WorldWideScience

Sample records for high-level liquid waste

  1. Development of a test system for high level liquid waste partitioning

    Directory of Open Access Journals (Sweden)

    Duan Wu H.

    2015-01-01

    Full Text Available The partitioning and transmutation strategy has increasingly attracted interest for the safe treatment and disposal of high level liquid waste, in which the partitioning of high level liquid waste is one of the critical technical issues. An improved total partitioning process, including a tri-alkylphosphine oxide process for the removal of actinides, a crown ether strontium extraction process for the removal of strontium, and a calixcrown ether cesium extraction process for the removal of cesium, has been developed to treat Chinese high level liquid waste. A test system containing 72-stage 10-mm-diam annular centrifugal contactors, a remote sampling system, a rotor speed acquisition-monitoring system, a feeding system, and a video camera-surveillance system was successfully developed to carry out the hot test for verifying the improved total partitioning process. The test system has been successfully used in a 160 hour hot test using genuine high level liquid waste. During the hot test, the test system was stable, which demonstrated it was reliable for the hot test of the high level liquid waste partitioning.

  2. Liquid level measurement in high level nuclear waste slurries

    International Nuclear Information System (INIS)

    Weeks, G.E.; Heckendorn, F.M.; Postles, R.L.

    1990-01-01

    Accurate liquid level measurement has been a difficult problem to solve for the Defense Waste Processing Facility (DWPF). The nuclear waste sludge tends to plug or degrade most commercially available liquid-level measurement sensors. A liquid-level measurement system that meets demanding accuracy requirements for the DWPF has been developed. The system uses a pneumatic 1:1 pressure repeater as a sensor and a computerized error correction system. 2 figs

  3. Glass-solidification method for high level radioactive liquid waste

    International Nuclear Information System (INIS)

    Kawamura, Kazuhiro; Kometani, Masayuki; Sasage, Ken-ichi.

    1996-01-01

    High level liquid wastes are removed with precipitates mainly comprising Mo and Zr, thereafter, the high level liquid wastes are mixed with a glass raw material comprising a composition having a B 2 O 3 /SiO 2 ratio of not less than 0.41, a ZnO/Li 2 O ratio of not less than 1.00, and an Al 2 O 3 /Li 2 O ratio of not less than 2.58, and they are melted and solidified into glass-solidification products. The liquid waste content in the glass-solidification products can be increased up to about 45% by using the glass raw material having such a predetermined composition. In addition, deposition of a yellow phase does not occur, and a leaching rate identical with that in a conventional case can be maintained. (T.M.)

  4. Partitioning of high level liquid waste: experiences in plant level adoption

    International Nuclear Information System (INIS)

    Manohar, Smitha; Kaushik, C.P.

    2016-01-01

    High Level Radioactive Wastes are presently vitrified in borosilicate matrices in all our back end facilities in our country. This is in accordance with internationally endorsed methodology for the safe management of high level radioactive wastes. Recent advancements in the field of partitioning technology in our group, has presented us with an opportunity to have a fresh perspective on management of high level liquid radioactive wastes streams, that emanate from reprocessing operations. This paper will highlight our experiences with respect to both partitioning studies and vitrification practices, with a focus on waste volume reduction for final disposal. Incorporation of this technique has led to the implementation of the concept of recovering wealth from waste, a marked decrease on the load of disposal in deep geological repositories and serve as a step towards the vision of transmutation of long lived radionuclides

  5. Development of a test system for high level liquid waste partitioning

    OpenAIRE

    Duan Wu H.; Chen Jing; Wang Jian C.; Wang Shu W.; Wang Xing H.

    2015-01-01

    The partitioning and transmutation strategy has increasingly attracted interest for the safe treatment and disposal of high level liquid waste, in which the partitioning of high level liquid waste is one of the critical technical issues. An improved total partitioning process, including a tri-alkylphosphine oxide process for the removal of actinides, a crown ether strontium extraction process for the removal of strontium, and a calixcrown ether cesium extra...

  6. Risk comparison of different treatment and disposal strategies of high level liquid radioactive waste

    International Nuclear Information System (INIS)

    Fang Dong

    1997-01-01

    The risk of different treatment and disposal strategies of high level liquid radioactive waste from spent fuel reprocessing is estimated and compared. The conclusions obtained are that risk difference from these strategies is very small and high level liquid waste can be reduced to middle and low level waste, if the decontamination factor for 99 Tc is large enough, which is the largest risk contributor in the high level radioactive waste from spent fuel reprocessing. It is also shown that the risk of high level radioactive waste could be reduced by the technical strategy of combining partitioning and transmutation

  7. Design and operation of off-gas cleaning systems at high level liquid waste conditioning facilities

    International Nuclear Information System (INIS)

    1988-01-01

    The immobilization of high level liquid wastes from the reprocessing of irradiated nuclear fuels is of great interest and serious efforts are being undertaken to find a satisfactory technical solution. Volatilization of fission product elements during immobilization poses the potential for the release of radioactive substances to the environment and necessitates effective off-gas cleaning systems. This report describes typical off-gas cleaning systems used in the most advanced high level liquid waste immobilization plants and considers most of the equipment and components which can be used for the efficient retention of the aerosols and volatile contaminants. In the case of a nuclear facility consisting of several different facilities, release limits are generally prescribed for the nuclear facility as a whole. Since high level liquid waste conditioning (calcination, vitrification, etc.) facilities are usually located at fuel reprocessing sites (where the majority of the high level liquid wastes originates), the off-gas cleaning system should be designed so that the airborne radioactivity discharge of the whole site, including the emission of the waste conditioning facility, can be kept below the permitted limits. This report deals with the sources and composition of different kinds of high level liquid wastes and describes briefly the main high level liquid waste solidification processes examining the sources and characteristics of the off-gas contaminants to be retained by the off-gas cleaning system. The equipment and components of typical off-gas systems used in the most advanced (large pilot or industrial scale) high level liquid waste solidification plants are described. Safety considerations for the design and safe operation of the off-gas systems are discussed. 60 refs, 31 figs, 17 tabs

  8. Actinide partitioning from high level liquid waste using the Diamex process

    International Nuclear Information System (INIS)

    Madic, C.; Blanc, P.; Condamines, N.; Baron, P.; Berthon, L.; Nicol, C.; Pozo, C.; Lecomte, M.; Philippe, M.; Masson, M.; Hequet, C.

    1994-01-01

    The removal of long-lived radionuclides, which belong to the so-called minor actinides elements, neptunium, americium and curium, from the high level nuclear wastes separated during the reprocessing of the irradiated nuclear fuels in order to transmute them into short-lived nuclides, can substantially decrease the potential hazards associated with the management of these nuclear wastes. In order to separate minor actinides from high-level liquid wastes (HLLW), a liquid-liquid extraction process was considered, based on the use of diamide molecules, which display the property of being totally burnable, thus they do not generate secondary solid wastes. The main extracting properties of dimethyldibutyltetradecylmalonamide (DMDBTDMA), the diamide selected for the development of the DIAMEX process, are briefly described in this paper. Hot tests of the DIAMEX process (using DMDBTDMA) related to the treatment of an mixed oxide fuels (MOX) type HLLW, were successfully performed. The minor actinide decontamination factors of the HLLW obtained were encouraging. The main results of these tests are presented and discussed in this paper. (authors). 9 refs., 2 figs., 7 tabs

  9. Handling and storage of high-level liquid wastes from reprocessing of spent fuel

    International Nuclear Information System (INIS)

    Finsterwalder, L.

    1982-01-01

    The high level liquid wastes arise from the reprocessing of irradiated nuclear fuels, which are dissolved in aqueous acid solution, and the plutonium and unburned uranium removed in the chemical separation plant. The remaining solution, containing more than 99% of the dissolved fission products, together with impurities from cladding materials, corrosion products, traces of unseparated plutonium and uranium and most of the transuranic elements, constitutes the high-level waste. At present, these liquid wastes are usually concentrated by evaporation and stored as an aqueous nitric acid solution in high-integrity stainless-steel tanks. There is now world-wide agreement that, for the long term, these liquid wastes should be converted to solid form and much work is in progress to develop techniques for the solidification of these wastes. This paper considers the design requirements for such facilities and the experience gained during nearly 30 years of operation. (orig./RW)

  10. Laboratory simulation of high-level liquid waste evaporation and storage

    International Nuclear Information System (INIS)

    Anderson, P.A.

    1978-01-01

    The reprocessing of nuclear fuel generates high-level liquid wastes (HLLW) which require interim storage pending solidification. Interim storage facilities are most efficient if the HLLW is evaporated prior to or during the storage period. Laboratory evaporation and storage studies with simulated waste slurries have yielded data which are applicable to the efficient design and economical operation of actual process equipment

  11. Development of Concentration and Calcination Technology For High Level Liquid Waste

    International Nuclear Information System (INIS)

    Pande, D.P.

    2006-01-01

    The concentrated medium and high-level liquid radio chemicals effluents contain nitric acid, water along with the dissolved chemicals including the nitrates of the radio nuclides. High level liquid waste contain mainly nitrates of cesium, strontium, cerium, zirconium, chromium, barium, calcium, cobalt, copper, pickle, iron etc. and other fission products. This concentrated solution requires further evaporation, dehydration, drying and decomposition in temperature range of 150 to 700 deg. C. The addition of the calcined solids in vitrification pot, instead of liquid feed, helps to avoid low temperature zone because the vaporization of the liquid and decomposition of nitrates do not take place inside the melter. In our work Differential and thermo gravimetric studies has been carried out in the various stages of thermal treatment including drying, dehydration and conversion to oxide forms. Experimental studies were done to characterize the chemicals present in high-level radioactive waste. A Rotary Ball Kiln Calciner was used for development of the process because this is amenable for continuous operation and moderately good heat transfer can be achieved inside the kiln. This also has minimum secondary waste and off gases generation. The Rotary Ball Kiln Calciner Demonstration facility system was designed and installed for the demonstration of calcination process. The Rotary Ball Kiln Calciner is a slowly rotating slightly inclined horizontal tube that is externally heated by means of electric resistance heating. The liquid feed is sprayed onto the moving bed of metal balls in a slowly rotating calciner by a peristaltic type-metering pump. The vaporization of the liquid occurs in the pre-calcination zone due to counter current flow of hot gases. The dehydration and denitration of the solids occurs in the calcination zone, which is externally heated by electrical furnace. The calcined powder is cooled in the post calcination portion. It has been demonstrated that the

  12. Vitrification of high-level liquid wastes

    International Nuclear Information System (INIS)

    Varani, J.L.; Petraitis, E.J.; Vazquez, Antonio.

    1987-01-01

    High-level radioactive liquid wastes produced in the fuel elements reprocessing require, for their disposal, a preliminary treatment by which, through a series of engineering barriers, the dispersion into the biosphere is delayed by 10 000 years. Four groups of compounds are distinguished among a great variety of final products and methods of elaboration. From these, the borosilicate glasses were chosen. Vitrification experiences were made at a laboratory scale with simulated radioactive wastes, employing different compositions of borosilicate glass. The installations are described. A series of tests were carried out on four basic formulae using always the same methodology, consisting of a dry mixture of the vitreous matrix's products and a dry simulated mixture. Several quality tests of the glasses were made 1: Behaviour in leaching following the DIN 12 111 standard; 2: Mechanical resistance; parameters related with the facility of the different glasses for increasing their surface were studied; 3: Degree of devitrification: it is shown that devitrification turns the glasses containing radioactive wastes easily leachable. From all the glasses tested, the composition SiO 2 , Al 2 O 3 , B 2 O 3 , Na 2 O, CaO shows the best retention characteristics. (M.E.L.) [es

  13. Numerical simulation on stir system of jet ballast in high level liquid waste storage tank

    International Nuclear Information System (INIS)

    Lu Yingchun

    2012-01-01

    The stir system of jet ballast in high level liquid waste storage tank was simulation object. Gas, liquid and solid were air, sodium nitrate liquor and titanium whitening, respectively. The mathematic model based on three-fluid model and the kinetic theory of particles was established for the stir system of jet ballast in high level liquid waste storage tank. The CFD commercial software was used for solving this model. The detail flow parameters as three phase velocity, pressure and phase loadings were gained. The calculated results agree with the experimental results, so they can well define the flow behavior in the tank. And this offers a basic method for the scale-up and optimization design of the stir system of jet ballast in high level liquid waste storage tank. (author)

  14. The management of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Lennemann, Wm.L.

    1979-01-01

    The definition of high-level radioactive wastes is given. The following aspects of high-level radioactive wastes' management are discussed: fuel reprocessing and high-level waste; storage of high-level liquid waste; solidification of high-level waste; interim storage of solidified high-level waste; disposal of high-level waste; disposal of irradiated fuel elements as a waste

  15. Other-than-high-level waste

    International Nuclear Information System (INIS)

    Bray, G.R.

    1976-01-01

    The main emphasis of the work in the area of partitioning transuranic elements from waste has been in the area of high-level liquid waste. But there are ''other-than-high-level wastes'' generated by the back end of the nuclear fuel cycle that are both large in volume and contaminated with significant quantities of transuranic elements. The combined volume of these other wastes is approximately 50 times that of the solidified high-level waste. These other wastes also contain up to 75% of the transuranic elements associated with waste generated by the back end of the fuel cycle. Therefore, any detailed evaluation of partitioning as a viable waste management option must address both high-level wastes and ''other-than-high-level wastes.''

  16. Cement encapsulation of low-level waste liquids. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1999-01-01

    Pretreatment of liquid high-level radioactive waste at the West Valley Demonstration Project (WVDP) was essential to ensuring the success of high-level waste (HLW) vitrification. By chemically separating the HLW from liquid waste, it was possible to achieve a significant reduction in the volume of HLW to be vitrified. In addition, pretreatment made it possible to remove sulfates, which posed several processing problems, from the HLW before vitrification took place

  17. Separation of aromatic precipitates from simulated high level radioactive waste by hydrolysis, evaporation and liquid-liquid extraction

    International Nuclear Information System (INIS)

    Young, S.R.; Shah, H.B.; Carter, J.T.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the SRS will be the United States' first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation and liquid-liquid extraction will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Laboratory with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Reduction of nitrite by hydroxylamine nitrate and hydrolysis of the tetraphenylborate by formic acid is discussed. Gaseous production, which is primarily benzene, nitrous oxide and carbon dioxide, has been quantified. Production of high-boiling organic compounds and the accumulation of these organic compounds within the process are addressed

  18. Heat transfer in high-level waste management

    International Nuclear Information System (INIS)

    Dickey, B.R.; Hogg, G.W.

    1979-01-01

    Heat transfer in the storage of high-level liquid wastes, calcining of radioactive wastes, and storage of solidified wastes are discussed. Processing and storage experience at the Idaho Chemical Processing Plant are summarized for defense high-level wastes; heat transfer in power reactor high-level waste processing and storage is also discussed

  19. Treatment of low- and intermediate-level liquid radioactive wastes

    International Nuclear Information System (INIS)

    1984-01-01

    This report aims at giving the reader details of the experience gained in the treatment of both low- and intermediate-level radioactive liquid wastes. The treatment comprises those operations to remove radioactivity from the wastes and those that change only its chemical composition, so as to permit its discharge. Considerable experience has been accumulated in the satisfactory treatment of such wastes. Although there are no universally accepted definitions for low- and intermediate-level liquid radioactive wastes, the IAEA classification (see section 3.2) is used in this report. The two categories differ from one another in the fact that for low-level liquids the actual radiation does not require shielding during normal handling of the wastes. Liquid wastes which are not considered in this report are those from mining and milling operations and the high-level liquid wastes resulting from fuel reprocessing. These are referred to in separate IAEA reports. Likewise, wastes from decommissioning operations are not within the scope of this report. Apart from the description of existing methods and facilities, this report is intended to provide advice to the reader for the selection of appropriate solutions to waste management problems. In addition, new and promising techniques which are either being investigated or being considered for the future are discussed

  20. Solvent extraction in the treatment of acidic high-level liquid waste : where do we stand?

    International Nuclear Information System (INIS)

    Horwitz, E. P.; Schulz, W. W.

    1998-01-01

    During the last 15 years, a number of solvent extraction/recovery processes have been developed for the removal of the transuranic elements, 90 Sr and 137 Cs from acidic high-level liquid waste. These processes are based on the use of a variety of both acidic and neutral extractants. This chapter will present an overview and analysis of the various extractants and flowsheets developed to treat acidic high-level liquid waste streams. The advantages and disadvantages of each extractant along with comparisons of the individual systems are discussed

  1. Handling and storage of high-level radioactive liquid wastes requiring cooling

    International Nuclear Information System (INIS)

    1979-01-01

    The technology of high-level liquid wastes storage and experience in this field gained over the past 25 years are reviewed in this report. It considers the design requirements for storage facilities, describes the systems currently in use, together with essential accessories such as the transfer and off-gas cleaning systems, and examines the safety and environmental factors

  2. Development of a partitioning method for the management of high-level liquid waste

    International Nuclear Information System (INIS)

    Kubota, M.; Dojiri, S.; Yamaguchi, I.; Morita, Y.; Yamagishi, I.; Kobayashi, T.; Tani, S.

    1989-01-01

    Fundamental studies especially focused on the separation of neptunium and technetium have been carried out to construct the advanced partitioning process of fractioning elements in a high-level liquid waste into four groups: transuranium elements, technetium-noble metals, strontium-cesium, and other elements. For the separation of neptunium by solvent extraction, DIDPA proved excellent for extracting Np(V), and its extraction rate was accelerated by hydrogen peroxide. Np(V) was found to be also separated quantitatively as precipitate with oxalic acid. For the separation of technetium, the denitration with formic acid was effective in precipitating it along with noble metals, and the adsorption with activated carbon was also effective for quantitative separation. Through these fundamental studies, the advanced partitioning process is presented as the candidate to be examined with an actual high-level liquid waste

  3. Demonstration of pyropartitioning process by using genuine high-level liquid waste. Reductive-extraction of actinide elements from chlorination product

    International Nuclear Information System (INIS)

    Uozumi, Koichi; Iizuka, Masatoshi; Kurata, Masaki; Ougier, Michel; Malmbeck, Rikard; Winckel, Stefaan van

    2009-01-01

    The pyropartitioning process separates the minor actinide elements (MAs) together with uranium and plutonium from the high-level liquid waste generated at the Purex reprocessing of spent LWR fuel and introduces them to metallic fuel cycle. For the demonstration of this technology, a series experiment using 520g of genuine high-level liquid waste was started and the conversion of actinide elements to their chlorides was already demonstrated by denitration and chlorination. In the present study, a reductive extraction experiment in molten salt/liquid cadmium system to recover actinide elements from the chlorination product of the genuine high-level liquid waste was performed. The results of the experiment are as following; 1) By the addition of the cadmium-lithium alloy reductant, almost all of plutonium and MAs in the initial high-level liquid waste were recovered in the cadmium phase. It means no mass loss during denitration, chlorination, and reductive-extraction. 2) The separation factor values of plutonium, MAs, and rare-earth fission product elements versus uranium agreed with the literature values. Therefore, actinide elements will be separated from fission product elements in the actual system. Hence, the pyropartitioning process was successfully demonstrated. (author)

  4. Determination of Na+ and K+ ions in the high-level liquid waste by ion chromatography (IC)

    International Nuclear Information System (INIS)

    Chen Lianzhong; Ma Guilan

    1992-01-01

    The determination of Na + and k + ions in the high-level liquid waste is investigated using ion chromatography. In order to protect the low capacity ion exchange resin in single column IC and remove the transition metal as well as other heavy metal ions that are contained in liquid waste, the pretreatment column with EDTA chelating resin is used. Those impurity metal ions are strongly absorbed by EDTA chelating resin and 100% of Na + and K + ions in the solution are eluted. The ability of the decontamination of EDTA chelating resin is satisfactory. The sample of the high-level liquid waste is diluted appropriately, then an aliquot of the sample is passed through the pretreatment column with EDTA chelating resin, the eluate is analysed by single column ion chromatography. The precision of this method is better than 5% for the determination of Na + and K + ions (at μg· ml -1 level)

  5. Method of processing low-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Matsunaga, Ichiro; Sugai, Hiroshi.

    1984-01-01

    Purpose: To effectively reduce the radioactivity density of low-level radioactive liquid wastes discharged from enriched uranium conversion processing steps or the likes. Method: Hydrazin is added to low-level radioactive liquid wastes, which are in contact with iron hydroxide-cation exchange resins prepared by processing strongly acidic-cation exchange resins with ferric chloride and aqueous ammonia to form hydrorizates of ferric ions in the resin. Hydrazine added herein may be any of hydrazine hydrate, hydrazine hydrochloride and hydranine sulfate. The preferred addition amount is more than 100 mg per one liter of the liquid wastes. If it is less than 100 mg, the reduction rate for the radioactivety density (procession liquid density/original liquid density) is decreased. This method enables to effectively reduce the radioactivity density of the low-level radioactive liquid wastes containing a trace amount of radioactive nucleides. (Yoshihara, H.)

  6. The storage of liquid high level waste at BNFL, Sellafield. Addendum to February 2000 report

    International Nuclear Information System (INIS)

    2001-08-01

    On 18 February 2000 the Health and Safety Executive (HSE) published a report on the work of its Nuclear Installations Inspectorate (NIl) in regulating the storage of liquid high level waste at the BNFL Sellafield site. Within the report NIl gave two undertakings. One was to publish an addendum around 1 year later covering its assessment of the new safety case for the storage plant and the second was to publish a further addendum when progress had been made with options studies for reducing the stocks of liquid high level waste (HLW), also referred to as highly active liquor (HAL), to a buffer level. A progress report was published in February 2001 which included a summary of the assessment of the new safety case and NIl's regulatory action to enforce liquid HLW stock reductions. This addendum provides a more detailed update on the position reached based on consideration of BNFL's responses to the recommendations from the February 2000 HLW report since its publication. It embodies the two addenda referred to above integrated into a single document for publication

  7. Treatment of ORNL liquid low-level waste

    International Nuclear Information System (INIS)

    Berry, J.B.; Brown, C.H. Jr.; Fowler, V.L.; Robinson, S.M.

    1988-01-01

    Discontinuation of the hydrofracture disposal method at Oak Ridge National Laboratory (ORNL) has caused intensive efforts to reduce liquid waste generation. Improving the treatment of slightly radioactive liquid waste, called process waste, has reduced the volume of the resulting contaminated liquid radioactive waste effluent by 66%. Proposed processing improvements could eliminate the contaminated liquid effluent and reduce solid low-level waste by an additional one-third. The improved process meets stringent discharge limits for radionuclides. Discharge limits for radionuclides are expected to be enforced at the outfall of the treatment plant to a creek; currently, limits are enforced at the reservation boundary. Plant discharge is monitored according to the National Pollutant Discharge Elimination System (NPDES) permit for ORNL. 1 ref., 4 figs., 2 tabs

  8. The immobilization of High Level Waste Into Glass

    International Nuclear Information System (INIS)

    Aisyah; Martono, H.

    1998-01-01

    High level liquid waste is generated from the first step extraction in the nuclear fuel reprocessing. The waste is immobilized with boro-silicate glass. A certain composition of glass is needed for a certain type of waste, so that the properties of waste glass would meet the requirement either for further process or for disposal. The effect of waste loading on either density, thermal expansion, softening point and leaching rate has been studied. The composition of the high level liquid waste has been determined by ORIGEN 2 and the result has been used to prepare simulated high level waste. The waste loading in the waste glass has been set to be 19.48; 22.32; 25.27; and 26.59 weight percent. The result shows that increasing the waste loading has resulted in the higher density with no thermal expansion and softening point significant change. The increase in the waste loading increase that leaching rate. The properties of the waste glass in this research have not shown any deviation from the standard waste glass properties

  9. Recent developments in the extraction separation method for treatment of high-level liquid waste

    International Nuclear Information System (INIS)

    Jiao Rongzhou; Song Chongli; Zhu Yongjun

    2000-01-01

    A description and review of the recent developments in the extraction separation method for partitioning transuranium elements from high-level liquid waste (HLLW) is presented. The extraction separation processes such as TRUEX process, DIAMEX process, DIDPA process, CTH process, TRPO process are briefly discussed

  10. Radiolytic gas formation in high-level liquid waste solutions

    International Nuclear Information System (INIS)

    Brodda, B.-G.; Dix, Siegfried; Merz, E.R.

    1989-01-01

    High-level fission product waste solutions originating from the first-cycle raffinate stream of spent fast breeder reactor fuel reprocessing have been investigated gas chromatographically for their radiolytic and chemical gas production. The solutions showed considerable formation of hydrogen, carbon dioxide and dinitrogen oxide, whereas atmospheric oxygen was consumed completely within a short time. In particular, carbon dioxide resulted from the radiolytic degradation of entrained organic solvent. After nearly complete degradation of the organic solvent, the influence of hydrazine and nitrogen dioxide on hydrogen formation was investigated. Hydrazinium hydroxide led to the formation of dinitrogen oxide and nitrogen. After 60 d, the concentration of dinitrogen oxide had reduced to zero, whereas the amount of nitrogen formed had reached a maximum. This may be explained by simultaneous chemical and radiolytic reactions leading to the formation of dinitrogen oxide and nitrogen and photolytic fission of dinitrogen oxide. Addition of sodium nitrite resulted in the rapid formation of dinitrogen oxide. The rate of hydrogen production was not changed significantly after the addition of hydrazine or nitrite. The results indicate that under normal operating conditions no dangerous hydrogen radiolysis yields should develop in the course of reprocessing and high-level liquid waste tank storage. Organic entrainment may lead to enhanced radiolytic decomposition and thus to considerable hydrogen production rates and pressure build-up in closed systems. (author)

  11. Denitration and chemical precipitation of medium level liquid wastes and conditioning of high level wastes from low level liquid wastes by a roll dryer and subsequent vitrification

    International Nuclear Information System (INIS)

    Halaszovich, S.; Dix, S.; Harms, R.

    1987-01-01

    Medium level liquid waste (MAW) from the reprocessing need after being fixed in cement an additional shielding to meet required radiation limits for handling and transportation. Normally this shielding consists of concrete and its weight and volume is several times higher than that of the waste product itself. By means of caesium separation using nickel-potassium-hexacyanoferrate and after few years of interim storage waiting for the decay of Ruthenium and Antimony the activities will be reduced below permissible values. (13 MBq/l in waste solution for Cs, 28 MBq/l for Sb and 34 MBq/l for Ru). Below these limits there is no need for additional shielding after cementation in a 400 l drum. Experimental results show, that Caesium can be precipitated and separated effectively not only in laboratory but also in a larger scale under hot cell conditions. The process investigated in this work has been developed from the FIPS process for vitrification of highly radioactive fission product solutions. It consists of: denitration, precipitation, sludge separation, drying and melting

  12. High-Level Waste Vitrification Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Lopez

    1999-08-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035.

  13. High-Level Waste Vitrification Facility Feasibility Study

    International Nuclear Information System (INIS)

    D. A. Lopez

    1999-01-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035

  14. Preconceptual design study for solidifying high-level waste: West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hill, O.F.

    1981-04-01

    This report presents a preconceptual design study for processing radioactive high-level liquid waste presently stored in underground tanks at Western New York Nuclear Service Center (WNYNSC) near West Valley, New York, and for incorporating the radionculides in that waste into a solid. The high-level liquid waste accumulated from the operation of a chemical reprocessing plant by the Nuclear Fuel Services, Inc. from 1966 to 1972. The high-level liquid waste consists of approximately 560,000 gallons of alkaline waste from Purex process operations and 12,000 gallons of acidic (nitric acid) waste from one campaign of processing thoria fuels by a modified Thorex process (during this campaign thorium was left in the waste). The alkaline waste contains approximately 30 million curies and the acidic waste contains approximately 2.5 million curies. The reference process described in this report is concerned only with chemically processing the high-level liquid waste to remove radionuclides from the alkaline supernate and converting the radionuclide-containing nonsalt components in the waste into a borosilicate glass

  15. Disposal of high level and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1991-01-01

    The waste products from the nuclear industry are relatively small in volume. Apart from a few minor gaseous and liquid waste streams, containing readily dispersible elements of low radiotoxicity, all these products are processed into stable solid packages for disposal in underground repositories. Because the volumes are small, and because radioactive wastes are latecomers on the industrial scene, a whole new industry with a world-wide technological infrastructure has grown up alongside the nuclear power industry to carry out the waste processing and disposal to very high standards. Some of the technical approaches used, and the Regulatory controls which have been developed, will undoubtedly find application in the future to the management of non-radioactive toxic wastes. The repository site outlined would contain even high-level radioactive wastes and spent fuels being contained without significant radiation dose rates to the public. Water pathway dose rates are likely to be lowest for vitrified high-level wastes with spent PWR fuel and intermediate level wastes being somewhat higher. (author)

  16. Removal of Aerosol Particles Generated from Vitrification Process for High-Level Liquid Wastes

    OpenAIRE

    加藤 功

    1990-01-01

    The vitrification technology has been developed for the high-level liquid waste (HLLW) from reprocessing nuclear spent fuel in PNC. The removal performance of the aerosol particles generated from the melting process was studied in a nonradioactive full-scale mock-up test facility (MTF). The off-gas treatment system consists of submerged bed scrubber (SBS), venturi scrubber, NOx absorber, high efficiency mist eliminater (HEME). Deoomtamination factors (DFs) were derived from the mass ratio of ...

  17. Low level radioactive liquid waste decontamination by electrochemical way

    International Nuclear Information System (INIS)

    Tronche, E.

    1994-10-01

    As part of the work on decontamination treatments for low level radioactive aqueous liquid wastes, the study of an electro-chemical process has been chosen by the C.E.A. at the Cadarache research centre. The first part of this report describes the main methods used for the decontamination of aqueous solutions. Then an electro-deposition process and an electro-dissolution process are compared on the basis of the decontamination results using genuine radioactive aqueous liquid waste. For ruthenium decontamination, the former process led to very high yields (99.9 percent eliminated). But the elimination of all the other radionuclides (antimony, strontium, cesium, alpha emitters) was only favoured by the latter process (90 percent eliminated). In order to decrease the total radioactivity level of the waste to be treated, we have optimized the electro-dissolution process. That is why the chemical composition of the dissolved anode has been investigated by a mixture experimental design. The radionuclides have been adsorbed on the precipitating products. The separation of the precipitates from the aqueous liquid enabled us to remove the major part of the initial activity. On the overall process some operations have been investigated to minimize waste embedding. Finally, a pilot device (laboratory scale) has been built and tested with genuine radioactive liquid waste. (author). 77 refs., 41 tabs., 55 figs., 4 appendixes

  18. Acid fractionation for low level liquid waste cleanup and recycle

    International Nuclear Information System (INIS)

    Gombert, D. II; McIntyre, C.V.; Mizia, R.E.; Schindler, R.E.

    1990-01-01

    At the Idaho Chemical Processing Plant, low level liquid wastes containing small amounts of radionuclides are concentrated via a thermosyphon evaporator for calcination with high level waste, and the evaporator condensates are discharged with other plant wastewater to a percolation pond. Although all existing discharge guidelines are currently met, work has been done to reduce all waste water discharges to an absolute minimum. In this regard, a 15-tray acid fractionation column will be used to distill the mildly acidic evaporator condensates into concentrated nitric acid for recycle in the plant. The innocuous overheads from the fractionator having a pH greater than 2, are superheated and HEPA filtered for atmospheric discharge. Nonvolatile radionuclides are below detection limits. Recycle of the acid not only displaces fresh reagent, but reduces nitrate burden to the environment, and completely eliminates routine discharge of low level liquid wastes to the environment

  19. Volatilization behavior of semivolatile elements in vitrification of high-level liquid waste

    International Nuclear Information System (INIS)

    Igarashi, Hiroshi; Kato, Koh; Takahashi, Takeshi

    1991-11-01

    The effect of temperature on the volatilization of ruthenium, technetium, and selenium was observed in calcination experiments with simulated high-level liquid waste. Technetium and selenium were more volatile as calcining temperature increased. Ruthenium was less volatile when temperature exceeded 300degC. More than 80% of ruthenium that volatilized from room temperature to 500degC occurred between 200 and 300degC. A small amount of ruthenium volatilized above 300degC as well as below 135degC. (author)

  20. Solidification of intermediate level liquid waste - ILLW, CEMEX waste form qualification

    International Nuclear Information System (INIS)

    D'Andrea, V.; Guerra, M.; Pancotti, F.; Maio, V.

    2015-01-01

    In the Sogin EUREX Facility about 125 m 3 of intermediate level radioactive waste and about 113 m 3 of low level radioactive waste, produced during the re-processing of MTR and CANDU fuel, are stored. Solidification of these wastes is planned in order to fulfill the specific requirements established by the Safety Authority, taking into account the criteria set up in a Technical Guide on the issue of radioactive waste management. The design of a cementation plant (CEMEX) of all liquid radioactive wastes is currently ongoing. The process requires that the liquid waste is neutralized with NaOH (NaOH 19 M) and metered into 440 liter drum together with the cement, while the mixture is stirred by a lost paddle ('in drum mixing process'). The qualification of the Waste Form consists of all the activities demonstrating that the final cemented product has the minimum requirements (mechanical, chemical and physical characteristics) compliant with all the subsequent management phases: long-term interim storage, transport and long-term disposal of the waste. All tests performed to qualify the conditioning process for immobilizing first extraction cycle (MTR and CANDU) and second extraction cycle liquid wastes, gave results in compliance with the minimum requirements established for disposal

  1. Measurement of gross beta radioactivity in high-level liquid waste

    International Nuclear Information System (INIS)

    Lu Feng; Lin Cansheng; Zhang Xianzi; Chen Guoan; Zhang Chonghai

    1992-01-01

    Using beta plastic scintillation counter of low level background, gross beta radioactivity of twelve samples for high-level liquid waste is determined directly. Beta efficiency curves of plastic scintillation counter for four mass thickness are calibrated in advance. Determining gross beta radioactivity, gross efficiency of the scintillation counter for various energy beta ray is calculated via weighted mean method with the ratio of radioactivity for each nuclide. The ratio of radioactivity for nuclides which have gamma disintegration is determined in terms of the radioactivity measured by gamma spectrometer. The ratio of the radioactivity for 90 Sr which has purity beta disintegration is calculated in terms of half life time approximation. The ratio of the radioactivity for 147 Pm which also has purity disintegration is calculated by means of apparent cooling-time approximation. The uncertainty of results for the present work is about +-15%

  2. Formation and filtration characteristics of solids generated in a high level liquid waste treatment process. Solids formation behavior from simulated high level liquid waste

    International Nuclear Information System (INIS)

    Kondo, Y.; Kubota, M.

    1997-01-01

    The solids formation behavior in a simulated high level liquid waste (HLLW) was experimentally examined, when the simulated HLLW was treated in the ordinary way of actual HLLW treatment process. Solids formation conditions and mechanism were closely discussed. The solids formation during a concentration step can be explained by considering the formation of zirconium phosphate, phosphomolybdic acid and precipitation of strontium and barium nitrates and their solubilities. For the solids formation during the denitration step, at least four courses were observed; formation of an undissolved material by a chemical reaction with each other of solute elements (zirconium, molybdenum, tellurium) precipitation by reduction (platinum group metals) formation of hydroxide or carbonate compounds (chromium, neodymium, iron, nickel, strontium, barium) and a physical adsorption to stable solid such as zirconium molybdate (nickel, strontium, barium). (author)

  3. Hypothetical accidents at disposal facilities for high-level liquid radioactive wastes and pulps

    International Nuclear Information System (INIS)

    Kabakchi, S.A.; Zagainov, V.A.; Lishnikov, A.A.; Nazin, E.R.

    1994-01-01

    Four accidents are postulated and analyzed for interim storage of high-level, liquid radioactive wastes at a fuel reprocessing facility. Normal waste storage operation is based on wastes stored in steel drums, partially buried in concrete canyons, and equipped with heat exchangers for cooling and ventilation systems for removal of explosive gases and vapors. The accident scenarios analyzed are: (1) shutdown of ventilation with open entrance and exit ventilation pipes, (2) shutdown of ventilation with closed entrance and exit ventilation pipes, (3) shutdown of the cooling system with normally functioning ventilation, and (4) simultaneous cooling and ventilation system failure (worst case). A mathematical model was developed and used to calculate radiation consequences of various accidents. Results are briefly presented for the worst case scenario and compared to an actual accident for model validation. 17 refs., 3 figs., 1 tab

  4. Proceedings of the international seminar on chemistry and process engineering for high-level liquid waste solidification

    International Nuclear Information System (INIS)

    Odoj, R.; Merz, E.

    1981-06-01

    The proceedings record a very distinct phase of the chemistry and process engineering for high-level liquid waste solidification in the past years. The main purpose is to provide solutions which guarantee sufficient safe and economically acceptable measure causing no adverse consequence to man and his environment. (DG)

  5. High level waste at Hanford: Potential for waste loading maximization

    International Nuclear Information System (INIS)

    Hrma, P.R.; Bailey, A.W.

    1995-09-01

    The loading of Hanford nuclear waste in borosilicate glass is limited by phase-related phenomena, such as crystallization or formation of immiscible liquids, and by breakdown of the glass structure because of an excessive concentration of modifiers. The phase-related phenomena cause both processing and product quality problems. The deterioration of product durability determines the ultimate waste loading limit if all processing problems are resolved. Concrete examples and mass-balance based calculations show that a substantial potential exists for increasing waste loading of high-level wastes that contain a large fraction of refractory components

  6. Formation and filtration characteristics of solids generated in a high level liquid waste treatment process. Filtration characteristics of solids formed in simulated high level liquid waste

    International Nuclear Information System (INIS)

    Kondo, Y.; Kubota, M.

    1997-01-01

    The filtration characteristics of solids generated in a simulated high level liquid waste (HLLW) were experimentally examined, when the simulated HLLW was processed according to the ordinary way of actual HLLW treatment process. The filtration characteristics of solids depended on the particle size. The phosphomolybdic acid, which was very fine particle with about 0.1 μm diameter, made slurry a 'difficult-to-filter' slurry, if the phosphomolybdic acid content (wt%) to the whole solids in a slurry exceeded 50wt%. On the contrary, the zirconium compounds (zirconium molybdate and zirconium telluride) had positive effect on filtration characteristics because of their relatively large particle size of about 3 to 5 μm. When the zirconium compounds content was above 50 wt%, slurry became a 'easy-to-filter' slurry. A centrifugal sedimentation was discussed as a solid/liquid separation technique for very fine particles such as phosphomolybdic acid. The theoretical feed flow rate corresponded to 0.1 μm diameter particles was about 20 1/h at the centrifugal acceleration of about 8000 G. (author)

  7. Method of vitrificating fine-containing liquid waste

    International Nuclear Information System (INIS)

    Hagiwara, Minoru; Matsunaka, Kazuhisa.

    1989-01-01

    This invention concerns a vitrificating method of liquid wastes containing fines (metal powder discharged upon cutting fuel cans) used in a process for treating high level radioactive liquid wastes or a process for treating liquid wastes from nuclear power plants. Liquid wastes containing fines, slurries, etc. are filtered by a filter vessel comprising glass fibers. The fines are supplied as they are to a glass melting furnace placed in the vessel. Filterates formed upon filteration are mixed with other high level radioactive wastes and supplied together with starting glass material to the glass melting furnace. Since the fine-containing liquid wastes are processed separately from high radioactive liquid wastes, clogging of pipeways, etc. can be avoided, supply to the melting furnace is facilitated and the operation efficiency of the vitrification process can be improved. (I.N.)

  8. Glasses used for the high level radioactive wastes storage

    International Nuclear Information System (INIS)

    Sombret, C.

    1983-06-01

    High level radioactive wastes generated by the reprocessing of spent fuels is an important concern in the conditioning of radioactive wastes. This paper deals with the status of the knowledge about glasses used for the treatment of these liquids [fr

  9. Techniques for the solidification of high-level wastes

    International Nuclear Information System (INIS)

    1977-01-01

    The problem of the long-term management of the high-level wastes from the reprocessing of irradiated nuclear fuel is receiving world-wide attention. While the majority of the waste solutions from the reprocessing of commercial fuels are currently being stored in stainless-steel tanks, increasing effort is being devoted to developing technology for the conversion of these wastes into solids. A number of full-scale solidification facilities are expected to come into operation in the next decade. The object of this report is to survey and compare all the work currently in progress on the techniques available for the solidification of high-level wastes. It will examine the high-level liquid wastes arising from the various processes currently under development or in operation, the advantages and disadvantages of each process for different types and quantities of waste solutions, the stages of development, the scale-up potential and flexibility of the processes

  10. Evaluation of process alternatives for solidification of the West Valley high-level liquid wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.

    1982-01-01

    The Department of Energy (DOE) established the West Valley Solidification Project (WVSP) in 1980. The project purpose is to demonstrate removal and solidification of the high-level liquid wastes (HLLW) presently stored in tanks at the Western New York Nuclear Service Center (WNYNSC), West Valley, New York. As part of this effort, the Pacific Northwest Laboratory (PNL) conducted a study to evaluate process alternatives for solidifcation of the WNYNSC wastes. Two process approaches for waste handling before solidification, together with solidification processes for four terminal and four interim waste forms, were considered. The first waste-handling approach, designated the salt/sludge separation process, involves separating the bulk of the nonradioactive nuclear waste constituents from the radioactive waste constituents, and the second waste-handling approach, designated the combined-waste process, involves no waste segregation prior to solidification. The processes were evaluated on the bases of their (1) readiness for plant startup by 1987, (2) relative technical merits, and (3) process cost. The study has shown that, based on these criteria, the salt/sludge separation process with a borosilicate glass waste form is preferred when producing a terminal waste form. It was also concluded that if an interim waste form is to be used, the preferred approach would be the combined waste process with a fused-salt waste form

  11. Design and construction of the low-level liquid waste treatment system

    International Nuclear Information System (INIS)

    Baker, M.N.; Mateer, W.E.; Metzler, G.H.; Reeves, S.R.; Rickettson, D.J.

    1989-03-01

    This report describes the design and construction of the Low-Level Liquid Waste Treatment System (LWTS). The LWTS is part of a system that will prepare High-Level Radioactive Waste for solidification in glass. This preparation includes removal of water and salts from the stored waste. The topics addressed are: the design objective to reuse the Process Building to contain LWTS, the special considerations that arise when building a new system inside a decontaminated facility, interface to existing plant systems, phased construction, and construction testing. 8 refs., 24 figs

  12. Preliminary evaluation of alternative forms for immobilization of Hanford high-level defense wastes

    International Nuclear Information System (INIS)

    Schulz, W.W.; Beary, M.M.; Gallagher, S.A.; Higley, B.A.; Johnston, R.G.; Jungfleisch, F.M.; Kupfer, M.J.; Palmer, R.A.; Watrous, R.A.; Wolf, G.A.

