder (HAV), by Hirschfelder and Silbey, by Murrell and Shaw, and by Musher and Amos are special cases of the generalized
Non-perturbative Heavy Quark Effective Theory
DEFF Research Database (Denmark)
Della Morte, Michele; Heitger, Jochen; Simma, Hubert
2015-01-01
We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B-decays...
Survey of mathematical foundations of QFT and perturbative string theory
Sati, H.; Schreiber, U.
2011-01-01
Recent years have seen noteworthy progress in the mathematical formulation of quantum field theory and perturbative string theory. We give a brief survey of these developments. It serves as an introduction to the more detailed collection "Mathematical Foundations of Quantum Field Theory and
Non perturbative methods in two dimensional quantum field theory
Abdalla, Elcio; Rothe, Klaus D
1991-01-01
This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.
Nonlinear Acoustics -- Perturbation Theory and Webster's Equation
Jorge, Rogério
2013-01-01
Webster's horn equation (1919) offers a one-dimensional approximation for low-frequency sound waves along a rigid tube with a variable cross-sectional area. It can be thought as a wave equation with a source term that takes into account the nonlinear geometry of the tube. In this document we derive this equation using a simplified fluid model of an ideal gas. By a simple change of variables, we convert it to a Schr\\"odinger equation and use the well-known variational and perturbative methods to seek perturbative solutions. As an example, we apply these methods to the Gabriel's Horn geometry, deriving the first order corrections to the linear frequency. An algorithm to the harmonic modes in any order for a general horn geometry is derived.
Effective gravitational couplings for cosmological perturbations in generalized Proca theories
De Felice, Antonio; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-01-01
We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lema\\^{i}tre-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to non-trivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling $G_{\\rm eff}$ with matter density perturbations under a quasi-static approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility ...
Non-Perturbative Nekrasov Partition Function from String Theory
Antoniadis, Ignatios; Hohenegger, Stefan; Narain, K S; Assi, Ahmad Zein
2014-01-01
We calculate gauge instanton corrections to a class of higher derivative string effective couplings introduced in [1]. We work in Type I string theory compactified on K3xT2 and realise gauge instantons in terms of D5-branes wrapping the internal space. In the field theory limit we reproduce the deformed ADHM action on a general {\\Omega}-background from which one can compute the non-perturbative gauge theory partition function using localisation. This is a non-perturbative extension of [1] and provides further evidence for our proposal of a string theory realisation of the {\\Omega}-background.
Perturbation theory for water with an associating reference fluid
Marshall, Bennett D.
2017-11-01
The theoretical description of the thermodynamics of water is challenged by the structural transition towards tetrahedral symmetry at ambient conditions. As perturbation theories typically assume a spherically symmetric reference fluid, they are incapable of accurately describing the liquid properties of water at ambient conditions. In this paper we address this problem by introducing the concept of an associated reference perturbation theory (APT). In APT we treat the reference fluid as an associating hard sphere fluid which transitions to tetrahedral symmetry in the fully hydrogen bonded limit. We calculate this transition in a theoretically self-consistent manner without appealing to molecular simulations. This associated reference provides the reference fluid for a second order Barker-Henderson perturbative treatment of the long-range attractions. We demonstrate that this approach gives a significantly improved description of water as compared to standard perturbation theories.
Polyakov loop correlator in perturbation theory
Berwein, Matthias; Brambilla, Nora; Petreczky, Péter; Vairo, Antonio
2017-07-01
We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series reexponentiates into singlet and adjoint contributions. We calculate the order g7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the reexponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.
The perturbative ghost propagator in Landau gauge from numerical stochastic perturbation theory
Di Renzo, F; Perlt, H; Schiller, A; Torrero, C
2008-01-01
We present one- and two-loop results for the ghost propagator in Landau gauge calculated in Numerical Stochastic Perturbation Theory (NSPT). The one-loop results are compared with available standard Lattice Perturbation Theory in the infinite-volume limit. We discuss in detail how to perform the different necessary limits in the NSPT approach and discuss a recipe to treat logarithmic terms by introducing ``finite-lattice logs''. We find agreement with the one-loop result from standard Lattice Perturbation Theory and estimate, from the non-logarithmic part of the ghost propagator in two-loop order, the unknown constant contribution to the ghost self-energy in the RI'-MOM scheme in Landau gauge. That constant vanishes within our numerical accuracy.
Perturbative algebraic quantum field theory at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Lindner, Falk
2013-08-15
We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.
Perturbation Theory of the Cosmological Log-Density Field
Wang, Xin; Szapudi, István; Szalay, Alex; Chen, Xuelei; Lesgourgues, Julien; Riotto, Antonio; Sloth, Martin; 10.1088/0004-637X/735/1/32
2011-01-01
The matter density field exhibits a nearly lognormal probability density distribution (PDF) after entering into the nonlinear regime. Recently, it has been shown that the shape of the power spectrum of a logarithmically transformed density field is very close to the linear density power spectrum, motivating an analytic study of it. In this paper, we develop cosmological perturbation theory for the power spectrum of this field. Our formalism is developed in the context of renormalized perturbation theory, which helps to regulate the convergence behavior of the perturbation series, and of the Taylor- series expansion we use of the logarithmic mapping. This approach allows us to handle the critical issue of density smoothing in a straightforward way. We also compare our perturbative results with simulation measurements.
Combinatorial algorithms for perturbation theory and application on quantum computing
Cao, Yudong
2016-01-01
Quantum computing is an emerging area between computer science and physics. Numerous problems in quantum computing involve quantum many-body interactions. This dissertation concerns the problem of simulating arbitrary quantum many-body interactions using realistic two-body interactions. To address this issue, a general class of techniques called perturbative reductions (or perturbative gadgets) is adopted from quantum complexity theory and in this dissertation these techniques are improved fo...
Perturbative Pions in Effective Field Theory for Nucleon Interactions
Mehen, Thomas
2001-12-01
I discuss pions in effective field theory (EFT) for the nucleon interaction within the power counting scheme proposed by Kaplan-Savage-Wise (KSW). After explaining why KSW power counting demands perturbative treatment of pions, I present results of next-to-next-to-leading order (NNLO) calculations of nucleon-nucleon scattering in S-,P-, and D-wave channels. Perturbative treatment of pions fails in spin-triplet channels. The origin of large perturbative corrections is the piece of the spin-tensor force which survives in the chiral limit.
Metric Theories of Gravity: Perturbations and Conservation Laws
Petrov, Alexander N.; Kopeikin, Sergei M.; Lompay, Robert R.; Tekin, Bayram
2017-04-01
By focusing on the mostly used variational methods, this monograph aspires to give a unified description and comparison of various ways of constructing conserved quantities for perturbations and to study symmetries in general relativity and modified theories of gravity. The main emphasis lies on the field-theoretical covariant formulation of perturbations, the canonical Noether approach and the Belinfante procedure of symmetrisation. The general formalism is applied to build the gauge-invariant cosmological perturbation theory, conserved currents and superpotentials to describe physically important solutions of gravity theories. Meticulous attention is given to the construction of conserved quantities in asymptotically-flat spacetimes as well as in asymptotically constant curvature spacetimes such as the Anti-de Sitter space. Significant part of the book can be used in graduate courses on conservation laws in general relativity.
Perturbed period-doubling bifurcation. I. Theory
DEFF Research Database (Denmark)
Svensmark, Henrik; Samuelsen, Mogens Rugholm
1990-01-01
-defined way that is a function of the amplitude and the frequency of the signal. New scaling laws between the amplitude of the signal and the detuning δ are found; these scaling laws apply to a variety of quantities, e.g., to the shift of the bifurcation point. It is also found that the stability...... of a microwave-driven Josephson junction confirm the theory. Results should be of interest in parametric-amplification studies....
The accuracy of QCD perturbation theory at high energies
Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer
2016-01-01
We discuss the determination of the strong coupling $\\alpha_\\mathrm{\\overline{MS}}^{}(m_\\mathrm{Z})$ or equivalently the QCD $\\Lambda$-parameter. Its determination requires the use of perturbation theory in $\\alpha_s(\\mu)$ in some scheme, $s$, and at some energy scale $\\mu$. The higher the scale $\\mu$ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the $\\Lambda$-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to $\\alpha_s = 0.1$ and below. We find that perturbation theory is very accurate there, yielding a three percent error in the $\\Lambda$-parameter, while data around $\\alpha_s \\approx 0.2$ is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.
Perturbative Quantum Gravity and its Relation to Gauge Theory
Directory of Open Access Journals (Sweden)
Bern Zvi
2002-01-01
Full Text Available In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on $D$-dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input thegravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.
QCD perturbation theory in the temporal gauge
Leroy, J. P.; Micheli, J.; Rossi, G. C.; Yoshida, K.
1990-12-01
In this paper we present a non-trivial check of the consistency of the quantization of a gauge theory with fermions (QCD) in the temporal gauge. We use the approach based on the finite time Feynman propagation kernel, in which the Gauss law is imposed as a constraint on the states by means of a functional integration over all the time independent gauge transformations acting on the boundary values of the fields. We spell out in detail the “Feynman rules” when fermions are present and we compute, as an example, the gauge invariant correlation function 10052_2005_Article_BF01614701_TeX2GIFE1.gif begin{gathered} G(t) = left< {bar ψ (0,t)(γ _5 γ _0 ){1 - γ _0 }/2P} right. \\ left. { \\cdot exp left( {igintlimits_0^t {A_0 (0,t')dt'} } right)(γ _5 γ _0 )^ + (0,0)} rightrangle \\ up to order g 2, obtaining the expected result.
Chiral perturbation theory for nucleon generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik
2006-08-15
We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)
Breakdown of String Perturbation Theory for Many External Particles.
Ghosh, Sudip; Raju, Suvrat
2017-03-31
We consider massless string scattering amplitudes in a limit where the number of external particles becomes very large, while the energy of each particle remains small. Using the growth of the volume of the relevant moduli space, and by means of independent numerical evidence, we argue that string perturbation theory breaks down in this limit. We discuss some remarkable implications for the information paradox.
Perturbation theory for solid-liquid interfacial free energies
Energy Technology Data Exchange (ETDEWEB)
Warshavsky, Vadim B; Song Xueyu, E-mail: xsong@iastate.ed [Ames Laboratory and Department of Chemistry, Iowa State University, Ames, IA 50011 (United States)
2010-09-15
A perturbation theory is developed to calculate solid-liquid interfacial free energies, including anisotropy. The method is applied to systems with inverse-power and Lennard-Jones pair potentials as well as to metal systems with embedded-atom model potentials. The results are in reasonable agreement with the corresponding ones obtained from molecular dynamics simulations.
Non-Hamiltonian perturbation theory for deformable fast rotators
Varadi, F.; Moore, W. B.
2005-05-01
Deformable fast rotators, such as the Earth and Mars, change both their rotational states (spin axis direction) and shapes due to external forces and internal material motions. The standard approach to rigid-body dynamics is Hamiltonian perturbation theory in canonical action-angle (Andoyer) variables which incorporate the moments of inertia form the outset. Dealing with deformations is usually based on linear perturbation theory around rigid-body reference solutions which yields transfer functions from the rigid to the deformable case. We present the elements of a general, non-Hamiltonian perturbation theory in non-canonical variables based on Lie series. First, we present general results on non-Hamiltonian perturbation theory and averaging, such as a coordinate-free formula for the solution of the homological equation of the Lie series in the case of perturbed periodic orbits. In general, the averaged system does not fully Lie-commute with the unperturbed system and the reduction of the averaged system to the orbit space of unperturbed system has to allow for drift along the unperturbed orbits. In the case of a fast rotator, we start with rotation around the spin axis as the unperturbed system. The orientation of the body is represented as a rotation matrix and we derive the appropriate Lie bracket. After averaging over the rotation period, we reduce the system by eliminating the phase variable associated with pure rotation around the spin axis. The reduced system is expressed in terms of the spin axis in both inertial and body frames. We compare our results to those of traditional Hamiltonian theories and numerical simulations. This work is supported by NSF Planetary Astronomy.
Nonperturbative Quantum Physics from Low-Order Perturbation Theory.
Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K
2015-10-02
The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.
Meson-meson scattering from U(3) chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Guo Zhihui, E-mail: zhguo@ugr.e [CAFPE and Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Campus de Fuente Nueva, E-18002 Granada (Spain); Prades, Joaquim [CAFPE and Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Campus de Fuente Nueva, E-18002 Granada (Spain); Oller, Jose Antonio, E-mail: oller@um.e [Departamento de Fisica, Universidad de Murcia, E-30071 Murcia (Spain)
2010-10-15
A complete one loop calculation of all the meson-meson scattering amplitudes in the framework of U(3) chiral perturbation theory with explicit resonance states is presented in this article. By performing the unitarization of the perturbative scattering amplitudes using a variant of the N/D method, we show that the approach can describe well the various scattering data. In the end, we use the parameters from the fit to determine the masses, widths and the corresponding residue of the relevant resonances.
Alien calculus and non perturbative effects in Quantum Field Theory
Bellon, Marc P.
2016-12-01
In many domains of physics, methods for dealing with non-perturbative aspects are required. Here, I want to argue that a good approach for this is to work on the Borel transforms of the quantities of interest, the singularities of which give non-perturbative contributions. These singularities in many cases can be largely determined by using the alien calculus developed by Jean Écalle. My main example will be the two point function of a massless theory given as a solution of a renormalization group equation.
Wertheim perturbation theory: thermodynamics and structure of patchy colloids
Fantoni, Riccardo; Pastore, Giorgio
2015-09-01
We critically discuss the application of the Wertheim's theory to classes of complex associating fluids that can be today engineered in the laboratory as patchy colloids and to the prediction of their peculiar gas-liquid phase diagrams. Our systematic study, stemming from perturbative version of the theory, allows us to show that, even at the simplest level of approximation for the inter-cluster correlations, the theory is still able to provide a consistent and stable picture of the behaviour of interesting models of self-assembling colloidal suspension. We extend the analysis of a few cases of patchy systems recently introduced in the literature. In particular, we discuss for the first time in detail the consistency of the structural description underlying the perturbative approach and we are able to prove a consistency relationship between the valence as obtained from thermodynamics and from the structure for the one-site case. A simple analytical expression for the structure factor is proposed.
Equivalence of two contour prescriptions in superstring perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Sen, Ashoke [Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211019 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); School of Physics, Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of)
2017-04-05
Conventional superstring perturbation theory based on the world-sheet approach gives divergent results for the S-matrix whenever the total center of mass energy of the incoming particles exceeds the threshold of production of any final state consistent with conservation laws. Two systematic approaches have been suggested for dealing with this difficulty. The first one involves deforming the integration cycles over the moduli space of punctured Riemann surfaces into complexified moduli space. The second one treats the amplitude as a sum of superstring field theory Feynman diagrams and deforms the integration contours over loop energies of the Feynman diagram into the complex plane. In this paper we establish the equivalence of the two prescriptions to all orders in perturbation theory. Since the second approach is known to lead to unitary amplitudes, this establishes the consistency of the first prescription with unitarity.
Equivalence of two contour prescriptions in superstring perturbation theory
Sen, Ashoke
2017-04-01
Conventional superstring perturbation theory based on the world-sheet approach gives divergent results for the S-matrix whenever the total center of mass energy of the incoming particles exceeds the threshold of production of any final state consistent with conservation laws. Two systematic approaches have been suggested for dealing with this difficulty. The first one involves deforming the integration cycles over the moduli space of punctured Riemann surfaces into complexified moduli space. The second one treats the amplitude as a sum of superstring field theory Feynman diagrams and deforms the integration contours over loop energies of the Feynman diagram into the complex plane. In this paper we establish the equivalence of the two prescriptions to all orders in perturbation theory. Since the second approach is known to lead to unitary amplitudes, this establishes the consistency of the first prescription with unitarity.
A non-perturbative study of massive gauge theories
DEFF Research Database (Denmark)
Della Morte, Michele; Hernandez, Pilar
2013-01-01
We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists...... and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model...
Introduction to non-perturbative heavy quark effective theory
Energy Technology Data Exchange (ETDEWEB)
Sommer, R. [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2010-08-15
My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti {lambda} and {lambda}{sub 1} lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m){sup n+1} if the theory was treated including (1/m){sup n} terms. Clearly, the weakest point of HQET is that it
A Theory of the Perturbed Consumer with General Budgets
DEFF Research Database (Denmark)
McFadden, Daniel L; Fosgerau, Mogens
We consider demand systems for utility-maximizing consumers facing general budget constraints whose utilities are perturbed by additive linear shifts in marginal utilities. Budgets are required to be compact but are not required to be convex. We define demand generating functions (DGF) whose...... subgradients with respect to these perturbations are convex hulls of the utility-maximizing demands. We give necessary as well as sufficient conditions for DGF to be consistent with utility maximization, and establish under quite general conditions that utility-maximizing demands are almost everywhere single......-valued and smooth in their arguments. We also give sufficient conditions for integrability of perturbed demand. Our analysis provides a foundation for applications of consumer theory to problems with nonlinear budget constraints....
Driven similarity renormalization group: Third-order multireference perturbation theory.
Li, Chenyang; Evangelista, Francesco A
2017-03-28
A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N(6)) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F2, H2O2, C2H6, and N2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (ΔST=ET-ES) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic ΔST is 3.9 kcal mol(-1), a value that is within 0.1 kcal mol(-1) from multireference coupled cluster results.
Perturbations of single-field inflation in modified gravity theory
Directory of Open Access Journals (Sweden)
Taotao Qiu
2015-05-01
Full Text Available In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form f(R. Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f. system, the (curvature perturbations are not equivalent in two frames, so despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the “real” ones as we always do for pure f(R theory or single field with nonminimal coupling. Here by pulling the results of curvature perturbations back into its original Jordan frame, we show explicitly the power spectrum and spectral index of the perturbations in the Jordan frame, as well as how it differs from the Einstein frame. We also fit our results with the newest Planck data. Since there is large parameter space in these models, we show that it is easy to fit the data very well.
Perturbative algebraic quantum field theory an introduction for mathematicians
Rejzner, Kasia
2016-01-01
Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities. We discuss in detail the examples of scalar fields and gauge theories and generalize them to QFT on curved spacetimes. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses QFT on curved spacetimes and effective quantum gravity. The book aims to be accessible researchers and graduate students interested in the mathematical foundations of pQFT are th...
Weak qubit measurement with a nonlinear cavity: beyond perturbation theory.
Laflamme, C; Clerk, A A
2012-09-21
We analyze the use of a driven nonlinear cavity to make a weak continuous measurement of a dispersively coupled qubit. We calculate the backaction dephasing rate and measurement rate beyond leading-order perturbation theory using a phase-space approach which accounts for cavity noise squeezing. Surprisingly, we find that increasing the coupling strength beyond the regime describable by leading-order perturbation theory (i.e., linear response) allows one to come significantly closer to the quantum limit on the measurement efficiency. We interpret this behavior in terms of the non-Gaussian photon number fluctuations of the nonlinear cavity. Our results are relevant to recent experiments using superconducting microwave circuits to study quantum measurement.
Perturbation theory calculations of model pair potential systems
Energy Technology Data Exchange (ETDEWEB)
Gong, Jianwu [Iowa State Univ., Ames, IA (United States)
2016-01-01
Helmholtz free energy is one of the most important thermodynamic properties for condensed matter systems. It is closely related to other thermodynamic properties such as chemical potential and compressibility. It is also the starting point for studies of interfacial properties and phase coexistence if free energies of different phases can be obtained. In this thesis, we will use an approach based on the Weeks-Chandler-Anderson (WCA) perturbation theory to calculate the free energy of both solid and liquid phases of Lennard-Jones pair potential systems and the free energy of liquid states of Yukawa pair potentials. Our results indicate that the perturbation theory provides an accurate approach to the free energy calculations of liquid and solid phases based upon comparisons with results from molecular dynamics (MD) and Monte Carlo (MC) simulations.
Perturbation theory and nonperturbative effects: A happy marriage ?
Chýla, J.
1992-03-01
Perturbation expansions in renormalized quantum field theories are reformulated in a way that permits a straightforward handling of situations when in the conventional approach, i.e. in fixed renormalization scheme, these expansions are factorially divergent and even of asymptotically constant sign. The result takes the form of convergent (under certain circumstances) expansions in a set of functions Z k(a, χ) of the couplant and the free parameter χ which specifies the procedure involved. The value of χ is shown to be correlated to the basic properties of nonperturbative effects as embodied in power corrections. Close connection of this procedure to Borel summation technique is demonstrated and its relation to conventional perturbation theory in fixed renormalization schemes elucidated.
Taking into Account Planetary Perturbations in Lunar Theory
Ivanova, T. V.
This paper is devoted to constructing the semi-analytical theory of the Moon motion in the trigonometric form within the framework of the general planetary theory GPT (V. A. Brumberg, Analytical Techniques of Celestial Mechanics, Springer, Heidelberg, 1995). The determination of planetary perturbations in Lunar theory is one of the most urgent problem of celestial mechanics. Usually the construction of Lunar theory is divided into two steps. The first one is to solve the main problem. The planetary perturbations are calculated separately on the second step. In this paper the Moon is considered as an additional planet in the field of eight major planets (Pluto being excluded). Therefore here there are not any division into the main and the planetary parts. This allows to take into account both solar and planetary perturbations with the same precision. As a rule a solution of the main problem may be represented in the purely trigonometric form treating the longitudes of the lunar perigee and node as trigonometric arguments. But this form is violated when taking into account the planetary perturbations provided by the classical theories of the major planets. The GPT is capable to represente the coordinates of the major planets by means of the power series in eccentric and oblique variables with trigonometric coefficients in mean longitudes of the planets. The behaviour of the evolutionary eccentric and oblique variables is governed by an autonomous secular system which may be solved in the trigonometric form. The aim of this paper is to present the Lunar theory in the same form. As an initial approximation a quasi-periodic intermediary generalizing the Hill's variational curve is built. This orbit includes all solar and planetary inequalities independent of eccentricities and inclinations of all bodies. The solution corresponding to this intermediary is represented by the multiple Fourier series depending on the mean longitudes of the bodies under consideration. The
Three-nucleon scattering by using chiral perturbation theory potential
Energy Technology Data Exchange (ETDEWEB)
Kamata, Hiroyuki [Kyushu Inst. of Technology, Faculty of Engineering, Kita-kyushu, Fukuoka (Japan)
2003-01-01
Three-nucleon scattering problems are studied by using two-nucleon and three-nucleon potentials derived from chiral perturbation theory. The three-nucleon term is shown to appear in the effective potential of the rank of next-to-next-to-leading order (NNLO). New three-nucleon forces are taken into consideration in addition to the conventional Fujita-Miyazawa (FM) type three-nucleon potential. Two-nucleon potential of the chiral perturbation theory is as precise as the conventional ones in low energy region. The FM type three-nucleon force which explains Sagara discrepancy in high energy region is introduced automatically. Concerning the Ay puzzle, the results seems to behave as if the puzzle has been solved at the level of NLO, but at the NNLO (without three-nucleon force) level the result is similar to the cases of conventional potential indicating the need of three-nucleon force. In contrast to the FM type three-nucleon force, five free parameters exist in the new D and E type three-nucleon forces introduced by the NNLO, but they are reduced to two independent parameters by antisymmetrization, which are found to be sensitive to the coupling energy of tritons and to the nd scattering length (spin doublet state). Parameters determined from them cannot give satisfactory answer to the A{sub y} puzzle. It seems, however, too hasty to conclude that A{sub y} puzzle cannot be solved by the chiral perturbation theory. (S. Funahashi)
Quantum critical response: from conformal perturbation theory to holography
Lucas, Andrew; Sierens, Todd; Witczak-Krempa, William
2017-07-01
We discuss dynamical response functions near quantum critical points, allowing for both a finite temperature and detuning by a relevant operator. When the quantum critical point is described by a conformal field theory (CFT), conformal perturbation theory and the operator product expansion can be used to fix the first few leading terms at high frequencies. Knowledge of the high frequency response allows us then to derive non-perturbative sum rules. We show, via explicit computations, how holography recovers the general results of conformal field theory, and the associated sum rules, for any holographic field theory with a conformal UV completion — regardless of any possible new ordering and/or scaling physics in the IR. We numerically obtain holographic response functions at all frequencies, allowing us to probe the breakdown of the asymptotic high-frequency regime. Finally, we show that high frequency response functions in holographic Lifshitz theories are quite similar to their conformal counterparts, even though they are not strongly constrained by symmetry.
Analytic second derivatives from auxiliary density perturbation theory
Delgado-Venegas, Rogelio Isaac; Mejía-Rodríguez, Daniel; Flores-Moreno, Roberto; Calaminici, Patrizia; Köster, Andreas M.
2016-12-01
The working equations for the calculation of analytic second energy derivatives in the framework of auxiliary density functional theory (ADFT) are presented. The needed perturbations are calculated with auxiliary density perturbation theory (ADPT) which is extended to perturbation dependent basis and auxiliary functions sets. The obtained ADPT equation systems are solved with the Eirola-Nevanlinna algorithm. The newly developed analytic second ADFT energy derivative approach was implemented in deMon2k and validated with respect to the corresponding finite difference approach by calculating the harmonic frequencies of small molecules. Good agreement between these two methodologies is found. To analyze the scaling of the new analytic second ADFT energy derivatives with respect to the number of processors in parallel runs, the harmonic frequencies of the carbon fullerene C240 are calculated with varying numbers of processors. Fair scaling up to 720 processors was found. As showcase applications, symmetry unrestricted optimization and frequency analyses of icosahedral carbon fullerenes with up to 960 atoms are presented.
Renewal theory for perturbed random walks and similar processes
Iksanov, Alexander
2016-01-01
This book offers a detailed review of perturbed random walks, perpetuities, and random processes with immigration. Being of major importance in modern probability theory, both theoretical and applied, these objects have been used to model various phenomena in the natural sciences as well as in insurance and finance. The book also presents the many significant results and efficient techniques and methods that have been worked out in the last decade. The first chapter is devoted to perturbed random walks and discusses their asymptotic behavior and various functionals pertaining to them, including supremum and first-passage time. The second chapter examines perpetuities, presenting results on continuity of their distributions and the existence of moments, as well as weak convergence of divergent perpetuities. Focusing on random processes with immigration, the third chapter investigates the existence of moments, describes long-time behavior and discusses limit theorems, both with and without scaling. Chapters fou...
Fermion perturbations in string-theory black holes
Piedra, Owen Pavel Fernández
2010-01-01
In this paper we study fermion perturbations in four dimensional black holes of string theory, obtained either from a non-extreme configuration of three intersecting five-branes with a boost along the common string or from a non-extreme intersecting system of two two-branes and two five-branes. The Dirac equation for the massless neutrino field, after conformal re-scaling of the metric, is written as a wave equation suitable to study the time evolution of the perturbation. With the aid of Prony fitting of time-domain profile we calculate the complex frequencies that dominate the quasinormal ringing stage, and also determine this quantities by the semi-analytical sixth order WKB method. We also find numerically the decay factor of fermion fields at very late times, and show that the falloff is identical to those appeared for massless fields in other four dimensional black hole spacetimes.
Applications Of Chiral Perturbation Theory To Lattice Qcd
Van de Water, R S
2005-01-01
Quantum chromodynamics (QCD) is the fundamental theory that describes the interaction of quarks and gluons. Thus, in principle, one should be able to calculate all properties of hadrons from the QCD Lagrangian. It turns out, however, that such calculations can only be performed numerically on a computer using the nonperturbative method of lattice QCD, in which QCD is simulated on a discrete spacetime grid. Because lattice simulations use unphysically heavy quark masses (for computational reasons), lattice results must be connected to the real world using expressions calculated in chiral perturbation theory (χPT), the low-energy effective theory of QCD. Moreover, because real spacetime is continuous, they must be extrapolated to the continuum using an extension of χPT that includes lattice discretization effects, such as staggered χPT. This thesis is organized as follows. We motivate the need for lattice QCD and present the basic methodology in Chapter 1. We describe a common approximat...
Perturbation theory of nuclear matter with a microscopic effective interaction
Benhar, Omar; Lovato, Alessandro
2017-11-01
An updated and improved version of the effective interaction based on the Argonne-Urbana nuclear Hamiltonian, derived using the formalism of correlated basis functions and the cluster expansion technique, is employed to obtain a number of properties of cold nuclear matter at arbitrary neutron excess within the formalism of many-body perturbation theory. The numerical results, including the ground-state energy per nucleon, the symmetry energy, the pressure, the compressibility, and the single-particle spectrum, are discussed in the context of the available empirical information, obtained from measured nuclear properties and heavy-ion collisions.
Expansion coefficients of scattering parameters in quantum thermodynamic perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Buendia, E.; Guardiola, R. (Departamento de Fisica Moderna, Universidad de Granada Granada, Spain, 18071 (ES)); De Llano, M. (Physics Department, North Dakota State University, Fargo, North Dakota 58105)
1989-07-01
We tabulate the expansion coefficients of various scattering parameters associated with several interparticle pair potentials used in the quantum thermodynamic perturbation theory of strongly coupled, many-particle substances. The expansion is in powers or the attractive part of the pair potential. The potential is divided into repulsive and attractive parts according to several methods in vogue both in classical and in quantum equation-of-state studies of condensed-matter systems. Results are reported for several interparticle potentials of helium-3 and -4 atoms, of the three electron spin-polarized isotopes of atomic hydrogen, and of the nucleon.
Basics of thermal field theory a tutorial on perturbative computations
Laine, Mikko
2016-01-01
This book presents thermal field theory techniques, which can be applied in both cosmology and the theoretical description of the QCD plasma generated in heavy-ion collision experiments. It focuses on gauge interactions (whether weak or strong), which are essential in both contexts. As well as the many differences in the physics questions posed and in the microscopic forces playing a central role, the authors also explain the similarities and the techniques, such as the resummations, that are needed for developing a formally consistent perturbative expansion. The formalism is developed step by step, starting from quantum mechanics; introducing scalar, fermionic and gauge fields; describing the issues of infrared divergences; resummations and effective field theories; and incorporating systems with finite chemical potentials. With this machinery in place, the important class of real-time (dynamic) observables is treated in some detail. This is followed by an overview of a number of applications, ranging from t...
Stringy horizons and generalized FZZ duality in perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Giribet, Gaston [Martin Fisher School of Physics, Brandeis University,Waltham, Massachusetts 02453 (United States); Departamento de Física, Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET,Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)
2017-02-14
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n−2 winding modes actually coincide with the correlation functions in the SL(2,ℝ)/U(1) gauged WZW model that include n−2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference https://www.doi.org/10.1007/JHEP10(2016)157. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.
Application of Radiative Perturbation Theory to MISR Aerosol Retrievals
Box, M. A.; Thirunavukarasu, A.
2005-12-01
The Multi-angle Imaging Spectroradiometer (MISR) on board NASA'a Terra satellite is capable of providing highly valuable data on atmospheric aerosols, as each pixel is viewed from up to 9 different directions. Such data can be used to determine not only the aerosol loading (optical thickness), but also, at least in principle, the aerosol type. Since the radiative transfer equation cannot be directly inverted to take us from observed radiances to the underlying atmospheric optical properties, retrieval methods are indirect. Two main approaches are available - look-up tables, and iterative methods. While iteration is potentially more powerful, it is also much more time-intensive. Radiative perturbation theory has the potential to significantly increase the efficiency of iteration methods, as it can provide the elements of the Jacobian matrix (derivatives of the measurement values with respect to the atmospheric components) at no cost, a distinct improvement on finite difference methods. We have applied radiative perturbation theory to a MISR data set off the west coast of Africa in 2003. The atmospheric optical model was assumed to comprise a set of standard aerosol types, with pre-computed optical properties, which could be assigned to either of two atmospheric layers. The algorithm then returned the required optical thickness of each component. Results obtained are reasonably consistent with standard MISR retrievals.
Technical fine-tuning problem in renormalized perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E.
1983-01-01
The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.
Garniron, Yann; Scemama, Anthony; Loos, Pierre-François; Caffarel, Michel
2017-07-01
A hybrid stochastic-deterministic approach for computing the second-order perturbative contribution E(2) within multireference perturbation theory (MRPT) is presented. The idea at the heart of our hybrid scheme—based on a reformulation of E(2) as a sum of elementary contributions associated with each determinant of the MR wave function—is to split E(2) into a stochastic and a deterministic part. During the simulation, the stochastic part is gradually reduced by dynamically increasing the deterministic part until one reaches the desired accuracy. In sharp contrast with a purely stochastic Monte Carlo scheme where the error decreases indefinitely as t-1/2 (where t is the computational time), the statistical error in our hybrid algorithm displays a polynomial decay ˜t-n with n = 3-4 in the examples considered here. If desired, the calculation can be carried on until the stochastic part entirely vanishes. In that case, the exact result is obtained with no error bar and no noticeable computational overhead compared to the fully deterministic calculation. The method is illustrated on the F2 and Cr2 molecules. Even for the largest case corresponding to the Cr2 molecule treated with the cc-pVQZ basis set, very accurate results are obtained for E(2) for an active space of (28e, 176o) and a MR wave function including up to 2 ×1 07 determinants.
Ren, Xiaodong; Xu, Kun; Shyy, Wei; Gu, Chunwei
2015-07-01
This paper presents a high-order discontinuous Galerkin (DG) method based on a multi-dimensional gas kinetic evolution model for viscous flow computations. Generally, the DG methods for equations with higher order derivatives must transform the equations into a first order system in order to avoid the so-called "non-conforming problem". In the traditional DG framework, the inviscid and viscous fluxes are numerically treated differently. Differently from the traditional DG approaches, the current method adopts a kinetic evolution model for both inviscid and viscous flux evaluations uniformly. By using a multi-dimensional gas kinetic formulation, we can obtain a spatial and temporal dependent gas distribution function for the flux integration inside the cell and at the cell interface, which is distinguishable from the Gaussian Quadrature point flux evaluation in the traditional DG method. Besides the initial higher order non-equilibrium states inside each control volume, a Linear Least Square (LLS) method is used for the reconstruction of smooth distributions of macroscopic flow variables around each cell interface in order to construct the corresponding equilibrium state. Instead of separating the space and time integrations and using the multistage Runge-Kutta time stepping method for time accuracy, the current method integrates the flux function in space and time analytically, which subsequently saves the computational time. Many test cases in two and three dimensions, which include high Mach number compressible viscous and heat conducting flows and the low speed high Reynolds number laminar flows, are presented to demonstrate the performance of the current scheme.
DEFF Research Database (Denmark)
Rahmani, Omid; Khalili, S.M.R.; Thomsen, Ole Thybo
2012-01-01
A new model based on the high order sandwich panel theory is proposed to study the effect of external loads on the free vibration of circular cylindrical composite sandwich shells with transversely compliant core, including also the calculation of the buckling loads. In the present model, in cont......A new model based on the high order sandwich panel theory is proposed to study the effect of external loads on the free vibration of circular cylindrical composite sandwich shells with transversely compliant core, including also the calculation of the buckling loads. In the present model......, in contrast to most of the available sandwich plate and shell theories, no prior assumptions are made with respect to the displacement field in the core. Herein the displacement and the stress fields of the core material are determined through a 3D elasticity solution. The performance of the present theory...... is compared with that of other sandwich theories by the presentation of comparative results obtained for several examples encompassing different material properties and geometric parameters. It is shown that the present model produce results of very high accuracy, and it is suggested that the present model...
Topological string theory, modularity and non-perturbative physics
Energy Technology Data Exchange (ETDEWEB)
Rauch, Marco
2011-09-15
In this thesis the holomorphic anomaly of correlators in topological string theory, matrix models and supersymmetric gauge theories is investigated. In the first part it is shown how the techniques of direct integration known from topological string theory can be used to solve the closed amplitudes of Hermitian multi-cut matrix models with polynomial potentials. In the case of the cubic matrix model, explicit expressions for the ring of non-holomorphic modular forms that are needed to express all closed matrix model amplitudes are given. This allows to integrate the holomorphic anomaly equation up to holomorphic modular terms that are fixed by the gap condition up to genus four. There is an one-dimensional submanifold of the moduli space in which the spectral curve becomes the Seiberg-Witten curve and the ring reduces to the non-holomorphic modular ring of the group {gamma}(2). On that submanifold, the gap conditions completely fix the holomorphic ambiguity and the model can be solved explicitly to very high genus. Using these results it is possible to make precision tests of the connection between the large order behavior of the 1/N expansion and non-perturbative effects due to instantons. Finally, it is argued that a full understanding of the large genus asymptotics in the multi-cut case requires a new class of non-perturbative sectors in the matrix model. In the second part a holomorphic anomaly equation for the modified elliptic genus of two M5-branes wrapping a rigid divisor inside a Calabi-Yau manifold is derived using wall-crossing formulae and the theory of mock modular forms. The anomaly originates from restoring modularity of an indefinite theta-function capturing the wall-crossing of BPS invariants associated to D4- D2-D0 brane systems. The compatibility of this equation with anomaly equations previously observed in the context of N=4 topological Yang-Mills theory on P{sup 2} and E-strings obtained from wrapping M5-branes on a del Pezzo surface which in
One-Group Perturbation Theory Applied to Measurements with Void
Energy Technology Data Exchange (ETDEWEB)
Persson, Rolf
1966-09-15
Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 {+-} 0.015/m{sup 2} and 0.267 {+-} 0.005/m{sup 2} resp. From single-rod experiments differences between diffusion coefficients are determined to {delta}D{sub r}/D = 0.083 {+-} 0.004 and {delta}D{sub z}/D = 0.120 {+-} 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D{sub z}/D{sub r}){sub air} = 1.034 {+-} 0.020.
Directory of Open Access Journals (Sweden)
Kyeong-uk Heo
2016-03-01
Full Text Available Springing is the resonance phenomenon of a ship hull girder with incoming waves having the same natural frequency of the ship. In this study, a simple and reliable calculation method was developed based on quadratic strip theory using the Timoshenko beam approach as an elastic hull girder. Second-order hydrodynamic forces and Froude–Krylov forces were applied as the external force. To improve the accuracy of the strip method, the variation in the added mass along the ship hull longitudinal direction, so called tip-effect, was considered. The J-factor was also employed to compensate for the effect of three-dimensional fluid motion on the two-node vibration of the ship. Using the developed method, the first- and second-order vertical bending moments of the Flokstra ship were compared. A comparative study was also carried out for a uniform barge ship and a 10,000 TEU container ship with the respective methods including the J-factor and tip-effect.
Generalized polarizabilities of the nucleon in baryon chiral perturbation theory
Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2017-02-01
The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep→ epγ ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (Bχ PT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χ PT (HBχ PT) - and discuss the differences between Bχ PT and HBχ PT responsible for these discrepancies.
Perturbative unitarity of Lee-Wick quantum field theory
Anselmi, Damiano; Piva, Marco
2017-08-01
We study the perturbative unitarity of the Lee-Wick models, formulated as nonanalytically Wick rotated Euclidean theories. The complex energy plane is divided into disconnected regions and the values of a loop integral in the various regions are related to one another by a nonanalytic procedure. We show that the one-loop diagrams satisfy the expected, unitary cutting equations in each region: only the physical d.o.f. propagate through the cuts. The goal can be achieved by working in suitable subsets of each region and proving that the cutting equations can be analytically continued as a whole. We make explicit calculations in the cases of the bubble and triangle diagrams and address the generality of our approach. We also show that the same higher-derivative models violate unitarity if they are formulated directly in Minkowski spacetime.
Perturbation treatment of symmetry breaking within random matrix theory
Energy Technology Data Exchange (ETDEWEB)
Carvalho, J.X. de [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, D-01187 Dresden (Germany); Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, S.P. (Brazil); Hussein, M.S. [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, D-01187 Dresden (Germany); Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: mhussein@mpipks-dresden.mpg.de; Pato, M.P.; Sargeant, A.J. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, S.P. (Brazil)
2008-07-07
We discuss the applicability, within the random matrix theory, of perturbative treatment of symmetry breaking to the experimental data on the flip symmetry breaking in quartz crystal. We found that the values of the parameter that measures this breaking are different for the spacing distribution as compared to those for the spectral rigidity. We consider both two-fold and three-fold symmetries. The latter was found to account better for the spectral rigidity than the former. Both cases, however, underestimate the experimental spectral rigidity at large L. This discrepancy can be resolved if an appropriate number of eigenfrequencies is considered to be missing in the sample. Our findings are relevant for symmetry violation studies in general.
On the non-linear scale of cosmological perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-04-15
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
Density-functional perturbation theory goes time-dependent
Directory of Open Access Journals (Sweden)
Gebauer, Ralph
2008-05-01
Full Text Available The scope of time-dependent density-functional theory (TDDFT is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most. In the static regime, density-functional perturbation theory (DFPT allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix element of the resolvent of the Kohn-Sham Liouvillian super-operator. A DFPT representation of response functions allows one to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of the Liouvillian is finally conveniently evaluated using a newly developed non-symmetric Lanczos technique, which allows for the calculation of the entire spectrum with a single Lanczos recursion chain. Each step of the chain essentially requires twice as many operations as a single step of the iterative diagonalization of the unperturbed Kohn-Sham Hamiltonian or, for that matter, as a single time step of a Car-Parrinello molecular dynamics run. The method will be illustrated with a few case molecular applications.
Suliman, Mohamed
2016-01-01
In this supplementary appendix we provide proofs and additional simulation results that complement the paper (constrained perturbation regularization approach for signal estimation using random matrix theory).
Hartree–Fock many-body perturbation theory for nuclear ground-states
Directory of Open Access Journals (Sweden)
Alexander Tichai
2016-05-01
Full Text Available We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree–Fock solution for the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to the divergent MBPT series obtained with a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation is not feasible, we perform third-order calculations and compare to advanced ab initio coupled-cluster results for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into the tin isotopic chain in excellent agreement with the best available coupled-cluster calculations at a fraction of the computational cost.
The de Sitter limit of inflation and non-linear perturbation theory
DEFF Research Database (Denmark)
Jarnhus, Philip; Sloth, Martin Snoager
2008-01-01
We study the fourth order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gaug...
Hyperfine coupling constants from internally contracted multireference perturbation theory
Shiozaki, Toru
2016-01-01
We present an accurate method for calculating hyperfine coupling constants (HFCCs) based on the complete active space second-order perturbation theory (CASPT2) with full internal contraction. The HFCCs are computed as a first-order property using the relaxed CASPT2 spin-density matrix that takes into account orbital and configurational relaxation due to dynamical electron correlation. The first-order unrelaxed spin-density matrix is calculated from one- and two-body spin-free counterparts that are readily available in the CASPT2 nuclear gradient program [M. K. MacLeod and T. Shiozaki, J. Chem. Phys. 142, 051103 (2015)], whereas the second-order part is computed directly using the newly extended automatic code generator. The relaxation contribution is then calculated from the so-called Z-vectors that are available in the CASPT2 nuclear gradient program. Numerical results are presented for the CN and AlO radicals, for which the CASPT2 values are comparable (or, even superior in some cases) to the ones computed ...
Adiabatic perturbation theory and geometry of periodically-driven systems
Weinberg, Phillip; Bukov, Marin; D'Alessio, Luca; Polkovnikov, Anatoli; Vajna, Szabolcs; Kolodrubetz, Michael
2017-05-01
We give a systematic review of the adiabatic theorem and the leading non-adiabatic corrections in periodically-driven (Floquet) systems. These corrections have a two-fold origin: (i) conventional ones originating from the gradually changing Floquet Hamiltonian and (ii) corrections originating from changing the micro-motion operator. These corrections conspire to give a Hall-type linear response for non-stroboscopic (time-averaged) observables allowing one to measure the Berry curvature and the Chern number related to the Floquet Hamiltonian, thus extending these concepts to periodically-driven many-body systems. The non-zero Floquet Chern number allows one to realize a Thouless energy pump, where one can adiabatically add energy to the system in discrete units of the driving frequency. We discuss the validity of Floquet Adiabatic Perturbation Theory (FAPT) using five different models covering linear and non-linear few and many-particle systems. We argue that in interacting systems, even in the stable high-frequency regimes, FAPT breaks down at ultra slow ramp rates due to avoided crossings of photon resonances, not captured by the inverse-frequency expansion, leading to a counter-intuitive stronger heating at slower ramp rates. Nevertheless, large windows in the ramp rate are shown to exist for which the physics of interacting driven systems is well captured by FAPT.
Equation-of-motion coupled cluster perturbation theory revisited.
Eriksen, Janus J; Jørgensen, Poul; Olsen, Jeppe; Gauss, Jürgen
2014-05-07
The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally converges towards the full configuration interaction energy limit. The series is based on a Møller-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby remedying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz.
Liu, Changying; Wu, Xinyuan
2017-07-01
In this paper we explore arbitrarily high-order Lagrange collocation-type time-stepping schemes for effectively solving high-dimensional nonlinear Klein-Gordon equations with different boundary conditions. We begin with one-dimensional periodic boundary problems and first formulate an abstract ordinary differential equation (ODE) on a suitable infinity-dimensional function space based on the operator spectrum theory. We then introduce an operator-variation-of-constants formula which is essential for the derivation of our arbitrarily high-order Lagrange collocation-type time-stepping schemes for the nonlinear abstract ODE. The nonlinear stability and convergence are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix under some suitable smoothness assumptions. With regard to the two dimensional Dirichlet or Neumann boundary problems, our new time-stepping schemes coupled with discrete Fast Sine / Cosine Transformation can be applied to simulate the two-dimensional nonlinear Klein-Gordon equations effectively. All essential features of the methodology are present in one-dimensional and two-dimensional cases, although the schemes to be analysed lend themselves with equal to higher-dimensional case. The numerical simulation is implemented and the numerical results clearly demonstrate the advantage and effectiveness of our new schemes in comparison with the existing numerical methods for solving nonlinear Klein-Gordon equations in the literature.
Self-consistent many-body perturbation theory in range-separated density-functional theory
DEFF Research Database (Denmark)
Fromager, Emmanuel; Jensen, Hans Jørgen Aagaard
2008-01-01
In many cases, density-functional theory (DFT) with current standard approximate functionals offers a relatively accurate and computationally cheap description of the short-range dynamic electron correlation effects. However, in general, standard DFT does not treat the dispersion interaction...... effects adequately which, on the other hand, can be described by many-body perturbation theory MBPT. It is therefore of interest to develop a hybrid model which combines the best of both the MBPT and DFT approaches. This can be achieved by splitting the two-electron interaction into long-range and short...
Forseth, Erik Robert
The recent detection of gravitational wave (GW) signal GW150914 by the Advanced LIGO experiment has inaugurated the long-anticipated era of GW astronomy. This event saw the merger of two black holes, having roughly 36 and 29 solar masses, as well as the ringdown of the resulting 62 solar mass black hole. The energy emitted in gravitational radiation was equivalent to about three solar masses. The detection underscored the importance of theoretical models for not only isolating signal from noise, but especially for the accurate estimation of source parameters. The two-body problem in Einstein's general theory has no exact solution, and so the development of these models is highly nontrivial. We present in this thesis a set of original results on the dynamics of the inspiral for a class of binary systems known as extreme-mass-ratio inspirals (EMRIs), comprised of a small compact object (generically a stellar mass black hole) in orbit about a supermassive black hole. Our work also has potential application to intermediate-mass-ratio inspirals (IMRIs). IMRIs are thought to be a potentially strong source for ground-based GW experiments such as Advanced LIGO/VIRGO. Though not generally a good source for the LIGO network, EMRIs on the other hand are well-suited for detection by proposed space-based detectors, e.g. eLISA. Our work particularly constitutes a program of developing computational tools, methods, and results for eccentric E/IMRIs, which are thought to be astrophysically important but are much more challenging to model theoretically compared with circular orbits. We begin with a brief review of relevant parts of general relativity (GR) theory, followed by overviews of two prevailing approximation formalisms in GR, black hole perturbation (BHP) theory and post-Newtonian (PN) theory. Our first original result is a high-precision computation of the first-order gravitational metric perturbation using a Lorenz gauge frequency domain procedure. Next, we present a fast
Domain walls and perturbation theory in high temperature gauge theory SU(2) in 2+1 dimensions
Korthals-Altes, C P; Stephanov, M A; Teper, M; Altes, C Korthals
1997-01-01
We study the detailed properties of Z_2 domain walls in the deconfined high temperature phase of the d=2+1 SU(2) gauge theory. These walls are studied both by computer simulations of the lattice theory and by one-loop perturbative calculations. The latter are carried out both in the continuum and on the lattice. We find that leading order perturbation theory reproduces the detailed properties of these domain walls remarkably accurately even at temperatures where the effective dimensionless expansion parameter, g^2/T, is close to unity. The quantities studied include the surface tension, the action density profiles, roughening and the electric screening mass. It is only for the last quantity that we find an exception to the precocious success of perturbation theory. All this shows that, despite the presence of infrared divergences at higher orders, high-T perturbation theory can be an accurate calculational tool.
Perturbation theory for the modified nonlinear Schrödinger solitons
Shchesnovich, V S
1998-01-01
The perturbation theory based on the Riemann-Hilbert problem is developed for the modified nonlinear Schr{ö}dinger equation which describes the propagation of femtosecond optical pulses in nonlinear single-mode optical fibers. A detailed analysis of the adiabatic approximation to perturbation-induced evolution of the soliton parameters is given. The linear perturbation and the Raman gain are considered as examples.
Dynamics of perturbations in Double Field Theory & non-relativistic string theory
Energy Technology Data Exchange (ETDEWEB)
Ko, Sung Moon [Department of Physics, Sogang University,Seoul 121-742 (Korea, Republic of); Melby-Thompson, Charles M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo,Kashiwanoha, Kashiwa, 277-8583 (Japan); Department of Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Meyer, René [Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo,Kashiwanoha, Kashiwa, 277-8583 (Japan); Park, Jeong-Hyuck [Department of Physics, Sogang University,Seoul 121-742 (Korea, Republic of)
2015-12-22
Double Field Theory provides a geometric framework capable of describing string theory backgrounds that cannot be understood purely in terms of Riemannian geometry — not only globally (‘non-geometry’), but even locally (‘non-Riemannian’). In this work, we show that the non-relativistic closed string theory of Gomis and Ooguri http://dx.doi.org/10.1063/1.1372697 arises precisely as such a non-Riemannian string background, and that the Gomis-Ooguri sigma model is equivalent to the Double Field Theory sigma model of http://dx.doi.org/10.1016/j.nuclphysb.2014.01.003 on this background. We further show that the target-space formulation of Double Field Theory on this non-Riemannian background correctly reproduces the appropriate sector of the Gomis-Ooguri string spectrum. To do this, we develop a general semi-covariant formalism describing perturbations in Double Field Theory. We derive compact expressions for the linearized equations of motion around a generic on-shell background, and construct the corresponding fluctuation Lagrangian in terms of novel completely covariant second order differential operators. We also present a new non-Riemannian solution featuring Schrödinger conformal symmetry.
An analytic approach to sunset diagrams in chiral perturbation theory: Theory and practice
Energy Technology Data Exchange (ETDEWEB)
Ananthanarayan, B.; Ghosh, Shayan [Indian Institute of Science, Centre for High Energy Physics, Karnataka (India); Bijnens, Johan [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden); Hebbar, Aditya [Indian Institute of Science, Centre for High Energy Physics, Karnataka (India); University of Delaware, Department of Physics and Astronomy, Newark, DE (United States)
2016-12-15
We demonstrate the use of several code implementations of the Mellin-Barnes method available in the public domain to derive analytic expressions for the sunset diagrams that arise in the two-loop contribution to the pion mass and decay constant in three-flavoured chiral perturbation theory. We also provide results for all possible two mass configurations of the sunset integral, and derive a new one-dimensional integral representation for the one mass sunset integral with arbitrary external momentum. Thoroughly annotated Mathematica notebooks are provided as ancillary files in the Electronic Supplementary Material to this paper, which may serve as pedagogical supplements to the methods described in this paper. (orig.)
On adiabatic perturbation theory for the energy eigenvalue problem
Michels, M.A.J.; Suttorp, L.G.
1978-01-01
The adiabatic perturbation formalism is used to derive several alternative expressions for the effective Hamiltonian of a discrete energy level. In the nondegenerate case these expressions may be cast in the form of linked-cluster expansions. The connection between the energy shifts and the
Dalgarno-Lewis perturbation theory for scattering states
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima, Colima Mexico (Mexico)]. E-mail: paolo@ucol.mx; Fernandez, Francisco M. [INIFTA (Conicet, UNLP), Division Quimica Teorica, Diag. 113 y 64 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)]. E-mail: fernande@quimica.unlp.edu.ar
2007-07-23
We apply the method of Dalgarno and Lewis to scattering states and discuss the choice of the unperturbed model in order to have a convergent perturbation series for the phase shift. We show that a recently proposed approach is a particular case of the method of Dalgarno and Lewis.
Topological susceptibility in lattice QCD and perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Bochicchio, M.; Testa, M.; Rossi, G.C.; Yoshida, K.
1984-12-27
We consider the definition of topological susceptibility suggested by the anomalous Usub(A)(1) Ward identity in lattice QCD with Wilson fermions and show that, in the limit of zero renormalized quark mass, its perturbative expansion is zero to all orders. This definition is thus suitable for Monte Carlo simulations. (orig.).
Topological susceptibility in lattice QCD and perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Bochicchio, M.; Testa, M. (Istituto Nazionale di Fisica Nucleare, Rome (Italy)); Rossi, G.C. (European Organization for Nuclear Research, Geneva (Switzerland)); Yoshida, K. (Salerno Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Naples (Italy))
1984-12-27
We consider the definition of topological susceptibility suggested by the anomalous Usub(A)(1) Ward identity in lattice QCD with Wilson fermions and show that, in the limit of zero renormalized quark mass, its perturbative expansion is zero to all orders. This definition is thus suitable for Monte Carlo simulations.
Equation-of-motion coupled cluster perturbation theory revisited
DEFF Research Database (Denmark)
Eriksen, Janus Juul; Jørgensen, Poul; Olsen, Jeppe
2014-01-01
The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally con- verges towards the full configuration interaction energy limit. The series is based on a Møller-Ples...
The theory and phenomenology of perturbative QCD based jet quenching
Majumder, A.; van Leeuwen, M.
2010-01-01
The study of the structure of strongly interacting dense matter via hard jets is reviewed. High momentum partons produced in hard collisions produce a shower of gluons prior to undergoing the non-perturbative process of hadronization. In the presence of a dense medium this shower is modified due to
Constrained Perturbation Regularization Approach for Signal Estimation Using Random Matrix Theory
Suliman, Mohamed; Ballal, Tarig; Kammoun, Abla; Al-Naffouri, Tareq Y.
2016-12-01
In this supplementary appendix we provide proofs and additional extensive simulations that complement the analysis of the main paper (constrained perturbation regularization approach for signal estimation using random matrix theory).
National Research Council Canada - National Science Library
Liu, Huashan; Hao, Kuangrong; Lai, Xiaobo
2011-01-01
To deal with the problem of the output feedback tracking (OFT) control with bounded torque inputs of robot manipulators, we propose a generalized fuzzy saturated OFT controller based on singular perturbation theory...
Perturbation theory of solid-liquid interfacial free energies of bcc metals
Energy Technology Data Exchange (ETDEWEB)
Warshavsky, Vadim B.; Song, Xueyu
2012-09-18
A perturbation theory is used to calculate bcc solid-liquid interfacial free energies of metallic systems with embedded-atom model potentials. As a reference system for bcc crystals we used a single-occupancy cell, hard-sphere bcc system. Good agreements between the perturbation theory results and the corresponding results from simulations are found. The strategy to extract hard-sphere bcc solid-liquid interfacial free energies may have broader applications for other crystal lattices.
Molecular Interactions with Many-Body Perturbation Theory.
1981-09-11
so-called coupled correlation, more than doubline the CHF result. Similariy,. he perturbed Hartree-Fock ( CPHF ) result [66, 671. The additional...a in mtis example. It is well known approach, one would have to distinguish between the CPHF that the single-excitation contributions to properties...Karplus. CHF (or CPHF ) sum certain categories t" evaluated, at several small (’mite-field strengths, from which single anddouble-excitation diagrams i the
Kovtun, Pavel; Ünsal, Mithat; Yaffe, Laurence G.
2003-12-01
We prove an equivalence, in the large N limit, between certain U(N) gauge theories containing adjoint representation matter fields and their orbifold projections. Lattice regularization is used to provide a non-perturbative definition of these theories; our proof applies in the strong coupling, large mass phase of the theories. Equivalence is demonstrated by constructing and comparing the loop equations for a parent theory and its orbifold projections. Loop equations for both expectation values of single-trace observables, and for connected correlators of such observables, are considered; hence the demonstrated non-perturbative equivalence applies to the large N limits of both string tensions and particle spectra.
Energy Technology Data Exchange (ETDEWEB)
Kovtun, Pavel; Unsal, Mithat E-mail: mithat@phys.washington.edu; Yaffe, Laurence G
2003-12-01
We prove an equivalence, in the large N limit, between certain U(N) gauge theories containing adjoint representation matter fields and their orbifold projections. Lattice regularization is used to provide a non-perturbative definition of these theories; our proof applies in the strong coupling, large mass phase of the theories. Equivalence is demonstrated by constructing and comparing the loop equations for a parent theory and its orbifold projections. Loop equations for both expectation values of single-trace observables, and for connected correlators of such observables, are considered; hence the demonstrated non-perturbative equivalence applies to the large N limits of both string tensions and particle spectra. (author)
Perturbation of Operators and Applications to Frame Theory
DEFF Research Database (Denmark)
Christensen, Ole; Casazza, P.
1997-01-01
A celebrated classical result states that an operator U on a Banach space is invertible if it is close enough to the identity operator I in the sense that ||I - U|| < 1. Here Mle show that U actually is invertible under a much weaker condition. As an application we prove new theorems concerning s...... stability of frames (and frame-like decompositions) under perturbation in both Hilbert spaces and Banach spaces.......A celebrated classical result states that an operator U on a Banach space is invertible if it is close enough to the identity operator I in the sense that ||I - U||
Perturbation of Operators and Applications to Frame Theory
DEFF Research Database (Denmark)
Christensen, Ole; Casazza, P.
1996-01-01
A celebrated classical result states that an operator Uon a Banach space is invertible, if it is close enough to the identityoperator I. Here we showthat U actually is invertible under a much weaker condition. As anapplication we prove new theorems concerning stability of frames (andframe-like de......-like decompositions) under perturbation in both Hilbert spacesand Banach spaces.......A celebrated classical result states that an operator Uon a Banach space is invertible, if it is close enough to the identityoperator I. Here we showthat U actually is invertible under a much weaker condition. As anapplication we prove new theorems concerning stability of frames (andframe...
Perturbation Theory For The Landau-Lifshits-Gilbert Equation
2012-09-01
calculations for the response of a magnetic system to an external magnetic field, using the Landau-Lifshits-Gilbert ( LLG ) equation and a perturbation...convenient to first put this equation in Landau-Lifshits-Gilbert ( LLG ) form (2): if we define the torque vector 2 M H eff and a dimensionless...magnetic field in the LLG equation as follows: mM Mst (3) and h m , H Haeff (4) where 0M Hast and 0 0 0 0 0 0 N N Nz
Perturbative and nonperturbative aspects of complex Chern-Simons theory
Dimofte, Tudor
2017-11-01
We present an elementary review of some aspects of Chern-Simons theory with complex gauge group SL(N, { C}) . We discuss some of the challenges in defining the theory as a full-fledged TQFT, as well as some successes inspired by the 3d-3d correspondence. The 3d-3d correspondence relates partition functions (and other aspects) of complex Chern-Simons theory on a 3-manifold M to supersymmetric partition functions (and other observables) in an associated 3d theory T[M] . Many of these observables may be computed by supersymmetric localization. We present several prominent applications to 3-manifold topology and number theory in light of the 3d-3d correspondence. This is a contribution to the review issue ‘Localization techniques in quantum field theories’ (ed Pestun and Zabzine) which contains 17 chapters available at [1].
Longhi, Stefano; Della Valle, Giuseppe
2017-10-01
The ordinary time-dependent perturbation theory of quantum mechanics, that describes the interaction of a stationary system with a time-dependent perturbation, predicts that the transition probabilities induced by the perturbation are symmetric with respect to the initial and final states. Here we extend time-dependent perturbation theory into the non-Hermitian realm and consider the transitions in a stationary Hermitian system, described by a self-adjoint Hamiltonian Hˆ0, induced by a time-dependent non-Hermitian interaction f(t) Hˆ1. In the weak interaction (perturbative) limit, the transition probabilities generally turn out to be asymmetric for exchange of initial and final states. In particular, for a temporal shape f(t) of the perturbation with one-sided Fourier spectrum, i.e. with only positive (or negative) frequency components, transitions are fully unidirectional, a result that holds even in the strong interaction regime. Interestingly, we show that non-Hermitian perturbations can be tailored to be transitionless, i.e. the perturbation leaves the system unchanged as if the interaction had not occurred at all, regardless the form of Hˆ0 and Hˆ1. As an application of our results, we provide important physical insights into the asymmetric (chiral) behavior of dynamical encircling of an exceptional point in two- and three-level non-Hermitian systems.
The complex-mass scheme and unitarity in perturbative quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Denner, Ansgar; Lang, Jean-Nicolas [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany)
2015-08-15
We investigate unitarity within the complex-mass scheme, a convenient universal scheme for perturbative calculations involving unstable particles in quantum field theory which guarantees exact gauge invariance. Since this scheme requires one to introduce complex masses and complex couplings, the Cutkosky cutting rules, which express perturbative unitarity in theories of stable particles, are no longer valid. We derive corresponding rules for scalar theories with unstable particles based on Veltman's largest-time equation and prove unitarity in this framework. (orig.)
Taking into account the planetary perturbations in the Moon's theory
Ivanova, T. V.
2012-12-01
The semi-analytical Moon's theory is treated in the form compatible with the general planetary theory GPT (Brumberg, 1995). The Moon is considered to be an additional planet in the field of eight major planets. Hence, according to the technique of the GPT, the theory of the orbital lunar motion can be presented by means of the series in the evolutionary eccentric and oblique variables with quasi-periodic coefficients in mean longitudes of the planets and the Moon. The time dependence of the evolutionary variables is determined by the trigonometric solution of the autonomous secular system describing the secular motions of the lunar perigee and node with taking into account the secular planetary inequalities. In this paper the right-hand members of the secular system are obtained in the analytical form. All the analytical calculations are performed by the echeloned Poisson series processor EPSP (Ivanova, 2001).
SIMP model at NNLO in chiral perturbation theory
DEFF Research Database (Denmark)
Hansen, Martin Rasmus Lundquist; Langaeble, K.; Sannino, F.
2015-01-01
We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 to 2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles...
Lattice Perturbation Theory in Noncommutative Geometry and Parity Anomaly in 3D Noncommutative QED
Nishimura, J.; Vazquez-Mozo, M. A.
2002-01-01
We formulate lattice perturbation theory for gauge theories in noncommutative geometry. We apply it to three-dimensional noncommutative QED and calculate the effective action induced by Dirac fermions. In particular "parity invariance" of a massless theory receives an anomaly expressed by the noncommutative Chern-Simons action. The coefficient of the anomaly is labelled by an integer depending on the lattice action, which is a noncommutative counterpart of the phenomenon known in the commutat...
Non-perturbative string theories and singular surfaces
Energy Technology Data Exchange (ETDEWEB)
Bochicchio, M. (Rome-1 Univ. (Italy). Dipt. di Fisica Istituto Nazionale di Fisica Nucleare, Rome (Italy))
1990-08-23
Singular surfaces are shown to be dense in the Teichmueller space of all Riemann surfaces and in the grasmannian. This happens because a regular surface of genus h, obtained identifying 2h disks in pairs, can be approximated by a very large genus singular surface with punctures dense in the 2h disks. A scale {epsilon} is introduced and the approximate genus is defined as half the number of connected regions covered by punctures of radius {epsilon}. The non-perturbative partition function is proposed to be a scaling limit of the partition function on such infinite genus singular surfaces with a weight which is the coupling constant g raised to the approximate genus. For a gaussian model in any space-time dimension the regularized partition function on singular surfaces of infinite genus is the partition function of a two-dimensional lattice gas of charges and monopoles. It is shown that modular invariance of the partition function implies a version of the Dirac quantization condition for the values of the e/m charges. Before the scaling limit the phases of the lattice gas may be classified according to the 't Hooft criteria for the condensation of e/m operators. (orig.).
Simple perturbative renormalization scheme for supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)
1983-06-30
We show that the manifestly supersymmetric and gauge-invariant results of Supersymmetric Dimensional renormalization (SDR) are reproduceable through a simple, and mathematically consistent perturbative renormalization technique, where regularization is attained via a map that deforms the momentum space Feynman integrands in a specific way. In particular, it introduces a multiplicative factor of ((p+q)/..delta..)/sup -/delta in each momentum-space loop integral, where p is the magnitude of the loop momentum, q is an arbitrary constant to be chosen as will be explained, thus compensating for loss of translation invariance in p, ..lambda.. is a renormalization mass, and delta is a suitable non-integer: the analog of epsilon in dimensional schemes. All Dirac algebra and integration are four-dimensional, and renormalization is achieved by subtracting poles in delta, followed by setting delta->O. The mathematical inconsistencies of SDR are evaded by construction, since the numbers of fermion and boson degrees of freedom remain unchanged but analytic continuation in the number of dimensions is bypassed. Thus, the technique is equally viable in component and in superfield formalisms, and all anomalies are realized. The origin of the chiral anomaly is that no choice of q satisfies both gauge and chiral Ward identities simultaneously.
The method of rigged spaces in singular perturbation theory of self-adjoint operators
Koshmanenko, Volodymyr; Koshmanenko, Nataliia
2016-01-01
This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadra...
Comparison of Some Exact and Perturbative Results for a Supersymmetric SU($N_c$) Gauge Theory
DEFF Research Database (Denmark)
Ryttov, Thomas; Shrock, Robert
2012-01-01
We consider vectorial, asymptotically free ${\\cal N}=1$ supersymmetric SU($N_c$) gauge theories with $N_f$ copies of massless chiral super fields in various representations and study how perturbative predictions for the lower boundary of the infrared conformal phase, as a function of $N_f$, compare...... S_2$, and (iv) $A_2 + \\bar A_2$, where $F$, $Adj$, $S_2$, and $A_2$ denote, respectively, the fundamental, adjoint, and symmetric and antisymmetric rank-2 tensor representations. We find that perturbative results slightly overestimate the value of $N_{f,cr}$ relative to the respective exact results...... for these representations, i.e., slightly underestimate the interval in $N_f$ for which the theory has infrared conformal behavior. Our results provide a measure of how closely perturbative calculations reproduce exact results for these theories....
Directory of Open Access Journals (Sweden)
Petronije S. Milojevic
2009-09-01
Full Text Available We develop a nonlinear Fredholm alternative theory involving k-ball and k-set perturbations of general homeomorphisms and of homeomorphisms that are nonlinear Fredholm maps of index zero. Various generalized first Fredholm theorems and finite solvability of general (odd Fredholm maps of index zero are also studied. We apply these results to the unique and finite solvability of potential and semilinear problems with strongly nonlinear boundary conditions and to quasilinear elliptic equations. The basic tools used are the Nussbaum degree and the degree theories for nonlinear $C^1$-Fredholm maps of index zero and their perturbations.
Relativistic multireference many-body perturbation theory calculations on Au64+ - Au69+ ions
Energy Technology Data Exchange (ETDEWEB)
Vilkas, M J; Ishikawa, Y; Trabert, E
2006-03-31
Many-body perturbation theory (MBPT) calculations are an adequate tool for the description of the structure of highly charged multi-electron ions and for the analysis of their spectra. They demonstrate this by way of a re-investigation of n=3, {Delta}n=0 transitions in the EUV spectra of Na-, Mg-, Al-like, and Si-like ions of Au that have been obtained previously by heavy-ion accelerator based beam-foil spectroscopy. They discuss the evidence and propose several revisions on the basis of the multi-reference many-body perturbation theory calculations of Ne- through P-like ions of Au.
Non-perturbative selection rules in F-theory
Energy Technology Data Exchange (ETDEWEB)
Martucci, Luca [Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, and I.N.F.N. Sezione di Padova, via Marzolo 8, Padova, I-35131 (Italy); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, Heidelberg, 69120 (Germany)
2015-09-29
We discuss the structure of charged matter couplings in 4-dimensional F-theory compactifications. Charged matter is known to arise from M2-branes wrapping fibral curves on an elliptic or genus-one fibration Y. If a set of fibral curves satisfies a homological relation in the fibre homology, a coupling involving the states can arise without exponential volume suppression due to a splitting and joining of the M2-branes. If the fibral curves only sum to zero in the integral homology of the full fibration, no such coupling is possible. In this case an M2-instanton wrapping a 3-chain bounded by the fibral matter curves can induce a D-term which is volume suppressed. We elucidate the consequences of this pattern for the appearance of massive U(1) symmetries in F-theory and analyse the structure of discrete selection rules in the coupling sector. The weakly coupled analogue of said M2-instantons is worked out to be given by D1-F1 instantons. The generation of an exponentially suppressed F-term requires the formation of half-BPS bound states of M2 and M5-instantons. This effect and its description in terms of fluxed M5-instantons is discussed in a companion paper.
Martin, Alexandre; Torrent, Marc; Caracas, Razvan
2015-03-01
A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).
DEFF Research Database (Denmark)
Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund
2010-01-01
A complete antenna pattern characterization procedure for spherical near-field antenna measurements employing a high-order probe and a full probe correction is described. The procedure allows an (almost) arbitrary antenna to be used as a probe. Different measurement steps of the procedure...... and the associated data processing are described in detail, and comparison to the existing procedure employing a first-order probe is made. The procedure is validated through measurements....
High order harmonic generation in rare gases
Energy Technology Data Exchange (ETDEWEB)
Budil, Kimberly Susan [Univ. of California, Davis, CA (United States)
1994-05-01
The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~10^{13}-10^{14} W/cm^{2}) is focused into a dense (~10^{17} particles/cm^{3}) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.
Ullmann, R Thomas; Ullmann, G Matthias
2011-01-27
We present a generalized free energy perturbation theory that is inspired by Monte Carlo techniques and based on a microstate description of a transformation between two states of a physical system. It is shown that the present free energy perturbation theory stated by the Zwanzig equation follows as a special case of our theory. Our method uses a stochastic mapping of the end states that associates a given microstate from one ensemble with a microstate from the adjacent ensemble according to a probability distribution. In contrast, previous free energy perturbation methods use a static, deterministic mapping that associates fixed pairs of microstates from the two ensembles. The advantages of our approach are that end states of differing configuration space volume can be treated easily also in the case of discrete configuration spaces and that the method does not require the potentially cumbersome search for an optimal deterministic mapping. The application of our theory is illustrated by some example problems. We discuss practical applications for which our findings could be relevant and point out perspectives for further development of the free energy perturbation theory.
Nonadiabatic coupling terms for the GVVPT2 variant of multireference perturbation theory
Khait, Yuriy G.; Theis, Daniel; Hoffmann, Mark R.
2012-06-01
A Lagrangian based approach was used to obtain analytic formulas for nonadiabatic coupling terms within a multireference perturbation theory description of molecular electronic structure. Specifically, formulas were developed for the second-order generalized Van Vleck perturbation theory (GVVPT2) description of electron correlation. The formalism can use either complete or incomplete model (or reference) spaces, and is limited, in this regard, only by the capabilities of the MCSCF program. Of particular interest, the suggested formalism can straightforwardly use state-averaged MCSCF descriptions of the reference space in which the states have arbitrary weights. Since GVVPT2 wave functions are not strictly orthogonal, the definition of nonadiabatic coupling terms is untrivial and a perturbation-order consistent definition is suggested herein from which working equations are developed.
Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism
Blas, Diego; Ivanov, Mikhail M.; Sibiryakov, Sergey
2016-01-01
We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein--de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This pave...
Analytical energy gradients for local second-order Møller-Plesset perturbation theory
El Azhary, Adel; Rauhut, Guntram; Pulay, Peter; Werner, Hans-Joachim
1998-04-01
Based on the orbital invariant formulation of Møller-Plesset (MP) perturbation theory, analytical energy gradients have been formulated and implemented for local second order MP (LMP2) calculations. The geometry-dependent truncation terms of the LMP2 energy have to be taken into account. This leads to a set of coupled-perturbed localization (CPL) equations which must be solved together with the coupled-perturbed Hartree-Fock (CPHF) equations. In analogy to the conventional non-local theory, the repeated solution of these equations for each degree of freedom can be avoided by using the z-vector method of Handy and Schaefer. Explicit equations are presented for the Pipek-Mezey localization. Test calculations on smaller organic molecules demonstrate that the local approximations introduce only minor changes of computed equilibrium structures.
DFR Perturbative Quantum Field Theory on Quantum Space Time, and Wick Reduction
Piacitelli, Gherardo
We discuss the perturbative approach à la Dyson to a quantum field theory with nonlocal self-interaction :φ⋆···⋆φ, according to Doplicher, Fredenhagen and Roberts (DFR). In particular, we show that the Wick reduction of nonlocally time-ordered products of Wick monomials can be performed as usual, and we discuss a very simple Dyson diagram.
Problems of perturbation series in non-equilibrium quantum field theories
Altherr, Tanguy
1994-01-01
In the standard framework of non-equilibrium quantum field theories, the pinch singularities associated to multiple products of \\delta-functions do not cancel in a perturbative expansion unless the particle distributions are those for a system in thermal and chemical equilibrium.
Predicting the Solubility of 1,1-Difluoroethane in Polystyrene Using the Perturbed Soft Chain Theory
DEFF Research Database (Denmark)
Pretel, Eduardo; Hong, Seong-Uk
1998-01-01
In this study, the solubility of 1,1-difluoroethane in polystyrene was correlated and predicted using the Perturbed Soft Chain Theory (PSCT) and compared with experimental data from the literature. For correlation, a binary interaction parameter was determined by using experimental solubility data...
Entanglement perturbation theory for the quantum ground states in two dimensions
Chung, S. G.; Ueda, K.
2010-01-01
A simple, general and practically exact method, Entanglement Perturbation Theory (EPT), is formulated to calculate the ground states of 2D macroscopic quantum systems with translational symmetry. An emphasis will be placed on the applicability of EPT to fermions. We will discuss some preliminary evidences which indicate a potential of EPT.
Singular perturbation theory mathematical and analytical techniques with applications to engineering
Johnson, RS
2005-01-01
Written in a form that should enable the relatively inexperienced (or new) worker in the field of singular perturbation theory to learn and apply all the essential ideasDesigned as a learning tool. The numerous examples and set exercises are intended to aid this process.
Directory of Open Access Journals (Sweden)
Stefan Hollands
2009-09-01
Full Text Available In this paper, we propose a new framework for quantum field theory in terms of consistency conditions. The consistency conditions that we consider are ''associativity'' or ''factorization'' conditions on the operator product expansion (OPE of the theory, and are proposed to be the defining property of any quantum field theory. Our framework is presented in the Euclidean setting, and is applicable in principle to any quantum field theory, including non-conformal ones. In our framework, we obtain a characterization of perturbations of a given quantum field theory in terms of a certain cohomology ring of Hochschild-type. We illustrate our framework by the free field, but our constructions are general and apply also to interacting quantum field theories. For such theories, we propose a new scheme to construct the OPE which is based on the use of non-linear quantized field equations.
Pair production processes and flavor in gauge-invariant perturbation theory
Egger, Larissa; Maas, Axel; Sondenheimer, René
2017-12-01
Gauge-invariant perturbation theory is an extension of ordinary perturbation theory which describes strictly gauge-invariant states in theories with a Brout-Englert-Higgs effect. Such gauge-invariant states are composite operators which have necessarily only global quantum numbers. As a consequence, flavor is exchanged for custodial quantum numbers in the Standard Model, recreating the fermion spectrum in the process. Here, we study the implications of such a description, possibly also for the generation structure of the Standard Model. In particular, this implies that scattering processes are essentially bound-state-bound-state interactions, and require a suitable description. We analyze the implications for the pair-production process e+e‑→f¯f at a linear collider to leading order. We show how ordinary perturbation theory is recovered as the leading contribution. Using a PDF-type language, we also assess the impact of sub-leading contributions. To lowest order, we find that the result is mainly influenced by how large the contribution of the Higgs at large x is. This gives an interesting, possibly experimentally testable, scenario for the formal field theory underlying the electroweak sector of the Standard Model.
On the Stability of KMS States in Perturbative Algebraic Quantum Field Theories
Drago, Nicolò; Faldino, Federico; Pinamonti, Nicola
2017-08-01
We analyze the stability properties shown by KMS states for interacting massive scalar fields propagating over Minkowski spacetime, recently constructed in the framework of perturbative algebraic quantum field theories by Fredenhagen and Lindner (Commun Math Phys 332:895, 2014). In particular, we prove the validity of the return to equilibrium property when the interaction Lagrangian has compact spatial support. Surprisingly, this does not hold anymore, if the adiabatic limit is considered, namely when the interaction Lagrangian is invariant under spatial translations. Consequently, an equilibrium state under the adiabatic limit for a perturbative interacting theory evolved with the free dynamics does not converge anymore to the free equilibrium state. Actually, we show that its ergodic mean converges to a non-equilibrium steady state for the free theory.
Large-order perturbation theory for the electromagnetic current-current correlation function
Energy Technology Data Exchange (ETDEWEB)
Brown, L.S.; Yaffe, L.G.; Zhai, C. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States))
1992-11-15
The constraints imposed by asymptotic freedom and analyticity on the large-order behavior of perturbation theory for the electromagnetic current-current correlation function are examined. By suitably applying the renormalization group, the coefficients of the asymptotic expansion in the deep Euclidean region may be expressed explicitly in terms of the perturbative coefficients of the Minkowski space discontinuity (the {ital R} ratio in {ital e}{sup +}{ital e{minus}} scattering). This relation yields a generic'' prediction for the large-order behavior of the Euclidean perturbation series and suggests the presence of nonperturbative 1/{ital q}{sup 2} correction in the Euclidean correlation function. No such generic'' prediction can be made for the physically measurable {ital R} ratio. A novel functional method is developed to obtain these results.
General theories of linear gravitational perturbations to a Schwarzschild black hole
Tattersall, Oliver J.; Ferreira, Pedro G.; Lagos, Macarena
2018-02-01
We use the covariant formulation proposed by Tattersall, Lagos, and Ferreira [Phys. Rev. D 96, 064011 (2017), 10.1103/PhysRevD.96.064011] to analyze the structure of linear perturbations about a spherically symmetric background in different families of gravity theories, and hence study how quasinormal modes of perturbed black holes may be affected by modifications to general relativity. We restrict ourselves to single-tensor, scalar-tensor and vector-tensor diffeomorphism-invariant gravity models in a Schwarzschild black hole background. We show explicitly the full covariant form of the quadratic actions in such cases, which allow us to then analyze odd parity (axial) and even parity (polar) perturbations simultaneously in a straightforward manner.
Three new branched chain equations of state based on Wertheim's perturbation theory
Marshall, Bennett D.; Chapman, Walter G.
2013-05-01
In this work, we present three new branched chain equations of state (EOS) based on Wertheim's perturbation theory. The first represents a slightly approximate general branched chain solution of Wertheim's second order perturbation theory (TPT2) for athermal hard chains, and the second represents the extension of first order perturbation theory with a dimer reference fluid (TPT1-D) to branched athermal hard chain molecules. Each athermal branched chain EOS was shown to give improved results over their linear counterparts when compared to simulation data for branched chain molecules with the branched TPT1-D EOS being the most accurate. Further, it is shown that the branched TPT1-D EOS can be extended to a Lennard-Jones dimer reference system to obtain an equation of state for branched Lennard-Jones chains. The theory is shown to accurately predict the change in phase diagram and vapor pressure which results from branching as compared to experimental data for n-octane and corresponding branched isomers.
How to make thermodynamic perturbation theory to be suitable for low temperature?
Zhou, Shiqi
2009-02-01
Low temperature unsuitability is a problem plaguing thermodynamic perturbation theory (TPT) for years. Present investigation indicates that the low temperature predicament can be overcome by employing as reference system a nonhard sphere potential which incorporates one part of the attractive ingredient in a potential function of interest. In combination with a recently proposed TPT [S. Zhou, J. Chem. Phys. 125, 144518 (2006)] based on a λ expansion (λ being coupling parameter), the new perturbation strategy is employed to predict for several model potentials. It is shown that the new perturbation strategy can very accurately predict various thermodynamic properties even if the potential range is extremely short and hence the temperature of interest is very low and current theoretical formalisms seriously deteriorate or critically fail to predict even the existence of the critical point. Extensive comparison with existing liquid state theories and available computer simulation data discloses a superiority of the present TPT to two Ornstein-Zernike-type integral equation theories, i.e., hierarchical reference theory and self-consistent Ornstein-Zernike approximation.
Ward, Kristopher R; Lawrence, Nathan S; Hartshorne, R Seth; Compton, Richard G
2012-05-28
The cyclic voltammetry at electrodes composed of multiple electroactive materials, where zones of one highly active material are distributed over a substrate of a second, less active material, is investigated by simulation. The two materials are assumed to differ in terms of their electrochemical rate constants towards any given redox couple. For a one-electron oxidation or reduction, the effect on voltammetry of the size and relative surface coverages of the zones as well as the rate constant of the slower zone are considered for systems where it is much slower than the rate constant of the faster zones. The occurrence of split peak cyclic voltammetry where two peaks are observed in the forward sweep, is studied in terms of the diffusional effects present in the system. A number of surface geometries are compared: specifically the more active zones are modelled as long, thin bands, as steps in the surface, as discs, and as rings (similar to a partially blocked electrode). Similar voltammetry for the band, step and ring models is seen but the disc geometry shows significant differences. Finally, the simulation technique is applied to the modelling of highly-ordered pyrolytic graphite (HOPG) surface and experimental conditions under which it may be possible to observe split peak voltammetry are predicted.
Mudrikah, Achmad
2016-01-01
The research has shown a model of learning activities that can be used to stimulate reflective abstraction in students. Reflective abstraction as a method of constructing knowledge in the Action-Process-Object-Schema theory, and is expected to occur when students are in learning activities, will be able to encourage students to make the process of…
A molecular theory of the structural dynamics of protein induced by a perturbation
Hirata, Fumio
2016-12-01
An equation to describe the structural dynamics of protein molecule induced by a perturbation such as a photo-excitation is derived based on the linear response theory, which reads 𝐑α(t ) =𝐑α(t =∞ ) -1/kBT ∑γ ⟨Δ𝐑α(t) Δ 𝐑γ⟩eq (0 )ṡ𝐟γ(0 ) . In the equation, α and γ distinguish atoms in protein, 𝐟γ(0 ) denotes a perturbation at time t = 0, 𝐑α(t ) the average position (or structure) of protein atom α at time t after the perturbation being applied, and 𝐑a(t =∞ ) the position at t =∞ . ⟨Δ𝐑α(t) Δ 𝐑γ⟩e q (0 ) is a response function in which Δ 𝐑α(t ) is the fluctuation of atom α at time t in the equilibrium system. The perturbation is defined in terms of the free energy difference between perturbed and unperturbed equilibrium-states, which includes interactions between solute and solvent as well as those among solvent molecules in a renormalized manner. The response function signifies the time evolution of the variance-covariance matrix of the structural fluctuation for the unperturbed system. A theory to evaluate the response function ⟨Δ𝐑α(t) Δ 𝐑γ ⟩ e q (0 ) is also proposed based on the Kim-Hirata theory for the structural fluctuation of protein [B. Kim and F. Hirata, J. Chem. Phys. 138, 054108 (2013)]. The problem reduces to a simple eigenvalue problem for a matrix which includes the friction and the second derivative of the free energy surface of protein with respect to its atomic coordinates.
Energy Technology Data Exchange (ETDEWEB)
Hesse, Dirk
2012-07-13
The author developed the pastor software package for automated lattice perturbation theory calculations in the Schroedinger functional scheme. The pastor code consists of two building blocks, dealing with the generation of Feynman rules and Feynman diagrams respectively. Accepting a rather generic class of lattice gauge and fermion actions, passed to the code in a symbolic form as input, a low level part of pastor will generate Feynman rules to an arbitrary order in the bare coupling with a trivial or an Abelian background field. The second, high level part of pastor is a code generator whose output relies on the vertex generator. It writes programs that evaluate Feynman diagrams for a class of Schroedinger functional observables up to one loop order automatically, the relevant O(a) improvement terms are taken into account. We will describe the algorithms used for implementation of both parts of the code in detail, and provide cross checks with perturbative and non-perturbative data to demonstrate the correctness of our code. We demonstrate the usefulness of the pastor package through various applications taken from the matching process of heavy quark effective theory with quantum chromodynamics. We have e.g. completed a one loop analysis for new candidates for matching observables timely and with rather small effort, highlighting two advantages of an automated software setup. The results that were obtained so far will be useful as a guideline for further non-perturbative studies.
Lattice Perturbation Theory in Noncommutative Geometry and Parity Anomaly in 3D Noncommutative QED
Nishimura, J
2003-01-01
We formulate lattice perturbation theory for gauge theories in noncommutative geometry. We apply it to three-dimensional noncommutative QED and calculate the effective action induced by Dirac fermions. In particular "parity invariance" of a massless theory receives an anomaly expressed by the noncommutative Chern-Simons action. The coefficient of the anomaly is labelled by an integer depending on the lattice action, which is a noncommutative counterpart of the phenomenon known in the commutative theory. The parity anomaly can also be obtained using Ginsparg-Wilson fermions, where the masslessness is guaranteed at finite lattice spacing. This suggests a natural definition of the lattice-regularized Chern-Simons theory on a noncommutative torus, which could enable nonperturbative studies of quantum Hall systems.
Kalyuzhnyi, Y V; Docherty, H; Cummings, P T
2011-07-07
A resummed thermodynamic perturbation theory for associating fluids with multiply bondable central force associating potential is extended for the fluid with multiple number of multiply bondable associating sites. We consider a multi-patch hard-sphere model for associating fluids. The model is represented by the hard-sphere fluid system with several spherical attractive patches on the surface of each hard sphere. Resummation is carried out to account for blocking effects, i.e., when the bonding of a particle restricts (blocks) its ability to bond with other particles. Closed form analytical expressions for thermodynamical properties (Helmholtz free energy, pressure, internal energy, and chemical potential) of the models with arbitrary number of doubly bondable patches at all degrees of the blockage are presented. In the limiting case of total blockage, when the patches become only singly bondable, our theory reduces to Wertheim's thermodynamic perturbation theory (TPT) for polymerizing fluids. To validate the accuracy of the theory we compare to exact values, for the thermodynamical properties of the system, as determined by Monte Carlo computer simulations. In addition we compare the fraction of multiply bonded particles at different values of the density and temperature. In general, predictions of the present theory are in good agreement with values for the model calculated using Monte Carlo simulations, i.e., the accuracy of our theory in the case of the models with multiply bondable sites is similar to that of Wertheim's TPT in the case of the models with singly bondable sites.