    1980-09-01

    A preliminary evaluation of solid waste forms for immobilization of Hanford high-level radioactive defense wastes is presented. Nineteen different waste forms were evaluated and compared to determine their applicability and suitability for immobilization of Hanford salt cake, sludge, and residual liquid. This assessment was structured to address waste forms/processes for several different leave-retrieve long-term Hanford waste management alternatives which give rise to four different generic fractions: (1) sludge plus long-lived radionuclide concentrate from salt cake and residual liquid; (2) blended wastes (salt cake plus sludge plus residual liquid); (3) residual liquid; and (4) radionuclide concentrate from residual liquid. Waste forms were evaluated and ranked on the basis of weighted ratings of seven waste form and seven process characteristics. Borosilicate Glass waste forms, as marbles or monoliths, rank among the first three choices for fixation of all Hanford high-level wastes (HLW). Supergrout Concrete (akin to Oak Ridge National Laboratory Hydrofracture Process concrete) and Bitumen, low-temperature waste forms, rate high for bulk disposal immobilization of high-sodium blended wastes and residual liquid. Certain multi-barrier (e.g., Coated Ceramic) and ceramic (SYNROC Ceramic, Tailored Ceramics, and Supercalcine Ceramic) waste forms, along with Borosilicate Glass, are rated as the most satisfactory forms in which to incorporate sludges and associated radionuclide concentrates. The Sol-Gel process appears superior to other processes for manufacture of a generic ceramic waste form for fixation of Hanford sludge. Appropriate recommendations for further research and development work on top ranking waste forms are made

  13. ONDRAF/NIRAS and high-level radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Decamps, F.

    1993-01-01

    The National Agency for Radioactive Waste and Enriched Fissile Materials, ONDRAF/NIRAS, is a public body with legal personality in charge of managing all radioactive waste on Belgian territory, regardless of its origin and source. It is also entrusted with tasks related to the management of enriched fissile materials, plutonium containing materials and used or unused nuclear fuel, and with certain aspects of the dismantling of closed down nuclear facilities. High-level radioactive waste management comprises essentially and for the time being the storage of high-level liquid waste produced by the former EUROCHEMIC reprocessing plant and of high-level and very high-level heat producing waste resulting from the reprocessing in France of Belgian spent fuel, as well as research and development (R and D) with regard to geological disposal in clay of this waste type

  14. Studies on gelation of sodium silicate hydrosol for immobilization of high level liquid waste (HLLW).

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Raouf, M W [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt); Sharaf El-deen, A N; El-Dessouky, M M [Military Technical College, Kobry El-Kobbah, Cairo (Egypt)

    1995-10-01

    Immobilization of the simulated high-level liquid waste (HLLW) was performed via the gelation with sodium silicate hydrosol at room temperature. The simulated waste in this study, was represented by the electrolytes of Li, Na, K, Cs, Co and Sr at different concentrations. Specific loading of the liquid waste with 0.6 M Mg (NO{sub 3})2 and tailoring with Al salts were tried during most of the gelation processes. Mineral acid (HCl or {sub 3}) were added during the gelation processes to achieve the gel point, especially when lower concentrations of the simulated waste were used. The obtained hydrogel were dried to obtain the solid gel form. The gelation processes were investigated in terms of the different factors that affected them, namely: temperature, pH, changes in the concentration of the initial hydrosol and the used electrolytes. The efficiency of the gelation processes was investigated from the ratio of the amount of simulated waste reacted (m mole) to the initial silicate used (m mole), i.e. X value. Lower X values were observed when using multi valent cations (higher polarizing power). A special effect of increasing the sorption of metal cations in the silica matrix was observed when Al{sup 3+} replaced Si{sup 4+} in the three-dimensional network structure of the matrix. 3 figs., 7 tabs.

  15. Overview of high-level waste management accomplishments

    International Nuclear Information System (INIS)

    Lawroski, H.; Berreth, J.R.; Freeby, W.A.

    1980-01-01

    Storage of power reactor spent fuel is necessary at present because of the lack of reprocessing operations particularly in the U.S. By considering the above solidification and storage scenario, there is more than reasonable assurance that acceptable, stable, low heat generation rate, solidified waste can be produced, and safely disposed. The public perception of no waste disposal solutions is being exploited by detractors of nuclear power application. The inability to even point to one overall system demonstration lends credibility to the negative assertions. By delaying the gathering of on-line information to qualify repository sites, and to implement a demonstration, the actions of the nuclear power detractors are self serving in that they can continue to point out there is no demonstration of satisfactory high-level waste disposal. By maintaining the liquid and solidified high-level waste in secure above ground storage until acceptable decay heat generation rates are achieved, by producing a compatible, high integrity, solid waste form, by providing a second or even third barrier as a compound container and by inserting the enclosed waste form in a qualified repository with spacing to assure moderately low temperature disposal conditions, there appears to be no technical reason for not progressing further with the disposal of high-level wastes and needed implementation of the complete nuclear power fuel cycle

  16. Near-surface storage facilities for vitrified high-level wastes

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kulichenko, V.V.; Kryukov, I.I.; Krylova, N.V.; Paramoshkin, V.I.; Strakhov, M.V.

    1980-01-01

    Concurrently with the development of methods for solidifying liquid radioactive wastes, reliable and safe methods for the storage and disposal of solidified wastes are being devised in the USSR and other countries. One of the main factors affecting the choice of storage conditions for solidified wastes originating from the vitrification of high-level liquid wastes from fuel reprocessing plants is the problem of removing the heat produced by radioactive decay. In order to prevent the temperature of solidified wastes from exceeding the maximum permissible level for the material concerned, it is necessary to limit either the capacity of waste containers or the specific heat release of the wastes themselves. In order that disposal of high-level wastes in geological formations should be reliable and economic, solidified wastes undergo interim storage in near-surface storage facilities with engineered cooling systems. The paper demonstrates the relative influences of specific heat release, of the maximum permissible storage temperature for vitrified wastes and of the methods chosen for cooling wastes in order for the dimensions of waste containers to be reduced to the extent required. The effect of concentrating wastes to a given level in the vitrification process on the cost of storage in different types of storage facility is also examined. Calculations were performed for the amount of vitrified wastes produced by a reprocessing plant with a capacity of five tonnes of uranium per 24 hours. Fuel elements from reactors of the water-cooled, water-moderated type are sent for reprocessing after having been held for about two years. The dimensions of the storage facility are calculated on the assumption that it will take five years to fill

  17. Development of a glass matrix for vitrification of sulphate bearing high level radioactive liquid waste

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Mishra, R.K.; Thorat, Vidya; Ramchandran, M.; Amar Kumar; Ozarde, P.D.; Raj, Kanwar; Das, D.

    2004-07-01

    High level radioactive liquid waste (HLW) is generated during reprocessing of spent nuclear fuel. In the earlier reprocessing flow sheet ferrous sulphamate has been used for valancy adjustment of Pu from IV to III for effective separation. This has resulted in generation of HLW containing significance amount of sulphate. Internationally borosilicate glass matrix has been adopted for vitrification of HLW. The first Indian vitrification facility at Waste Immobilislition Plant (WIP), Tarapur a five component borosilicate matrix (SiO 2 :B 2 O 3 :Na 2 O : MnO : TiO 2 ) has been used for vitrification of waste. However at Trombay HLW contain significant amount of sulphate which is not compatible with standard borosilicate formulation. Extensive R and D efforts were made to develop a glass formulation which can accommodate sulphate and other constituents of HLW e.g., U, Al, Ca, etc. This report deals with development work of a glass formulations for immobilization of sulphate bearing waste. Different glass formulations were studied to evaluate the compatibility with respect to sulphate and other constituents as mentioned above. This includes sodium, lead and barium borosilicate glass matrices. Problems encountered in different glass matrices for containment of sulphate have also been addressed. A glass formulation based on barium borosilicate was found to be effective and compatible for sulphate bearing high level waste. (author)

  18. Caesium extraction from acidic high level liquid wastes with functionalized calixarenes

    International Nuclear Information System (INIS)

    Simon, N.; Eymard, S.; Tournois, B.; Dozol, J.F.

    2000-01-01

    In the framework of French law programme, studies are under way to selectively remove caesium from acidic high activity wastes. Calix[4]arene crown derivatives exhibit outstanding efficiency and selectivity for caesium. An optimisation of the formulation of a selective extractant system for Cs based on crown calixarenes and usable in a process which use liquid-liquid extraction is presented. A system involving a monoamide as a modifier is proposed. Besides these improvements, a reference solvent based on a standard 1,3-di-(n-octyl-oxy)2,4-calix(4)arene crown is studied. Flow-sheets related to this system are calculated and easily transferable to the optimised new system. (authors)

  19. Problems related to final disposal of high-level radioactive waste in Russia

    International Nuclear Information System (INIS)

    Velichkin, Vasily I.

    1999-01-01

    According to this presentation, the radioactivity of the total amount of radioactive waste accumulated in Russia to date is 1.5*10 9 Ci and of spent fuel 4.5*10 9 Ci. A table is given that shows the source, type, volume activity and storage type under the responsibility of the different departments and enterprises. 99.9% of the wastes are accumulated at the enterprises of Minatom of the Russian Federation. Some companies inject their liquid wastes from ionisation sources and intermediate liquid waste from the nuclear power industry into deep-seated reliably isolated aquifers. The Mayak plant has released liquid low-level and intermediate wastes into artificial reservoirs and Lake Karachay. Liquid high-level wastes are always stored in special tanks at interim storage facilities. A large number of nuclear submarines are laid up in North-Western Russia and East Russia, with spent fuel still in place as the interim storages in these regions are filled up and there are no conditioning plants. Underground disposal is considered the best way of isolating radioactive waste for as long as it is hazardous to the environment. Two new technologies are discussed. One involves including long-lived isotopes in high-stable mineral matrices, the other uses selective separation from the bulk of wastes. The matrices should be disposed of deep in the Earth's crust, at least 2-3 km down. Liquid waste of caesium-strontium fraction must be transformed into glass-like form and stored underground at a depth of a few hundred metres. Short-lived low level and intermediate level wastes should be conditioned and then deposited in subsurface ferroconcrete repositories constructed in clays. Finally, the presentation discusses the selection of sites and conditions for radioactive waste disposal. Two sites are discussed, the Mayak plant and a possible site at Mining Chemical Combine in Krasnoyarsk-26

  20. Selection of liquid-level monitoring method for the Oak Ridge National Laboratory inactive liquid low-level waste tanks, remedial investigation/feasibility study

    International Nuclear Information System (INIS)

    1994-11-01

    Several of the inactive liquid low-level waste (LLLW) tanks at Oak Ridge National Laboratory contain residual wastes in liquid or solid (sludge) form or both. A plan of action has been developed to ensure that potential environmental impacts from the waste remaining in the inactive LLLW tank systems are minimized. This document describes the evaluation and selection of a methodology for monitoring the level of the liquid in inactive LLLW tanks. Criteria are established for comparison of existing level monitoring and leak testing methods; a preferred method is selected and a decision methodology for monitoring the level of the liquid in the tanks is presented for implementation. The methodology selected can be used to continuously monitor the tanks pending disposition of the wastes for treatment and disposal. Tanks that are empty, are scheduled to be emptied in the near future, or have liquid contents that are very low risk to the environment were not considered to be candidates for installing level monitoring. Tanks requiring new monitoring equipment were provided with conductivity probes; tanks with existing level monitoring instrumentation were not modified. The resulting data will be analyzed to determine inactive LLLW tank liquid level trends as a function of time

  1. A method for assay of special nuclear material in high level liquid waste streams

    International Nuclear Information System (INIS)

    Venkata Subramani, C.R.; Swaminathan, K.; Asuvathraman, R.; Kutty, K.V.G.

    2003-01-01

    The assay of special nuclear material in the high level liquid waste streams assumes importance as this is the first stage in the extraction cycle and considerable losses of plutonium could occur here. This stream contains all the fission products as also the minor actinides and hence normal nuclear techniques cannot be used without prior separation of the special nuclear material. This paper presents the preliminary results carried out using wavelength dispersive x-ray fluorescence as part of the developmental efforts to assay SNM in these streams by instrumental techniques. (author)

  2. Evaporation studies on Oak Ridge National Laboratory liquid low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, V.L. [PAI Corp., Oak Ridge, TN (United States); Perona, J.J. [Oak Ridge National Lab., TN (United States)

    1993-03-01

    Evaporation studies were performed with Melton Valley storage tank liquid low-level radioactive waste concentrate and with surrogates (nonradioactive) to determine the feasibility of a proposed out-of-tank-evaporation project. Bench-scale tests indicated that volume reductions ranging from 30 to 55% could be attained. Vendor-site tests were conducted (with surrogate waste forms) using a bench-scale single-stage, low-pressure (subatmospheric), low-temperature (120 to 173{degree}F) evaporator similar to units in operation at several nuclear facilities. Vendor tests were successful; a 30% volume reduction was attained with no crystallization of solids and no foaming, as would be expected from a high pH solution. No fouling of the heat exchanger surfaces occurred during these tests. It is projected that 52,000 to 120,000 gal of water could be evaporated from the supernate stored in the Melton and Bethel Valley liquid low-level radioactive waste (LLLW) storage tanks with this type of evaporator.

  3. Hanford long-term high-level waste management program overview

    International Nuclear Information System (INIS)

    Reep, I.E.

    1978-05-01

    The objective is the long-term disposition of the defense high-level radioactive waste which will remain upon completion of the interim waste management program in the mid-1980s, plus any additional high-level defense waste resulting from the future operation of N Reactor and the Purex Plant. The high-level radioactive waste which will exist in the mid-1980s and is addressed by this plan consists of approximately 3,300,000 ft 3 of damp salt cake stored in single-shell and double-shell waste tanks, 1,500,000 ft 3 of damp sludge stored in single-shell and double-shell waste tanks, 11,000,000 gallons of residual liquor stored in double-shell waste tanks, 3,000,000 gallons of liquid wastes stored in double-shell waste tanks awaiting solidification, and 2,900 capsules of 90 SR and 137 Cs compounds stored in water basins. Final quantities of waste may be 5 to 10% greater, depending on the future operation of N Reactor and the Purex Plant and the application of waste treatment techniques currently under study to reduce the inventory of residual liquor. In this report, the high-level radioactive waste addressed by this plan is briefly described, the major alternatives and strategies for long-term waste management are discussed, and a description of the long-term high-level waste management program is presented. Separate plans are being prepared for the long-term management of radioactive wastes which exist in other forms. 14 figures

  4. An optimized approach towards the treatment of high level liquid waste in the nuclear cycle

    International Nuclear Information System (INIS)

    Maio, V.; Todd, T.; Law, J.; Roach, J.; Sabharwall, P.

    2006-01-01

    Full text: One key long-standing issue that must be overcome to realize the successful growth of nuclear power is an economical, politically acceptable, stakeholder-compatible, and technically feasible resolution pertaining to the safe treatment and disposal of high-level liquid radioactive waste (HLLW). In addition to spent nuclear reactor fuel, HLLW poses a unique challenge in regard to environmental and security concerns, since future scenarios for a next generation of domestic and commercialized nuclear fuel cycle infrastructures must include reprocessing - the primary source of HLLW-to ensure the cost effectiveness of nuclear power as well as mitigate any threats as related to proliferation. Past attempts to immobilize HLLW - generated by both the weapons complex and the commercial power sector-have been plagued by an inability to convince the public and some technical peer reviewers that any proposed geological disposal sites (e.g., Yucca Mountain) can accommodate and contain the HLLW for a period of geological time equivalent to ten fold the radiological half-life of the longest lived of the actinides remaining after reprocessing. The paper explores combined equipment and chemical processing approaches for advancing and economizing the immobilization of high level liquid waste to ensure its long term durability, its decoupling from the unknown behavior of the repository over long geological time periods, and its economical formulation as required for the nuclear fuel cycle of the future. One approach involves the investigation of crystalline based waste forms as opposed to the glass/amorphous based waste forms, and how recent developments in crystalline forms show promise in sequestering the long lived actinides for over tens of millions of years. Another approach -compatible with the first- involves the use of an alternative melter technology-the Cold Crucible Induction Melter (CCIM)- to overcome the engineering material problems of Joule Heated Meters (JHM

  5. The incorporation of low and medium level radioactive wastes (solids and liquids) in cement

    International Nuclear Information System (INIS)

    Palmer, J.D.; Smith, D.L.G.

    1986-01-01

    The use of cement has been investigated for the immobilization of liquid and solid low and medium level radioactive waste. 220 litre mixing trials have demonstrated that the high temperatures generated during the setting of ordinary Portland cement/simulant waste mixes can be significantly reduced by the use of a blend of ground granulated blast furnace slag and ordinary Portland cement. Laboratory and 220 litre trials using simulant wastes showed that the blended cement gave an improvement in properties of the cemented waste product, e.g. stability and reduction in leach rates compared with ordinary Portland cement formulations. A range of 220 litre scale mixing systems for the incorporation of liquid and solid wastes in cement was investigated. The work has confirmed that cement-based processes can be used for the immobilization of most types of low and medium level waste

  6. Immobilization of low and intermediate level radioactive liquid wastes using some industrial by-product materials

    International Nuclear Information System (INIS)

    Sami, N.M.; EI-Dessouky, M.I.; Abou EI-Nour, F.H.; Abdel-Khalik, M.

    2006-01-01

    Immobilization of low and intermediate level.radioactive liquid wastes in different matrices: ordinary Portland cement and cement mixed with some industrial byproduct: by-pass kiln cement dust, blast furnace slag and ceramic sludge was studied. The effect of these industrial by-product materials on the compressive strength, water immersion, radiation effect and teachability were investigated. The obtained results showed that, these industrial by-product improve the cement pastes where they increase the compressive strength, decrease the leaching rate for radioactive cesium-137 and cobalt-60 ions through the solidified waste forms and increase resistance for y-radiation. It is found that, solidified waste forms of intermediate level liquid waste (ILLW) had high compressive strength values more than those obtained from low level liquid waste (LLLW). The compressive strength increased after immersion in different leachant for one and three months for samples with LLLW higher than those obtained for ILLW. The cumulative fractions released of cesium-137 and cobalt-60 of solidified waste forms of LLLW was lower than those obtained for ILLW

  7. High level radioactive waste management facility design criteria

    International Nuclear Information System (INIS)

    Sheikh, N.A.; Salaymeh, S.R.

    1993-01-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding

  8. Solidification of high level liquid waste (HLLW) into ceramics by sintering process

    International Nuclear Information System (INIS)

    Masuda, Sumio; Oguino, Naohiko; Tsunoda, Naomi; O-oka, Kazuo; Ohta, Takao.

    1979-01-01

    One of the alternatives to vitrified solid which is acceptable and well characterized for storing radioactive HLLW with desirable long-term stability is ceramics. On the other hand, the solidification process of highly radioactive wastes should be simple and suitable for continuous production. On the above described basis, the authors have made preliminary study on the production of sintered ceramics by the addition of several oxides to HLLW. The simulated waste and additive oxides were pressed in a mold to make the preforms of 50 mm diameter and 10 to 15 mm thick. The preforms were then normally sintered at temperature from 1000 to 1400 deg C for 2 to 4 hours. The characterization of the sintered solids revealed the following facts. (1) X-ray diffraction analysis showed that the expected crystals were formed by normal-sintering as well as by hot-pressing. (2) The bulk density of the ceramics by normal-sintering was around 90 to 95% of the assumed theoretical values. (3) The leach-rate of the solids was affected by the bulk density. (4) Other properties of the solids, such as thermal expansion or thermal conductivity, are dominantly determined by those of main crystals in the solids. Sintering process is generally simple and productive as far as normal sintering is concerned. However, hot-pressing is an intermittent and time consuming process. From this fact, the authors intended to adopt the normal sintering process for the ceramic solidification of high level liquid wastes. (Wakatsuki, Y.)

  9. Liquid waste treatment system. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1999-01-01

    Pretreatment of high-level liquid radioactive waste (HLW) at the West Valley Demonstration Project (WVDP) involved three distinct processing operations: decontamination of liquid HLW in the Supernatant Treatment System (STS); volume reduction of decontaminated liquid in the Liquid Waste Treatment System (LWTS); and encapsulation of resulting concentrates into an approved cement waste form in the Cement Solidification System (CSS). Together, these systems and operations made up the Integrated Radwaste Treatment System (IRTS)

  10. Expert system for liquid low-level waste management

    International Nuclear Information System (INIS)

    Ferrada, J.J.

    1992-01-01

    An expert system prototype has been developed to support system analysis activities at the Oak Ridge National Laboratory (ORNL) for waste management tasks. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. The concept under which the expert system has been designed is integration of knowledge. There are many sources of knowledge (data bases, text files, simulation programs, etc.) that an expert would regularly consult in order to solve a problem of liquid waste management. The expert would normally know how to extract the information from these different sources of knowledge. The general scope of this project would be to include as much pertinent information as possible within the boundaries of the expert system. As a result, the user, who may not be an expert in every aspect of liquid waste management, may be able to apply the content of the information to a specific waste problem. This paper gives the methodological steps to develop the expert system under this general framework

  11. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    Science.gov (United States)

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Stabilization and isolation of low-level liquid waste disposal sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Gilbert, T.W.

    1987-01-01

    Rockwell Hanford Operations is developing and testing equipment for stabilization and isolation of low-level radioactive liquid waste disposal sites. Stabilization and isolation are accomplished by a dynamic consolidation and particulate grout injection system. System equipment components include: a mobile grout plant for transport, mixing, and pumping of particulate grout; a vibratory hammer/extractor for consolidation of waste, backfill, and for emplacement of the injector; dynamic consolidation/injector probe for introducing grout into fill material; and an open-void surface injector that uses surface or subsurface mechanical or pneumatic packers and displacement gas filtration for introducing grout into disposal structure access piping. Treatment of a liquid-waste disposal site yields a physically stable, cementitious monolith. Additional testing and modification of this equipment for other applications to liquid waste disposal sites is in progress

  13. Seismic analysis of the ICPP high level liquid waste tanks and vaults

    International Nuclear Information System (INIS)

    Uldrich, E.D.; Malik, L.E.

    1991-01-01

    Two buried, closely spaced, reinforced concrete vaults founded on base rock were evaluated for gravity and safe shutdown earthquake loads. These vaults enclose steel tanks used to store high level radioactive liquid waste. Detailed 3-dimensional finite element models were used for state-of-the-art structure-soil-structure interaction (SSSI) analyses. Three soil dynamic property profiles were used to address soil variability. Vault accelerations are not significantly affected by the variability of soil dynamic properties. Lower bound soil properties yield maximum member forces and moments. Demands on the side closer to the other vault due to horizontal motions are lower due to SSSI effects. Combined gravity and seismic demand on the vault force resisting system was calculated. The vaults were qualified, using member capacities based on current design codes

  14. Liquid low level waste management expert system

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Abraham, T.J.; Jackson, J.R.

    1991-01-01

    An expert system has been developed as part of a new initiative for the Oak Ridge National Laboratory (ORNL) systems analysis program. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem, as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. 4 refs., 9 figs

  15. Process description and plant design for preparing ceramic high-level waste forms

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKisson, R.L.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-01-01

    The ceramics process flow diagram has been simplified and upgraded to utilize only two major processing steps - fluid-bed calcination and hot isostatic press consolidating. Full-scale fluid-bed calcination has been used at INEL to calcine high-level waste for 18 y; and a second-generation calciner, a fully remotely operated and maintained calciner that meets ALARA guidelines, started calcining high-level waste in 1982. Full-scale hot isostatic consolidation has been used by DOE and commercial enterprises to consolidate radioactive components and to encapsulate spent fuel elements for several years. With further development aimed at process integration and parametric optimization, the operating knowledge of full-scale demonstration of the key process steps should be rapidly adaptable to scale-up of the ceramic process to full plant size. Process flowsheets used to prepare ceramic and glass waste forms from defense and commercial high-level liquid waste are described. Preliminary layouts of process flow diagrams in a high-level processing canyon were prepared and used to estimate the preliminary cost of the plant to fabricate both waste forms. The estimated costs for using both options were compared for total waste management costs of SRP high-level liquid waste. Using our design, for both the ceramic and glass plant, capital and operating costs are essentially the same for both defense and commercial wastes, but total waste management costs are calculated to be significantly less for defense wastes using the ceramic option. It is concluded from this and other studies that the ceramic form may offer important advantages over glass in leach resistance, waste loading, density, and process flexibility. Preliminary economic calculations indicate that ceramics must be considered a leading candidate for the form to immobilize high-level wastes

  16. Filtration of Oak Ridge National Laboratory simulated liquid low-level waste

    International Nuclear Information System (INIS)

    Fowler, V.L.; Hewitt, J.D.

    1989-08-01

    A method for disposal of Oak Ridge National Laboratory's (ORNL's) liquid low-level radioactive waste (LLLW) is being developed in which the material will be solidified in cement and stored in an aboveground engineered storage facility. The acceptability of the final waste form rests in part on the presence or absence of transuranic isotopes. Filtration methods to remove transuranic isotopes from the bulk liquid stored in the Melton Valley Storage Tanks (MVST) were investigated in this study. Initial batch studies using waste from MVST indicate that >99.9% of the transuranic isotopes can be removed from the bulk liquid by simple filtration. Bench-scale studies with a nonradioactive surrogate waste indicate that >99.5% of the suspended solids can be removed from the bulk liquid via inertial crossflow filtration. 4 refs., 3 figs., 11 tabs

  17. Stabilization of liquid low-level and mixed wastes: a treatability study

    International Nuclear Information System (INIS)

    Carson, S.; Cheng, Yu-Cheng; Yellowhorse, L.; Peterson, P.

    1996-01-01

    A treatability study has been conducted on liquid low-level and mixed wastes using the stabilization agents Aquaset, Aquaset II, Aquaset II-H, Petroset, Petroset-H, and Petroset and Petroset II. A total of 40 different waste types with activities ranging from 10 -14 to 10 -4 curies/ml have been stabilized. Reported data for each waste include its chemical and radiological composition and the optimum composition or range of compositions (weight of agent/volume of waste) for each stabilization agent used. All wastes were successfully stabilized with one or more of the stabilization agents and all final waste forms passed the Paint Filter Liquids Test (EPA Method 9095)

  18. Liquid waste handling facilities for a conceptual LWR spent fuel reprocessing complex

    International Nuclear Information System (INIS)

    Witt, D.C.; Bradley, R.F.

    1978-01-01

    The waste evaporator systems and the methods for evaporating the liquid wastes of various radioactivity levels are discussed. After the liquid wastes are evaporated and nitric acid is recovered the high-level liquid waste is incorporated into borosilicate glass and the intermediate-level liquid waste into concrete for final disposal

  19. Vitrification of low level and mixed (radioactive and hazardous) wastes: Lessons learned from high level waste vitrification

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1994-01-01

    Borosilicate glasses will be used in the USA and in Europe immobilize radioactive high level liquid wastes (HLLW) for ultimate geologic disposal. Simultaneously, tehnologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to immobilize low-level and mixed (radioactive and hazardous) wastes (LLMW) in durable glass formulations for permanent disposal or long-term storage. Vitrification of LLMW achieves large volume reductions (86--97 %) which minimize the associated long-term storage costs. Vitrification of LLMW also ensures that mixed wastes are stabilized to the highest level reasonably possible, e.g. equivalent to HLLW, in order to meet both current and future regulatory waste disposal specifications The tehnologies being developed for vitrification of LLMW rely heavily on the technologies developed for HLLW and the lessons learned about process and product control

  20. US and Russian innovative technologies to process low-level liquid radioactive wastes: The Murmansk initiative

    International Nuclear Information System (INIS)

    Dyer, R.S.; Duffey, R.B.; Penzin, R.; Sorlie, A.

    1996-01-01

    This paper documents the status of the technical design for the upgrade and expansion to the existing Low-level Liquid Radioactive Waste (LLLRW) treatment facility in Murmansk, the Russian Federation. This facility, owned by the Ministry of Transportation and operated by the Russian company RTP Atomflot in Murmansk, Russia, has been used by the Murmansk Shipping Company (MSCo) to process low-level liquid radioactive waste generated by the operation of its civilian icebreaker fleet. The purpose of the new design is to enable Russia to permanently cease the disposal at sea of LLLRW in the Arctic, and to treat liquid waste and high saline solutions from both the Civil and North Navy Fleet operations and decommissioning activities. Innovative treatments are to be used in the plant which are discussed in this paper

  1. Six-year experiences in the operation of a low level liquid waste treatment plant

    International Nuclear Information System (INIS)

    Wen, S.-J.; Hwang, S.-L.; Tsai, C.-M.

    1980-01-01

    The operation of a low level liquid waste treatment plant is described. The plant is designed for the disposal of liquid waste produced primarily by a 40 MW Taiwan Research Reactor as well as a fuel fabrication plant for the CANDU type reactor and a radioisotopes production laboratory. The monthly volume treated is about 600-2500 ton of low level liquid waste. The activity levels are in the range of 10 -5 -10 -3 μCi/cm 3 . The continuous treatment system of the low level liquid waste treatment plant and the treatment data collected since 1973 are discussed. The advantages and disadvantages of continuous and batch processes are compared. In the continuous process, the efficiency of sludge treatment, vermiculite ion exchange and the adsorption of peat are investigated for further improvement. (H.K.)

  2. Department of Energy pretreatment of high-level and low-level wastes

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Hunt, R.D.

    1995-01-01

    The remediation of the 1 x 10 8 gal of highly radioactive waste in the underground storage tanks (USTs) at five US Department of Energy (DOE) sites is one of DOE's greatest challenges. Therefore, the DOE Office of Environmental Management has created the Tank Focus Area (TFA) to manage an integrated technology development program that results in the safe and efficient remediation of UST waste. The TFA has divided its efforts into five areas, which are safety, characterization, retrieval/closure, pretreatment, and immobilization. All DOE pretreatment activities are integrated by the Pretreatment Technical Integration Manager of the TFA. For FY 1996, the 14 pretreatment tasks are divided into 3 systems: supernate separations, sludge treatment, and solid/liquid separation. The plans and recent results of these TFA tasks, which include two 25,000-gal demonstrations and two former TFA tasks on Cs removal, are presented. The pretreatment goals are to minimize the volume of high-level waste and the radioactivity in low-level waste

  3. Behavior of radioactive iodine and technetium in the spray calcination of high-level waste

    Science.gov (United States)

    Knox, C. A.; Farnsworth, R. K.

    1981-08-01

    The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.

  4. In-situ nitrite analysis in high level waste tanks

    International Nuclear Information System (INIS)

    O'Rourke, P.E.; Prather, W.S.; Livingston, R.R.

    1992-01-01

    The Savannah River Site produces special nuclear materials used in the defense of the United States. Most of the processes at SRS are primarily chemical separations and purifications. In-situ chemical analyses help improve the safety, efficiency and quality of these operations. One area where in situ fiberoptic spectroscopy can have a great impact is the management of high level radioactive waste. High level radioactive waste at SRS is stored in more than 50 large waste tanks. The waste exists as a slurry of nitrate salts and metal hydroxides at pH's higher than 10. Sodium Nitrite is added to the tanks as a corrosion inhibitor. In-situ fiberoptic probes are being developed to measure the nitrate, nitrite and hydroxide concentrations in both liquid and solid fractions. Nitrite levels can be measured between 0.01M and 1M in a 1mm pathlength optical cell

  5. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    Roberts, D.W.; Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  6. Behavior of radioactive iodine and technetium in the spray calcination of high-level waste

    International Nuclear Information System (INIS)

    Knox, C.A.; Farnsworth, R.K.

    1981-08-01

    The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In this facility, which is installed in a radiochemical cell, small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. Initial operations were completed with nonradioactive, simulated waste solutions (Knox, Siemens and Berger 1981). The first radioactive operations in this facility were performed with a simulated, commercial waste composition containing tracer levels of 99 Tc and 131 I. This report describes the facility and test operations and presents the results of the behavior of 131 I and 99 Tc during solidification of radioactive liquid wastes. During the spray calcination of commercial high-level liquid waste spiked with 99 Tc and 131 I, there was a 0.3 wt% loss of particulates, a 0.15 wt% loss of 99 Tc and a 31 wt% loss of 131 I past the sintered-metal filters. These filters and a venturi scrubber were very efficient in removing particulates and 99 Tc from the off-gas stream. Liquid scrubbers were not efficient in removing 131 I, as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents will be needed to remove iodine. For all future RLSWTF operations where iodine is present, a silver zeolite adsorber will be used

  7. Concentration of High Level Radioactive Liquid Waste. Basic data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Juvenelle, A.; Masson, M.; Garrido, M.H. [DEN/VRH/DRCP/SCPS/LPCP, BP 17171 - 30207 Bagnols sur Ceze Cedex (France)

    2008-07-01

    Full text of publication follows: In order to enhance its knowledge about the concentration of high level liquid waste (HLLW) from the nuclear fuel reprocessing process, a program of studies was defined by Cea. In a large field of acidity, it proposes to characterize the concentrated solution and the obtained precipitates versus the concentration factor. Four steps are considered: quantification of the salting-out effect on the concentrate acidity, acquisition of solubility data, precipitates characterisation versus the concentration factor through aging tests and concentration experimentation starting from simulated fission products solutions. The first results, reported here, connect the acidity of the concentrated solution to the concentration factor and allow us to precise the field of acidity (4 to 12 N) for the next experiments. In this field, solubility data of various elements (Ba, Sr, Zr...) are separately measured at room temperature, in nitric acid in a first time, then in the presence of various species present in medium (TBP, PO{sub 4}{sup 3-}). The reactions between these various elements are then investigated (formation of insoluble mixed compounds) by following the concentration cations in solution and characterising the precipitates. (authors)

  8. Barium borosilicate glass - a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Mishra, R.K.; Sengupta, P.; Kumar, Amar; Das, D.; Kale, G.B.; Raj, Kanwar

    2006-01-01

    Borosilicate glass formulations adopted worldwide for immobilization of high-level radioactive liquid waste (HLW) is not suitable for sulphate bearing HLW, because of its low solubility in such glass. A suitable glass matrix based on barium borosilicate has been developed for immobilization of sulphate bearing HLW. Various compositions based on different glass formulations were made to examine compatibility with waste oxide with around 10 wt% sulfate content. The vitrified waste product obtained from barium borosilicate glass matrix was extensively evaluated for its characteristic properties like homogeneity, chemical durability, glass transition temperature, thermal conductivity, impact strength, etc. using appropriate techniques. Process parameters like melt viscosity and pour temperature were also determined. It is found that SB-44 glass composition (SiO 2 : 30.5 wt%, B 2 O 3 : 20.0 wt%, Na 2 O: 9.5 wt% and BaO: 19.0 wt%) can be safely loaded with 21 wt% waste oxide without any phase separation. The other product qualities of SB-44 waste glass are also found to be on a par with internationally adopted waste glass matrices. This formulation has been successfully implemented in plant scale

  9. Cementation of liquid radioactive waste with high content of borate salts

    International Nuclear Information System (INIS)

    Gorbunova, O.

    2015-01-01

    The report reviews the ways of optimization of cementation of boron-containing liquid radioactive waste. The most common way to hardening the low-level liquid radioactive waste (LRW) is the cementation. However, boron-containing liquid radioactive waste with low pH values cannot be cemented without alkaline additives, to neutralize acid forms of borate compounds. Cement setting without additives happens only on 14-56 days, the compounds have low strength, and hence an insufficient reliability of radionuclides fixation in the cement matrix. The alkaline additives increase the volume of the final cement compound which enhances financial and operational costs. In order to control the speed of hardening of cement solution with a boron-containing liquid radioactive waste and to remove the components that prevent hardening of cement solution, it is proposed an electromagnetic treatment of LRW in the vortex layer of ferromagnetic particles. The results of infrared spectroscopy show, that electromagnetic treatment of liquid radioactive waste changes the ionic forms of the borates and raises the pH due to the dissociation of the oxygen and hydrogen bonds in the aqueous solutions of the boron compounds. The various types of ferromagnetic activators of the vortex layer have been investigated, including the highly dispersed nano-powders and the magnetic phases of the iron oxides. It has been determined the technological parameters of the electromagnetic treatment of liquid radioactive waste and the subsequent cementation of this type of LRW. By using the method of scanning electron microscopy it has been shown, that the nano-particles of magnetic phases of the ferric oxides are involved in phase formation of hydro-aluminum-calcium ferrites in the early stages of hardening and improving strength of the cement compounds with liquid radioactive waste. (authors)

  10. Action plan for response to abnormal conditions in Hanford high level radioactive liquid waste storage tanks containing flammable gases

    International Nuclear Information System (INIS)

    Sherwood, D.J.

    1994-03-01

    Radioactive liquid waste tends to produce hydrogen as a result of the interaction of gamma radiation and water. In tanks containing organic chelating agents, additional hydrogen gas as well as nitrous oxide and ammonia can be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site, contain waste that retains the gases produced in them until large quantities are released rapidly to the tank vapor space. Tanks filled to near capacity have relatively little vapor space; therefore, if the waste suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture may result. The most notable waste tank with a flammable gas problem is tank 241-SY-101. Waste in this tank has occasionally released enough flammable gas to burn if an ignition source had been present inside of the tank. Several other waste tanks exhibit similar behavior to a lesser magnitude. Administrative controls have been developed to assure that these Flammable Gas Watch List tanks are safely maintained. Responses have also been developed for off-normal conditions which might develop in these tanks. In addition, scientific and engineering studies are underway to further understand and mitigate the behavior of the Flammable Gas Watch List tanks

  11. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    Energy Technology Data Exchange (ETDEWEB)

    OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

    2013-07-01

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  12. Determination of free acid in high level liquid wastes by means of fixed pH value

    International Nuclear Information System (INIS)

    Li Jifu; Duan Shirong; Wu Xi; Yu Xueren

    1991-01-01

    For the determination of free acid in high level liquid wastes, 8% potassium oxalate solution with pH 6.50 as a complex agent of hydrolizable ion is added to 1 AW and the solution is titrated with standard sodium hydroxide to reach the original pH value. The quantity of free acid is calculated by standard sodium hydroxide consumed. This method is simple, rapid and accurate. The relative error of analysis is less than ±4%. The average percentage of recovery is 99.6-101.0%

  13. Solidification of low-level radioactive liquid waste using a cement-silicate process

    International Nuclear Information System (INIS)

    Grandlund, R.W.; Hayes, J.F.

    1979-01-01

    Extensive use has been made of silicate and Portland cement for the solidification of industrial waste and recently this method has been successfully used to solidify a variety of low level radioactive wastes. The types of wastes processed to date include fuel fabrication sludges, power reactor waste, decontamination solution, and university laboratory waste. The cement-silicate process produces a stable solid with a minimal increase in volume and the chemicals are relatively inexpensive and readily available. The method is adaptable to either batch or continuous processing and the equipment is simple. The solid has leaching characteristics similar to or better than plain Portland cement mixtures and the leaching can be further reduced by the use of ion-exchange additives. The cement-silicate process has been used to solidify waste containing high levels of boric acid, oils, and organic solvents. The experience of handling the various types of liquid waste with a cement-silicate system is described

  14. Determination of Np, Pu and Am in high level radioactive waste with extraction-liquid scintillation counting

    International Nuclear Information System (INIS)

    Yang Dazhu; Zhu Yongjun; Jiao Rongzhou

    1994-01-01

    A new method for the determination of transuranium elements, Np, Pu and Am with extraction-liquid scintillation counting has been studied systematically. Procedures for the separation of Pu and Am by HDEHP-TRPO extraction and for the separation of Np by TTA-TiOA extraction have been developed, by which the recovery of Np, Pu and Am is 97%, 99% and 99%, respectively, and the decontamination factors for the major fission products ( 90 Sr, 137 Cs etc.) are 10 4 -10 6 . Pulse shape discrimination (PSD) technique has been introduced to liquid scintillation counting, by which the counting efficiency of α-activity is >99% and the rejection of β-counts is >99.95%. This new method, combining extraction and pulse shape discrimination with liquid scintillation technique, has been successfully applied to the assay of Np, Pu and Am in high level radioactive waste. (author) 7 refs.; 7 figs.; 4 tabs

  15. Functions and requirements document, WESF decoupling project, low-level liquid waste system

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J.H., Fluor Daniel Hanford

    1997-02-27

    The Waste Encapsulation and Storage Facility (WESF) was constructed in 1974 to encapsulate and store cesium and strontium which were isolated at B Plant from underground storage tank waste. The WESF, Building 225-B, is attached physically to the west end of B Plant, Building 221-B, 200 East area. The WESF currently utilizes B Plant facilities for disposing liquid and solid waste streams. With the deactivation of B Plant, the WESF Decoupling Project will provide replacement systems allowing WESF to continue operations independently from B Plant. Four major systems have been identified to be replaced by the WESF Decoupling Project, including the following: Low Level Liquid Waste System, Solid Waste Handling System, Liquid Effluent Control System, and Deionized Water System.

  16. Remote ignitability analysis of high-level radioactive waste

    International Nuclear Information System (INIS)

    Lundholm, C.W.; Morgan, J.M.; Shurtliff, R.M.; Trejo, L.E.

    1992-09-01

    The Idaho Chemical Processing Plant (ICPP), was used to reprocess nuclear fuel from government owned reactors to recover the unused uranium-235. These processes generated highly radioactive liquid wastes which are stored in large underground tanks prior to being calcined into a granular solid. The Resource Conservation and Recovery Act (RCRA) and state/federal clean air statutes require waste characterization of these high level radioactive wastes for regulatory permitting and waste treatment purposes. The determination of the characteristic of ignitability is part of the required analyses prior to calcination and waste treatment. To perform this analysis in a radiologically safe manner, a remoted instrument was needed. The remote ignitability Method and Instrument will meet the 60 deg. C. requirement as prescribed for the ignitability in method 1020 of SW-846. The method for remote use will be equivalent to method 1020 of SW-846

  17. Review of high-level waste form properties

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1980-12-01

    This report is a review of waste form options for the immobilization of high-level-liquid wastes from the nuclear fuel cycle. This review covers the status of international research and development on waste forms as of May 1979. Although the emphasis in this report is on waste form properties, process parameters are discussed where they may affect final waste form properties. A summary table is provided listing properties of various nuclear waste form options. It is concluded that proposed waste forms have properties falling within a relatively narrow range. In regard to crystalline versus glass waste forms, the conclusion is that either glass of crystalline materials can be shown to have some advantage when a single property is considered; however, at this date no single waste form offers optimum properties over the entire range of characteristics investigated. A long-term effort has been applied to the development of glass and calcine waste forms. Several additional waste forms have enough promise to warrant continued research and development to bring their state of development up to that of glass and calcine. Synthetic minerals, the multibarrier approach with coated particles in a metal matrix, and high pressure-high temperature ceramics offer potential advantages and need further study. Although this report discusses waste form properties, the total waste management system should be considered in the final selection of a waste form option. Canister design, canister materials, overpacks, engineered barriers, and repository characteristics, as well as the waste form, affect the overall performance of a waste management system. These parameters were not considered in this comparison

  18. Study of hydrogen consumption reaction catalyzed by Pd ions in the simulated high-level liquid waste

    International Nuclear Information System (INIS)

    Kodama, Takashi

    2013-01-01

    To ensure the safety for storage of high-level liquid waste (HLLW) in tanks is one of the most important safety issues in a reprocessing plant since almost all radioactive materials under processing are collected in these tanks. Accordingly the behavior of radiolytically formed hydrogen (H 2 ) in these tanks is one of key issues and has been studied by several researchers because it might cause an explosion. They reported that not all of H 2 formed in HLLW comes out in the gas phase because H 2 is consumed by some un-clarified secondary reaction which may be caused by the irradiation and/or by the catalytic effect of certain fission product (FP) in HLLW. In order to clarify such effect, we carried out the experiments using the simulated high level liquid waste (SHLLW) with and without palladium (Pd) group ions under irradiation and non-irradiation conditions. As a result, it was found that H 2 consumption reaction is not caused by radiation as was understood so far but is caused by a catalytic effect of Pd ion in SHLLW. That is, H 2 is reacting with HNO 3 and forming H 2 O and NOx. Using the catalytic reaction rate constant measured in the experiments, the analysis showed that the H 2 concentration in the gas phase of an HLLW tank does not reach its explosion limit of 4% even if the sweeping air stops for a long time. (authors)

  19. Treatment of low-level liquid radioactive wastes by electrodialysis

    International Nuclear Information System (INIS)

    DelDebbio, J.A.; Donovan, R.I.

    1986-01-01

    This paper presents the results of pilot plant studies on the use of electrodialysis (ED) for the removal of radioactive and chemical contaminants from acidic low-level radioactive wastes resulting from nuclear fuel reprocessing operations. Decontamination efficiencies are reported for strontium-90, cesium-137, iodine-129, ruthenium-106 and mercury. Data for contaminant adsorption on ED membranes and liquid waste volumes generated are also presented

  20. Separation processes for high-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Sutherland, D.G.

    1992-11-01

    During World War II, production of nuclear materials in the United States for national defense, high-level waste (HLW) was generated as a byproduct. Since that time, further quantities of HLW radionuclides have been generated by continued nuclear materials production, research, and the commercial nuclear power program. In this paper HLW is defined as the highly radioactive material resulting from the processing of spent nuclear fuel. The HLW is the liquid waste generated during the recovery of uranium and plutonium in a fuel processing plant that generally contains more than 99% of the nonvolatile fission products produced during reactor operation. Since this paper deals with waste separation processes, spent reactor fuel elements that have not been dissolved and further processed are excluded

  1. High level radioactive waste vitrification process equipment component testing

    International Nuclear Information System (INIS)

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system

  2. FY 1995 separation studies for liquid low-level waste treatment at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Bostick, D.T.; Arnold, W.D.; Burgess, M.W.