DEFF Research Database (Denmark)
Cornaton, Y.; Stoyanova, A.; Jensen, Hans Jørgen Aagaard
2013-01-01
An alternative separation of short-range exchange and correlation energies is used in the framework of second-order range-separated density-functional perturbation theory. This alternative separation was initially proposed by Toulouse and relies on a long-range-interacting wave function instead...... of the noninteracting Kohn-Sham one. When second-order corrections to the density are neglected, the energy expression reduces to a range-separated double-hybrid (RSDH) type of functional, RSDHf, where "f" stands for "full-range integrals" as the regular full-range interaction appears explicitly in the energy...... on the potential energy curves in the equilibrium region, improving the accuracy of binding energies and equilibrium bond distances when second-order perturbation theory is appropriate....
Stochastic multi-reference perturbation theory with application to linearized coupled cluster method
Jeanmairet, Guillaume; Alavi, Ali
2016-01-01
In this article we report a stochastic evaluation of the recently proposed LCC multireference perturbation theory [Sharma S., and Alavi A., J. Chem. Phys. 143, 102815, (2015)]. In this method both the zeroth order and first order wavefunctions are sampled stochastically by propagating simultaneously two populations of signed walkers. The sampling of the zeroth order wavefunction follows a set of stochastic processes identical to the one used in the FCIQMC method. To sample the first order wavefunction, the usual FCIQMC algorithm is augmented with a source term that spawns walkers in the sampled first order wavefunction from the zeroth order wavefunction. The second order energy is also computed stochastically but requires no additional overhead outside of the added cost of sampling the first order wavefunction. This fully stochastic method opens up the possibility of simultaneously treating large active spaces to account for static correlation and recovering the dynamical correlation using perturbation theory...
Directory of Open Access Journals (Sweden)
Huashan Liu
2011-09-01
Full Text Available To deal with the problem of the output feedback tracking (OFT control with bounded torque inputs of robot manipulators, we propose a generalized fuzzy saturated OFT controller based on singular perturbation theory. First, considering the fact that the output toque of joint actuators is limited, a general expression for a class of saturation functions is given to be applied in the control law. Second, to carry out the whole closed-loop control with only position measurements, linear and nonlinear filters are optionally involved to generate a pseudo signal to surrogate the actual velocity tracking error. As a third contribution, a fuzzy regulator is added to obtain a self-tuning performance in tackling the disturbances. Moreover, an explicit but strict stability proof of the system based on the stability theory of singularly perturbed systems is presented. Finally, numerical simulations on several sample controllers are implemented to verify the effectiveness of the proposed approach.
Directory of Open Access Journals (Sweden)
Huashan Liu
2011-09-01
Full Text Available To deal with the problem of the output feedback tracking (OFT control with bounded torque inputs of robot manipulators, we propose a generalized fuzzy saturated OFT controller based on singular perturbation theory. First, considering the fact that the output toque of joint actuators is limited, a general expression for a class of saturation functions is given to be applied in the control law. Second, to carry out the whole closed‐loop control with only position measurements, linear and nonlinear filters are optionally involved to generate a pseudo signal to surrogate the actual velocity tracking error. As a third contribution, a fuzzy regulator is added to obtain a self‐tuning performance in tackling the disturbances. Moreover, an explicit but strict stability proof of the system based on the stability theory of singularly perturbed systems is presented. Finally, numerical simulations on several sample controllers are implemented to verify the effectiveness of the proposed approach.
A second order thermodynamic perturbation theory for hydrogen bond cooperativity in water
Marshall, Bennett D.
2017-01-01
It has been extensively demonstrated through first principles quantum mechanics calculations that water exhibits strong hydrogen bond cooperativity. Classical molecular simulation and statistical mechanics methods typically assume pairwise additivity, meaning they cannot account for these 3-body and higher cooperative effects. In this document, we extend second order thermodynamic perturbation theory to correct for hydrogen bond cooperativity in 4 site water. We show that the association theo...
Determination of low-energy constants of Wilson chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Herdoiza, Gregorio [Mainz Univ. (Germany). Inst fuer Kernphysik, PRISMA Cluster of Excellence; Univ. Autonoma de Madrid, Contoblanco (Spain). Dept. de Fisica Teorica; Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Univ. Cyprus, Nicosia (Cyprus). Dept. of Physics; Michael, Chris [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Ottnad, Konstantin; Urbach, Carsten [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen und Kernphysik; Univ. Bonn (Germany). Bethe Center for Theoretical Physics; Collaboration: European Twisted Mass Collaboration
2013-03-15
By matching Wilson twisted mass lattice QCD determinations of pseudoscalar meson masses to Wilson Chiral Perturbation Theory we determine the low-energy constants W{sub 6}{sup '}, W{sub 8}{sup '} and their linear combination c{sub 2}. We explore the dependence of these low-energy constants on the choice of the lattice action and on the number of dynamical flavours.
The epsilon regime of chiral perturbation theory with Wilson-type fermions
Energy Technology Data Exchange (ETDEWEB)
Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shindler, A. [Liverpool Univ. (United Kingdom). Theoretical Physics Division
2009-11-15
In this proceeding contribution we report on the ongoing effort to simulate Wilson-type fermions in the so called epsilon regime of chiral perturbation theory (cPT).We present results for the chiral condensate and the pseudoscalar decay constant obtained with Wilson twisted mass fermions employing two lattice spacings, two different physical volumes and several quark masses. With this set of simulations we make a first attempt to estimate the systematic uncertainties. (orig.)
Huashan Liu; Kuangrong Hao; Xiaobo Lai
2011-01-01
To deal with the problem of the output feedback tracking (OFT) control with bounded torque inputs of robot manipulators, we propose a generalized fuzzy saturated OFT controller based on singular perturbation theory. First, considering the fact that the output toque of joint actuators is limited, a general expression for a class of saturation functions is given to be applied in the control law. Second, to carry out the whole closed‐loop control with only position measurements, linear and...
Holzer, Christof; Klopper, Wim
2017-11-01
A method for calculating intermolecular induction and dispersion energies based on a GW description of the monomers and employing response functions from the Bethe-Salpeter equation is proposed. Calculations on a test set of 10 weakly bound complexes with GW-based symmetry-adapted perturbation theory (GW-SAPT) show an improved performance in comparison with symmetry-adapted perturbation theory based on density-functional theory (DFT-SAPT).
Schmidt, Heinz-Jürgen; Imlau, Mirco; Voit, Kay-Michael
2014-06-01
The problem of diffraction of an electromagnetic wave by a thick hologram grating can be solved by the famous Kogelnik's coupled-wave theory (CWT) to a very high degree of accuracy. We confirm this finding by comparing the CWT and the exact result for a typical example and propose an explanation in terms of perturbation theory. To this end we formulate the problem of diffraction as a matrix problem following similar well-known approaches, especially rigorous coupled-wave theory (RCWT). We allow for a complex permittivity modulation and a possible phase shift between refractive index and absorption grating and explicitly incorporate appropriate boundary conditions. The problem is solved numerically exact for the specific case of a planar unslanted grating and a set of realistic values of the material's parameters and experimental conditions. Analogously, the same problem is solved for a two-dimensional truncation of the underlying matrix that would correspond to a CWT approximation but without the usual further approximations. We verify a close coincidence of both results even in the off-Bragg region and explain this result by means of a perturbation analysis of the underlying matrix problem. Moreover, the CWT is found not only to coincide with the perturbational approximation in the in-Bragg and the extreme off-Bragg cases, but also to interpolate between these extremal regimes.
Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory.
Cheng, Lan; Gauss, Jürgen
2014-10-28
This work deals with the perturbative treatment of spin-orbit-coupling (SOC) effects within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e). We investigate two schemes for constructing the SFX2C-1e SOC matrix: the SFX2C-1e+SOC [der] scheme defines the SOC matrix elements based on SFX2C-1e analytic-derivative theory, hereby treating the SOC integrals as the perturbation; the SFX2C-1e+SOC [fd] scheme takes the difference between the X2C-1e and SFX2C-1e Hamiltonian matrices as the SOC perturbation. Furthermore, a mean-field approach in the SFX2C-1e framework is formulated and implemented to efficiently include two-electron SOC effects. Systematic approximations to the two-electron SOC integrals are also proposed and carefully assessed. Based on benchmark calculations of the second-order SOC corrections to the energies and electrical properties for a set of diatomic molecules, we show that the SFX2C-1e+SOC [der] scheme performs very well in the computation of perturbative SOC corrections and that the "2eSL" scheme, which neglects the (SS|SS)-type two-electron SOC integrals, is both efficient and accurate. In contrast, the SFX2C-1e+SOC [fd] scheme turns out to be incompatible with a perturbative treatment of SOC effects. Finally, as a first chemical application, we report high-accuracy calculations of the (201)Hg quadrupole-coupling parameters of the recently characterized ethylmercury hydride (HHgCH2CH3) molecule based on SFX2C-1e coupled-cluster calculations augmented with second-order SOC corrections obtained at the Hartree-Fock level using the SFX2C-1e+SOC [der]/2eSL scheme.
Adiabatic perturbation theory for atoms and molecules in the low-frequency regime
Martiskainen, Hanna; Moiseyev, Nimrod
2017-12-01
There is an increasing interest in the photoinduced dynamics in the low frequency, ω, regime. The multiphoton absorptions by molecules in strong laser fields depend on the polarization of the laser and on the molecular structure. The unique properties of the interaction of atoms and molecules with lasers in the low-frequency regime imply new concepts and directions in strong-field light-matter interactions. Here we represent a perturbational approach for the calculations of the quasi-energy spectrum in the low-frequency regime, which avoids the construction of the Floquet operator with extremely large number of Floquet channels. The zero-order Hamiltonian in our perturbational approach is the adiabatic Hamiltonian where the atoms/molecules are exposed to a dc electric field rather than to ac-field. This is in the spirit of the first step in the Corkum three-step model. The second-order perturbation correction terms are obtained when i ℏ ω ∂/∂ τ serves as a perturbation and τ is a dimensionless variable. The second-order adiabatic perturbation scheme is found to be an excellent approach for calculating the ac-field Floquet solutions in our test case studies of a simple one-dimensional time-periodic model Hamiltonian. It is straightforward to implement the perturbation approach presented here for calculating atomic and molecular energy shifts (positions) due to the interaction with low-frequency ac-fields using high-level electronic structure methods. This is enabled since standard quantum chemistry packages allow the calculations of atomic and molecular energy shifts due to the interaction with dc-fields. In addition to the shift of the energy positions, the energy widths (inverse lifetimes) can be obtained at the same level of theory. These energy shifts are functions of the laser parameters (low frequency, intensity, and polarization).
Kovtun, Pavel; Ünsal, Mithat; Yaffe, Laurence G.
2005-07-01
Large N coherent state methods are used to study the relation between U(Nc) gauge theories containing adjoint representation matter fields and their orbifold projections. The classical dynamical systems which reproduce the large Nc limits of the quantum dynamics in parent and daughter orbifold theories are compared. We demonstrate that the large Nc dynamics of the parent theory, restricted to the subspace invariant under the orbifold projection symmetry, and the large Nc dynamics of the daughter theory, restricted to the untwisted sector invariant under ``theory space'' permutations, coincide. This implies equality, in the large Nc limit, between appropriately identified connected correlation functions in parent and daughter theories, provided the orbifold projection symmetry is not spontaneously broken in the parent theory and the theory space permutation symmetry is not spontaneously broken in the daughter. The necessity of these symmetry realization conditions for the validity of the large Nc equivalence is unsurprising, but demonstrating the sufficiency of these conditions is new. This work extends an earlier proof of non-perturbative large Nc equivalence which was only valid in the phase of the (lattice regularized) theories continuously connected to large mass and strong coupling [1].
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yun, E-mail: zhou.yun.x@gmail.com; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel); Miret-Artés, Salvador, E-mail: s.miret@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)
2014-01-14
A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.
Lambrecht, Daniel S; Brandhorst, Kai; Miller, William H; McCurdy, C William; Head-Gordon, Martin
2011-04-07
A kinetic-energy-based fitting metric for application in the context of resolution of the identity second-order Møller-Plesset perturbation theory is presented, which is derived from the Poisson equation. Preliminary tests of the applicability include the evaluation of the error in the correlation energy, compared to standard Møller-Plesset perturbation theory, with respect to the auxiliary basis set employed. We comment on the potential merits of this fitting metric, compared to standard resolution of the identity second-order Møller-Plesset perturbation theory, and discuss its scaling behavior in the limit of large molecules.
Hamazaki, Takashi
2011-07-01
In the full nonlinear cosmological perturbation theory in the leading order of the gradient expansion, all the types of the gauge invariant perturbation variables are defined. The metric junction conditions across the spacelike transition hypersurface are formulated in a manifestly gauge invariant manner. It is manifestly shown that all the physical laws such as the evolution equations, the constraint equations, and the junction conditions can be written using the gauge invariant variables which we defined only. Based on the existence of the universal adiabatic growing mode in the nonlinear perturbation theory and the ρ philosophy where the physical evolution are described using the energy density ρ as the evolution parameter, we give the definitions of the adiabatic perturbation variable and the entropic perturbation variables in the full nonlinear perturbation theory. In order to give the analytic order estimate of the nonlinear parameter fNL, we present the exponent evaluation method. As the models where fNL changes continuously and becomes large, using the ρ philosophy, we investigate the non-Gaussianity induced by the entropic perturbation of the component which does not govern the cosmic energy density, and we show that in order to obtain the significant non-Gaussianity it is necessary that the scalar field which supports the entropic perturbation is extremely small compared with the scalar field which supports the adiabatic perturbation.
Directory of Open Access Journals (Sweden)
Piotr Matczak
2017-01-01
Full Text Available The present work starts with providing a description of the halogen bonding (XB interaction between the halogen atom of MH3X (where M = C–Pb and X = I, At and the N atom of HCN. This interaction leads to the formation of stable yet very weakly bound MH3X⋯NCH complexes for which the interaction energy (Eint between MH3X and HCN is calculated using various symmetry-adapted perturbation theory (SAPT methods combined with the def2-QZVPP basis set and midbond functions. This basis set assigns effective core potentials (ECPs not only to the I or At atom directly participating in the XB interaction with HCN but also to the M atom when substituted with Sn or Pb. Twelve SAPT methods (or levels are taken into consideration. According to the SAPT analysis of Eint, the XB interaction in the complexes shows mixed electrostatic-dispersion nature. Next, the accuracy of SAPT Eint is evaluated by comparing with CCSD(T reference data. This comparison reveals that high-order SAPT2+(3 method and the much less computationally demanding SAPT(DFT method perform very well in describing Eint of the complexes. However, the accuracy of these methods decreases dramatically if they are combined with the so-called Hartree-Fock correction.
Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges
Energy Technology Data Exchange (ETDEWEB)
Pereira, A.D. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam (Germany); UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); Sobreiro, R.F. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Sorella, S.P. [UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil)
2016-10-15
In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi:10.1103/PhysRevD.92.045039. arXiv:1506.06995 [hepth], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions. (orig.)
Gnutzmann, Sven; Waltner, Daniel
2016-12-01
We consider exact and asymptotic solutions of the stationary cubic nonlinear Schrödinger equation on metric graphs. We focus on some basic example graphs. The asymptotic solutions are obtained using the canonical perturbation formalism developed in our earlier paper [S. Gnutzmann and D. Waltner, Phys. Rev. E 93, 032204 (2016)2470-004510.1103/PhysRevE.93.032204]. For closed example graphs (interval, ring, star graph, tadpole graph), we calculate spectral curves and show how the description of spectra reduces to known characteristic functions of linear quantum graphs in the low-intensity limit. Analogously for open examples, we show how nonlinear scattering of stationary waves arises and how it reduces to known linear scattering amplitudes at low intensities. In the short-wavelength asymptotics we discuss how genuine nonlinear effects may be described using the leading order of canonical perturbation theory: bifurcation of spectral curves (and the corresponding solutions) in closed graphs and multistability in open graphs.
Realization of non-holonomic constraints and singular perturbation theory for plane dumbbells
Koshkin, Sergiy; Jovanovic, Vojin
2017-10-01
We study the dynamics of pairs of connected masses in the plane, when nonholonomic (knife-edge) constraints are realized by forces of viscous friction, in particular its relation to constrained dynamics, and its approximation by the method of matching asymptotics of singular perturbation theory when the mass to friction ratio is taken as the small parameter. It turns out that long term behaviors of the frictional and constrained systems may differ dramatically no matter how small the perturbation is, and when this happens is not determined by any transparent feature of the equations of motion. The choice of effective time scales for matching asymptotics is also subtle and non-obvious, and secular terms appearing in them can not be dealt with by the classical methods. Our analysis is based on comparison to analytic solutions, and we present a reduction procedure for plane dumbbells that leads to them in some cases.
Perturbative quantization of superstring theory in Anti de-Sitter spaces
Energy Technology Data Exchange (ETDEWEB)
Sundin, Per
2010-07-12
In this thesis we study superstring theory on AdS{sub 5} x S{sup 5}, AdS{sub 3} x S{sup 3} and AdS{sub 4} x CP{sub 3}. A shared feature of each theory is that their corresponding symmetry algebras allows for a decomposition under a Z{sub 4} grading. The grading can be realized through an automorphism which allows for a convenient construction of the string Lagrangians directly in terms of graded components. We adopt a uniform light-cone gauge and expand in a near plane wave limit, or equivalently, an expansion in transverse string coordinates. With a main focus on the two critical string theories, we perform a perturbative quantization up to quartic order in the number of fields. Each string theory is, through holographic descriptions, conjectured to be dual to lower dimensional gauge theories. The conjectures imply that the conformal dimensions of single trace operators in gauge theory should be equal to the energy of string states. What is more, through the use of integrable methods, one can write down a set of Bethe equations whose solutions encode the full spectral problem. One main theme of this thesis is to match the predictions of these equations, written in a language suitable for the light-cone gauge we employ, against explicit string theory calculations. We do this for a large class of string states and the perfect agreement we find lends strong support for the validity of the conjectures. (orig.)
Dense fluid self-diffusion coefficient calculations using perturbation theory and molecular dynamics
Directory of Open Access Journals (Sweden)
COELHO L. A. F.
1999-01-01
Full Text Available A procedure to correlate self-diffusion coefficients in dense fluids by using the perturbation theory (WCA coupled with the smooth-hard-sphere theory is presented and tested against molecular simulations and experimental data. This simple algebraic expression correlates well the self-diffusion coefficients of carbon dioxide, ethane, propane, ethylene, and sulfur hexafluoride. We have also performed canonical ensemble molecular dynamics simulations by using the Hoover-Nosé thermostat and the mean-square displacement formula to compute self-diffusion coefficients for the reference WCA intermolecular potential. The good agreement obtained from both methods, when compared with experimental data, suggests that the smooth-effective-sphere theory is a useful procedure to correlate diffusivity of pure substances.
Perturbative expansion in the Galilean-invariant spin-1/2 Chern-Simons field theory
Energy Technology Data Exchange (ETDEWEB)
Hagen, C.R. [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States)
1997-08-01
A Galilean Chern-Simons field theory is formulated for the case of two interacting spin-1/2 fields of distinct masses M and M{sup {prime}}. A method for the construction of states containing N particles of mass M and N{sup {prime}} particles of mass M{sup {prime}} is given which is subsequently used to display equivalence to the spin-1/2 Aharonov-Bohm effect in the N=N{sup {prime}}=1 sector of the model. The latter is then studied in perturbation theory to determine whether there are divergences in the fourth order (one-loop) diagram. It is found that the contribution of that order is finite (and vanishing) for the case of parallel spin projections while the antiparallel case displays divergences which are known to characterize the spin-0 case in field theory as well as in quantum mechanics. {copyright} {ital 1997} {ital The American Physical Society}
Energy Technology Data Exchange (ETDEWEB)
Bassetto, A
2000-06-01
Two different scenarios (light-front and equal-time) are possible for Yang-Mills theories in two dimensions. The exact q-barq-potential can be derived in perturbation theory starting from the light-front vacuum, but requires essential instanton contributions in the equal-time formulation. In higher dimensions no exact result is available and, paradoxically, only the latter formulation (equal-time) is acceptable, at least in a perturbative context.
Energy Technology Data Exchange (ETDEWEB)
Yao, De-Liang [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Siemens, D. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Bernard, V. [Groupe de Physique Théorique, Institut de Physique Nucléaire, UMR 8606,CNRS, University Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex (France); Epelbaum, E. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Gasparyan, A.M. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); SSC RF ITEP, Bolshaya Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Gegelia, J. [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Tbilisi State University, 0186 Tbilisi (Georgia); Krebs, H. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Meißner, Ulf-G. [Helmholtz Institut für Strahlen- und Kernphysik andBethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany)
2016-05-05
We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P-partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.
Even- and Odd-Parity Charmed Meson Masses in Heavy Hadron Chiral Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Thomas Mehen; Roxanne Springer
2005-03-01
We derive mass formulae for the ground state, J{sup P} = 0{sup -} and 1{sup -}, and first excited even-parity, J{sup P} = 0{sup +} and 1{sup +}, charmed mesons including one loop chiral corrections and {Omicron}(1/m{sub c}) counterterms in heavy hadron chiral perturbation theory. We show a variety of fits to the current data. We find that certain parameter relations in the parity doubling model are not renormalized at one loop, providing a natural explanation for the equality of the hyperfine splittings of ground state and excited doublets.
Properties of the ground-state baryons in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Martin Camalich, J., E-mail: camalich@ific.uv.e [Departamento de Fisica Teorica and IFIC, Universidad de Valencia-CSIC (Spain); Geng, L.S., E-mail: lisheng.geng@ph.tum.d [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Physik Department, Technische Universitaet Muenchen, D-85747 Garching (Germany); Vicente Vacas, J.M., E-mail: vicente@ific.uv.e [Departamento de Fisica Teorica and IFIC, Universidad de Valencia-CSIC (Spain)
2010-10-15
We review recent progress in the understanding of low-energy baryon structure by means of chiral perturbation theory. In particular, we discuss the application of this formalism to the description of various properties such as the baryon-octet magnetic moments, the electromagnetic structure of decuplet resonances and the hyperon vector coupling f{sub 1}(0). Moreover, we present the results on the chiral extrapolation of recent lattice QCD results on the lowest-lying baryon masses and we predict the corresponding baryonic sigma-terms.
Fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)
1983-04-28
We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.
Completeness relations, Mittag-Leffler expansions and the perturbation theory of resonant states
Energy Technology Data Exchange (ETDEWEB)
Berggren, T. (Lund Inst. of Tech. (Sweden). Dept. of Mathematical Physics)
1982-11-15
The usual completeness relation involving resonant states (Gamow states) is discussed and compared with the corresponding relation suggested on the basis of the Mittag-Leffler theorem for meromorphic functions. In order to establish the reason for the at least apparent contradiction between the two relations we use a formulation of the perturbation theory for resonant states due to More and Gerjuoy, based on the determination of poles (resonance energies) and residues (renormalization constants) of the Green function restricted to the subspace (in our case) of the resonant state or states considered. The background continuum is taken into account by means of replacing the true perturbation by an effective, energy-dependent potential. This yields an estimate for the first-order energy shift which depends on the form of the completeness relation used. The Mittag-Leffler form does not lead to a correct prediction of the energy shift which the other form does to first order in the perturbation. A second-order, second-rank approximation (including also the capturing resonant state) is found to be quite good numerically, especially for the width.
Post-collapse perturbation theory in 1D cosmology - beyond shell-crossing
Taruya, Atsushi; Colombi, Stéphane
2017-10-01
We develop a new perturbation theory (PT) treatment that can describe gravitational dynamics of large-scale structure after shell-crossing in the one-dimensional cosmological case. Starting with cold initial conditions, the motion of matter distribution follows at early stages the single-stream regime, which can, in one dimension, be described exactly by the first-order Lagrangian perturbation, i.e. the Zel'dovich solution. However, the single-stream flow no longer holds after shell-crossing and a proper account of the multistream flow is essential for post-collapse dynamics. In this paper, extending previous work by Colombi, we present a perturbative description for the multistream flow after shell-crossing in a cosmological setup. In addition, we introduce an adaptive smoothing scheme to deal with the bulk properties of phase-space structures. The filtering scales in this scheme are linked to the next-crossing time in the post-collapse region, estimated from our PT calculations. Our PT treatment combined with adaptive smoothing is illustrated in several cases. Predictions are compared to simulations and we find that post-collapse PT with adaptive smoothing reproduces the power spectrum and phase-space structures remarkably well even at small scales, where Zel'dovich solution substantially deviates from simulations.
Imperatore, Pasquale; Iodice, Antonio; Riccio, Daniele
2017-12-27
A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters.
Directory of Open Access Journals (Sweden)
Pasquale Imperatore
2017-12-01
Full Text Available A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters.
Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity
Energy Technology Data Exchange (ETDEWEB)
Eichhorn, Astrid
2011-09-06
In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the {beta} function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension
Barkin, Yu. V.
New unperturbed motions are suggested for the study of the rotational motion of deformable celestial bodies. This motion describes the rotation of an isolated celestial body deformed by its own rotation. By some natural simplifications and by using special forms of canonical variables (similar to Andoyer's variables) the problem is reduced to the classical Euler-Poinsot problem for a rigid body, but with different moments of inertia. The suggested unpertubed motion describes Chandler's pole motion and we shall call it Chandler or Euler-Chandler motion. The development of the unperturbed theory is described in this paper. The solution of the Chandler problem (Andoyer's variables, components of angular velocity of the body's axes, and their direction cosines) is presented in elliptical and - functions, and in the form of Fourier series in the angle-action variables. Similar Fourier series were obtained for products and squares of the diraction cosines. The coefficients of these series are expressed through full elliptical integrals of the first, second and third kinds with modulus which is the defining function of the action variables. It is the principal peculiarity of these series. As an illustration we give a application of this unperturbed theory to the study of the Earth's rotation (the principal properties of the Earth's rotation and perturbations). So, the unperturbed motion describes the following phenomena of the Earth's rotation: Chandler's motion of the pole of the Earth's axis of rotation; the ellipticity of the trajectory of the Earth's pole; the non-uniformity of the pole motion along the elliptical trajectory; the variation with Chandler's period of the modulus of the Earth's angular velocity. Theory of the perturbed rotational motion of the Earth is constructed on the basis of the special forms of equations of the rotation of a deformable body (in angle-action variables and their modifications for the Chandler-Euler problem). For the construction of
Chiral perturbation theory for generalized parton distributions and baryon distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Wein, Philipp
2016-05-06
In this thesis we apply low-energy effective field theory to the first moments of generalized parton distributions and to baryon distribution amplitudes, which are both highly relevant for the parametrization of the nonperturbative part in hard processes. These quantities yield complementary information on hadron structure, since the former treat hadrons as a whole and, thus, give information about the (angular) momentum carried by an entire parton species on average, while the latter parametrize the momentum distribution within an individual Fock state. By performing one-loop calculations within covariant baryon chiral perturbation theory, we obtain sensible parametrizations of the quark mass dependence that are ideally suited for the subsequent analysis of lattice QCD data.
Positivity Constraints on Chiral Perturbation Theory Pion-Pion Scattering Amplitudes
Dita, P
1999-01-01
We test the positivity property of the chiral perturbation theory (ChPT) pion-pion scattering amplitudes within the Mandelstam triangle. In the one-loop approximation, ${\\cal O}(p^4)$, the positivity constrains only the coefficients $b_3$ and $b_4$, namely one obtains that $b_4$ and the linear combination $b_3+3 b_4$ are positive quantities. The two-loops approximation gives inequalities involving all the six arbitrary parameters entering ChPT amplitude, but the corrections to the one-loop approximation results are small. ChPT amplitudes pass unexpectedly well all the positivity tests giving strong support to the idea that ChPT is the good theory of the low energy pion-pion scattering.
Applications of a dominant product basis in many-body perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Koval, Peter; Sanchez-Portal, Daniel [Centro de Fisica de Materiales, Paseo Manuel Lardizabal, 5, Donostia-San Sebastian (Spain); Foerster, Dietrich [CPMOH, Universite Bordeaux 1, Cours de la Liberation 351, Talence (France)
2011-07-01
The knowledge of excitation properties of molecules is crucial in developing organic semiconductor devices. Many-body perturbation theory is one of the most promising theories for characterization of excitations in electronic systems. In particular, Hedin's GW approximation for one-electron Green's function is capable of calculating lumo and homo of molecules with O(N{sup 3}) computational complexity like TDDFT (see the contribution of Dietrich Foerster). In this work, we implement the Hedin's G{sub 0} W{sub 0} approximation on top of DFT calculations performed with SIESTA code. We apply a dominant product technique to span the space of orbital products and to reduce the dimensionality of dielectric matrix. We discuss several results for ionization potentials and electron affinities of large molecules, revealing strengths and limitations of our implementation.
Perturbation theory for the thermodynamic properties of liquid nitrogen using model potentials
Watanabe, K.; Allnatt, A. R.; Meath, W. J.
A statistical mechanical perturbation theory due to Fischer has been used to calculate thermodynamic properties of liquid nitrogen for model intermolecular potentials due to Cheung and Powles (CP), Raich and Gillis (RG), and Berns and van der Avoird (BV). Refinements in the numerical implementation of the Fischer theory are described. Results for the CP potential agree well with both simulation and experimental data except at high density and high temperature. Differences between theory and experiment are usually comparable to the differences between two sets of experimental data for the CP potential but are generally larger for the other two potentials. For both BV and RG potentials the excess Helmholtz energies and excess internal energies are up to 15 and 10 per cent higher, respectively, than experimental values whereas the predicted pressures are low by 100-200 bar for RG and 50-100 bar for BV. The BV potential is slightly more satisfactory than the RG potential overall. Results for spherical harmonic components of the radial correlation function for the CP potential calculated using zeroth and first order approximations in the Fischer theory and also in the RAM theory are also compared with results from molecular dynamics simulations.
Solubilities of Solutes in Ionic Liquids from a SimplePerturbed-Hard-Sphere Theory
Energy Technology Data Exchange (ETDEWEB)
Qin, Yuan; Prausnitz, John M.
2005-09-20
In recent years, several publications have provided solubilities of ordinary gases and liquids in ionic liquids. This work reports an initial attempt to correlate the experimental data using a perturbed-hard-sphere theory; the perturbation is based on well-known molecular physics when the solution is considered as a dielectric continuum. For this correlation, the most important input parameters are hard-sphere diameters of the solute and of the cation and anion that constitute the ionic liquid. In addition, the correlation uses the solvent density and the solute's polarizability and dipole and quadrupole moments, if any. Dispersion-energy parameters are obtained from global correlation of solubility data. Results are given for twenty solutes in several ionic liquids at normal temperatures; in addition, some results are given for gases in two molten salts at very high temperatures. Because the theory used here is much simplified, and because experimental uncertainties (especially for gaseous solutes) are often large, the accuracy of the correlation presented here is not high; in general, predicted solubilities (Henry's constants) agree with experiment to within roughly {+-} 70%. As more reliable experimental data become available, modifications in the characterizing parameters are likely to improve accuracy. Nevertheless, even in its present form, the correlation may be useful for solvent screening in engineering design.
Bukowski, R.; Szalewicz, K.; Groenenboom, G.C.; Avoird, A. van der
2006-01-01
A new six-dimensional interaction potential for the water dimer has been obtained by fitting interaction energies computed at 2510 geometries using a variant of symmetry-adapted perturbation theory (SAPT) based on density functional theory (DFT) description of monomers, referred to as SAPT(DFT). The
Hannon, Kevin P; Li, Chenyang; Evangelista, Francesco A
2016-05-28
We report an efficient implementation of a second-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT2) [C. Li and F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)]. Our implementation employs factorized two-electron integrals to avoid storage of large four-index intermediates. It also exploits the block structure of the reference density matrices to reduce the computational cost to that of second-order Møller-Plesset perturbation theory. Our new DSRG-MRPT2 implementation is benchmarked on ten naphthyne isomers using basis sets up to quintuple-ζ quality. We find that the singlet-triplet splittings (ΔST) of the naphthyne isomers strongly depend on the equilibrium structures. For a consistent set of geometries, the ΔST values predicted by the DSRG-MRPT2 are in good agreements with those computed by the reduced multireference coupled cluster theory with singles, doubles, and perturbative triples.
QCD with one quark flavor II. Analysis and chiral perturbation theory
Farchioni, F; Münster, G; Scholz, E E; Sudmann, T; Wuilloud, J
2007-01-01
The hadron spectrum of one flavor QCD is studied by Monte Carlo simulations. The Symanzik tree-level-improved Wilson action is used for the gauge field and the Wilson action for the fermion. The theory is simulated by a polynomial hybrid Monte Carlo algorithm (PHMC). The mass spectrum of hadronic bound states is investigated at two different lattice spacings: a ~ 0.37r_0 and a ~ 0.27r_0, corresponding to ~0.19fm and ~0.13fm in ordinary QCD. The lattice extension is fixed to L ~ 4.4r_0 (~2.2fm). The lightest simulated quark mass corresponds to a pion with mass ~270MeV. Properties of the theory are analyzed by making use of the ideas of partially quenched chiral perturbation theory (PQChPT). The symmetry of the single flavor theory can be artificially enhanced by adding extra valence quarks, which can be interpreted as u and d quarks. Operators in the valence pion sector can be built. Masses and decay constants are analyzed by using PQChPT formulae at next-to-leading order.
Thermodynamic perturbation theory for self-assembling mixtures of divalent single patch colloids.
Marshall, Bennett D; Chapman, Walter G
2014-07-28
In this work we extend Wertheim's thermodynamic perturbation theory (TPT) to binary mixtures (species A and species B) of patchy colloids were each species has a single patch which can bond a maximum of twice (divalent). Colloids are treated as hard spheres with a directional conical association site. We restrict the system such that only patches between unlike species share attractions; meaning there are AB attractions but no AA or BB attractions. The theory is derived in Wertheim's two density formalism for one site associating fluids. Since the patches are doubly bondable, associated chains, of all chain lengths, as well as 4-mer rings consisting of two species A and two species B colloids are accounted for. With the restriction of only AB attractions, triatomic rings of doubly bonded colloids, which dominate in the corresponding pure component case, cannot form. The theory is shown to be in good agreement with Monte Carlo simulation data for the structure and thermodynamics of these patchy colloid mixtures as a function of temperature, density, patch size and composition. It is shown that 4-mer rings dominate at low temperature, inhibiting the polymerization of the mixture into long chains. Mixtures of this type have been recently synthesized by researchers. This work provides the first theory capable of accurately modeling these mixtures.
DEFF Research Database (Denmark)
Fromager, Emmanuel; Jensen, Hans Jørgen Aagaard
2011-01-01
-cluster theories, self-consistency effects are introduced in the density functional part, which for an exact solution requires iterations. They are generally assumed to be small but no detailed study has been performed so far. Here, the authors analyze self-consistency when using Møller-Plesset-type (MP......Range-separated density-functional theory combines wave function theory for the long-range part of the two-electron interaction with density-functional theory for the short-range part. When describing the long-range interaction with non-variational methods, such as perturbation or coupled......) perturbation theory for the long range interaction. The lowest-order self-consistency corrections to the wave function and the energy, that enter the perturbation expansions at the second and fourth order, respectively, are both expressed in terms of the one-electron reduced density matrix. The computational...
Orbital theory in terms of KS elements with luni-solar perturbations
Sellamuthu, Harishkumar; Sharma, Ram
2016-07-01
Precise orbit computation of Earth orbiting satellites is essential for efficient mission planning of planetary exploration, navigation and satellite geodesy. The third-body perturbations of the Sun and the Moon predominantly affect the satellite motion in the high altitude and elliptical orbits, where the effect of atmospheric drag is negligible. The physics of the luni-solar gravity effect on Earth satellites have been studied extensively over the years. The combined luni-solar gravitational attraction will induce a cumulative effect on the dynamics of satellite orbits, which mainly oscillates the perigee altitude. Though accurate orbital parameters are computed by numerical integration with respect to complex force models, analytical theories are highly valued for the manifold of solutions restricted to relatively simple force models. During close approach, the classical equations of motion in celestial mechanics are almost singular and they are unstable for long-term orbit propagation. A new singularity-free analytical theory in terms of KS (Kustaanheimo and Stiefel) regular elements with respect to luni-solar perturbation is developed. These equations are regular everywhere and eccentric anomaly is the independent variable. Plataforma Solar de Almería (PSA) algorithm and a Fourier series algorithm are used to compute the accurate positions of the Sun and the Moon, respectively. Numerical studies are carried out for wide range of initial parameters and the analytical solutions are found to be satisfactory when compared with numerically integrated values. The symmetrical nature of the equations allows only two of the nine equations to be solved for computing the state vectors and the time. Only a change in the initial conditions is required to solve the other equations. This theory will find multiple applications including on-board software packages and for mission analysis purposes.
Modeling the Southwood Theory of Rotation-Period Perturbations of a Magnetized Plasma
Kivelson, M.; Jia, X.; Southwood, D. J.
2016-12-01
Many of Saturn's plasma and field properties vary at approximately Saturn's rotation period. The periodic behavior is imposed by a system of rotating currents whose origin remains uncertain. Southwood has proposed an analytical mathematical model that shows that a uniformly magnetized plasma bounded by a rotating conducting plate at its base naturally develops MHD disturbances that produce the rotating currents and vary at the rotation period of the plate. Such rotationally driven MHD perturbations achieve a steady state and remain azimuthally symmetric, a conclusion consistent with the sinusoidal dependence on Saturn's rotation phase found in the data from Cassini spacecraft measurements. The model is designed to represent flux tubes from either polar cap of Saturn (N or S) that link magnetically to the solar wind. The transverse magnetic field component transmits angular momentum but a compressional component may also develop (as observed). To test this model, we have carried out magnetohydrodynamic simulations of a cylinder filled with a uniform plasma and a constant magnetic field bounded at the base by a conducting plate that is set into rotational motion. Magnetic perturbations develop and propagate through the system. However, results of the simulation are highly sensitive to boundary conditions and, with time, our models depart from the quasi-steady conditions that we desire to represent. We describe aspects of the theory that are reproduced by runs using different boundary conditions and where and why they differ. For all initial conditions and boundary conditions used in the simulation, we find that both transverse and compressional perturbations develop before the simulation becomes unstable or in other ways unrealistic. However, in order to set up a relatively stable oscillating system, we continue to test new boundary conditions that come increasingly close to representing the portion of a magnetosphere linked to the polar cap of a rotating planet.
Sinha Ray, Suvonil; Ghosh, Pradipta; Chaudhuri, Rajat K.; Chattopadhyay, Sudip
2017-02-01
The state-specific multireference perturbation theory (SSMRPT) with an improved virtual orbital complete active space configuration interaction (IVO-CASCI) reference function [called as IVO-SSMRPT] is used to investigate the energy surface, geometrical parameters, molecular properties of spectroscopic interest for the systems/situations [such as BeH2, BeCH2, MgCH2, Si2H4, unimolecular dissociation of H2CO, and intramolecular reaction pathways of 1,3-butadiene] where the effect of quasidegeneracy cannot be neglected. The merit of using the IVO-CASCI rather than complete active space self-consistent field (CASSCF) is that it is free from iterations beyond those in the initial SCF calculation and the convergence difficulties that plague CASSCF calculations with increasing size of the CAS. While IVO-CASCI describes the non-dynamical correlation, the SSMRPT scheme is a good second-order perturbative approximation to account for the rest of the correlation energy. Our IVO-SSMRPT method is instrumental in avoiding intruder states in an size-extensive manner and allows the revision of the content of wave function in the model space. It can treat model as well as real systems with predictive accuracy, as is evident from the fairly nice accordance between our estimates, and high-level theoretical results. Our estimates also corroborate well with some experimental findings.
The time-resolved photoelectron spectrum of toluene using a perturbation theory approach
Richings, Gareth W.; Worth, Graham A.
2014-12-01
A theoretical study of the intra-molecular vibrational-energy redistribution of toluene using time-resolved photo-electron spectra calculated using nuclear quantum dynamics and a simple, two-mode model is presented. Calculations have been carried out using the multi-configuration time-dependent Hartree method, using three levels of approximation for the calculation of the spectra. The first is a full quantum dynamics simulation with a discretisation of the continuum wavefunction of the ejected electron, whilst the second uses first-order perturbation theory to calculate the wavefunction of the ion. Both methods rely on the explicit inclusion of both the pump and probe laser pulses. The third method includes only the pump pulse and generates the photo-electron spectrum by projection of the pumped wavepacket onto the ion potential energy surface, followed by evaluation of the Fourier transform of the autocorrelation function of the subsequently propagated wavepacket. The calculations performed have been used to study the periodic population flow between the 6a and 10b16b modes in the S1 excited state, and compared to recent experimental data. We obtain results in excellent agreement with the experiment and note the efficiency of the perturbation method.
The time-resolved photoelectron spectrum of toluene using a perturbation theory approach
Energy Technology Data Exchange (ETDEWEB)
Richings, Gareth W.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom)
2014-12-28
A theoretical study of the intra-molecular vibrational-energy redistribution of toluene using time-resolved photo-electron spectra calculated using nuclear quantum dynamics and a simple, two-mode model is presented. Calculations have been carried out using the multi-configuration time-dependent Hartree method, using three levels of approximation for the calculation of the spectra. The first is a full quantum dynamics simulation with a discretisation of the continuum wavefunction of the ejected electron, whilst the second uses first-order perturbation theory to calculate the wavefunction of the ion. Both methods rely on the explicit inclusion of both the pump and probe laser pulses. The third method includes only the pump pulse and generates the photo-electron spectrum by projection of the pumped wavepacket onto the ion potential energy surface, followed by evaluation of the Fourier transform of the autocorrelation function of the subsequently propagated wavepacket. The calculations performed have been used to study the periodic population flow between the 6a and 10b16b modes in the S{sub 1} excited state, and compared to recent experimental data. We obtain results in excellent agreement with the experiment and note the efficiency of the perturbation method.
Existence of localizing solutions in plasticity via the geometric singular perturbation theory
Lee, Min-Gi
2017-01-31
Shear bands are narrow zones of intense shear observed during plastic deformations of metals at high strain rates. Because they often precede rupture, their study attracted attention as a mechanism of material failure. Here, we aim to reveal the onset of localization into shear bands using a simple model from viscoplasticity. We exploit the properties of scale invariance of the model to construct a family of self-similar focusing solutions that capture the nonlinear mechanism of shear band formation. The key step is to desingularize a reduced system of singular ordinary differential equations and reduce the problem into the construction of a heteroclinic orbit for an autonomous system of three first-order equations. The associated dynamical system has fast and slow time scales, forming a singularly perturbed problem. Geometric singular perturbation theory is applied to this problem to achieve an invariant surface. The flow on the invariant surface is analyzed via the Poincaré--Bendixson theorem to construct a heteroclinic orbit.