    1995-01-01

    During FY 1995, studies were continued to develop improved methods for centralized treatment of liquid low-level waste (LLLW) at Oak Ridge National Laboratory (ORNL). Focus in this reporting period was on (1) identifying the parameters that affect the selective removal of 90 Sr and 137 Cs, two of the principal radioactive contaminants expected in the waste; (2) validating the effectiveness of the treatment methods by testing an ac Melton Valley Storage Tank (MVST) supernate; (3) evaluating the optimum solid/liquid separation techniques for the waste; (4) identifying potential treatment methods for removal of technetium from LLLW; and (5) identifying potential methods for stabilizing the high-activity secondary solid wastes generated by the treatment

  3. Operating safety requirements for the intermediate level liquid waste system

    International Nuclear Information System (INIS)

    1980-07-01

    The operation of the Intermediate Level Liquid Waste (ILW) System, which is described in the Final Safety Analysis, consists of two types of operations, namely: (1) the operation of a tank farm which involves the storage and transportation through pipelines of various radioactive liquids; and (2) concentration of the radioactive liquids by evaporation including rejection of the decontaminated condensate to the Waste Treatment Plant and retention of the concentrate. The following safety requirements in regard to these operations are presented: safety limits and limiting control settings; limiting conditions for operation; and surveillance requirements. Staffing requirements, reporting requirements, and steps to be taken in the event of an abnormal occurrence are also described

  4. Problems in the design and specification of containers for vitrified high-level liquid waste

    International Nuclear Information System (INIS)

    Corbet, A.D.W.; Hall, G.G.; Spiller, G.T.

    1976-01-01

    In the United Kingdom the growing problem of ensuring the safe storage of high-level liquid waste over long time scales has led to a policy for implementing solidification. A brief description is given of the HARVEST vitrification process, which is essentially a scaled-up version of the FINGAL process with increased throughput. The functional requirements of the container are considered. It must be made of a material which can be fabricated to a high standard. Diameters up to 600 mm for right circular cylindrical containers and 1200 mm for annular containers are contemplated. Computer aids for axisymmetric and three-dimensional heat transfer and stress analysis are identified. One example is given of the thermal profile for the cylindrical container in the furnace and another example for the annular container following an accident condition. Measured values are given for high temperature oxidation, emissivity and the short-term creep strength of various alloys. Corrosion in fresh water and sea water over long time periods and leaching of partially exposed solid waste are discussed and a conceptual package for sea bed disposal is described. The relative merits of the different methods of manufacture are pointed out and the paper concludes that HK-40 or better INCOLOY alloy 800L are suitable materials of construction. (author)

  5. R and D Activities on high-level nuclear waste management

    International Nuclear Information System (INIS)

    Watanabe, Shosuke

    1985-01-01

    High-level liquid waste (HLLW) at Tokai Reprocessing Plant has been generated from reprocessing of spent fuels from the light water reactors, and successfully managed since 1977. At the time of 1984, about 154m 3 of HLLW from 170 tons of spent fuels were stored in three high-integrity stainless steel tanks (90m 3 for each) as a nitric acid aqueous solution. The HLLW arises mainly from the first cycle solvent extraction phase. Alkaline solution to scrub the extraction solvent is another source of HLLW. The Advisory Committee on Radioactive Waste Management reported the concept on disposal of high-level waste (HLW) in Japan in 1980 report, that the waste be solidified into borosilicate glass and then be disposed in deep geologic formation so as to minimize the influence of the waste on human environment, with the aid of multibarrier system which is the combination of natural barrier and engineered barrier

  6. Application Of A Thin Film Evaporator System For Management Of Liquid High-Level Wastes At Hanford

    International Nuclear Information System (INIS)

    Tedeschi, A.R.; Wilson, R.A.

    2010-01-01

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  7. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR; WILSON RA

    2010-01-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  8. Liquid waste sampling device

    International Nuclear Information System (INIS)

    Kosuge, Tadashi

    1998-01-01

    A liquid pumping pressure regulator is disposed on the midway of a pressure control tube which connects the upper portion of a sampling pot and the upper portion of a liquid waste storage vessel. With such a constitution, when the pressure in the sampling pot is made negative, and liquid wastes are sucked to the liquid pumping tube passing through the sampling pot, the difference between the pressure on the entrance of the liquid pumping pressure regulator of the pressure regulating tube and the pressure at the bottom of the liquid waste storage vessel is made constant. An opening degree controlling meter is disposed to control the degree of opening of a pressure regulating valve for sending actuation pressurized air to the liquid pumping pressure regulator. Accordingly, even if the liquid level of liquid wastes in the liquid waste storage vessel is changed, the height for the suction of the liquid wastes in the liquid pumping tube can be kept constant. With such procedures, sampling can be conducted correctly, and the discharge of the liquid wastes to the outside can be prevented. (T.M.)

  9. Addition of liquid waste incineration capability to the INEL's low-level waste incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; Clark, D.P.; McFee, J.N.

    1986-01-01

    A liquid waste system has recently been installed in the Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering Laboratory (INEL). In this paper, aspects of the incineration system such as the components, operations, capabilities, capital cost, EPA permit requirements, and future plans are discussed. The principal objective of the liquid incineration system is to provide the capability to process hazardous, radioactively contaminated, non-halogenated liquid wastes. The system consists primarily of a waste feed system, instrumentation and controls, and a liquid burner, which were procured at a capital cost of $115,000

  10. Biochemical process of low level radioactive liquid simulation waste containing detergent

    International Nuclear Information System (INIS)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-01-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10 −5 Ci/m 3 . The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour −1

  11. Biochemical process of low level radioactive liquid simulation waste containing detergent

    Energy Technology Data Exchange (ETDEWEB)

    Kundari, Noor Anis, E-mail: nooranis@batan.go.id; Putra, Sugili; Mukaromah, Umi [Sekolah Tinggi Teknologi Nuklir – Badan Tenaga Nuklir Nasional Jl. Babarsari P.O. BOX 6101 YKBB Yogyakarta 55281 Telp : (0274) 48085, 489716, Fax : (0274) 489715 (Indonesia)

    2015-12-29

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0

  12. Biochemical process of low level radioactive liquid simulation waste containing detergent

    Science.gov (United States)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  13. Seismic scoping evaluation of high level liquid waste tank vaults at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Hashimoto, P.S.; Uldrich, E.D.; McGee, W.D.

    1991-01-01

    A seismic scoping evaluation of buried vaults enclosing high level liquid waste storage tanks at the Idaho Chemical Processing Plant has been performed. The objective of this evaluation was to scope out which of the vaults could be demonstrated to be seismically adequate against the Safe Shutdown Earthquake (SSE). Using approximate analytical methods, earthquake experience data, and engineering judgement, this study determined that one vault configuration would be expected to meet ICPP seismic design criteria, one would not be considered seismically adequate against the SSE, and one could be shown to be seismically adequate against the SSE using nonlinear analysis

  14. The determination of cesium and rubidium in highly radioactive waste liquid

    International Nuclear Information System (INIS)

    Wei Songsheng

    1991-01-01

    Cesium and rubidium in high-level waste liquid were determined by atomic absorption spectrometry with the instrument modified for analyzing radioactive samples. The results show that the method is effective and safe. The error of the method is less than +- 3%, and it has been used in the production of cesium

  15. Design and operating features of the high-level waste vitrification system for the West Valley demonstration project

    International Nuclear Information System (INIS)

    Siemens, D.H.; Beary, M.M.; Barnes, S.M.; Berger, D.N.; Brouns, R.A.; Chapman, C.C.; Jones, R.M.; Peters, R.D.; Peterson, M.E.

    1986-03-01

    A liquid-fed joule-heated ceramic melter system is the reference process for immobilization of the high-level liquid waste in the US and several foreign countries. This system has been under development for over ten years at Pacific Northwest Laboratory and other national laboratories operated for the US Department of Energy. Pacific Northwest Laboratory contributed to this research through its Nuclear Waste Treatment Program and used applicable data to design and test melters and related systems using remote handling of simulated radioactive wastes. This report describes the equipment designed in support of the high-level waste vitrification program at West Valley, New York. Pacific Northwest Laboratory worked closely with West Valley Nuclear Services Company to design a liquid-fed ceramic melter, a liquid waste preparation and feed tank and pump, an off-gas treatment scrubber, and an enclosed turntable for positioning the waste canisters. Details of these designs are presented including the rationale for the design features and the alternatives considered

  16. Research and Development of Solar Evaporation on Low Level Radioactive Liquid Waste

    Directory of Open Access Journals (Sweden)

    ZHANG Hua

    2016-02-01

    Full Text Available Solar evaporation, which can save energy and obtain the higher decontamination factor, the larger treatment capability with the simpler designed and easy operation, was one of the general methods to treat low level radioactive liquid waste. However, the use of solar evaporation was limited because the facilities had to occupy the larger area and require sunshine for the longer duration, etc. Several cases form USA, Australian, India and South Korea were presented on R&D of solar evaporation to treat low level radioactive liquid waste.

  17. Fundamental study on the extraction of transuranium elements from high-level liquid waste

    International Nuclear Information System (INIS)

    Kubota, Masumitsu; Morita, Yasuji; Tochiyama, Osamu; Inoue, Yasushi.

    1988-01-01

    A great many extractants have been studied for the separation of transuranium elements. The present study deals with the survey and classification of the extractants appearing in literature, bearing in mind the relationship between the molecular structure of extractants and their extractability for the transuranium elements from the standpoint of their selective separation from high-level liquid waste (HLW) generated from fuel reprocessing. The extractants surveyed were classified into six groups; unidentate neutral organophosphorus compounds, bidentate neutral organophosphorus compounds, acidic organophosphorus compounds, amines and ammonium salts, N,N-disubstituted amides and the other compounds. These extractants are not always applicable to the separation of transuranium elements from HLW because of their limitations in extractability and radiation durability. Only a limited number of extractants belonging to the bidentate neutral organophosphorus compounds and the acidic organophosphorus compounds are considered to be suitable for the present purpose. (author)

  18. Current status of high level radioactive waste disposal in Japan and foreign countries

    International Nuclear Information System (INIS)

    Tanaka, Satoru; Tanabe, Hiromi; Inagaki, Yusuke; Ishida, Hisahiro; Kato, Osamu; Kurata, Mitsuyuki; Yamachika, Hidehiko

    2002-01-01

    At a time point of 2002, there is no country actually disposing high level radioactive wastes into grounds, but in most of countries legislative preparation and practicing agents are carried out and site selection is promoted together with energetic advancement of its R and Ds. As disposal methods of the high level radioactive wastes, various methods such as space disposal, oceanic bottom disposal, ice bed disposal, ground disposal, and so on have been examined. And, a processing technology called partitioning and transmutation technology separating long-lived radionuclides from liquid high level radioactive waste and transmutation into short-lived or harmless radionuclides has also been studied. Here was introduced their wrestling conditions in Japan and main foreign countries, as a special issue of the Current status of high level radioactive waste disposal in Japan and foreign countries'. The high level radioactive wastes (glassification solids or spent nuclear fuels) are wastes always formed by nuclear power generation and establishment of technologies is an important subject for nuclear fuel cycle. (G.K.)

  19. Fluidized-bed calcination of simulated commercial high-level radioactive wastes

    International Nuclear Information System (INIS)

    Freeby, W.A.

    1975-11-01

    Work is in progress at the Idaho Chemical Processing Plant to verify process flowsheets for converting simulated commercial high-level liquid wastes to granular solids using the fluidized-bed calcination process. Primary emphasis in the series of runs reported was to define flowsheets for calcining simulated Allied-General Nuclear Services (AGNS) waste and to evaluate product properties significant to calcination, solids storage, or post treatment. Pilot-plant studies using simulated high-level acid wastes representative of those to be produced by Nuclear Fuel Services, Inc. (NFS) are also included. Combined AGNS high-level and intermediate-level waste (0.26 M Na in blend) was successfully calcined when powdered iron was added (to result in a Na/Fe mole ratio of 1.0) to the feed to prevent particle agglomeration due to sodium nitrate. Long-term runs (approximately 100 hours) showed that calcination of the combined waste is practical. Concentrated AGNS waste containing sodium at concentrations less than 0.2 M were calcined successfully; concentrated waste containing 1.13 M Na calcined successfully when powdered iron was added to the feed to suppress sodium nitrate formation. Calcination of dilute AGNS waste by conventional fluid-bed techniques was unsuccessful due to the inability to control bed particle size--both particle size and bed level decreased. Fluid-bed solidification of AGNS dilute waste at conditions in which most of the calcined solids left the calciner vessel with the off-gas was successful. In such a concept, the steady-state composition of the bed material would be approximately 22 wt percent calcined solids deposited on inert particles. Calcination of simulated NFS acid waste indicated that solidification by the fluid-bed process is feasible

  20. The emergency avoidance solidification campaign of liquid low-level waste at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Myrick, T.E.; Helms, R.E.; Scanlan, T.F.; Schultz, R.M.; Scott, C.B.; Williams, L.C.; Homan, F.J.; Keigan, M.V.; Monk, T.H.; Morrow, R.W.; Van Hoesen, S.D.; du Mont, S.P.

    1992-01-01

    Since the beginning of nuclear research and development activities at the Oak Ridge National Laboratory (ORNL) in 1943, the generation, collection, treatment, storage, and disposal of the liquid low-level waste (LLLW) stream has been an integral part of ORNL's waste management operations. This waste stream, consisting principally of a high nitrate (4.5 molar), high pH (pH 13--14) mixture of reactor, hot cell, and research laboratory liquid radioactive wastes (<5 Ci/gal), has been treated and disposed of in a variety of ways over the years. Most recently, the hydrofracture technology had been used for deep-well disposal of a grout mix of LLLW, cement, fly ash, and other additives. In 1984, this disposal technique was discontinued due to regulatory permitting issues and the need for extensive facility modifications for future operations. With loss of this disposal capability and the continued generation of LLLW by ORNL research activities, the limited tank storage capacity was rapidly being depleted

  1. Feasibility study of solidification for low-level liquid waste generated by sulfuric acid elution treatment of spent ion exchange resin

    International Nuclear Information System (INIS)

    Asano, Takashi; Kawasaki, Tooru; Higuchi, Natsuko; Horikawa, Yoshihiko

    2007-01-01

    Low-level liquid waste with relatively high levels of radioactivity is generated by the sulfuric acid elution treatment of spent ion exchange resin used in water purification systems of nuclear power plants. We studied cement-like solidification process for this type waste that contains a high concentration of sodium sulfate. For this type waste, it is important that the sulfate ion should not dissolve from the solid waste because it forms ettringite on reaction with minerals in the concrete, and this leads to cracking during repository storage. It is also preferable that the pH of pore water of the solid waste be low, because the bentonite of the repository changes in quality on exposure to alkaline solution. Our solidification process has two procedures: conversion into insoluble sulfate from sodium sulfate (CIS) and formation of low pH cement-like solid (FLS). In the CIS procedure, BaSO 4 precipitation occurs with addition of Ba(OH) 2 ·8H 2 O to the liquid waste when the Ba/SO 4 molar ratio > 1. In the FLS procedure, silica fume and blast furnace slag are added to the liquid wastes containing Ba S O 4 precipitate. The CIS reaction yield is over 98% and the pH of pore water of the solid waste is 11.5 or less. Therefore, we think that our solidification process is one of the best methods for treating liquid waste that contains a high concentration of sodium sulfate. (author)

  2. Long-term management of liquid high-level radioactive wastes stored at the Western New York Nuclear Service Center, West Valley. Final environmental impact statement

    International Nuclear Information System (INIS)

    1982-06-01

    The statement assesses and compares environmental implications of possible alternatives for long-term management of the liquid high-level radioactive wastes stored in underground tanks at the Western New York Nuclear Service Center in West Valley, New York. Four basic alternatives, as well as options within these alternatives, have been considered in the EIS: (1) onsite processing to a terminal waste form for shipment and disposal in a federal repository (the preferred alternative); (2) onsite conversion to a solid interim form for shipment to a federal waste facility for later processing to a terminal form and shipment and subsequent disposal in a federal repository; (3) mixing the liquid wastes with cement and other additives, pouring it back into the existing tanks, and leaving onsite; and (4) no action (continued storage of the wastes in liquid form in the underground tanks at West Valley). Mitigative measures for environmental impacts have been considered for all alternatives. No significant stresses on supplies or irreversible and irretrievable resources are anticipated, and no scarce resource would be required

  3. High-Level Radioactive Waste.

    Science.gov (United States)

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  4. Glass: a candidate engineered material for management of high level nuclear waste

    International Nuclear Information System (INIS)

    Mishra, R.K.; Kaushik, C.P.

    2011-01-01

    While the commercial importance of glass is generally recognized, a few people are aware of extremely wide range of glass formulations that can be made and of the versatility of this engineered material. Some of the recent developments in the field of glass leading to various technological applications include glass fiber reinforcement of cement to give new building materials, substrates for microelectronics circuitry in form of semiconducting glasses, nuclear waste immobilization and specific medical applications. The present paper covers fundamental understanding of glass structure and its application for immobilization of high level radioactive liquid waste. High level radioactive liquid waste (HLW) arising during reprocessing of spent fuel are immobilized in sodium borosilicate glass matrix developed indigenously. Glass compositions are modified according to the composition of HLW to meet the criteria of desirable properties in terms. These glass matrices have been characterized for different properties like homogeneity, chemical durability, thermal stability and radiation stability. (author)

  5. Some problems in utilization system of FP nuclides and actinides in the high level liquid wastes

    International Nuclear Information System (INIS)

    Ichiyanagi, Katsuaki; Emura, Satoru

    1974-01-01

    There are three nuclides of sup(134/137)Cs for irradiation sources, 90 Sr for radioisotope thermoelectric generators, and 238 Pu for cardiac pacemakers, as the nuclides for which considerable demand is expected in near future among those contained in reprocessed high level liquid wastes. Technical problems are first described from the viewpoint of utilization system. Then the control system of reprocessed high level wastes is expained. Finally, economic possibility and problems in their utilization are discussed. Being in competition with 60 Co, the price of sup(134/137)Cs will be lower than that of 60 Co after a decade. The annual demand in 1985 may be 6.1 x 10 6 Ci. The conclusive factor of 90 Sr market price is hard to get because it finds no strong competitive nuclides. It may be about 20 yen/Ci after ten years. Demand is expected to be approximately 1.2 x 10 7 Ci/year. However it is pretty hard to pay the cost of group separation and solidification, storage and conversion to products with such gain. It is estimated that the balance of income and outgo would be almost profitable, if the utilization of FP nuclides would progress and the demand three times as large as this assumption would be developed. (Wakatsuki, Y.)

  6. Treatment of liquid radioactive waste: Evaporation

    International Nuclear Information System (INIS)

    Pfeiffer, R.

    1982-01-01

    About 10.000 m 3 of low active liquid waste (LLW) arise in the Nuclear Research Center Karlsruhe. Chemical contents of this liquid waste are generally not declared. Resulting from experiments carried out in the Center during the early sixties, the evaporator facility was built in 1968 for decontamination of LLW. The evaporators use vapor compression and concentrate recirculation in the evaporator sump by pumps. Since 1971 the medium active liquid waste (MLW) from the Karlsruhe Reprocessing Plant (WAK) was decontaminated in this evaporator facility, too. By this time the amount of low liquid waste (LLW) had been decontaminated without mentionable interruptions. Afterwards a lot of interruptions of operations occurred, mainly due to leakages of pumps, valves and pipes. There was also a very high radiation level for the operating personnel. As a consequence of this experience a new evaporator facility for decontamination of medium active liquid waste was built in 1974. This facility started operation in 1976. The evaporator has natural circulation and is heated by steam through a heat exchanger. (orig./RW)

  7. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  8. Advances in technologies for the treatment of low and intermediate level radioactive liquid wastes

    International Nuclear Information System (INIS)

    1994-01-01

    In recent years the authorized maximum limits for radioactive discharges into the environment have been reduced considerably, and this, together with the requirement to minimize the volume of waste for storage or disposal and to declassify some wastes from intermediate to low level or to non-radioactive wastes, has initiated studies of ways in which improvements can be made to existing decontamination processes and also to the development of new processes. This work has led to the use of more specific precipitants and to the establishment of ion exchange treatment and evaporation techniques. Additionally, the use of combinations of some existing processes or of an existing process with a new technique such as membrane filtration is becoming current practice. New biotechnological, solvent extraction and electrochemical methods are being examined and have been proven at laboratory scale to be useful for radioactive liquid waste treatment. In this report an attempt has been made to review the current research and development of mature and advanced technologies for the treatment of low and intermediate level radioactive liquid wastes, both aqueous and non-aqueous. Non-aqueous radioactive liquid wastes or organic liquid wastes typically consist of oils, reprocessing solvents, scintillation liquids and organic cleaning products. A brief state of the art of existing processes and their application is followed by the review of advances in technologies, covering chemical, physical and biological processes. 213 refs, 33 figs, 3 tabs

  9. Alternative processes for managing existing commercial high-level radioactive wastes

    International Nuclear Information System (INIS)

    1976-04-01

    A number of alternatives are discussed for managing high-level radioactive waste presently stored at the West Valley, New York, plant owned by Nuclear Fuel Services, Inc. These alternatives (liquid storage, conversion to cement, shale fracturing, shale cement, calcination, aqueous silicate, conversion to glass, and salt cake) are limited to concepts presently under active investigation by ERDA. Each waste management option is described and examined regarding the status of the technology; its applications to managing NFS waste; its advantages and disadvantages; the research and development needed to implement the option; safety considerations; and estimated costs and time to implement the process

  10. Cross flow filtration of Oak Ridge National Laboratory liquid low-level waste

    International Nuclear Information System (INIS)

    Fowler, V.L.; Hewitt, J.D.

    1989-12-01

    A new method for disposal of Oak Ridge National Laboratory liquid low-level radioactive waste is being developed as an alternative to hydrofracture. The acceptability of the final waste form rests in part on the presence or absence of transuranic (TRU) isotopes. Inertial cross flow filtration was used in this study to determine the potential of this method for separation of the TRU isotopes from the bulk liquid stored in the Melton Valley Storage Tanks. 7 refs., 11 figs., 5 tabs

  11. Partitioning of actinides from high level waste of PUREX origin using octylphenyl-N,N'-diisobutylcarbamoylmethyl phosphine oxide (CMPO)-based supported liquid membrane

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Dudwadkar, N.L.; Chitnis, R.R.; Mathur, J.N.

    1999-01-01

    The present studies deal with the application of the supported liquid membrane (SLM) technique for partitioning of actinides from high level waste of PUREX origin. The process uses a solution of octylphenyl-N,N'-diisobutylcarbamoylmethyl phosphine oxide (CMPO) in n-dodecane as a carrier with a polytetrafluoroethylene support and a mixture of citric acid, formic acid, and hydrazine hydrate as the receiving phase. The studies involve the investigation of such parameters as carrier concentration in SLM, acidity of the feed, and the feed composition. The studies indicated good transport of actinides like neptunium, americium, and plutonium across the membrane from nitric acid medium. A high concentration of uranium in the feed retards the transport of americium, suggesting the need for prior removal of uranium from the waste. The separation of actinides from uranium-lean simulated samples as well as actual high level waste has been found to be feasible using the above technique

  12. Radiation exposure rate and liquid level measurement inside a high level liquid waste (HLLW) storage tank

    International Nuclear Information System (INIS)

    Sur, B.; Yue, S.; Thekkevarriam, A.

    2007-01-01

    An instrument based on an inexpensive, small silicon diode has been developed and used to measure, for the first time, the gamma radiation exposure rate profile inside a 6.4 mm diameter reentrant thermo-well tube, immersed in the highly radioactive liquid solution in an HLLW storage tank. The measurement agrees with previous calculations of exposure rate, and provides confirmation for safe and effective radiation work plans and material selection for investigations and remediation of the storage tank facility. The measured radiation exposure rate profile is also used to confirm that the position of tank internal structures have not changed because of aging and corrosion, and to obtain, within a few mm, the level of liquid inside the tank. (author)

  13. Level trend analysis summary report for Oak Ridge National Laboratory inactive liquid low-level waste tanks

    International Nuclear Information System (INIS)

    1994-09-01

    Oak Ridge National Laboratory facilities have produced liquid low-level waste (LLLW) that is radioactive and/or hazardous. Storage tanks have been used to collect and store these wastes. Most of the collection system, including the tanks, is located below the ground surface. Many of the systems have been removed from service (i.e., are not inactive) but contain residual amounts of waste liquid and sludges. A plan of action has been developed by DOE to ensure that environmental impacts from the waste remaining in the inactive tanks system are minimized. The Federal Facility Agreement (FFA) does not require any type of testing or monitoring for the inactive LLLW tanks that are removed from service but does require waste characterization of tanks contents, risk characterization of tanks removed from service, and remediation of the inactive tanks and their contents. This report is form information only and is not required by the FFA. It includes a description of the methodology and results of level trend analyses for the Category D tanks listed in the FFA that currently belong to the Environmental Restoration Program

  14. Putting evaporators to work: wiped film evaporator for high level wastes

    International Nuclear Information System (INIS)

    Dierks, R.D.; Bonner, W.F.

    1976-01-01

    At Battelle, Pacific Northwest Laboratories, a pilot scale, wiped film evaporator was tested for concentrating high level liquid wastes from Purex-type nuclear fuel recovery processes. The concentrates produced up to 60 wt-percent total solids; and the simplicity of operation and design of the evaporator gave promise for low maintenance and high reliability

  15. High-level-waste immobilization

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1982-01-01

    Analysis of risks, environmental effects, process feasibility, and costs for disposal of immobilized high-level wastes in geologic repositories indicates that the disposal system safety has a low sensitivity to the choice of the waste disposal form

  16. Melton Valley liquid low-level radioactive waste storage tanks evaluation

    International Nuclear Information System (INIS)

    1995-06-01

    The Melton Valley Liquid Low-Level Radioactive Waste Storage Tanks (MVSTs) store the evaporator concentrates from the Liquid Low-Level Radioactive Waste (LLLW) System at the Oak Ridge National Laboratory (ORNL). The eight stainless steel tanks contain approximately 375,000 gallons of liquid and sludge waste. These are some of the newer, better-designed tanks in the LLLW System. They have been evaluated and found by the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation to comply with all Federal Facility Agreement requirements for double containment. The operations and maintenance aspects of the tanks were also reviewed by the Defense Nuclear Facilities Safety Board (DNFSB) in September 1994. This document also contains an assessment of the risk to the public and ORNL workers from a leak in one of the MVSTs. Two primary scenarios were investigated: (1) exposure of the public to radiation from drinking Clinch River water contaminated by leaked LLLW, and (2) exposure of on-site workers to radiation by inhaling air contaminated by leaked LLLW. The estimated frequency of a leak from one of the MVSTs is about 8 x 10 -4 events per year, or about once in 1200 years (with a 95% confidence level). If a leak were to occur, the dose to a worker from inhalation would be about 2.3 x 10 -1 mrem (with a 95% confidence level). The dose to a member of the public through the drinking water pathway is estimated to be about 7 x 10 -1 mrem (with a 95% confidence level). By comparison with EPA Safe Drinking Water regulations, the allowable lifetime radiation dose is about 300 mrem. Thus, a postulated LLLW leak from the MVSTs would not add appreciably to an individual's lifetime radiation dose

  17. Basic reasons and the practice of using deep water-bearing levels for liquid radioactive waste disposal

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    1978-01-01

    Speculations are presented on the development and organization of liquid radioactive waste underground disposal in deep water-bearing levels completely isolated from other levels and the surface. Major requirements are formulated that are laid down to low-, moderate-and high-radioactive wastes subject to the disposal. Geological and hydrological conditions as well as the scheme and design features of pilot field facilities are described, where works on high-active waste disposal were started in 1972. In 1972 and 1973 450 and 1050 m 3 of the wastes (7.5 and 53 MCi) respecrespectively were disposed. The first results of the pilot disposal and the 3-year surveillance over the plate-collector condition and the performance of the facilities have reaffirmed the feasibility, medical and radiation safety and economic attractiveness of the disposal of wastes with up to 10-25 Ci/l specific activity

  18. Status of the ORNL liquid low-level waste management upgrades

    International Nuclear Information System (INIS)

    Robinson, S.M.; Kent, T.E.; DePaoli, S.M.

    1995-08-01

    The strategy for management of the Oak Ridge National Laboratory's (ORNL's) radioactively contaminated liquid waste was reviewed. The latest information on waste characterization, regulations, US Department of Energy (DOE) budget guidance, and research and development programs was evaluated to determine how the strategy should be revised. Few changes are needed to update the strategy to reflect new waste characterization, research, and regulatory information. However, recent budget guidance from DOE indicates that minimum funding will not be sufficient to accomplish original objectives to upgrade the liquid low-level waste (LLLW) system to be in compliance with the Federal Facilities Agreement compliance, provide long-term LLLW treatment capability, and minimize Environmental Safety ampersand Health risks. Options are presented that might allow the ORNL LLLW system to continue operations temporarily but significantly reduce its capabilities to handle emergency situations, provide treatment for new waste streams, and accommodate waste from the Environmental Restoration Program and from decontamination and decommissioning of surplus facilities. These options are also likely to increase worker radiation exposure, risk of environmental insult, and generation of solid waste for on-site and off-site disposal/storage beyond existing facility capacities. The strategy will be fully developed after receiving additional guidance. The proposed budget limitations are too severe to allow ORNL to meet regulatory requirements or continue operations long term

  19. Review of high-level waste form properties. [146 bibliographies

    Energy Technology Data Exchange (ETDEWEB)

    Rusin, J.M.

    1980-12-01

    This report is a review of waste form options for the immobilization of high-level-liquid wastes from the nuclear fuel cycle. This review covers the status of international research and development on waste forms as of May 1979. Although the emphasis in this report is on waste form properties, process parameters are discussed where they may affect final waste form properties. A summary table is provided listing properties of various nuclear waste form options. It is concluded that proposed waste forms have properties falling within a relatively narrow range. In regard to crystalline versus glass waste forms, the conclusion is that either glass of crystalline materials can be shown to have some advantage when a single property is considered; however, at this date no single waste form offers optimum properties over the entire range of characteristics investigated. A long-term effort has been applied to the development of glass and calcine waste forms. Several additional waste forms have enough promise to warrant continued research and development to bring their state of development up to that of glass and calcine. Synthetic minerals, the multibarrier approach with coated particles in a metal matrix, and high pressure-high temperature ceramics offer potential advantages and need further study. Although this report discusses waste form properties, the total waste management system should be considered in the final selection of a waste form option. Canister design, canister materials, overpacks, engineered barriers, and repository characteristics, as well as the waste form, affect the overall performance of a waste management system. These parameters were not considered in this comparison.

  20. Laboratory development of methods for centralized treatment of liquid low-level waste at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Arnold, W.D.; Bostick, D.T.; Burgess, M.W.; Taylor, P.A.; Perona, J.J.; Kent, T.E.

    1994-10-01

    Improved centralized treatment methods are needed in the management of liquid low-level waste (LLLW) at Oak Ridge National Laboratory (ORNL). LLLW, which usually contains radioactive contaminants at concentrations up to millicurie-per-liter levels, has accumulated in underground storage tanks for over 10 years and has reached a volume of over 350,000 gal. These wastes have been collected since 1984 and are a complex mixture of wastes from past nuclear energy research activities. The waste is a highly alkaline 4-5 M NaNO 3 solution with smaller amounts of other salts. This type of waste will continue to be generated as a consequence of future ORNL research programs. Future LLLW (referred to as newly generated LLLW or NGLLLW) is expected to a highly alkaline solution of sodium carbonate and sodium hydroxide with a smaller concentration of sodium nitrate. New treatment facilities are needed to improve the manner in which these wastes are managed. These facilities must be capable of separating and reducing the volume of radioactive contaminants to small stable waste forms. Treated liquids must meet criteria for either discharge to the environment or solidification for onsite disposal. Laboratory testing was performed using simulated waste solutions prepared using the available characterization information as a basis. Testing was conducted to evaluate various methods for selective removal of the major contaminants. The major contaminants requiring removal from Melton Valley Storage Tank liquids are 90 Sr and 137 Cs. Principal contaminants in NGLLLW are 9O Sr, 137 Cs, and 106 Ru. Strontium removal testing began with literature studies and scoping tests with several ion-exchange materials and sorbents

  1. Radioactive liquid waste processing device

    International Nuclear Information System (INIS)

    Murakami, Susumu; Kuroda, Noriko; Matsumoto, Hiroyo.

    1991-01-01

    The present device comprises a radioactive liquid wastes concentration means for circulating radioactive liquid wastes between each of the tank, a pump and a film evaporator thereby obtaining liquid concentrates and a distilled water recovery means for condensing steams separated by the film evaporator by means of a condenser. It further comprises a cyclizing means for circulating the resultant distilled water to the upstream after the concentration of the liquid concentrates exceeds a predetermined value or the quality of the distilled water reaches a predetermined level. Further, a film evaporator having hydrophilic and homogeneous films is used as a film evaporator. Then, the quality of the distilled water discharged from the present device to the downstream can always satisfy the predetermined conditions. Further, by conducting operation at high concentration while interrupting the supply of the processing liquids, high concentration up to the aimed concentration can be attained. Further, since the hydrophilic homogeneous films are used, carry over of the radioactive material accompanying the evaporation is eliminated to reduce the working ratio of the vacuum pump. (T.M.)

  2. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-01-01

    The national high-level waste disposal plans for France, the Federal Republic of Germany, Japan, and the United States are covered. Three conclusions are reached. The first conclusion is that an excellent technology already exists for high-level waste disposal. With appropriate packaging, spent fuel seems to be an acceptable waste form. Borosilicate glass reprocessing waste forms are well understood, in production in France, and scheduled for production in the next few years in a number of other countries. For final disposal, a number of candidate geological repository sites have been identified and several demonstration sites opened. The second conclusion is that adequate financing and a legal basis for waste disposal are in place in most countries. Costs of high-level waste disposal will probably add about 5 to 10% to the costs of nuclear electric power. The third conclusion is less optimistic. Political problems remain formidable in highly conservative regulations, in qualifying a final disposal site, and in securing acceptable transport routes

  3. High-performance liquid chromatographic characterization of dissolved organic matter from low-level radioactive waste leachates

    International Nuclear Information System (INIS)

    Caron, F.; Elchuk, S.; Walker, Z.H.

    1996-01-01

    Leachates from a waste degradation experiment, containing ∼700-3700 mg C/I of dissolved organic matter (DOM), were analyzed by high-performance liquid chromatography (HPLC) and liquid chromatography (LC), using various separation strategies. Scaling up of the separation scheme to a semi-preparative scale, suitable for hyphenated techniques, was also investigated. Separations with reversed-phase columns suggested that ∼70-93% of the DOM was hydrophilic, and ion-pair chromatography of this fraction showed the presence of several discrete compounds. Labile and non-labile complexes were formed by adding 60 Co radiotracer. Size-exclusion chromatography indicated that the DOM was primarily in the <1000-1500 Da molecular mass range. (author)

  4. Pyrochemical treatment of Idaho Chemical Processing Plant high-level waste calcine

    International Nuclear Information System (INIS)

    Todd, T.A.; DelDebbio, J.A.; Nelson, L.O.; Sharpsten, M.R.

    1993-01-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1951 to recover uranium, krypton-85, and isolated fission products for interim treatment and immobilization. The acidic radioactive high-level liquid waste (HLLW) is routinely stored in stainless steel tanks and then, since 1963, calcined to form a dry granular solid. The resulting high-level waste (HLW) calcine is stored in seismically hardened stainless steel bins that are housed in underground concrete vaults. A research and development program has been established to determine the feasibility of treating ICPP HLW calcine using pyrochemical technology.This technology is described

  5. High-level waste tank farm set point document

    International Nuclear Information System (INIS)

    Anthony, J.A. III.

    1995-01-01

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope

  6. High-level waste tank farm set point document

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

  7. Methodology development for radioactive waste treatment of CDTN/BR - liquid low-level radioactive wastes

    International Nuclear Information System (INIS)

    Morais, Carlos Antonio de

    1996-01-01

    The radioactive liquid wastes generated in Nuclear Technology Development Centre (CDTN) were initially treated by precipitation/filtration and then the resulting wet solid wastes were incorporated in cement. These wastes were composed of different chemicals and different radioactivities and were generated by different sectors. The objective of the waste treatment method was to obtain minimum wet solid waste volume and decontamination and minimum operational cost. The composition of the solid wastes were taken into consideration for compatible cementation process. Approximately 5,400 litres of liquid radioactive wastes were treated by this process during 1992-1995. The volume reduction was 1/24 th and contained 20% solids. (author)

  8. Low-level liquid waste decontamination by inorganic ion exchange

    International Nuclear Information System (INIS)

    Campbell, D.O.; Lee, D.D.; Dillow, T.A.

    1990-01-01

    Improved processes are being developed to treat contaminated liquid wastes that have been and continue to be generated at Oak Ridge National Laboratory. The most serious contaminants are 137 Cs and 90 Sr, and certain inorganic ion-exchange material have given promising results. Nickel and cobalt hexacyanoferrate (II) compounds are extremely selective for cesium removal, with distribution coefficients in excess of 10 6 even in the presence of high cesium and moderate potassium concentrations. Sodium titanate is selective for strontium removal from solutions with high alkali metal concentrations, especially at high pH. These separations are so efficient that one or two stages of simple, batch separation can yield large DFs (∼10 4 ) while still generating small volumes of solid waste

  9. Nuclear waste. DOE's program to prepare high-level radioactive waste for final disposal

    International Nuclear Information System (INIS)

    Bannerman, Carl J.; Owens, Ronald M.; Dowd, Leonard L.; Herndobler, Christopher S.; Purvine, Nancy R.; Stenersen, Stanley G.

    1989-11-01

    In summary, as of December 1988, the four sites collectively stored about 95 million gallons of high-level waste in underground tanks and bins. Approximately 57 million gallons are stored at Hanford, 34 million gallons at Savannah River, 3 million gallons at INEL, and 6 million gallons at West Valley. The waste is in several forms, including liquid, sludge, and dry granular materials, that make it unsuitable for permanent storage in its current state at these locations. Leaks from the tanks, designed for temporary storage, can pose an environmental hazard to surrounding land and water for thousands of years. DOE expects that when its waste processes at Savannah River, West Valley, and Hanford become operational, the high-level radioactive waste stored at these sites will be blended with other materials to immobilize it by forming a glass-like substance. The glass form will minimize the risk of environmental damage and make the waste more acceptable for permanent disposal in a geologic repository. At INEL, DOE is still considering various other immobilization and permanent disposal approaches. In July 1989, DOE estimated that it would cost about $13 billion (in fiscal year 1988 dollars) to retrieve, process, immobilize, and store the high-level waste until it can be moved to a permanent disposal site: about $5.3 billion is expected to be spent at Savannah River, $0.9 billion at West Valley, $2.8 billion at Hanford, and $4.0 billion at INEL. DOE has started construction at Savannah River and West Valley for facilities that will be used to transform the waste into glass (a process known as vitrification). These sites have each encountered schedule delays, and one has encountered a significant cost increase over earlier estimates. More specifically, the Savannah River facility is scheduled to begin high-level waste vitrification in 1992; the West Valley project, based on a January 1989 estimate, is scheduled to begin high-level waste vitrification in 1996, about 8

  10. High-level waste solidification system for the Western New York Nuclear Service Center

    International Nuclear Information System (INIS)

    Carrell, J.R.; Holton, L.K.; Siemens, D.H.

    1982-01-01

    A preconceptual design for a waste conditioning and solidification system for the immobilization of the high-level liquid wastes (HLLW) stored at the Western New York Nuclear Service Center (WNYNSC), West Valley, New York was completed in 1981. The preconceptual design was conducted as part of the Department of Energy's (DOE) West Valley Demonstration Project, which requires a waste management demonstration at the WNYNSC. This paper summarizes the bases, assumptions, results and conclusions of the preconceptual design study

  11. Overview: Defense high-level waste technology program

    International Nuclear Information System (INIS)

    Shupe, M.W.; Turner, D.A.

    1987-01-01

    Defense high-level waste generated by atomic energy defense activities is stored on an interim basis at three U.S. Department of Energy (DOE) operating locations; the Savannah River Plant in South Carolina, the Hanford Site in Washington, and the Idaho National Engineering Laboratory in Idaho. Responsibility for the permanent disposal of this waste resides with DOE's Office of Defense Waste and Transportation Management. The objective of the Defense High-Level Wast Technology Program is to develop the technology for ending interim storage and achieving permanent disposal of all U.S. defense high-level waste. New and readily retrievable high-level waste are immobilized for disposal in a geologic repository. Other high-level waste will be stabilized in-place if, after completion of the National Environmental Policy Act (NEPA) process, it is determined, on a site-specific basis, that this option is safe, cost effective and environmentally sound. The immediate program focus is on implementing the waste disposal strategy selected in compliance with the NEPA process at Savannah River, while continuing progress toward development of final waste disposal strategies at Hanford and Idaho. This paper presents an overview of the technology development program which supports these waste management activities and an assessment of the impact that recent and anticipated legal and institutional developments are expected to have on the program

  12. 40 CFR 227.30 - High-level radioactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste from...

  13. Development of composite ion exchanger for separation of cesium from high level liquid waste

    International Nuclear Information System (INIS)

    Kumar, A.; Varshney, L.

    2010-01-01

    137 Cs (t 1/2 = 30 years) is one of the major radioisotope present in high level liquid waste (HLLW) generated during the reprocessing of nuclear fuel. Separation of 137 Cs from HLLW results in reduction of personal radiation exposure during the conditioning, transportation, storage and disposal. In addition, 137 Cs has enormous application as a radiation source in food preservation, sterilization of medical products, brachytherapy, blood irradiation, hygienization of sewage sludge etc. Ammonium molybdophosphate (AMP), an inorganic ion exchanger, has high selectivity and high exchange capacity for Cs. It exits as microcrystalline powder which is not amenable for column operation. ALIX is a composite material in which AMP is physically blended with inert polymeric substrate to improve its column property, exchange kinetics and increase its mechanical strength. The observed excellent properties of the composite are attributed to its engineered structure which is formed during its production. SEM analysis of ALIX shows that AMP crystals embedded in the cavities are not covered by the polymer which greatly enhances its availability for cesium exchange. The highly porous structure of the composite having 49% void volume facilitates faster kinetics of exchange of Cs from the aqueous phase and increased rate of reaction with alkali required during its dissolution

  14. Long-term high-level waste technology program

    International Nuclear Information System (INIS)

    1980-04-01

    The Department of Energy (DOE) is conducting a comprehensive program to isolate all US nuclear wastes from the human environment. The DOE Office of Nuclear Energy - Waste (NEW) has full responsibility for managing the high-level wastes resulting from defense activities and additional responsiblity for providing the technology to manage existing commercial high-level wastes and any that may be generated in one of several alternative fuel cycles. Responsibilities of the Three Divisions of DOE-NEW are shown. This strategy document presents the research and development plan of the Division of Waste Products for long-term immobilization of the high-level radioactive wastes resulting from chemical processing of nuclear reactor fuels and targets. These high-level wastes contain more than 99% of the residual radionuclides produced in the fuels and targets during reactor operations. They include essentially all the fission products and most of the actinides that were not recovered for use

  15. High-temperature vitrification of Hanford residual-liquid waste in a continuous melter

    International Nuclear Information System (INIS)

    Barnes, S.M.

    1980-04-01

    Over 270 kg of high-temperature borosilicate glass have been produced in a series of three short-term tests in the High-Temperature Ceramic Melter vitrification system at PNL. The glass produced was formulated to vitrify simulated Hanford residual-liquid waste. The tests were designed to (1) demonstrate the feasibility of utilizing high-temperature, continuous-vitrification technology for the immobilization of the residual-liquid waste, (2) test the airlift draining technique utilized by the high-temperature melter, (3) compare glass produced in this process to residual-liquid glass produced under laboratory conditions, (4) investigate cesium volatility from the melter during waste processing, and (5) determine the maximum residual-liquid glass production rate in the high-temperature melter. The three tests with the residual-liquid composition confirmed the viability of the continuous-melting vitrification technique for the immobilization of this waste. The airlift draining technique was demonstrated in these tests and the glass produced from the melter was shown to be less porous than the laboratory-produced glass. The final glass produced from the second test was compared to a glass of the same composition produced under laboratory conditions. The comparative tests found the glasses to be indistinguishable, as the small differences in the test results fell within the precision range of the characterization testing equipment. The cesium volatility was examined in the final test. This examination showed that 0.44 wt % of the cesium (assumed to be cesium oxide) was volatilized, which translates to a volatilization rate of 115 mg/cm 2 -h

  16. A high recovery membrane process for purification of low-level radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Al-Samadi, R. [Ontario Power Generation, Pickering, Ontario (Canada); Davloor, R.; Harper, B., E-mail: ram.davloor@brucepower.com [Bruce Power, Tiverton, Ontario (Canada)

    2013-07-01

    An advanced Active Liquid Waste Treatment System (ALWTS) was designed placed in-service at the Bruce Nuclear Generating Station 'A' in 1999. As part of this unique system an innovative high recovery reverse osmosis system (ROS) was installed to concentrate the contaminants into a small retentate stream that can be processed on-site or sent off-site for disposal. The permeate is discharged to the lake. The overall permeate recovery of the system is greater than 98%. This patented system which saw its first commercial application at the station has now operated continuously for over thirteen years. It has enabled the ALWTS to consistently produce high quality effluent that exceeds environmental discharge limits. This paper discusses the high recovery membrane process its unique design features aimed at minimizing the volume of rejects its separation performance operating history. (author)

  17. A high recovery membrane process for purification of low-level radioactive liquid waste

    International Nuclear Information System (INIS)

    Al-Samadi, R.; Davloor, R.; Harper, B.