Energy Technology Data Exchange (ETDEWEB)
Ibral, Asmaa [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Zouitine, Asmaa [Département de Physique, Ecole Nationale Supérieure d' Enseignement Technique, Université Mohammed V Souissi, B. P. 6207 Rabat-Instituts, Rabat, Royaume du Maroc (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); and others
2015-02-01
Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.
Information field theory for cosmological perturbation reconstruction and nonlinear signal analysis
Enßlin, Torsten A.; Frommert, Mona; Kitaura, Francisco S.
2009-11-01
We develop information field theory (IFT) as a means of Bayesian inference on spatially distributed signals, the information fields. A didactical approach is attempted. Starting from general considerations on the nature of measurements, signals, noise, and their relation to a physical reality, we derive the information Hamiltonian, the source field, propagator, and interaction terms. Free IFT reproduces the well-known Wiener-filter theory. Interacting IFT can be diagrammatically expanded, for which we provide the Feynman rules in position-, Fourier-, and spherical-harmonics space, and the Boltzmann-Shannon information measure. The theory should be applicable in many fields. However, here, two cosmological signal recovery problems are discussed in their IFT formulation. (1) Reconstruction of the cosmic large-scale structure matter distribution from discrete galaxy counts in incomplete galaxy surveys within a simple model of galaxy formation. We show that a Gaussian signal, which should resemble the initial density perturbations of the Universe, observed with a strongly nonlinear, incomplete and Poissonian-noise affected response, as the processes of structure and galaxy formation and observations provide, can be reconstructed thanks to the virtue of a response-renormalization flow equation. (2) We design a filter to detect local nonlinearities in the cosmic microwave background, which are predicted from some early-Universe inflationary scenarios, and expected due to measurement imperfections. This filter is the optimal Bayes’ estimator up to linear order in the nonlinearity parameter and can be used even to construct sky maps of nonlinearities in the data.
Modeling of aqueous electrolyte solutions with perturbed-chain statistical associated fluid theory
DEFF Research Database (Denmark)
Cameretti, Luca F.; Sadowski, Gabriele; Mollerup, Jørgen
2005-01-01
The vapor pressures and liquid densities of single-salt electrolyte solutions containing NaCl, LiCl, KCl, NaBr, LiBr, KBr, NaI, LiI, KI, Li2SO4, Na2SO4, and K2SO4 were modeled with an equation of state based on perturbed-chain statistical associated fluid theory (PC-SAFT). The PC-SAFT model...... was extended to charged compounds using a Debye-Huckel term for the electrostatic interactions. Two model parameters for each ion were fitted to experimental pVT and vapor-pressure data. The model is able to excellently reproduce the experimental data up to high salt molalities and even to predict vapor...... pressures in mixed-salt solutions....
What {pi}-{pi} scattering tells us about chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Stern, J.; Sazdjian, H. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Fuchs, N.H. [Purdue Univ., Lafayette, IN (United States). Dept. of Physics
1992-12-31
A rearrangement of the standard expansion of the symmetry breaking part of the QCD effective Lagrangian is described that includes into each order additional terms which in the standard chiral perturbation theory {chi}PT, are relegated to higher orders. The new expansion represents a systematic and unambiguous generalization of the standard {chi}PT and is more likely to converge rapidly. It provides a consistent framework for a measurement of the importance of additional `higher order` terms whose smallness is usually assumed but has never been checked. A method of measuring, among other quantities, the QCD parameters m-circumflex(q-barq) and the quark mass ratio m{sub s}/m-circumflex is elaborated in detail. The method is illustrated using various sets of available data. The importance of new, more accurate, experimental information on low-energy {pi}-{pi} scattering is stressed. (author) 33 refs.; 6 figs.; 5 tabs.
Fixed points in perturbative non-Abelian four-Fermi theory in (3+1)D
Energy Technology Data Exchange (ETDEWEB)
Alves, Van Sérgio, E-mail: vansergi@ufpa.br [Faculdade de Física, Universidade Federal do Pará, 66075-110, Belém, PA (Brazil); Nascimento, Leonardo, E-mail: lnascimento@ufpa.br [Faculdade de Física, Universidade Federal do Pará, 66075-110, Belém, PA (Brazil); Peña, Francisco, E-mail: francisco.pena@ufrontera.cl [Departamento de Ciencias Físicas, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)
2013-12-09
We analyze the structure of fixed points for the non-Abelian four-fermion interactions model in (3+1) dimensions, which has SU(N{sub c})⊗SU(N{sub f}){sub L}⊗SU(N{sub f}){sub R} symmetry from the perturbative calculation of the beta function of the reduced system. We treat the model as an effective theory valid in a scale of energy on which p≪M, where p are the external momenta and M is a massive parameter that characterizes the coupling constants. Using the Zimmermann reduction mechanism, we show up to 1-loop order, that beyond the infrared fixed point at the origin there is a line of non-trivial ultraviolet fixed points that depend on N{sub c} and N{sub f}.
Anagnostopoulos, Konstantinos N; Nishimura, Jun
2012-01-01
The IKKT or IIB matrix model has been postulated to be a non perturbative definition of superstring theory. It has the attractive feature that spacetime is dynamically generated, which makes possible the scenario of dynamical compactification of extra dimensions, which in the Euclidean model manifests by spontaneously breaking the SO(10) rotational invariance (SSB). In this work we study using Monte Carlo simulations the 6 dimensional version of the Euclidean IIB matrix model. Simulations are found to be plagued by a strong complex action problem and the factorization method is used for effective sampling and computing expectation values of the extent of spacetime in various dimensions. Our results are consistent with calculations using the Gaussian Expansion method which predict SSB to SO(3) symmetric vacua, a finite universal extent of the compactified dimensions and finite spacetime volume.
Tadpole-improved perturbation theory for heavy-light lattice operators
Energy Technology Data Exchange (ETDEWEB)
Hernandez, O.F. (Laboratoire de Physique Nucleaire, Universite de Montreal, Case Postale 6128, Montreal, Quebec, H3C 3J7 (Canada)); Hill, B.R. (Department of Physics, University of California, Los Angeles, California 90024 (United States))
1994-07-01
Lattice calculations of matrix elements involving heavy-light quark bilinears are of interest in calculating a variety of properties of [ital B] and [ital D] mesons, including decay constants and mixing parameters. A large source of uncertainty in the determination of these properties has been uncertainty in the normalization of the lattice-regularized operators that appear in the matrix elements. Tadpole-improved perturbation theory, as formulated by Lepage and Mackenzie, promises to reduce these uncertainties below the ten percent level at one loop. In this paper we study this proposal as it applies to lattice-regularized heavy-light operators. We consider both the commonly used zero-distance bilinear and the distance-one point-split operator. A self-contained selection on the application of these results is included. The calculation reduces the value of [ital f][sub [ital B
Time-Sliced Perturbation Theory II: Baryon Acoustic Oscillations and Infrared Resummation
Blas, Diego; Ivanov, Mikhail M.; Sibiryakov, Sergey
2016-01-01
We use time-sliced perturbation theory (TSPT) to give an accurate description of the infrared non-linear effects affecting the baryonic acoustic oscillations (BAO) present in the distribution of matter at very large scales. In TSPT this can be done via a systematic resummation that has a simple diagrammatic representation and does not involve uncontrollable approximations. We discuss the power counting rules and derive explicit expressions for the resummed matter power spectrum up to next-to leading order and the bispectrum at the leading order. The two-point correlation function agrees well with N-body data at BAO scales. The systematic approach also allows to reliably assess the shift of the baryon acoustic peak due to non-linear effects.
The Interaction Between Control Rods as Estimated by Second-Order One-Group Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Persson, Rolf
1966-10-15
The interaction effect between control rods is an important problem for the reactivity control of a reactor. The approach of second order one-group perturbation theory is shown to be attractive due to its simplicity. Formulas are derived for the fully inserted control rods in a bare reactor. For a single rod we introduce a correction parameter b, which with good approximation is proportional to the strength of the absorber. For two and more rods we introduce an interaction function g(r{sub ij}), which is assumed to depend only on the distance r{sub ij} between the rods. The theoretical expressions are correlated with the results of several experiments in R0, ZEBRA and the Aagesta reactor, as well as with more sophisticated calculations. The approximate formulas are found to give quite good agreement with exact values, but in the case of about 8 or more rods higher-order effects are likely to be important.
Hostetler, Chris Alan
Gravity wave models for the horizontal wave number spectra of atmospheric velocity and density fluctuations are derived by assuming that both saturated and unsaturated waves obey the polarization and dispersion relations and that the joint (m,w) spectrum is separable. The models show that the joint (k,l,m) and (k,l,w) spectra are not separable. The one-dimensional horizontal wave number spectra models are consistent with existing observations of horizontal wave number spectra in the lower stratosphere and upper mesosphere. The gravity wave models are used to analyze the effects of Doppler shifting caused by the mean wind field on the separability of gravity wave spectra. If the intrinsic joint (m,w) spectrum is separable, Doppler effects associated with even small mean winds will destroy separability of the observed joint (m,w(sub o)) spectrum, particularly at high vertical wave numbers. Vertical and horizontal wave number spectra of density perturbations in the upper stratosphere (25-40 km) and the upper mesosphere (approximately 80-105 km) measured during the ALOHA-90 campaign are presented. The spectra were inferred from approximately 45 h of airborne Na/Rayleigh lidar observations in the vicinity of Hawaii. Density variances, vertical shear variances, Richardson's numbers, characteristic vertical and horizontal wave numbers, and power law slopes of the vertical and horizontal wave number spectra are computed and discussed. The observed m-spectra contradict the predictions of the linear instability theory of Dewan and Good, and the scale-dependent diffusive filtering theory of Gardner, and appear to be compatible with the Doppler spreading theory of Hines, the scale-dependent diffusion theory of Weinstock, the scale-independent diffusive filtering theory of Gardner, and the similitude model of Dewan. In the stratosphere, the m-spectra exhibit significant energy at low wave numbers less than the values expected for m(sub *). The source of this energy is believed
Sharma, Sandeep; Knizia, Gerald; Guo, Sheng; Alavi, Ali
2017-02-14
We present two efficient and intruder-free methods for treating dynamic correlation on top of general multiconfiguration reference wave functions - including such as obtained by the density matrix renormalization group (DMRG) with large active spaces. The new methods are the second order variant of the recently proposed multireference linearized coupled cluster method (MRLCC) [ Sharma, S.; Alavi, A. J. Chem. Phys. 2015 , 143 , 102815 ] and of N-electron valence perturbation theory (NEVPT2), with expected accuracies similar to MRCI+Q and (at least) CASPT2, respectively. Great efficiency gains are realized by representing the first order wave function with a combination of internal contraction (IC) and matrix product state perturbation theory (MPSPT). With this combination, only third order reduced density matrices (RDMs) are required. Thus, we obviate the need for calculating (or estimating) RDMs of fourth or higher order; these had so far posed a severe bottleneck for dynamic correlation treatments involving the large active spaces accessible to DMRG. Using several benchmark systems, including first and second row containing small molecules, Cr2, pentacene, and oxo-Mn(Salen), we show that active spaces containing at least 30 orbitals can be treated using this method. On a single node, MRLCC2 and NEVPT2 calculations can be performed with over 550 and 1100 virtual orbitals, respectively. We also critically examine the errors incurred due to the three sources of errors introduced in the present implementation - calculating second order instead of third order energy corrections, use of internal contraction, and approximations made in the reference wave function due to DMRG.
Directory of Open Access Journals (Sweden)
O.M. Voitsekhivska
2011-12-01
Full Text Available The non-perturbation theory of electronic dynamic conductivity for open two-barrier resonance tunnel structure is established for the first time within the model of rectangular potentials and different effective masses of electrons in the elements of nano-structure and the wave function linear over the intensity of electromagnetic field. It is proven that the results of the theory of dynamic conductivity, developed earlier in weak signal approximation within the perturbation method, qualitatively and quantitatively correlate with the obtained results. The advantage of non-perturbation theory is that it can be extended to the case of electronic currents interacting with strong electromagnetic fields in open multi-shell resonance tunnel nano-structures, as active elements of quantum cascade lasers and detectors.
Non-perturbatively gauge-fixed compact U(1) lattice gauge theory
De, Asit K.; Sarkar, Mugdha
2017-10-01
An extensive study of the compact U(1) lattice gauge theory with a higher derivative gauge-fixing term and a suitable counter-term has been undertaken to determine the nature of the possible continuum limits for a wide range of the parameters, especially at strong gauge couplings ( g > 1), adding to our previous study at a single gauge coupling g = 1 .3 [1]. Our major conclusion is that a continuum limit of free massless photons(with the redundant pure gauge degrees of freedom decoupled) is achieved at any gauge coupling, not necessarily small, provided the coefficient \\tilde{κ} of the gauge-fixing term is sufficiently large. In fact, the region of continuous phase transition leading to the above physics in the strong gauge coupling region is found to be analytically connected to the point g = 0 and \\tilde{κ}\\to ∞ where the classical action has a global unique minimum, around which weak coupling perturbation theory in bare parameters is defined, controlling the physics of the whole region. A second major conclusion is that, local algorithms like Multihit Metropolis fail to produce faithful field configurations with large values of the coefficient \\tilde{κ} of the higher derivative gauge-fixing term and at large lattice volumes. A global algorithm like Hybrid Monte Carlo, although at times slow to move out of metastabilities, generally is able to produce faithful configurations and has been used extensively in the current study.
The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution.
Coto, Pedro B; Strambi, Angela; Ferré, Nicolas; Olivucci, Massimo
2006-11-14
We demonstrate that "brute force" quantum-mechanics/molecular-mechanics computations based on ab initio (i.e., first principles) multiconfigurational perturbation theory can reproduce the absorption maxima of a set of modified bovine rhodopsins with an accuracy allowing for the analysis of the factors determining their colors. In particular, we show that the theory accounts for the changes in excitation energy even when the proteins display the same charge distribution. Three color-tuning mechanisms, leading to changes of close magnitude, are demonstrated to operate in these conditions. The first is based on the change of the conformation of the conjugated backbone of the retinal chromophore. The second operates through the control of the distance between the positive charge residing on the chromophore and the carboxylate counterion. Finally, the third mechanism operates through the changes in orientation of the chromophore relative to the protein. These results offer perspectives for the unbiased computational design of mutants or chemically modified proteins with wanted optical properties.
Vlaisavljevich, Bess; Shiozaki, Toru
2016-08-09
We report the development of the theory and computer program for analytical nuclear energy gradients for (extended) multistate complete active space perturbation theory (CASPT2) with full internal contraction. The vertical shifts are also considered in this work. This is an extension of the fully internally contracted CASPT2 nuclear gradient program recently developed for a state-specific variant by us [MacLeod and Shiozaki, J. Chem. Phys. 2015, 142, 051103]; in this extension, the so-called λ equation is solved to account for the variation of the multistate CASPT2 energies with respect to the change in the amplitudes obtained in the preceding state-specific CASPT2 calculations, and the Z vector equations are modified accordingly. The program is parallelized using the MPI3 remote memory access protocol that allows us to perform efficient one-sided communication. The optimized geometries of the ground and excited states of a copper corrole and benzophenone are presented as numerical examples. The code is publicly available under the GNU General Public License.
Ab initio many-body perturbation theory and no-core shell model
Hu, B. S.; Wu, Q.; Xu, F. R.
2017-10-01
In many-body perturbation theory (MBPT) we always introduce a parameter N shell to measure the maximal allowed major harmonic-oscillator (HO) shells for the single-particle basis, while the no-core shell model (NCSM) uses N maxℏΩ HO excitation truncation above the lowest HO configuration for the many-body basis. It is worth comparing the two different methods. Starting from “bare” and Okubo-Lee-Suzuki renormalized modern nucleon-nucleon interactions, NNLOopt and JISP16, we show that MBPT within Hartree-Fock bases is in reasonable agreement with NCSM within harmonic oscillator bases for 4He and 16O in “close” model space. In addition, we compare the results using “bare” force with the Okubo-Lee-Suzuki renormalized force. Supported by National Key Basic Research Program of China (2013CB834402), National Natural Science Foundation of China (11235001, 11320101004, 11575007) and the CUSTIPEN (China-U.S. Theory Institute for Physics with Exotic Nuclei) funded by the U.S. Department of Energy, Office of Science (DE-SC0009971)
Energy Technology Data Exchange (ETDEWEB)
Kim, Do Heon; Choi, Hang Bok
2001-01-01
A generalized perturbation theory (GPT) program, GENOVA, has been developed for the purpose of various applications to Canadian deuterium uranium (CANDU) reactor physics analyses. GENOVA was written under the framework of CANDU physics design and analysis code, RFSP. A sensitivity method based on the GPT was implemented in GENOVA to estimate various sensitivity coefficients related to the movement of zone controller units (ZCUs) existing in the CANDU reactor. The numerical algorithm for the sensitivity method was verified by a simple 2 x 2 node problem. The capability of predicting ZCU levels upon a refueling perturbation was validated for a CANDU-6 reactor problem. The applicability of GENOVA to the CANDU-6 core physics analysis has been demonstrated with the optimum refueling simulation and the uncertainty analysis problems. For the optimum refueling simulation, an optimum channel selection strategy has been proposed, using the ZCU level predicted by GENOVA. The refueling simulation of a CANDU-6 natural uranium core has shown that the ZCU levels are successfully controlled within the operating range while the channel and bundle powers are satisfying the license limits. An uncertainty analysis has been performed for the fuel composition heterogeneity of a CANDU DUPIC core, using the sensitivity coefficients generated by GENOVA. The results have shown that the uncertainty of the core performance parameter can be reduced appreciably when the contents of the major fissile isotopes are tightly controlled. GENOVA code has been successfully explored to supplement the weak points of the current design and analysis code, such as the incapacity of performing an optimum refueling simulation and uncertainty analysis. The sample calculations have shown that GENOVA has strong potential to be used for CANDU core analysis combined with the current design and analysis code, RFSP, especially for the development of advanced CANDU fuels.
Sen, Avijit; Sen, Sangita; Samanta, Pradipta Kumar; Mukherjee, Debashis
2015-04-05
We present here a comprehensive account of the formulation and pilot applications of the second-order perturbative analogue of the recently proposed unitary group adapted state-specific multireference coupled cluster theory (UGA-SSMRCC), which we call as the UGA-SSMRPT2. We also discuss the essential similarities and differences between the UGA-SSMRPT2 and the allied SA-SSMRPT2. Our theory, like its parent UGA-SSMRCC formalism, is size-extensive. However, because of the noninvariance of the theory with respect to the transformation among the active orbitals, it requires the use of localized orbitals to ensure size-consistency. We have demonstrated the performance of the formalism with a set of pilot applications, exploring (a) the accuracy of the potential energy surface (PES) of a set of small prototypical difficult molecules in their various low-lying states, using natural, pseudocanonical and localized orbitals and compared the respective nonparallelity errors (NPE) and the mean average deviations (MAD) vis-a-vis the full CI results with the same basis; (b) the efficacy of localized active orbitals to ensure and demonstrate manifest size-consistency with respect to fragmentation. We found that natural orbitals lead to the best overall PES, as evidenced by the NPE and MAD values. The MRMP2 results for individual states and of the MCQDPT2 for multiple states displaying avoided curve crossings are uniformly poorer as compared with the UGA-SSMRPT2 results. The striking aspect of the size-consistency check is the complete insensitivity of the sum of fragment energies with given fragment spin-multiplicities, which are obtained as the asymptotic limit of super-molecules with different coupled spins. © 2015 Wiley Periodicals, Inc.
Efroimsky, Michael; Escapa, Alberto
2005-01-01
The Hamiltonian theory of Earth rotation, known as the Kinoshita-Souchay theory, operates with nonosculating Andoyer elements. This situation parallels a similar phenomenon that often happens (but seldom gets noticed) in orbital dynamics, when the standard Lagrange-type or Delaunay-type planetary equations unexpectedly render nonosculating orbital elements. In orbital mechanics, osculation loss happens when a velocity-dependent perturbation is plugged into the standard planetary equations. In...
Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model
Okumura, Teppei; Hand, Nick; Seljak, Uroš; Vlah, Zvonimir; Desjacques, Vincent
2015-11-01
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k2R2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. We adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the "CMASS" sample of the
Energy Technology Data Exchange (ETDEWEB)
Hehl, H.
2002-07-01
This thesis has studied the range of validity of the chiral random matrix theory in QCD on the example of the quenched staggered Dirac operator. The eigenvalues of this operator in the neighbourhood of zero are essential for the understanding of the spontaneous breaking of the chiral symmetry and the phase transition connected with this. The phase transition cannot be understood in the framework of perturbation theory, so that the formulation of QCD on the lattice has been chosen as the only non-perturbative approach. In order to circumvent both the problem of the fermion doubling and to study chiral properties on the lattice with acceptable numerical effort, quenched Kogut-Susskind fermions have been applied. The corresponding Dirac operator can be completely diagonalized by the Lanczos procedure of Cullum and Willoughby. Monte carlo simulations on hypercubic lattice have been performed and the Dirac operators of very much configurations diagonalized at different lattice lengths and coupling constants. The eigenvalue correlations on the microscopic scale are completely described by the chiral random matrix theory for the topological sector zero, which has been studied by means of the distribution of the smallest eigenvalue, the microscopic spectral density and the corresponding 2-point correlation function. The found universal behaviour shows, that on the scale of the lowest eigenvalue only completely general properties of the theory are important, but not the full dynamics. In order to determine the energy scale, from which the chiral random matrix theory losses its validity, - the Thouless energy - with the scalar susceptibilities observables have been analyzed, which are because of their spectral mass dependence sensitive on this. For each combination of the lattice parameter so the deviation point has been identified.
Improving the accuracy of Møller-Plesset perturbation theory with neural networks
McGibbon, Robert T.; Taube, Andrew G.; Donchev, Alexander G.; Siva, Karthik; Hernández, Felipe; Hargus, Cory; Law, Ka-Hei; Klepeis, John L.; Shaw, David E.
2017-10-01
Noncovalent interactions are of fundamental importance across the disciplines of chemistry, materials science, and biology. Quantum chemical calculations on noncovalently bound complexes, which allow for the quantification of properties such as binding energies and geometries, play an essential role in advancing our understanding of, and building models for, a vast array of complex processes involving molecular association or self-assembly. Because of its relatively modest computational cost, second-order Møller-Plesset perturbation (MP2) theory is one of the most widely used methods in quantum chemistry for studying noncovalent interactions. MP2 is, however, plagued by serious errors due to its incomplete treatment of electron correlation, especially when modeling van der Waals interactions and π-stacked complexes. Here we present spin-network-scaled MP2 (SNS-MP2), a new semi-empirical MP2-based method for dimer interaction-energy calculations. To correct for errors in MP2, SNS-MP2 uses quantum chemical features of the complex under study in conjunction with a neural network to reweight terms appearing in the total MP2 interaction energy. The method has been trained on a new data set consisting of over 200 000 complete basis set (CBS)-extrapolated coupled-cluster interaction energies, which are considered the gold standard for chemical accuracy. SNS-MP2 predicts gold-standard binding energies of unseen test compounds with a mean absolute error of 0.04 kcal mol-1 (root-mean-square error 0.09 kcal mol-1), a 6- to 7-fold improvement over MP2. To the best of our knowledge, its accuracy exceeds that of all extant density functional theory- and wavefunction-based methods of similar computational cost, and is very close to the intrinsic accuracy of our benchmark coupled-cluster methodology itself. Furthermore, SNS-MP2 provides reliable per-conformation confidence intervals on the predicted interaction energies, a feature not available from any alternative method.
An analytic analysis of the pion decay constant in three-flavoured chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Ananthanarayan, B.; Ghosh, Shayan [Indian Institute of Science, Centre for High Energy Physics, Bangalore, Karnataka (India); Bijnens, Johan [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden)
2017-07-15
A representation of the two-loop contribution to the pion decay constant in SU(3) chiral perturbation theory is presented. The result is analytic up to the contribution of the three (different) mass sunset integrals, for which an expansion in their external momentum has been taken. We also give an analytic expression for the two-loop contribution to the pion mass based on a renormalized representation and in terms of the physical eta mass. We find an expansion of F{sub π} and M{sub π}{sup 2} in the strange-quark mass in the isospin limit, and we perform the matching of the chiral SU(2) and SU(3) low-energy constants. A numerical analysis demonstrates the high accuracy of our representation, and the strong dependence of the pion decay constant upon the values of the low-energy constants, especially in the chiral limit. Finally, we present a simplified representation that is particularly suitable for fitting with available lattice data. (orig.)
Convergence properties of η → 3π decays in chiral perturbation theory
Kolesár, Marián; Novotný, Jiří
2017-01-01
The convergence of the decay widths and some of the Dalitz plot parameters of the decay η → 3π seems problematic in low energy QCD. In the framework of resummed chiral perturbation theory, we explore the question of compatibility of experimental data with a reasonable convergence of a carefully defined chiral series. By treating the uncertainties in the higher orders statistically, we numerically generate a large set of theoretical predictions, which are then confronted with experimental information. In the case of the decay widths, the experimental values can be reconstructed for a reasonable range of the free parameters and thus no tension is observed, in spite of what some of the traditional calculations suggest. The Dalitz plot parameters a and d can be described very well too. When the parameters b and α are concerned, we find a mild tension for the whole range of the free parameters, at less than 2σ C.L. This can be interpreted in two ways - either some of the higher order corrections are indeed unexpectedly large or there is a specific configuration of the remainders, which is, however, not completely improbable.
Characterizing representational learning: A combined simulation and tutorial on perturbation theory
Kohnle, Antje; Passante, Gina
2017-12-01
Analyzing, constructing, and translating between graphical, pictorial, and mathematical representations of physics ideas and reasoning flexibly through them ("representational competence") is a key characteristic of expertise in physics but is a challenge for learners to develop. Interactive computer simulations and University of Washington style tutorials both have affordances to support representational learning. This article describes work to characterize students' spontaneous use of representations before and after working with a combined simulation and tutorial on first-order energy corrections in the context of quantum-mechanical time-independent perturbation theory. Data were collected from two institutions using pre-, mid-, and post-tests to assess short- and long-term gains. A representational competence level framework was adapted to devise level descriptors for the assessment items. The results indicate an increase in the number of representations used by students and the consistency between them following the combined simulation tutorial. The distributions of representational competence levels suggest a shift from perceptual to semantic use of representations based on their underlying meaning. In terms of activity design, this study illustrates the need to support students in making sense of the representations shown in a simulation and in learning to choose the most appropriate representation for a given task. In terms of characterizing representational abilities, this study illustrates the usefulness of a framework focusing on perceptual, syntactic, and semantic use of representations.
Explicitly correlated N-electron valence state perturbation theory (NEVPT2-F12)
Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F.; Neese, Frank
2017-08-01
In this work, explicitly correlated second order N-electron valence state perturbation theory (NEVPT2-F12) has been derived and implemented for the first time. The NEVPT2-F12 algorithm presented here is based on a fully internally contracted wave function and includes the correction of semi-internal excitation subspaces. The algorithm exploits the resolution of identity (RI) approximation to improve the computational efficiency. The overall O(N5) scaling of the computational effort is documented. In Sec. III, the dissociation processes of diatomic molecules and the singlet-triplet gap of several systems are studied. For all relative energies studied in this work, the errors with respect to the complete basis set (CBS) limit for the NEVPT2-F12 method are within 1 kcal/mol. For moderately sized active spaces, the computational cost of a RI-NEVPT2-F12 correlation energy calculation for each root is comparable to a closed-shell RI-MP2-F12 calculation on the same system.
Directory of Open Access Journals (Sweden)
E. V. Orlenko
2011-01-01
Full Text Available A new methodology of binding energy calculation with respect to different spin arrangements for a multiatomic electron system is developed from the first principle in the frame of the exchange perturbation theory (EPT. We developed EPT formalism in the general form of the Rayleigh-Srchödinger expansion with a symmetric Hamiltonian, taking into account an exchange and nonadditive contributions of a superexchange interaction. The expressions of all corrections to the energy and wave function were reduced to the nonsymmetric Hamiltonian form. The EPT method is extended for the case of degeneracy in the total spin of a system. As an example of the application of the developed EPT formalism for the degeneracy case, spin arrangements were considered for the key ⟨Mn⟩–O–⟨Mn⟩ (⟨Mn⟩: Mn3+ or Mn4+ fragments in manganites. In ⟨Mn⟩–O–⟨Mn⟩ for La1/3Ca2/3MnO3 are in good agreement the obtained estimations of Heisenberg parameter and binding energy with the available experimental data.
Stopkowicz, Stella; Gauss, Jürgen
2011-05-28
In this work, we present relativistic corrections to first-order electrical properties obtained using fourth-order direct perturbation theory (DPT4) at the Hartree-Fock level. The considered properties, i.e., dipole moments and electrical-field gradients, have been calculated using numerical differentiation techniques based on a recently reported DPT4 code for energies [S. Stopkowicz and J. Gauss, J. Chem. Phys. 134, 064114 (2011)]. For the hydrogen halides HX, X=F, Cl, Br, I, and At, we study the convergence of the scalar-relativistic contributions by comparing the computed DPT corrections to results from spin-free Dirac-Hartree-Fock calculations. Furthermore, since in the DPT series spin-orbit contributions first appear at fourth order, we investigate their magnitude and judge the performance of the DPT4 treatment by means of Dirac-Hartree-Fock benchmark calculations. Finally, motivated by experimental investigations of the molecules CH(2)FBr, CHF(2)Br, and CH(2)FI, we present theoretical results for their halogen quadrupole-coupling tensors and give recommendations concerning the importance of higher-order scalar-relativistic and spin-orbit corrections. © 2011 American Institute of Physics
Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory
Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun
2010-09-01
We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2% , and the growth-rate parameter by ˜5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.
Density fitting of intramonomer correlation effects in symmetry-adapted perturbation theory.
Hohenstein, Edward G; Sherrill, C David
2010-07-07
Symmetry-adapted perturbation theory (SAPT) offers insight into the nature of intermolecular interactions. In addition, accurate energies can be obtained from the wave function-based variant of SAPT provided that intramonomer electron correlation effects are included. We apply density-fitting (DF) approximations to the intramonomer correlation corrections in SAPT. The introduction of this approximation leads to an improvement in the computational cost of SAPT by reducing the scaling of certain SAPT terms, reducing the amount of disk I/O, and avoiding the explicit computation of certain types of MO integrals. We have implemented all the intramonomer correlation corrections to SAPT through second-order under the DF approximation. Additionally, leading third-order terms are also implemented. The accuracy of this truncation of SAPT is tested against the S22 test set of Hobza and co-workers [Phys. Chem. Chem. Phys. 8, 1985 (2006)]. When the intramonomer corrections to dispersion are included in SAPT, a mean absolute deviation of 0.3-0.4 kcal mol(-1) is observed for the S22 test set when using an aug-cc-pVDZ basis. The computations on the adenine-thymine complexes in the S22 test set with an aug-cc-pVDZ basis represent the largest SAPT computations to date that include this degree of intramonomer correlation. Computations of this size can now be performed routinely with our newly developed DF-SAPT program.
Russ, Nicholas J; Crawford, T Daniel
2008-06-21
An approach is described for selecting local-correlation orbital domains appropriate for computing response properties such as optical rotation using frequency-dependent coupled-cluster linear-response theory. This scheme is an extension of our earlier idea [N. J. Russ and T. D. Crawford, Chem. Phys. Lett., 2004, 400, 104] based on an atom-by-atom decomposition of the coupled-perturbed Hartree-Fock (CPHF) response of the component molecular orbitals to external electric and magnetic fields. We have applied this domain-selection scheme to a series of chiral molecules, including pseudo-linear structures (hydrogen molecule helices, fluoroalkanes, and [n]triangulanes), cage-like structures (beta-pinene, methylnorbornanone, and bisnoradamantan-2-one), and aromatic rings (1-phenylethanol). We find that the crossover points between the canonical- and local-correlation approaches are larger than for the conventional Boughton-Pulay domain scheme, in agreement with our earlier analysis of dipole-polarizabilities. Localization errors are reasonably small (a few percent) for pseudo-linear structures with domain sizes of approximately six to eight atoms. Cage-like molecules are significantly more problematic, requiring natural domain sizes of ten or more to obtain the most reliable localization errors.
A degree theory for a class of perturbed Fredholm maps II
Directory of Open Access Journals (Sweden)
Calamai Alessandro
2006-01-01
Full Text Available In a recent paper we gave a notion of degree for a class of perturbations of nonlinear Fredholm maps of index zero between real infinite dimensional Banach spaces. Our purpose here is to extend that notion in order to include the degree introduced by Nussbaum for local -condensing perturbations of the identity, as well as the degree for locally compact perturbations of Fredholm maps of index zero recently defined by the first and third authors.
Liu, Ru-Fen; Franzese, Christina A; Malek, Ryan; Żuchowski, Piotr S; Ángyán, János G; Szczȩśniak, Małgorzata M; Chałasiński, Grzegorz
2011-08-09
The aurophilic interaction is examined in three model systems Au2((3)Σg(+)), (AuH)2, and (HAuPH3)2 which contain interactions of pairs of the Au centers in the oxidation state (I). Several methods are employed ranging from wave function theory-based (WFT) approaches to symmetry-adapted perturbation theory (SAPT) and range-separated hybrid (RSH) density functional theory (DFT) methods. The most promising and accurate approach consists of a combination of the DFT and WFT approaches in the RSH framework. In this combination the short-range DFT handles the slow convergence of the correlation cusp, whereas the long-range WFT is best suited for the long-range correlation. Of the three tested RSH DFT methods, the one which uses a short-range exchange functional based on the Ernzerhof-Perdew exchange hole model with a range-separation parameter of 0.4 bohr(-1) seems to be the best candidate for treatment of gold. In combination with the long-range coupled cluster singles, doubles, and noniterative triples [CCSD(T)] treatment it places the strength of aurophilic bonding in (HAuPH3)2 at 5.7 kcal/mol at R = 3.09 Å. This value is somewhat larger than our best purely WFT result based on CCSD(T), 4.95 kcal/mol (R = 3.1 Å), and considerably smaller than the Hartree-Fock+dispersion value of 7.4 kcal/mol (R = 2.9 Å). The 5.7 kcal/mol estimate fits reasonably well within the prediction of the empirical relationship proposed by Schwerdtfeger et al. (J. Am. Chem. Soc.1998, 120, 6587). A direct computation of dispersion energy, including exchange corrections, results in values of ca. -9 kcal/mol for Au2((3)Σg(+)) and (AuH)2 and -13 kcal/mol for (HAuPH3)2 at the distance of a typical aurophilic bond, R = 3.0 Å.
Energy Technology Data Exchange (ETDEWEB)
Garcia, Vanessa S. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Programa de Pos-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Silva, Fernando C.; Silva, Ademir X., E-mail: fernando@con.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Alvarez, Gustavo B. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Dept. de Ciencias Exatas
2011-07-01
Boron neutron capture therapy - BNCT - is a binary cancer treatment used in brain tumors. The tumor is loaded with a boron compound and subsequently irradiated by thermal neutrons. The therapy is based on the {sup 10}B (n, {alpha}) {sup 7}Li nuclear reaction, which emits two types of high-energy particles, {alpha} particle and the {sup 7}Li nuclei. The total kinetic energy released in this nuclear reaction, when deposited in the tumor region, destroys the cancer cells. Since the success of the BNCT is linked to the different selectivity between the tumor and healthy tissue, it is necessary to carry out a sensitivity analysis to determinate the boron concentration. Computational simulations are very important in this context because they help in the treatment planning by calculating the lowest effective absorbed dose rate to reduce the damage to healthy tissue. The objective of this paper is to present a deterministic method based on generalized perturbation theory (GPT) to perform sensitivity analysis with respect to the {sup 10}B concentration and to estimate the absorbed dose rate by patients undergoing this therapy. The advantage of the method is a significant reduction in computational time required to perform these calculations. To simulate the neutron flux in all brain regions, the method relies on a two-dimensional neutron transport equation whose spatial, angular and energy variables are discretized by the diamond difference method, the discrete ordinate method and multigroup formulation, respectively. The results obtained through GPT are consistent with those obtained using other methods, demonstrating the efficacy of the proposed method. (author)
Zahedifar, Maedeh; Kratzer, Peter
2018-01-01
Various ab initio approaches to the band structure of A NiSn and A CoSb half-Heusler compounds (A = Ti, Zr, Hf) are compared and their consequences for the prediction of thermoelectric properties are explored. Density functional theory with the generalized-gradient approximation (GGA), as well as the hybrid density functional HSE06 and ab initio many-body perturbation theory in the form of the G W0 approach, are employed. The G W0 calculations confirm the trend of a smaller band gap (0.75 to 1.05 eV) in A NiSn compared to the A CoSb compounds (1.13 to 1.44 eV) already expected from the GGA calculations. While in A NiSn materials the G W0 band gap is 20% to 50% larger than in HSE06, the fundamental gap of A CoSb materials is smaller in G W0 compared to HSE06. This is because G W0 , similar to PBE, locates the valence band maximum at the L point of the Brillouin zone, whereas it is at the Γ point in the HSE06 calculations. The differences are attributed to the observation that the relative positions of the d levels of the transition metal atoms vary among the different methods. Using the calculated band structures and scattering rates taking into account the band effective masses at the extrema, the Seebeck coefficients, thermoelectric power factors, and figures of merit Z T are predicted for all six half-Heusler compounds. Comparable performance is predicted for the n -type A NiSn materials, whereas clear differences are found for the p -type A CoSb materials. Using the most reliable G W0 electronic structure, ZrCoSb is predicted to be the most efficient material with a power factor of up to 0.07 W/(K2 m) at a temperature of 600 K. We find strong variations among the different ab initio methods not only in the prediction of the maximum power factor and Z T value of a given material, but also in comparing different materials to each other, in particular in the p -type thermoelectric materials. Thus we conclude that the most elaborate, but also most costly G W0
High order path integrals made easy.
Kapil, Venkat; Behler, Jörg; Ceriotti, Michele
2016-12-21
The precise description of quantum nuclear fluctuations in atomistic modelling is possible by employing path integral techniques, which involve a considerable computational overhead due to the need of simulating multiple replicas of the system. Many approaches have been suggested to reduce the required number of replicas. Among these, high-order factorizations of the Boltzmann operator are particularly attractive for high-precision and low-temperature scenarios. Unfortunately, to date, several technical challenges have prevented a widespread use of these approaches to study the nuclear quantum effects in condensed-phase systems. Here we introduce an inexpensive molecular dynamics scheme that overcomes these limitations, thus making it possible to exploit the improved convergence of high-order path integrals without having to sacrifice the stability, convenience, and flexibility of conventional second-order techniques. The capabilities of the method are demonstrated by simulations of liquid water and ice, as described by a neural-network potential fitted to the dispersion-corrected hybrid density functional theory calculations.
High order path integrals made easy
Kapil, Venkat; Behler, Jörg; Ceriotti, Michele
2016-12-01
The precise description of quantum nuclear fluctuations in atomistic modelling is possible by employing path integral techniques, which involve a considerable computational overhead due to the need of simulating multiple replicas of the system. Many approaches have been suggested to reduce the required number of replicas. Among these, high-order factorizations of the Boltzmann operator are particularly attractive for high-precision and low-temperature scenarios. Unfortunately, to date, several technical challenges have prevented a widespread use of these approaches to study the nuclear quantum effects in condensed-phase systems. Here we introduce an inexpensive molecular dynamics scheme that overcomes these limitations, thus making it possible to exploit the improved convergence of high-order path integrals without having to sacrifice the stability, convenience, and flexibility of conventional second-order techniques. The capabilities of the method are demonstrated by simulations of liquid water and ice, as described by a neural-network potential fitted to the dispersion-corrected hybrid density functional theory calculations.
Antal, Miklos A; Csermely, Peter
2008-01-01
The network paradigm is increasingly used to describe the dynamics of complex systems. Here we review the current results and propose future development areas in the assessment of perturbation waves, i.e. propagating structural changes in amino acid networks building individual protein molecules and in protein-protein interaction networks (interactomes). We assess the possibilities and critically review the initial attempts for the application of game theory to the often rather complicated process, when two protein molecules approach each other, mutually adjust their conformations via multiple communication steps and finally, bind to each other. We also summarize available data on the application of percolation theory for the prediction of amino acid network- and interactome-dynamics. Furthermore, we give an overview of the dissection of signals and noise in the cellular context of various perturbations. Finally, we propose possible applications of the reviewed methodologies in drug design.
Energy Technology Data Exchange (ETDEWEB)
Pelaez, J. R. [Univ. Complutense Madrid (Spain); Pennington, Michael R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); de Elvira, J. Ruiz [Univ. Complutense Madrid (Spain); Wilson, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States)
2011-11-01
The leading 1/N{sub c} behavior of Unitarized Chiral Perturbation Theory distinguishes the nature of the {rho} and the {sigma}. At one loop order the {rho} is a {bar q}q meson, while the {sigma} is not. However, semi-local duality between resonances and Regge behaviour cannot be satisfied for larger N{sub c}, if such a distinction holds. While the {sigma} at N{sub c}= 3 is inevitably dominated by its di-pion component, Unitarised Chiral Perturbation Theory beyond one loop order reveals that as N{sub c} increases above 6-8, the {sigma} has a sub-dominant {bar q}q fraction up at 1.2 GeV. Remarkably this ensures semi-local duality is fulfilled for the range of N{sub c} {approx}< 15-30, where the unitarization procedure adopted applies.
Jung, Jaewoon; Sugita, Yuji; Ten-no, S.
2010-02-01
An analytic gradient expression is formulated and implemented for the second-order Møller-Plesset perturbation theory (MP2) based on the generalized hybrid orbital QM/MM method. The method enables us to obtain an accurate geometry at a reasonable computational cost. The performance of the method is assessed for various isomers of alanine dipepetide. We also compare the optimized structures of fumaramide-derived [2]rotaxane and cAMP-dependent protein kinase with experiment.
On the theory of canonical perturbations and its application to Earth rotation
Efroimsky, Michael
2004-01-01
Both orbital and rotational dynamics employ the method of variation of parameters. We express, in a non-perturbed setting, the coordinates (Cartesian, in the orbital case, or Eulerian in the rotation case) via the time and six adjustable constants called elements (orbital elements or rotational elements). If, under disturbance, we use this expression as ansatz and endow the "constants" with time dependence, then the perturbed velocity (Cartesian or angular) will consist of a partial derivativ...
The correlation function for density perturbations in an expanding universe. II - Nonlinear theory
Mcclelland, J.; Silk, J.
1977-01-01
A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies
Energy Technology Data Exchange (ETDEWEB)
Guida, R. [Genova Univ. (Italy). Dipartimento di Fisica; Magnoli, N. [Genova Univ. (Italy). Dipartimento di Fisica]|[Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, 16146 Genoa (Italy)
1996-07-08
We consider here renormalizable theories without relevant couplings and present an I.R. consistent technique to study corrections to short distance behavior (Wilson O.P.E. coefficients) due to a relevant perturbation. Our method is the result of a complete reformulation of recent works on the field, and is characterized by a more orthodox treatment of U.V. divergences that allows for simpler formulae and consequently an explicit all order (regularization invariant) I.R. finiteness proof. Underlying hypotheses are discussed in detail and found to be satisfied in conformal theories that constitute a natural field of application of this approach. (orig.).
Non-perturbative Equivalences In Gauge Theories With Global Symmetries In The Limit Of Large N
Kovtun, P
2004-01-01
The thesis is devoted to the study of various types of equivalences in large N gauge theories. We are specifically interested in theories whose dynamics is not constrained by supersymmetry or conformal invariance, and we consider theories both at zero and at finite temperature. Specific examples include equivalences between gauge theories, gauge theories and matrix models, and between gauge theories and gravitational theories. The use of lattice regularization for zero temperature gauge theories and effective hydrodynamic description for finite temperature gauge theories made it possible to find generic equivalences which do not rely on any sort of small-parameter expansion.
Energy Technology Data Exchange (ETDEWEB)
Kovtun, Pave; Uensal, Mithat; Yaffe, Laurence G. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)
2005-07-01
Large N coherent state methods are used to study the relation between U(N{sub c}) gauge theories containing adjoint representation matter fields and their orbifold projections. The classical dynamical systems which reproduce the large N{sub c} limits of the quantum dynamics in parent and daughter orbifold theories are compared. We demonstrate that the large N{sub c} dynamics of the parent theory, restricted to the subspace invariant under the orbifold projection symmetry, and the large N{sub c} dynamics of the daughter theory, restricted to the untwisted sector invariant under 'theory space' permutations, coincide. This implies equality, in the large N{sub c} limit, between appropriately identified connected correlation functions in parent and daughter theories, provided the orbifold projection symmetry is not spontaneously broken in the parent theory and the theory space permutation symmetry is not spontaneously broken in the daughter. The necessity of these symmetry realization conditions for the validity of the large N{sub c} equivalence is unsurprising, but demonstrating the sufficiency of these conditions is new. This work extends an earlier proof of non-perturbative large N{sub c} equivalence which was only valid in the phase of the (lattice regularized) theories continuously connected to large mass and strong coupling.
Yu, Zhenli
1998-12-01
The inverse solution of speech production for formant targets of vowels and vowel-to-vowel transitions is studied. Band-limited Fourier cosine expansion of vocal- tract area function or its logarithm is used to model the vocal-tract shape. The inverse solution is based on the perturbation theory of speech production incorporate with a fast calculation of the vocal-tract system. An interpolation method for dynamic constraint on the unobservable zeros and vocal-tract length along the transition between the endpoint of vowel-to-vowel transition is proposed. A unique mapping acoustic-to- geometry codebook is used to match the zeros and vocal tract length of the endpoint. The codebook is designed by geometrical and acoustical constraints. Computer simulation of the evaluation of the inverse solution shows reasonable results with respect to the naturalness of transition behavior of the vocal-tract area function. An articulatory synthesizer with a reflection-type line analog model which is driven by vocal-tract area is implemented. Synthesis evaluation of the performance of the inverse solution for vowel-to-vowel transitions as well as for isolated vowels is conducted. The resultant spectrogram vision and perceptual listening of the synthetic sounds is satisfactory. Quantitative comparison in forms of formant traces reveals fairly good matching of the formants of synthetic sounds to the original one. A novel formant targeted articulatory synthesis, as an application of the inverse solution, is proposed. The entire system consists of an inverse module and a reflection-type line analog model. The synthesizer needs only the first three formant trajectories, pitch contour and amplitude as input parameters. A formant mimic synthesis in which the input parameters can be artificially specified and a formant copy synthesis in which the input parameters are obtained by estimation from real speech sound are implemented. The formant trace or pitch contour can be separately modified
High-order epistasis shapes evolutionary trajectories.
Sailer, Zachary R.; Harms, Michael J.
2017-01-01
High-order epistasis-where the effect of a mutation is determined by interactions with two or more other mutations-makes small, but detectable, contributions to genotype-fitness maps. While epistasis between pairs of mutations is known to be an important determinant of evolutionary trajectories, the evolutionary consequences of high-order epistasis remain poorly understood. To determine the effect of high-order epistasis on evolutionary trajectories, we computationally removed high-order epis...
High-order epistasis shapes evolutionary trajectories
Sailer, Zachary R.
2017-01-01
High-order epistasis?where the effect of a mutation is determined by interactions with two or more other mutations?makes small, but detectable, contributions to genotype-fitness maps. While epistasis between pairs of mutations is known to be an important determinant of evolutionary trajectories, the evolutionary consequences of high-order epistasis remain poorly understood. To determine the effect of high-order epistasis on evolutionary trajectories, we computationally removed high-order epis...
The correlation function for density perturbations in an expanding universe. I - Linear theory
Mcclelland, J.; Silk, J.
1977-01-01
The evolution of the two-point correlation function for adiabatic density perturbations in the early universe is studied. Analytical solutions are obtained for the evolution of linearized spherically symmetric adiabatic density perturbations and the two-point correlation function for these perturbations in the radiation-dominated portion of the early universe. The results are then extended to the regime after decoupling. It is found that: (1) adiabatic spherically symmetric perturbations comparable in scale with the maximum Jeans length would survive the radiation-dominated regime; (2) irregular fluctuations are smoothed out up to the scale of the maximum Jeans length in the radiation era, but regular fluctuations might survive on smaller scales; (3) in general, the only surviving structures for irregularly shaped adiabatic density perturbations of arbitrary but finite scale in the radiation regime are the size of or larger than the maximum Jeans length in that regime; (4) infinite plane waves with a wavelength smaller than the maximum Jeans length but larger than the critical dissipative damping scale could survive the radiation regime; and (5) black holes would also survive the radiation regime and might accrete sufficient mass after decoupling to nucleate the formation of galaxies.
Czech Academy of Sciences Publication Activity Database
Čársky, Petr
2015-01-01
Roč. 191, č. 2015 (2015), s. 191-192 ISSN 1551-7616 R&D Projects: GA MŠk OC09079; GA MŠk(CZ) OC10046; GA ČR GA202/08/0631 Grant - others:COST(XE) CM0805; COST(XE) CM0601 Institutional support: RVO:61388955 Keywords : electron-scattering * calculation of cross sections * second-order perturbation theory Subject RIV: CF - Physical ; Theoretical Chemistry
Generating the curvature perturbation at the end of inflation in string theory.
Lyth, David H; Riotto, Antonio
2006-09-22
In brane inflationary scenarios, the cosmological perturbations are supposed to originate from the vacuum fluctuations of the inflaton field corresponding to the position of the brane. We show that a significant, and possibly dominant, contribution to the curvature perturbation is generated at the end of inflation through the vacuum fluctuations of fields, other than the inflaton, which are light during the inflationary trajectory and become heavy at the brane-antibrane annihilation. These fields appear generically in string compactifications where the background geometry has exact or approximate isometries and parametrize the internal angular directions of the brane.
DEFF Research Database (Denmark)
Grenner, Andreas; Tsivintzelis, Ioannis; Economou, Ioannis
2008-01-01
A standard database for the validation of vapor-liquid equilibrium (VLE) models was used to evaluate prediction and correlation accuracy of the nonrandom hydrogen bonding (NRHB) theory and the simplified perturbed-chain-statistical associating fluid theory (PC-SAFT). Pure-component parameters...... for the models were taken from literature or estimated in this work. Generalized pure-component parameters were fitted to pure-component vapor-pressure and liquid-density data. For the majority of the mixtures examined, satisfactory results were obtained. For a number of mixtures, different modeling approaches...
How ecosystems recover from pulse perturbations: A theory of short- to long-term responses.
Arnoldi, J-F; Bideault, A; Loreau, M; Haegeman, B
2017-10-04
Quantifying stability properties of ecosystems is an important problem in ecology. A common approach is based on the recovery from pulse perturbations, and posits that the faster an ecosystem return to its pre-perturbation state, the more stable it is. Theoretical studies often collapse the recovery dynamics into a single quantity: the long-term rate of return, called asymptotic resilience. However, empirical studies typically measure the recovery dynamics at much shorter time scales. In this paper we explain why asymptotic resilience is rarely representative of the short-term recovery. First, we show that, in contrast to asymptotic resilience, short-term return rates depend on features of the perturbation, in particular on the way its intensity is distributed over species. We argue that empirically relevant predictions can be obtained by considering the median response over a set of perturbations, for which we provide explicit formulas. Next, we show that the recovery dynamics are controlled through time by different species: abundant species tend to govern the short-term recovery, while rare species often dominate the long-term recovery. This shift from abundant to rare species typically causes short-term return rates to be unrelated to asymptotic resilience. We illustrate that asymptotic resilience can be determined by rare species that have almost no effect on the observable part of the recovery dynamics. Finally, we discuss how these findings can help to better connect empirical observations and theoretical predictions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Non-perturbative Heavy Quark Effective Theory: An application to semi-leptonic B-decays
Della Morte, Michele; Simma, Hubert; Sommer, Rainer
2015-01-01
We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B-decays at the leading order in 1/m_h.
Cholesky decomposed density matrices in Laplace transform Moeller-Plesset perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Clin, Lucien Cyril
2012-06-04
The evaluation of correlation energies in the canonical formulation of second order Moeller-Plesset Perturbation Theory (MP2) is limited to systems of about 100 atoms, due to the method's steep O(N{sup 5}) scaling. In order to extend the method's applicability to larger systems, it is therefore imperative to develop alternative formulations that allow for efficient scaling reduction. One such approach is the Laplace transform formalism introduced by Almloef and Haeser, with which MP2 can be expressed in the basis of atom-centered orbitals (AO-MP2), whose local character allows to take advantage of the short range of correlation effects. The overall scaling can thus be reduced through the application of integral pre-selection schemes to discard all numerically irrelevant contributions to the energy. This dissertation is concerned with the study of Cholesky decomposed pseudo-density (CDD) matrices within this AO-MP2 scheme. For technical reasons, namely, the AO-MP2 implementation of Doser et al. is restricted to the evaluation of the opposite spin component of MP2, and is thus bound to the empirical scaled opposite spin parametrization procedure. Applying a Cholesky decomposition to the occurring pseudo-density matrices, the same spin component required for full MP2 energies is naturally included in the resulting CDD-MP2 method, whereby the ab initio character is restored. The investigation of the CDD-approach was further motivated by the fact that the orbitals generated by the decomposition are localized (for electronically non-delocalized systems), and thus allow for the pre-selection of only numerically significant integrals. However, although it could be shown on simple systems that the method does in principle scale linearly, its application to even moderately sized systems with large basis sets is yet hampered by severe technical and numerical difficulties, which are analysed and discussed in detail. Another closely related project has been to extend
Energy Technology Data Exchange (ETDEWEB)
Vilkas, M J; Ishikawa, Y; Trabert, E
2007-03-27
Relativistic multireference many-body perturbation theory calculations have been performed on Xe{sup 43+}-Xe{sup 39+} ions, resulting in energy levels, electric dipole transition probabilities, and level lifetimes. The second-order many-body perturbation theory calculation of energy levels included mass shifts, frequency-dependent Breit correction and Lamb shifts. The calculated transition energies and E1 transition rates are used to present synthetic spectra in the extreme ultraviolet range for some of the Xe ions.
Soft and Collinear Radiation and Factorization in Perturbation Theory and Beyond
Gardi, Einan
2002-01-01
Power corrections to differential cross sections near a kinematic threshold are analysed by Dressed Gluon Exponentiation. Exploiting the factorization property of soft and collinear radiation, the dominant radiative corrections in the threshold region are resummed, yielding a renormalization-scale-invariant expression for the Sudakov exponent. The interplay between Sudakov logs and renormalons is clarified, and the necessity to resum the latter whenever power corrections are non-negligible is emphasized. The presence of power-suppressed ambiguities in the exponentiation kernel suggests that power corrections exponentiate as well. This leads to a non-perturbative factorization formula with non-trivial predictions on the structure of power corrections, which can be contrasted with the OPE. Two examples are discussed. The first is event-shape distributions in the two-jet region, where a wealth of precise data provides a strong motivation for the improved perturbative technique and an ideal situation to study had...
Piccardo, Matteo; Bloino, Julien; Barone, Vincenzo
2015-08-05
Models going beyond the rigid-rotor and the harmonic oscillator levels are mandatory for providing accurate theoretical predictions for several spectroscopic properties. Different strategies have been devised for this purpose. Among them, the treatment by perturbation theory of the molecular Hamiltonian after its expansion in power series of products of vibrational and rotational operators, also referred to as vibrational perturbation theory (VPT), is particularly appealing for its computational efficiency to treat medium-to-large systems. Moreover, generalized (GVPT) strategies combining the use of perturbative and variational formalisms can be adopted to further improve the accuracy of the results, with the first approach used for weakly coupled terms, and the second one to handle tightly coupled ones. In this context, the GVPT formulation for asymmetric, symmetric, and linear tops is revisited and fully generalized to both minima and first-order saddle points of the molecular potential energy surface. The computational strategies and approximations that can be adopted in dealing with GVPT computations are pointed out, with a particular attention devoted to the treatment of symmetry and degeneracies. A number of tests and applications are discussed, to show the possibilities of the developments, as regards both the variety of treatable systems and eligible methods. © 2015 Wiley Periodicals, Inc.
Perturbation theory for Lyapunov exponents of an Anderson model on a strip
Schulz-Baldes, H
2003-01-01
It is proven that the localization length of an Anderson model on a strip of width $L$ is bounded above by $L/\\lambda^2$ for small values of the coupling constant $\\lambda$ of the disordered potential. For this purpose, a new formalism is developed in order to calculate the bottom Lyapunov exponent associated with random products of large symplectic matrices perturbatively in the coupling constant of the randomness.
Real-space perturbation theory for frustrated magnets: application to magnetization plateaus
Zhitomirsky, M. E.
2015-03-01
We present a unified approach to the problem of degeneracy lifting in geometrically frustrated magnets with and without an external field. The method treats fluctuations around a classical spin configuration in terms of a real-space perturbation expansion. We calculate two lowest-order contributions for the Heisenberg spin Hamiltonian and use them to study the magnetization processes of spin-S triangular and kagomé antiferromagnets.
DEFF Research Database (Denmark)
Mackeprang, Kasper; Kjærgaard, Henrik Grum
2017-01-01
The local mode perturbation theory (LMPT) model was developed to improve the description of hydrogen bonded XH-stretching transitions, where X is typically O or N. We present a modified version of the LMPT model to extend its application from hydrated bimolecular complexes to hydrogen bonded...... bimolecular complexes with donors such as alcohols, amines and acids. We have applied the modified model to a series of complexes of different hydrogen bond type and complex energy. We found that the differences between local mode (LM) and LMPT calculated fundamental XH-stretching transition wavenumbers...
Energy Technology Data Exchange (ETDEWEB)
Pelaez, Jose R. [Universidad Complutense, Madrid (Spain). Dept. Fisica Teorica II
2005-07-01
We review the large N{sub c} behavior of light scalar and vector resonances generated from unitarized meson-meson scattering amplitudes at one loop in Chiral Perturbation Theory. The vectors nicely follow the behavior expected for qq-bar states, whereas scalar mesons do not. This suggests that the main component of light scalars is not q-barq. We also comment on t-channel vector exchange as well as on the large N{sub c} behavior of the mass splittings between the vectors generated from the inverse amplitude method. (author)
Twisted mass, overlap and Creutz fermions. Cut-off effects at tree-level of perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Cichy, K.; Kujawa, A. [Poznan Univ. (Poland). Faculty of Physics; Gonzalez Lopez, J. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Shindler, A. [Liverpool Univ. (United Kingdom). Theoretical Physics Division, Dept. of Mathematical Sicences
2008-02-15
We study cutoff effects at tree-level of perturbation theory for maximally twisted mass Wilson, overlap and the recently proposed Creutz fermions. We demonstrate that all three kind of lattice fermions exhibit the expected O(a{sup 2}) scaling behaviour in the lattice spacing. In addition, the sizes of these cutoff effects are comparable for the three kinds of lattice fermions considered here. Furthermore, we analyze situations when twisted mass fermions are not exactly at maximal twist and when overlap fermions are studied in comparison to twisted mass fermions when the quark masses are not matched. (orig.)
Umari, P; Petrenko, O; Taioli, S; De Souza, M M
2012-05-14
Electronic band gaps for optically allowed transitions are calculated for a series of semiconducting single-walled zig-zag carbon nanotubes of increasing diameter within the many-body perturbation theory GW method. The dependence of the evaluated gaps with respect to tube diameters is then compared with those found from previous experimental data for optical gaps combined with theoretical estimations of exciton binding energies. We find that our GW gaps confirm the behavior inferred from experiment. The relationship between the electronic gap and the diameter extrapolated from the GW values is also in excellent agreement with a direct measurement recently performed through scanning tunneling spectroscopy.
DEFF Research Database (Denmark)
Tsivintzelis, Ioannis; Grenner, Andreas; Economou, Ioannis
2008-01-01
Two statistical thermodynamic models, the nonrandom hydrogen bonding (NRHB) theory, which is a compressible lattice model, and the simplified perturbed-chain-statistical associating fluid theory (sPC-SAFT), which is based on Wertheim's perturbation theory, were used to model liquid-liquid equilib...... for the treatment of hydrogen bonding, yielded similar predictions for the fraction of non-hydrogen bonded molecules (monomer fraction) in pure 1-alkanols and in 1-alkanol-n-hexane mixtures....
High-order epistasis shapes evolutionary trajectories.
Sailer, Zachary R; Harms, Michael J
2017-05-01
High-order epistasis-where the effect of a mutation is determined by interactions with two or more other mutations-makes small, but detectable, contributions to genotype-fitness maps. While epistasis between pairs of mutations is known to be an important determinant of evolutionary trajectories, the evolutionary consequences of high-order epistasis remain poorly understood. To determine the effect of high-order epistasis on evolutionary trajectories, we computationally removed high-order epistasis from experimental genotype-fitness maps containing all binary combinations of five mutations. We then compared trajectories through maps both with and without high-order epistasis. We found that high-order epistasis strongly shapes the accessibility and probability of evolutionary trajectories. A closer analysis revealed that the magnitude of epistasis, not its order, predicts is effects on evolutionary trajectories. We further find that high-order epistasis makes it impossible to predict evolutionary trajectories from the individual and paired effects of mutations. We therefore conclude that high-order epistasis profoundly shapes evolutionary trajectories through genotype-fitness maps.
Linear perturbation theory for tidal streams and the small-scale CDM power spectrum
Bovy, Jo; Erkal, Denis; Sanders, Jason L.
2017-04-01
Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r function down to 105 M⊙, thus definitively testing whether dark matter is clumpy on the smallest scales relevant for galaxy formation.
Perturbation theory for short-range weakly-attractive potentials in one dimension
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo, E-mail: paolo.amore@gmail.com [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima (Mexico); Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CONICET), Division Química Teórica, Blvd. 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)
2017-03-15
We have obtained the perturbative expressions up to sixth order for the energy of the bound state in a one dimensional, arbitrarily weak, short range finite well, applying a method originally developed by Gat and Rosenstein Ref. [1]. The expressions up to fifth order reproduce the results already known in the literature, while the sixth order had not been calculated before. As an illustration of our formulas we have applied them to two exactly solvable problems and to a nontrivial problem.
Anti-Stokes luminescence in the light of second order perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Rupak, E-mail: rupak@iiserkol.ac.in; Pal, Bipul, E-mail: bipul@iiserkol.ac.in; Bansal, Bhavtosh, E-mail: bhavtosh@iiserkol.ac.in [Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246 (India)
2014-11-10
Anti-Stokes photoluminescence is measured in high-quality GaAs quantum wells. The primary pathway for interband optical absorption and hence emission under subbandgap photoexcitation is the optical phonon-mediated second-order electric dipole transition. This conclusion is drawn from the remarkable agreement between predictions of second-order perturbation calculation and the measured intensity of anti-Stokes photoluminescence, both as function of the detuning wavelength and temperature. The results are of direct relevance to laser cooling of solids where phonon-assisted upconversion is a necessary condition.
Intermediate-mass-ratio black-hole binaries: numerical relativity meets perturbation theory.
Lousto, Carlos O; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela
2010-05-28
We study black-hole binaries in the intermediate-mass-ratio regime 0.01≲q≲0.1 with a new technique that makes use of nonlinear numerical trajectories and efficient perturbative evolutions to compute waveforms at large radii for the leading and nonleading (ℓ, m) modes. As a proof-of-concept, we compute waveforms for q=1/10. We discuss applications of these techniques for LIGO and VIRGO data analysis and the possibility that our technique can be extended to produce accurate waveform templates from a modest number of fully nonlinear numerical simulations.
Energy Technology Data Exchange (ETDEWEB)
Schunert, Sebastian; Wang, Congjian; Wang, Yaqi; Kong, Fande; Ortensi, Javier; Baker, Benjamin; Gleicher, Frederick; DeHart, Mark; Martineau, Richard
2017-04-01
Rattlesnake and MAMMOTH are the designated TREAT analysis tools currently being developed at the Idaho National Laboratory. Concurrent with development of the multi-physics, multi-scale capabilities, sensitivity analysis and uncertainty quantification (SA/UQ) capabilities are required for predicitive modeling of the TREAT reactor. For steady-state SA/UQ, that is essential for setting initial conditions for the transients, generalized perturbation theory (GPT) will be used. This work describes the implementation of a PETSc based solver for the generalized adjoint equations that constitute a inhomogeneous, rank deficient problem. The standard approach is to use an outer iteration strategy with repeated removal of the fundamental mode contamination. The described GPT algorithm directly solves the GPT equations without the need of an outer iteration procedure by using Krylov subspaces that are orthogonal to the operator’s nullspace. Three test problems are solved and provide sufficient verification for the Rattlesnake’s GPT capability. We conclude with a preliminary example evaluating the impact of the Boron distribution in the TREAT reactor using perturbation theory.
High-order evolving surface finite element method for parabolic problems on evolving surfaces
Kovács, Balázs
2016-01-01
High-order spatial discretisations and full discretisations of parabolic partial differential equations on evolving surfaces are studied. We prove convergence of the high-order evolving surface finite element method, by showing high-order versions of geometric approximation errors and perturbation error estimates and by the careful error analysis of a modified Ritz map. Furthermore, convergence of full discretisations using backward difference formulae and implicit Runge-Kutta methods are als...
High-Order Frequency-Locked Loops
DEFF Research Database (Denmark)
Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez
2017-01-01
In very recent years, some attempts for designing high-order frequency-locked loops (FLLs) have been made. Nevertheless, the advantages and disadvantages of these structures, particularly in comparison with a standard FLL and high-order phase-locked loops (PLLs), are rather unclear. This lack...... study, and its small-signal modeling, stability analysis, and parameter tuning are presented. Finally, to gain insight about advantages and disadvantages of high-order FLLs, a theoretical and experimental performance comparison between the designed second-order FLL and a standard FLL (first-order FLL...
A Non-Perturbative, Finite Particle Number Approach to Relativistic Scattering Theory
Energy Technology Data Exchange (ETDEWEB)
Lindesay, James V
2001-05-11
We present integral equations for the scattering amplitudes of three scalar particles, using the Faddeev channel decomposition, which can be readily extended to any finite number of particles of any helicity. The solution of these equations, which have been demonstrated to be calculable, provide a non-perturbative way of obtaining relativistic scattering amplitudes for any finite number of particles that are Lorentz invariant, unitary, cluster decomposable and reduce unambiguously in the non-relativistic limit to the non-relativistic Faddeev equations. The aim of this program is to develop equations which explicitly depend upon physically observable input variables, and do not require ''renormalization'' or ''dressing'' of these parameters to connect them to the boundary states.
Application of perturbation theory to a P-wave eikonal equation in orthorhombic media
Stovas, Alexey
2016-10-12
The P-wave eikonal equation for orthorhombic (ORT) anisotropic media is a highly nonlinear partial differential equation requiring the solution of a sixth-order polynomial to obtain traveltimes, resulting in complex and time-consuming numerical solutions. To alleviate this complexity, we approximate the solution of this equation by applying a multiparametric perturbation approach. We also investigated the sensitivity of traveltime surfaces inORT mediawith respect to three anelliptic parameters. As a result, a simple and accurate P-wave traveltime approximation valid for ORT media was derived. Two different possible anelliptic parameterizations were compared. One of the parameterizations includes anelliptic parameters defined at zero offset: η1, η2, and ηxy. Another parameterization includes anelliptic parameters defined for all symmetry planes: η1, η2, and η3. The azimuthal behavior of sensitivity coefficients with different parameterizations was used to analyze the crosstalk between anelliptic parameters. © 2016 Society of Exploration Geophysicists.
Low-energy scattering parameters for van der Waals perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Benofy, L.P.; Buendia, E.; Guardiola, R.; de Llano, M.
1986-06-01
The low-energy two-body scattering S- and P-wave parameters, together with a shape-dependent S-wave quantity, which appear in the well-known low-density expansions for the ground-state energy of many-boson and many-fermion systems, are accurately calculated for several central pair potentials for spin-polarized atoms, helium atoms, and nucleons. An integral-equation method allowing accurate determination of the coefficients of the above-mentioned parameters expanded in powers of the attraction strength of the pair potential is presented and applied. The results are needed for perturbation studies of ground-state energies of various quantum many-body systems.
Quantum chromodynamics and the dynamics of hadrons. [Review, bound state, perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.J.
1979-03-01
The application of perturbative quantum chromodynamics to the dynamics of hadrons at short distance is reviewed, with particular emphasis on the role of the hadronic bound state. A number of new applications are discussed, including the modification to QCD scaling violations in structure functions due to hadronic binding; a discussion of coherence and binding corrections to the gluon and sea-quark distributions; QCD radiative corrections to dimensional counting rules for exclusive processes and hadronic form factors at large momentum transfer; generalized counting rules for inclusive processes; the special role of photon-induced reactions in QCD, especially applications to jet production in photon-photon collisions, and photon production at large transverse momentum. Also presented is a short review of the central problems in large P/sub T/ hadronic reactions and the distinguishing characteristics of gluon and quark jets. 163 references.
A porous flow model of flank eruptions on Mt. Etna: second-order perturbation theory
Directory of Open Access Journals (Sweden)
N. Cenni
1997-06-01
Full Text Available A porous flow model for magma migration from a deep source within a volcanic edifice is developed. The model is based on the assumption that an isotropic and homogeneous system of fractures allows magma migration from one localized feeding dyke up to the surface of the volcano. The maximum level that magma can reach within the volcano (i.e., the «free surface» of magma, where fluid pressure equals the atmospheric pressure is reproduced through a second-order perturbation approach to the non-linear equations governing the migration of incompressible fluids through a porous medium. The perturbation parameter is found to depend on the ratio of the volumic discharge rate at the source (m3/s divided by the product of the hydraulic conductivity of the medium (m1/s times the square of the source depth. The second-order corrections for the free surface of Mt. Etna are found to be small but not negligible; from the comparison between first-order and second-order free surfaces it appears that the former is higher near the summit, slightly lower at intermediate altitudes and slightly higher far away from the axis of the volcano. Flank eruptions in the southern sector are found to be located in regions where the topography is actually lower than the theoretical free surface of magma. In this sector, modulations in the eruption site density correlate well with even minor differences between free surface and topography. In the northern and western sectors similar good fits are found, while the NE rift and the eastern sector seem to require mechanisms or structures respectively favouring and inhibiting magma migration.
Theoretical study on high order interior tomography
Yang, Jiansheng; Cong, Wenxiang; Jiang, Ming; Wang, Ge
2013-01-01
In this paper, we study a new type of high order interior problems characterized by high order differential phase shift measurement. This problem is encountered in local x-ray phase-contrast tomography. Here we extend our previous theoretical framework from interior CT to interior differential phase-contrast tomography, and establish the solution uniqueness in this context. We employ the analytic continuation method and high order total variation minimization which we developed in our previous work for interior CT, and prove that an image in a region of interest (ROI) can be uniquely reconstructed from truncated high order differential projection data if the image is known a priori in a sub-region of the ROI or the image is piecewise polynomial in the ROI. Preliminary numerical experiments support the theoretical finding. PMID:23324783
Tsunami wave propagation using a high-order well-balanced finite volume scheme
Castro, Cristóbal E.
2010-05-01
In this work we present a new numerical tool suitable for tsunami wave propagation simulations. We developed a finite volume high-order well-balanced numerical method on unstructured meshes based on the ADER-FV scheme [1]. We use the ADER-FV[2,3] scheme to solve with arbitrary accuracy in space and time the shallow water equation with non-constant bathymetry. In order to properly simulate a tsunami wave propagation we introduce the well-balanced or C-property[4] in the high-order numerical solution. In this presentation we address two important issues that appear when one tries to solve a tsunami propagation problem. First, when small gravity waves are propagated for hundred of wave-lengths, the accuracy in space and time of the numerical method is fundamental to preserve the amplitude. In this presentation we study the propagation of small perturbations over long distances, relating the order of accuracy, the mesh dimension and the wave amplitude. Second, as we deal with high-order schemes we can naturally use polynomial representation of the bathymetry. Here we try to understand the influence of the bathymetry representation in the final solution. [1] C. E. Castro et al. "ADER scheme on unstructured meshes for shallow water: simulation of tsunami waves", submitted [2] E. F. Toro et al. "Towards very high order godunov schemes". In E. F. Toro, editor, Godunov methods; Theory and applications, pages 907--940, Oxford, 2001. Kluwer Academic Plenum Publishers. [3] E. F. Toro and V. A. Titarev. "Solution of the generalized Riemann problem for advection-reaction equations". Proc. Roy. Soc. London, pages 271--281, 2002. [4] A. Bermúdez and M. E. Vázquez. "Upwind methods for hyperbolic conservation laws with source terms". Computer and Fluids, 23(8):1049--1071, 1994.
Energy Technology Data Exchange (ETDEWEB)
Brown, L.S.; Yaffe, L.G. (Department of Physics, University of Washington, Seattle, Washington 98195 (United States))
1992-01-15
A simple and direct approach is used to examine the constraints imposed by asymptotic freedom and analytically on the large-order behavior of perturbaton theory for the current-current correlation function and its imaginary part which gives the {ital R} ratio in high-energy {ital e}{sup +-}{ital e{minus}} annihilation.
Directory of Open Access Journals (Sweden)
Teffera M. Asfaw
2017-01-01
Full Text Available Let X be a real locally uniformly convex reflexive Banach space with locally uniformly convex dual space X⁎. Let T:X⊇D(T→2X⁎ be maximal monotone, S:X→2X⁎ be bounded and of type (S+, and C:D(C→X⁎ be compact with D(T⊆D(C such that C lies in Γστ (i.e., there exist σ≥0 and τ≥0 such that Cx≤τx+σ for all x∈D(C. A new topological degree theory is developed for operators of the type T+S+C. The theory is essential because no degree theory and/or existence result is available to address solvability of operator inclusions involving operators of the type T+S+C, where C is not defined everywhere. Consequently, new existence theorems are provided. The existence theorem due to Asfaw and Kartsatos is improved. The theory is applied to prove existence of weak solution (s for a nonlinear parabolic problem in appropriate Sobolev spaces.
Xie, L; Wang, P; Pan, X Q
2014-08-01
The novel discovery of electron vortices carrying quantized orbital angular momentum motivated intensive research of their basic properties as well as applications, e.g. structural characterization of magnetic materials. In this paper, the fundamental interactions of electron vortices within infinitely long atomic-column-like electromagnetic fields are studied based on the relativistically corrected Pauli-Schrödinger equation and the perturbation theory. The relative strengths of three fundamental interactions, i.e. the electron-electric potential interaction, the electron-magnetic potential/field interaction and the spin-orbit coupling are discussed. The results suggest that the perturbation energies of the last two interactions are in an order of 10(3)-10(4) smaller than that of the first one for electron vortices. In addition, it is also found that the strengths of these interactions are strongly dependant on the spatial distributions of the electromagnetic field as well as the electron vortices. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ghosh, Anirban; Sinha Ray, Suvonil; Chaudhuri, Rajat K; Chattopadhyay, Sudip
2017-02-23
The relativistic multireference (MR) perturbative approach is one of the most successful tools for the description of computationally demanding molecular systems of heavy elements. We present here the ground state dissociation energy surfaces, equilibrium bond lengths, harmonic frequencies, and dissociation energies of Ag2, Cu2, Au2, and I2 computed using the four-component (4c) relativistic spinors based state-specific MR perturbation theory (SSMRPT) with improved virtual orbital complete active space configuration interaction (IVO-CASCI) functions. The IVO-CASCI method is a simple, robust, useful and lower cost alternative to the complete active space self-consistent field approach for treating quasidegenerate situations. The redeeming features of the resulting method, termed as 4c-IVO-SSMRPT, lies in (i) manifestly size-extensivity, (ii) exemption from intruder problems, (iii) the freedom of convenient multipartitionings of the Hamiltonian, (iv) flexibility of the relaxed and unrelaxed descriptions of the reference coefficients, and (v) manageable cost/accuracy ratio. The present method delivers accurate descriptions of dissociation processes of heavy element systems. Close agreement with reference values has been found for the calculated molecular constants indicating that our 4c-IVOSSMRPT provides a robust and economic protocol for determining the structural properties for the ground state of heavy element molecules with eloquent MR character as it treats correlation and relativity on equal footing.
Coe, J P; 10.1063/1.4767436
2013-01-01
Approximate natural orbitals are investigated as a way to improve a Monte Carlo configuration interaction (MCCI) calculation. We introduce a way to approximate the natural orbitals in MCCI and test these and approximate natural orbitals from MP2 and QCISD in MCCI calculations of single-point energies. The efficiency and accuracy of approximate natural orbitals in MCCI potential curve calculations for the double hydrogen dissociation of water, the dissociation of carbon monoxide and the dissociation of the nitrogen molecule are then considered in comparison with standard MCCI when using full configuration interaction as a benchmark. We also use the method to produce a potential curve for water in an aug-cc-pVTZ basis. A new way to quantify the accuracy of a potential curve is put forward that takes into account all of the points and that the curve can be shifted by a constant. We adapt a second-order perturbation scheme to work with MCCI (MCCIPT2) and improve the efficiency of the removal of duplicate states i...
Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan
2017-03-01
Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
The Electric Dipole Form Factor of the Nucleon in Chiral Perturbation Theory to Sub-leading Order
Mereghetti, E; Hockings, W H; Maekawa, C M; van Kolck, U
2011-01-01
The electric dipole form factor (EDFF) of the nucleon stemming from the QCD theta term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution from the pion cloud. In the case of the theta term, the expected lower bound on the deuteron electric dipole moment is |d_d| > 1.4 10^(-4) \\theta e fm. The momentum dependence of the isovector EDFF is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation ---appearing, in particular, in the radius of the form factor--- is the pion mass.
Su, Neil Qiang; Xu, Xin
2015-10-13
An integration approach is developed to calculate ionization potentials (IPs), and electron affinities (EAs), which is an extension of the D-ΔMBPT(2) method [A. Beste et al., J. Chem. Phys. 2013, 138, 074101]. The latter is an extension of the single-point method of Cohen et al. [A. J. Cohen et al., J. Chem. Theory Comput. 2009, 5, 786] from the perspective of fractional charges. While relaxation effects were included only at the Hartree-Fock (HF) level in the previous methods, such effects are fully taken into account in the present method up to the second-order Møller-Plesset (MP2) level. This is made possible by deriving the full MP2 energy gradient, with respect to the orbital occupation numbers, which is solved through the coupled-perturbed HF (CP-HF) equations.
Efroimsky, Michael,; Escapa, Alberto
2007-08-01
In the method of variation of parameters we express the Cartesian coordinates or the Euler angles as functions of the time and six constants. If, under disturbance, we endow the “constants” with time dependence, the perturbed orbital or angular velocity will consist of a partial time derivative and a convective term that includes time derivatives of the “constants”. The Lagrange constraint, often imposed for convenience, nullifies the convective term and thereby guarantees that the functional dependence of the velocity on the time and “constants” stays unaltered under disturbance. “Constants” satisfying this constraint are called osculating elements. Otherwise, they are simply termed orbital or rotational elements. When the equations for the elements are required to be canonical, it is normally the Delaunay variables that are chosen to be the orbital elements, and it is the Andoyer variables that are typically chosen to play the role of rotational elements. (Since some of the Andoyer elements are time-dependent even in the unperturbed setting, the role of “constants” is actually played by their initial values.) The Delaunay and Andoyer sets of variables share a subtle peculiarity: under certain circumstances the standard equations render the elements nonosculating. In the theory of orbits, the planetary equations yield nonosculating elements when perturbations depend on velocities. To keep the elements osculating, the equations must be amended with extra terms that are not parts of the disturbing function [Efroimsky, M., Goldreich, P.: J. Math. Phys. 44, 5958 5977 (2003); Astron. Astrophys. 415, 1187 1199 (2004); Efroimsky, M.: Celest. Mech. Dyn. Astron. 91, 75 108 (2005); Ann. New York Acad. Sci. 1065, 346 374 (2006)]. It complicates both the Lagrange- and Delaunay-type planetary equations and makes the Delaunay equations noncanonical. In attitude dynamics, whenever a perturbation depends upon the angular velocity (like a switch to a
Takeshita, Tyler Y; de Jong, Wibe A; Neuhauser, Daniel; Baer, Roi; Rabani, Eran
2017-10-10
A stochastic orbital approach to the resolution of identity (RI) approximation for 4-index electron repulsion integrals (ERIs) is presented. The stochastic RI-ERIs are then applied to second order Møller-Plesset perturbation theory (MP2) utilizing a multiple stochastic orbital approach. The introduction of multiple stochastic orbitals results in an O(NAO3) scaling for both the stochastic RI-ERIs and stochastic RI-MP2, NAO being the number of basis functions. For a range of water clusters we demonstrate that this method exhibits a small prefactor and observed scalings of O(Ne2.4) for total energies and O(Ne3.1) for forces (Ne being the number of correlated electrons), outperforming MP2 for clusters with as few as 21 water molecules.
Mackeprang, Kasper; Kjaergaard, Henrik G.
2017-04-01
The local mode perturbation theory (LMPT) model was developed to improve the description of hydrogen bonded XH-stretching transitions, where X is typically O or N. We present a modified version of the LMPT model to extend its application from hydrated bimolecular complexes to hydrogen bonded bimolecular complexes with donors such as alcohols, amines and acids. We have applied the modified model to a series of complexes of different hydrogen bond type and complex energy. We found that the differences between local mode (LM) and LMPT calculated fundamental XH-stretching transition wavenumbers and oscillator strengths were correlated with the strength of the hydrogen bond. Overall, we have found that the LMPT model in most cases predicts transition wavenumbers within 20 cm-1 of the experimental values.
DEFF Research Database (Denmark)
Liang, Xiaodong; Kontogeorgis, Georgios
2015-01-01
resolved the mostly criticized numerical pitfall, that is, the presence of more than three volume roots at real application conditions. Finally, the possibility of using the original PC-SAFT EOS parameters with the new universal constants has been investigated for the phase equilibria of the systems......The Perturbed Chain-Statistical Associating Fluid Theory Equation of State (PC-SAFT EOS) has been successfully applied to model phase behavior of various types of systems, while it is also well-known that the PC-SAFT EOS has difficulties in describing some second-order derivative properties...... roots, have been analyzed. Then, a practical procedure has been proposed to refit the universal constants of the PC-SAFT EOS with the purpose of fixing the numerical pitfalls in the real application ranges and reusing the original parameters. It is shown that the new universal constants have practically...
Haber, Jonah; Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.
Multi-exciton generation processes, in which multiple charge carriers are generated from a single photon, are mechanisms of significant interest for achieving efficiencies beyond the Shockley-Queisser limit of conventional p-n junction solar cells. One well-studied multiexciton process is singlet fission, whereby a singlet decays into two spin-correlated triplet excitons. Here, we use a newly developed computational approach to calculate singlet-fission coupling terms and rates with an ab initio Green's function formalism based on many-body perturbation theory (MBPT) within the GW approximation and the Bethe-Salpeter equation approach. We compare results for crystalline pentacene and TIPS-pentacene and explore the effect of molecular packing on the singlet fission mechanism. This work is supported by the Department of Energy.
Monte Carlo explicitly correlated second-order many-body perturbation theory.
Johnson, Cole M; Doran, Alexander E; Zhang, Jinmei; Valeev, Edward F; Hirata, So
2016-10-21
A stochastic algorithm is proposed and implemented that computes a basis-set-incompleteness (F12) correction to an ab initio second-order many-body perturbation energy as a short sum of 6- to 15-dimensional integrals of Gaussian-type orbitals, an explicit function of the electron-electron distance (geminal), and its associated excitation amplitudes held fixed at the values suggested by Ten-no. The integrals are directly evaluated (without a resolution-of-the-identity approximation or an auxiliary basis set) by the Metropolis Monte Carlo method. Applications of this method to 17 molecular correlation energies and 12 gas-phase reaction energies reveal that both the nonvariational and variational formulas for the correction give reliable correlation energies (98% or higher) and reaction energies (within 2 kJ mol(-1) with a smaller statistical uncertainty) near the complete-basis-set limits by using just the aug-cc-pVDZ basis set. The nonvariational formula is found to be 2-10 times less expensive to evaluate than the variational one, though the latter yields energies that are bounded from below and is, therefore, slightly but systematically more accurate for energy differences. Being capable of using virtually any geminal form, the method confirms the best overall performance of the Slater-type geminal among 6 forms satisfying the same cusp conditions. Not having to precompute lower-dimensional integrals analytically, to store them on disk, or to transform them in a nonscalable dense-matrix-multiplication algorithm, the method scales favorably with both system size and computer size; the cost increases only as O(n(4)) with the number of orbitals (n), and its parallel efficiency reaches 99.9% of the ideal case on going from 16 to 4096 computer processors.
Grosenick, D.; Kummrow, A.; MacDonald, R.; Schlag, P. M.; Rinneberg, H.
2007-12-01
Time-domain perturbation theory of photon diffusion up to third order was evaluated for its accuracy in deducing optical properties of breast tumors using simulated and physical phantoms and by analyzing 141 projection mammograms of 87 patients with histology-validated tumors that had been recorded by scanning time-domain optical mammography. The slightly compressed breast was modeled as (partially) homogeneous diffusely scattering infinite slab containing a scattering and absorbing spherical heterogeneity representing the tumor. Photon flux densities were calculated from densities of transmitted photons, assuming extended boundary conditions. Explicit formulas are provided for second-order changes in transmitted photon density due to the presence of absorbers or scatterers. The results on phantoms obtained by perturbation theory carried up to third order were compared with measured temporal point spread functions, with numerical finite-element method (FEM) simulations of transmitted photon flux density, with results obtained from the diffraction of diffuse photon density waves, and from Padé approximants. The breakdown of first-, second-, and third-order perturbation theory is discussed for absorbers and a general expression was derived for the convergence of the Born series in this case. Taking tumor optical properties derived by the diffraction model as reference we conclude that estimates of tumor absorption coefficients by perturbation theory agree with reference values within ±25% in only 65% (first order), 66% (second order), and 77% (third order) of all mammograms analyzed. In the remaining cases tumor absorption is generally underestimated due to the breakdown of perturbation theory. On average the empirical Padé approximants yield tumor absorption coefficients similar to third-order perturbation theory, yet at noticeable lower computational efforts.