    2013-01-01

    An advanced Active Liquid Waste Treatment System (ALWTS) was designed placed in-service at the Bruce Nuclear Generating Station 'A' in 1999. As part of this unique system an innovative high recovery reverse osmosis system (ROS) was installed to concentrate the contaminants into a small retentate stream that can be processed on-site or sent off-site for disposal. The permeate is discharged to the lake. The overall permeate recovery of the system is greater than 98%. This patented system which saw its first commercial application at the station has now operated continuously for over thirteen years. It has enabled the ALWTS to consistently produce high quality effluent that exceeds environmental discharge limits. This paper discusses the high recovery membrane process its unique design features aimed at minimizing the volume of rejects its separation performance operating history. (author)

  18. Application of curium measurements for safeguarding at reprocessing plants. Study 1: High-level liquid waste and Study 2: Spent fuel assemblies and leached hulls

    International Nuclear Information System (INIS)

    Rinard, P.M.; Menlove, H.O.

    1996-03-01

    In large-scale reprocessing plants for spent fuel assemblies, the quantity of plutonium in the waste streams each year is large enough to be important for nuclear safeguards. The wastes are drums of leached hulls and cylinders of vitrified high-level liquid waste. The plutonium amounts in these wastes cannot be measured directly by a nondestructive assay (NDA) technique because the gamma rays emitted by plutonium are obscured by gamma rays from fission products, and the neutrons from spontaneous fissions are obscured by those from curium. The most practical NDA signal from the waste is the neutron emission from curium. A diversion of waste for its plutonium would also take a detectable amount of curium, so if the amount of curium in a waste stream is reduced, it can be inferred that there is also a reduced amount of plutonium. This report studies the feasibility of tracking the curium through a reprocessing plant with neutron measurements at key locations: spent fuel assemblies prior to shearing, the accountability tank after dissolution, drums of leached hulls after dissolution, and canisters of vitrified high-level waste after separation. Existing pertinent measurement techniques are reviewed, improvements are suggested, and new measurements are proposed. The authors integrate these curium measurements into a safeguards system

  19. High-level waste immobilization program: an overview

    International Nuclear Information System (INIS)

    Bonner, W.R.

    1979-09-01

    The High-Level Waste Immobilization Program is providing technology to allow safe, affordable immobilization and disposal of nuclear waste. Waste forms and processes are being developed on a schedule consistent with national needs for immobilization of high-level wastes stored at Savannah River, Hanford, Idaho National Engineering Laboratory, and West Valley, New York. This technology is directly applicable to high-level wastes from potential reprocessing of spent nuclear fuel. The program is removing one more obstacle previously seen as a potential restriction on the use and further development of nuclear power, and is thus meeting a critical technological need within the national objective of energy independence

  20. Treatment options of low level liquid waste of ETP origin by synthetic zeolites

    International Nuclear Information System (INIS)

    Singh, I.J.; Jain, Savita; Sathi Sasidharan, N.; Deshingkar, D.S.

    2001-08-01

    Mixture of synthetic zeolites, AR1, 4A and 13X of Indian origin were tested in a single fixed bed column operation for the treatment of low level liquid waste received at Effluents Treatment Plant (ETP) Trombay, under dynamic conditions. The mixed bed of zeolites was highly effective in decontaminating thousands of bed volumes of waste stream from radio cesium, radio strontium and gross beta gamma activity. High volume reduction factors, upwards of 10,000 are available in this process compared to less than 100 available with chemical precipitation process, currently followed. Containment of entrapped activity in zeolite bed was studied by solidifying them in Portland cement matrix as stable waste form. Incorporation of minerals like vermiculite as minor additive for improving the leaching characteristics of the final waste form was evaluated. Zeolite incorporated cement blocks were subjected to leach tests in distilled water for over 200 days to assess the incremental and cumulative leach rates of individual activity components. Leachability index of radio cesium and strontium were computed, which indicated the suitability of the matrix for safe shallow land burial. (author)

  1. Performance of cement solidification with barium for high activity liquid waste including sulphate

    International Nuclear Information System (INIS)

    Waki, Toshikazu; Yamada, Motoyuki; Horikawa, Yoshihiko; Kaneko, Masaaki; Saso, Michitaka; Haruguchi, Yoshiko; Yamashita, Yu; Sakai, Hitoshi

    2009-01-01

    The target liquid waste to be solidified is generated from PWR primary loop spent resin treatment with sulphate acid, so, its main constituent is sodium sulphate and the activity of this liquid is relatively high. Waste form of this liquid waste is considered to be a candidate for the subsurface disposal. The disposed waste including sulphate is anticipated to rise a concentration of sulphate ion in the ground water around the disposal facility and it may cause degradation of materials such as cement and bentonite layer and comprise the disposal facility. There could be two approaches to avoid this problem, the strong design of the disposal facility and the minimization of sulphaste ion migration from the solidified waste. In this study, the latter approach was examined. In order to keep the low concentration of sulphate ion in the ground water, it is effective to make barium sulphate by adding barium compound into the liquid waste in solidification. However, adding equivalent amount of barium compound with sulphate ion causes difficulty of mixing, because production of barium sulphate causes high viscosity. In this study, mixing condition after and before adding cement into the liquid waste was estimated. The mixing condition was set with consideration to keep anion concentration low in the ground water and of mixing easily enough in practical operation. Long term leaching behavior of the simulated solidified waste was also analyzed by PHREEQC. And the concentration of the constitution affected to the disposal facility was estimated be low enough in the ground water. (author)

  2. Method of solidifying radioactive liquid wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Kawamura, Fumio; Kikuchi, Makoto; Fukazawa, Tetsuo.

    1983-01-01

    Purpose: To enable to confine the volatiling ingredients such as cesium in liquid wastes safely in glass solidification products while suppressing the volatilization thereof. Method: Acid salt of tetravalent metal such as titanium phosphate has an intense selective adsorption property to cesium. So liquid wastes stored in a high level liquid wastes tank is mixed with titanium phosphate gels stored in an adsorbent tank, then supplied to a mixer and mixed with a sodium silicate solution stored in a sodium silicate storage tank and boric acid stored in an additive tank, into gel-like state. The gel-like material thus formed is supplied to a drier. After being dried at a temperature of 200sup(o)C - 300sup(o)C, the material is melted under heating at a temperature of 1000sup(o)C - 1100sup(o)C, and then cooled to solidify. (Horiuchi, T.)

  3. Adsorption of Ruthenium, Rhodium and Palladium from Simulated High-Level Liquid Waste by Highly Functional Xerogel - 13286

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Takashi [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan); Koyama, Shin-ichi [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan); Mimura, Hitoshi [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University Aramaki-Aza-Aoba 6-6-01-2,Aoba-ku, Sendai-shi, Miyagi-ken, 980-8579 (Japan)

    2013-07-01

    Fission products are generated by fission reactions in nuclear fuel. Platinum group (Pt-G) elements, such as palladium (Pd), rhodium (Rh) and ruthenium (Ru), are also produced. Generally, Pt-G elements play important roles in chemical and electrical industries. Highly functional xerogels have been developed for recovery of these useful Pt-G elements from high - level radioactive liquid waste (HLLW). An adsorption experiment from simulated HLLW was done by the column method to study the selective adsorption of Pt-G elements, and it was found that not only Pd, Rh and Ru, but also nickel, zirconium and tellurium were adsorbed. All other elements were not adsorbed. Adsorbed Pd was recovered by washing the xerogel-packed column with thiourea solution and thiourea - nitric acid mixed solution in an elution experiment. Thiourea can be a poison for automotive exhaust emission system catalysts, so it is necessary to consider its removal. Thermal decomposition and an acid digestion treatment were conducted to remove sulfur in the recovered Pd fraction. The relative content of sulfur to Pd was decreased from 858 to 0.02 after the treatment. These results will contribute to design of the Pt-G element separation system. (authors)

  4. Management of low level waste generated from ISER

    International Nuclear Information System (INIS)

    Mizushina, Tomoyuki

    1987-01-01

    Low level wastes are generated during nuclear power plant operation. In the case of ISER, low level wastes from the reactor are basically the same as of existing light water reactors. Various low level wastes, including solid, liquid and gaseous, are listed and discussed. In normal operation, high-activity wastes are not subjected to any treatment. For contaminated equipment or reactor parts, it may be desirable to transfer most of the activity to liquid phase through an appropriate decontamination procedure. Highly active solid wastes are usually fixed in a solid form through incorporation into either concrete or asphalt as containment material. Decantation and filtration treatments are usually sufficient before dilution and release of liquid wastes into the environment. Except for ordinary gas filtration, there in normally no other treatment. Under certain circumstances, however, it may be important to apply the decay storage before release to the atmosphere. In accidental circumstances, specific filtration is recommended or even sometimes needed. There are some alternatives for storage and-or disposal of low level wastes. In many cases, shallow land burial is chosen as a realistic method for storage and-or disposal of solid waste. In chosing a disposal method, the radiation dose rate from solid wastes or the specific activity should be taken into account. Boric acid is a retarder for cement setting. This effect of boric acid is inhibited by adding a complexing agent before mixing the waste with cement. (Nogami, K.)

  5. Feasibility study of solidification for low-level liquid waste generated by sulfuric acid elution treatment of spent ion exchange resin

    International Nuclear Information System (INIS)

    Asano, Takashi; Kawasaki, Tooru; Higuchi, Natsuko; Horikawa, Yoshihiko

    2008-01-01

    We studied cement-like solidification process for low-level liquid waste with relatively high levels of radioactivity that contains a high concentration of sodium sulfate. For this type waste, it is important that the sulfate ion should not dissolve from the solid waste because it forms ettringite on reaction with minerals in the concrete of the planned repository, and this leads to cracking during repository storage. It is also preferable that the pH of the pore water of the solid waste be low, because the bentonite of the repository changes in quality on exposure to alkaline solution. Therefore, the present solidification process has two procedures: conversion into insoluble sulfate from sodium sulfate (CIS) and formation of low pH cement-like solid (FLS). In the CIS procedure, BaSO 4 precipitation occurs with addition of Ba(OH) 2 ·8H 2 O to the liquid waste. In the FLS procedure, silica fume and blast furnace slag are added to the liquid waste containing BaSO 4 precipitate. We show the range of appropriate Ba/SO 4 molar ratio is from 1.1 to 1.5 in the present solidification process by leaching tests for some kinds of solid waste samples. The CIS reaction yield is over 98% at a typical CIS condition, i.e. Ba/SO 4 molar ratio=1.3, reaction temperature=60 deg C, and time=3 hr. (author)

  6. Radioactive liquid waste solidifying device

    International Nuclear Information System (INIS)

    Uchiyama, Yoshio.

    1987-01-01

    Purpose: To eliminate the requirement for discharge gas processing and avoid powder clogging in a facility suitable to the volume-reducing solidification of regenerated liquid wastes containing sodium sulfate. Constitution: Liquid wastes supplied to a liquid waste preheater are heated under a pressure higher than the atmospheric pressure at a level below the saturation temperature for that pressure. The heated liquid wastes are sprayed from a spray nozzle from the inside of an evaporator into the super-heated state and subjected to flash distillation. They are further heated to deposit and solidify the solidification components in the solidifying evaporation steams. The solidified powder is fallen downwardly and heated for removing water content. The recovered powder is vibrated so as not to be solidified and then reclaimed in a solidification storage vessel. Steams after flash distillation are separated into gas, liquid and solids by buffles. (Horiuchi, T.)

  7. The liquidation of liquid radioactive waste on nuclear medicine departments

    International Nuclear Information System (INIS)

    Fueriova, A.

    1995-01-01

    The most serious problems for Clinic of Nuclear Medicine of National Oncological Institute, Bratislava (CNM) is the localization of CNM in the downtown, inside the hospital area with the dilution water deficit. This department is the only one in Slovak Republic performing therapeutical applications. To be able to perform the necessary amount of therapies and also to introduce a new therapeutical methods, in 1992-1994 the old liquidation waste disposal station (LWDS) was reconstructed with the aim to satisfy the newest requirements of radiation hygiene. LWDS is the 5-floor object partly underground which satisfied the requirements for liquidation of radioactive liquid waste from diagnostic procedures(annually 5000 patients) and also from 200 therapeutical applications annually (15 beds, 720 GBq iodine-131). The capacity of LWDS is able to store about 90 m 3 liquid radioactive waste. Part of the underground spaces are used for the storage of solid radioactive trash. The liquid waste from CNM is collected through isolated metal sewage system to the storage with continuous observation of water specific activity. According to the activity, the liquid waste is placed to the 5 decay storages with the volume about 15 m 3 . The six one serves for the case of technical accident. When the activity declines, the liquid waste is diluted with non active medical trash to the level which is acceptable by low about radiation hygiene protection. The storage walls are made from barium-concrete 25-50 cm thick which is enough for sufficient protection of operation staff and also for walking around persons. Double-layer high quality chemical material prevents the water leak and diffusion of radionuclides into the concrete. Technology consists of cast-iron drains, powerful slush pumps, operation valves, regulation technology from dosimetric system for continuous monitoring of specific activity, for managing system with powerful industrial computer

  8. The liquidation of liquid radioactive waste on nuclear medicine departments

    Energy Technology Data Exchange (ETDEWEB)

    Fueriova, A [National Oncological Institue, Bratislava (Slovakia). Hospital St. Elis, Clinic of Nuclear Medicine

    1996-12-31

    The most serious problems for Clinic of Nuclear Medicine of National Oncological Institute, Bratislava (CNM) is the localization of CNM in the downtown, inside the hospital area with the dilution water deficit. This department is the only one in Slovak Republic performing therapeutical applications. To be able to perform the necessary amount of therapies and also to introduce a new therapeutical methods, in 1992-1994 the old liquidation waste disposal station (LWDS) was reconstructed with the aim to satisfy the newest requirements of radiation hygiene. LWDS is the 5-floor object partly underground which satisfied the requirements for liquidation of radioactive liquid waste from diagnostic procedures(annually 5000 patients) and also from 200 therapeutical applications annually (15 beds, 720 GBq iodine-131). The capacity of LWDS is able to store about 90 m{sup 3} liquid radioactive waste. Part of the underground spaces are used for the storage of solid radioactive trash. The liquid waste from CNM is collected through isolated metal sewage system to the storage with continuous observation of water specific activity. According to the activity, the liquid waste is placed to the 5 decay storages with the volume about 15 m{sup 3}. The six one serves for the case of technical accident. When the activity declines, the liquid waste is diluted with non active medical trash to the level which is acceptable by low about radiation hygiene protection. The storage walls are made from barium-concrete 25-50 cm thick which is enough for sufficient protection of operation staff and also for walking around persons. Double-layer high quality chemical material prevents the water leak and diffusion of radionuclides into the concrete. Technology consists of cast-iron drains, powerful slush pumps, operation valves, regulation technology from dosimetric system for continuous monitoring of specific activity, for managing system with powerful industrial computer.

  9. Radiation transport in high-level waste form

    International Nuclear Information System (INIS)

    Arakali, V.S.; Barnes, S.M.

    1992-01-01

    The waste form selected for vitrifying high-level nuclear waste stored in underground tanks at West Valley, NY is borosilicate glass. The maximum radiation level at the surface of a canister filled with the high-level waste form is prescribed by repository design criteria for handling and disposition of the vitrified waste. This paper presents an evaluation of the radiation transport characteristics for the vitreous waste form expected to be produced at West Valley and the resulting neutron and gamma dose rates. The maximum gamma and neutron dose rates are estimated to be less than 7500 R/h and 10 mRem/h respectively at the surface of a West Valley canister filled with borosilicate waste glass

  10. Laboratory characterization and vitrification of Hanford radioactive high-level waste

    International Nuclear Information System (INIS)

    Tingey, J.M.; Elliott, M.L.; Larson, D.E.; Morrey, E.V.

    1991-05-01

    Radioactive high-level wastes generated at the Department of Energy's Hanford Site are stored in underground carbon steel tanks. Two double-shell tanks contain neutralized current acid waste (NCAW) from the reprocessing of irradiated nuclear fuel in the Plutonium and Uranium Extraction (PUREX) Plant. The tanks were sampled for characterization and waste immobilization process/product development. The high-level waste generated in PUREX was denitrated with sugar to form current acid waste (CAW). The CAW was ''neutralized'' to a pH of approximately 14 by adding sodium hydroxide to reduce corrosion of the tanks. This ''neutralized'' waste is called Neutralized Current Acid Waste. Both precipitated solids and liquids are stored in the NCAW waste tanks. The NCAW contains small amounts of plutonium and most of the fission products and americium from the irradiated fuel. NCAW also contains stainless steel corrosion products, and iron and sulfate from the ferrous sulfamate reductant used in the PUREX process. The NCAW will be retrieved, pretreated, and immobilized prior to final disposal. Pretreatment consists of water washing the precipitated NCAW solids for sulfate and soluble salts removal as a waste reduction step prior to vitrification. This waste is expected to be the first waste type to be retrieved and vitrified in the Hanford Waste Vitrification Plant (HWVP). A characterization plan was developed that details the processing of the small-volume NCAW samples through retrieval, pretreatment and vitrification process steps. Physical, rheological, chemical, and radiochemical properties were measured throughout these process steps. The results of nonradioactive simulant tests were used to develop appropriate pretreatment and vitrification process steps. The processing and characterization of simulants and actual NCAW tank samples are used to evaluate the operation of these processes. 3 refs., 1 fig., 4 tabs

  11. Solidification of high-level radioactive wastes. Final report

    International Nuclear Information System (INIS)

    1979-06-01

    A panel on waste solidification was formed at the request of the Nuclear Regulatory Commission to study the scientific and technological problems associated with the conversion of liquid and semiliquid high-level radioactive wastes into a stable form suitable for transportation and disposition. Conclusions reached and recommendations made are as follows. Many solid forms described in this report could meet standards as stringent as those currently applied to the handling, storage, and transportation of spent fuel assemblies. Solid waste forms should be selected only in the context of the total radioactive waste management system. Many solid forms are likely to be satisfactory for use in an appropriately designed system, The current United States policy of deferring the reprocessing of commercial reactor fuel provides additional time for R and D solidification technology for this class of wastes. Defense wastes which are relatively low in radioactivity and thermal power density can best be solidified by low-temperature processes. For solidification of fresh commercial wastes that are high in specific activity and thermal power density, the Panel recommends that, in addition to glass, the use of fully-crystalline ceramics and metal-matrix forms be actively considered. Preliminary analysis of the characteristics of spent fuel pins indicates that they may be eligible for consideration as a waste form. Because the differences in potential health hazards to the public resulting from the use of various solid form and disposal options are likely to be small, the Panel concludes that cost, reliability, and health hazards to operating personnel will be major considerations in choosing among the options that can meet safety requiremens. The Panel recommends that responsibility for all radioactive waste management operations (including solidification R and D) should be centralized

  12. Steam stripping of polycyclic aromatics from simulated high-level radioactive waste

    International Nuclear Information System (INIS)

    Lambert, D.P.; Shah, H.B.; Young, S.R.; Edwards, R.E.; Carter, J.T.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be the United States' first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation, liquid-liquid extraction and decantation will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Technology Center with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Aqueous washing or nitrite destruction is used to reduce nitrite. Formic acid with a copper catalyst is used to hydrolyze tetraphenylborate (TPB). The primary offgases are benzene, carbon dioxide, nitrous oxide, and nitric oxide. Hydrolysis of TPB in the presence of nitrite results in the production of polycyclic aromatics and aromatic amines (referred as high boiling organics) such as biphenyl, diphenylamine, terphenyls etc. The decanter separates the organic (benzene) and aqueous phase, but the high boiling organic separation is difficult. This paper focuses on the evaluation of the operating strategies, including steam stripping, to maximize the removal of the high boiling organics from the aqueous stream. Two areas were investigated, (1) a stream stripping comparison of the late wash flowsheet to the HAN flowsheet and (2) the extraction performance of the original decanter to the new decanter. The focus of both studies was to minimize the high boiling organic content of the Precipitate Hydrolysis Aqueous (PHA) product in order to minimize downstream impacts caused by organic deposition

  13. Ramifications of defining high-level waste

    International Nuclear Information System (INIS)

    Wood, D.E.; Campbell, M.H.; Shupe, M.W.

    1987-01-01

    The Nuclear Regulatory Commission (NRC) is considering rule making to provide a concentration-based definition of high-level waste (HLW) under authority derived from the Nuclear Waste Policy Act (NWPA) of 1982 and the Low Level Waste Policy Amendments Act of 1985. The Department of Energy (DOE), which has the responsibility to dispose of certain kinds of commercial waste, is supporting development of a risk-based classification system by the Oak Ridge National Laboratory to assist in developing and implementing the NRC rule. The system is two dimensional, with the axes based on the phrases highly radioactive and requires permanent isolation in the definition of HLW in the NWPA. Defining HLW will reduce the ambiguity in the present source-based definition by providing concentration limits to establish which materials are to be called HLW. The system allows the possibility of greater-confinement disposal for some wastes which do not require the degree of isolation provided by a repository. The definition of HLW will provide a firm basis for waste processing options which involve partitioning of waste into a high-activity stream for repository disposal, and a low-activity stream for disposal elsewhere. Several possible classification systems have been derived and the characteristics of each are discussed. The Defense High Level Waste Technology Lead Office at DOE - Richland Operations Office, supported by Rockwell Hanford Operations, has coordinated reviews of the ORNL work by a technical peer review group and other DOE offices. The reviews produced several recommendations and identified several issues to be addressed in the NRC rule making. 10 references, 3 figures

  14. Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Lawrence T. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2205, Aiken, SC 29808 (United States); Chew, David P. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2426, Aiken, SC 29808 (United States)

    2013-07-01

    The Savannah River Site (SRS) is a Department of Energy site which has produced nuclear materials for national defense, research, space, and medical programs since the 1950's. As a by-product of this activity, approximately 37 million gallons of high-level liquid waste containing approximately 292 million curies of radioactivity is stored on an interim basis in 45 underground storage tanks. Originally, 51 tanks were constructed and utilized to support the mission. Four tanks have been closed and taken out of service and two are currently undergoing the closure process. The Liquid Waste System is a highly integrated operation involving safely storing liquid waste in underground storage tanks; removing, treating, and dispositioning the low-level waste fraction in grout; vitrifying the higher activity waste at the Defense Waste Processing Facility; and storing the vitrified waste in stainless steel canisters until permanent disposition. After waste removal and processing, the storage and processing facilities are decontaminated and closed. A Liquid Waste System Plan (hereinafter referred to as the Plan) was developed to integrate and document the activities required to disposition legacy and future High-Level Waste and to remove from service radioactive liquid waste tanks and facilities. It establishes and records a planning basis for waste processing in the liquid waste system through the end of the program mission. The integrated Plan which recognizes the challenges of constrained funding provides a path forward to complete the liquid waste mission within all regulatory and legal requirements. The overarching objective of the Plan is to meet all Federal Facility Agreement and Site Treatment Plan regulatory commitments on or ahead of schedule while preserving as much life cycle acceleration as possible through incorporation of numerous cost savings initiatives, elimination of non-essential scope, and deferral of other scope not on the critical path to compliance

  15. Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244

    International Nuclear Information System (INIS)

    Ling, Lawrence T.; Chew, David P.

    2013-01-01

    The Savannah River Site (SRS) is a Department of Energy site which has produced nuclear materials for national defense, research, space, and medical programs since the 1950's. As a by-product of this activity, approximately 37 million gallons of high-level liquid waste containing approximately 292 million curies of radioactivity is stored on an interim basis in 45 underground storage tanks. Originally, 51 tanks were constructed and utilized to support the mission. Four tanks have been closed and taken out of service and two are currently undergoing the closure process. The Liquid Waste System is a highly integrated operation involving safely storing liquid waste in underground storage tanks; removing, treating, and dispositioning the low-level waste fraction in grout; vitrifying the higher activity waste at the Defense Waste Processing Facility; and storing the vitrified waste in stainless steel canisters until permanent disposition. After waste removal and processing, the storage and processing facilities are decontaminated and closed. A Liquid Waste System Plan (hereinafter referred to as the Plan) was developed to integrate and document the activities required to disposition legacy and future High-Level Waste and to remove from service radioactive liquid waste tanks and facilities. It establishes and records a planning basis for waste processing in the liquid waste system through the end of the program mission. The integrated Plan which recognizes the challenges of constrained funding provides a path forward to complete the liquid waste mission within all regulatory and legal requirements. The overarching objective of the Plan is to meet all Federal Facility Agreement and Site Treatment Plan regulatory commitments on or ahead of schedule while preserving as much life cycle acceleration as possible through incorporation of numerous cost savings initiatives, elimination of non-essential scope, and deferral of other scope not on the critical path to compliance

  16. Current high-level waste solidification technology

    International Nuclear Information System (INIS)

    Bonner, W.F.; Ross, W.A.

    1976-01-01

    Technology has been developed in the U.S. and abroad for solidification of high-level waste from nuclear power production. Several processes have been demonstrated with actual radioactive waste and are now being prepared for use in the commercial nuclear industry. Conversion of the waste to a glass form is favored because of its high degree of nondispersibility and safety

  17. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    International Nuclear Information System (INIS)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  18. Aspects of chemistry in management of radioactive liquid wastes from nuclear installations

    International Nuclear Information System (INIS)

    Yeotikar, R.G.

    2007-01-01

    Nuclear energy is the only source available to the mankind to fulfill the continuous and ever increasing demand of energy. The public acceptance and popularity of nuclear energy depends to a large extent on management of radioactive waste. The nuclear waste management demands eco-friendly process/systems. This article highlights the sources of different types of radioactive liquid wastes generated in the nuclear installation and their treatment process. The radioactive liquid waste is classified mainly into three categories based on activity levels e.g. low, intermediate and high level. The management of radioactive liquid waste is very critical because of its 'mobility and liquid' nature. Secondly the liquid wastes have wide range of activity and chemistry spectrum and their volumes are also different. Hence the methods for management of different types of liquid wastes are also different. Mostly the treatment and conditioning processes are chemical processes. The chemistry involved in the treatment and conditioning of these wastes, problems related with chemistry for each processes and efforts to solve these problems, aspects of adoption on plant scale, etc., have been discussed in this article. (author)

  19. Handbook of high-level radioactive waste transportation

    International Nuclear Information System (INIS)

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government's system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government's program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project

  20. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    International Nuclear Information System (INIS)

    Herbst, A.K.

    2000-01-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state

  1. Vitrification of liquid waste from nuclear power plants

    International Nuclear Information System (INIS)

    Sheng Jiawei; Choi, Kwansik; Song, Myung-Jae

    2001-01-01

    Glass is an acceptable waste form to solidify the low-level waste from nuclear power plants (NPPs) because of the simplicity of processing and its unique ability to accept a wide variety of waste streams. Vitrification is being considered to solidify the high-boron-containing liquid waste generated from Korean NPPs. This study dealt with the development of a glass formulation to solidify the liquid waste. Studies were conducted in a borosilicate glass system. Crucible studies have been performed with surrogate waste. Several developed glass frits were evaluated to determine their suitability for vitrifying the liquid waste. The results indicated that the 20 wt% waste oxides loading required could not be obtained using these glass frits. Flyash produced from coal-burning electric power stations, whose major components are SiO 2 and Al 2 O 3 , is a desirable glass network former. Detailed product evaluations including waste loading, homogeneity, chemical durability and viscosity, etc., were carried out on selected formulations using flyash. Up to 30 wt% of the waste oxides was successfully solidified into the flyash after the addition of 5-10 wt% Na 2 O at 1200 deg. C

  2. THOREX processing and zeolite transfer for high-level waste stream processing blending

    International Nuclear Information System (INIS)

    Kelly, S. Jr.; Meess, D.C.

    1997-07-01

    The West Valley Demonstration Project (WVDP) completed the pretreatment of the high-level radioactive waste (HLW) prior to the start of waste vitrification. The HLW originated form the two million liters of plutonium/uranium extraction (PUREX) and thorium extraction (THOREX) wastes remaining from Nuclear Fuel Services' (NFS) commercial nuclear fuel reprocessing operations at the Western New York Nuclear Service Center (WNYNSC) from 1966 to 1972. The pretreatment process removed cesium as well as other radionuclides from the liquid wastes and captured these radioactive materials onto silica-based molecular sieves (zeolites). The decontaminated salt solutions were volume-reduced and then mixed with portland cement and other admixtures. Nineteen thousand eight hundred and seventy-seven 270-liter square drums were filled with the cement-wastes produced from the pretreatment process. These drums are being stored in a shielded facility on the site until their final disposition is determined. Over 6.4 million liters of liquid HLW were processed through the pretreatment system. PUREX supernatant was processed first, followed by two PUREX sludge wash solutions. A third wash of PUREX/THOREX sludge was then processed after the neutralized THOREX waste was mixed with the PUREX waste. Approximately 6.6 million curies of radioactive cesium-137 (Cs-137) in the HLW liquid were removed and retained on 65,300 kg of zeolites. With pretreatment complete, the zeolite material has been mobilized, size-reduced (ground), and blended with the PUREX and THOREX sludges in a single feed tank that will supply the HLW slurry to the Vitrification Facility

  3. Management of radioactive liquid waste at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Bendixsen, C.L.

    1992-01-01

    Highly radioactive liquid wastes (HLLW) are routinely produced during spent nuclear fuel processing at the Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL). This paper discusses the processes and safe practices for management of the radioactive process waste streams, which processes include collection, concentration, interim storage, calcination to granular solids, and long-term intermediate storage. Over four million gallons of HLLW have been converted to a recoverable granular solid form through waste liquid injection into a high-temperature, fluidized bed wherein the wastes are converted to their respective solid oxides. The development of a glass ceramic solid for the long-term permanent disposal of the high level waste (HLW) solids is also described

  4. Research and development on low level liquid waste treatment in Thailand

    International Nuclear Information System (INIS)

    Yamkate, P.; Sinakhom, F.; Punnachaiya, M.; Chantaraprachoom, N.; Srisorn, S.

    1996-01-01

    The studies have been directed towards several subjects concerning the treatment technologies of low level waste. The simple physico-chemical method has been studied for applying to many kind of waste streams such as reactor waste, isotope production waste and liquid waste from the hospital. The characterization of inorganic ion-exchangers including the effect of pH, equilibrium time, temperature and concentration of such ion-exchangers were tested and the optimum condition of the sorption of C x on the exchangers are reported. The results from the investigation on the efficiencies of detergents in the radioactive decontamination reveal that the local simple brand machine-washed detergents. which is very cheap, can be best used as the decontaminating agent instead of the more expensive imported one. It is found that chemical precipitation methods i.e. phosphate coagulation, copper ferrocyanide coagulation and cobalt precipitation method can be used for treating of the waste stream arising successfully. In considering of the immobilizing process of treated waste, cementation is advised to be used and, therefore, subjects to be evaluated. The basic properties of cement-waste products as well the leachability of a particular types of sludge waste at 15-40% waste loading were investigated. The result reveals that, cement waste forms of inorganic ion-exchanger and of sludge waste from chemical precipitation of decontamination waste, exhibit high compressive strength and a low leach rates. The compressive strength of 118-207 Kg/cm 2 were found for the optimum waste products originated from various exchangers and 15-20% loading of sludge waste. The leachability of Co-60, Cs-134 and Sr-85 from 15-40% loading of cement waste for 30 days were studied. The cumulative fraction leached rate of Cs-134 from sludge-cement wastes was found to be about 17 x 10 - 3 g/cm 2 for 25 degree C and 50 degree C at 30 days leaching time respectively, while there were no leaching of Sr-85 and

  5. Influence of radiation on the system liquid radioactive wastes: geologic formation

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Balukova, V.D.; Kabakchi, S.A.; Medvedeva, M.L.

    1979-01-01

    Introduction of liquid radioactive wastes into deep strata-collectors results in a number of physical-chemical processes: precipitation, dissolution, complex formation, sorption, etc. The area occupied by the injected waste and changes in the nature of the liquid phase depend primarily on radiolysis processes in the heterogeneous system of liquid waste-stratal material occurring at elevated temperatures and pressures. Experiments that simulate actual conditions of temperature, pressure and high radiation levels on this system have been performed. Results are presented for radiolytic gas formation and for changes in the liquid phase and sorption capacity of stratal minerals. It is shown that the temperature increase in the stratum-collector significantly enhances waste decomposition processes, promotes sorption of radionuclides and decreases the mobility of the waste in the formation

  6. Probabilistic safety assessment for Hanford high-level waste tanks

    International Nuclear Information System (INIS)

    MacFarlane, D.R.; Stack, D.S.; Kindinger, J.P.; Deremer, R.K.

    1995-01-01

    This paper gives results from the first comprehensive level-3 probabilistic safety assessment (PSA), including consideration of external events, for the Hanford tank farm (HTF). This work was sponsored by the U.S. Department of Energy/Environmental Restoration and Waste Management Division (DOE/EM). At the HTF, there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/saltcake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is ∼60 million gal, containing ∼200 million Ci of radioactivity

  7. Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet

    International Nuclear Information System (INIS)

    Abotsi, G.M.K.; Bostick, D.T.; Beck, D.E.

    1996-05-01

    The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere

  8. Treatment of low-level radioactive waste liquid by reverse osmosis

    International Nuclear Information System (INIS)

    Buckley, L.P.; Sen Gupta, S.K.; Slade, J.A.

    1995-01-01

    The processing of low-level radioactive waste (LLRW) liquids that result from operation of nuclear power plants with reverse osmosis systems is not common practice. A demonstration facility is operating at Chalk River Laboratories (of Atomic Energy of Canada Limited), processing much of the LLRW liquids generated at the site from a multitude of radioactive facilities, ranging from isotope production through decontamination operations and including chemical laboratory drains. The reverse osmosis system comprises two treatment steps--spiral wound reverse osmosis followed by tubular reverse osmosis--to achieve an average volume reduction factor of 30:1 and a removal efficiency in excess of 99% for most radioactive and chemical species. The separation allows the clean effluent to be discharged without further treatment. The concentrated waste stream of 3 wt% total solids is further processed to generate a solid product. The typical lifetimes of the membranes have been nearly 4000 hours, and replacement was required based on increased pressure drops and irreversible loss of permeate flux. Four years of operating experience with the reverse osmosis system, to demonstrate its practicality and to observe and record its efficiency, maintenance requirements and effectiveness, have proven it to be viable for volume reduction and concentration of LLRW liquids generated from nuclear-power-plant operations

  9. Bioprocessing of a stored mixed liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wolfram, J.H.; Rogers, R.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Finney, R. [Mound Applied Technologies, Miamisburg, OH (United States)] [and others

    1995-12-31

    This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is an unique microbial strain which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for the processing of stored liquid scintillation wastes. During the past year a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSC). Based on data obtained from this demonstration, the Ohio EPA granted the Mound Applied Technologies Lab a treatability permit allowing the limited processing of actual mixed waste. Since August 1994, the system has been successfully processing stored, {open_quotes}hot{close_quotes} LSC waste. The initial LSC waste fed into the system contained 11% pseudocumene and detectable quantities of plutonium. Another treated waste stream contained pseudocumene and tritium. Data from this initial work shows that the hazardous organic solvent, and pseudocumene have been removed due to processing, leaving the aqueous low level radioactive waste. Results to date have shown that living cells are not affected by the dissolved plutonium and that 95% of the plutonium was sorbed to the biomass. This paper discusses the bioprocess, rates of processing, effluent, and the implications of bioprocessing for mixed waste management.

  10. Disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Glasby, G.P.

    1977-01-01

    Although controversy surrounding the possible introduction of nuclear power into New Zealand has raised many points including radiation hazards, reactor safety, capital costs, sources of uranium and earthquake risks on the one hand versus energy conservation and alternative sources of energy on the other, one problem remains paramount and is of global significance - the storage and dumping of the high-level radioactive wastes of the reactor core. The generation of abundant supplies of energy now in return for the storage of these long-lived highly radioactive wastes has been dubbed the so-called Faustian bargain. This article discusses the growth of the nuclear industry and its implications to high-level waste disposal particularly in the deep-sea bed. (auth.)

  11. Evaluation of radionuclide concentrations in high-level radioactive wastes

    International Nuclear Information System (INIS)

    Fehringer, D.J.

    1985-10-01

    This report describes a possible approach for development of a numerical definition of the term ''high-level radioactive waste.'' Five wastes are identified which are recognized as being high-level wastes under current, non-numerical definitions. The constituents of these wastes are examined and the most hazardous component radionuclides are identified. This report suggests that other wastes with similar concentrations of these radionuclides could also be defined as high-level wastes. 15 refs., 9 figs., 4 tabs

  12. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    1983-01-01

    This report deals with certain aspects of the management of one of the most important wastes, i.e. the handling and storage of conditioned (immobilized and packaged) high-level waste from the reprocessing of spent nuclear fuel and, although much of the material presented here is based on information concerning high-level waste from reprocessing LWR fuel, the principles, as well as many of the details involved, are applicable to all fuel types. The report provides illustrative background material on the arising and characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The report introduces the principles important in conditioned high-level waste storage and describes the types of equipment and facilities, used or studied, for handling and storage of such waste. Finally, it discusses the safety and economic aspects that are considered in the design and operation of handling and storage facilities

  13. Removal of actinide elements from liquid scintillation cocktail wastes using liquid-liquid extraction and demulsification techniques

    International Nuclear Information System (INIS)

    Foltz, K.; Landsberger, S.; Srinivasan, B.; Vandegrift, G.F.

    1994-01-01

    For many years liquid scintillation cocktail (LSC) wastes have been generated and stored at Argonne National Laboratory (ANL). These wastes are stored in thousands of 10--20 m scintillation vials, many of which contain elements with Z > 88. Because storage space is limited, disposal of this waste is pressing. These wastes could be commercially incinerated if the radionuclides with Z>88 are reduced to sufficiently low levels. However, there is currently no deminimus level for these radionuclides, and separation techniques are still being tested. The University of Illinois is conducting experiments to separate radionuclides with Z > 88 from simulated LSC wastes by using liquid-liquid extraction (LLX) and demulsification techniques. The actinide elements are removed from the LSC by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated and the organic phase, now free from radionuclides with Z > 88, can be sent to a commercial incineration facility. The aqueous phase may be treated and disposed of using existing techniques. The LLX separation techniques used solutions of sodium oxalate, aluminum nitrate, and tetrasodium EDTA at varying concentrations. These extractants were mixed with the simulated waste in a 1:1 volume ratio. Using 1.0M Na 4 EDTA salt solutions, decontamination ratios as high as 230 were achieved

  14. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    Science.gov (United States)

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-05

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  15. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    International Nuclear Information System (INIS)

    Smith, M; Allan Barnes, A; Jim Coleman, J; Robert Hopkins, R; Dan Iverson, D; Richard Odriscoll, R; David Peeler, D

    2006-01-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF), the world's largest operating high level waste (HLW) vitrification plant, began stabilizing about 35 million gallons of SRS liquid radioactive waste by-product in 1996. The DWPF has since filled over 2000 canisters with about 4000 pounds of radioactive glass in each canister. In the past few years there have been several process and equipment improvements at the DWPF to increase the rate at which the waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process and therefore minimized process upsets and thus downtime. These improvements, which include glass former optimization, increased waste loading of the glass, the melter glass pump, the melter heated bellows liner, and glass surge protection software, will be discussed in this paper

  16. Conversion of Mixed Plastic Wastes (High Density Polyethylene and Polypropylene) into Liquid Fuel

    International Nuclear Information System (INIS)

    Chaw Su Su Hmwe; Tint Tint Kywe; Moe Moe Kyaw

    2010-12-01

    In this study, mixed plastic wastes were converted into liquid fuels. Mixed plastic wastes used were high density polyethylene (HDPE) and polypropylene (PP). The pyrolysis of mixed plastic waste to liquid fuel was carried out with and without prepared zeolite catalyst.The catalyst was characterized by X-ray Diffraction (XRD). This catalyst was pre-treated for activation. The experiments were carried out at temperature range of 350-410C.Physical properties (density, kinematic, viscosity,refractive index)of prepared liquid fuel samples were measured. From this study, yields of liquid fuel and gas fuel were found to be 41-64% and 15-35% respectively. As for by products, char was obtained as the yield percentages from 9 to 14% and wax (yield% - 1 to 14) was formed during pyrolysis.

  17. High level nuclear wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.

    1987-01-01

    The transformations involved in the nuclear fuels during the burn-up at the power nuclear reactors for burn-up levels of 33.000 MWd/th are considered. Graphs and data on the radioactivity variation with the cooling time and heat power of the irradiated fuel are presented. Likewise, the cycle of the fuel in light water reactors is presented and the alternatives for the nuclear waste management are discussed. A brief description of the management of the spent fuel as a high level nuclear waste is shown, explaining the reprocessing and giving data about the fission products and their radioactivities, which must be considered on the vitrification processes. On the final storage of the nuclear waste into depth geological burials, both alternatives are coincident. The countries supporting the reprocessing are indicated and the Spanish programm defined in the Plan Energetico Nacional (PEN) is shortly reviewed. (author) 8 figs., 4 tabs

  18. Process for solidifying high-level nuclear waste

    Science.gov (United States)

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  19. Characteristics of solidified high-level waste products

    International Nuclear Information System (INIS)

    1979-01-01

    The object of the report is to contribute to the establishment of a data bank for future preparation of codes of practice and standards for the management of high-level wastes. The work currently in progress on measuring the properties of solidified high-level wastes is being studied

  20. A demonstration test of 4-group partitioning process with real high-level liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Y.; Yamaguchi, I.; Fujiwara, T.; Koizumi, H.; Tachimori, S. [Japan Atomic Energy Research Institute, Tokai-Mura, Ibaraki-Ken (Japan)

    2000-07-01

    The demonstration test of 4-Group Partitioning Process with concentrated real high-level liquid waste (HLLW) was carried out in the Partitioning Test Facility installed in a hot cell. More than 99.998% of Am and Cm were extracted from the HLLW with the organic solvent containing 0.5 M DIDPA - 0.1 M TBP, and more than 99.98% of Am and Cm were back-extracted with 4 M nitric acid. Np and Pu were extracted simultaneously, and more than 99.93% of Np and more than 99.98% of Pu were back-extracted with oxalic acid. In the denitration step for the separation of Tc and platinum group metals, more than 90% of Rh and more than 97% of Pd were precipitated. About half of Ru were remained in the de-nitrated solution, but the remaining Ru were quantitatively precipitated by neutralization of the de-nitrated solution to pH 6.7. In the adsorption step, both Sr and Cs were separated effectively. Decontamination factors for Cs and Sr were more than 10{sup 6} and 10{sup 4} respectively in all effluent samples. (authors)

  1. Optimization of waste loading in high-level glass in the presence of uncertainty

    International Nuclear Information System (INIS)

    Hoza, M.; Fann, G.I.; Hopkins, D.F.

    1995-02-01

    Hanford high-level liquid waste will be converted into a glass form for long-term storage. The glass must meet certain constraints on its composition and properties in order to have desired properties for processing (e.g., electrical conductivity, viscosity, and liquidus temperature) and acceptable durability for long-term storage. The Optimal Waste Loading (OWL) models, based on rigorous mathematical optimization techniques, have been developed to minimize the number of glass logs required and determine glass-former compositions that will produce a glass meeting all relevant constraints. There is considerable uncertainty in many of the models and data relevant to the formulation of high-level glass. In this paper, we discuss how we handle uncertainty in the glass property models and in the high-level waste composition to the vitrification process. Glass property constraints used in optimization are inequalities that relate glass property models obtained by regression analysis of experimental data to numerical limits on property values. Therefore, these constraints are subject to uncertainty. The sampling distributions of the regression models are used to describe the uncertainties associated with the constraints. The optimization then accounts for these uncertainties by requiring the constraints to be satisfied within specified confidence limits. The uncertainty in waste composition is handled using stochastic optimization. Given means and standard deviations of component masses in the high-level waste stream, distributions of possible values for each component are generated. A series of optimization runs is performed; the distribution of each waste component is sampled for each run. The resultant distribution of solutions is then statistically summarized. The ability of OWL models to handle these forms of uncertainty make them very useful tools in designing and evaluating high-level waste glasses formulations

  2. National high-level waste systems analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.

    1995-09-01

    This report documents the assessment of budgetary impacts, constraints, and repository availability on the storage and treatment of high-level waste and on both existing and pending negotiated milestones. The impacts of the availabilities of various treatment systems on schedule and throughput at four Department of Energy sites are compared to repository readiness in order to determine the prudent application of resources. The information modeled for each of these sites is integrated with a single national model. The report suggests a high-level-waste model that offers a national perspective on all high-level waste treatment and storage systems managed by the Department of Energy.