González-Díaz, Humberto; Arrasate, Sonia; Gómez-SanJuan, Asier; Sotomayor, Nuria; Lete, Esther; Besada-Porto, Lina; Ruso, Juan M
2013-01-01
In general perturbation methods starts with a known exact solution of a problem and add "small" variation terms in order to approach to a solution for a related problem without known exact solution. Perturbation theory has been widely used in almost all areas of science. Bhor's quantum model, Heisenberg's matrix mechanincs, Feyman diagrams, and Poincare's chaos model or "butterfly effect" in complex systems are examples of perturbation theories. On the other hand, the study of Quantitative Structure-Property Relationships (QSPR) in molecular complex systems is an ideal area for the application of perturbation theory. There are several problems with exact experimental solutions (new chemical reactions, physicochemical properties, drug activity and distribution, metabolic networks, etc.) in public databases like CHEMBL. However, in all these cases, we have an even larger list of related problems without known solutions. We need to know the change in all these properties after a perturbation of initial boundary conditions. It means, when we test large sets of similar, but different, compounds and/or chemical reactions under the slightly different conditions (temperature, time, solvents, enzymes, assays, protein targets, tissues, partition systems, organisms, etc.). However, to the best of our knowledge, there is no QSPR general-purpose perturbation theory to solve this problem. In this work, firstly we review general aspects and applications of both perturbation theory and QSPR models. Secondly, we formulate a general-purpose perturbation theory for multiple-boundary QSPR problems. Last, we develop three new QSPR-Perturbation theory models. The first model classify correctly >100,000 pairs of intra-molecular carbolithiations with 75-95% of Accuracy (Ac), Sensitivity (Sn), and Specificity (Sp). The model predicts probabilities of variations in the yield and enantiomeric excess of reactions due to at least one perturbation in boundary conditions (solvent, temperature
High order Poisson Solver for unbounded flows
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe
2015-01-01
This paper presents a high order method for solving the unbounded Poisson equation on a regular mesh using a Green’s function solution. The high order convergence was achieved by formulating mollified integration kernels, that were derived from a filter regularisation of the solution field....... The method was implemented on a rectangular domain using fast Fourier transforms (FFT) to increase computational efficiency. The Poisson solver was extended to directly solve the derivatives of the solution. This is achieved either by including the differential operator in the integration kernel...... or by performing the differentiation as a multiplication of the Fourier coefficients. In this way, differential operators such as the divergence or curl of the solution field could be solved to the same high order convergence without additional computational effort. The method was applied and validated using...
Zheligovsky, Vladislav
2011-01-01
New developments for hydrodynamical dynamo theory have been spurred by recent evidence of self-sustained dynamo activity in laboratory experiments with liquid metals. The emphasis in the present volume is on the introduction of powerful mathematical techniques required to tackle modern multiscale analysis of continous systems and there application to a number of realistic model geometries of increasing complexity. This introductory and self-contained research monograph summarizes the theoretical state-of-the-art to which the author has made pioneering contributions.
Energy Technology Data Exchange (ETDEWEB)
Erhart, Paul [Applied Physics, Chalmers University of Technology, Gothenburg (Sweden); Lawrence Livermore National Laboratory, Livermore, California (United States); Aaberg, Daniel; Sadigh, Babak [Lawrence Livermore National Laboratory, Livermore, California (United States)
2012-07-01
Rare-earth based scintillators represent a challenging class of scintillator materials due to pronounced spin-orbit coupling and subtle interactions between d and f states that cannot be reproduced by standard electronic structure methods such as density functional theory. In this contribution we present a detailed investigation of the electronic band structure of LaBr{sub 3} using the quasi-p article self-consistent GW (scGW) method. This parameter-free approach is shown to yield an excellent description of the electronic structure of LaBr{sub 3}. Specifically we reproduce the correct level ordering and spacing of the 4f and 5d states, which are inverted with respect to the free La atom, the band gap as well as the spin-orbit splitting of La-derived states. We furthermore present electronic structure calculations using G{sub 0}W{sub 0} for the important scintillator material SrI{sub 2}. We explicitly take into account spin-orbit coupling at all levels of the theory. Our results demonstrate the applicability and reliability of the scGW approach for rare-earth halides. They furthermore provide an excellent starting point for investigating the electronic structure of rare-earth dopants such as Ce and Er.
High-Order Thermal Radiative Transfer
Energy Technology Data Exchange (ETDEWEB)
Woods, Douglas Nelson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cleveland, Mathew Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wollaeger, Ryan Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warsa, James S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-18
The objective of this research is to asses the sensitivity of the linearized thermal radiation transport equations to finite element order on unstructured meshes and to investigate the sensitivity of the nonlinear TRT equations due to evaluating the opacities and heat capacity at nodal temperatures in 2-D using high-order finite elements.
High-Order Adaptive Galerkin Methods
Canuto, C.; Nochetto, R.H.; Stevenson, R.; Verani, M.; Kirby, R.M.; Berzins, M.; Hesthaven, J.S.
2015-01-01
We design adaptive high-order Galerkin methods for the solution of linear elliptic problems and study their performance. We first consider adaptive Fourier-Galerkin methods and Legendre-Galerkin methods, which offer unlimited approximation power only restricted by solution and data regularity. Their
The theory of nonclassical relaxation oscillations in singularly perturbed delay systems
Energy Technology Data Exchange (ETDEWEB)
Glyzin, S. D.; Kolesov, A. Yu. [Yaroslavl' State University (Russian Federation); Rozov, N. Kh., E-mail: glyzin@uniyar.ac.ru, E-mail: kolesov@uniyar.ac.ru, E-mail: fpo.mgu@mail.ru [Moscow State University (Russian Federation)
2014-06-01
Some special classes of relaxation systems are introduced, with one slow and one fast variable, in which the evolution of the slow component x(t) in time is described by an ordinary differential equation, while the evolution of the fast component y(t) is described by a Volterra-type differential equation with delay y(t−h), h=const>0, and with a small parameter ε>0 multiplying the time derivative. Questions relating to the existence and stability of impulse-type periodic solutions, in which the x-component converges pointwise to a discontinuous function as ε→0 and the y-component is shaped like a δ-function, are investigated. The results obtained are illustrated by several examples from ecology and laser theory. Bibliography: 11 titles. (paper)
Functional-Integral Based Perturbation Theory for the Malthus-Verhulst Process
Moloney, Nicholas R.; Dickman, Ronald
2006-12-01
We apply a functional-integral formalism for Markovian birth and death processes to determine asymptotic corrections to mean-field theory in the Malthus-Verhulst process (MVP). Expanding about the stationary mean-field solution, we identify an expansion parameter that is small in the limit of large mean population, and derive a diagrammatic expansion in powers of this parameter. The series is evaluated to fifth order using computational enumeration of diagrams. Although the MVP has no stationary state, we obtain good agreement with the associated {\\it quasi-stationary} values for the moments of the population size, provided the mean population size is not small. We compare our results with those of van Kampen's $\\Omega$-expansion, and apply our method to the MVP with input, for which a stationary state does exist.
Directory of Open Access Journals (Sweden)
Edward A. Startsev
2003-08-01
Full Text Available In plasmas with strongly anisotropic distribution functions (T_{∥b}/T_{⊥b}≪1 a Harris-like collective instability may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Such anisotropies develop naturally in accelerators and may lead to a deterioration of beam quality. This paper extends previous numerical studies [E. A. Startsev, R. C. Davidson, and H. Qin, Phys. Plasmas 9, 3138 (2002] of the stability properties of intense non-neutral charged particle beams with large temperature anisotropy (T_{⊥b}≫T_{∥b} to allow for nonaxisymmetric perturbations with ∂/∂θ≠0. The most unstable modes are identified, and their eigenfrequencies, radial mode structure, and nonlinear dynamics are determined. The simulation results clearly show that moderately intense beams with s_{b}=ω[over ^]_{pb}^{2}/2γ_{b}^{2}ω_{β⊥}^{2}≳0.5 are linearly unstable to short-wavelength perturbations with k_{z}^{2}r_{b}^{2}≳1, provided the ratio of longitudinal and transverse temperatures is smaller than some threshold value. Here, ω[over ^]_{pb}^{2}=4πn[over ^]_{b}e_{b}^{2}/γ_{b}m_{b} is the relativistic plasma frequency squared, and ω_{β⊥} is the betatron frequency associated with the applied smooth-focusing field. A theoretical model is developed based on the Vlasov-Maxwell equations which describes the essential features of the linear stages of instability. Both the simulations and the analytical theory predict that the dipole mode (azimuthal mode number m=1 is the most unstable mode. In the nonlinear stage, tails develop in the longitudinal momentum distribution function, and the kinetic instability saturates due to resonant wave-particle interactions.
Translation-rotation states of H2 in C60: New insights from a perturbation-theory treatment.
Felker, Peter M; Bačić, Zlatko
2016-08-28
We report an investigation of the translation-rotation (TR) level structure of H2 entrapped in C60, in the rigid-monomer approximation, by means of a low-order perturbation theory (PT). We focus in particular on the degree to which PT can accurately account for that level structure, by comparison with the variational quantum five-dimensional calculations. To apply PT to the system, the interaction potential of H2@C60 is decomposed into a sum over bipolar spherical tensors. A zeroth-order Hamiltonian, Hˆ0, is then constructed as the sum of the TR kinetic-energy operator and the one term in the tensor decomposition of the potential that depends solely on the radial displacement of the H2 center of mass (c.m.) from the cage center. The remaining terms in the potential are treated as perturbations. The eigenstates of Hˆ0, constructed to also account for the coupling of the angular momentum of the H2 c.m. about the cage center with the rotational angular momentum of the H2 about the c.m., are taken as the PT zeroth-order states. This zeroth-order level structure is shown to be an excellent approximation to the true one except for two types of TR-level splittings present in the latter. We then show that first-order PT accounts very well for these splittings, with respect to both their patterns and magnitudes. This allows one to connect specific features of the level structure with specific features of the potential-energy surface, and provides important new physical insight into the characteristics of the TR level structure.
Fermion perturbations in string-theory black holes II: the higher dimensional case
Piedra, Owen Pavel Fernández; Santana, Y Jiménez; Noris, L Figueredo
2012-01-01
In this paper we report the results of a detailed investigation of the complete time evolution of massless fermion fields propagating in spacetimes of higher dimensional stringy black hole solutions, obtained from intersecting branes in string/$M$ theory. We write the Dirac equation in $D$-dimensional spacetime in a form suitable to perform a numerical integration of it, and using a Prony fitting of the time domain data, we determine the quasinormal frequencies that characterize the test field evolution at intermediary times. We also present the results obtained for the quasinormal frequencies using a sixth order WKB approximation, that are in perfect agreement with the numerical results. The power law exponents that describe the field relaxation at very late times are also determined, and we show that they depends upon the dimensionality of space-time, and are identical to that associated with the relaxation of boson fields for odd dimensions. The dependance of the frequencies and damping factor of the spino...
Fermion Perturbations in Higher-Dimensional String-Theory Black Holes
Piedra, Owen Pavel Fernández; Castillo, Jose Bernal; Santana, Yulier Jimenez; Noris, Leosdan Figueredo
2013-08-01
In this paper, we report the results of a detailed investigation of the complete time evolution of massless fermion fields propagating in spacetimes of higher-dimensional stringy black hole solutions, obtained from intersecting branes in string/M theory. We write the Dirac equation in D-dimensional spacetime in a form suitable to perform a numerical integration of it, and using a Prony fitting of the time domain data, we determine the quasinormal frequencies that characterize the test field evolution at intermediary times. We also present the results obtained for the quasinormal frequencies using a sixth-order WKB approximation, that are in perfect agreement with the numerical results. The power-law exponents that describe the field relaxation at very late-times are also determined, and we show that they depends upon the dimensionality of spacetime, and are identical to that associated with the relaxation of boson fields for odd dimensions. The dependence of the frequencies and damping factor of the spinor field with the charges of the stringy black hole are studied.
Yao, De-Liang; Alvarez-Ruso, Luis; Vicente-Vacas, Manuel J.
2017-12-01
We calculate the nucleon axial form factor up to the leading one-loop order in a covariant chiral effective field theory with the Δ (1232 ) resonance as an explicit degree of freedom. We fit the axial form factor to the latest lattice QCD data and pin down the relevant low-energy constants. The lattice QCD data, for various pion masses below 400 MeV, can be well described up to a momentum transfer of ˜0.6 GeV . The Δ (1232 ) loops contribute significantly to this agreement. Furthermore, we extract the axial charge and radius based on the fitted values of the low-energy constants. The results are gA=1.237 (74 ) and ⟨rA2⟩=0.263 (38 ) fm2 . The obtained coupling gA is consistent with the experimental value if the uncertainty is taken into account. The axial radius is below but in agreement with the recent extraction from neutrino quasielastic scattering data on deuterium, which has large error bars. Up to our current working accuracy, rA is predicted only at leading order, i.e., the one-loop level. A more precise determination might need terms of O (p5).
The b-quark mass from non-perturbative $N_f=2$ Heavy Quark Effective Theory at $O(1/m_h)$
DEFF Research Database (Denmark)
Bernardoni, F.; Blossier, B.; Bulava, J.
2014-01-01
We report our final estimate of the b-quark mass from $N_f=2$ lattice QCD simulations using Heavy Quark Effective Theory non-perturbatively matched to QCD at $O(1/m_h)$. Treating systematic and statistical errors in a conservative manner, we obtain $\\overline{m}_{\\rm b}^{\\overline{\\rm MS}}(2 {\\rm...
Sedlak, Robert; Řezáč, Jan
2017-04-11
In density functional theory-based symmetry-adapted perturbation theory (DFT-SAPT) interaction energy calculations, the most demanding step is the calculation of the London dispersion term. For this bottleneck to be avoided and DFT-SAPT to be made applicable to larger systems, the ab initio dispersion terms can be replaced by one calculated empirically at an almost negligible cost ( J. Phys. Chem. A 2011 ; 115 , 11321 - 11330 ). We present an update of this approach that improves accuracy and makes the method applicable to a wider range of systems. It is based on Grimme's D3 dispersion correction for DFT, where the damping function is changed to one suitable for the calculation of the complete dispersion energy. The best results have been achieved with the Tang-Toennies damping function. It has been parametrized on the S66×8 data set for which we report density fitting DFT-SAPT/aug-cc-pVTZ interaction energy decomposition. The method has been validated on a diverse set of noncovalent systems including difficult cases such as very compact noncovalent complexes of charge-transfer type. The root-mean-square errors in the complete test set are 0.73 and 0.42 kcal mol -1 when charge-transfer complexes are excluded. The proposed empirical dispersion terms can also be used outside the DFT-SAPT framework, e.g., for the estimation of the amount of dispersion in a calculation where only the total interaction energy is known.
Energy Technology Data Exchange (ETDEWEB)
Leclercq, Florent; Jasche, Jens; Wandelt, Benjamin [Institut d' Astrophysique de Paris (IAP), UMR 7095, CNRS - UPMC Université Paris 6, 98bis boulevard Arago, F-75014 Paris (France); Gil-Marín, Héctor, E-mail: florent.leclercq@polytechnique.org, E-mail: jasche@iap.fr, E-mail: hectorgil@icc.ub.edu, E-mail: wandelt@iap.fr [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX (United Kingdom)
2013-11-01
On the smallest scales, three-dimensional large-scale structure surveys contain a wealth of cosmological information which cannot be trivially extracted due to the non-linear dynamical evolution of the density field. Lagrangian perturbation theory (LPT) is widely applied to the generation of mock halo catalogs and data analysis. In this work, we compare topological features of the cosmic web such as voids, sheets, filaments and clusters, in the density fields predicted by LPT and full numerical simulation of gravitational large-scale structure formation. We propose a method designed to improve the correspondence between these density fields, in the mildly non-linear regime. We develop a computationally fast and flexible tool for a variety of cosmological applications. Our method is based on a remapping of the approximately-evolved density field, using information extracted from N-body simulations. The remapping procedure consists of replacing the one-point distribution of the density contrast by one which better accounts for the full gravitational dynamics. As a result, we obtain a physically more pertinent density field on a point-by-point basis, while also improving higher-order statistics predicted by LPT. We quantify the approximation error in the power spectrum and in the bispectrum as a function of scale and redshift. Our remapping procedure improves one-, two- and three-point statistics at scales down to 8 Mpc/h.
Lynn, Bryan W.
2010-01-01
Chiral SU(3) Perturbation Theory (SU3XPT) identifies hadrons as the building blocks of strongly interacting matter at low densities and temperatures. We show that it admits two co-existing chiral nucleon liquid phases at zero external pressure with well-defined surfaces: 1) ordinary microscopic chiral heavy nuclear liquid drops (XNL) and 2) a new Strange Chiral Nucleon Liquid (SXNL) phase with both microscopic and macroscopic drop sizes. Liquid drops of both XNL and SXNL are simultaneously solutions to the SU3XPT semi-classical equations of motion and obey all relevant CVC and PCAC equations. Axial-vector currents are conserved inside macroscopic drops of SXNL, a new form of baryonic matter with zero electric charge density, which is by nature "dark". The numerical values of all SU3XPT coefficients are used to fit current scattering experiments and ordinary XNL drops (identified with the ground state of ordinary even-even spin-zero spherical closed-shell nuclei). SXNL then also emerges (i.e. without new adjus...
Wang, Yang Min; Hättig, Christof; Reine, Simen; Valeev, Edward; Kjærgaard, Thomas; Kristensen, Kasper
2016-05-01
We present the DEC-RIMP2-F12 method where we have augmented the Divide Expand-Consolidate resolution-of-the-identity second-order Møller-Plesset perturbation theory method (DEC-RIMP2) [P. Baudin et al., J. Chem. Phys. 144, 054102 (2016)] with an explicitly correlated (F12) correction. The new method is linear-scaling, massively parallel, and it corrects for the basis set incompleteness error in an efficient manner. In addition, we observe that the F12 contribution decreases the domain error of the DEC-RIMP2 correlation energy by roughly an order of magnitude. An important feature of the DEC scheme is the inherent error control defined by a single parameter, and this feature is also retained for the DEC-RIMP2-F12 method. In this paper we present the working equations for the DEC-RIMP2-F12 method and proof of concept numerical results for a set of test molecules.
Sohier, Thibault; Calandra, Matteo; Mauri, Francesco
2017-08-01
The ability to perform first-principles calculations of electronic and vibrational properties of two-dimensional heterostructures in a field-effect setup is crucial for the understanding and design of next-generation devices. We present here an implementation of density functional perturbation theories tailored for the case of two-dimensional heterostructures in field-effect configuration. Key ingredients are the inclusion of a truncated Coulomb interaction in the direction perpendicular to the slab and the possibility of simulating charging of the slab via field effects. With this implementation we can access total energies, force and stress tensors, the vibrational properties and the electron-phonon interaction. We demonstrate the relevance of the method by studying flexural acoustic phonons and their coupling to electrons in graphene doped by field effect. In particular, we show that while the electron-phonon coupling to those phonons can be significant in neutral graphene, it is strongly screened and negligible in doped graphene, in disagreement with other recent first-principles reports. Consequently, the gate-induced coupling with flexural acoustic modes would not be detectable in transport measurements on doped graphene.
Scherrer, Arne; Vuilleumier, Rodolphe; Sebastiani, Daniel
2016-08-01
We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d2-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent.
High-order regularization in lattice-Boltzmann equations
Mattila, Keijo K.; Philippi, Paulo C.; Hegele, Luiz A.
2017-04-01
A lattice-Boltzmann equation (LBE) is the discrete counterpart of a continuous kinetic model. It can be derived using a Hermite polynomial expansion for the velocity distribution function. Since LBEs are characterized by discrete, finite representations of the microscopic velocity space, the expansion must be truncated and the appropriate order of truncation depends on the hydrodynamic problem under investigation. Here we consider a particular truncation where the non-equilibrium distribution is expanded on a par with the equilibrium distribution, except that the diffusive parts of high-order non-equilibrium moments are filtered, i.e., only the corresponding advective parts are retained after a given rank. The decomposition of moments into diffusive and advective parts is based directly on analytical relations between Hermite polynomial tensors. The resulting, refined regularization procedure leads to recurrence relations where high-order non-equilibrium moments are expressed in terms of low-order ones. The procedure is appealing in the sense that stability can be enhanced without local variation of transport parameters, like viscosity, or without tuning the simulation parameters based on embedded optimization steps. The improved stability properties are here demonstrated using the perturbed double periodic shear layer flow and the Sod shock tube problem as benchmark cases.
Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura
2015-08-11
The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.
Tunable Intense High-Order Vortex Generation.
Zhang, Xiaomei; Shen, Baifei
2017-10-01
In 2015, we found the scheme to generate intense high-order optical vortices that carry OAM in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. The topological charge of the harmonics scales with its order. These results have been confirmed in recent experiments. In the two incident beams case, we produced relativistic intense harmonics with expected frequency and optical vortex. When two counter-propagating LG laser pulses impinge on a solid thin foil and interact with each other, the contribution of each input pulse in producing harmonics can be distinguished with the help of angular momentum conservation of photons, which is almost impossible for harmonic generation without optical vortex. The generation of tunable, intense vortex harmonics with different photon topological charge is predicted based on the theoretical analysis and 3D PIC simulations. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11374319, 11674339).
N{sub f}=2+1+1 flavours of twisted mass quarks. Cut-off effects at tree-level of perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Luschevskaya, Elena [ITEP, Moscow (Russian Federation); NIC/DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing; Cichy, Krzysztof [Poznan Univ. (Poland). Faculty of Physics
2010-12-15
We present a calculation of cut-off effects at tree-level of perturbation theory for the K and D mesons using the twisted mass formulation of lattice QCD. The analytical calculations are performed in the time-momentum frame. The relative sizes of cut-off effects are compared for the pion, the kaon and the D meson masses. In addition, different realizations of maximal twist condition are considered and the corresponding cut-off effects are analyzed. (orig.)
Mognetti, B. M.; Virnau, P.; Yelash, L.; Paul, W.; Binder, K.; Mueller, M.; MacDowell, L. G.
2008-01-01
The prediction of the equation of state and the phase behavior of simple fluids (noble gases, carbon dioxide, benzene, methane, short alkane chains) and their mixtures by Monte Carlo computer simulation and analytic approximations based on thermodynamic perturbation theory is discussed. Molecules are described by coarse grained (CG) models, where either the whole molecule (carbon dioxide, benzene, methane) or a group of a few successive CH_2 groups (in the case of alkanes) are lumped into an ...
High-order nonuniformly correlated beams
Wu, Dan; Wang, Fei; Cai, Yangjian
2018-02-01
We have introduced a class of partially coherent beams with spatially varying correlations named high-order nonuniformly correlated (HNUC) beams, as an extension of conventional nonuniformly correlated (NUC) beams. Such beams bring a new parameter (mode order) which is used to tailor the spatial coherence properties. The behavior of the spectral density of the HNUC beams on propagation has been investigated through numerical examples with the help of discrete model decomposition and fast Fourier transform (FFT) algorithm. Our results reveal that by selecting the mode order appropriately, the more sharpened intensity maxima can be achieved at a certain propagation distance compared to that of the NUC beams, and the lateral shift of the intensity maxima on propagation is closed related to the mode order. Furthermore, analytical expressions for the r.m.s width and the propagation factor of the HNUC beams on free-space propagation are derived by means of Wigner distribution function. The influence of initial beam parameters on the evolution of the r.m.s width and the propagation factor, and the relation between the r.m.s width and the occurring of the sharpened intensity maxima on propagation have been studied and discussed in detail.
Energy Technology Data Exchange (ETDEWEB)
Somogyi, Gabor [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Zurich Univ. (Switzerland). Inst. for Theoretical Physics; Smith, Robert E. [Zurich Univ. (Switzerland). Inst. for Theoretical Physics
2009-10-15
We generalize the ''renormalized'' perturbation theory (RPT) formalism of M. Crocce and R. Scoccimarro (2006) to deal with multiple fluids in the Universe and here we present the complete calculations up to the one-loop level in the RPT. We apply this approach to the problem of following the nonlinear evolution of baryon and cold dark matter (CDM) perturbations, evolving from the distinct sets of initial conditions, from the high redshift post-recombination Universe right through to the present day. In current theoretical and numerical models of structure formation, it is standard practice to treat baryons and CDM as an effective single matter fluid - the so called dark matter only modeling. In this approximation, one uses a weighed sum of late time baryon and CDM transfer functions to set initial mass fluctuations. In this paper we explore whether this approach can be employed for high precision modeling of structure formation. We show that, even if we only follow the linear evolution, there is a large-scale scale-dependent bias between baryons and CDM for the currently favored WMAP5 {lambda}CDM model. This time evolving bias is significant (> 1%) until the present day, when it is driven towards unity through gravitational relaxation processes. Using the RPT formalism we test this approximation in the non-linear regime. We show that the non-linear CDM power spectrum in the 2-component fluid differs from that obtained from an effective mean-mass 1-component fluid by {proportional_to} 3% on scales of order k {proportional_to} 0.05 h Mpc{sup -1} at z = 10, and by {proportional_to} 0.5% at z = 0. However, for the case of the non-linear evolution of the baryons the situation is worse and we find that the power spectrum is suppressed, relative to the total matter, by {proportional_to} 15% on scales k {proportional_to} 0.05 hMpc{sup -1} at z = 10, and by {proportional_to} 3 - 5% at z = 0. Importantly, besides the suppression of the spectrum, the
High-order harmonic generation by polyatomic molecules
Odžak, S.; Hasović, E.; Milošević, D. B.
2017-04-01
We present a theory of high-order harmonic generation by arbitrary polyatomic molecules based on the molecular strong-field approximation (MSFA) in the framework of the S-matrix theory. A polyatomic molecule is modeled by an (N + 1)-particle system, which consists of N heavy atomic (ionic) centers and an electron. We derived various versions (with or without the dressing of the initial and/or final molecular state) of the MSFA. The general expression for the T-matrix element takes a simple form for neutral polyatomic molecules. We show the existence of the interference minima in the harmonic spectrum and explain these minima as a multiple-slit type of interference. This is illustrated by numerical examples for the nitrous oxide (N2O) molecule exposed to strong linearly polarized laser field.
High order dark wavefront sensing simulations
Ragazzoni, Roberto; Arcidiacono, Carmelo; Farinato, Jacopo; Viotto, Valentina; Bergomi, Maria; Dima, Marco; Magrin, Demetrio; Marafatto, Luca; Greggio, Davide; Carolo, Elena; Vassallo, Daniele
2016-07-01
Dark wavefront sensing takes shape following quantum mechanics concepts in which one is able to "see" an object in one path of a two-arm interferometer using an as low as desired amount of light actually "hitting" the occulting object. A theoretical way to achieve such a goal, but in the realm of wavefront sensing, is represented by a combination of two unequal beams interferometer sharing the same incoming light, and whose difference in path length is continuously adjusted in order to show different signals for different signs of the incoming perturbation. Furthermore, in order to obtain this in white light, the path difference should be properly adjusted vs the wavelength used. While we incidentally describe how this could be achieved in a true optomechanical setup, we focus our attention to the simulation of a hypothetical "perfect" dark wavefront sensor of this kind in which white light compensation is accomplished in a perfect manner and the gain is selectable in a numerical fashion. Although this would represent a sort of idealized dark wavefront sensor that would probably be hard to match in the real glass and metal, it would also give a firm indication of the maximum achievable gain or, in other words, of the prize for achieving such device. Details of how the simulation code works and first numerical results are outlined along with the perspective for an in-depth analysis of the performances and its extension to more realistic situations, including various sources of additional noise.
Energy Technology Data Exchange (ETDEWEB)
Kneur, J.L
2006-06-15
This document is divided into 2 parts. The first part describes a particular re-summation technique of perturbative series that can give a non-perturbative results in some cases. We detail some applications in field theory and in condensed matter like the calculation of the effective temperature of Bose-Einstein condensates. The second part deals with the minimal supersymmetric standard model. We present an accurate calculation of the mass spectrum of supersymmetric particles, a calculation of the relic density of supersymmetric black matter, and the constraints that we can infer from models.
Hjelmfelt, Allen; Harding, Robert H.; Tsujimoto, Kim K.; Ross, John
1990-03-01
Periodic perturbations are applied to the input fluxes of reactants in a system which exhibits autonomous oscillations, the combustion of acetaldehyde (ACH) and oxygen, and a system which exhibits damped oscillations, the combustion of methane and oxygen. The ACH system is studied by experiments and numerical analysis and the methane system is studied by numerical analysis. The periodic perturbations are in the form of a two-term Fourier series. Such perturbations may generate multiple attractors, which are either periodic or chaotic. We discuss two types of bistable responses: a new phase bistability, in which a subharmonic frequency is added to a sinusoidal perturbation at different phases relative to the periodic response; and jump phenomena, in which the resonant frequency of a nonlinear oscillator depends on the amplitude of the periodic perturbation. Both the ACH and the methane systems confirm the phase bistability. The additional complex behavior of bistability due to jump phenomena is seen only in calculations in the methane system. In both types of bistability a hysteresis loop is formed as we vary the form of the periodic perturbation. In the methane system, we find period doubling to chaos occuring on one branch of the hysteresis loop while the other branch remains periodic. The methane system has been studied in the context of the efficiency of power production. We calculate the efficiency corresponding to each bistable attractor and find one branch of each pair to be the more efficient mode of operation. In the case of the coexisting periodic and chaotic attractors the chaotic attractor is the more efficient mode of operation.
Directory of Open Access Journals (Sweden)
Rabounski D.
2007-07-01
Full Text Available We consider the Podkletnov effect — the weight loss of an object located over a superconducting disc in air due to support by an alternating magnetic field. We consider this problem using the mathematical methods of General Relativity. We show via Einstein’s equations and the geodesic equations in a space perturbed by a disc undergoing oscillatory bounces orthogonal to its own plane, that there is no r ˆ ole of superconductivity; the Podkletnov effect is due to the fact that the field of the background space non-holonomity (the basic non-othogonality of time lines to the spatial section, being perturbed by such an oscillating disc produces energy and momentum flow in order to compensate the perturbation in itself. Such a momentum flow is directed above the disc in Podkletnov’s experiment, so it works like negative gravity (anti-gravity. We propose a simple mechanical system which, simulating the Podkletnov effect, is an experimental test of the whole theory. The theory allows for other “anti-gravity devices”, which simulate the Podkletnov effect without use of very costly superconductor technology. Such devices could be applied to be used as a cheap source of new energy, and could have implications to air and space travel.
Martínez-Fonseca, Nadhynee; Castañeda, Luis Ángel; Uranga, Agustín; Luviano-Juárez, Alberto; Chairez, Isaac
2016-05-01
This study addressed the problem of robust control of a biped robot based on disturbance estimation. Active disturbance rejection control was the paradigm used for controlling the biped robot by direct active estimation. A robust controller was developed to implement disturbance cancelation based on a linear extended state observer of high gain class. A robust high-gain scheme was proposed for developing a state estimator of the biped robot despite poor knowledge of the plant and the presence of uncertainties. The estimated states provided by the state estimator were used to implement a feedback controller that was effective in actively rejecting the perturbations as well as forcing the trajectory tracking error to within a small vicinity of the origin. The theoretical convergence of the tracking error was proven using the Lyapunov theory. The controller was implemented by numerical simulations that showed the convergence of the tracking error. A comparison with a high-order sliding-mode-observer-based controller confirmed the superior performance of the controller using the robust observer introduced in this study. Finally, the proposed controller was implemented on an actual biped robot using an embedded hardware-in-the-loop strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Sivan, Y.; Rozenberg, S.; Halstuch, A.
2016-04-01
We present an extension of the canonical coupled-mode theory of electromagnetic waves to the case of pulses and spatiotemporal perturbations in complex media. Unlike previous attempts to derive such a model, our approach involves no approximation, and it does not impose any restriction on the spatiotemporal profile. Moreover, the effect of modal dispersion on mode evolution and on the coupling to other modes is fully taken into account. Thus, our approach can yield any required accuracy by retaining as many terms in the expansion as needed. It also avoids various artifacts of previous derivations by introducing the correct form of the solution. We then validate the coupled-mode equations with exact numerical simulations, and we demonstrate the wide range of possibilities enabled by spatiotemporal perturbations of pulses, including pulse shortening or broadening or more complex shaping. Our formulation is valid across the electromagnetic spectrum, and it can be applied directly also to other wave systems.
Kjærgaard, Thomas
2017-01-28
The divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-RI-MP2) theory method introduced in Baudin et al. [J. Chem. Phys. 144, 054102 (2016)] is significantly improved by introducing the Laplace transform of the orbital energy denominator in order to construct the double amplitudes directly in the local basis. Furthermore, this paper introduces the auxiliary reduction procedure, which reduces the set of the auxiliary functions employed in the individual fragments. The resulting Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation method is applied to the insulin molecule where we obtain a factor 9.5 speedup compared to the DEC-RI-MP2 method.
Korambath, Prakashan P.; Kong, Jing; Furlani, Thomas R.; Head-Gordon, Martin
Solving the coupled-perturbed Hartree-Fock (CPHF) equations is the most time consuming part in the analytical computation of second derivatives of the molecular energy with respect to the nuclei. This paper describes a unique parallelization approach for solving the CPHF equations. The computational load is divided by the nuclear perturbations and distributed evenly among the computing nodes. The parallel algorithm is scalable with respect to the size of the molecule, i.e. the larger the molecule, the greater the parallel speedup. The memory storage requirements are also distributed among the processors, with little communication among the processors. The method is implemented in the Q-Chem software package and its performance is discussed. This work represents the first step in a research project to parallelize analytical frequency calculations at Hartree-Fock and density functional theory levels.
Fulcher, Lewis P.
1979-01-01
Presents an exact solution to the nonlinear Faraday's law problem of a rod sliding on frictionless rails with resistance. Compares the results with perturbation calculations based on the methods of Poisson and Pincare and of Kryloff and Bogoliuboff. (Author/GA)
Wong, Kin-Yiu; Gao, Jiali
2008-09-09
In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property
Dynamical evolution of space debris on high-elliptical orbits near high-order resonance zones
Kuznetsov, Eduard; Zakharova, Polina
2015-08-01
Both analytical and numerical results are used to study high-order resonance regions in the vicinity of Molniya-type orbits. Based on data of numerical simulations, long-term orbital evolution are studied for HEO objects depending on their AMR. The Poynting-Robertson effect causes a secular decrease in the semi-major axis of a spherically symmetrical satellite. Under the Poynting-Robertson effect, objects pass through the regions of high-order resonances. The Poynting-Robertson effect and secular perturbations of the semi-major axis lead to the formation of weak stochastic trajectories.
High-order hydrodynamic algorithms for exascale computing
Energy Technology Data Exchange (ETDEWEB)
Morgan, Nathaniel Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-02-05
Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broad range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.
Directory of Open Access Journals (Sweden)
Sharf Igor
2013-11-01
Full Text Available We consider the hadron–hadron inelastic scattering in the framework of QCD perturbation theory. It is shown that in QCD, due to conservation of color, the tree-level diagrams of inelastic scattering are prohibited and one has to deal with the diagrams with loops. We examine the simplest type of such diagrams, where the diagram can be split into blocks, so that the integration over four-momenta of virtual particles in each block can be done independently. It is shown that for these diagrams the squared absolute value of scattering amplitude has a maximum point, similar to that observed earlier in ɸ3 model, if one takes into account the relations between the arguments of scattering amplitude, imposed by the energy-momentum conservation law. This enables to apply the Laplace’s method for the calculation of cross section of hadron–hadron inelastic scattering. It is shown that the diagrams of gluon-loop exchange in QCD are equivalent to the diagrams of pion exchange in ɸ3 theory, whereby the new mechanism of cross section growth, discovered earlier in ɸ3 theory, takes place also in the perturbative QCD. The latter may explain the origin of experimentally-observed growth of cross section of hadron–hadron inelastic scattering as function of energy of colliding hadrons. The discovered mechanism can’t emerge in any Regge-based model due to the premises on the particle kinematics, made in these models.
Brustein, Ram
2011-01-01
We reconsider, from a novel perspective, how unitarity constrains the corrections to the ratio of shear viscosity \\eta\\ to entropy density s. We start with higher-derivative extensions of Einstein gravity in asymptotically anti-de Sitter spacetimes. It is assumed that these theories are derived from string theory and thus have a unitary UV completion that is dual to a unitary, UV-complete boundary gauge theory. We then propose that the gravitational perturbations about a solution of the UV complete theory are described by an effective theory whose linearized equations of motion have at most two time derivatives. Our proposal leads to a concrete prescription for the calculation of \\eta/s for theories of gravity with arbitrary higher-derivative corrections. The resulting ratio can take on values above or below 1/4\\pi\\ and is consistent with all the previous calculations, even though our reasoning is substantially different. For the purpose of calculating \\eta/s, our proposal also leads to only two possible cand...
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof; Kujawa, Agnieszka [Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Gonzalez Lopez, Jenifer [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2008-11-15
In this paper we investigate the cutoff effects at tree-level of perturbation theory for three different lattice regularizations of fermions - maximally twisted mass Wilson, overlap and Creutz fermions. We show that all three kinds of fermions exhibit the expected O(a{sup 2}) scaling behaviour in the lattice spacing. Moreover, the size of these cutoff effects for the considered quantities i.e. the pseudoscalar correlation function C{sub PS}, the mass m{sub PS} and the decay constant f{sub PS} is comparable for all of them. (orig.)
Directory of Open Access Journals (Sweden)
Manuele Aufiero
2017-09-01
Full Text Available This paper proposes the adoption of Monte Carlo perturbation theory to approximate the Jacobian matrix of coupled neutronics/thermal-hydraulics problems. The projected Jacobian is obtained from the eigenvalue decomposition of the fission matrix, and it is adopted to solve the coupled problem via the Newton method. This avoids numerical differentiations commonly adopted in Jacobian-free Newton–Krylov methods that tend to become expensive and inaccurate in the presence of Monte Carlo statistical errors in the residual. The proposed approach is presented and preliminarily demonstrated for a simple two-dimensional pressurized water reactor case study.
Goings, Joshua J; Ohlsen, Suzanna M; Blaisdell, Kara M; Schofield, Daniel P
2014-09-04
Metal-organic frameworks (MOFs) show considerable promise as materials for gas storage and separation. Many MOF structures have open metal sites, which allow for coordination of gas molecules to the metal centers. In this work, we use coupled-cluster and symmetry-adapted perturbation theory to probe the interaction between hydrogen gas and unsaturated metal sites in mimic structures based on the MOF HKUST-1. The interactions are of a mixed electrostatic/dispersive nature, with the relative magnitudes of these components dependent on the metal center. The strongest binding was found for magnesium- and zinc-containing MOFs, with an overall interaction energy of -4.5 kcal mol(-1).
Ran, Tao; Liu, Yong; Li, Hengzhi; Tang, Shaoxun; He, Zhixiong; Munteanu, Cristian R; González-Díaz, Humberto; Tan, Zhiliang; Zhou, Chuanshe
2016-07-27
The management of ruminant growth yield has economic importance. The current work presents a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments show that the feeding system and age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, the experimental data are used to build new Machine Learning models based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the expected values of the growth yield. The best regression model was obtained using Random Forest, with the coefficient of determination R(2) of 0.781 for the test subset. The current results indicate that the non-linear regression model can accurately predict the growth yield and the key nodes during gastrointestinal development, which is helpful to optimize the feeding management strategies in ruminant production system.
Energy Technology Data Exchange (ETDEWEB)
Audouze, Ch
2006-07-01
In condensed matter physics, ab-initio simulation allows to get macroscopic quantities (for example equations of state) from microscopic ones, as phonon frequencies which characterize the vibration Eigenmodes of the system. Therefore, one can theoretically predict the behavior of the material at very high pressure conditions, which can be out of reach by experiences. Computations of phonon spectrum are obtained thanks to the linear response theory, where the equations of Density Functional Theory (as the Kohn-Sham model) are perturbed around their fundamental state. The linear response functionality is one of the options included in the ABINIT code, which is an open source package developed in particular by a team of the CEA-DAM (DPTA) and the Catholic University of Louvain-la-Neuve (Belgium). Nevertheless, in spite of using pseudopotentials, computations of phonon spectrum are not tractable for heavy chemical elements, even on massively parallel computers. In order to overcome this difficulty, the linear response theory had to be extended to the PAW (Projector Augmented-Waves) formalism. In this CEA report, we first detail the PAW model, giving to it a more mathematical framework. Then we establish the linear response equations within the PAW formalism, up to the third order derivative of the total energy, for an isolated molecular system and for generic perturbations. Lastly, all these results are specified to the particular case of atom displacements and for perturbations associated to the change of an external potential in which the molecule is set. (author)
High-order harmonic generation from eld-distorted orbitals
DEFF Research Database (Denmark)
Spiewanowski, Maciek; Etches, Adam; Madsen, Lars Bojer
We investigate the eect on high-order harmonic generation of the distortion of molecular orbitals by the driving laser eld. Calculations for high-order harmonic generation including orbital distortion are performed for N2 (high polarizability). Our results allow us to suggest that field...... of the minimum in the high-order harmonic spectra. This is in agreement with experiment....
Fukazawa, H; Yamada, K
2003-01-01
We evaluate the dominant superconducting pairing symmetry in 3-dimensional cubic lattice structures within the third-order perturbation theory with respect to the on-site coulomb repulsion. We show that the third-order vertex correction term, which has a critical contribution to the p-wave state in the 2-dimensional systems, is also important in the 3-dimensional system. In the three dimensional systems, we obtain the superconducting transition temperature T sub c about one-order lower than that in 2-dimensional systems. This result suggests that magnetic ground states are dominant in the usual 3-dimensional system in accordance with the experimental observation. However there exist heavy fermion systems where the magnetic order is suppressed by the Kondo effect. Thus, our theory can be applied to the heavy fermion system and well explain the superconductivity in the system. (author)
Krasnoshchekov, Sergey V.; Craig, Norman C.; Koroleva, Lidiya A.; Stepanov, Nikolay F.
2018-01-01
A new gas-phase infrared (IR) spectrum of acryloyl fluoride (ACRF, CH2dbnd CHsbnd CFdbnd O) with a resolution of 0.1 cm- 1 in the range 4000-450 cm- 1 was measured. Theoretical ab initio molecular structures, full quartic potential energy surfaces (PES), and cubic surfaces of dipole moments and polarizability tensor components (electro-optical properties, EOP) of the s-trans and s-cis conformers of the ACRF were calculated by the second-order Møller-Plesset electronic perturbation theory with a correlation consistent Dunning triple-ζ basis set. The numerical-analytic implementation of the second-order operator canonical Van Vleck perturbation theory was employed for predicting anharmonic IR and Raman scattering (RS) spectra of ACRF. To improve the anharmonic predictions, harmonic frequencies were replaced by their counterparts evaluated with the higher-level CCSD(T)/cc-pVTZ model, to form a ;hybrid; PES. The original operator representation of the Hamiltonian is analytically reduced to a quasi-diagonal form, integrated in the harmonic oscillator basis and diagonalized to account for strong resonance couplings. Double canonical transformations of EOP expansions enabled prediction of integral intensities of both fundamental and multi-quanta transitions in IR/RS spectra. Enhanced band shape analysis reinforced the assignments. A thorough interpretation of the new IR experimental spectra and existing matrix-isolation literature data for the mixture of two conformers of ACRF was accomplished, and a number of assignments clarified.