  3. National high-level waste systems analysis report

    International Nuclear Information System (INIS)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.

    1995-09-01

    This report documents the assessment of budgetary impacts, constraints, and repository availability on the storage and treatment of high-level waste and on both existing and pending negotiated milestones. The impacts of the availabilities of various treatment systems on schedule and throughput at four Department of Energy sites are compared to repository readiness in order to determine the prudent application of resources. The information modeled for each of these sites is integrated with a single national model. The report suggests a high-level-waste model that offers a national perspective on all high-level waste treatment and storage systems managed by the Department of Energy

  4. High-Level Waste Melter Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Joseph M.; Bickford, Dennis F.; Day, Delbert E.; Kim, Dong-Sang; Lambert, Steven L.; Marra, Sharon L.; Peeler, David K.; Strachan, Denis M.; Triplett, Mark B.; Vienna, John D.; Wittman, Richard S.

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  5. Liquid and Gaseous Waste Operations Department annual operating report CY 1996

    International Nuclear Information System (INIS)

    Maddox, J.J.; Scott, C.B.

    1997-03-01

    This annual report summarizes operating activities dealing with the process waste system, the liquid low-level waste system, and the gaseous waste system. It also describes upgrade activities dealing with the process and liquid low-level waste systems, the cathodic protection system, a stack ventilation system, and configuration control. Maintenance activities are described dealing with nonradiological wastewater treatment plant, process waste treatment plant and collection system, liquid low-level waste system, and gaseous waste system. Miscellaneous activities include training, audits/reviews/tours, and environmental restoration support

  6. Cermets for high level waste containment

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1978-01-01

    Cermet materials are currently under investigation as an alternate for the primary containment of high level wastes. The cermet in this study is an iron--nickel base metal matrix containing uniformly dispersed, micron-size fission product oxides, aluminosilicates, and titanates. Cermets possess high thermal conductivity, and typical waste loading of 70 wt % with volume reduction factors of 2 to 200 and low processing volatility losses have been realized. Preliminary leach studies indicate a leach resistance comparable to other candidate waste forms; however, more quantitative data are required. Actual waste studies have begun on NFS Acid Thorex, SRP dried sludge and fresh, unneutralized SRP process wastes

  7. Radioactive liquid waste processing method

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Yoshikawa, Jun; Noda, Tetsuya; Kobayashi, Fumio.

    1995-01-01

    Floor drainages are mixed with low electroconductive liquid wastes, and after filtering the mixed liquid wastes by a hollow thread membrane filters, they are subjected to a desalting treatment by a desalter. The mixing ratio of the floor drainages to the lower electroconductive liquid wastes is determined to not more than 50wt%. With such procedures, since ionic ingredients are further diluted by mixing the floor drainages to the low electroconductive liquid wastes, sufficient margin can be provided up to the saturation of the ion exchange resins of the desalter, to maintain the ion exchange performance for a long period of time. Further, the recovery of the amount of permeation water and a differential pressure of filtration upon back washing of the hollow thread membrane filters is facilitated, thereby enabling to perform regeneration easily at high efficiency. (T.M.)

  8. Radioactive liquid waste filtering device

    International Nuclear Information System (INIS)

    Inami, Ichiro; Tabata, Masayuki; Kubo, Koji.

    1988-01-01

    Purpose: To prevent clogging in filter materials and improve the filtration performance for radioactive liquid wastes without increasing the amount of radioactive wastes. Constitution: In a radioactive waste filtering device, a liquid waste recycling pipe and a liquid recycling pump are disposed for recycling the radioactive liquid wastes in a liquid wastes vessel. In this case, the recycling pipe and the recycling pump are properly selected so as to satisfy the conditions capable of making the radioactive liquid wastes flowing through the pipe to have the Reynolds number of 10 4 - 10 5 . By repeating the transportation of radioactive liquid wastes in the liquid waste vessel through the liquid waste recycling pipe by the liquid waste recycling pump and then returning them to the liquid waste vessel again, particles of fine grain size in the suspended liquids are coagulated with each other upon collision to increase the grain size of the suspended particles. In this way, clogging of the filter materials caused by the particles of fine grain size can be prevented, thereby enabling to prevent the increase in the rising rate of the filtration differential pressure, reduce the frequency for the occurrence of radioactive wastes such as filter sludges and improve the processing performance. (Kamimura, M.)

  9. Final repositories for high-level radioactive waste; Endlagerung hochradioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-10-15

    The brochure on final repositories for high-level radioactive waste covers the following issues: What is the origin of radioactive wastes? How large are the waste amounts? What is going to happen with the wastes? What is the solution for the Waste disposal? A new site search is started. Safety requirements for the final disposal of high-level radioactive wastes. Comparison of host rocks. Who is responsible and who will pay? Final disposal of high-level radioactive wastes worldwide. Short summary: History of the search for a final repository for high-level radioactive wastes in Germany.

  10. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    Heafield, W.

    1984-01-01

    This paper deals with certain aspects of the management of one of the most important radioactive wastes arising from the nuclear fuel cycle, i.e. the handling and storage of conditioned high-level wastes. The paper is based on an IAEA report of the same title published during 1983 in the Technical Reports Series. The paper provides illustrative background material on the characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The principles important in the storage of high-level wastes are reviewed in conjunction with the radiological and socio-political considerations involved. Four fundamentally different storage concepts are described with reference to published information and the safety aspects of particular storage concepts are discussed. Finally, overall conclusions are presented which confirm the availability of technology for constructing and operating conditioned high-level waste storage facilities for periods of at least several decades. (author)

  11. Development studies for the treatment of ORNL low-level liquid waste

    International Nuclear Information System (INIS)

    Campbell, D.O.; Lee, D.D.; Dillow, T.A.

    1991-11-01

    An experimental program is under way to investigate potential separation methods for application to specific problems relating to the management of low-level liquid wastes (LLLWs) at ORNL. This report summarizes experimental results that were acquired during fiscal year 1990 and have not been previously reported elsewhere. Measurements are presented for cesium and strontium removal from simulated high-salt waste compositions, using both inorganic ion- exchange sorbents and organic ion-exchange resins, and for one experiment with actual LLLW supernate solution from Melton Valley Storage Tank W-26, using inorganic sorbents. The purpose of the study was to acquire an extensive data base to support the development of flowsheets for decontamination of the LLLW currently stored at ORNL. Experimental measurements with inorganic ion exchangers focused on batch separations of cesium using several transition-metal hexacyanoferrate(2) compositions (ferrocyanides) and of strontium using titanium oxide-based sorbents. Cesium distribution coefficients in the range of 1 x 10 6 were generally observed with nickel and cobalt ferrocyanides at pH values ≤11, yielding DFs of about 100 with 100 ppm sorbent in a single-stage batch separation. Most organic ion-exchange resins are not very effective for cesium removal from such high salt concentrations, but a new resorcinol-based resin developed at the Savannah River Site was found to be considerably superior to any other such material tested. Several chelating resins were effective for removing strontium from the waste simulants. An ion-exchange column test successfully demonstrated the simultaneous removal of both cesium and strontium from a waste simulant solution

  12. Spray Calciner/In-Can Melter high-level waste solidification technical manual

    International Nuclear Information System (INIS)

    Larson, D.E.

    1980-09-01

    This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application

  13. Performance of a wiped film evaporator with simulated high level waste slurries

    International Nuclear Information System (INIS)

    Dierks, R.D.; Bonner, W.F.

    1975-01-01

    The horizontal, reverse taper, wiped film evaporator that was evaluated demonstrated a number of positive characteristics with respect to its applicability in the solidification of nuclear fuel recovery process wastes. Foremost among these is its ability to remove the bulk (80 to 90 percent) of the liquid associated with any of the purex-type high level, intermediate level, or mixed waste slurries. The major disadvantage of the evaporator is its current inability to discharge a product that is low enough in liquid content to avoid sticking to the evaporator discharge nozzle. Also, while the indirect indications of the torque required to turn the rotor and the power drawn by the drive motor are indicative of the liquid content of the discharged product, no reliable correlation has been found to cover all of the possible flow rates and feed stock compositions that the evaporator may be required to handle. In addition, no reliable means has been found to indicate the presence or absence of product flow through the discharge nozzle. The lack of a positive means of moving the product concentrate out of the evaporator and into a high temperature receiver is an undesirable feature of the evaporator. Pulverized glass former, or frit, was added to the evaporator feedstock in a ratio of frit to metal oxides of 2 to 1, and the resulting mixture successfully evaporated to a concentrate containing about 50 percent solids. In general, the performance of the wiped film evaporator evaluated was favorable for its use in a nuclear waste fixation process, however further development of the rotor design, power input, and operating techniques will be required to produce a free flowing solid product

  14. Method of processing nitrate-containing radioactive liquid wastes

    International Nuclear Information System (INIS)

    Ogawa, Norito; Nagase, Kiyoharu; Otsuka, Katsuyuki; Ouchi, Jin.

    1983-01-01

    Purpose: To efficiently concentrate nitrate-containing low level radioactive liquid wastes by electrolytically dialyzing radioactive liquid wastes to decompose the nitrate salt by using an electrolytic cell comprising three chambers having ion exchange membranes and anodes made of special materials. Method: Nitrate-containing low level radioactive liquid wastes are supplied to and electrolytically dialyzed in a central chamber of an electrolytic cell comprising three chambers having cationic exchange membranes and anionic exchange membranes made of flouro-polymer as partition membranes, whereby the nitrate is decomposed to form nitric acid in the anode chamber and alkali hydroxide compound or ammonium hydroxide in the cathode chamber, as well as concentrate the radioactive substance in the central chamber. Coated metals of at least one type of platinum metal is used as the anode for the electrolytic cell. This enables efficient industrial concentration of nitrate-containing low level radioactive liquid wastes. (Yoshihara, H.)

  15. Waste characterization for radioactive liquid waste evaporators at Argonne National Laboratory - West

    International Nuclear Information System (INIS)

    Christensen, B. D.

    1999-01-01

    Several facilities at Argonne National Laboratory - West (ANL-W) generate many thousand gallons of radioactive liquid waste per year. These waste streams are sent to the AFL-W Radioactive Liquid Waste Treatment Facility (RLWTF) where they are processed through hot air evaporators. These evaporators remove the liquid portion of the waste and leave a relatively small volume of solids in a shielded container. The ANL-W sampling, characterization and tracking programs ensure that these solids ultimately meet the disposal requirements of a low-level radioactive waste landfill. One set of evaporators will process an average 25,000 gallons of radioactive liquid waste, provide shielding, and reduce it to a volume of six cubic meters (container volume) for disposal. Waste characterization of the shielded evaporators poses some challenges. The process of evaporating the liquid and reducing the volume of waste increases the concentrations of RCIU regulated metals and radionuclides in the final waste form. Also, once the liquid waste has been processed through the evaporators it is not possible to obtain sample material for characterization. The process for tracking and assessing the final radioactive waste concentrations is described in this paper, The structural components of the evaporator are an approved and integral part of the final waste stream and they are included in the final waste characterization

  16. Evaluation of conditioned high-level waste forms

    International Nuclear Information System (INIS)

    Mendel, J.E.; Turcotte, R.P.; Chikalla, T.D.; Hench, L.L.

    1983-01-01

    The evaluation of conditioned high-level waste forms requires an understanding of radiation and thermal effects, mechanical properties, volatility, and chemical durability. As a result of nuclear waste research and development programs in many countries, a good understanding of these factors is available for borosilicate glass containing high-level waste. The IAEA through its coordinated research program has contributed to this understanding. Methods used in the evaluation of conditioned high-level waste forms are reviewed. In the US, this evaluation has been facilitated by the definition of standard test methods by the Materials Characterization Center (MCC), which was established by the Department of Energy (DOE) in 1979. The DOE has also established a 20-member Materials Review Board to peer-review the activities of the MCC. In addition to comparing waste forms, testing must be done to evaluate the behavior of waste forms in geologic repositories. Such testing is complex; accelerated tests are required to predict expected behavior for thousands of years. The tests must be multicomponent tests to ensure that all potential interactions between waste form, canister/overpack and corrosion products, backfill, intruding ground water and the repository rock, are accounted for. An overview of the status of such multicomponent testing is presented

  17. Evaluation of solidified high-level waste forms

    International Nuclear Information System (INIS)

    1981-01-01

    One of the objectives of the IAEA waste management programme is to coordinate and promote development of improved technology for the safe management of radioactive wastes. The Agency accomplished this objective specifically through sponsoring Coordinated Research Programmes on the ''Evaluation of Solidified High Level Waste Products'' in 1977. The primary objectives of this programme are to review and disseminate information on the properties of solidified high-level waste forms, to provide a mechanism for analysis and comparison of results from different institutes, and to help coordinate future plans and actions. This report is a summary compilation of the key information disseminated at the second meeting of this programme

  18. Radioactive liquid wastes processing device

    International Nuclear Information System (INIS)

    Sauda, Kenzo; Koshiba, Yukihiko; Yagi, Takuro; Yamazaki, Hideki.

    1985-01-01

    Purpose: To carry out optimum photooxidizing procession following after the fluctuation in the density of organic materials in radioactive liquid wastes to thereby realize automatic remote procession. Constitution: A reaction tank is equipped with an ultraviolet lamp and an ozone dispersing means for the oxidizing treatment of organic materials in liquid wastes under the irradiation of UV rays. There are also provided organic material density measuring devices to the inlet and outlet of the reaction tank, and a control device for controlling the UV lamp power adjusting depending on the measured density. The output of the UV lamp is most conveniently adjusted by changing the applied voltage. The liquid wastes in which the radioactivity dose is reduced to a predetermined level are returned to the reaction tank by the operation of a switching valve for reprocession. The amount of the liquid wastes at the inlet is controlled depending on the measured ozone density by the adjusting valve. In this way, the amount of organic materials to be subjected to photolysis can be kept within a certain limit. (Kamimura, M.)

  19. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    1985-03-01

    This report presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste. It represents a major update and expansion of the Analysis presented to Congress in our summary report, Managing Commercial High-Level Radioactive Waste, published in April of 1982 (NWPA). This new report is intended to contribute to the implementation of NWPA, and in particular to Congressional review of three major documents that DOE will submit to the 99th Congress: a Mission Plan for the waste management program; a monitored retrievable storage (MRS) proposal; and a report on mechanisms for financing and managing the waste program. The assessment was originally focused on the ocean disposal of nuclear waste. OTA later broadened the study to include all aspects of high-level waste disposal. The major findings of the original analysis were published in OTA's 1982 summary report

  20. Pore solution chemistry of simulated low-level liquid waste incorporated in cement grouts

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1995-12-01

    Expressed pore solutions from simulated low level liquid waste cement grouts cured at room temperature, 50 degree C and 90 degree C for various duration were analyzed by standard chemical methods and ion chromatography. The solid portions of the grouts were formulated with portland cement, fly ash, slag, and attapulgite clay in the ratios of 3:3:3:1. Two different solutions simulating off-gas condensates expected from vitrification of Hanford low level tank wastes were made. One is highly alkaline and contains the species Na + , P0 4 3- , N0 2 - , NO 3 - and OH - . The other is carbonated and contains the species, Na + , PO 4 3- , NO 2 - , NO 3 - , and CO 3 2- . In both cases phosphate rapidly disappeared from the pore solution, leaving behind sodium in the form of hydroxide. The carbonates were also removed from the pore solution to form calcium carbonate and possibly calcium monocarboaluminate. These reactions resulted in the increase of hydroxide ion concentration in the early period. Subsequently there was a significant reduction OH - and Na + ion concentrations. In contrast high concentration of N0 2 - and N0 3 - were retained in the pore solution indefinitely

  1. Technetium Chemistry in High-Level Waste

    International Nuclear Information System (INIS)

    Hess, Nancy J.

    2006-01-01

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry

  2. Fluidized bed system for calcination of high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Pande, D P; Prasad, T L; Yadgiri, N K; Theyyunni, T K [Process Engineering and Systems Development Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    During the operation of nuclear facilities significant quantities of radiochemical liquid effluents of different concentrations and varying chemical compositions are generated. These effluents contain activated radionuclides, corrosion products and fission products. The advantage of feeding the waste in solid form into the vitrifying equipment are multifold. Efforts are therefore made in many countries to calcine the high level waste, and obtain waste in the oxide form before the same is mixed with glass forming additives and fed into the melter unit. An experimental rig for fluidized bed calcination is constructed for carrying out the detailed investigation of this process, in order to adopt the same for plant scale application. To achieve better gas-solid contact and avoid raining down of solids, a distributor of bubble cap type was designed. A review of existing experience at various laboratories and design of new experimental facility for development of calciners are given. (author). 11 refs., 5 figs.

  3. Detection of free liquid in containers of solidified radioactive waste

    Science.gov (United States)

    Greenhalgh, Wilbur O.

    1985-01-01

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  4. Detection of free liquid in containers of solidified radioactive waste

    Science.gov (United States)

    Greenhalgh, W.O.

    Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  5. Separation and recovery of sodium nitrate from low-level radioactive liquid waste by electrodialysis

    International Nuclear Information System (INIS)

    Meguro, Yoshihiro; Kato, Atsushi; Watanabe, Yoko; Takahashi, Kuniaki

    2011-01-01

    An advanced method, in which electrodialysis separation of sodium nitrate and decomposition of nitrate ion are combined, has been developed to remove nitrate ion from low-level radioactive liquid wastes including nitrate salts of high concentration. In the electrodialysis separation, the sodium nitrate was recovered as nitric acid and sodium hydroxide. When they are reused, it is necessary to reduce the quantity of impurities getting mixed with them from the waste fluid as much as possible. In this study, therefore, a cation exchange membrane with permselectivity for sodium ion and an anion exchange membrane with permselectivity for monovalent anion were employed. Using these membranes sodium and nitrate ions were effectively removed form a sodium nitrate solution of high concentration. And also it was confirmed that sodium ion was successfully separated from cesium and strontium ions and that nitrate ion was separated from sulfate and phosphate ions. (author)

  6. Waste package designs for disposal of high-level waste in salt formations

    International Nuclear Information System (INIS)

    Basham, S.J. Jr.; Carr, J.A.

    1984-01-01

    In the United States of America the selected method for disposal of radioactive waste is mined repositories located in suitable geohydrological settings. Currently four types of host rocks are under consideration: tuff, basalt, crystalline rock and salt. Development of waste package designs for incorporation in mined salt repositories is discussed. The three pertinent high-level waste forms are: spent fuel, as disassembled and close-packed fuel pins in a mild steel canister; commercial high-level waste (CHLW), as borosilicate glass in stainless-steel canisters; defence high-level waste (DHLW), as borosilicate glass in stainless-steel canisters. The canisters are production and handling items only. They have no planned long-term isolation function. Each waste form requires a different approach in package design. However, the general geometry and the materials of the three designs are identical. The selected waste package design is an overpack of low carbon steel with a welded closure. This container surrounds the waste forms. Studies to better define brine quantity and composition, radiation effects on the salt and brines, long-term corrosion behaviour of the low carbon steel, and the leaching behaviour of the spent fuel and borosilicate glass waste forms are continuing. (author)

  7. Timing of High-level Waste Disposal

    International Nuclear Information System (INIS)

    2008-01-01

    This study identifies key factors influencing the timing of high-level waste (HLW) disposal and examines how social acceptability, technical soundness, environmental responsibility and economic feasibility impact on national strategies for HLW management and disposal. Based on case study analyses, it also presents the strategic approaches adopted in a number of national policies to address public concerns and civil society requirements regarding long-term stewardship of high-level radioactive waste. The findings and conclusions of the study confirm the importance of informing all stakeholders and involving them in the decision-making process in order to implement HLW disposal strategies successfully. This study will be of considerable interest to nuclear energy policy makers and analysts as well as to experts in the area of radioactive waste management and disposal. (author)

  8. Multipurpose optimization models for high level waste vitrification

    International Nuclear Information System (INIS)

    Hoza, M.

    1994-08-01

    Optimal Waste Loading (OWL) models have been developed as multipurpose tools for high-level waste studies for the Tank Waste Remediation Program at Hanford. Using nonlinear programming techniques, these models maximize the waste loading of the vitrified waste and optimize the glass formers composition such that the glass produced has the appropriate properties within the melter, and the resultant vitrified waste form meets the requirements for disposal. The OWL model can be used for a single waste stream or for blended streams. The models can determine optimal continuous blends or optimal discrete blends of a number of different wastes. The OWL models have been used to identify the most restrictive constraints, to evaluate prospective waste pretreatment methods, to formulate and evaluate blending strategies, and to determine the impacts of variability in the wastes. The OWL models will be used to aid in the design of frits and the maximize the waste in the glass for High-Level Waste (HLW) vitrification

  9. Study of shrimp shell derivatives for treating of low-level radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hayeripour, S. [Tonkabon Islamic Azad Univ., Tonkabon (Iran, Islamic Republic of). College of the Environment; Malmasi, S. [North Tehran Islamic Azad Univ., Tehran (Iran, Islamic Republic of). College of the Environment

    2006-07-01

    Chitin derivatives can be used to treat liquid wastes that include heavy metals of radionuclides. In this study, 4 types of chitin derivatives from shrimp shell waste were investigated for their potential in decontaminating and treating low-level radioactive liquid waste (LLW). The adsorption of caesium (Cs); cobalt (Co); and manganese (Mn) isotopes on chitin derivatives were investigated using a batch and column system with variations in diameter, pH, and length of treatment. Chitin derivatives included shrimp shells; de-mineralized shrimp shells; chitin extracted from shrimp shells; and chitosan extracted from shrimp shell waste. Three types of simulated solutions were prepared to study and compare adsorption performance: (1) a mono cationic solution consisting of stable isotopes; (2) a solution containing 3 stable cations; and (3) a simulated radioactive waste containing Cs-137, Co-60, and Mn-54. Results of the experiments showed that all 4 chitin derivatives were capable of adsorbing the isotopes. Despite its low pH, chitosan showed the highest adsorption efficiency. It was concluded that shrimps shells provided unreliable results under different operating conditions. The demineralized shells were suitable for removing Co from solutions. Row shells were not recommended as a suitable adsorbent for radionuclides removal. 14 refs., 2 tabs., 6 figs.

  10. Physical and chemical characterization of borosilicate glasses containing Hanford high-level wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Palmer, R.A.

    1980-10-01

    Scouting studies are being performed to develop and evaluate silicate glass forms for immobilization of Hanford high-level wastes. Detailed knowledge of the physical and chemical properties of these glasses is required to assess their suitability for long-term storage or disposal. Some key properties to be considered in selecting a glass waste form include leach resistance, resistance to radiation, microstructure (includes devitrification behavior or crystallinity), homogeneity, viscosity, electrical resistivity, mechanical ruggedness, thermal expansion, thermal conductivity, density, softening point, annealing point, strain point, glass transformation temperature, and refractive index. Other properties that are important during processing of the glass include volatilization of glass and waste components, and corrosivity of the glass on melter components. Experimental procedures used to characterize silicate waste glass forms and typical properties of selected glass compositions containing simulated Hanford sludge and residual liquid wastes are presented. A discussion of the significance and use of each measured property is also presented

  11. Isolation of transplutonium elements from high-level radioactive wastes using diphenyl(dibutylcarbamoylmethyl)phosphine oxide

    International Nuclear Information System (INIS)

    Chmutova, M.K.; Litvina, M.N.; Pribylova, G.A.; Ivanova, L.A.; Myasoedov, B.F.; Smirnov, I.V.; Shadrin, A.Yu.

    1999-01-01

    Consequent stages of development of principal technological scheme of extraction separation of transplutonium elements from high-level radioactive wastes of spent fuel reprocessing are presented. Approach to reagent selection from the series of carbamoylmethylphosphine oxides is based. Distribution of transplutonium elements and accompanying elements between model solution of high-level radioactive wastes and solution of reagent in organic solvent is investigated. Methods of separation of transplutonium elements, reextraction of transplutonium elements together with rare earth elements are developed. Principal technological scheme of transplutonium elements separation from nonevaporated raffinates of spent fuel of WWER type reactors and method of separation of transplutonium and rare earth elements in weakly acid reextract with the use of liquid chromatography with free immobile phase are proposed [ru

  12. High-level waste-form-product performance evaluation

    International Nuclear Information System (INIS)

    Bernadzikowski, T.A.; Allender, J.S.; Stone, J.A.; Gordon, D.E.; Gould, T.H. Jr.; Westberry, C.F. III.

    1982-01-01

    Seven candidate waste forms were evaluated for immobilization and geologic disposal of high-level radioactive wastes. The waste forms were compared on the basis of leach resistance, mechanical stability, and waste loading. All forms performed well at leaching temperatures of 40, 90, and 150 0 C. Ceramic forms ranked highest, followed by glasses, a metal matrix form, and concrete. 11 tables

  13. Durability, mechanical, and thermal properties of experimental glass-ceramic forms for immobilizing ICPP high level waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1990-01-01

    The high-level liquid waste generated at the Idaho Chemical Processing Plant (ICPP) is routinely solidified into granular calcined high-level waste (HLW) and stored onsite. Research is being conducted at the ICPP on methods of immobilizing the HLW, including developing a durable glass-ceramic form which has the potential to significantly reduce the final waste volume by up to 60% compared to a glass form. Simulated, pilot plant, non-radioactive, calcines similar to the composition of the calcined HLW and glass forming additives are used to produce experimental glass-ceramic forms. The objective of the research reported in this paper is to study the impact of ground calcine particle size on durability and mechanical and thermal properties of experimental glass-ceramic forms

  14. Properties and characteristics of high-level waste glass

    International Nuclear Information System (INIS)

    Ross, W.A.

    1977-01-01

    This paper has briefly reviewed many of the characteristics and properties of high-level waste glasses. From this review, it can be noted that glass has many desirable properties for solidification of high-level wastes. The most important of these include: (1) its low leach rate; (2) the ability to tolerate large changes in waste composition; (3) the tolerance of anticipated storage temperatures; (4) its low surface area even after thermal shock or impact

  15. High-level waste management technology program plan

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  16. High-level waste management technology program plan

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs

  17. Removal of palladium precipitate from a simulated high-level radioactive liquid waste by reduction by ascorbic acid

    International Nuclear Information System (INIS)

    Kim, Eung Ho; Yoo, Jae Hyung; Choi, Cheong Song

    1998-01-01

    A study of the selective removal of Palladium from a simulated solution of high-level radioactive liquid waste (HLLW) was carried out. The simulated solution contained 7 representative elements (Pd 2+ , Cs + , Sr 2+ , Fe 3+ , MoO 2 2+ , Ru 4+ , and Nd 3+ ) typical of HLLW, ascorbic acid was added to the solution at room temperature. Pd 2+ in the simulated solution was easily reduced to Pd metal by the ascorbic acid and then the metal precipitate could be removed from the solution, whereas other elements remained mainly in solution. When the resulting Pd metal was left in solution, it was reoxidized to Pb 2+ ion and redissolved in a nitric acid medium. The oxidation rate of Pd 2+ depended on the presence of a transition metal such as ferric ion, and was also in proportion to the concentration of nitric acid and in inverse proportion to the concentration of ascrobic acid. (orig.)

  18. High-level radioactive wastes

    International Nuclear Information System (INIS)

    Grissom, M.C.

    1982-10-01

    This bibliography contains 812 citations on high-level radioactive wastes included in the Department of Energy's Energy Data Base from January 1981 through July 1982. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  19. Materials Science of High-Level Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-01

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams

  20. Decontamination liquid waste processing method

    International Nuclear Information System (INIS)

    Enda, Masami; Hosaka, Katsumi.

    1992-01-01

    Liquid wastes after electrolytic reduction are caused to flow through an anionic exchange membrane in a diffusion dialysis step, and liquid wastes and dialyzed water are passed in a countercurrent manner. Since acids in the liquid wastes transfer on the side of the dialyzed water due to the difference of concentration between the liquid wastes and the dialyzed water, acids can be easily recovered from the liquid wastes. If the acid-removed liquid wastes are put to electrodeposition in an electrodepositing step, the electrodepositing reactions between radioactive materials such as Co ion, Mn ion and leached metals such as Fe ions and Cr ions are caused preferentially to hydrogen generation reaction on a metal deposition cathode. Accordingly, metal ions can be easily separated from the liquid wastes. Since the separated liquid wastes are an aqueous solution in which cerium ions as a decontaminant and an acid at low concentration are dissolved, the concentration thereof is controlled by mixing them to acid recovering water after the diffusion dialysis and they can be reused as the decontaminant. (T.M.)

  1. Radioactive Waste Management Research Program Plan for high-level waste: 1987

    International Nuclear Information System (INIS)

    1987-05-01

    This plan will identify and resolve technical and scientific issues involved in the NRC's licensing and regulation of disposal systems intended to isolate high level hazardous radioactive wastes (HLW) from the human environment. The plan describes the program goals, discusses the research approach to be used, lays out peer review procedures, discusses the history and development of the high level radioactive waste problem and the research effort to date and describes study objectives and research programs in the areas of materials and engineering, hydrology and geochemistry, and compliance assessment and modeling. The plan also details the cooperative interactions with international waste management research programs. Proposed Earth Science Seismotectonic Research Program plan for radioactive waste facilities is appended

  2. Talc-silicon glass-ceramic waste forms for immobilization of high- level calcined waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1993-06-01

    Talc-silicon glass-ceramic waste forms are being evaluated as candidates for immobilization of the high level calcined waste stored onsite at the Idaho Chemical Processing Plant. These glass-ceramic waste forms were prepared by hot isostatically pressing a mixture of simulated nonradioactive high level calcined waste, talc, silicon and aluminum metal additives. The waste forms were characterized for density, chemical durability, and glass and crystalline phase compositions. The results indicate improved density and chemical durability as the silicon content is increased

  3. Final report on cermet high-level waste forms

    International Nuclear Information System (INIS)

    Kobisk, E.H.; Quinby, T.C.; Aaron, W.S.

    1981-08-01

    Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures

  4. UKAEA contract no. 3: miscellaneous solid, liquid and gaseous wastes

    International Nuclear Information System (INIS)

    Partridge, B.A.

    1984-12-01

    This document reports work carried out in 1982/83 on the following topics concerned with the treatment and disposal of intermediate level wastes: flowsheeting; dewatering low and medium level radioactive wastes; applications of ultrafiltration in the treatment of radioactive liquid wastes; ion exchange processes; electrical processes for the treatment of medium active liquid wastes; chemical conversion of Zircaloy cladding to oxide; fast reactor fuel element cladding; dissolver residues; fuel cladding and ion exchanger immobilisation - radioactive trials; thermal techniques; development and assessment of medium level waste forms. (U.K.)

  5. High-Level Waste System Process Interface Description

    International Nuclear Information System (INIS)

    D'Entremont, P.D.

    1999-01-01

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment

  6. Liquid and Gaseous Waste Operations Department Annual Operating Report, CY 1993

    International Nuclear Information System (INIS)

    Maddox, J.J.; Scott, C.B.

    1994-02-01

    This report summarizes the activities of the waste management operations section of the liquid and gaseous waste operations department at ORNL for 1993. The process waste, liquid low-level waste, gaseous waste systems activities are reported, as well as the low-level waste solidification project. Upgrade activities is the various waste processing and treatment systems are summarized. A maintenance activity overview is provided, and program management, training, and other miscellaneous activities are covered

  7. Update of the management strategy for Oak Ridge National Laboratory Liquid Low-Level Waste

    International Nuclear Information System (INIS)

    Robinson, S.M.; Abraham, T.J.; DePaoli, S.M.; Walker, A.B.

    1995-04-01

    The strategy for management of the Oak Ridge National Laboratory's (ORNL) radioactively contaminated liquid waste was reviewed in 1991. The latest information available through the end of 1990 on waste characterization, regulations, US Department of Energy (DOE) budget guidance, and research and development programs was evaluated to determine how the strategy should be revised. Few changes are needed to update the strategy to reflect new waste characterization, research, and regulatory information. However, recent budget guidance from DOE indicates that minimum funding will not be sufficient to accomplish original objectives to upgrade the liquid low-level waste (LLLW) system to comply with the Federal Facilities Agreement, provide long-term LLLW treatment capability, and minimize environmental, safety, and health risks. Options are presented that might allow the ORNL LLLW system to continue operations temporarily, but they would significantly reduce its capabilities to handle emergency situations, provide treatment for new waste streams, and accommodate waste from the Environmental Restoration Program and from decontamination and decommissioning of surplus facilities. These options are also likely to increase worker radiation exposure, risk of environmental insult, and generation of solid waste for on-site and off-site disposal/storage beyond existing facility capacities. The strategy will be fully developed after receipt of additional guidance. The proposed budget limitations are too severe to allow ORNL to meet regulatory requirements or continue operations long term

  8. CHARACTERISATION OF SOLID AND LIQUID PINEAPPLE WASTE

    Directory of Open Access Journals (Sweden)

    Abdullah Abdullah

    2011-07-01

    Full Text Available The pineapple waste is contain high concentration of biodegradable organic material and suspended solid. As a result it has a high BOD and extremes of pH conditions. The pineapple wastes juice contains mainly sucrose, glucose, fructose and other nutrients. The characterisation this waste is needed to reduce it by  recycling to get raw material or  for  conversion into useful product of higher value added products such as organic acid, methane , ethanol, SCP and enzyme. Analysis of sugar indicates that liquid waste contains mainly sucrose, glucose and fructose.  The dominant sugar was fructose, glucose and sucrose.  The fructose and glucose levels were similar to each other, with fructose usually slightly higher than glucose. The total sugar and citric acid content were 73.76 and 2.18 g/l. The sugar content in solid waste is glucose and fructose was 8.24 and 12.17 %, no sucrose on this waste

  9. Analysis of release and transport of aerial radioactive materials in accident of evaporation to dryness caused by boiling of reprocessed high-level liquid waste

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Ishikawa, Jun; Abe, Hitoshi

    2015-01-01

    An accident of evaporation to dryness caused by boiling of high-level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, some amount of fission products (FPs) will be transferred to the vapor phase in the tank, and could be released to the environment. Therefore, the quantitative estimation of the transport and release behavior of FPs is one of the key issues in the assessment of the accident consequence. To resolve this issue, a systematic analysis method with computer codes has been developed on the basis of the phenomenological behavior in the accident of evaporation to dryness caused by boiling of HLLW. A simulation study demonstrated that the behavior of liquid waste temperature and the entrainment of mists were in good agreement with the experimental results during the early boiling stage, and that some issues to be resolved were pointed out for the estimation of the amount of transferred Ru to the vapor phase at the late boiling stage. (author)

  10. Production and properties of solidified high-level waste

    International Nuclear Information System (INIS)

    Brodersen, K.

    1980-08-01

    Available information on production and properties of solidified high-level waste are presented. The review includes literature up to the end of 1979. The feasibility of production of various types of solidified high-level wast is investigated. The main emphasis is on borosilicate glass but other options are also mentioned. The expected long-term behaviour of the materials are discussed on the basis of available results from laboratory experiments. Examples of the use of the information in safety analysis of disposal in salt formations are given. The work has been made on behalf of the Danish utilities investigation of the possibilities of disposal of high-level waste in salt domes in Jutland. (author)

  11. Isolation of Metals from Liquid Wastes: Reactive in Turbulent Thermal Reactors

    International Nuclear Information System (INIS)

    Wendt, Jost O.L.

    2001-01-01

    A Generic Technology for treatment of DOE Metal-Bearing Liquid Waste The DOE metal-bearing liquid waste inventory is large and diverse, both with respect to the metals (heavy metals, transuranics, radionuclides) themselves, and the nature of the other species (annions, organics, etc.) present. Separation and concentration of metals is of interest from the standpoint of reducing the volume of waste that will require special treatment or isolation, as well as, potentially, from the standpoint of returning some materials to commerce by recycling. The variety of metal-bearing liquid waste in the DOE complex is so great that it is unlikely that any one process (or class of processes) will be suitable for all material. However, processes capable of dealing with a wide variety of wastes will have major advantages in terms of process development, capital, and operating costs, as well as in environmental and safety permitting. Moreover, to the extent that a process operates well with a variety of metal-bearing liquid feedwastes, its performance is likely to be relatively robust with respect to the inevitable composition variations in each waste feed. One such class of processes involves high-temperature treatment of atomized liquid waste to promote reactive capture of volatile metallic species on collectible particulate substrates injected downstream of a flame zone. Compared to low-temperature processes that remove metals from the original liquid phase by extraction, precipitation, ion exchange, etc., some of the attractive features of high-temperature reactive scavenging are: The organic constituents of some metal-bearing liquid wastes (in particular, some low-level mixed wastes) must be treated thermally in order to meet the requirements of the Resource Conservation and Recovery Act (RCRA) and Toxic Substances Control Act (TSCA), and the laws of various states. No species need be added to an already complex liquid system. This is especially important in light of the fact

  12. 324 Radiochemical engineering cells and high level vault tanks mixed waste compliance status

    International Nuclear Information System (INIS)

    1994-01-01

    The 324 Building in the Hanford 300 Area contains Radiochemical Engineering Cells and High Level Vault tanks (the open-quotes REC/HLVclose quotes) for research and development activities involving radioactive materials. Radioactive mixed waste within this research installation, found primarily in B-Cell and three of the high level vault tanks, is subject to RCRA/DWR (open-quotes RCRAclose quotes) regulations for storage. This white paper provides a baseline RCRA compliance summary of MW management in the REC/HLV, based on best available knowledge. The REC/HLV compliance project, of which this paper is a part, is intended to achieve the highest degree of compliance practicable given the special technical difficulties of managing high activity radioactive materials, and to assure protection of human health and safety and the environment. The REC/HLV was constructed in 1965 to strict standards for the safe management of highly radioactive materials. Mixed waste in the REC/HLV consists of discarded tools and equipment, dried feed stock from nuclear waste melting experiments, contaminated particulate matter, and liquid feed stock from various experimental programs in the vault tanks. B-Cell contains most of these materials. Total radiological inventory in B-Cell is estimated at 3 MCi, about half of which is potentially open-quotes dispersibleclose quotes, that is, it is in small pieces or mobile particles. Most of the mixed waste currently in the REC/HLV was generated or introduced before mixed wastes were subjected to RCRA in 1987

  13. Denitration of simulated high-level liquid wastes and selective removal of cesium with zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, Hitoshi; Kanno, Takuji [Tohoku Univ., Sendai (Japan). Research Inst. of Mineral Dressing and Metallurgy; Kimura, Toshiya

    1982-03-01

    Denitration of high-level liquid wastes (HLW) from nuclear fuel reprocessing has been studied. Selective removal of Cs has been also examined with various types of zeolites. The following zeolites were used in this study; Na-synthetic mordenite (NaSM), Na-natural mordenite (NaNM), Na-natural clinoptilolite (NaCP) and H-synthetic mordenites (HSM). The effective denitration is found in the simulated HLW (15 components, 2N HNO/sub 3/ soln.) containing platinum group elements in the case of the addition of formic acid, and the pH of the solution shows the value of 5.4 when the excess formic acid ((HCOOH)/(HNO/sub 3/) = 2.0) was added. Platinum group elements may react as a catalyst for the decomposition of nitric acid and the excess formic acid. The break-through properties of NaSM column are poor for the simulated HLW, and the selective removal of Cs appears to be difficult. On the other hand, good results are obtained in the denitrated HLW, i.e., break-through capacity, total capacity and column utilization are 59.4 (meq./100 g zeolite), 147 (meq./100 g zeolite) and 40.4 (%), respectively. The break-through properties of NaSM and NaNM are superior to those of HSM. The break-through capacity and column utilization increase with an increase in column temperature.

  14. Denitration of simulated high-level liquid wastes and selective removal of cesium with zeolites

    International Nuclear Information System (INIS)

    Mimura, Hitoshi; Kanno, Takuji; Kimura, Toshiya.

    1982-01-01

    Denitration of high-level liquid wastes (HLW) from nuclear fuel reprocessing has been studied. Selective removal of Cs has been also examined with various types of zeolites. The following zeolites were used in this study; Na-synthetic mordenite (NaSM), Na-natural mordenite (NaNM), Na-natural clinoptilolite (NaCP) and H-synthetic mordenites (HSM). The effective denitration is found in the simulated HLW (15 components, 2N HNO 3 soln.) containing platinum group elements in the case of the addition of formic acid, and the pH of the solution shows the value of 5.4 when the excess formic acid ([HCOOH]/[HNO 3 ] = 2.0) was added. Platinum group elements may react as a catalyst for the decomposition of nitric acid and the excess formic acid. The break-through properties of NaSM column are poor for the simulated HLW, and the selective removal of Cs appears to be difficult. On the other hand, good results are obtained in the denitrated HLW, i.e., break-through capacity, total capacity and column utilization are 59.4 (meq./100 g zeolite), 147 (meq./100 g zeolite) and 40.4 (%), respectively. The break-through properties of NaSM and NaNM are superior to those of HSM. The break-through capacity and column utilization increase with an increase in column temperature. (author)

  15. Cermet high level waste forms: a pregress report

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1978-06-01

    The fixation of high level radioactive waste from both commercial and DOE defense sources as cermets is currently under study. This waste form consists of a continuous iron-nickel base metal matrix containing small particles of fission product oxides. Preliminary evaluations of cermets fabricated from a variety of simulated wastes indicate they possess properties providing advantages over other waste forms presently being considered, namely thermal conductivity, waste loading levels, and leach resistance. This report describes the progress of this effort, to date, since its initiation in 1977

  16. The treatment and disposal of liquid waste in the nuclear power industry

    International Nuclear Information System (INIS)

    Lewis, J.B.

    1978-01-01

    Paper presented by the head of the Industrial Chemistry Group at AERE Harwell at a symposium held by the University of Newcastle upon Tyne (UK) in association with the Institute of Water Pollution Control and the Institution of Chemical Engineers in September 1977. Main headings are as follows: general introduction; units of measurement of radioactivity; environmental considerations (disposal authorisations, natural background, critical path approach, discharges to the sea, discharges to rivers); types of liquid waste (general, high level wastes, wastes from chemical processing stages, wastes from nuclear power stations, miscellaneous wastes); treatment techniques (general, evaporation, chemical precipitation, ion exchange, reverse osmosis, electrodialysis); disposal of radioactive concentrates (high level wastes, sludges, exhausted ion exchangers, etc.). It is concluded that the main task remaining is to find the best means of ultimate disposal of high level wastes. (U.K.)

  17. The selective removal of 90Sr and 137Cs from liquid low-level waste at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Bostick, D.T.; Arnold, W.D.; Burgess, M.W.; Taylor, P.A.; Kent, T.E.

    1995-01-01

    Methods are being developed for the selective removal of the two principal radioactive contaminants, 90 Sr and 137 Cs, from liquid low-level waste generated and/or stored at Oak Ridge National Laboratory. These methods are to be used in a future centralized treatment facility at ORNL. Removal of 90 Sr in the proposed treatment flashed is based on coprecipitation from strongly alkaline waste by adding stable strontium to the waste solution. Ferric sulfate, added with the stable strontium, improves the 90 Sr removal and aids in the flocculation of the strontium carbonate (SrCO 3 ) precipitate. After separation of the solids, the resultant supernate is adjusted to pH 8 for the cesium removal treatment. Upon pH adjustment, aluminum originally present in the untreated alkaline waste precipitates and sorbs an additional amount of 90 Sr. Cesium is removed from the neutralized waste by two sequential treatments with potassium cobalt hexacyanoferrate (KCCF) slurry formed by the addition of potassium ferrocyanide (K 4 Fe(CN) 6 ) and cobalt nitrate (Co(NO 3 ) 2 ) solutions. The cumulative decontamination factors (DFs) for 90 Sr and 137 Cs in benchscale studies are 4900 and 1 x 10 6 , respectively, if high speed centrifugation is used for the liquid/solid separations. Efforts are now underway to evaluate process-scale techniques to perform the liquid/solid separations required for removal of SrCO 3 and 137 Cs-bearing hexacyanoferrate solids from the treated waste solution

  18. Sorption and chromatographic techniques for processing liquid waste of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gelis, V.M.; Milyutin, V.V.; Chuveleva, E.A.; Maslova, G.B.; Kudryavtseva, S.P.; Firsova, L.A.; Kozlitin, E.A.

    2000-01-01

    In the spent nuclear fuel processing procedures the significant quantity of high level liquid waste containing long-lived high toxic radionuclides of cesium, strontium, promethium, americium, curium, etc. is generated. Separation of those radionuclides from the waste not merely simplifies the further safe waste handling but also reduces the waste processing operation costs due to the market value of certain individual radionuclide preparations. Recovery and separation of high grade pure long-lived radionuclide preparations is frequently performed by means of chromatographic techniques. (authors)

  19. Treatment technologies for non-high-level wastes (USA)

    International Nuclear Information System (INIS)

    Cooley, C.R.; Clark, D.E.

    1976-06-01

    Non-high-level waste arising from operations at nuclear reactors, fuel fabrication facilities, and reprocessing facilities can be treated using one of several technical alternatives prior to storage. Each alternative and the associated experience and status of development are summarized. The technology for treating non-high-level wastes is generally available for industrial use. Improved techniques applicable to the commercial nuclear fuel cycle are being developed and demonstrated to reduce the volume of waste and to immobilize it for storage. 36 figures, 59 references

  20. Decontamination factor Improvement and Waste Reduction of Full-scaled Evaporation System for Liquid Radioactive Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Ju, Young Jong; Seol, Jeung Gun; Cho, Nam Chan [KNF, Daejeon (Korea, Republic of); Ha, Dong Hwan; Kim, Yun Kwan [Jeontech Co., Suwon (Korea, Republic of)

    2016-05-15

    Liquid radioactive waste is produced from nuclear power plants, nuclear research centers, radiopharmaceuticals and nuclear fuel fabrication plants, etc. Ion-exchange, chemical precipitation, evaporation, filtration, liquid/solid extraction and centrifugal are applied to treat the liquid waste. Chemical precipitation requires low capital and operation cost. However, it produces large amount of secondary waste and has low DF (decontamination factor). Evaporation process removes variety of radionuclides in high DF. But, it also has problems in scaling and foaming [3, 4]. In this study, it is investigated that the effect of switching lime precipitation and centrifugal processes to evaporation system for improvement of removal efficiency and decrease of waste in full-scaled radioactive wastewater treatment plant. By swapping full-scaled wastewater treatment system from the centrifugal and the lime precipitation to the evaporator and the crystallizer in the nuclear fuel fabrication plant, it was possible to increase removal efficiency and to minimize waste productivity. Radioactivity concentration of effluent is decreased from 0.01 Bq/mL to ND level. Besides, waste production was reduced from 15 drums/yr to 2 drums/yr (87%).

  1. PAIRWISE BLENDING OF HIGH LEVEL WASTE

    International Nuclear Information System (INIS)

    CERTA, P.J.

    2006-01-01

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending

  2. Comparison of selected foreign plans and practices for spent fuel and high-level waste management

    International Nuclear Information System (INIS)

    Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

    1990-04-01

    This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs

  3. Comparison of selected foreign plans and practices for spent fuel and high-level waste management

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

    1990-04-01

    This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.

  4. Material chemistry challenges in vitrification of high level radioactive waste

    International Nuclear Information System (INIS)

    Kaushik, C.P.

    2008-01-01

    Full text: Nuclear technology with an affective environmental management plan and focused attention on safety measures is a much cleaner source of electricity generation as compared to other sources. With this perspective, India has undertaken nuclear energy program to share substantial part of future need of power. Safe containment and isolation of nuclear waste from human environment is an indispensable part of this programme. Majority of radioactivity in the entire nuclear fuel cycle is high level radioactive liquid waste (HLW), which is getting generated during reprocessing of spent nuclear fuels. A three stage strategy for management of HLW has been adopted in India. This involves (i) immobilization of waste oxides in stable and inert solid matrices, (ii) interim retrievable storage of the conditioned waste product under continuous cooling and (iii) disposal in deep geological formation. Borosilicate glass matrix has been adopted in India for immobilization of HLW. Material issue are very important during the entire process of waste immobilization. Performance of the materials used in nuclear waste management determines its safety/hazards. Material chemistry therefore has a significant bearing on immobilization science and its technological development for management of HLW. The choice of suitable waste form to deploy for nuclear waste immobilization is difficult decision and the durability of the conditioned product is not the sole criterion. In any immobilization process, where radioactive materials are involved, the process and operational conditions play an important role in final selection of a suitable glass formulation. In remotely operated vitrification process, study of chemistry of materials like glass, melter, materials of construction of other equipment under high temperature and hostile corrosive condition assume significance for safe and un-interrupted vitrification of radioactive to ensure its isolation waste from human environment. The present

  5. Centralized cement solidification technique for low-level radioactive wastes

    International Nuclear Information System (INIS)

    Matsuda, Masami; Nishi, Takashi; Izumida, Tatsuo; Tsuchiya, Hiroyuki.

    1996-01-01

    A centralized cement solidification system has been developed to enable a single facility to solidify such low-level radioactive wastes as liquid waste, spent ion exchange resin, incineration ash, and miscellaneous solid wastes. Since the system uses newly developed high-performance cement, waste loading is raised and deterioration of waste forms after land burial prevented. This paper describes the centralized cement solidification system and the features of the high-performance cement. Results of full-scale pilot plant tests are also shown from the viewpoint of industrial applicability. (author)

  6. Water quality for liquid wastes

    International Nuclear Information System (INIS)

    Mizuniwa, Fumio; Maekoya, Chiaki; Iwasaki, Hitoshi; Yano, Hiroaki; Watahiki, Kazuo.

    1985-01-01

    Purpose: To facilitate the automation of the operation for a liquid wastes processing system by enabling continuous analysis for the main ingredients in the liquid wastes accurately and rapidly. Constitution: The water quality monitor comprises a sampling pipeway system for taking out sample water for the analysis of liquid wastes from a pipeway introducing liquid wastes to the liquid wastes concentrator, a filter for removing suspended matters in the sample water and absorption photometer as a water quality analyzer. A portion of the liquid wastes is passed through the suspended matter filter by a feedpump. In this case, sulfate ions and chloride ions in the sample are retained in the upper portion of a separation color and, subsequently, the respective ingredients are separated and leached out by eluting solution. Since the leached out ingredients form ferric ions and yellow complexes respectively, their concentrations can be detected by the spectrum photometer. Accordingly, concentration for the sodium sulfate and sodium chloride in the liquid wastes can be analyzed rapidly, accurately and repeatedly by which the water quality can be determined rapidly and accurately. (Yoshino, Y.)

  7. US program for the immobilization of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1979-01-01

    A program has been developed for long-term management of high-level nuclear waste. The Savannah River Operations Office of the US Department of Energy is acting as the lead office for this program with technical advice from the E.I. du Pont de Nemours and Company. The purpose of the long-term program is to immobilize the DOE high-level waste in forms that act as highly efficient barriers against radionuclide release to the disposal site and to provide technology for similar treatment of commercial high-level waste in case reprocessing of commercial nuclear fuels is ever resumed. Descriptions of existing DOE and commercial wastes, program strategy, program expenditures, development of waste forms, evaluation and selection of waste forms, regulatory aspects of waste form selection, project schedules, and cost estimates for immobilization facilities are discussed

  8. High-level waste melter alternatives assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Calmus, R.B.

    1995-02-01

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program`s (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant`s melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy.

  9. High-level waste melter alternatives assessment report

    International Nuclear Information System (INIS)

    Calmus, R.B.

    1995-02-01

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program's (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant's melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy

  10. Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste.

    Science.gov (United States)

    Chen, Xiang; Yan, Wei; Sheng, Kuichuan; Sanati, Mehri

    2014-02-01

    Co-digestion of food waste and green waste was conducted with six feedstock mixing ratios to evaluate biogas production. Increasing the food waste percentage in the feedstock resulted in an increased methane yield, while shorter retention time was achieved by increasing the green waste percentage. Food waste/green waste ratio of 40:60 was determined as preferred ratio for optimal biogas production. About 90% of methane yield was obtained after 24.5 days of digestion, with total methane yield of 272.1 mL/g VS. Based the preferred ratio, effect of total solids (TS) content on co-digestion of food waste and green waste was evaluated over a TS range of 5-25%. Results showed that methane yields from high-solids anaerobic digestion (15-20% TS) were higher than the output of liquid anaerobic digestion (5-10% TS), while methanogenesis was inhibited by further increasing the TS content to 25%. The inhibition may be caused by organic overloading and excess ammonia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Low and medium level liquid waste processing at the new La Hague reprocessing plant

    International Nuclear Information System (INIS)

    Alexandre, D.

    1986-05-01

    Reprocessing of spent nuclear fuels produces low and medium activity liquid wastes. These radioactive wastes are decontamined before release in environment. The new effluent processing plant, which is being built at La Hague, is briefly described. Radionuclides are removed from liquid wastes by coprecipitation. The effluent is released after decantation and filtration. Insoluble sludges are conditioned in bitumen [fr

  12. Low-level liquid waste decontamination by ion exchange

    International Nuclear Information System (INIS)

    Campbell, D.O.; Lee, D.D.; Dillow, T.A.

    1991-12-01

    Improved processes are being developed to treat contaminated liquid wastes that have been and continue to be generated at Oak Ridge National Laboratory. Both inorganic and organic ion-exchange methods have given promising results. Nickel and cobalt hexacyanoferrate(2) compounds are extremely selective for cesium removal, with distribution coefficients in excess of 10 6 and remarkable insensitivity to competition from sodium and potassium. They tend to lose effectiveness at pH > ∼11, but some formulations are useful for limited periods of time up to pH ∼13. Sodium titanate is selective for strontium removal at high pH. The separations are so efficient that simple batch processes can yield large decontamination factors while generating small volumes of solid waste. A resorcinol-based resin developed at the Savannah River Site gave superior cesium removal, compared with other organic ion exchangers; the distribution coefficient was limited primarily by competition from potassium and was nearly independent of sodium. The optimum pH was ∼12.5. It was much less effective for strontium removal, which was limited by competition from sodium. 8 refs., 6 figs., 9 tabs

  13. Determination of total cyanide in Hanford Site high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Winters, W.I. [Westinghouse Hanford Co., Richland, WA (United States); Pool, K.H. [Pacific Northwest Lab., Richland, WA (United States)

    1994-05-01

    Nickel ferrocyanide compounds (Na{sub 2-x}Cs{sub x}NiFe (CN){sub 6}) were produced in a scavenging process to remove {sup 137}Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described.

  14. Determination of total cyanide in Hanford Site high-level wastes

    International Nuclear Information System (INIS)

    Winters, W.I.; Pool, K.H.

    1994-05-01

    Nickel ferrocyanide compounds (Na 2-x Cs x NiFe (CN) 6 ) were produced in a scavenging process to remove 137 Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described

  15. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m. The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m in radius. Using this process, ORNL has disposed of over 1.5 x 10 6 Ci of activity; the principal nuclides are 90 Sr and 137 Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 liters of slurry. Disposal cost per liter is about $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. Recent regulatory constraints may cause permanent cessation of the operation. Federal and state statutes, written for other types of injection facilities, impact the ORNL facility. This disposal process, which may have great applicability for disposal of many wastes, including hazardous wastes, may not be developed for future use

  16. Solidification of Savannah River Plant high level waste

    International Nuclear Information System (INIS)

    Maher, R.; Shafranek, L.F.; Kelley, J.A.; Zeyfang, R.W.

    1981-11-01

    Authorization for construction of the Defense Waste Processing Facility (DWPF) is expected in FY 83. The optimum time for stage 2 authorization is about three years later. Detailed design and construction will require approximately five years for stage 1, with stage 2 construction completed about two to three years later. Production of canisters of waste glass would begin in 1988, and the existing backlog of high level waste sludge stored at SRP would be worked off by about the year 2000. Stage 2 operation could begin in 1990. The technology and engineering are ready for construction and eventual operation of the DWPF for immobilizing high level radioactive waste at Savannah River Plant (SRP). Proceeding with this project will provide the public, and the leadership of this country, with a crucial demonstration that a major quantity of existing high level nuclear wastes can be safely and permanently immobilized. Early demonstration will both expedite and facilitate rational decision making on this aspect of the nuclear program. Delay in providing these facilities will result in significant DOE expenditures at SRP for new tanks just for continued temporary storage of wastes, and would probably result in dissipation of the intellectual and planning momentum that has built up in developing the project

  17. Waste acceptance product specifications for vitrified high-level waste forms

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Sproull, J.F.

    1993-01-01

    The Nuclear Waste Policy Act of 1982 mandated that all high-level waste (HLW) be sent to a federal geologic repository for permanent disposal. DOE published the Environmental Assessment in 1982 which identified borosilicate glass as the chosen HLW form. 1 In 1985 the Department of Energy instituted a Waste Acceptance Process to assure that DWPF glass waste forms would be acceptable to such a repository. This assurance was important since production of waste forms will precede repository construction and licensing. As part of this Waste Acceptance Process, the DOE Office of Civilian Radioactive Waste Management (RW) formed the Waste Acceptance Committee (WAC). The WAC included representatives from the candidate repository sites, the waste producing sites and DOE. The WAC was responsible for developing the Waste Acceptance Preliminary Specifications (WAPS) which defined the requirements the waste forms must meet to be compatible with the candidate repository geologies

  18. Effect of phosphate ion on filtration characteristics of solids generated in simulated high level liquid waste

    International Nuclear Information System (INIS)

    Kondo, Y.

    1998-01-01

    The effect of phosphate ion on the filtration characteristics of solids generated in a high level liquid waste was experimentally examined. Addition of phosphate ion into the simulated HLLW induced the formation of phosphate such as zirconium phosphate and phosphomolybdic acid. The filtration rate of zirconium phosphate abruptly dropped in the midst of filtration because of a gel-cake formation on the filter surface. The denitration of the simulated HLLW contained zirconium phosphate improved the filterability of this gelatinous solid. The filtration rates of denitrated HLLW decreased with increase of the phosphate ion concentration, since the solids formed by denitration had irregular particle size and configuration in the simulated HLLW with phosphate ion. To increase the filtration rate of denitrated HLLW, a solid suspension filtration tester was designed. The solid-suspension accelerated the filtration rate only in the simulated HLLW with more than 1500 ppm phosphate ion concentration. Under this condition, the simple agitation can easily suspend the constituent solids of filter cake in the solution and a much higher filtration rate can be obtained because the filter cake is continuously swept from the filter surface by rotation of propellers. (authors)

  19. Surveillance and maintenance plan for the inactive liquid low-level waste tanks at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-11-01

    ORNL has a total of 54 inactive liquid low-level waste (ILLLW) tanks. In the past, these tanks were used to contain radioactive liquid wastes from various research programs, decontamination operations, and reactor operations. The tanks have since been removed from service for various reasons; the majority were retired because of their age, some due to integrity compromises, and others because they did not meet the current standards set by the Federal Facilities Agreement (FFA). Many of the tanks contain residual radioactive liquids and/or sludges. Plans are to remediate all tanks; however, until remediation of each tank, this Surveillance and Maintenance (S ampersand M) Plan will be used to monitor the safety and inventory containment of these tanks

  20. Decision Document for Heat Removal from High-Level Waste Tanks

    International Nuclear Information System (INIS)

    WILLIS, W.L.

    2000-01-01

    This document establishes the combination of design and operational configurations that will be used to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. The chosen method--to use the primary and annulus ventilation systems to remove heat from the high-level waste tanks--is documented herein

  1. Performance of evaporators in high level radioactive chemical waste service

    International Nuclear Information System (INIS)

    Jenkins, C.F.

    1997-01-01

    Chemical processing of nuclear fuels and targets at Savannah River Site resulted in generation of millions of gallons of liquid wastes. The wastes were further processed to reduce volume and allow for extended temporary storage of a more concentrated material. Waste evaporators have been a central point for waste reduction for many years. Currently, the transfer and processing of the concentrated wastes for permanent storage requires dilution and results in generation of significant quantities of additional liquid wastes. A new round of volume reduction is required to fit existing storage capacity and to allow for removal of older vessels from service. Evaporator design, performance and repairs are discussed in this report

  2. LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION

    International Nuclear Information System (INIS)

    BOWERMAN, B.; CZAJKOWSKI, C.; DYER, R.S.; SORLIE, A.

    2000-01-01

    Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m 3 /year to 5,000 m 3 /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the process very

  3. Proposed classification scheme for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1986-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 defines high-level radioactive waste (HLW) as: (A) the highly radioactive material resulting from the reprocessing of spent nuclear fuel....that contains fission products in sufficient concentrations; and (B) other highly radioactive material that the Commission....determines....requires permanent isolation. This paper presents a generally applicable quantitative definition of HLW that addresses the description in paragraph (B). The approach also results in definitions of other waste classes, i.e., transuranic (TRU) and low-level waste (LLW). A basic waste classification scheme results from the quantitative definitions

  4. SPEEDUP simulation of liquid waste batch processing. Revision 1

    International Nuclear Information System (INIS)

    Shannahan, K.L.; Aull, J.E.; Dimenna, R.A.

    1994-01-01

    The Savannah River Site (SRS) has accumulated radioactive hazardous waste for over 40 years during the time SRS made nuclear materials for the United States Department of Energy (DOE) and its predecessors. This waste is being stored as caustic slurry in a large number of 1 million gallon steel tanks, some of which were initially constructed in the early 1950's. SRS and DOE intend to clean up the Site and convert this waste into stable forms which then can be safely stored. The liquid waste will be separated into a partially decontaminated low-level and radioactive high-level waste in one feed preparation operation, In-Tank Precipitation. The low-level waste will be used to make a concrete product called saltstone in the Saltstone Facility, a part of the Defense Waste Processing Facility (DWPF). The concrete will be poured into large vaults, where it will be permanently stored. The high-level waste will be added to glass-formers and waste slurry solids from another feed preparation operation, Extended Sludge Processing. The mixture will then be converted to a stable borosilicate glass by a vitrification process that is the other major part of the DWPF. This glass will be poured into stainless steel canisters and sent to a temporary storage facility prior to delivery to a permanent underground storage site

  5. Spent fuel and high-level radioactive waste storage

    International Nuclear Information System (INIS)

    Trigerman, S.

    1988-06-01

    The subject of spent fuel and high-level radioactive waste storage, is bibliographically reviewed. The review shows that in the majority of the countries, spent fuels and high-level radioactive wastes are planned to be stored for tens of years. Sites for final disposal of high-level radioactive wastes have not yet been found. A first final disposal facility is expected to come into operation in the United States of America by the year 2010. Other final disposal facilities are expected to come into operation in Germany, Sweden, Switzerland and Japan by the year 2020. Meanwhile , stress is placed upon the 'dry storage' method which is carried out successfully in a number of countries (Britain and France). In the United States of America spent fuels are stored in water pools while the 'dry storage' method is still being investigated. (Author)

  6. Electrical processes for liquid waste treatment

    International Nuclear Information System (INIS)

    Turner, A.D.; Bridger, N.J.; Junkison, A.R.; Pottinger, J.S.

    1987-08-01

    This report describes the development of electrical techniques for the treatment of liquid waste streams. Part I is concerned with solid/liquid separation and the demonstration of the electrokinetic thickening of flocs at inorganic membranes suitable for intermediate-level wastes and electrochemical cleaning of stainless steel microfilters and graphite ultrafilters. Part II describes work on the development of electrochemical ion exchange, particularly the use of inorganic absorption media and polarity reversal to enhance system selectivity. Work on the adsorption and desorption of plutonium in acid nitrate solution at various electrode materials is also included. (author)

  7. Development of high-level waste solidification technology 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Hyung; Kim, Hwan Young; Kim, In Tae [and others

    1999-02-01

    Spent nuclear fuel contains useful nuclides as valuable resource materials for energy, heat and catalyst. High-level wastes (HLW) are expected to be generated from the R and D activities and reuse processes. It is necessary to develop vitrification or advanced solidification technologies for the safe long-term management of high level wastes. As a first step to establish HLW vitrification technology, characterization of HLWs that would arise at KAERI site, glass melting experiments with a lab-scale high frequency induction melter, and fabrication and property evaluation of base-glass made of used HEPA filter media and additives were performed. Basic study on the fabrication and characterization of candidate ceramic waste form (Synroc) was also carried out. These HLW solidification technologies would be directly useful for carrying out the R and Ds on the nuclear fuel cycle and waste management. (author). 70 refs., 29 tabs., 35 figs.

  8. Proposed classification scheme for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1986-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 defines high-level (radioactive) waste (HLW) as (A) the highly radioactive material resulting from the reprocessing of spent nuclear fuel...that contains fission products in sufficient concentrations; and (B) other highly radioactive material that the Commission...determines...requires permanent isolation. This paper presents a generally applicable quantitative definition of HLW that addresses the description in paragraph B. The approach also results in definitions of other wastes classes, i.e., transuranic (TRU) and low-level waste (LLW). The basic waste classification scheme that results from the quantitative definitions of highly radioactive and requires permanent isolation is depicted. The concentrations of radionuclides that correspond to these two boundaries, and that may be used to classify radioactive wastes, are given

  9. Actinide separation of high-level waste using solvent extractants on magnetic microparticles

    International Nuclear Information System (INIS)

    Nunez, L.; Buchholz, B.A.; Kaminski, M.; Aase, S.B.; Brown, N.R.; Vandegrift, G.F.

    1994-01-01

    Polymeric-coated ferromagnetic particles with an absorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted by tributyl phosphate (TBP) are being evaluated for application in the separation and the recovery of low concentrations of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can be recovered from the waste solution using a magnet. The effectiveness of the extractant-absorbed particles at removing transuranics (TRU) from simulated solutions and various nitric acid solutions was measured by gamma and liquid scintillation counting of plutonium and americium. The HNO 3 concentration range was 0.01 M to 6M. The partition coefficients (K d ) for various actinides at 2M HNO 3 were determined to be between 3,000 and 30,000. These values are larger than those projected for TRU recovery by traditional liquid/liquid extraction. Results from transmission electron microscopy indicated a large dependence of K d on relative magnetite location within the polymer and the polymer surface area. Energy disperse spectroscopy demonstrated homogeneous metal complexation on the polymer surface with no metal clustering. The radiolytic stability of the particles was determined by using 60 Co gamma irradiation under various conditions. The results showed that K d more strongly depends on the nitric acid dissolution rate of the magnetite than the gamma irradiation dose. Results of actinide separation from simulated high-level waste representative of that at various DOE sites are also discussed

  10. Future directions of defense programs high-level waste technology programs

    International Nuclear Information System (INIS)

    Chee, T.C.; Shupe, M.W.; Turner, D.A.; Campbell, M.H.

    1987-01-01

    The Department of Energy has been managing high-level waste from the production of nuclear materials for defense activities over the last forty years. An objective for the Defense Waste and Transportation Management program is to develop technology which ensures the safe, permanent disposal of all defense radioactive wastes. Technology programs are underway to address the long-term strategy for permanent disposal of high-level waste generated at each Department of Energy site. Technology is being developed for assessing the hazards, environmental impacts, and costs of each long-term disposal alternative for selection and implementation. This paper addresses key technology development areas, and consideration of recent regulatory requirements associated with the long-term management of defense radioactive high-level waste

  11. Treatment of radioactive organics liquid wastes

    International Nuclear Information System (INIS)

    Morales Galarce, Tania

    1999-01-01

    Because of the danger that radioactive wastes can pose to society and to the environment a viable treatment alternative must be developed to prepare these wastes for final disposal. The waste studied in this work is a liquid organic waste contaminated with the radioisotope tritium. This must be treated and then changed into solid form in a 200 liter container. This study defined an optimum formulation that immobilizes the liquid waste. The organic waste is first submitted to an absorption treatment, with Celite absorbent, which had the best physical characteristics from the point of view of radioactive waste management. Then this was solidified by forming a cement mortar, using a highly resistant local cement, Polpaico 400. Various mixes were tested, with different water/cement, waste/absorbent and absorbed waste/cement ratios, until a mixture that met the quality control requirements was achieved. The optimum mixture obtained has a water/cement ratio of 0.35 (p/p) that is the amount of water needed to make the mixture workable, and minimum water for hydrating the cement; a waste/absorbent ration of 0.5 (v/v), where the organic liquid is totally absorbed, and is incorporated in the solid's crystalline network; and an absorbed waste/cement ratio of 0.8 (p/p), which represents the minimum amount of cement needed to obtain a solid product with the required mechanical resistance. The mixture's components join together with no problem, to produce a good workable mixture. It takes about 10 hours for the mixture to harden. After 14 days, the resulting solid product has a resistance to compression of 52 Kgf/cm2. The formulation contains 22.9% immobilized organic waste, 46.5% cement, 14.3% Celite and 16.3% water. Organic liquid waste can be treated and a solid product obtained, that meets the qualitative and quantitative parameters required for its disposal. (CW)

  12. Decontamination of high-level waste canisters

    International Nuclear Information System (INIS)

    Nesbitt, J.F.; Slate, S.C.; Fetrow, L.K.

    1980-12-01

    This report presents evaluations of several methods for the in-process decontamination of metallic canisters containing any one of a number of solidified high-level waste (HLW) forms. The use of steam-water, steam, abrasive blasting, electropolishing, liquid honing, vibratory finishing and soaking have been tested or evaluated as potential techniques to decontaminate the outer surfaces of HLW canisters. Either these techniques have been tested or available literature has been examined to assess their applicability to the decontamination of HLW canisters. Electropolishing has been found to be the most thorough method to remove radionuclides and other foreign material that may be deposited on or in the outer surface of a canister during any of the HLW processes. Steam or steam-water spraying techniques may be adequate for some applications but fail to remove all contaminated forms that could be present in some of the HLW processes. Liquid honing and abrasive blasting remove contamination and foreign material very quickly and effectively from small areas and components although these blasting techniques tend to disperse the material removed from the cleaned surfaces. Vibratory finishing is very capable of removing the bulk of contamination and foreign matter from a variety of materials. However, special vibratory finishing equipment would have to be designed and adapted for a remote process. Soaking techniques take long periods of time and may not remove all of the smearable contamination. If soaking involves pickling baths that use corrosive agents, these agents may cause erosion of grain boundaries that results in rough surfaces

  13. Combustion of animal or vegetable based liquid waste products

    International Nuclear Information System (INIS)

    Wikman, Karin; Berg, Magnus

    2002-04-01

    to produce energy during the year 2001/2002. The operation experiences are in general good but some problems have occurred, for example both Extraco and Karlshamns AB have had fouling problems in the boilers and high emission levels of NO x . Other operation problems are for example corrosion and wear on the fuel supply system, problems with water in the fuel, increased wear on valves and pumps, plugged nozzles and valves and a plugged economizer. The German company SAACKE has since 1993 installed 26 plants for combustion of animal fats in liquid form in several European countries. The operation experiences from these plants have been used for development of the advanced combustion technology. When it comes to logistics liquid animal and vegetable based fats need to be kept warm during transportations and storage. This does not result in any large problems suitable equipment already is in use for heavy fuel oil

  14. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-11-01

    Without reprocessing, spent LWR fuel itself is generally considered an acceptable waste form. With reprocessing, borosilicate glass canisters, have now gained general acceptance for waste immobilization. The current first choice for disposal is emplacement in an engineered structure in a mined cavern at a depth of 500-1000 meters. A variety of rock types are being investigated including basalt, clay, granite, salt, shale, and volcanic tuff. This paper gives specific coverage to the national high level waste disposal plans for France, the Federal Republic of Germany, Japan and the United States. The French nuclear program assumes prompt reprocessing of its spent fuels, and France has already constructed the AVM. Two larger borosilicate glass plants are planned for a new French reprocessing plant at La Hague. France plans to hold the glass canisters in near-surface storage for a forty to sixty year cooling period and then to place them into a mined repository. The FRG and Japan also plan reprocessing for their LWR fuels. Both are currently having some fuel reprocessed by France, but both are also planning reprocessing plants which will include waste vitrification facilities. West Germany is now constructing the PAMELA Plant at Mol, Belgium to vitrify high level reprocessing wastes at the shutdown Eurochemic Plant. Japan is now operating a vitrification mockup test facility and plans a pilot plant facility at the Tokai reprocessing plant by 1990. Both countries have active geologic repository programs. The United State program assumes little LWR fuel reprocessing and is thus primarily aimed at direct disposal of spent fuel into mined repositories. However, the US have two borosilicate glass plants under construction to vitrify existing reprocessing wastes

  15. Ultrasonic level sensors for liquids under high pressure

    Science.gov (United States)

    Zuckerwar, A. J.; Mazel, D. S.; Hodges, D. Y.

    1986-01-01

    An ultrasonic level sensor of novel design continuously measures the level of a liquid subjected to a high pressure (up to about 40 MPa), as is sometimes required for the effective transfer of the liquid. The sensor operates as a composite resonator fabricated from a standard high-pressure plug. A flat-bottom hole is machined into the plug along its center line. An ultrasonic transducer is bonded rigidly to the interior surface of the bottom wall, while the exterior surface is in contact with the liquid. Although the bottom wall is designed to satisfy the pressure code, it is still sufficiently thin to permit ready excitation of the axisymmetric plate modes of vibration. The liquid level is measured by a conventional pulse-echo technique. A prototype sensor was tested successfully in a 2300-l water vessel at pressures up to about 37 MPa. A spectral analysis of the transmitted pulse reveals that the flexural, extensional, thickness-shear, and radial plate modes are excited into vibration, but none of these appears to be significantly affected by the pressurization of the liquid.

  16. High level waste facilities - Continuing operation or orderly shutdown

    International Nuclear Information System (INIS)

    Decker, L.A.

    1998-04-01

    Two options for Environmental Impact Statement No action alternatives describe operation of the radioactive liquid waste facilities at the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. The first alternative describes continued operation of all facilities as planned and budgeted through 2020. Institutional control for 100 years would follow shutdown of operational facilities. Alternatively, the facilities would be shut down in an orderly fashion without completing planned activities. The facilities and associated operations are described. Remaining sodium bearing liquid waste will be converted to solid calcine in the New Waste Calcining Facility (NWCF) or will be left in the waste tanks. The calcine solids will be stored in the existing Calcine Solids Storage Facilities (CSSF). Regulatory and cost impacts are discussed

  17. High level waste canister emplacement and retrieval concepts study

    International Nuclear Information System (INIS)

    1975-09-01

    Several concepts are described for the interim (20 to 30 years) storage of canisters containing high level waste, cladding waste, and intermediate level-TRU wastes. It includes requirements, ground rules and assumptions for the entire storage pilot plant. Concepts are generally evaluated and the most promising are selected for additional work. Follow-on recommendations are made

  18. Licensing information needs for a high-level waste repository

    International Nuclear Information System (INIS)

    Wright, R.J.; Greeves, J.T.; Logsdon, M.J.

    1985-01-01

    The information needs for licensing findings during the development of a repository for high-level waste (HLW) are described. In particular, attention is given to the information and needs to demonstrate, for construction authorization purposes: repository constructibility, waste retrievability, waste containment, and waste isolation

  19. Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Asmussen, Robert M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sahajpal, Rahul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-07-01

    This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondary waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.

  20. Method of processing radioactive liquid waste

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Kuribayashi, Hiroshi; Soda, Kenzo; Mihara, Shigeru.

    1988-01-01

    Purpose: To obtain satisfactory plastic solidification products rapidly and smoothly by adding oxidizers to radioactive liquid wastes. Method: Sulfuric acid, etc. are added to radioactive liquid wastes to adjust the pH value of the liquid wastes to less than 3.0. Then, ferrous sulfates are added such that the iron concentration in the liquid wastes is 100 mg/l. Then, after adjusting pH suitably to the drying powderization by adding alkali such as hydroxide, the liquid wastes are dried and powderized. The resultant powder is subjected to plastic solidification by using polymerizable liquid unsaturated polyester resins as the solidifying agent. The thus obtained solidification products are stable in view of the physical property such as strength or water proofness, as well as stable operation is possible even for those radioactive liquid wastes in which the content ingredients are unknown. (Takahashi, M.)

  1. High level waste fixation in cermet form

    International Nuclear Information System (INIS)

    Kobisk, E.H.; Aaron, W.S.; Quinby, T.C.; Ramey, D.W.

    1981-01-01

    Commercial and defense high level waste fixation in cermet form is being studied by personnel of the Isotopes Research Materials Laboratory, Solid State Division (ORNL). As a corollary to earlier research and development in forming high density ceramic and cermet rods, disks, and other shapes using separated isotopes, similar chemical and physical processing methods have been applied to synthetic and real waste fixation. Generally, experimental products resulting from this approach have shown physical and chemical characteristics which are deemed suitable for long-term storage, shipping, corrosive environments, high temperature environments, high waste loading, decay heat dissipation, and radiation damage. Although leach tests are not conclusive, what little comparative data are available show cermet to withstand hydrothermal conditions in water and brine solutions. The Soxhlet leach test, using radioactive cesium as a tracer, showed that leaching of cermet was about X100 less than that of 78 to 68 glass. Using essentially uncooled, untreated waste, cermet fixation was found to accommodate up to 75% waste loading and yet, because of its high thermal conductivity, a monolith of 0.6 m diameter and 3.3 m-length would have only a maximum centerline temperature of 29 K above the ambient value

  2. Low-level waste management - suggested solutions for problem wastes

    International Nuclear Information System (INIS)

    Pechin, W.H.; Armstrong, K.M.; Colombo, P.

    1984-01-01

    Problem wastes are those wastes which are difficult or require unusual expense to place into a waste form acceptable under the requirements of 10 CFR 61 or the disposal site operators. Brookhaven National Laboratory has been investigating the use of various solidification agents as part of the DOE Low-Level Waste Management Program for several years. Two of the leading problem wastes are ion exchange resins and organic liquids. Ion exchange resins can be solidified in Portland cement up to about 25 wt % resin, but waste forms loaded to this degree exhibit significantly reduced compressive strength and may disintegrate when immersed in water. Ion exchange resins can also be incorporated into organic agents. Mound Laboratory has been investigating the use of a joule-heated glass melter as a means of disposing of ion exchange resins and organic liquids in addition to other combustible wastes

  3. Low level radioactive waste disposal/treatment technology overview: Savannah River site

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1987-01-01

    The Savannah River Site will begin operation of several low-level waste disposal/treatment facilities during the next five years, including a new low-level solid waste disposal facility, a low-level liquid effluent treatment facility, and a low-level liquid waste solidification process. Closure of a radioactive hazardous waste burial ground will also be completed. Technical efforts directed toward waste volume reduction include compaction, incineration, waste avoidance, and clean waste segregation. This paper summarizes new technology being developed and implemented. 11 refs., 1 fig

  4. Apparatus of vaporizing and condensing liquid radioactive wastes and its operation method

    International Nuclear Information System (INIS)

    Irie, Hiromitsu; Tajima, Fumio.

    1975-01-01

    Object: To prevent corrosion of material for a vapor-condenser and a vapor heater and to prevent radioactive contamination of heated vapor. Structure: Liquid waste is fed from a liquid feeding tank to a vapor-condenser to vaporize and condense the waste. Uncondensed liquid waste, which is not in a level of a given density, is temporally stored in a batch tank through a switching valve and a pipe. Prior to successive feeding from the liquid feeding tank, the uncondensed liquid waste within the batch tank is returned by a return pump to the condenser, after which a new liquid is fed from the liquid feeding tank for re-vaporization and condensation in the vapor-condenser. Then, similar operation is repeated until the uncondensed liquid waste assumes a given density, and when the uncondensed liquid waste reaches a given density, the condensed liquid waste is discharged into the storage tank through the switching valve. (Ohara, T.)

  5. The Defense Waste Processing Facility: an innovative process for high-level waste immobilization

    International Nuclear Information System (INIS)

    Cowan, S.P.

    1985-01-01

    The Defense Waste Processing Facility (DWPF), under construction at the Department of Energy's Savannah River Plant (SRP), will process defense high-level radioactive waste so that it can be disposed of safely. The DWPF will immobilize the high activity fraction of the waste in borosilicate glass cast in stainless steel canisters which can be handled, stored, transported and disposed of in a geologic repository. The low-activity fraction of the waste, which represents about 90% of the high-level waste HLW volume, will be decontaminated and disposed of on the SRP site. After decontamination the canister will be welded shut by an upset resistance welding technique. In this process a slightly oversized plug is pressed into the canister opening. At the same time a large current is passed through the canister and plug. The higher resistance of the canister/plug interface causes the heat which welds the plug in place. This process provides a high quality, reliable weld by a process easily operated remotely

  6. Method of processing radioactive liquid waste

    International Nuclear Information System (INIS)

    Motojima, Kenji; Kawamura, Fumio.

    1981-01-01

    Purpose: To increase the efficiency of removing radioactive cesium from radioactive liquid waste by employing zeolite affixed to metallic compound ferrocyanide as an adsorbent. Method: Regenerated liquid waste of a reactor condensation desalting unit, floor drain and so forth are collected through respective supply tubes to a liquid waste tank, and the liquid waste is fed by a pump to a column filled with zeolite containing a metallic compound ferrocyanide, such as with copper, zinc, manganese, iron, cobalt, nickel or the like. The liquid waste from which radioactive cesium is removed is dried and pelletized by volume reducing and solidifying means. (Yoshino, Y.)

  7. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    International Nuclear Information System (INIS)

    Radulesscu, G.; Tang, J.S.

    2000-01-01

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M andO [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M andO 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M andQ 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M andO 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this

  8. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    Energy Technology Data Exchange (ETDEWEB)

    G. Radulesscu; J.S. Tang

    2000-06-07

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable

  9. Evaluation and selection of candidate high-level waste forms

    International Nuclear Information System (INIS)

    1982-03-01

    Seven candidate waste forms being developed under the direction of the Department of Energy's National High-Level Waste (HLW) Technology Program, were evaluated as potential media for the immobilization and geologic disposal of high-level nuclear wastes. The evaluation combined preliminary waste form evaluations conducted at DOE defense waste-sites and independent laboratories, peer review assessments, a product performance evaluation, and a processability analysis. Based on the combined results of these four inputs, two of the seven forms, borosilicate glass and a titanate based ceramic, SYNROC, were selected as the reference and alternative forms for continued development and evaluation in the National HLW Program. Both the glass and ceramic forms are viable candidates for use at each of the DOE defense waste-sites; they are also potential candidates for immobilization of commercial reprocessing wastes. This report describes the waste form screening process, and discusses each of the four major inputs considered in the selection of the two forms

  10. Waste Characterization Data Manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge National Laboratory (ORNL) Federal Facility Agreement (FFA), Section IX.G.1. Section IX.G.1 of the FFA requires waste characterizations be conducted and provided to EPA and TDEC for all LLLW tanks that are removed from service. These waste characterizations shall include the results of sampling and analysis of the tank contents, including wastes, liquids, and sludges. This manual was first issued as ORNL/ER-80 in June 1992. The waste characterization data were extracted from ORNL reports that described tank sampling and analysis conducted in 1988 for 32 out-of-service tanks. This revision of the manual contains waste characterization data for 54 tanks, including the 32 tanks from the 1988 sampling campaign (Sects. 2.1 through 2.32) and the 22 additional tanks from a subsequent sampling campaign in 1992 and 1993 (Sects. 2.33 through 2.54). Data are presented from analyses of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls (PCBs), pesticides, radiochemical compounds, and inorganic compounds. As additional data resulting from analyses of out-of-service tank samples become available, they will be added to this manual

  11. Atmospheric Pressure Effect of Retained Gas in High Level Waste

    International Nuclear Information System (INIS)

    Weber, A.H.

    1999-01-01

    Isolated high level waste tanks in H-Area have unexplained changes in waste-level which have been attributed to environmental effects including pressure, temperature, and relative humidity. Previous studies at SRS have considered waste-level changes from causes not including the presence of gas in the salt cake. This study was undertaken to determine the effect of atmospheric pressure on gas in the salt cake and resultant changes in the supernate level of Tank 41H, and to model that effect if possible. A simple theory has been developed to account for changes in the supernate level in a high level waste tank containing damp salt cake as the response of trapped gases to changes in the ambient pressure. The gas is modeled as an ideal gas retained as bubbles within the interstitial spaces in the salt cake and distributed uniformly throughout the tank. The model does not account for consistent long term increases or decreases in the tank level. Any such trend in the tank level is attributed to changes in the liquid content in the tank (from condensation, evaporation, etc.) and is removed from the data prior to the void estimation. Short term fluctuations in the tank level are explained as the response of the entrained gas volume to changes in the ambient pressure. The model uses the response of the tank level to pressure changes to estimate an average void fraction for the time period of interest. This estimate of the void is then used to predict the expected level response. The theory was applied to three separate time periods of the level data for tank 41H as follows: (1) May 3, 1993 through August 3, 1993, (2) January 23, 1994 through April 21, 1994, and (3) June 4, 1994 through August 24, 1994. A strong correlation was found between fluctuations in the tank level and variations in the ambient pressure. This correlation is a clear marker of the presence of entrained gases in the tank. From model calculations, an average void fraction of 11 percent was estimated to

  12. International high-level radioactive waste repositories

    International Nuclear Information System (INIS)

    Lin, W.

    1996-01-01

    Although nuclear technologies benefit everyone, the associated nuclear wastes are a widespread and rapidly growing problem. Nuclear power plants are in operation in 25 countries, and are under construction in others. Developing countries are hungry for electricity to promote economic growth; industrialized countries are eager to export nuclear technologies and equipment. These two ingredients, combined with the rapid shrinkage of worldwide fossil fuel reserves, will increase the utilization of nuclear power. All countries utilizing nuclear power produce at least a few tens of tons of spent fuel per year. That spent fuel (and reprocessing products, if any) constitutes high-level nuclear waste. Toxicity, long half-life, and immunity to chemical degradation make such waste an almost permanent threat to human beings. This report discusses the advantages of utilizing repositories for disposal of nuclear wastes

  13. A proposed classification system for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1987-06-01

    This report presents a proposal for quantitative and generally applicable risk-based definitions of high-level and other radioactive wastes. On the basis of historical descriptions and definitions of high-level waste (HLW), in which HLW has been defined in terms of its source as waste from reprocessing of spent nuclear fuel, we propose a more general definition based on the concept that HLW has two distinct attributes: HLW is (1) highly radioactive and (2) requires permanent isolation. This concept leads to a two-dimensional waste classification system in which one axis, related to ''requires permanent isolation,'' is associated with long-term risks from waste disposal and the other axis, related to ''highly radioactive,'' is associated with shorter-term risks due to high levels of decay heat and external radiation. We define wastes that require permanent isolation as wastes with concentrations of radionuclides exceeding the Class-C limits that are generally acceptable for near-surface land disposal, as specified in the US Nuclear Regulatory Commission's rulemaking 10 CFR Part 61 and its supporting documentation. HLW then is waste requiring permanent isolation that also is highly radioactive, and we define ''highly radioactive'' as a decay heat (power density) in the waste greater than 50 W/m 3 or an external radiation dose rate at a distance of 1 m from the waste greater than 100 rem/h (1 Sv/h), whichever is the more restrictive. This proposal also results in a definition of Transuranic (TRU) Waste and Equivalent as waste that requires permanent isolation but is not highly radioactive and a definition of low-level waste (LLW) as waste that does not require permanent isolation without regard to whether or not it is highly radioactive

  14. High-level radioactive waste in Canada. Background paper

    International Nuclear Information System (INIS)

    Fawcett, R.

    1993-11-01

    The disposal of radioactive waste is one of the most challenging environmental problems facing Canada today. Since the Second World War, when Canadian scientists first started to investigate nuclear reactions, there has been a steady accumulation of such waste. Research reactors built in the early postwar years produced small amounts of radioactive material but the volume grew steadily as the nuclear power reactors constructed during the 1960s and 1970s began to spawn used fuel bundles. Although this radioactive refuse has been safely stored for the short term, no permanent disposal system has yet been fully developed and implemented. Canada is not alone in this regard. A large number of countries use nuclear power reactors but none has yet put in place a method for the long-term disposal of the radioactive waste. Scientists and engineers throughout the world are investigating different possibilities; however, enormous difficulties remain. In Canada, used fuel bundles from nuclear reactors are defined as high-level waste; all other waste created at different stages in the nuclear fuel cycle is classified as low-level. Although disposal of low-level waste is an important issue, it is a more tractable problem than the disposal of high-level waste, on which this paper will concentrate. The paper discusses the nuclear fuel waste management program in Canada, where a long-term disposal plan has been under development by scientists and engineers over the past 15 years, but will not be completed for some time. Also discussed are responses to the program by parliamentary committees and aboriginal and environmental groups, and the work in the area being conducted in other countries. (author). 1 tab

  15. High-level radioactive waste in Canada. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Fawcett, R [Library of Parliament, Ottawa, ON (Canada). Science and Technology Div.