Energy Technology Data Exchange (ETDEWEB)
Dutta, Achintya Kumar, E-mail: ak.dutta@ncl.res.in, E-mail: s.pal@ncl.res.in; Vaval, Nayana; Pal, Sourav, E-mail: ak.dutta@ncl.res.in, E-mail: s.pal@ncl.res.in [Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008 (India)
2015-01-28
We propose a new elegant strategy to implement third order triples correction in the light of many-body perturbation theory to the Fock space multi-reference coupled cluster method for the ionization problem. The computational scaling as well as the storage requirement is of key concerns in any many-body calculations. Our proposed approach scales as N{sup 6} does not require the storage of triples amplitudes and gives superior agreement over all the previous attempts made. This approach is capable of calculating multiple roots in a single calculation in contrast to the inclusion of perturbative triples in the equation of motion variant of the coupled cluster theory, where each root needs to be computed in a state-specific way and requires both the left and right state vectors together. The performance of the newly implemented scheme is tested by applying to methylene, boron nitride (B{sub 2}N) anion, nitrogen, water, carbon monoxide, acetylene, formaldehyde, and thymine monomer, a DNA base.
Bao, Junwei Lucas; Odoh, Samuel O; Gagliardi, Laura; Truhlar, Donald G
2017-02-14
We study the performance of multiconfiguration pair-density functional theory (MC-PDFT) and multireference perturbation theory for the computation of the bond dissociation energies in 12 transition-metal-containing diatomic molecules and three small transition-metal-containing polyatomic molecules and in two transition-metal dimers. The first step is a multiconfiguration self-consistent-field calculation, for which two choices must be made: (i) the active space and (ii) its partition into subspaces, if the generalized active space formulation is used. In the present work, the active space is chosen systematically by using three correlated-participating-orbitals (CPO) schemes, and the partition is chosen by using the separated-pair (SP) approximation. Our calculations show that MC-PDFT generally has similar accuracy to CASPT2, and the active-space dependence of MC-PDFT is not very great for transition-metal-ligand bond dissociation energies. We also find that the SP approximation works very well, and in particular SP with the fully translated BLYP functional SP-ftBLYP is more accurate than CASPT2. SP greatly reduces the number of configuration state functions relative to CASSCF. For the cases of FeO and NiO with extended-CPO active space, for which complete active space calculations are unaffordable, SP calculations are not only affordable but also of satisfactory accuracy. All of the MC-PDFT results are significantly better than the corresponding results with broken-symmetry spin-unrestricted Kohn-Sham density functional theory. Finally we test a perturbation theory method based on the SP reference and find that it performs slightly worse than CASPT2 calculations, and for most cases of the nominal-CPO active space, the approximate SP perturbation theory calculations are less accurate than the much less expensive SP-PDFT calculations.
Energy Technology Data Exchange (ETDEWEB)
Abt, I. [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut; Cooper-Sarkar, A.M. [Oxford Univ. (United Kingdom). Dept. of Physics; Foster, B. [Oxford Univ. (United Kingdom). Dept. of Physics; Hamburg Univ. (Germany). I. Inst. of Experimental Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Myronenko, V.; Wichmann, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Wing, M. [University College London (United Kingdom). Dept. of Physics and Astronomy
2017-07-18
A phenomenological study of the final combined HERA data on inclusive deep inelastic scattering (DIS) has been performed. The data are presented and investigated for a kinematic range extending from values of the four-momentum transfer, Q{sup 2}, above 10{sup 4} GeV{sup 2} down to the lowest values observable at HERA of Q{sup 2}=0.045 GeV{sup 2} and Bjorken x, x{sub Bj}=6.10{sup -7}. The data are well described by fits based on perturbative quantum chromodynamics (QCD) using collinear factorisation and evolution of the parton densities encompassed in the DGLAP formalism from the highest Q{sup 2} down to Q{sup 2} of a few GeV{sup 2}. The Regge formalism with the soft Pomeron pole can describe the data up to Q{sup 2}∼0.65 GeV{sup 2}. The complete data set can be described by a new fit using the Abramowicz-Levin-Levy-Maor (ALLM) parameterisation. The region between the Regge and the perturbative QCD regimes is of particular interest.
Baskharone, E. A.; Hensel, S. J.
1991-01-01
The vibrational characteristics of a rotor that is in contact with a fluid in an annular clearance gap are investigated. The disturbance under consideration involves the axis of rotation, and includes a virtual lateral eccentricity, together with a whirling motion around the housing centerline. The fluid reaction components arise from infinitesimally small deformations with varied magnitudes which are experienced by an assembly of finite elements in the rotor-to-housing gap. A perturbation model is presented in which the perturbation equations emerge from the flow-governing equations in their discrete finite-element form. It is concluded that restrictions on the rotor-to-housing gap geometry, or the manner in which the rotor virtual eccentricity occurs are practically nonexisting. This model is used to compute the rotordynamic coefficients of an annular seal. The rotordynamic behavior of a hydraulic seal with a clearance gap depth/length ratio of 0.01 is analyzed under a cylindrical type of rotor whirl and several running speeds.
Energy Technology Data Exchange (ETDEWEB)
Durin, B
2006-01-15
In this thesis three time-dependent configurations are studied in the formalism of first-quantized string. These configurations are interesting because perturbative computation of correlation functions is possible and thus is a tool to understand the interplay between the time-dependent geometry and the quantified string. In a first chapter, we explain the reasons for studying these configurations. Then in the second chapter we describe the perturbative formalism and explain how to solve technical problem we encountered. The third chapter is devoted to the physical description of the phenomena involved in these configurations, to the specific computations we made and to the insights we gained. Eventually, we conclude and give some perspectives. (author)
Directory of Open Access Journals (Sweden)
Ralf Hofmann
2017-10-01
Full Text Available Based on a recent numerical simulation of the temporal evolution of a spherically perturbed BPS monopole, SU(2 Yang-Mills thermodynamics, Louis de Broglie’s deliberations on the disparate Lorentz transformations of the frequency of an internal “clock” on one hand and the associated quantum energy on the other hand, and postulating that the electron is represented by a figure-eight shaped, self-intersecting center vortex loop in SU(2 Quantum Yang-Mills theory we estimate the spatial radius R 0 of this self-intersection region in terms of the electron’s Compton wave length λ C . This region, which is immersed into the confining phase, constitutes a blob of deconfining phase of temperature T 0 mildly above the critical temperature T c carrying a frequently perturbed BPS monopole (with a magnetic-electric dual interpretation of its charge w.r.t. U(1⊂SU(2. We also establish a quantitative relation between rest mass m 0 of the electron and SU(2 Yang-Mills scale Λ , which in turn is defined via T c . Surprisingly, R 0 turns out to be comparable to the Bohr radius while the core size of the monopole matches λ C , and the correction to the mass of the electron due to Coulomb energy is about 2%.
Nagata, Takeshi; Fedorov, Dmitri G.; Li, Hui; Kitaura, Kazuo
2012-05-01
A new energy expression is proposed for the fragment molecular orbital method interfaced with the polarizable continuum model (FMO/PCM). The solvation free energy is shown to be more accurate on a set of representative polypeptides with neutral and charged residues, in comparison to the original formulation at the same level of the many-body expansion of the electrostatic potential determining the apparent surface charges. The analytic first derivative of the energy with respect to nuclear coordinates is formulated at the second-order Møller-Plesset (MP2) perturbation theory level combined with PCM, for which we derived coupled perturbed Hartree-Fock equations. The accuracy of the analytic gradient is demonstrated on test calculations in comparison to numeric gradient. Geometry optimization of the small Trp-cage protein (PDB: 1L2Y) is performed with FMO/PCM/6-31(+)G(d) at the MP2 and restricted Hartree-Fock with empirical dispersion (RHF/D). The root mean square deviations between the FMO optimized and NMR experimental structure are found to be 0.414 and 0.426 Å for RHF/D and MP2, respectively. The details of the hydrogen bond network in the Trp-cage protein are revealed.
Cheng, Lan; Wang, Fan; Stanton, John F.; Gauss, Jürgen
2018-01-01
A scheme is reported for the perturbative calculation of spin-orbit coupling (SOC) within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e) in combination with the equation-of-motion coupled-cluster singles and doubles method. Benchmark calculations of the spin-orbit splittings in 2Π and 2P radicals show that the accurate inclusion of scalar-relativistic effects using the SFX2C-1e scheme extends the applicability of the perturbative treatment of SOC to molecules that contain heavy elements. The contributions from relaxation of the coupled-cluster amplitudes are shown to be relatively small; significant contributions from correlating the inner-core orbitals are observed in calculations involving third-row and heavier elements. The calculation of term energies for the low-lying electronic states of the PtH radical, which serves to exemplify heavy transition-metal containing systems, further demonstrates the quality that can be achieved with the pragmatic approach presented here.
Stirling Analysis Comparison of Commercial vs. High-Order Methods
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako
2007-01-01
Recently, three-dimensional Stirling engine simulations have been accomplished utilizing commercial Computational Fluid Dynamics software. The validations reported can be somewhat inconclusive due to the lack of precise time accurate experimental results from engines, export control/ proprietary concerns, and the lack of variation in the methods utilized. The last issue may be addressed by solving the same flow problem with alternate methods. In this work, a comprehensive examination of the methods utilized in the commercial codes is compared with more recently developed high-order methods. Specifically, Lele's Compact scheme and Dyson s Ultra Hi-Fi method will be compared with the SIMPLE and PISO methods currently employed in CFD-ACE, FLUENT, CFX, and STAR-CD (all commercial codes which can in theory solve a three-dimensional Stirling model although sliding interfaces and their moving grids limit the effective time accuracy). We will initially look at one-dimensional flows since the current standard practice is to design and optimize Stirling engines with empirically corrected friction and heat transfer coefficients in an overall one-dimensional model. This comparison provides an idea of the range in which commercial CFD software for modeling Stirling engines may be expected to provide accurate results. In addition, this work provides a framework for improving current one-dimensional analysis codes.
Stirling Analysis Comparison of Commercial Versus High-Order Methods
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako
2005-01-01
Recently, three-dimensional Stirling engine simulations have been accomplished utilizing commercial Computational Fluid Dynamics software. The validations reported can be somewhat inconclusive due to the lack of precise time accurate experimental results from engines, export control/proprietary concerns, and the lack of variation in the methods utilized. The last issue may be addressed by solving the same flow problem with alternate methods. In this work, a comprehensive examination of the methods utilized in the commercial codes is compared with more recently developed high-order methods. Specifically, Lele's compact scheme and Dyson's Ultra Hi-Fi method will be compared with the SIMPLE and PISO methods currently employed in CFD-ACE, FLUENT, CFX, and STAR-CD (all commercial codes which can in theory solve a three-dimensional Stirling model with sliding interfaces and their moving grids limit the effective time accuracy). We will initially look at one-dimensional flows since the current standard practice is to design and optimize Stirling engines with empirically corrected friction and heat transfer coefficients in an overall one-dimensional model. This comparison provides an idea of the range in which commercial CFD software for modeling Stirling engines may be expected to provide accurate results. In addition, this work provides a framework for improving current one-dimensional analysis codes.
Schaink, H. M.; Hoheisel, C.
1992-12-01
An analytical equation of state for Lennard-Jones mixtures has recently been derived using a perturbation theory with an additive hard sphere mixture (i.e., for the collision diameter d12=(d11+d22)/2) as a reference system. Here we generalize this equation of state using a nonadditive hard sphere mixture as a reference system. Even for Lennard-Jones mixtures that obey the Lorentz-Berthelot mixing rules [σ12=(σ11+σ22)/2 and ɛ12 =√ɛ11ɛ22 ], we find that our generalized theory shows an improvement in the predictions of the excess Gibbs free energy and the excess volume compared to the old version of the theory. For several non-Lorentz-Berthelot mixtures the phase diagrams predicted by the equations of state with recent Gibbs-ensemble Monte Carlo and new molecular dynamics results were compared. In this comparison the van der Waals 1-fluid model as well as an effective hard sphere model were considered. In this work only the fluid-fluid phase behavior was studied. For mixtures characterized by non-Lorentz-Berthelot energy parameters the generalization of the original equation of state gives the best predictions. For a mixture characterized by a relatively large nonadditivity in the repulsion parameters the 1-fluid approximation is best. As a by-product this study yields a generalization of the MIX1 equation of state for mixtures of nonadditive hard spheres with d11≠d22.
Energy Technology Data Exchange (ETDEWEB)
Hajj, G.A.
1988-01-01
The Gaussian effective potential (GEP), a non-perturbative approach to study quantum field theory, is applied to scalar and scalar-fermion models. We study the scalar {phi}{sup 6} field coupled to fermions through g{sub B}{phi}{psi}{psi} or g{sub B}{phi}{sup 2}{psi}{psi} in 2 and 3 space-time dimensions. In addition, we derive the finite temperature (T > 0) GEP from first principles and apply it to study these models at T > 0. Also the Autonomous {lambda}{phi}{sup 4}, coupled to fermions through a Yukawa term (g{sub B}{phi}{psi}{psi}), is examined in 4 dimensions at T > 0. In all these models, in order to obtain stable theories, it is found that g{sub B} must vanish as 1/log(M{sub uv}), 1/M{sub uv} or 1/M{sub uv}{sup 2} in 2, 3 or 4 dimensions respectively, M{sub uv} being an ultraviolet cutoff which is sent to infinity. The contribution of fermions to the GEP, however, is nonvanishing. It is also found that for the class of theories discussed, symmetry, if broken, is restored above a critical temperature. The coupling constant parameter space for each model is studied carefully, and regions where symmetry breaking occurs are determined both at zero and finite temperature.
DEFF Research Database (Denmark)
Ferreira, Luisa; Breil, Martin Peter; Pinho, S. P.
2009-01-01
in water, but the correlation for the solubility in pure alcohols was not so satisfactory. The solubility in mixed solvents (ternary systems) was predicted on the basis of the modeling of the solubility in pure solvents, without any additional fitting of the parameters, and the results achieved were......The perturbed-chain statistical associated fluid theory EoS was applied to model the solubilities of glycine, DL-alanine, L-serine, L-threonine, and L-isoleucine in pure water, pure alcohols (ethanol, I-propanol, and 2-propanol) and in mixed solvent systems. Three pure component nonassociating...... parameters for the amino acids were fitted to the densities, activity and osmotic coefficients, vapor pressures, and water activity of their aqueous solutions. The solubilities of amino acids in pure and mixed solvent systems were calculated on the basis of the phase equilibrium conditions for a pure solid...
Scherrer, Arne; Sebastiani, Daniel; Gross, E K U; Vuilleumier, Rodolphe
2015-01-01
The nuclear velocity perturbation current-density theory (NVPT) for vibrational circular dichroism (VCD) is derived from the exact factorization of the electron-nuclear wave function. This new formalism offers an exact starting point to include correction terms to the Born-Oppenheimer (BO) form of the molecular wave function, similarly to the complete-adiabatic approximation. The corrections depend on a small parameter that, in a classical treatment of the nuclei, is identified as the nuclear velocity. Apart from proposing a rigorous basis for the NVPT, we show that the rotational strength, related to the intensity of the VCD signal, contain a new contribution beyond-BO that can be evaluated with the NVPT and that only arises when the exact factorization approach is employed. Numerical results are presented for chiral and non-chiral systems to test the validity of the approach.
ASYMPTOTICALLY OPTIMAL HIGH-ORDER ACCURATE ALGORITHMS FOR THE SOLUTION OF CERTAIN ELLIPTIC PDEs
Energy Technology Data Exchange (ETDEWEB)
Leonid Kunyansky, PhD
2008-11-26
The main goal of the project, "Asymptotically Optimal, High-Order Accurate Algorithms for the Solution of Certain Elliptic PDE's" (DE-FG02-03ER25577) was to develop fast, high-order algorithms for the solution of scattering problems and spectral problems of photonic crystals theory. The results we obtained lie in three areas: (1) asymptotically fast, high-order algorithms for the solution of eigenvalue problems of photonics, (2) fast, high-order algorithms for the solution of acoustic and electromagnetic scattering problems in the inhomogeneous media, and (3) inversion formulas and fast algorithms for the inverse source problem for the acoustic wave equation, with applications to thermo- and opto- acoustic tomography.
Su, Neil Qiang; Xu, Xin
2016-05-10
Recently, we have developed an integration approach for the calculations of ionization potentials (IPs) and electron affinities (EAs) of molecular systems at the level of second-order Møller-Plesset (MP2) (Su, N. Q.; Xu, X. J. Chem. Theory Comput. 11, 4677, 2015), where the full MP2 energy gradient with respect to the orbital occupation numbers was derived but only at integer occupations. The theory is completed here to cover the fractional occupation systems, such that Slater's transition state concept can be used to have accurate predictions of IPs and EAs. Antisymmetrized Goldstone diagrams have been employed for interpretations and better understanding of the derived equations, where two additional rules were introduced in the present work specifically for hole or particle lines with fractional occupation numbers.
Perturbative Gadgets at Arbitrary Orders
Jordan, Stephen P.; Farhi, Edward
2008-01-01
Adiabatic quantum algorithms are often most easily formulated using many-body interactions. However, experimentally available interactions are generally two-body. In 2004, Kempe, Kitaev, and Regev introduced perturbative gadgets, by which arbitrary three-body effective interactions can be obtained using Hamiltonians consisting only of two-body interactions. These three-body effective interactions arise from the third order in perturbation theory. Since their introduction, perturbative gadgets...
Energy Technology Data Exchange (ETDEWEB)
Eriksen, Janus J., E-mail: janusje@chem.au.dk; Jørgensen, Poul [qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, DK-8000 Aarhus C (Denmark); Matthews, Devin A. [The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Gauss, Jürgen [Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany)
2016-05-21
The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T–n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test set of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T–n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T–n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.
High-order-harmonic generation from field-distorted orbitals
DEFF Research Database (Denmark)
Spiewanowski, Maciek; Etches, Adam; Madsen, Lars Bojer
2013-01-01
We investigate the effect on high-order-harmonic generation of the distortion of molecular orbitals by the driving laser field. Calculations for high-order-harmonic generation including orbital distortion are performed for N2. Our results allow us to suggest that field distortion is the reason why...
Higher order theories and their relationship with noncommutativity
Energy Technology Data Exchange (ETDEWEB)
Sánchez-Santos, Oscar, E-mail: oscarsanbuzz@yahoo.com.mx [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, C.P. 09340, México D.F., México (Mexico); Vergara, José David, E-mail: vergara@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, C.P. 04510, México D.F., México (Mexico)
2014-06-13
We present a relationship between noncommutativity and higher order time derivative theories using a perturbation method. We make a generalization of the Chern–Simons quantum mechanics for higher order time derivatives. This model presents noncommutativity in a natural way when we project to low-energy physical states without the necessity of taking the strong field limit. We quantize the theory using a Bopp's shift of the noncommutative variables and we obtain a spectrum without negative energies, under the perturbation limits. In addition, we extent the model to high order time derivatives and noncommutativity with variable dependent parameter. - Highlights: • We show a relationship between high order derivative theories and noncommutativity. • The noncommutativity appears when we project to low-energy physical states. • We extend the model to high order time derivatives. • We include cases with variable dependent noncommutative parameter.
Directory of Open Access Journals (Sweden)
Teffera M. Asfaw
2016-01-01
Full Text Available Let X be a real reflexive locally uniformly convex Banach space with locally uniformly convex dual space X⁎. Let T:X⊇DT→2X⁎ be maximal monotone of type Γdϕ (i.e., there exist d≥0 and a nondecreasing function ϕ:0,∞→0,∞ with ϕ(0=0 such that 〈v⁎,x-y〉≥-dx-ϕy for all x∈DT, v⁎∈Tx, and y∈X,L:X⊃D(L→X⁎ be linear, surjective, and closed such that L-1:X⁎→X is compact, and C:X→X⁎ be a bounded demicontinuous operator. A new degree theory is developed for operators of the type L+T+C. The surjectivity of L can be omitted provided that RL is closed, L is densely defined and self-adjoint, and X=H, a real Hilbert space. The theory improves the degree theory of Berkovits and Mustonen for L+C, where C is bounded demicontinuous pseudomonotone. New existence theorems are provided. In the case when L is monotone, a maximality result is included for L and L+T. The theory is applied to prove existence of weak solutions in X=L20,T;H01Ω of the nonlinear equation given by ∂u/∂t-∑i=1N(∂/∂xiAix,u,∇u+Hλx,u,∇u=fx,t, x,t∈QT; ux,t=0, x,t∈∂QT; and ux,0=ux,T, x∈Ω, where λ>0, QT=Ω×0,T, ∂QT=∂Ω×0,T, Aix,u,∇u=∂/∂xiρx,u,∇u+aix,u,∇u (i=1,2,…,N, Hλx,u,∇u=-λΔu+gx,u,∇u, Ω is a nonempty, bounded, and open subset of RN with smooth boundary, and ρ,ai,g:Ω¯×R×RN→R satisfy suitable growth conditions. In addition, a new existence result is given concerning existence of weak solutions for nonlinear wave equation with nonmonotone nonlinearity.
Inversion of the perturbation series
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima, Colima (Mexico); Fernandez, Francisco M [INIFTA (Conicet, UNLP), Division Quimica Teorica, Diag 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)
2008-01-18
We investigate the inversion of the perturbation series and its resummation, and prove that it is related to a recently developed parametric perturbation theory. Results for some illustrative examples show that in some cases series reversion may improve the accuracy of the results.
Path integral for inflationary perturbations
Prokopec, T.; Rigopoulos, G.
2010-01-01
The quantum theory of cosmological perturbations in single-field inflation is formulated in terms of a path integral. Starting from a canonical formulation, we show how the free propagators can be obtained from the well-known gauge-invariant quadratic action for scalar and tensor perturbations, and
Colosi, John A; Chandrayadula, Tarun K; Voronovich, Alexander G; Ostashev, Vladimir E
2013-10-01
Second moments of mode amplitudes at fixed frequency as a function of separations in mode number, time, and horizontal distance are investigated using mode-based transport equations and Monte Carlo simulation. These second moments are used to study full-field acoustic coherence, including depth separations. Calculations for low-order modes between 50 and 250 Hz are presented using a deep-water Philippine Sea environment. Comparisons between Monte Carlo simulations and transport theory for time and depth coherence at frequencies of 75 and 250 Hz and for ranges up to 500 km show good agreement. The theory is used to examine the accuracy of the adiabatic and quadratic lag approximations, and the range and frequency scaling of coherence. It is found that while temporal coherence has a dominant adiabatic component, horizontal and vertical coherence have more equal contributions from coupling and adiabatic effects. In addition, the quadratic lag approximation is shown to be most accurate at higher frequencies and longer ranges. Last the range and frequency scalings are found to be sensitive to the functional form of the exponential decay of coherence with lag, but temporal and horizontal coherence show scalings that fall quite close to the well-known inverse frequency and inverse square root range laws.
Phillips, Jordan J; Zgid, Dominika
2014-06-28
We report an implementation of self-consistent Green's function many-body theory within a second-order approximation (GF2) for application with molecular systems. This is done by iterative solution of the Dyson equation expressed in matrix form in an atomic orbital basis, where the Green's function and self-energy are built on the imaginary frequency and imaginary time domain, respectively, and fast Fourier transform is used to efficiently transform these quantities as needed. We apply this method to several archetypical examples of strong correlation, such as a H32 finite lattice that displays a highly multireference electronic ground state even at equilibrium lattice spacing. In all cases, GF2 gives a physically meaningful description of the metal to insulator transition in these systems, without resorting to spin-symmetry breaking. Our results show that self-consistent Green's function many-body theory offers a viable route to describing strong correlations while remaining within a computationally tractable single-particle formalism.
Cosmological perturbations in antigravity
Oltean, Marius; Brandenberger, Robert
2014-10-01
We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.
Colosi, John A
2013-10-01
Previously published results from path integral theory for the horizontal coherence length utilized an empirical relation for the phase structure function density that was quite different from path integral results obtained for depth and time coherence where the phase structure function density was expanded to second order in the lag. This letter presents a result for horizontal coherence length which carries out the quadratic expansion and analytically solves the integral equations. Some simple calculations of horizontal coherence length demonstrate the differences between the present and old expressions. In contrast to the empirical result the present expression shows the expected one over square-root range and one over frequency scalings. The results also show more clearly how transverse coherence is sensitive to the space-time scales of internal waves and other environmental parameters.
High-order-harmonic generation in atomic and molecular systems
Suárez, Noslen; Chacón, Alexis; Pérez-Hernández, Jose A.; Biegert, Jens; Lewenstein, Maciej; Ciappina, Marcelo F.
2017-03-01
High-order-harmonic generation (HHG) results from the interaction of ultrashort laser pulses with matter. It configures an invaluable tool to produce attosecond pulses, moreover, to extract electron structural and dynamical information of the target, i.e., atoms, molecules, and solids. In this contribution, we introduce an analytical description of atomic and molecular HHG, that extends the well-established theoretical strong-field approximation (SFA). Our approach involves two innovative aspects: (i) First, the bound-continuum and rescattering matrix elements can be analytically computed for both atomic and multicenter molecular systems, using a nonlocal short range model, but separable, potential. When compared with the standard models, these analytical derivations make possible to directly examine how the HHG spectra depend on the driven media and laser-pulse features. Furthermore, we can turn on and off contributions having distinct physical origins or corresponding to different mechanisms. This allows us to quantify their importance in the various regions of the HHG spectra. (ii) Second, as reported recently [N. Suárez et al., Phys. Rev. A 94, 043423 (2016), 10.1103/PhysRevA.94.043423], the multicenter matrix elements in our theory are free from nonphysical gauge- and coordinate-system-dependent terms; this is accomplished by adapting the coordinate system to the center from which the corresponding time-dependent wave function originates. Our SFA results are contrasted, when possible, with the direct numerical integration of the time-dependent Schrödinger equation in reduced and full dimensionality. Very good agreement is found for single and multielectronic atomic systems, modeled under the single active electron approximation, and for simple diatomic molecular systems. Interference features, ubiquitously present in every strong-field phenomenon involving a multicenter target, are also captured by our model.
Efficient Unsteady Flow Visualization with High-Order Access Dependencies
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru
2016-04-19
We present a novel high-order access dependencies based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly-seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our proposed approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiency of pathline computation.
Energy Technology Data Exchange (ETDEWEB)
Santos, Adimir dos [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Borges, A.A. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados
2000-07-01
A new method for the calculation of sensitivity coefficients is developed. The new method is a combination of two methodologies used for calculating these coefficients, which are the differential and the generalized perturbation theory methods. The proposed method utilizes as integral parameter the average flux in an arbitrary region of the system. Thus, the sensitivity coefficient contains only the component corresponding to the neutron flux. To obtain the new sensitivity coefficient, the derivates of the integral parameter, {phi}({xi}), with respect to {sigma} are calculated using the perturbation method and the functional derivates of this generic integral parameter with respect to {sigma} and {phi} are calculated using the differential method. The new method merges the advantages of the differential and generalized perturbation theory methods and eliminates their disadvantages. (author)
The high-order Boltzmann machine: learned distribution and topology.
Albizuri, F X; Danjou, A; Grana, M; Torrealdea, J; Hernandez, M C
1995-01-01
In this paper we give a formal definition of the high-order Boltzmann machine (BM), and extend the well-known results on the convergence of the learning algorithm of the two-order BM. From the Bahadur-Lazarsfeld expansion we characterize the probability distribution learned by the high order BM. Likewise a criterion is given to establish the topology of the BM depending on the significant correlations of the particular probability distribution to be learned.
Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon
Dan eLiu; Chao eZeng; Haolin eTan; Dong eZheng; Rong eLi; Deyu eQu; zhizhong eXie; Jiahen eLei; Liang eXiao; Deyang eQu
2014-01-01
A highly ordered mesoporous carbon (HOMC) has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM, and nitrogen adsorption–desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. Active carbon impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon (HOMC) ...
Yourdkhani, Sirous; Korona, Tatiana; Hadipour, Nasser L
2015-12-15
Intermolecular ternary complexes composed of: (1) the centrally placed trifluoroacetonitrile or its higher analogs with central carbon exchanged by silicon or germanium (M = C, Si, Ge), (2) the benzonitrile molecule or its para derivatives on one side, and (3) the boron trifluoride of trichloride molecule (X = F, Cl) on the opposite side as well as the corresponding intermolecular tetrel- and triel-bonded binary complexes, were investigated by symmetry-adapted perturbation theory (SAPT) and the supermolecular Møller-Plesset method (MP2) at the complete basis set limit for optimized geometries. A character of interactions was studied by quantum theory of atoms-in-molecules (QTAIM). A comparison of interaction energies and QTAIM bond descriptors for dimers and trimers reveals that tetrel and triel bonds increase in their strength if present together in the trimer. For the triel-bonded complex, this growth leads to a change of the bond character from closed-shell to partly covalent for Si or Ge tetrel atoms, so the resulting bonding scheme corresponds to a preliminary stage of the SN2 reaction. Limitations of the Lewis theory of acids and bases were shown by its failure in predicting the stability order of the triel complexes. The necessity of including interaction energy terms beyond the electrostatic component for an elucidation of the nature of σ- and π-holes was presented by a SAPT energy decomposition and by a study of differences in monomer electrostatic potentials obtained either from isolated monomer densities, or from densities resulting from a perturbation with the effective field of another monomer. © 2015 Wiley Periodicals, Inc.
DEFF Research Database (Denmark)
Fromager, Emmanuel; Cimiraglia, Renzo; Jensen, Hans Jørgen Aagaard
2010-01-01
A rigorous combination of multireference perturbation theory and density functional theory (DFT) is proposed. Based on a range separation of the regular two-electron Coulomb interaction, it combines a short-range density functional with second-order strongly contracted n-electron valence state pe...... zero. The method yields very promising results for the van der Waals systems Be2, Mg2, and Ca2; including the multireference system Be2....
Energy Technology Data Exchange (ETDEWEB)
Lehnhart, B.C.
2007-05-15
This thesis is concerned with electromagnetic pion production within manifestly Lorentz-invariant chiral perturbation theory using the assumption of isospin symmetry. In a one-loop calculation up to the chiral order O(q{sup 4}), 105 Feynman diagrams contribute, consisting of 20 tree graphs and 85 loop diagrams. The tree graphs are classified as 16 pole diagrams and 4 contact graphs. Of the 85 loop diagrams, 50 diagrams are of order three and 35 diagrams are of fourth order. To calculate the pion production amplitude algorithms are developed on the basis of the Mathematica package FeynCalc. The one-photon-exchange approximation allows one to parametrise the pion production amplitude as the product of the polarisation vector of the (virtual) photon and the matrix element of the transition current. The polarisation vector is related to the leptonic vertex and the photon propagator and is well-known from QED. The dependence of the amplitude on the strong interaction is contained in the matrix element of the transition current, and we use chiral perturbation theory to describe this matrix element. The transition current can be expressed in terms of six gauge invariant amplitudes, each of which can again be decomposed into three isospin amplitudes. Linear combinations of these amplitudes allow us to describe the physical amplitudes. The one-loop integrals appearing within this calculation are determined numerically by the program LoopTools. In the case of tensorial integrals it is required to perform the method of Passarino and Veltman first. Furthermore, we apply the reformulated infrared regularisation which ensures that the results fulfill the chiral power counting. For this purpose algorithms are developed which determine the subtraction terms automatically. The obtained isospin amplitudes are integrated in the program MAID. As tests the s-wave multipoles E{sub 0+} and L{sub 0+} (using results up to chiral order O(q{sup 3})) are calculated in the threshold region
Energy Technology Data Exchange (ETDEWEB)
Van Hung, Nguyen, E-mail: hungnv@vnu.edu.vn [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Hue, Trinh Thi [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Khoa, Ha Dang [School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi (Viet Nam); Vuong, Dinh Quoc [Quang Ninh Education & Training Department, Nguyen Van Cu, Ha Long, Quang Ninh (Viet Nam)
2016-12-15
High-order expanded interatomic effective potential and Debye-Waller factors (DWFs) for local vibrational amplitudes in X-ray absorption fine structure (XAFS) of bcc crystals have been studied based on the anharmonic correlated Debye model. DWFs are presented in terms of cumulant expansion up to the fourth order and the many-body effects are taken into account in the present one-dimensional model based on the first shell near neighbor contribution approach used in the derivations of the anharmonic effective potential and XAFS cumulants where Morse potential is assumed to describe the single-pair atomic interaction. Analytical expressions for the dispersion relation, correlated Debye frequency and temperature and four first temperature-dependent XAFS cumulants have been derived based on the many-body perturbation approach. Thermodynamic properties and anharmonic effects in XAFS of bcc crystals described by the obtained cumulants have been in detail discussed. The advantage and efficiency of the present theory are illustrated by good agreement of the numerical results for Mo, Fe and W with experiment.
Perturbative gadgets at arbitrary orders
Jordan, Stephen P.; Farhi, Edward
2008-06-01
Adiabatic quantum algorithms are often most easily formulated using many-body interactions. However, experimentally available interactions are generally two-body. In 2004, Kempe, Kitaev, and Regev introduced perturbative gadgets, by which arbitrary three-body effective interactions can be obtained using Hamiltonians consisting only of two-body interactions. These three-body effective interactions arise from the third order in perturbation theory. Since their introduction, perturbative gadgets have become a standard tool in the theory of quantum computation. Here we construct generalized gadgets so that one can directly obtain arbitrary k -body effective interactions from two-body Hamiltonians. These effective interactions arise from the k th order in perturbation theory.
I. Hinchliffe
2010-01-01
This is the written version of a set of lectures on perturbative QCD that were delivered to a mixed audience of young theorists and experimentalists in the course of the XXII International Meeting on Fundamental Physics. These notes are virtually a verbatim transcription of the lectures. The selection of topics is somewhat arbitrary, but two basic points are emphasized: the rationale behind QCD and how ongoing experiments, such as those taking place in LEP and HERA, contribute to our understa...
New Methods in Non-Perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)
2017-01-31
In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.
Construction of Low Dissipative High Order Well-Balanced Filter Schemes for Non-Equilibrium Flows
Wang, Wei; Yee, H. C.; Sjogreen, Bjorn; Magin, Thierry; Shu, Chi-Wang
2009-01-01
The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. [26] to a class of low dissipative high order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. The class of filter schemes developed by Yee et al. [30], Sjoegreen & Yee [24] and Yee & Sjoegreen [35] consist of two steps, a full time step of spatially high order non-dissipative base scheme and an adaptive nonlinear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e., choosing a well-balanced base scheme with a well-balanced filter (both with high order). A typical class of these schemes shown in this paper is the high order central difference schemes/predictor-corrector (PC) schemes with a high order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady state solutions exactly; it is able to capture small perturbations, e.g., turbulence fluctuations; it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.
Espinosa, William Fernando; Perez-Walton, Santiago; Osorio-Guillén, Jorge M; Araujo, Carlos Moyses Graca
2017-11-28
We have studied by means of first-principles calculations the electronic and optical properties of the sulvanite family: Cu$_3$MX$_4$ (M = V, Nb, Ta and X = S, Se), that due to its broad range of gaps and chemical stability have emerged as promising materials for technological applications such as photovoltaics and transparent conductivity. To address the reliably of those properties we have used semi-local and hybrid functionals (PBEsol, HSE06), many-body perturbation theory (G$_0$W$_0$ approximation and Bethe-Salpeter equation), and time-dependent density functional theory (revised bootstrap kernel) to calculate the quasi-particle dispersion relation, band gaps, the imaginary part of the macroscopic dielectric function and the absorption coefficient. The calculated valence band maximum and the conduction band minimum are located at the $R$ and $X$-points, respectively. The calculated gaps using PBEsol are between 0.81 and 1.88 eV, with HSE06 are into 1.73 and 2.94 eV, whereas the G$_0$W$_0$ values fall into the 1.91--3.19 eV range. The calculated dielectric functions and absorption coefficients show that all these compounds present continuous excitonic features when the Bethe-Salpeter equation is used. Contrarily, the revised bootstrap kernel is incapable to describe the excitonic spectra. The calculated optical spectra show that Cu$_3$VS$_4$ and Cu$_3$MSe$_4$ have good absorption in the visible, whereas Cu$_3$NbS$_4$ and Cu$_3$TaS$_4$ have it on the near ultraviolet. © 2017 IOP Publishing Ltd.
Lao, Ka Un; Herbert, John M
2013-07-21
We recently introduced a low-cost quantum chemistry method for computing intermolecular interactions, combining a monomer-based self-consistent field calculation (the "explicit polarization" method, XPol) with pairwise-additive symmetry adapted perturbation theory (SAPT). The method uses Kohn-Sham (KS) orbitals in the SAPT formalism but replaces the SAPT dispersion and exchange-dispersion terms with empirical potentials ("+D"), and we called this method XPol+SAPT(KS)+D. Here, we report a second-generation version of this approach, XPol+SAPT(KS)+D2 or XSAPT(KS)+D2 for short, in which we have modified the form of the empirical atom-atom dispersion potentials. Accurate binding energies are obtained for benchmark databases of dimer binding energies, and potential energy curves are captured accurately for a variety of challenging systems. We suggest that using different asymptotic corrections for different monomers is necessary to get good binding energies in general, especially for hydrogen-bonded complexes. As compared to our original "+D" formulation, the second-generation "+D2" method accurately reproduces not only total binding energies but also the various components of the interaction energy, and on this basis we introduce an energy decomposition scheme that extends traditional SAPT energy decomposition to systems containing more than two monomers. For (H2O)6, the many-body contribution to the interaction energy agrees well with that obtained from traditional Kitaura-Morokuma energy decomposition analysis in a large basis set.
Energy Technology Data Exchange (ETDEWEB)
Santana, J A; Ishikawa, Y; Tr�abert, E
2009-02-26
Ground configuration and low-lying levels of Al-like ions contribute to a variety of laboratory and solar spectra, but the available information in databases are neither complete not necessarily correct. We have performed multireference Moeller-Plesset perturbation theory calculations that approach spectroscopic accuracy in order to check the information that databases hold on the 40 lowest levels of Al-Like ions of iron group elements (K through Ge), and to provide input for the interpretation of concurrent experiments. Our results indicate problems of the database holdings on the levels of the lowest quartet levels in the lighter elements of the range studied. The results of our calculations of the decay rates of five long-lived levels (3s{sup 2}3p {sup 2}p{sup o}{sub 3/2}, 3s3p{sup 2} {sup 4}P{sup o} J and 3s3p3d {sup 4}F{sup o}{sub 9/2}) are compared with lifetime data from beam-foil, electron beam ion trap and heavy-ion storage ring experiments.
Lin, Tingting; Liu, Xiang-Yang; He, Chaobin
2012-02-09
We calculated infrared (IR) and Raman spectra of poly(lactic acid) (PLA) polymorphs by employing density functional perturbation theory (DFPT) and a plane wavebasis set. Significant different characteristics are found in the calculated spectra of poly(L-lactic acid) (PLLA) α-form and PLLA/poly(D-lactic acid) (PDLA) stereocomplex (sc) form. Particularly in the carbonyl stretching region, there is only one sharp peak in the sc-form while there are five peaks in the PLLA α-form. A low wavenumber (65 cm(-1)) vibration band of α-PLLA observed in a previous terahertz time-domain spectroscopy study was reproduced in the calculated solid-state PLLA spectra. This band could not be obtained by using DFT (B3LYP/6-31G*) simulation on a single PLA oligomer chain and had been attributed to lattice vibrations in the crystal. The permittivity and polarizability tensors of PLA single crystals were also obtained using the DFPT method and were found to be anisotropic. © 2012 American Chemical Society
A high order solver for the unbounded Poisson equation
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe
In mesh-free particle methods a high order solution to the unbounded Poisson equation is usually achieved by constructing regularised integration kernels for the Biot-Savart law. Here the singular, point particles are regularised using smoothed particles to obtain an accurate solution with an order...... of convergence consistent with the moments conserved by the applied smoothing function. In the hybrid particle-mesh method of Hockney and Eastwood (HE) the particles are interpolated onto a regular mesh where the unbounded Poisson equation is solved by a discrete non-cyclic convolution of the mesh values...... and the integration kernel. In this work we show an implementation of high order regularised integration kernels in the HE algorithm for the unbounded Poisson equation to formally achieve an arbitrary high order convergence. We further present a quantitative study of the convergence rate to give further insight...
Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon
Directory of Open Access Journals (Sweden)
Dan eLiu
2014-10-01
Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.
A high order solver for the unbounded Poisson equation
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe
2013-01-01
. The method is extended to directly solve the derivatives of the solution to Poissonʼs equation. In this way differential operators such as the divergence or curl of the solution field can be solved to the same high order convergence without additional computational effort. The method, is applied...... and validated, however not restricted, to the equations of fluid mechanics, and can be used in many applications to solve Poissonʼs equation on a rectangular unbounded domain.......A high order converging Poisson solver is presented, based on the Greenʼs function solution to Poissonʼs equation subject to free-space boundary conditions. The high order convergence is achieved by formulating regularised integration kernels, analogous to a smoothing of the solution field...
Dynamic Stability Analysis Using High-Order Interpolation
Directory of Open Access Journals (Sweden)
Juarez-Toledo C.
2012-10-01
Full Text Available A non-linear model with robust precision for transient stability analysis in multimachine power systems is proposed. The proposed formulation uses the interpolation of Lagrange and Newton's Divided Difference. The High-Order Interpolation technique developed can be used for evaluation of the critical conditions of the dynamic system.The technique is applied to a 5-area 45-machine model of the Mexican interconnected system. As a particular case, this paper shows the application of the High-Order procedure for identifying the slow-frequency mode for a critical contingency. Numerical examples illustrate the method and demonstrate the ability of the High-Order technique to isolate and extract temporal modal behavior.
Energy Technology Data Exchange (ETDEWEB)
Borges, Antonio Andrade
1998-07-01
A new method for the calculation of sensitivity coefficients is developed. The new method is a combination of two methodologies used for calculating theses coefficients, which are the differential and the generalized perturbation theory methods. The method utilizes as integral parameter the average flux in an arbitrary region of the system. Thus, the sensitivity coefficient contains only the component corresponding to the neutron flux. To obtain the new sensitivity coefficient, the derivatives of the integral parameter, {phi}, with respect to {sigma} are calculated using the perturbation method and the functional derivatives of this generic integral parameter with respect to {sigma} and {phi} are calculated using the differential method. (author)
Use of high order, periodic orbits in the PIES code
Monticello, Donald; Reiman, Allan
2010-11-01
We have implemented a version of the PIES code (Princeton Iterative Equilibrium SolverootnotetextA. Reiman et al 2007 Nucl. Fusion 47 572) that uses high order periodic orbits to select the surfaces on which straight magnetic field line coordinates will be calculated. The use of high order periodic orbits has increase the robustness and speed of the PIES code. We now have more uniform treatment of in-phase and out-of-phase islands. This new version has better convergence properties and works well with a full Newton scheme. We now have the ability to shrink islands using a bootstrap like current and this includes the m=1 island in tokamaks.
Airfoil noise computation use high-order schemes
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær
2007-01-01
) finite difference schemes and optimized high-order compact finite difference schemes are applied for acoustic computation. Acoustic equations are derived using so-called splitting technique by separating the compressible NS equations into viscous (flow equation) and inviscid (acoustic equation) parts......High-order finite difference schemes with at least 4th-order spatial accuracy are used to simulate aerodynamically generated noise. The aeroacoustic solver with 4th-order up to 8th-order accuracy is implemented into the in-house flow solver, EllipSys2D/3D. Dispersion-Relation-Preserving (DRP...