    1993-11-01

    The disposal of radioactive waste is one of the most challenging environmental problems facing Canada today. Since the Second World War, when Canadian scientists first started to investigate nuclear reactions, there has been a steady accumulation of such waste. Research reactors built in the early postwar years produced small amounts of radioactive material but the volume grew steadily as the nuclear power reactors constructed during the 1960s and 1970s began to spawn used fuel bundles. Although this radioactive refuse has been safely stored for the short term, no permanent disposal system has yet been fully developed and implemented. Canada is not alone in this regard. A large number of countries use nuclear power reactors but none has yet put in place a method for the long-term disposal of the radioactive waste. Scientists and engineers throughout the world are investigating different possibilities; however, enormous difficulties remain. In Canada, used fuel bundles from nuclear reactors are defined as high-level waste; all other waste created at different stages in the nuclear fuel cycle is classified as low-level. Although disposal of low-level waste is an important issue, it is a more tractable problem than the disposal of high-level waste, on which this paper will concentrate. The paper discusses the nuclear fuel waste management program in Canada, where a long-term disposal plan has been under development by scientists and engineers over the past 15 years, but will not be completed for some time. Also discussed are responses to the program by parliamentary committees and aboriginal and environmental groups, and the work in the area being conducted in other countries. (author). 1 tab.

  16. A proposed classification system for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1989-01-01

    On the basis of the definition of high-level wastes (HLW) in the Nuclear Waste Policy Act of 1982 and previous descriptions of reprocessing wastes, a definition is proposed based on the concept that HLW is any waste which is highly radioactive and requires permanent isolation. This conceptual definition of HLW leads to a two-dimensional waste classification system in which one axis, related to 'highly radioactive', is associated with shorter-term risks from waste management and disposal due to high levels of decay heat and external radiation, and the other axis, related to 'requires permanent isolation', is associated with longer-term risks from waste disposal. Wastes that are highly radioactive are defined quantitatively as wastes with a decay heat (power density) greater than 50 W/m 3 or an external dose-equivalent rate greater than 100 rem/h (1 Sv/h) at a distance of 1 m from the waste, whichever is more restrictive. Wastes that require permanent isolation are defined quantitatively as wastes with concentrations of radionuclides greater than the Class-C limits that are generally acceptable for near-surface land disposal, as obtained from the Nuclear Regulatory Commission's 10 CFR Part 61 and its associated methodology. This proposal leads to similar definitions of two other waste classes: transuranic (TRU) waste and equivalent is any waste that requires permanent isolation but is not highly radioactive; and low-level waste (LLW) is any waste that does not require permanent isolation, without regard to whether or not it is highly radioactive. 31 refs.; 3 figs.; 4 tabs

  17. Methods of Disposing Of High-Level Radioactive Waste: A Review

    International Nuclear Information System (INIS)

    Abumurade, K.

    2002-01-01

    High level nuclear waste from both commercial reactors and defense industry presents a difficult problem to the scientific community as well as the public. The solutions to this problem is still debatable both technically and ethically. There are few methods proposed for disposing of high level waste. Each method has its own advantages and disadvantages. However, the very deep underground geologic repository is the best choice for disposing of high-level radioactive wastes. The cost benefit equation of nuclear power production and its waste is discussed. However, the public should be educated about this matter to minimize the gap between them and the nuclear power community including scientists industry, and governments. (Author) 15 refs., 4 tabs., 1 fig

  18. Healthcare liquid waste management.

    Science.gov (United States)

    Sharma, D R; Pradhan, B; Pathak, R P; Shrestha, S C

    2010-04-01

    The management of healthcare liquid waste is an overlooked problem in Nepal with stern repercussions in terms of damaging the environment and affecting the health of people. This study was carried out to explore the healthcare liquid waste management practices in Kathmandu based central hospitals of Nepal. A descriptive prospective study was conducted in 10 central hospitals of Kathmandu during the period of May to December 2008. Primary data were collected through interview, observation and microbiology laboratory works and secondary data were collected by records review. For microbiological laboratory works,waste water specimens cultured for the enumeration of total viable counts using standard protocols. Evidence of waste management guidelines and committees for the management of healthcare liquid wastes could not be found in any of the studied hospitals. Similarly, total viable counts heavily exceeded the standard heterotrophic plate count (p=0.000) with no significant difference in such counts in hospitals with and without treatment plants (p=0.232). Healthcare liquid waste management practice was not found to be satisfactory. Installation of effluent treatment plants and the development of standards for environmental indicators with effective monitoring, evaluation and strict control via relevant legal frameworks were realized.

  19. Immobilization of organic liquid wastes

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1985-01-01

    This report describes a portland cement immobilization process for the disposal treatment of radioactive organic liquid wastes which would be generated in a a FFTF fuels reprocessing line. An incineration system already on-hand was determined to be too costly to operate for the 100 to 400 gallons per year organic liquid. Organic test liquids were dispersed into an aqueous phosphate liquid using an emulsifier. A total of 109 gallons of potential and radioactive aqueous immiscible organic liquid wastes from Hanford 300 Area operations were solidified with portland cement and disposed of as solid waste during a 3-month test program with in-drum mixers. Waste packing efficiencies varied from 32 to 40% and included pump oils, mineral spirits, and TBP-NPH type solvents

  20. Low level radioactive liquid waste treatment at ORNL

    International Nuclear Information System (INIS)

    Robinson, R.A.; Lasher, L.C.

    1977-01-01

    A new Process Waste Treatment Plant has been constructed at ORNL. The wastes are processed through a precipitation-clarification step and then through an ion exchange step to remove the low-level activity in the waste before discharge into White Oak Creek

  1. High level radioactive wastes: Considerations on final disposal

    International Nuclear Information System (INIS)

    Ciallella, Norberto R.

    2000-01-01

    When at the beginnings of the decade of the 80 the National Commission on Atomic Energy (CNEA) in Argentina decided to study the destination of the high level radioactive wastes, was began many investigations, analysis and multidisciplinary evaluations that be origin to a study of characteristics never before carried out in Argentina. For the first time in the country was faced the study of an environmental eventual problem, several decades before that the problem was presented. The elimination of the high level radioactive wastes in the technological aspects was taken in advance, avoiding to transfer the problems to the future generations. The decision was based, not only in technical evaluations but also in ethical premises, since it was considered that the future generations may enjoy the benefits of the nuclear energy and not should be solve the problem. The CNEA in Argentina in 1980 decided to begin a feasibility study and preliminary engineering project for the construction of the final disposal of high level radioactive wastes

  2. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF

  3. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF.

  4. LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION

    Energy Technology Data Exchange (ETDEWEB)

    BOWERMAN,B.; CZAJKOWSKI,C.; DYER,R.S.; SORLIE,A.

    2000-03-01

    Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m{sup 3}/year to 5,000 m{sup 3} /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the

  5. New evolution on the high level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Koumoto, Harumi

    2001-01-01

    On nuclear power generation, spent fuel is formed and reaches to about 30 ton from a 1 million kW class large power plant. As some nations deal with the spent fuel itself to waste, Japan adopts a reprocessing and recycling route to recover uranium and plutonium reusable for nuclear fuels by reprocessing of the spent fuels. As waste liquid containing about one ton of cinder (fission product) formed by nuclear fission after its recovery, a glass solid solidifying this to a stable glassy state is called the high level radioactive wastes (HLW). As it has extremely high radioactivity which continues for long term in spite of its decay with elapsing time, safety security must be paid enough attention to its countermeasure. Therefore, as a result of long-term research and development in Japan as well as in many other nations, it is admitted to be the most preferable countermeasure to bury HLW into deep stratum to safely isolate from human life environment for its scientific and technical method. Here was introduced on a framework of its disposal business in Japan of which preparation rapidly advanced as a turning point of 2000 at a center of its technical and regulative advancement. (G.K.)

  6. Design concepts of definitive disposal for high level radioactive wastes

    International Nuclear Information System (INIS)

    Badillo A, V.E.; Alonso V, G.

    2007-01-01

    It is excessively known the importance about finding a solution for the handling and disposition of radioactive waste of all level. However, the polemic is centered in the administration of high level radioactive waste and the worn out fuel, forgetting that the more important volumes of waste its are generated in the categories of low level wastes or of very low level. Depending on the waste that will be confined and of the costs, several technological modalities of definitive disposition exist, in function of the depth of the confinement. The concept of deep geologic storage, technological option proposed more than 40 years ago, it is a concept of isolation of waste of long half life placed in a deep underground installation dug in geologic formations that are characterized by their high stability and their low flow of underground water. In the last decades, they have registered countless progresses in technical and scientific aspects of the geologic storage, making it a reliable technical solution supported with many years of scientific work carried out by numerous institutions in the entire world. In this work the design concepts that apply some countries for the high level waste disposal that its liberate heat are revised and the different geologic formations that have been considered for the storage of this type of wastes. (Author)

  7. HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASSES FOR HANFORD'S WTP (WASTE TREATMENT PROJECT)

    International Nuclear Information System (INIS)

    Kruger, A.A.; Bowan, B.W.; Joseph, I.; Gan, H.; Kot, W.K.; Matlack, K.S.; Pegg, I.L.

    2010-01-01

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m 2 and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m 2 . The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al 2 O 3 concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m 2 .day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m 2 .day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m 2 .day).

  8. High-level radioactive waste disposal type and theoretical analyses

    International Nuclear Information System (INIS)

    Lu Yingfa; Wu Yanchun; Luo Xianqi; Cui Yujun

    2006-01-01

    Study of high-level radioactive waste disposal is necessary for the nuclear electrical development; the determination of nuclear waste depository type is one of importance safety. Based on the high-level radioactive disposal type, the relative research subjects are proposed, then the fundamental research characteristics of nuclear waste disposition, for instance: mechanical and hydraulic properties of rock mass, saturated and unsaturated seepage, chemical behaviors, behavior of special soil, and gas behavior, etc. are introduced, the relative coupling equations are suggested, and a one dimensional result is proposed. (authors)

  9. Liquidation of wastes as tuition topic

    International Nuclear Information System (INIS)

    Kolar, K.; Hysplerova, L.; Holy, I.

    1999-01-01

    Authors deal in this paper with tuition project aimed on the liquidation of wastes. Structure of project includes next thematic complex: classification of inorganic and organic wastes; characterization of wastes and proposition for their liquidation (detoxication) or recyclation; chemical (physical) nature of neutralize of inorganic and organic wastes; general method of neutralize of wastes; analytical methods necessary for control of course of neutralize (detoxication) of wastes. This tuition project allows for students to know manipulation with wastes and methods of their liquidation from ecologic point of view

  10. High-Level Waste (HLW) Feed Process Control Strategy

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system

  11. Alternative containers for low-level wastes containing large amounts of tritium

    International Nuclear Information System (INIS)

    Gause, E.P.; Lee, B.S.; MacKenzie, D.R.; Wiswall, R. Jr.

    1984-11-01

    High-activity tritiated waste generated in the United States is mainly composed of tritium gas and tritium-contaminated organic solvents sorbed onto Speedi-Dri which are packaged in small glass bulbs. Low-activity waste consists of solidified and adsorbed liquids. In this report, current packages for high-activity gaseous and low-activity adsorbed liquid wastes are emphasized with regard to containment potential. Containers for low-level radioactive waste containing large amounts of tritium need to be developed. An integrity may be threatened by: physical degradation due to soil corrosion, gas pressure build-up (due to radiolysis and/or biodegradation), rapid permeation of tritium through the container, and corrosion from container contents. Literature available on these points is summarized in this report. 136 references, 20 figures, 40 tables

  12. Predisposal management of high level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste is generated in the generation of electricity in nuclear power plants and in the use of radioactive material in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized. The principles and requirements that govern the safety of the management of radioactive waste are presented in 'The Principles of Radioactive Waste Management', 'Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety' and 'Predisposal Management of Radioactive Waste, Including Decommissioning'. The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established in Refs for the predisposal management of HLW. This Safety Guide applies to the predisposal management of HLW. For liquid HLW arising from the reprocessing of spent fuel the recommendations of this Safety Guide apply from when liquid waste from the first extraction process is collected for storage and subsequent processing. Recommendations and guidance on the storage of spent fuel, whether or not declared as waste, subsequent to its removal from the storage facility of a reactor are provided in Refs. For spent fuel declared as waste this Safety Guide applies to all activities subsequent to its removal from the storage facility of a reactor and prior to its disposal. Requirements pertaining to the transport of spent fuel, whether or not declared as waste, and of all forms of HLW are established. This Safety Guide provides recommendations on the safety aspects of managing HLW, including the planning, design, construction, commissioning, operation and decommissioning of equipment or facilities for the predisposal management of HLW. It addresses the following elements: (a) The characterization and processing (i.e. pretreatment

  13. Liquid and Gaseous Waste Operations Department annual operating report CY 1994

    International Nuclear Information System (INIS)

    Maddox, J.J.; Scott, C.B.

    1995-03-01

    This report presents details about the operation of the liquid and gaseous waste department of Oak Ridge National Laboratory for the calendar year 1994. Topics discussed include; process waste system, upgrade activities, low-level liquid radioactive waste solidification project, maintenance activities, and other activities such as training, audits, and tours

  14. The risk evaluation of a model of a high-level waste solidification plant

    International Nuclear Information System (INIS)

    Bruecher, H.

    1977-02-01

    In this report the risk associated with the operation of a plant for vitrification of high-level liquid waste is evaluated. Considerung risk assessment it turns out that the important accidents occur during off-gas cleaning. On the other hand effects of explosions in the process equipment don't contribute very much to the overall risk. These data are compared with the risk resulting from routine discharge of the plant. It is of the same magnitude as or greater than the most important accident risks. (orig.) [de

  15. Seismic evaluation of existing liquid low level waste system at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Hammond, C.R.; Holmes, R.M.; Kincaid, J.H.; Singhal, M.K.; Stockdale, B.I.; Walls, J.C.; Webb, D.S.

    1993-01-01

    The existing liquid low level waste (LLLW) system at the Oak Ridge National Laboratory is used to collect, neutralize, concentrate, and store the radioactive and toxic waste from various sources at the Laboratory. The waste solutions are discharged from source facilities to individual collection tanks, transferred by underground piping to an evaporator facility for concentration, and pumped through the underground piping to storage in underground tanks. The existing LLLW system was installed in the 1950s with several system additions up to the present. The worst-case accident postulated is an earthquake of sufficient magnitude to rupture the tanks and/or piping so as to damage the containment integrity to the surrounding soil and environment. The objective of an analysis of the system is to provide a level of confidence in the seismic resistance of the LLLW system to withstand the postulated earthquake

  16. High-level waste description, inventory and hazard

    International Nuclear Information System (INIS)

    Crandall, J.; Hennelly, E.J.; McElroy, J.L.

    1983-01-01

    High-level nuclear waste (HLW), including its origin, is described and the current differences in definitions discussed. Quantities of defense and commercial radioactive HLW, both volume and curie content, are given. Current waste handling, which is interimin nature, is described for the several sites. The HLW hazard is defined by the times during which various radionuclides are the dominant contributors. The hazard is also compared to that of the ore. Using ICRP-2, which is the legal reference in the US, the hazard of the waste reduces to a level equal to the ore in about 300 years. The disposal plans are summarized and it is shown that regulatory requirements will probably govern disposal operations in such a conservative manner that the risk (product of hazard times probability of release) may well be lower than for any other wastes in existence or perhaps lower than those for any other human endeavor

  17. The Addition of Hatchery Liquid Waste to Dairy Manure Improves Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    WRT Lopes

    Full Text Available ABSTRACT The objective of this study was to determine the optimal inclusion level of liquid egg hatchery waste for the anaerobic co-digestion of dairy cattle manure. A completely randomized experimental was applied, with seven treatments (liquid hatchery waste to cattle manure ratios of0: 100, 5:95, 10:90, 15:85, 20:80, 25:75 and 30:70, with five replicates (batch digester model each. The evaluated variables were disappearance of total solids (TS, volatile solids (VS, and neutral detergent fiber (NDF, and specific production of biogas and of methane. Maximum TS and VS disappearance of 41.3% and 49.6%, were obtained at 15.5% and 16.0% liquid hatchery waste inclusion levels. The addition of 22.3% liquid hatchery considerably reduced NDF substrate content (53.2%. Maximum specific biogas production was obtained with 17% liquid hatchery waste, with the addition of 181.7 and 229.5 L kg-1TS and VS, respectively. The highest methane production, at 120.1 and 151.8 L CH4 kg-1TS and VS, was obtained with the inclusion of 17.5 and 18.0% liquid hatchery waste, respectively. The addition of liquid hatchery waste atratios of up to 15.5%in co-digestion with cattle manure reduced solid and fiber levels in the effluent, and improved biogas and methane production.

  18. Pilot-Scale Test Results Of A Thin Film Evaporator System For Management Of Liquid High-Level Wastes At The Hanford Site Washington USA -11364

    International Nuclear Information System (INIS)

    Corbett, J.E.; Tedesch, A.R.; Wilson, R.A.; Beck, T.H.; Larkin, J.

    2011-01-01

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  19. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    Energy Technology Data Exchange (ETDEWEB)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  20. Status of commercial nuclear high-level waste disposal. Special report

    International Nuclear Information System (INIS)

    Dau, G.J.; Williams, R.F.

    1976-09-01

    The results of this review, presented in the form of a functional description of high level waste management system, shows that technology is available to dispose of nuclear waste safely by several different processes. The most attractive alternative in terms of available technology and shortness of time to demonstrate it at commercial scale is a system that converts the waste to a solid by immobilizing the radioactive elements in a glass matrix. Brief comments are also given on international efforts in high level waste management and advanced disposal concepts

  1. Engineering materials for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Wen Zhijian

    2009-01-01

    Radioactive wastes can arise from a wide range of human activities and have different physical and chemical forms with various radioactivity. The high level radioactive wastes (HLW)are characterized by nuclides of very high initial radioactivity, large thermal emissivity and the long life-term. The HLW disposal is highly concerned by the scientists and the public in the world. At present, the deep geological disposal is regarded as the most reasonable and effective way to safely dispose high-level radioactive wastes in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineering barrier system(EBS). The engineering materials in EBS include the vitrified HLW, canister, overpack, buffer materials and backfill materials. Referring to progress in the world, this paper presents the function, the requirement for material selection and design, and main scientific projects of R and D of engineering materials in HLW repository. (authors)

  2. Actinides and fission products partitioning from high level liquid waste

    International Nuclear Information System (INIS)

    Yamaura, Mitiko

    1999-01-01

    The presence of small amount of mixed actinides and long-lived heat generators fission products as 137 Cs and 90 Sr are the major problems for safety handling and disposal of high level nuclear wastes. In this work, actinides and fission products partitioning process, as an alternative process for waste treatment is proposed. First of all, ammonium phosphotungstate (PWA), a selective inorganic exchanger for cesium separation was chosen and a new procedure for synthesizing PWA into the organic resin was developed. An strong anionic resin loaded with tungstate or phosphotungstate anion enables the precipitation of PWA directly in the resinous structure by adding the ammonium nitrate in acid medium (R-PWA). Parameters as W/P ratio, pH, reactants, temperature and aging were studied. The R-PWA obtained by using phosphotungstate solution prepared with W/P=9.6, 9 hours digestion time at 94-106 deg C and 4 to 5 months aging time showed the best capacity for cesium retention. On the other hand, Sr separation was performed by technique of extraction chromatography, using DH18C6 impregnated on XAD7 resin as stationary phase. Sr is selectively extracted from acid solution and >99% was recovered from loaded column using distilled water as eluent. Concerning to actinides separations, two extraction chromatographic columns were used. In the first one, TBP(XAD7) column, U and Pu were extracted and its separations were carried-out using HNO 3 and hydroxylamine nitrate + HNO 3 as eluent. In the second one, CMP0-TBP(XAD7) column, the actinides were retained on the column and the separations were done by using (NH 4 ) 2 C 2 O 4 , DTPA, HNO 3 and HCl as eluent. The behavior of some fission products were also verified in both columns. Based on the obtained data, actinides and fission products Cs and Sr partitioning process, using TBP(XAD7) and CMP0-TBP(XAD7) columns for actinides separation, R-PWA column for cesium retention and DH18C6(XAD7) column for Sr isolation was performed

  3. Some legal aspects on high level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    1997-01-01

    In Japan, it is considered to be an urgent problem to prepare the system for the research and execution of high level radioactive waste disposal. Under what regulation scheme the disposal should be done has not been sufficiently examined. In this research, the examination was carried out on the legal aspects of high level radioactive waste disposal as follows. First, the current legislation on the disposal in Japan was analyzed, and it was made clear that high level radioactive waste disposal has not been stipulated clearly. Next, on the legal choices which are conceivable on the way the legislation for high level radioactive waste disposal should be, from the aspects of applying the law on regulating nuclear reactors and others, applying the law on nuclear power damage reparation, and industrialization by changing the government ordinances, those were arranged in six choices, and the examination was carried out for each choice from the viewpoints of the relation with the base stipulation for waste-burying business, the speciality of high level radioactive waste disposal as compared with other actions of nuclear power business, the coordination with existing nuclear power of nuclear power business, the coordination with existing nuclear power law system and the formation of national consensus. In this research, it was shown that the execution of high level radioactive waste disposal as the business based on the separate legislation is the realistic choice. (K.I.)

  4. Treatment and immobilization of intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    Lerch, R.E.; Greenhalgh, W.O.; Partridge, J.A.; Richardson, G.L.

    1979-01-01

    A new program underway at the Hanford Engineering Development Laboratory (HEDL) to develop and demonstrate treatment and immobilization technologies for intermediate-level wastes (ILW) generated in the nuclear fuel cycle is discussed. ILW are defined as those liquid and solid radioactive wastes, other than high-level wastes and fuel cladding hulls, that in packaged form have radiation dose readings greater than 200 millirem/hr at the packaged surface and 10 millirem/hr at three feet from the surface. The IAEA value of 10 4 Ci/m 3 for ILW defines the upper limit. For comparative purposes, reference is also made to certain aspects of low-level radioactive wastes (LLW). Initial work has defined the sources, quantities and types of wastes which comprise ILW. Because of the wide differences in composition (e.g., acids, salt solutions, resins and zeolites, HEPA filters, etc.) the wastes may require different treatments, particularly those wastes containing volatile contaminants. The various types of ILW have been grouped into categories amenable to similar treatment. Laboratory studies are underway to define treatment technologies for liquid ILW which contain volatile contaminants and to define immobilization parameters for the residues resulting from treatment of ILW. Immobilization agents initially being evaluated for the various residues include cement, urea-formaldehyde, and bitumen although other immobilization agents will be studied. The program also includes development of acceptable test procedures for the final immobilized products as well as development of proposed criteria for storage, transportation, and disposal of the immobilized ILW

  5. Use of Eichornia crassipes for treatment of low level liquid radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, N.; Ramadan, Y.S.; Hassanin, R.A.; Gafez, M.B. (Atomic Energy Authority, Hot Lab. Center, Cairo (Egypt))

    1993-01-01

    Radioactive and non-radioactive isotopes of cobalt, cerium and cesium were found to be accumulated inside Eichornia crassipes (the water hyacinth). The rate and extent of accumulation were dependent upon environmental parameters such as pH, temperature and interference by certain anions and cations. The accumulation rate of radioactive isotopes inside Eichornia crassipes, were more rapid than non-active ions. The results showed that accumulation of such metals inside the plant could be used successfully in the treatment of low-level liquid radioactive wastes. (author) 4 figs., 2 tabs., 15 refs.

  6. Use of Eichornia crassipes for treatment of low level liquid radioactive waste

    International Nuclear Information System (INIS)

    Hafez, N.; Ramadan, Y.S.; Hassanin, R.A.; Gafez, M.B.

    1993-01-01

    Radioactive and non-radioactive isotopes of cobalt, cerium and cesium were found to be accumulated inside Eichornia crassipes (the water hyacinth). The rate and extent of accumulation were dependent upon environmental parameters such as pH, temperature and interference by certain anions and cations. The accumulation rate of radioactive isotopes inside Eichornia crassipes, were more rapid than non-active ions. The results showed that accumulation of such metals inside the plant could be used successfully in the treatment of low-level liquid radioactive wastes. (author) 4 figs., 2 tabs., 15 refs

  7. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    Pettit, N. E.

    2001-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  8. A high Tc superconducting liquid nitrogen level sensor

    International Nuclear Information System (INIS)

    Jin, J. X.; Liu, H. K.; Dou, S. X.; Grantham, C.; Beer, J.

    1996-01-01

    Full text: The dramatic resistance change in the superconducting-normal transition temperature range enables a high T c superconductor to be considered for designing a liquid nitrogen level sensor. A (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire is selected and tested as a continuous liquid nitrogen level sensor to investigate the possibility for this application. The (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire has approximately 110 K critical temperature, with more flexible and stable properties compared with bulk shape ceramic high T c superconductors. The voltage drops across the sensor are tested with different immersion lengths in liquid nitrogen. The accuracy of the HTS sensor is analysed with its dR/dT in the superconducting-normal transition range. The voltage signal is sensitive to liquid nitrogen level change, and this signal can be optimized by controlling the transport current. The problems of the Ag clad superconductor are that the Ag sheath thermal conductivity is very high, and the sensor normal resistance is low. These are the main disadvantages for using such a wire as a continuous level sensor. However, a satisfactory accuracy can be achieved by control of the transport current. A different configuration of the wire sensor is also designed to avoid this thermal influence

  9. Risk assessment methodology for Hanford high-level waste tanks

    International Nuclear Information System (INIS)

    Bott, T.F.; Mac Farlane, D.R.; Stack, D.W.; Kindinger, J.

    1992-01-01

    A methodology is presented for applying Probabilistic Safety Assessment techniques to quantification of the health risks posed by the high-level waste (HLW) underground tanks at the Department of Energy's Hanford reservation. This methodology includes hazard screening development of a list of potential accident initiators, systems fault trees development and quantification, definition of source terms for various release categories, and estimation of health consequences from the releases. Both airborne and liquid pathway releases to the environment, arising from aerosol and spill/leak releases from the tanks, are included in the release categories. The proposed methodology is intended to be applied to a representative subset of the total of 177 tanks, thereby providing a baseline risk profile for the HLW tank farm that can be used for setting clean-up/remediation priorities. Some preliminary results are presented for Tank 101-SY

  10. Interactions of low-level, liquid radioactive wastes with soils. 1. Behavior of radionuclides in soil-waste systems

    International Nuclear Information System (INIS)

    Fowler, E.B.; Essington, E.H.; Polzer, W.L.

    1981-01-01

    The characteristics of radioactive wastes and soils vary over a wide range. Liquid radioactive waste entering the environment will eventually contact the soil or geological matrix; interactions will be determined by the chemical and physical nature of the liquid, as well as the soil matrix. We report here the results from an investigation of certain of those characteristics as they relate to retention of radionuclides by soils. Three fractions were demonstrated in the waste as filterable, soluble-sorbable, and soluble-nonsorbable; the physical nature of each fraction was demonstrated using autoradiographic techniques. Isotopes of plutonium and uranium and americium-241 in the soluble fraction of the waste were shown to have a negative charge as determined by ion exchange techniques. In the soil-waste systems, the net charge for those radionuclides was shown to change from predominantly negative to predominantly positive. Nevertheless, cesium-137 was shown to be predominantly positited by TVA and approved by NRC (formerly AEC) since June 1973. This report is based upon the revisions, approved through the end of this reporting period

  11. Development of analytical model for condensation of vapor mixture of nitric acid and water affected volatilized ruthenium behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste at fuel reprocessing facilities

    International Nuclear Information System (INIS)

    Yoshida, Kazuo

    2016-08-01

    An accident of evaporation to dryness by boiling of high level liquid waste is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, continuous vaporing of nitric acid and water leads to increase Ru volatilization in liquid waste temperature over 120degC at later boiling and dry out phases. It has been observed at the experiments with actual and synthetic liquid waste that some amount of Ru volatilizes and transfers into condensed nitric acid solution at those phases. The nitric acid and water vapor flowing from waste tank are expected to condense at compartments of actual facilities building. The volatilized Ru could transfer into condensed liquid. It is key issues for quantifying the amount of transferred Ru through the facility building to simulate these thermodynamic and chemical behaviors. An analytical model has been proposed in this report based on the condensation mechanisms of nitric acid and water in vapor-liquid equilibria. It has been also carried out for the proposed model being feasible to formulate the activity coefficients and to review the thermodynamic properties of nitric acid solution. Practicability of the proposed analytical model has been shown successfully through the feasibility study with simulation of an experiment result. (author)

  12. Evaluation of the vitreous matrices to include high-level radioactive wastes

    International Nuclear Information System (INIS)

    Varani, J.L.; Petraitis, E.J.; Pasquali, R.C.

    1987-01-01

    The Argentine Nuclear Programme considers a fuel cycle with Pu recycle. This will generate high-level liquid wastes, that should be safely eliminated. With this purpose, primary glasses utilizing three prototipe compositions were prepared. Simulated wastes oxides in the rate of about 10% were added to the vitreous matrices. The mixture was melted in ceramic melting pots in a muffle furnace at 1 100 deg C during 8 hours. Resistance leaching tests were made following an adaptation of the DIN 12 111 standard. Quantitative analysis of the leaching solutions were made to evaluate the solubility of the different elements. Glasses were observed with optical microscopy scanning before and after leaching. In the first, glasses, bubbles and crystalline-phase appear; in the second ones, puncture and embrittlement were detected. By means of differential thermoanalysis, endo and exothermal peaks were identified in glasses supporting gradual heating. X ray diffraction analysis were made in samples with and without wastes. The degree of crystallization of samples was evaluated by photographic and diffractometric techniques. Leaching studies showed the existance of a direct relation between leaching and glass alkaline content. (M.E.L.) [es

  13. DOE management of high-level waste at the Hanford Site

    International Nuclear Information System (INIS)

    1993-01-01

    Approximately 60 million gallons of high-level radioactive waste--caustic liquids, slurries, saltcakes, and sludges--are stored in underground tanks at the Department of Energy's Hanford Site. At least one-third of the tanks are known to have leaked waste into the enviroranent, and there are many unresolved tank safety issues. In order to resolve the environmental and safety concerns, the Department plans to retrieve the waste, immobilize it, and dispose of it in a permanent geologic repository. Processing all of the tank waste in this manner could cost $40 billion, including $1.2 billion to construct the Hanford Waste Vitrification Plant. The purpose of our audit was to examine the reasons for cost estimate increases and schedule delays on the Hanford vitrification program. We also wanted to report on outstanding technical, safety, and environmental issues that could make the project even more costly and further delay its completion. We found that the Department managed the Hanford remediation system as a number of separate projects not fully integrated into one major system acquisition. Total costs have, therefore, been obscured, and the Department has not yet clearly defined system requirements or developed overall cost and schedule baselines. This lack of visibility could result in additional cost growth and schedule delays. We also noted a vast array of technical uncertainties, including tank safety and inadequate information about the makeup of tank waste, that could significantly affect the program's cost and ultimate success. To increase visibility of program cost and schedule, we are recommending that all separate projects relating to tank waste be included in a single major system acquisition, and that the Department complete its ongoing baselining effort to the extent practical before making major funding commitments. Management concurred with our finding and recommendations

  14. High-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1985-01-01

    The meeting was timely because many countries had begun their site selection processes and their engineering designs were becoming well-defined. The technology of nuclear waste disposal was maturing, and the institutional issues arising from the implementation of that technology were being confronted. Accordingly, the program was structured to consider both the technical and institutional aspects of the subject. The meeting started with a review of the status of the disposal programs in eight countries and three international nuclear waste management organizations. These invited presentations allowed listeners to understand the similarities and differences among the various national approaches to solving this very international problem. Then seven invited presentations describing nuclear waste disposal from different perspectives were made. These included: legal and judicial, electric utility, state governor, ethical, and technical perspectives. These invited presentations uncovered several issues that may need to be resolved before high-level nuclear wastes can be emplaced in a geologic repository in the United States. Finally, there were sixty-six contributed technical presentations organized in ten sessions around six general topics: site characterization and selection, repository design and in-situ testing, package design and testing, disposal system performance, disposal and storage system cost, and disposal in the overall waste management system context. These contributed presentations provided listeners with the results of recent applied RandD in each of the subject areas

  15. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m (1000 ft). The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m (660 ft) in radius. Using this process, ORNL has disposed of over 1.5 x 10 6 Ci of activity; the principal nuclides are 90 Sr and 137 Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 l (180,000 gal) of slurry. Disposal cost per liter is approximately $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. The site is in the structurally complex Valley and Ridge Province. The stratigraphy consists of lower Paleozoic rocks. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. 26 refs., 7 figs

  16. Development of a pyro-partitioning process for long-lived radioactive nuclides. Process test for pretreatment of simulated high-level waste containing uranium

    International Nuclear Information System (INIS)

    Kurata, Masateru; Hijikata, Takatoshi; Kinoshita, Kensuke; Inoue, Tadashi

    2000-01-01

    A pyro-partitioning process developed at CRIEPI requires a pre-treatment process to convert high-level liquid waste to chloride. A combination process of denitration and chlorination has been developed for this purpose. Continuous process tests using simulated high-level waste were performed to certify the applicability of the process. Test results indicated a successful material balance sufficient for satisfying pyro-partitioning process criteria. In the present study, process tests using simulated high-level waste containing uranium were also carried out to prove that the pre-treatment process is feasible for uranium. The results indicated that uranium can be converted to chloride appropriate for the pyro-partitioning process. The material balance obtained from the tests is to be used to revise the process flow diagram. (author)

  17. Design features of a full-scale high-level waste vitrification system

    International Nuclear Information System (INIS)

    Siemens, D.H.; Bonner, W.F.

    1976-08-01

    A system has been designed and is currently under construction for vitrification of commercial high-level waste. The process consists of a spray calciner coupled to an in-can melter. Due to the high radiation levels expected, this equipment is designed for totally remote operation and maintenance. The in-cell arrangement of this equipment has been developed cooperatively with a nuclear fuel reprocessor. The system will be demonstrated both full scale with nonradioactive simulated waste and pilot scale with actual high-level waste

  18. Permitting plan for the high-level waste interim storage

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1997-01-01

    This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist

  19. Optimizing High Level Waste Disposal

    International Nuclear Information System (INIS)

    Dirk Gombert

    2005-01-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  20. High-level waste processing at the Savannah River Site: An update

    International Nuclear Information System (INIS)

    Marra, J.E.; Bennett, W.M.; Elder, H.H.; Lee, E.D.; Marra, S.L.; Rutland, P.L.

    1997-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in Aiken, SC mg began immobilizing high-level radioactive waste in borosilicate glass in 1996. Currently, the radioactive glass is being produced as a ''sludge-only'' composition by combining washed high-level waste sludge with glass frit. The glass is poured in stainless steel canisters which will eventually be disposed of in a permanent, geological repository. To date, DWPF has produced about 100 canisters of vitrified waste. Future processing operations will, be based on a ''coupled'' feed of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of the processing activities completed to date, operational/flowsheet problems encountered, and programs underway to increase production rates

  1. Liquid secondary waste: Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-31

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic conductivity

  2. Space augmentation of military high-level waste disposal

    International Nuclear Information System (INIS)

    English, T.; Lees, L.; Divita, E.

    1979-01-01

    Space disposal of selected components of military high-level waste (HLW) is considered. This disposal option offers the promise of eliminating the long-lived radionuclides in military HLW from the earth. A space mission which meets the dual requirements of long-term orbital stability and a maximum of one space shuttle launch per week over a period of 20-40 years, is a heliocentric orbit about halfway between the orbits of earth and Venus. Space disposal of high-level radioactive waste is characterized by long-term predicability and short-term uncertainties which must be reduced to acceptably low levels. For example, failure of either the Orbit Transfer Vehicle after leaving low earth orbit, or the storable propellant stage failure at perihelion would leave the nuclear waste package in an unplanned and potentially unstable orbit. Since potential earth reencounter and subsequent burn-up in the earth's atmosphere is unacceptable, a deep space rendezvous, docking, and retrieval capability must be developed

  3. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    International Nuclear Information System (INIS)

    WILLIS, W.L.

    2000-01-01

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein

  4. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    WILLIS, W.L.

    2000-06-15

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  5. Method of processing radioactive liquid wastes

    International Nuclear Information System (INIS)

    Kurumada, Norimitsu; Shibata, Setsuo; Wakabayashi, Toshikatsu; Kuribayashi, Hiroshi.

    1984-01-01

    Purpose: To facilitate the procession of liquid wastes containing insoluble salts of boric acid and calcium in a process for solidifying under volume reduction of radioactive liquid wastes containing boron. Method: A soluble calcium compound (such as calcium hydroxide, calcium oxide and calcium nitrate) is added to liquid wastes whose pH value is adjusted neutral or alkaline such that the molar ratio of calcium to boron in the liquid wastes is at least 0.2. Then, they are agitated at a temperature between 40 - 70 0 C to form insoluble calcium salt containing boron. Thereafter, the liquid is maintained at a temperature less than the above-mentioned forming temperature to age the products and, thereafter, the liquid is evaporated to condensate into a liquid concentrate containing 30 - 80% by weight of solid components. The concentrated liquid is mixed with cement to solidify. (Ikeda, J.)

  6. Separation of 99Tc from low level radioactive liquid waste using anion exchange resin

    International Nuclear Information System (INIS)

    Sonar, N.L.; Mittal, V.K.; Dhara, Amrita; Thakur, D.A.; Valsala, T.P.; Vishwaraj, I.

    2016-01-01

    Technetium-99 is one of the fission products with very high yield (∼6%) in thermal neutron induced fission of 235 U. 99 Tc exists as pertechnate ( 99 TcO 4 ) ion in reprocessing streams. The high solubility in water and high mobility of pertechnate ions, coupled with very high half life of 99 Tc (t1/2 = 2 × 105 y, âmax = 290 KeV) makes it a potential candidate for long term hazard to the environment. Major radionuclides present in the intermediate level waste (ILW) generated at reprocessing plant is conventionally treated by ion exchange method for removal of 137 Cs. The Low level effluent waste (LLW) from the IX column contains 99 Tc as a major isotope. Though the concentration of 99 Tc in the waste is in ppm level, the presence of molar level of competing nitrates makes its separation very difficult. Many efforts have been reported on selective separation of 99 Tc from various waste streams. In this paper, separation of 99 Tc from ion exchange column effluent waste stream using selected commercially available anion exchange resins has been detailed

  7. Performance of high level waste forms and engineered barriers under repository conditions

    International Nuclear Information System (INIS)

    1991-02-01

    The IAEA initiated in 1977 a co-ordinated research programme on the ''Evaluation of Solidified High-Level Waste Forms'' which was terminated in 1983. As there was a continuing need for international collaboration in research on solidified high-level waste form and spent fuel, the IAEA initiated a new programme in 1984. The new programme, besides including spent fuel and SYNROC, also placed greater emphasis on the effect of the engineered barriers of future repositories on the properties of the waste form. These engineered barriers included containers, overpacks, buffer and backfill materials etc. as components of the ''near-field'' of the repository. The Co-ordinated Research Programme on the Performance of High-Level Waste Forms and Engineered Barriers Under Repository Conditions had the objectives of promoting the exchange of information on the experience gained by different Member States in experimental performance data and technical model evaluation of solidified high level waste forms, components of the waste package and the complete waste management system under conditions relevant to final repository disposal. The programme includes studies on both irradiated spent fuel and glass and ceramic forms as the final solidified waste forms. The following topics were discussed: Leaching of vitrified high-level wastes, modelling of glass behaviour in clay, salt and granite repositories, environmental impacts of radionuclide release, synroc use for high--level waste solidification, leachate-rock interactions, spent fuel disposal in deep geologic repositories and radionuclide release mechanisms from various fuel types, radiolysis and selective leaching correlated with matrix alteration. Refs, figs and tabs

  8. Solidification of Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Maher, R.; Shafranek, L.F.; Stevens, W.R. III.

    1983-01-01

    The Department of Energy, in accord with recommendations from the Du Pont Company, has started construction of a Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The facility should be completed by the end of 1988, and full-scale operation should begin in 1990. This facility will immobilize in borosilicate glass the large quantity of high-level radioactive waste now stored at the plant plus the waste to be generated from continued chemical reprocessing operations. The existing wastes at the Savannah River Plant will be completely converted by about 2010. 21 figures

  9. Materials for high-level waste containment

    International Nuclear Information System (INIS)

    Marsh, G.P.

    1982-01-01

    The function of the high-level radioactive waste container in storage and of a container/overpack combination in disposal is considered. The consequent properties required from potential fabrication materials are discussed. The strategy adopted in selecting containment materials and the experimental programme underway to evaluate them are described. (U.K.)

  10. Status of the high-level nuclear waste disposal program in Japan

    International Nuclear Information System (INIS)

    Uematsu, K.

    1985-01-01

    The Japan Atomic Energy Commission (JAEC) initiated a high-level radioactive waste disposal program in 1976. Since then, the Advisory Committee on Radioactive Waste Management of JAEC has revised the program twice. The latest revision was issued in 1984. The committee recommended a four-phase program and the last phase calls for the beginning of emplacement of the high-level nuclear waste into a selected repository in the Year 2000. The first phase is already completed, and the second phase of this decade calls for the selection of a candidate disposal site and the conducting of the RandD of waste disposal in an underground research laboratory and in a hot test facility. This paper covers the current status of the high-level nuclear waste disposal program in Japan

  11. Liquid secondary waste. Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testing to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.

  12. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...

  13. Contaminant transport modelling in tidal influenced water body for low level liquid waste discharge out

    International Nuclear Information System (INIS)

    Singh, Sanjay; Naidu, Velamala Simhadri

    2018-01-01

    Low level liquid waste is generated from nuclear reactor operation and reprocessing of spent fuel. This waste is discharged into the water body after removing bulk of its radioactivity. Dispersion of contaminant mainly depends on location of outfall and hydrodynamics of water body. For radiological impact assessment, in most of the analytical formulations, source term is taken as continuous release. However, this may not be always true as the water level is influenced by tidal movement and the selected outfall may come under intertidal zone in due course of the tidal cycle. To understand these phenomena, a case study has been carried out to evaluate hydrodynamic characteristics and dilution potential of outfall located in inter-tidal zone using numerical modelling

  14. High-level radioactive waste management

    International Nuclear Information System (INIS)

    Schneider, K.J.; Liikala, R.C.

    1974-01-01

    High-level radioactive waste in the U.S. will be converted to an encapsulated solid and shipped to a Federal repository for retrievable storage for extended periods. Meanwhile the development of concepts for ultimate disposal of the waste which the Federal Government would manage is being actively pursued. A number of promising concepts have been proposed, for which there is high confidence that one or more will be suitable for long-term, ultimate disposal. Initial evaluations of technical (or theoretical) feasibility for the various waste disposal concepts show that in the broad category, (i.e., geologic, seabed, ice sheet, extraterrestrial, and transmutation) all meet the criteria for judging feasibility, though a few alternatives within these categories do not. Preliminary cost estimates show that, although many millions of dollars may be required, the cost for even the most exotic concepts is small relative to the total cost of electric power generation. For example, the cost estimates for terrestrial disposal concepts are less than 1 percent of the total generating costs. The cost for actinide transmutation is estimated at around 1 percent of generation costs, while actinide element disposal in space is less than 5 percent of generating costs. Thus neither technical feasibility nor cost seems to be a no-go factor in selecting a waste management system. The seabed, ice sheet, and space disposal concepts face international policy constraints. The information being developed currently in safety, environmental concern, and public response will be important factors in determining which concepts appear most promising for further development

  15. Disposal of high level nuclear wastes: Thermodynamic equilibrium and environment ethics

    Institute of Scientific and Technical Information of China (English)

    RANA Mukhtar Ahmed

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes.

  16. Solid and liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1989-01-01

    The technology for the treatment of low - and intermediate-level radioactive solid and liquid wastes is somewhat extensive. Some main guidance on the treatment methods are shown, based on informations contained in technical reports and complementary documents. (author) [pt

  17. Selective extraction of actinides from high level liquid wastes. Study of the possibilities offered by the Redox properties of actinides

    International Nuclear Information System (INIS)

    Adnet, J.M.