Adiabatic limit in perturbation theory
Epstein, H
1976-01-01
It is shown that, with correct mass and wave function renormalization, the time-ordered products for Wick polynomials T(L(y/sub 1/)...L(y/sub n/)) constructed by a method outlined in a previous paper (Epstein and Glaser, 1970) are such that the vectors of the form integral T(L(y/sub 1/)...L(y/sub n/)) g(y/sub 1/)...g(y/sub n/) psi dy/sub 1/...dy/sub n/ have limits when g tends to a constant, provided psi is chosen in a suitable dense domain. It follows that the S-matrix has unitary adiabatic limit as an operator-valued formal power series in Fock space. (4 refs).
A high order solver for the unbounded Poisson equation
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe
2012-01-01
This work improves upon Hockney and Eastwood's Fourier-based algorithm for the unbounded Poisson equation to formally achieve arbitrary high order of convergence without any additional computational cost. We assess the methodology on the kinematic relations between the velocity and vorticity fields....
High-Order CESE Methods for Solving Hyperbolic PDEs (Preprint)
2011-05-03
system of coupled hyperbolic PDE’s with arbitrarily high-order con- vergence . Numerical results show that the extended algorithm can achieve higher...Velocity- Stress Equations for Waves in Solids of Hexagonal Symmetry Solved by the Space-Time CESE Method. ASME Journal of Vibration and Acoustics, 133 (2
Enhanced high-order harmonic generation from Argon-clusters
Tao, Yin; Hagmeijer, Rob; Bastiaens, Hubertus M.J.; Goh, S.J.; van der Slot, P.J.M.; Biedron, S.; Milton, S.; Boller, Klaus J.
2017-01-01
High-order harmonic generation (HHG) in clusters is of high promise because clusters appear to offer an increased optical nonlinearity. We experimentally investigate HHG from Argon clusters in a supersonic gas jet that can generate monomer-cluster mixtures with varying atomic number density and
The Development of High Order Methods for Real World Applications
2015-12-03
three-stage 3rd order Runge-Kutta scheme Gottlieb and Shu [43] is used as the temporal discretization. Here we give a brief description. Rewrite the...Science and Engineering. Springer Berlin Heidelberg, pp. 47–95. [43] Gottlieb , S., Shu, C.-W., 2011. Strong stability-preserving high-order time dis
Vector wave analysis of an electromagnetic high-order Bessel vortex beam of fractional type α.
Mitri, F G
2011-03-01
The scalar wave theory of nondiffracting electromagnetic (EM) high-order Bessel vortex beams of fractional type α has been recently explored, and their novel features and promising applications have been revealed. However, complete characterization of the properties for this new type of beam requires a vector analysis to determine the fields' components in space because scalar wave theory is inadequate to describe such beams, especially when the central spot is comparable to the wavelength (k(r)/k≈1, where k(r) is the radial component of the wavenumber k). Stemming from Maxwell's vector equations and the Lorenz gauge condition, a full vector wave analysis for the electric and magnetic fields is presented. The results are of particular importance in the study of EM wave scattering of a high-order Bessel vortex beam of fractional type α by particles.
Energy Technology Data Exchange (ETDEWEB)
Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2012-09-20
The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered
The reconstruction property in Banach spaces and a perturbation theorem
DEFF Research Database (Denmark)
Casazza, P.G.; Christensen, Ole
2008-01-01
Perturbation theory is a fundamental tool in Banach space theory. However, the applications of the classical results are limited by the fact that they force the perturbed sequence to be equivalent to the given sequence. We will develop a more general perturbation theory that does not force equiva...
A high-order q-difference equation for q-Hahn multiple orthogonal polynomials
DEFF Research Database (Denmark)
Arvesú, J.; Esposito, Chiara
2012-01-01
A high-order linear q-difference equation with polynomial coefficients having q-Hahn multiple orthogonal polynomials as eigenfunctions is given. The order of the equation coincides with the number of orthogonality conditions that these polynomials satisfy. Some limiting situations when are studie....... Indeed, the difference equation for Hahn multiple orthogonal polynomials given in Lee [J. Approx. Theory (2007), ), doi: 10.1016/j.jat.2007.06.002] is obtained as a limiting case....
Duarte, Dyana C.; Farias, R. L. S.; Manso, Pedro H. A.; Ramos, Rudnei O.
2017-09-01
The Nambu-Jona-Lasinio model with two flavors, three colors, and diquark interactions is analyzed in the context of optimized perturbation theory (OPT). Corrections to the thermodynamical potential that go beyond the large-Nc (LN) approximation are taken into account, and the region of the phase diagram corresponding to intermediate chemical potentials and very low temperatures is explored. The simultaneous presence of both the quark-antiquark and diquark condensates can cause the system to behave as a fluid composed of a Bose-Einstein condensate (BEC) or a color superconductor one, in the form of a Bardeen-Cooper-Schrieffer (BCS) superfluid. The BEC-BCS crossover is then studied in the nonperturbative OPT scheme. The results obtained in the context of the OPT method are then contrasted with those obtained in the LN approximation. We show that there are values for the coupling constants related to quark-quark and quark-antiquark interactions where the corrections beyond LN brought by the OPT method can influence the behavior of the diquark condensate and the effective quark mass as a function of the baryon chemical potential. These changes in the behavior of the phase structure of the model modify the location of the critical point related to the phase structure as a whole of the model. Also, when we impose the color neutrality condition, our results show that the nature of the phase transition can change as well, shifting the ratio of the quark-antiquark and quark-quark interactions to higher values in the OPT case as compared to the LN approximation.
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-09-14
The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU's) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH3, CO2, formic acid, and benzene.
Mognetti, B. M.; Virnau, P.; Yelash, L.; Paul, W.; Binder, K.; Müller, M.; MacDowell, L. G.
2009-01-01
The prediction of the equation of state and the phase behavior of simple fluids (noble gases, carbon dioxide, benzene, methane, and short alkane chains) and their mixtures by Monte Carlo computer simulation and analytic approximations based on thermodynamic perturbation theory is discussed. Molecules are described by coarse grained models, where either the whole molecule (carbon dioxide, benzene, and methane) or a group of a few successive CH2 groups (in the case of alkanes) are lumped into an effective point particle. Interactions among these point particles are fitted by Lennard-Jones (LJ) potentials such that the vapor-liquid critical point of the fluid is reproduced in agreement with experiment; in the case of quadrupolar molecules a quadrupole-quadrupole interaction is included. These models are shown to provide a satisfactory description of the liquid-vapor phase diagram of these pure fluids. Investigations of mixtures, using the Lorentz-Berthelot (LB) combining rule, also produce satisfactory results if compared with experiment, while in some previous attempts (in which polar solvents were modeled without explicitly taking into account quadrupolar interaction), strong violations of the LB rules were required. For this reason, the present investigation is a step towards predictive modeling of polar mixtures at low computational cost. In many cases Monte Carlo simulations of such models (employing the grand-canonical ensemble together with reweighting techniques, successive umbrella sampling, and finite size scaling) yield accurate results in very good agreement with experimental data. Simulation results are quantitatively compared to an analytical approximation for the equation of state of the same model, which is computationally much more efficient, and some systematic discrepancies are discussed. These very simple coarse-grained models of small molecules developed here should be useful, e.g., for simulations of polymer solutions with such molecules as
Cosmological perturbations beyond linear order
CERN. Geneva
2013-01-01
Cosmological perturbation theory is the standard tool to understand the formation of the large scale structure in the Universe. However, its degree of applicability is limited by the growth of the amplitude of the matter perturbations with time. This problem can be tackled with by using N-body simulations or analytical techniques that go beyond the linear calculation. In my talk, I'll summarise some recent efforts in the latter that ameliorate the bad convergence of the standard perturbative expansion. The new techniques allow better analytical control on observables (as the matter power spectrum) over scales very relevant to understand the expansion history and formation of structure in the Universe.
Parallel preconditioners and high order elements for microwave imaging
Bonazzoli, M; Rapetti, F; Tournier, P -H
2016-01-01
This paper combines the use of high order finite element methods with parallel preconditioners of domain decomposition type for solving electromagnetic problems arising from brain microwave imaging. The numerical algorithms involved in such complex imaging systems are computationally expensive since they require solving the direct problem of Maxwell's equations several times. Moreover, wave propagation problems in the high frequency regime are challenging because a sufficiently high number of unknowns is required to accurately represent the solution. In order to use these algorithms in practice for brain stroke diagnosis, running time should be reasonable. The method presented in this paper, coupling high order finite elements and parallel preconditioners, makes it possible to reduce the overall computational cost and simulation time while maintaining accuracy.
High-order harmonic generation in laser plasma plumes
Ganeev, Rashid A
2013-01-01
This book represents the first comprehensive treatment of high-order harmonic generation in laser-produced plumes, covering the principles, past and present experimental status and important applications. It shows how this method of frequency conversion of laser radiation towards the extreme ultraviolet range matured over the course of multiple studies and demonstrated new approaches in the generation of strong coherent short-wavelength radiation for various applications. Significant discoveries and pioneering contributions of researchers in this field carried out in various laser scientific centers worldwide are included in this first attempt to describe the important findings in this area of nonlinear spectroscopy. "High-Order Harmonic Generation in Laser Plasma Plumes" is a self-contained and unified review of the most recent achievements in the field, such as the application of clusters (fullerenes, nanoparticles, nanotubes) for efficient harmonic generation of ultrashort laser pulses in cluster-containin...
High-Order Modulation for Optical Fiber Transmission
Seimetz, Matthias
2009-01-01
Catering to the current interest in increasing the spectral efficiency of optical fiber networks by the deployment of high-order modulation formats, this monograph describes transmitters, receivers and performance of optical systems with high-order phase and quadrature amplitude modulation. In the first part of the book, the author discusses various transmitter implementation options as well as several receiver concepts based on direct and coherent detection, including designs of new structures. Hereby, both optical and electrical parts are considered, allowing the assessment of practicability and complexity. In the second part, a detailed characterization of optical fiber transmission systems is presented, regarding a wide range of modulation formats. It provides insight in the fundamental behavior of different formats with respect to relevant performance degradation effects and identifies the major trends in system performance.
High-order harmonic generation from polar molecules
DEFF Research Database (Denmark)
Etches, Adam
When a molecule is submitted to a very intense laser pulse it emits coherent bursts of light in each optical half-cycle of the laser field. This process is known as high-order harmonic generation because the spectrum consists of many peaks at energies corresponding to an integer amount of laser...... photons. The harmonics contain information about the wave function of the loosest bound electron on an Ångström length scale and attosecond time scale. However, accurate theoretical models are needed in order to extract this information. In this thesis the most widely used model of high-order harmonic...... generation is extended to polar molecules by including the laser-induced Stark shift of each molecular orbitals. The Stark shift is shown to have a major influence on the relative strength of harmonic bursts in neighbouring half-cycles, as well as leaving an imprint on the phase of the harmonics...
Full quantum trajectories resolved high-order harmonic generation.
Ye, Peng; He, Xinkui; Teng, Hao; Zhan, Minjie; Zhong, Shiyang; Zhang, Wei; Wang, Lifeng; Wei, Zhiyi
2014-08-15
We use a carrier-envelope-phase stabilized sub-2-cycle laser pulse to generate high-order harmonics and study how the two-dimensional spectrum of harmonics, with the resolutions in temporal frequency and spatial frequency, is shaped by the laser phase. An arrowlike spectrum obtained experimentally when the gas cell is located in front of the laser focus point shows a resolution of full quantum trajectories; i.e., harmonics from different trajectories stand on different positions in this spectrum. In particular, due to the laser phase combined with the classical-like action, the harmonics from short and long trajectories differ maximally in their curvatures of wave fronts in the generation area, and so occupy very different ranges of spatial frequency at the far field. The result directly gives a full map of quantum trajectories in high-order harmonic generation. The conclusion is supported by an analytical model and quantum mechanics simulations.
Development of high-order segmented MEMS deformable mirrors
Helmbrecht, Michael A.; He, Min; Kempf, Carl J.
2012-03-01
The areas of biological microscopy, ophthalmic research, and atmospheric turbulence correction require high-order DMs to obtain diffraction-limited images. Iris AO has been developing high-order MEMS DMs to address these requirements. Recent development has resulted in fully functional 489-actuator DMs capable of 9.5 µm stroke. For laser applications, the DMs were modified to make them compatible with high-reflectance dielectric coatings. Experimental results for the 489-actuator DMs with dielectric coatings shows they can be made with superb optical quality λ/93.3 rms (11.4 nm rms) and λ/75.9 rms (20.3 nm rms) for 1064 nm and 1540 nm coatings. Laser testing has demonstrated 300 W/cm2 power handling with off-the-shelf packaging. Power handling of 2800 W/cm2 is projected when incorporating packaging optimized for heat transfer.
A High-Order CFS Algorithm for Clustering Big Data
Fanyu Bu; Zhikui Chen; Peng Li; Tong Tang; Ying Zhang
2016-01-01
With the development of Internet of Everything such as Internet of Things, Internet of People, and Industrial Internet, big data is being generated. Clustering is a widely used technique for big data analytics and mining. However, most of current algorithms are not effective to cluster heterogeneous data which is prevalent in big data. In this paper, we propose a high-order CFS algorithm (HOCFS) to cluster heterogeneous data by combining the CFS clustering algorithm and the dropout deep learn...
Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, Kim Ø; Salerno, M.
2006-01-01
A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz......-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated....
High order numerical methods for myxobacteria pattern formation
Glavan, Ana Maria
2015-01-01
Rippling patterns of myxobacteria appear in starving colonies before they aggregate to form fruiting bodies. These periodic traveling cell density waves arise from the coordination of individual cell reversals, resulting from an internal clock regulating them, and from contact signaling during bacterial collisions. Our main interest in this research is the numerical approximation with high order accuracy in space of the solutions of mathematical models proposed for myxobacteria rippling. We r...
Separation of High Order Harmonics with Fluoride Windows
Energy Technology Data Exchange (ETDEWEB)
Allison, Tom; van Tilborg, Jeroen; Wright, Travis; Hertlein, Marcus; Falcone, Roger; Belkacem, Ali
2010-08-02
The lower orders produced in high order harmonic generation can be effciently temporally separated into monochromatic pulses by propagation in a Fluoride window while still preserving their femtosecond pulse duration. We present calculations for MgF2, CaF2, and LiF windows for the third, fifth, and seventh harmonics of 800 nm. We demonstrate the use of this simple and inexpensive technique in a femtosecond pump/probe experiment using the fifth harmonic.
International Conference on Spectral and High-Order Methods
Dumont, Ney; Hesthaven, Jan
2017-01-01
This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
High-order harmonic generation via multicolor beam superposition
Sarikhani, S.; Batebi, S.
2017-09-01
In this article, femtosecond pulses, especially designed by multicolor beam superposition are used for high-order harmonic generation. To achieve this purpose, the spectral difference between the beams, and their width are taken to be small values, i.e., less than 1 nm. Applying a Gaussian distribution to the beam intensities leads to a more distinct pulses. Also, it is seen that these pulses have an intrinsic linear chirp. By changing the width of the Gaussian distributions, we can have several pulses with different bandwidths and hence various pulse duration. Thus, the study of these broadband pulse influences, in contrast with monochromatic pulses, on the atomic or molecular targets was achievable. So, we studied numerically the effect of these femtosecond pulses on behavior of the high-order harmonics generated after interaction between the pulse and the atomic hydrogen. For this study, we adjusted the beam intensities so that the produced pulse intensity be in the over-barrier ionization region. This makes the power spectrum of high-order harmonics more extensive. Cutoff frequency of the power spectrum along with the first harmonic intensity and its shift from the incident pulse are investigated. Additionally, maximum ionization probability with respect to the pulse bandwidth was also studied.
HOKF: High Order Kalman Filter for Epilepsy Forecasting Modeling.
Nguyen, Ngoc Anh Thi; Yang, Hyung-Jeong; Kim, Sunhee
2017-08-01
Epilepsy forecasting has been extensively studied using high-order time series obtained from scalp-recorded electroencephalography (EEG). An accurate seizure prediction system would not only help significantly improve patients' quality of life, but would also facilitate new therapeutic strategies to manage epilepsy. This paper thus proposes an improved Kalman Filter (KF) algorithm to mine seizure forecasts from neural activity by modeling three properties in the high-order EEG time series: noise, temporal smoothness, and tensor structure. The proposed High-Order Kalman Filter (HOKF) is an extension of the standard Kalman filter, for which higher-order modeling is limited. The efficient dynamic of HOKF system preserves the tensor structure of the observations and latent states. As such, the proposed method offers two main advantages: (i) effectiveness with HOKF results in hidden variables that capture major evolving trends suitable to predict neural activity, even in the presence of missing values; and (ii) scalability in that the wall clock time of the HOKF is linear with respect to the number of time-slices of the sequence. The HOKF algorithm is examined in terms of its effectiveness and scalability by conducting forecasting and scalability experiments with a real epilepsy EEG dataset. The results of the simulation demonstrate the superiority of the proposed method over the original Kalman Filter and other existing methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Hyperspectral target detection using regularized high-order matched filter
Shi, Zhenwei; Yang, Shuo; Jiang, Zhiguo
2011-05-01
Automatic target detection is an important application in the hyperspectral image processing field. Most statistics-based detection algorithms use second-order statistics to construct detectors. However, for target detection in a real hyperspectral image, targets of interest usually occupy a few pixels with small population. In this case, high-order statistics could characterize targets more effectively than second-order statistics. Also, the inherent variation of spectra of targets is an obstacle to successful target detection. In this paper, we propose a regularized high-order matched filter (RHF) which uses high-order statistics to build an objective function and uses a regularized term to make the algorithm robust to target spectral variation. A gradient descent method is used to solve this optimization problem, and we obtain the convergence properties of the RHF. According to the experimental hyperspectral data, the results have shown that the proposed algorithm performed better than those classical second-order statistics-based algorithms and some kernel-based methods.
Hybrid RANS-LES using high order numerical methods
Henry de Frahan, Marc; Yellapantula, Shashank; Vijayakumar, Ganesh; Knaus, Robert; Sprague, Michael
2017-11-01
Understanding the impact of wind turbine wake dynamics on downstream turbines is particularly important for the design of efficient wind farms. Due to their tractable computational cost, hybrid RANS/LES models are an attractive framework for simulating separation flows such as the wake dynamics behind a wind turbine. High-order numerical methods can be computationally efficient and provide increased accuracy in simulating complex flows. In the context of LES, high-order numerical methods have shown some success in predictions of turbulent flows. However, the specifics of hybrid RANS-LES models, including the transition region between both modeling frameworks, pose unique challenges for high-order numerical methods. In this work, we study the effect of increasing the order of accuracy of the numerical scheme in simulations of canonical turbulent flows using RANS, LES, and hybrid RANS-LES models. We describe the interactions between filtering, model transition, and order of accuracy and their effect on turbulence quantities such as kinetic energy spectra, boundary layer evolution, and dissipation rate. This work was funded by the U.S. Department of Energy, Exascale Computing Project, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.
Probe of Multi-electron Dynamics in Xenon by Caustics in High Order Harmonic Generation
Faccialà, Davide; Bruner, Barry D; Ciriolo, Anna G; De Silvestri, Sandro; Devetta, Michele; Negro, Matteo; Soifer, Hadas; Stagira, Salvatore; Dudovich, Nirit; Vozzi, Caterina
2016-01-01
We investigated the giant resonance in Xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a non-perturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring sub-cycles resulting in the appearance of spectral caustics at two distinct cut-off energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this paper we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in Xenon. The collective excitations of the giant dipole resonance in Xenon combined with the spectral manipulation associated with the two color driving field allow to see features that are normally not accessible and to obtain a quantitative good agreement between the experimental results and the theoretical predictions.
High Order Numerical Simulation of Sound Generated by the Kirchhoff Vortex
Mueller, Bernhard; Yee, H. C.
2001-01-01
An improved high order finite difference method for low Mach number computational aeroacoustics (CAA) is described. The improvements involve the conditioning of the Euler equations in perturbation form to minimize numerical cancellation error, and the use of a stable non-dissipative sixth-order central spatial differencing for the interior points and third-order at the boundary points. The spatial difference operator satisfies the summation-by-parts property to guarantee strict stability for linear hyperbolic systems. Spurious high frequency oscillations are damped by a third-order characteristic-based filter. The objective of this paper is to apply these improvements in the simulation of sound generated by the Kirchhoff vortex.
Solution of stochastic nonlinear PDEs using Wiener-Hermite expansion of high orders
El Beltagy, Mohamed
2016-01-06
In this work, the Wiener-Hermite Expansion (WHE) is used to solve stochastic nonlinear PDEs excited with noise. The generation of the equivalent set of deterministic integro-differential equations is automated and hence allows for high order terms of WHE. The automation difficulties are discussed, solved and implemented to output the final system to be solved. A numerical Pikard-like algorithm is suggested to solve the resulting deterministic system. The automated WHE is applied to the 1D diffusion equation and to the heat equation. The results are compared with previous solutions obtained with WHEP (WHE with perturbation) technique. The solution obtained using the suggested WHE technique is shown to be the limit of the WHEP solutions with infinite number of corrections. The automation is extended easily to account for white-noise of higher dimension and for general nonlinear PDEs.
Miyata, Tatsuhiko; Ikuta, Yasuhiro; Hirata, Fumio
2010-07-28
This article proposes a free energy calculation method based on the molecular dynamics simulation combined with the three dimensional reference interaction site model theory. This study employs the free energy perturbation (FEP) and the thermodynamic integration (TDI) along the coupling parameters to control the interaction potential. To illustrate the method, we applied it to a complex formation process in aqueous solutions between a crown ether molecule 18-Crown-6 (18C6) and a potassium ion as one of the simplest model systems. Two coupling parameters were introduced to switch the Lennard-Jones potential and the Coulomb potential separately. We tested two coupling procedures: one is a "sequential-coupling" to couple the Lennard-Jones interaction followed by the Coulomb coupling, and the other is a "mixed-coupling" to couple both the Lennard-Jones and the Coulomb interactions together as much as possible. The sequential-coupling both for FEP and TDI turned out to be accurate and easily handled since it was numerically well-behaved. Furthermore, it was found that the sequential-coupling had relatively small statistical errors. TDI along the mixed-coupling integral path was to be carried out carefully, paying attention to a numerical behavior of the integrand. The present model system exhibited a nonmonotonic behavior in the integrands for TDI along the mixed-coupling integral path and also showed a relatively large statistical error. A coincidence within a statistical error was obtained among the results of the free energy differences evaluated by FEP, TDI with the sequential-coupling, and TDI with the mixed-coupling. The last one is most attractive in terms of the computer power and is accurate enough if one uses a proper set of windows, taking the numerical behavior of the integrands into account. TDI along the sequential-coupling integral path would be the most convenient among the methods we tested, since it seemed to be well-balanced between the computational
Effect of Under-Resolved Grids on High Order Methods
Yee, H. C.; Sjoegreen, B.; Mansour, Nagi (Technical Monitor)
2001-01-01
There has been much discussion on verification and validation processes for establishing the credibility of CFD simulations. Since the early 1990s, many of the aeronautical and mechanical engineering related reference journals mandated that any accepted articles in numerical simulations (without known solutions to compared with) need to perform a minimum of one level of grid refinement and time step reduction. Due to the difficulty in analysis, the effect of under-resolved grids and the nonlinear behavior of available spatial discretizations, are scarcely discussed in the literature. Here, an under-resolved numerical simulation is one where the grid spacing being used is too coarse to resolve the smallest physically relevant scales of the chosen continuum governing equations that are of interest to the numerical modeler. With the advent of new developments in fourth-order or higher spatial schemes, it has become common to regard high order schemes as more accurate, reliable and require less grid points. The danger comes when one tries to perform computations with the coarsest grid possible while still hoping to maintain numerical results sufficiently accurate for complex flows, and especially, data-limited problems. On one hand, high order methods when applies to highly coupled multidimensional complex nonlinear problems might have different stability, convergence and reliability behavior than their well studied low order counterparts, especially for nonlinear schemes such as TVD, MUSCL with limiters, ENO, WENO and discrete Galerkin. On the other hand, high order methods involve more operation counts and systematic grid convergence study can be time consuming and prohibitively expansive. At the same time it is difficult to fully understand or categorize the different nonlinear behavior of finite discretizations, especially at the limits of under-resolution when different types of bifurcation phenomena might occur, depending on the combination of grid spacings, time
Efficiency of High Order Spectral Element Methods on Petascale Architectures
Hutchinson, Maxwell
2016-06-14
High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.
Approximation and perturbation methods
Iyer, B R
1993-01-01
Few problems in nature are amenable to an exact solution and hence when one proceeds from elegant problems of theory to messy complicated problems of practice one is forced to recourse to methods of approximation and perturbation. The development of such techniques has been natural in attempts to extract physically veriﬁable consequences from either exact solutions of general relativity or from speciﬁc astrophysical systems for which an exact solution is impossible to ﬁnd. However, this should not be taken to imply giving up of mathematical rigour and an appeal to only physical intuition.
High-order harmonic generation in laser plasma: Recent achievements
Ganeev, R. A.
2012-07-01
Recent studies of high-order harmonic generation of laser radiation in laser-produced plasma show new attractive developments in this field. Those include generation of extended harmonics in plasma plumes, new approaches in application of two-color pump, generation of extremely broadened harmonics, further developments in harmonic generation in clusters (fullerenes, carbon nanotubes, in-situ produced nanoparticles), destructive interference of harmonics from different emitters, resonance-induced enhancement of harmonics, applications of high pulse repetition rate lasers for the enhancement of average power of generating harmonics, observation of quantum path signatures, etc. We review some of these recent developments.
Plasma high-order-harmonic generation from ultraintense laser pulses
Tang, Suo; Kumar, Naveen; Keitel, Christoph H.
2017-05-01
Plasma high-order-harmonic generation from an extremely intense short-pulse laser is explored by including the effects of ion motion, electron-ion collisions, and radiation reaction force in the plasma dynamics. The laser radiation pressure induces plasma ion motion through the hole-boring effect, resulting in frequency shifting and widening of the harmonic spectra. The classical radiation reaction force slightly mitigates the frequency broadening caused by the ion motion. Based on the results and physical considerations, parameter maps highlighting the optimum regions for generating a single intense attosecond pulse and coherent XUV radiation are presented.
High-order harmonic generation in a capillary discharge
Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.
2010-06-01
A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.
Spatial Mode Control of High-Order Harmonics
Energy Technology Data Exchange (ETDEWEB)
Mercer, I.; Mevel, E.; Zerne, R.; LHuillier, A.; Antoine, P.; Wahlstroem, C. [Department of Physics, Lund Institute of Technology, S-221 00 Lund (Sweden)]|[Commissariat a l`Energie Atomique, DSM/DRECAM/SPAM, Centre d`Etudes de Saclay, 91191 Gif-sur-Yvette (France)
1996-08-01
We demonstrate that the spatial mode of high-order harmonics can be continuously controlled. The control is achieved by spatially modulating the degree of elliptical polarization of the fundamental field using birefringent optics. A highly sensitive relationship between the efficiency of harmonic generation and the degree of laser elliptical polarization leads to atoms emitting harmonics only in regions of linear polarization. The harmonics are emitted as annular beams whose angles of divergence can be continuously varied. {copyright} {ital 1996 The American Physical Society.}
Disformal invariance of curvature perturbation
Energy Technology Data Exchange (ETDEWEB)
Motohashi, Hayato [Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois, 60637 (United States); White, Jonathan, E-mail: motohashi@kicp.uchicago.edu, E-mail: jwhite@post.kek.jp [Research Center for the Early Universe (RESCEU), The University of Tokyo, Hongo 7-3-1, Tokyo, 113-0033 Japan (Japan)
2016-02-01
We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.
Energy Technology Data Exchange (ETDEWEB)
Mugica R, C.A. [IPN, ESFM, Depto. de Ingenieria Nuclear, 07738 Mexico D.F. (Mexico)
2004-07-01
Diverse methods exist to solve numerically the neutron diffusion equation for several energy groups in stationary state among those that highlight those of finite elements. In this work the numerical solution of this equation is presented using Raviart-Thomas nodal methods type finite element, the RT0 and RT1, in combination with iterative techniques that allow to obtain the approached solution in a quick form. Nevertheless the above mentioned, the precision of a method is intimately bound to the dimension of the approach space by cell, 5 for the case RT0 and 12 for the RT1, and/or to the mesh refinement, that makes the order of the problem of own value to solve to grow considerably. By this way if it wants to know an acceptable approach to the value of the effective multiplication factor of the system when this it has experimented a small perturbation it was appeal to the Linear perturbation theory with which is possible to determine it starting from the neutron flow and of the effective multiplication factor of the not perturbed case. Results are presented for a reference problem in which a perturbation is introduced in an assemble that simulates changes in the control bar. (Author)
Generation of high order geometry representations in Octree meshes
Directory of Open Access Journals (Sweden)
Harald G. Klimach
2015-11-01
Full Text Available We propose a robust method to convert triangulated surface data into polynomial volume data. Such polynomial representations are required for high-order partial differential solvers, as low-order surface representations would diminish the accuracy of their solution. Our proposed method deploys a first order spatial bisection algorithm to find robustly an approximation of given geometries. The resulting voxelization is then used to generate Legendre polynomials of arbitrary degree. By embedding the locally defined polynomials in cubical elements of a coarser mesh, this method can reliably approximate even complex structures, like porous media. It thereby is possible to provide appropriate material definitions for high order discontinuous Galerkin schemes. We describe the method to construct the polynomial and how it fits into the overall mesh generation. Our discussion includes numerical properties of the method and we show some results from applying it to various geometries. We have implemented the described method in our mesh generator Seeder, which is publically available under a permissive open-source license.
Study of high-order harmonic generation from nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Singhal, H; Naik, P A; Srivastava, A K; Singh, A; Chari, R; Khan, R A; Chakera, J A; Gupta, P D [Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Ganeev, R A, E-mail: himanshu@rrcat.gov.i [Institute of Electronics, Uzbekistan Academy of Sciences, Tashkent 100125 (Uzbekistan)
2010-01-28
An experimental study on high-order harmonic generation from the interaction of 45 fs Ti:sapphire laser pulses with preformed plasma plumes of metal nanoparticles was carried out. Highly efficient harmonic generation in the range of 9th order to 19th order was observed for Ag nanoparticles. The stability of harmonic generation was enhanced by utilizing special target fabrication techniques and through optimizing the conditions of plasma plume formation. Broadband harmonic generation was observed through the optimization of femtosecond laser intensity and through the use of spectrally broadened laser pulses. The harmonic generation was compared for various target materials (nano and bulk) and for Ag nanoparticle targets prepared from different fabrication techniques. Efficient generation of even- and odd-order harmonics was observed through the use of two-colour pulses. The observations can be explained qualitatively from symmetry breaking of high-order harmonic generation through the introduction of second harmonic pulses. The spectral broadening and shift of harmonic radiation can be understood from the self-modulation of the laser and harmonic radiation in the plasma.
Accelerating experimental high-order spatial statistics calculations using GPUs
Li, Xue; Huang, Tao; Lu, De-Tang; Niu, Cong
2014-09-01
High-order spatial statistics have been widely used to describe the spatial phenomena in the field of geology science. Spatial statistics are subject to extremely heavy computational burden for large geostatistical models. To improve the computational efficiency, a parallel approach based on GPU (Graphics Processing Unit) is proposed for the calculation of high-order spatial statistics. The parallel scheme is achieved by utilizing a two-stage method to calculate the replicate of a moment for a given template simultaneously termed as the node-stage parallelism, and transform the spatial moments to cumulants for all lags of a template simultaneously termed as the template-stage parallelism. Also, a series of optimization strategies are proposed to take full advantage of the computational capabilities of GPUs, including the appropriate task allocation to the CUDA (Compute Unified Device Architecture) threads, proper organization of the GPU physical memory, and optimal improvement of the existed parallel routines. Tests are carried out on two training images to compare the performance of the GPU-based method with that of the serial implementation. Error analysis results indicate that the proposed parallel method can generate accurate cumulant maps, and the performance comparisons on various examples show that all the speedups for third-order, fourth-order and fifth-order cumulants calculation are over 17 times.
High order variational solutions of time dependent neutron transport problems
Energy Technology Data Exchange (ETDEWEB)
Wilson, B.C.
1985-01-01
High order numerical solutions of the time-dependent one speed neutron transport equation are developed using cubic hermite polynomial trial functions, variational techniques, and exponential matrix operators. Two new numerical solutions are developed that are high order with respect to both time and space variables. In the first method, the time-dependent P/sub N/ equations are transformed into Generalized Telegrapher's Equations (GTE) that are valid for any order P/sub N/ approximation. The Generalized Telegrapher's Equations form a coupled set of second order differential equations with respect to both time and space. In the second method, the time-dependent P/sub N/ equations are transformed into coupled Transport Diffusion Equations (TDE), keeping the additional terms that maintain the transport nature of the solution. The Transport Diffusion Equations are first order in time and second order in space. Numerically evaluated time-dependent analytic solutions are also developed for homogeneous media transport problems in the P/sub 1/ and P/sub 3/ approximations via Laplace Transforms in order to validate the variational GTE and TDE solutions. The analytic solutions allow anisotropic scattering, up to the appropriate P/sub N/ order. The analytic solutions are not limited to the non-precise extrapolation boundary condition, like many time-dependent analytic P/sub N/ solutions, but allow any of the standard transport vacuum boundary condition approximations.
A High-Order CFS Algorithm for Clustering Big Data
Directory of Open Access Journals (Sweden)
Fanyu Bu
2016-01-01
Full Text Available With the development of Internet of Everything such as Internet of Things, Internet of People, and Industrial Internet, big data is being generated. Clustering is a widely used technique for big data analytics and mining. However, most of current algorithms are not effective to cluster heterogeneous data which is prevalent in big data. In this paper, we propose a high-order CFS algorithm (HOCFS to cluster heterogeneous data by combining the CFS clustering algorithm and the dropout deep learning model, whose functionality rests on three pillars: (i an adaptive dropout deep learning model to learn features from each type of data, (ii a feature tensor model to capture the correlations of heterogeneous data, and (iii a tensor distance-based high-order CFS algorithm to cluster heterogeneous data. Furthermore, we verify our proposed algorithm on different datasets, by comparison with other two clustering schemes, that is, HOPCM and CFS. Results confirm the effectiveness of the proposed algorithm in clustering heterogeneous data.
Efficient high-order suppression system for a metrology beamline.
Sokolov, A; Sertsu, M G; Gaupp, A; Lüttecke, M; Schäfers, F
2018-01-01
High-quality metrology with synchrotron radiation requires in particular a very high spectral purity of the incident beam. This is usually achieved by a set of transmission filters with suitable absorption edges to suppress high-order radiation of the monochromator. The at-wavelength metrology station at a BESSY-II bending-magnet collimated plane-grating monochromator (c-PGM) beamline has recently commissioned a high-order suppression system (HiOS) based on four reflections from mirrors which can be inserted into the beam path. Two pairs of mirrors are aligned parallel so as not to disturb the original beam path and are rotated clockwise and counter-clockwise. Three sets of coatings are available for the different energy ranges and the incidence angle is freely tunable to find the optimum figure of merit for maximum suppression at maximum transmission for each photon energy required. Measured performance results of the HiOS for the EUV and XUV range are compared with simulations, and applications are discussed.
High-order finite element methods for cardiac monodomain simulations
Directory of Open Access Journals (Sweden)
Kevin P Vincent
2015-08-01
Full Text Available Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori.
High-order finite element methods for cardiac monodomain simulations
Vincent, Kevin P.; Gonzales, Matthew J.; Gillette, Andrew K.; Villongco, Christopher T.; Pezzuto, Simone; Omens, Jeffrey H.; Holst, Michael J.; McCulloch, Andrew D.
2015-01-01
Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori. PMID:26300783
Cluster size dependence of high-order harmonic generation
Tao, Y; Bastiaens, H M J; van der Slot, P J M; Biedron, S G; Milton, S V; Boller, K -J
2016-01-01
We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3x10^{16} cm^{-3} to 3x10^{18} cm^{-3}) at two different reservoir temperatures (303 K and 363 K). For the first time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. Based on measurements with a thin jet where significant variations in reabsorption and the phase matching conditions can be neglected, we conclude that atoms in the form of small clusters (average cluster size < 1000 atoms) provide the same higher-order nonlinear response as single-atoms. This implies that HHG in ...
Energy Technology Data Exchange (ETDEWEB)
Ishikawa, Y; Santana, J A; Trabert, E
2009-09-30
A recently developed relatistic multireference many-body perturbation theory based on multireference configuration-interaction wavefunctions as zeroth order wavefunctions is outlined. The perturbation theory employs a general class of configuration-interaction wve functions as reference functions, and thus is applciable to multiple open valence shell systems with near degeneracy of a manifold of strongly interacting configurations. Multireference many-body perturbation calculations are reported for the ground and excited states of chlorine-like Fe X in which the near degeneracy of a manifold of strongly interacting configurations mandates a multireference treatment. Term energies of a total of 83 excited levels arising from the 3s{sup 2}3p{sup 5}, 3s3p{sup 6}, 3s{sup 2}3p{sup 4}3d, 3s3p{sup 5}3d, and 3s{sup 2}3p{sup 3}3d{sup 2} configurations of the ion are evaluated to high accuracy. Transition rates associated with E1/M1/E2/M2/E3 radiative decays and lifetimes of a number of excited levels are calculated and compared with laboratory measurements to critically evaluate recent experiments.
Cosmological Perturbations in Conformal Gravity
Mannheim, Philip D
2011-01-01
We present the first steps needed for an analysis of the perturbations that occur in the cosmology associated with the conformal gravity theory. We discuss the implications of conformal invariance for perturbative coordinate gauge choices, and show that in the conformal theory the trace of the metric fluctuation kinematically decouples from the first-order gravitational fluctuation equations. We determine the equations that describe first-order metric fluctuations around the illustrative conformally flat de Sitter background. Via a conformal transformation we show that such fluctuations can be constructed from fluctuations around a flat background, even though the fluctuations themselves are associated with a perturbative geometry that is not itself conformal to flat. We extend the analysis to fluctuations around other cosmologically relevant backgrounds, such as the conformally-flat Robertson-Walker background, and find tensor fluctuations that grow far more rapidly than those that occur in the analogous sta...
Energy Technology Data Exchange (ETDEWEB)
Komninos, Yannis [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vasileos Constantinou Avenue, Athens 11635 (Greece); Nicolaides, Cleanthes A [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vasileos Constantinou Avenue, Athens 11635 (Greece)
2004-05-14
In continuation of our earlier work on the ab initio calculation of perturbed spectra and on a corresponding quantum defect theory (QDT), we discuss certain essential characteristics having to do with the unification of the continuous and the discrete spectra via the formal and practical construction of smooth quantities without invoking the pair of analytic forms of regular and irregular functions. The theory and its computational methodology are in the framework of configuration interaction (CI), and its structure shows how wavefunctions and properties of excited states of atoms and molecules can be computed provided one uses reliable zero-order basis functions, regardless of whether the relevant potential is, asymptotically, Coulombic or some other type. The mathematical connection with smooth reaction matrices in the discrete spectrum is demonstrated via the Mittag-Leffler theorem for the construction of analytic functions. We compare results for the quantum defects and fine structure from the present theory, as implemented by Komninos et al ( 1995 J. Phys. B: At. Mol. Opt. Phys. 28 2049 , 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L193 ), of the Al spectra of {sup 2} D symmetry (strongly perturbed) and of {sup 2} F {sup o} symmetry (weakly perturbed), with the recently reported measurements on high-lying states ( Dyubko et al 2003 J. Phys. B: At. Mol. Opt. Phys. 36 3797 and 4827 ), as well as with those of Eriksson and Isberg (1963 Ark. Fys. 23 527) for the low-lying states. The comparison reveals for the first time very good agreement between theory and experiment for both series. In addition, predictions for the other states of the series are made. Previous computations of the quantum defects of the {sup 2} D spectrum, in general, do not agree among themselves while they deviate from the experimental values.
DEFF Research Database (Denmark)
Kjærgaard, Thomas; Baudin, Pablo; Bykov, Dmytro
2017-01-01
Laboratory. Using the “resolution of the identity second-order Møller–Plesset perturbation theory” (RI-MP2) as the physical model for simulating correlated electron motion, the linear-scaling DEC implementation is applied to 1-aza-adamantane-trione (AAT) supramolecular wires containing up to 40 monomers...
High order harmonic generation with femtosecond mid-infrared laser
Lin, Jinpu; Nees, John; Krushelnick, Karl; Dollar, Franklin; Nguyen, Tam
2017-10-01
There has been growing interest in high order harmonic generation (HHG) from laser-solid interactions as a compact source of coherent x-rays. The ponderomotive potential in laser-plasma interactions increases with longer laser wavelength, so there may be significant differences in the physics of harmonic generation and other phenomena when experiments are conducted with mid-infrared lasers. Previous experiments, however, have been done almost exclusively with near-infrared lasers. In this work, we report the results of experiments performed with millijoule, 40 fs, 2 µm laser pulses generated by an optical parametric amplifier (OPA) which are focused onto solid targets such as silicon and glass. The HHG efficiency, polarization dependence, and x-ray emission are studied and compared to measurements with near-infrared lasers. Funded by AFOSR MURI.
Improving the Accuracy of High-Order Nodal Transport Methods
Energy Technology Data Exchange (ETDEWEB)
Azmy, Y.Y.; Buscaglia, G.C.; Zamonsky, O.M.
1999-09-27
This paper outlines some recent advances towards improving the accuracy of neutron transport calculations using the Arbitrarily High Order Transport-Nodal (AHOT-N) Method. These advances consist of several contributions: (a) A formula for the spatial weights that allows for the polynomial order to be raised arbitrarily high without suffering adverse effects from round-off error; (b) A reconstruction technique for the angular flux, based upon a recursive formula, that reduces the pointwise error by one ordeq (c) An a posterior error indicator that estimates the true error and its distribution throughout the domain, so that it can be used for adaptively refining the approximation. Present results are mainly for ID, extension to 2D-3D is in progress.
Improving the Accuracy of High-Order Nodal Transport Methods
Energy Technology Data Exchange (ETDEWEB)
Azmy, Y.Y.; Buscaglia, G.C.; Zamonsky, O.M.
1999-09-27
This paper outlines some recent advances towards improving the accuracy of neutron calculations using the Arbitrarily High Order Transport-Nodal (AHOT-N) Method. These transport advances consist of several contributions: (a) A formula for the spatial weights that allows for the polynomial order to be raised arbitrarily high without suffering from pollution from round-off, error; (b) A reconstruction technique for the angular flux, based upon a recursive formula, that reduces the pointwise error by one order; (c) An a posterior error indicator that estimates the true error and its distribution throughout the domain, so that it can be used for adaptively reftig the approximation. Present results are mainly for ID, extension to 2D-3D is in progress.
High-order total variation minimization for interior SPECT
Yang, Jiansheng; Yu, Hengyong; Jiang, Ming; Wang, Ge
2011-01-01
Recently, we developed an approach for solving the computed tomography (CT) interior problem based on the high-order TV (HOT) minimization, assuming that a region-of-interest (ROI) is piecewise polynomial. In this paper, we generalize this finding from the CT field to the single-photon emission computed tomography (SPECT) field, and prove that if an ROI is piecewise polynomial, then the ROI can be uniquely reconstructed from the SPECT projection data associated with the ROI through the HOT minimization. Also, we propose a new formulation of HOT, which has an explicit formula for any n-order piecewise polynomial function, while the original formulation has no explicit formula for n ≥ 2. Finally, we verify our theoretical results in numerical simulation, and discuss relevant issues. PMID:22215932