    1991-07-01

    Partitioning of high level liquid wastes coming from nuclear fuel reprocessing by the PUREX process, consists in the elimination of minor actinides (Np, Am, and traces of Pu and U). Among the possible processes, the selective extraction of actinides with oxidation states higher than three is studied. First part of this work deals with a preliminary step; the elimination of the ruthenium from fission products solutions using the electrovolatilization of the RuO4 compound. The second part of this work concerns the complexation and oxidation reactions of the elements U, Np, Pu and Am in presence of a compound belonging to the insaturated polyanions family: the potassium phosphotungstate. For actinide ions with oxidation state (IV) complexed with phosphotungstate anion the extraction mechanism by dioctylamine was studied and the use of a chromatographic extraction technic permitted successful separations between tetravalents actinides and trivalents actinides. Finally, in accordance with the obtained results, the basis of a separation scheme for the management of fission products solutions is proposed

  18. Idaho National Engineering Laboratory High-Level Waste Roadmap

    International Nuclear Information System (INIS)

    1993-08-01

    The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ''where we are now'' to ''where we want and need to be.'' The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment. By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues

  19. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE's instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department's obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act

  20. Advanced waste form and Melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (also with high Al2O3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both

  1. Results of sampling the contents of the liquid low-level waste evaporator feed tank W-22 at ORNL

    International Nuclear Information System (INIS)

    Sears, M.B.

    1996-09-01

    This report summarizes the results of the fall 1994 sampling of the contents of the liquid low- level waste (LLLW) tank W-22 at the Oak Ridge National Laboratory (ORNL). Tank W-22 is the central collection and holding tank for LLLW at ORNL before the waste is transferred to the evaporators. Samples of the tank liquid and sludge were analyzed to determine (1) the major chemical constituents, (2) the principal radionuclides, (3) the metals listed on the U.S. Environmental Protection Agency (EPA) Contract Laboratory Program Inorganic Target Analyte List, (4) organic compounds, and (5) some physical properties. The organic chemical characterization consisted of the determinations of the EPA Contract Laboratory Program Target Compound List semivolatile compounds, pesticides, and polychlorinated biphenyls (PCBs). Water-soluble volatile organic compounds were also determined. Information provided in this report forms part of the technical basis in support of (1) waste management for the active LLLW system and (2) planning for the treatment and disposal of the waste

  2. Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Steven E.

    2013-11-11

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

  3. Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing

    International Nuclear Information System (INIS)

    Kelly, Steven E.

    2013-01-01

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol

  4. Steady state simulation of Joule heated ceramic melter for vitrification of high level liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Sugilal, G; Wattal, P K; Theyyunni, T K [Process Engineering and Systems Development Division, Bhabha Atomic Research Centre, Mumbai (India); Iyer, K N [Department of Mechanical Engineering, Indian Inst. of Tech., Mumbai (India)

    1994-06-01

    The Joule heated ceramic melter is emerging as an attractive alternative to metallic melters for high level waste vitrification. The inherent limitations with metallic melters viz., low capacity and short melter life, are overcome in a ceramic melter which can be adopted for continuous mode of operation. The ceramic melter has the added advantage of better operational flexibility. This paper describes the three dimensional model used for simulating the complex design conditions of the ceramic melter. (author).

  5. Steady state simulation of Joule heated ceramic melter for vitrification of high level liquid waste

    International Nuclear Information System (INIS)

    Sugilal, G.; Wattal, P.K.; Theyyunni, T.K.; Iyer, K.N.

    1994-01-01

    The Joule heated ceramic melter is emerging as an attractive alternative to metallic melters for high level waste vitrification. The inherent limitations with metallic melters viz., low capacity and short melter life, are overcome in a ceramic melter which can be adopted for continuous mode of operation. The ceramic melter has the added advantage of better operational flexibility. This paper describes the three dimensional model used for simulating the complex design conditions of the ceramic melter. (author)

  6. Laboratory studies on leaching of low grade uranium ores and treatment of low level liquid waste generated by leaching experiments

    International Nuclear Information System (INIS)

    Palabrica, O.T.; Antonino, E.J.; Caluag, L.A.; Villamater, D.

    1980-07-01

    Acid leaching experiments of preconcentrated uranium ore were carried out at a pulp density of 50% solids, using sulfuric acid with sodium chlorate as oxidant. The different leaching parameters considered in this work were temperature, oxidant level and leaching time. In the experimental procedure, the concentration of oxidant and the temperature were varied to determine how they affect the leaching process. Experimental results are illustrated in tabulated form for better interpretation. Uranium analyses were done by fluorimetric and delayed-neutron activation analysis. An anion exchange method using Dowex 1 x 8, 200-400 mesh (Cl - ) was used in treating the low-level liquid waste generated by leaching experiments. The purpose of this treatment was to minimize radioactive contamination in the waste materials and also to recover some of the uranium left in the liquid waste. (author)

  7. Radioactive liquid waste processing system

    International Nuclear Information System (INIS)

    Noda, Tetsuya; Kuramitsu, Kiminori; Ishii, Tomoharu.

    1997-01-01

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  8. Sorption of radioscesium from liquid radioactive waste on clay and immobilization by baking the clay at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, F.; Ghaffar, A. [Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan)

    2011-07-01

    The cesium-137 is the most problematic radionuclide in the radioactive wastes. It belongs to the IA group of the periodic table, highly reactive towards water and has very high mobility. Due to beta and gamma radiation hazards of radiocesium its decontamination and disposal requires some special tools and techniques. In this study globules of clay material was used for the removal of cesium from low level liquid radioactive wastes and further processed for immobilization. The aim of this study was to assess the solidification and immobilization of secondary waste. The secondary waste, after sorption of cesium from the liquid radioactive waste generated at this institute, was found compatible to the cement matrix used for the cementation process. The procedure for immobilization of low level radioactive waste with cementation using vitreous clay material as an additive was developed. (orig.)

  9. Sorption of radioscesium from liquid radioactive waste on clay and immobilization by baking the clay at elevated temperature

    International Nuclear Information System (INIS)

    Rashid, F.; Ghaffar, A.

    2011-01-01

    The cesium-137 is the most problematic radionuclide in the radioactive wastes. It belongs to the IA group of the periodic table, highly reactive towards water and has very high mobility. Due to beta and gamma radiation hazards of radiocesium its decontamination and disposal requires some special tools and techniques. In this study globules of clay material was used for the removal of cesium from low level liquid radioactive wastes and further processed for immobilization. The aim of this study was to assess the solidification and immobilization of secondary waste. The secondary waste, after sorption of cesium from the liquid radioactive waste generated at this institute, was found compatible to the cement matrix used for the cementation process. The procedure for immobilization of low level radioactive waste with cementation using vitreous clay material as an additive was developed. (orig.)

  10. High-Level waste process and product data annotated bibliography

    International Nuclear Information System (INIS)

    Stegen, G.E.

    1996-01-01

    The objective of this document is to provide information on available issued documents that will assist interested parties in finding available data on high-level waste and transuranic waste feed compositions, properties, behavior in candidate processing operations, and behavior on candidate product glasses made from those wastes. This initial compilation is only a partial list of available references

  11. Reduction and resource recycling of high-level radioactive wastes through nuclear transmutation with PHITS code

    International Nuclear Information System (INIS)

    Fujita, Reiko

    2017-01-01

    In the ImPACT program of the Cabinet Office, programs are underway to reduce long-lived fission products (LLFP) contained in high-level radioactive waste through nuclear transmutation, or to recycle/utilize useful nuclear species. This paper outlines this program and describes recent achievements. This program consists of five projects: (1) separation/recovery technology, (2) acquisition of nuclear transmutation data, (3) nuclear reaction theory model and simulation, (4) novel nuclear reaction control and development of elemental technology, and (5) discussions on process concept. The project (1) develops a technology for dissolving vitrified solid, a technology for recovering LLFP from high-level waste liquid, and a technology for separating odd and even lasers. Project (2) acquires the new nuclear reaction data of Pd-107, Zr-93, Se-79, and Cs-135 using RIKEN's RIBF or JAEA's J-PARC. Project (3) improves new nuclear reaction theory and structural model using the nuclear reaction data measured in (2), improves/upgrades nuclear reaction simulation code PHITS, and proposes a promising nuclear transmutation pathway. Project (4) develops an accelerator that realizes the proposed transmutation route and its elemental technology. Project (5) performs the conceptual design of the process to realize (1) to (4), and constructs the scenario of reducing/utilizing high-level radioactive waste to realize this design. (A.O.)

  12. Technologies for recovery of transuranics and immobilization of non-high-level wastes

    International Nuclear Information System (INIS)

    Richardson, G.L.

    1976-06-01

    This paper supplements the preceding Symposium paper on ''Treatment Technologies for Non-High-Level Wastes (U.S.A.)'' by C. R. Cooley and D. E. Clark (HEDL-SA-851), and covers the additional treatment technologies in use and under development for recovering transuranics and immobilizing non-high-level wastes for transportation and storage. Methods used for nondestructive assay (NDA) of TRU elements in non-high-level wastes are also discussed briefly

  13. Reconnaissance survey of the intermediate-level liquid waste transfer line between X-10 and the hydrofracture site

    International Nuclear Information System (INIS)

    Duguid, J.O.; Sealand, O.M.

    1975-08-01

    Two leakage points on an intermediate-level liquid waste line were located. The waste line is used periodically to transfer waste between X-10 and the hydrofracture site. The first leak occurred prior to this survey and had been repaired, but no contaminated soil had been removed. The second leak resulted in soil contamination that was more intense than at the first leak. Analyses of soil samples taken from both locations are given in this report. Groundwater data indicate the effectiveness of the removal of the contaminated material from leak two. 1 ref., 5 figs., 3 tabs

  14. Reconnaissance survey of the intermediate level liquid waste transfer line between X-10 and the hydrofracture site

    International Nuclear Information System (INIS)

    Duguid, J.O.; Sealand, O.M.

    1975-08-01

    Two leakage points on an intermediate-level liquid waste line were located. The waste line is used periodically to transfer waste between X-10 and the hydrofracture site. The first leak had occurred prior to this survey and had been repaired. However, no contaminated soil had been removed. The second leak had not been discovered previously and soil contamination in this area was more intense than at the first leak. Analyses of soil samples taken from both locations are given in this report. Groundwater data that indicate the effectiveness of the removal of the contaminated material from leak two are presented. (U.S.)

  15. The immobilization of organic liquid wastes

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1986-01-01

    This report describes a portland cement immobilization process for the disposal treatment of radioactive organic liquid wastes which would be generated in a FFTF fuels reprocessing line. An incineration system already on-hand was determined to be too costly to operate for the 100 to 400 gallons per year organic liquid. Organic test liquids were dispersed into an aqueous phosphate liquid using an emulsifier. A total of 109 gallons of potential and radioactive aqueous immiscible organic liquid wastes from Hanford 300 Area operations were solidified with portland cement and disposed of as solid waste during a 3 month test program with in-drum mixers. Waste packing efficiencies varied from 32 to 40% and included pump oils, mineral spirits, and TBP-NPH type solvents

  16. Treatment methods for radioactive mixed wastes in commercial low-level wastes - technical considerations

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid solvent extraction, and specific chemical destruction techniques have been considered for organic liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. Fore each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present

  17. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    Cotton, T.

    1985-01-01

    With the passage of the Nuclear Waste Policy Act of 1982 (NWPA), Congress for the first time established in law a comprehensive Federal policy for commercial high-level radioactive waste management, including interim storage and permanent disposal. NWPA provides sufficient authority for developing and operating a high-level radioactive waste management system based on disposal in mined geologic repositories. Authorization for other types of waste facilities will not be required unless major problems with geologic disposal are discovered, and studies to date have identified no insurmountable technical obstacles to developing geologic repositories. The NWPA requires the Department of Energy (DOE) to submit to Congress three key documents: (1) a Mission Plan, containing both a waste management plan with a schedule for transferring waste to Federal facilities and an implementation program for choosing sites and developing technologies to carry out that plan; (2) a monitored retrievable storage (MRS) proposal, to include a site-specific design for a long-term federal storage facility, an evaluation of whether such an MRS facility is needed and feasible, and an analysis of how an MRS facility would be integrated with the repository program if authorized by Congress; and (3) a study of alternative institutional mechanisms for financing and managing the radioactive waste system, including the option of establishing an independent waste management organization outside of DOE. The Mission Plan and the report on alternative institutional mechanisms were submitted to the 99th US Congress in 1985. The MRS proposal is to be submitted in early 1986. Each of these documents is discussed following an overview of the Nuclear Waste Policy Act of 1982

  18. Development of melt compositions for sulphate bearing high level waste

    International Nuclear Information System (INIS)

    Jahagirdar, P.B.; Wattal, P.K.

    1997-09-01

    The report deals with the development and characterization of vitreous matrices for sulphate bearing high level waste. Studies were conducted in sodium borosilicate and lead borosilicate systems with the introduction of CaO, BaO, MgO etc. Lead borosilicate system was found to be compatible with sulphate bearing high level wastes. Detailed product evaluation carried on selected formulations is also described. (author)

  19. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collard, L.B.

    2000-09-26

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.

  20. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    International Nuclear Information System (INIS)

    Collard, L.B.

    2000-01-01

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds

  1. Disposal of high level nuclear wastes: thermodynamic equilibrium and environment ethics

    International Nuclear Information System (INIS)

    Rana, M.A.

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes. (authors)

  2. Final treatment of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Svolik, S.

    2004-01-01

    Final treatment of liquid radioactive wastes which are produced by 1 st and 2 nd bloc of the Mochovce NPP, prepares the NPP in its natural range. The purpose of the equipment is liquidation of wastes, which are formed at production. Wastes are warehoused in the building of active auxiliary plants in the present time, where are reservoirs in which they are deposited. Because they are already feeling and in 2006 year they should be filled definitely, it is necessary to treat them in that manner, so as they may be liquidated. Therefore the Board of directors of the Slovenske elektrarne has disposed about construction of final treatment of liquid radioactive wastes in the Mochovce NPP. Because of transport the wastes have to be treated in the locality of power plant. Technically, the final treatment of the wastes will be interconnected with building of active operation by bridges. These bridges will transport the wastes for treatment into processing centre

  3. Canadian high-level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Allan, C.J.; Gray, B.R.

    1992-01-01

    In Canada responsibility for the management of radioactive wastes rests with the producer of those wastes. This fundamental principle applies to such diverse wastes as uranium mine and mill tailings, low-level wastes from universities and hospitals, wastes produced at nuclear research establishments, and wastes produced at nuclear generating stations. The federal government has accepted responsibility for historical wastes for which the original producer can no longer be held accountable. Management of radioactive wastes is subject to the regulatory control of the Atomic Energy Control Board, the federal agency responsible for regulating the nuclear industry. In this paper the authors summarize the current situation concerning the management of high level (used nuclear fuel) wastes. In 1981 the two governments also announced that selection of a disposal site would not proceed, and responsibility for site selection and operation would not be assigned until the Concept for used fuel disposal had been reviewed and assessed. Thus the concept assessment is generic rather than site specific. The Concept that has been developed has been designed to conform with safety and performance criteria established by the Atomic Energy Control Board. It is based on burial deep in plutonic rock of the Canadian Shield, using a multi-barrier approach with a series of engineered and natural barriers: these include the waste form, container, buffer and backfill, and the host rock

  4. Management of high level radioactive waste

    International Nuclear Information System (INIS)

    Redon, A.; Mamelle, J.; Chambon, M.

    1977-01-01

    The world wide needs in reprocessing will reach the value of 10.000 t/y of irradiated fuels, in the mid of the 80's. Several countries will have planned, in their nuclear programme, the construction of reprocessing plants with a 1500 t/y capacity, corresponding to 50.000 MWe installed. At such a level, the solidification of the radioactive waste will become imperative. For this reason, all efforts, in France, have been directed towards the realization of industrial plants able of solidifying the fission products as a glassy material. The advantages of this decision, and the reasons for it are presented. The continuing development work, and the conditions and methods of storing the high-level wastes prior to solidification, and of the interim storage (for thermal decay) and the ultimate disposal after solidification are described [fr

  5. Liquid wastes concentrating and solidifying device

    International Nuclear Information System (INIS)

    Kamiyoshi, Hideki; Ninokata, Yoshihide.

    1985-01-01

    Purpose: To provide a device for concentrating to solidify radioactive liquid wastes at large solidifying speed and with high decontaminating coefficient, without requirement for automatic control. Constitution: An asphalt solidifying device is disposed below a centrifugal thin film drier, and powder resulted from the drier is directly solidified with asphalt by utilizing the rotation of the drier for the mixing operation in the asphalt vessel. If abnormality should occur in the operation of the drier, resulting liquid wastes can be received and solidified in the asphalt vessel. The liquid wastes are heated to dry in a vessel main body having the heating surface at the circumferential surface. The vessel main body provided with a nozzle for supplying liquid to be treated disposed slantwise at the upper portion of the heating face, scrapers which rotate and slidingly contact the heating face and nozzles which jet out chemicals to the heating face behind the scrapers. Below the vessel main body, are disposed a funnel-like hopper for receiving falling scales, rotary vanes, and the likes by which the scales are introduced into the asphalt solidifying vessel. (Moriyama, K.)

  6. The hot bench scale plant Ester for the vitrification of high level wastes

    International Nuclear Information System (INIS)

    Nannicini, R.; Strazzer, A.; Cantale, C; Donato, A.; Grossi, G.

    1985-01-01

    In this paper the hot bench-scale plant ESTER for the vitrification of the high-level radioactive wastes is described, and the main results of the first radioactive campaign are reported. The ESTER plant, which is placed in the ADECO-ESSOR hot cells of the C.C.R.-EURATOM-ISPRA, has been built and is operated by the ENEA, Departement of Fuel Cycle. It began operating with real radioactive wastes about 1 year ago, solidifying a total of 12 Ci of fission products into 2,02 Kg of borosilicate glass, corresponding to 757 ml of glass. During the vitrification many samples of liquid and gaseous streams have been taken and analyzed. A radioactivity balance in the plant has been calculated, as well as a mass balance of nitrates and of the 137 Cs and 106 Ru volatized in the process

  7. Immobilisation of high level nuclear reactor wastes in SYNROC

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, A E; Kesson, S E; Ware, N G; Hibberson, W; Major, A [Australian National Univ., Canberra. Inst. of Advanced Studies

    1979-03-15

    It is stated that the elements occurring in high-level nuclear reactor wastes can be safely immobilised by incorporating them within the crystal lattices of the constituent minerals of a synthetic rock (SYNROC). The preferred form of SYNROC can accept up to 20% of high level waste calcine to form dilute solid solutions. The constituent minerals, or close structural analogues, have survived in a wide range of geochemical environments for periods of 20 to 2,000 Myr whilst immobilising the same elements present in nuclear wastes. SYNROC is unaffected by leaching for 24 hours in pure water or 10 wt % NaCl solution at high temperatures and pressure whereas borosilicate glasses completely decompose in a few hours in much less severe hydrothermal conditions. The combination of these leaching results with the geological evidence of long-term stability indicates that SYNROC would be vastly superior to glass in its capacity to safely immobilise nuclear wastes, when buried in a suitable geological repository. A dense, compact, mechanically strong form of SYNROC suitable for geological disposal can be produced by a process as economical as that which incorporates radioactive waste in borosilicate glasses.

  8. Vitrification of high-level radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Lutze, W.

    1993-12-01

    The main objective is to summarize work conducted on glasses as waste forms for high-level radioactive fission product solutions up to the late 1980's (section I and II). Section III addresses the question, whether waste forms designed for the immobilization of radioactive residues can be used for the same purpose for hazardous wastes. Of particular interest are those types of hazardous wastes, e.g., fly ashes from municipal combustion plants, easy to convert into glasses or ceramic materials. A large number of base glass compositions has been studied to vitrify waste from reprocessing but only borosilicate glasses with melting temperatures between 1100 C and 1200 C and very good hydrolytic stability is used today. (orig./HP) [de

  9. Modeling of strongly heat-driven flow processes at a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1993-01-01

    Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs, fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed

  10. Modeling of strongly heat-driven flow processes at a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1993-01-01

    Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs. fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed

  11. Desactivation of liquid radioactive wastes of low and medium activity

    International Nuclear Information System (INIS)

    Golinski, M.; Charomska, K.

    1978-01-01

    The results of research made according to the prodranm of scientific and technical cooperation of the CMEA countries are discussed. The main direction of these research works is on future improvement of installations for purification of liquid radioactive wastes by chemical methods of coprecipitation and coagulation, ion exchange, sorption, distillation and electrolysis. It was shown that methods of coprecipitation and coagulation have low efficiency and the activity reduction factor seldom was more than 10. In sorption processes different sorbents, both organic and nonorganic were used. The modified bentonite used as a sorbent agent has shown high selectivity towards zesium ions. Waste concentration by means of distillation is an universal but rather expensive method and is applied mainly in the cases of high salts concentration and high specific activity of liquid wastes. Electrolysis, as a method of the liquid wastes purification is used in the USSR and has high efficiency with low energy consumption. (I.T.) [ru

  12. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals.

    Science.gov (United States)

    Borai, E H; Harjula, R; Malinen, Leena; Paajanen, Airi

    2009-12-15

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs+ ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  13. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals

    International Nuclear Information System (INIS)

    Borai, E.H.; Harjula, R.; Malinen, Leena; Paajanen, Airi

    2009-01-01

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs + ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  14. ATW system impact on high-level waste

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1992-01-01

    This report discusses the Accelerator Transmutation of Waste (ATW) concept which aims at destruction of key long-lived radionuclides in high-level nuclear waste (HLW), both fission products and actinides. This focus makes it different from most other transmutation concepts which concentrate primarily on actinide burning. The ATW system uses an accelerator-driven, sub-critical assembly to create an intense thermal neutron environment for radionuclide transmutation. This feature allows rapid transmutation under low-inventory system conditions, which in turn, has a direct impact on the size of chemical separations and materials handling components of the system. Inventories in ATW are factors of eight to thirty times smaller than reactor systems of equivalent thermal power. Chemical separations systems are relatively small in scale and can be optimized to achieve high decontamination factors and minimized waste streams. The low-inventory feature also directly impacts material amounts remaining in the system at its end of life. In addition to its low-inventory operation, the accelerator-driven neutron source features of ATW are key to providing a sufficient level of neutrons to allow transmutation of long-lived fission products

  15. Demonstration of Caustic-Side Solvent Extraction with Savannah River Site High Level Waste

    International Nuclear Information System (INIS)

    Walker, D.D.

    2001-01-01

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet for the decontamination of high level waste using a 33-stage, 2-cm centrifugal contactor apparatus at the Savannah River Technology Center. This represents the first CSSX process demonstration using Savannah River Site (SRS) high level waste. Three tests lasting 6, 12, and 48 hours processed simulated average SRS waste, simulated Tank 37H/44F composite waste, and Tank 37H/44F high level waste, respectively

  16. Removal of some Fission Products from Low Level Liquid Radioactive Waste by Chemical Precipitation liquid/Co-precipitation / Phosphate Coagulant

    International Nuclear Information System (INIS)

    Borai, E.H.; Attallah, M.F.; Hilal, M.A.; Abo-Aly, M.M.; Shehata, F.A.

    2008-01-01

    In Egypt radioactive waste has been generated from various uses of radioactive materials. Presence of cesium demonstrated a major problem from the removal point of view even by conventional and advanced technologies. Selective chemical precipitation has been oriented for removal of some fission products including 137 Cs from low level liquid radioactive waste (LLLRW). The aim of the present study was focused to investigate the effectiveness of various phosphate compounds that improved the precipitation process and hence the decontamination factor. The results showed that, maximum removal of 137 Cs reaching 46.4 % using di-sodium hydrogen phosphate as a selective coagulant. It was found that significant enhancement of co-precipitation of 137 Cs (62.5 %) was obtained due to presence of Nd 3+ in the LLLRW

  17. Principal prerequisites and practice for using deep aquifers for disposal of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    1977-01-01

    One of the most promising methods of safe disposal of liquid radioactive wastes in the USSR is the creation of storage places in deep aquifers in zones of stagnant regime or the slow exchange of underground water. The results of investigations and disposal practices testify to the safety and efficiency of such a method of final waste disposal which fulfils the main requirements for protecting the environment. Geological formations and stratum-collectors may be studied and selected to secure localization of liquid radioactive wastes injected into them for many tens and even hundreds of thousand years. The main requirements and criteria which must be met by geological structures and stratum-collectors to ensure safe disposal of wastes are formulated. Waste disposal is realized only after a thorough scientific appreciation of health and safety of present and future generations with regard to the regime of disposal and physico-chemical processes depending on the compatibility of the wastes with rocks and stratal waters as well as on the period of time of waste exposure up to the maximum permissible concentrations. Positive and negative factors of the method are analysed. Methods of preparing waste for disposal and chemical methods of restoring the response of the holes, ways of effective remote control of disposal and environment, etc., are briefly discussed. The results of 10-12 years experimental and industrial exploitation of storage places for liquid radioactive wastes of low- and medium-level activity are presented. The results of enlarged field tests on disposal of high-level activity liquid wastes are described. Preliminary prediction calculations are shown to be confirmed with sufficient accuracy by the data on exploitation. (author)

  18. Borosilicate glass as a matrix for immobilization of SRP high-level waste

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1980-01-01

    Approximately 22 million gallons of high-level radioactive defense waste are currently being stored in large underground tanks located on the Savannah River Plant (SRP) site in Aiken, South Carolina. One option now being considered for long-term management of this waste involves removing the waste from the tanks, chemically processing the waste, and immobilizing the potentially harmful radionuclides in the waste into a borosilicate glass matrix. The technology for producing waste glass forms is well developed and has been demonstrated on various scales using simulated as well as radioactive SRP waste. Recently, full-scale prototypical equipment has been made operational at SRP. This includes both a joule-heated ceramic melter and an in-can melter. These melters are a part of an integrated vitrification system which is under evaluation and includes a spray calciner, direct liquid feed apparatus, and various elements of an off-gas system. Two of the most important properties of the waste glass are mechanical integrity and leachability. Programs are in progress at SRL aimed at minimizing thermally induced cracking by carefully controlling cooling cycles and using ceramic liners or coatings. The leachability of SRP waste glass has been studied under many different conditions and consistently found to be low. For example, the leachability of actual SRP waste glass was found to be 10 -6 to 10 -5 g/(cm 2 )(day) initially and decreasing to 10 -9 to 10 -8 g/(cm 2 )(day) after 100 days. Waste glass is also being studied under anticipated storage conditions. In brine at 90 0 C, the leachability is about 5 x 10 -8 g/(cm 2 )(day) after 60 days. The effects of other geological media including granite, basalt, shale, and tuff are also being studied as part of the multibarrier isolation system

  19. Final disposal of high levels waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Gelin, R.

    1984-05-01

    Foreign and international activities on the final disposal of high-level waste and spent nuclear fuel have been reviewed. A considerable research effort is devoted to development of acceptable disposal options. The different technical concepts presently under study are described in the report. Numerous studies have been made in many countries of the potential risks to future generations from radioactive wastes in underground disposal repositories. In the report the safety assessment studies and existing performance criteria for geological disposal are briefly discussed. The studies that are being made in Canada, the United States, France and Switzerland are the most interesting for Sweden as these countries also are considering disposal into crystalline rocks. The overall time-tables in different countries for realisation of the final disposal are rather similar. Normally actual large-scale disposal operations for high-level wastes are not foreseen until after year 2000. In the United States the Congress recently passed the important Nuclear Waste Policy Act. It gives a rather firm timetable for site-selection and construction of nuclear waste disposal facilities. According to this act the first repository for disposal of commercial high-level waste must be in operation not later than in January 1998. (Author)

  20. A truck cask design for shipping defense high-level waste

    International Nuclear Information System (INIS)

    Madsen, M.M.; Zimmer, A.

    1985-01-01

    The Defense High-Level Waste (DHLW) cask is a Type B packaging currently under development by the U.S. Department of Energy (DOE). This truck cask has been designed to initially transport borosilicate glass waste from the Defense Waste Processing Facility (DWPF) to the Waste Isolation Pilot Plant (WIPP). Specific program activities include designing, testing, certifying, and fabricating a prototype legal-weight truck cask system. The design includes such state-of-the-art features as integral impact limiters and remote handling features. A replaceable shielding liner provides the flexibility for shipping a wide range of waste types and activity levels

  1. The defense waste processing facility: the final processing step for defense high-level waste disposal

    International Nuclear Information System (INIS)

    Cowan, S.P.; Sprecher, W.M.; Walton, R.D.

    1983-01-01

    The policy of the U.S. Department of Energy is to pursue an aggressive and credible waste management program that advocates final disposal of government generated (defense) high-level nuclear wastes in a manner consistent with environmental, health, and safety responsibilities and requirements. The Defense Waste Processing Facility (DWPF) is an essential component of the Department's program. It is the first project undertaken in the United States to immobilize government generated high-level nuclear wastes for geologic disposal. The DWPF will be built at the Department's Savannah River Plant near Aiken, South Carolina. When construction is complete in 1989, the DWPF will begin processing the high-level waste at the Savannah River Plant into a borosilicate glass form, a highly insoluble and non-dispersable product, in easily handled canisters. The immobilized waste will be stored on site followed by transportation to and disposal in a Federal repository. The focus of this paper is on the DWPF. The paper discusses issues which justify the project, summarizes its technical attributes, analyzes relevant environmental and insitutional factors, describes the management approach followed in transforming technical and other concepts into concrete and steel, and concludes with observations about the future role of the facility

  2. Engineering-scale vitrification of commercial high-level waste

    International Nuclear Information System (INIS)

    Bonner, W.F.; Bjorklund, W.J.; Hanson, M.S.; Knowlton, D.E.

    1980-04-01

    To date, technology for immobilizing commercial high-level waste (HLW) has been extensively developed, and two major demonstration projects have been completed, the Waste Solidification Engineering Prototypes (WSEP) Program and the Nuclear Waste Vitrification Project (NWVP). The feasibility of radioactive waste solidification was demonstrated in the WSEP program between 1966 and 1970 (McElroy et al. 1972) using simulated power-reactor waste composed of nonradioactive chemicals and HLW from spent, Hanford reactor fuel. Thirty-three engineering-scale canisters of solidified HLW were produced during the operations. In early 79, the NWVP demonstrated the vitrification of HLW from the processing of actual commercial nuclear fuel. This program consisted of two parts, (1) waste preparation and (2) vitrification by spray calcination and in-can melting. This report presents results from the NWVP

  3. CIGeO geological disposal for high-level radioactive waste in France

    International Nuclear Information System (INIS)

    Ouzounian, Gerald; Bolia, Jelana

    2014-01-01

    Andra is the sole French organization responsible for the radioactive waste management in the country. Its work relies extensively on the legal basis provided by several major laws (Waste Act of 1991 and the Planning Act of 2006), which shaped the main principles of the waste management strategy and determined the corresponding implementation tools. Andra's industrial activities are essentially based around three of its national disposal facilities. Two of these operational facilities, by their design and comprehensive monitoring system, are considered worldwide as solid and proven reference solutions for the concerned types of radioactive waste. Andra is also charged with designing a future deep geological repository for intermediate-level long-lived and high-level waste and researching potential management and disposal solutions for the graphite and radium-bearing waste. The purpose of this article is to update the information to the readers about the Cigeo geological disposal project for high-level radioactive waste in France (authors)

  4. High-level radioactive waste glass and storage canister design

    International Nuclear Information System (INIS)

    Slate, S.C.; Ross, W.A.

    1979-01-01

    Management of high-level radioactive wastes is a primary concern in nuclear operations today. The main objective in managing these wastes is to convert them into a solid, durable form which is then isolated from man. A description is given of the design and evaluation of this waste form. The waste form has two main components: the solidified waste and the storage canister. The solid waste form discussed in this study is glass. Waste glasses have been designed to be inert to water attack, physically rugged, low in volatility, and stable over time. Two glass-making processes are under development at PNL. The storage canister is being designed to provide high-integrity containment for solidified wastes from processing to terminal storage. An outline is given of the steps in canister design: material selection, stress and thermal analyses, quality verification, and postfill processing. Examples are given of results obtained from actual nonradioactive demonstration tests. 14 refs

  5. Application of ion exchange in liquid radioactive waste management of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Puskar; Chopra, S K; Sharma, P D [Nuclear Power Corporation, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    The operation of nuclear power plants would necessarily result in generation of gaseous, liquid and solid radioactive wastes. The wastes are treated/conditioned to ensure that the permissible discharge limits laid down by Atomic Energy Regulatory Board of India are complied with. The wastes are segregated on activity levels, types of radioisotopes present and chemical nature of liquid streams. The basic philosophy of various treatment techniques is to concentrate and contain as much activity as possible. It is of utmost importance that the wastes are effectively treated by proven methods/processes. The radiochemical nature of waste generated is one of the parameters to select a treatment/conditioning method. The paper presents an outline of various processes adopted for treatment of liquid waste and ion exchange processes, their application in liquid waste management in detail. Projected quantities of liquid wastes for the current designs are included. (author). 2 tabs.

  6. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    2000-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  7. Effects of waste content of glass waste forms on Savannah River high-level waste disposal costs

    International Nuclear Information System (INIS)

    McDonell, W.R.; Jantzen, C.M.

    1985-01-01

    Effects of the waste content of glass waste forms of Savannah River high-level waste disposal costs are evaluated by their impact on the number of waste canisters produced. Changes in waste content affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt % waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Waste form modifications under current study include adjustments of glass frit content to compensate for added salt decontamination residues and increased sludge loadings in the DWPF glass. Projected cost reductions demonstrate significant incentives for continued optimization of the glass waste loadings. 13 refs., 3 figs., 3 tabs

  8. Processing method for liquid waste containing various kinds of radioactive material

    International Nuclear Information System (INIS)

    Toyabe, Keiji; Nabeshima, Masahiro; Ozeki, Noboru; Muraki, Tsutomu.

    1996-01-01

    Various kind of radioactive materials and heavy metal elements dissolved in liquid wastes are removed from the liquid wastes by adsorbing them on chitin or chitosan. In this case, a hydrogen ion concentration in the liquid wastes is adjusted to a pH value of from 1 to 3 depending on the kinds of the radioactive materials and heavy metal elements to be removed. Since chitin or chitosan has a special ion exchange performance or adsorbing performance, chemical species comprising radioactive materials or heavy metals dissolved in the liquid wastes are adsorbed thereto by ion adsorption or physical adsorption. With such procedures, radioactive materials and heavy metal elements are removed from the liquid wastes, and the concentration thereof can be reduced to such a level that they can be discharged into environments. On the other hand, since chitin or chitosan adsorbing the radioactive materials and heavy metal elements has a structure of polysaccharides, it is easily burnt into gaseous carbon dioxide. Accordingly, the amount of secondary wastes can remarkably be reduced. (T.M.)

  9. High-level nuclear waste disposal: Ethical considerations

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1985-01-01

    Popular skepticism about, and moral objections to, recent legislation providing for the management and permanent disposal of high-level radioactive wastes have derived their credibility from two major sources: government procrastination in enacting waste disposal program, reinforcing public perceptions of their unprecedented danger and the inflated rhetoric and pretensions to professional omnicompetence of influential scientists with nuclear expertise. Ethical considerations not only can but must provide a mediating framework for the resolution of such a polarized political controversy. Implicit in moral objections to proposals for permanent nuclear waste disposal are concerns about three ethical principles: fairness to individuals, equitable protection among diverse social groups, and informed consent through due process and participation

  10. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    1985-03-01

    This report presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste. It is intended to contribute to the implementation of Nuclear Waste Policy Act of 1982 (NWPA). The major conclusion of that review is that NWPA provides sufficient authority for developing and operating a waste management system based on disposal in geologic repositories. Substantial new authority for other facilities will not be required unless major unexpected problems with geologic disposal are encountered. OTA also concludes that DOE's Draft Mission Plan published in 1984 falls short of its potential for enhancing the credibility and acceptability of the waste management program

  11. Radioactive waste management

    International Nuclear Information System (INIS)

    Slansky, C.M.

    1975-01-01

    High-level radioactive waste is produced at Idaho Chemical Processing Plant (ICPP) during the recovery of spent highly enriched nuclear fuels. Liquid waste is stored safely in doubly contained tanks made of steel. The liquid waste is calcined to a solid and stored safely in a retrievable form in doubly contained underground bins. The calcine can be treated further or left untreated in anticipation of ultimate storage. Fluidized bed calcination has been applied to many kinds of high-level waste. The environmental impact of high-level waste management at the ICcP has been negligible and should continue to be negligible. 13 refs

  12. Retrievable surface storage: interim storage of solidified high-level waste

    International Nuclear Information System (INIS)

    LaRiviere, J.R.; Nelson, D.C.

    1976-01-01

    Studies have been conducted on retrievable-surface-storage concepts for the interim storage of solidified high-level wastes. These studies have been reviewed by the Panel on Engineered Storage, convened by the Committee on Radioactive Waste Management of the National Research Council-National Academy of Sciences. The Panel has concluded that ''retrievable surface storage is an acceptable interim stage in a comprehensive system for managing high-level radioactive wastes.'' The scaled storage cask concept, which was recommended by the Panel on Engineered Storage, consists of placing a canister of waste inside a carbon-steel cask, which in turn is placed inside a thick concrete cylinder. The waste is cooled by natural convection air flow through an annulus between the cask and the inner wall of the concrete cylinder. The complete assembly is placed above ground in an outdoor storage area

  13. Radioprotection and physical surveillance during activities of liquid wastes of high and low activity in italian ITREC plant

    International Nuclear Information System (INIS)

    Petagna, Edoardo; Tortorelli, Pietro

    1997-03-01

    Many studies were made in ITREC Plant, located in ENEA - Trisaia Research Center, in the field of the nuclear fuel reprocessing, in the past years. During these activities liquid wastes of high and low activity were yielded and stored in the special area of tanks named Waste-1. In order to condition the low activity liquid wastes, essentially fission products, beta and gamma emitters, was built the SIRTE Plant (Integrate System for the Raise and Effluents Treatment) based on cementation process. In the present work, the radiological monitoring performed within the plant during the first campaign of cementation, is showed

  14. Method of processing radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Kikuchi, M; Funabashi, K; Yusa, H; Horiuchi, S

    1978-12-21

    Purpose: To decrease the volume of radioactive liquid wastes essentially consisting of sodium hydroxide and boric acid. Method: The concentration ratio of sodium hydroxide to boric acid by weight in radioactive liquid wastes essentially consisting of sodium hydroxide and boric acid is adjusted in the range of 0.28 - 0.4 by means of a pH detector and a sodium concentration detector. Thereafter, the radioactive liquid wastes are dried into powder and then discharged.

  15. High-level radioactive wastes. Supplement 1

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations

  16. Potential radiation damage: Storage tanks for liquid radioactive waste

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1992-01-01

    High level waste at SRS is stored in carbon steel tanks constructed during the period 1951 to 1981. This waste contains radionuclides that decay by alpha, beta, or gamma emission or are spontaneous neutronsources. Thus, a low intensity radiation field is generated that is capable of causing displacement damage to the carbon steel. The potential for degradation of mechanical properties was evaluated by comparing the estimated displacement damage with published data relating changes in Charpy V-notch (CVN) impact energy to neutron exposure. Experimental radiation data was available for three of the four grades of carbonsteel from which the tanks were constructed and is applicable to all four steels. Estimates of displacement damage arising from gamma and neutron radiation have been made based on the radionuclide contents for high level waste that are cited in the Safety Analysis Report (SAR) for the Liquid Waste Handling Facilities in the 200-Area. Alpha and beta emissions do not penetrate carbon steel to a sufficient depth to affect the bulk properties of the tank walls but may aggravate corrosion processes. The damage estimates take into account the source of the waste (F- or H-Area), the several types of tank service, and assume wateras an attenuating medium. Estimates of displacement damage are conservative because they are based on the highest levels of radionuclide contents reported in the SAR and continuous replenishment of the radionuclides

  17. Managing the nation's high-level radioactive waste: key issues and recommendations

    International Nuclear Information System (INIS)

    1981-07-01

    To date, no unified national plan has been adopted to develop and implement a comprehensive system of management and disposal of high-level radioactive waste in the United States. Growing public concern about this problem has resulted in a number of recent efforts to develop a national high-level waste management policy. The 96th Congress strove to resolve the central issues, but ultimately failed to pass legislation, partly because of disagreements about the appropriate role of states in the siting of repositories for military waste. Outside government, a number of organizations convened representatives of diverse groups concerned with national high-level radioactive waste management to seek agreement on the major elements of national policy. One such organization was RESOLVE, Center for Environmental Conflict Resolution, which in May 1981 was merged into The Conservation Foundation. RESOLVE convened Forum II, a series of discussions among representatives of environmental, industrial, governmental, and citizen interest groups, in 1981 specifically to address the issues blocking Congressional agreement on high-level waste policy. This report contains the recommendations which resulted from these deliberations. Reprocessing, interim storage, respository development, and licensing requirements are addressed. Federal, state, and public participation in decision making are also discussed

  18. Michigan high-level radioactive waste program. Technical progress report for 1985

    International Nuclear Information System (INIS)

    1986-01-01

    In 1985, five crystalline rock formations located in Michigan's Upper Peninsula were under consideration in the regional phase of the Department of Energy's (DOE) search for the site of the nation's second high-level radioactive waste repository. The Michigan Department of Public Health has been designated by the Governor as lead state agency in matters related to high-level radioactive waste (HLRW). Mr. Lee E. Jager, Chief of the Department's Bureau of Environmental and Occupational Health, has been designated as the state contact person in this matter, and the Bureau's Division of Radiological Health, Office of Radioactive Waste Management (ORWM), has been designated to provide staff support. Recognizing that adequate state involvement in the various aspects of the Federal high-level radioactive waste (HLRW) programs would require a range of expertise beyond the scope of any single state agency, Governor Blanchard established the High-Level Radioactive Waste Task Force in 1983. In support of the Task Force efforts concerning the implementation of its change, the Department negotiated and concluded an agreement with the DOE, under which federal funds are provided to support state HLRW activities. This report outlines state activities for the calendar year 1985, funded under that agreement

  19. Development of an improved ion-exchange process for removing cesium and strontium from high-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Wallace, R.M.; Ferguson, R.B.

    1980-11-01

    Processes are being developed to solidify and isolate the biologically hazardous radionuclides from approximately 23 million gallons of alkaline high-level waste accumulated at the Savannah River Plant. The waste consists mainly of a liquid supernate, a damp salt cake, and a gelatinous, insoluble sludge. The reference solidification process involves separation of the water soluble fraction (supernate) from the insoluble fraction, removal of cesium and traces of strontium from the supernate, incorporation of the sludge and the radionuclides from the supernate in glass, and incorporation of the residual salt in concrete. A new process, now being developed, involves sorbing cesium on phenolic resins that contain no strongly acidic sulfonate groups. These resins can then be eluted with formic acid which is not possible with Duolite ARC-359. Duolite CS-100, a phenol-carboxylate resin, was chosen for further development because of its greater breakthrough capacity and because it also sorbs strontium to some extent. Strontium sorption by CS-100 was not sufficient to eliminate the need for Amberlite IRC-718. However, the latter resin can also be eluted with formic acid because its functional groups are weakly acidic. Formic acid elution permits several options to be considered. The preferred option consists simply of mixing the eluate with sludge prior to calcination. Sodium formate, which is formed when the resins in the sodium form are eluted, decomposes rapidly between 450 0 C and 500 0 C and will be destroyed in either the calciner or the melter. The resulting sodium oxide would be incorporated into glass. The principal advantage of the new process is the elimination of a number of process steps

  20. Spanish high level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Espejo, J.M.; Beceiro, A.R.

    1992-01-01

    The Empresa Nacional de Residuos Radiactivos, S.A. (ENRESA) has been limited liability company to be responsible for the management of all kind of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high - level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international cooperation are also included

  1. Development and assessment of closure technology for liquid-waste disposal sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Relyea, J.F.; Seitz, R.R.; Cammann, J.W.

    1990-01-01

    Discharge of low-level liquid wastes into soils was practiced previously at the Hanford Site. Technologies for long-term confinement of subsurface contaminants are needed. Additionally, methods are needed to assess the effectiveness of confinement technologies in remediating potentially diverse environmental conditions. Recently developed site remediation systems and assessment methods for in situ stabilization and isolation of radioactive and other contaminants within and below low-level liquid-waste disposal structures are summarized

  2. Low-level liquid waste decontamination by organic ion exchange

    International Nuclear Information System (INIS)

    Lee, D.D.; Campbell, D.O.; Dillow, T.A.

    1990-01-01

    Improved processes are being developed to treat contaminated liquid wastes that have been and continue to be generated at Oak Ridge National Laboratory. Promising results have been obtained for cesium removal with a new resorcinol-based organic resin developed at the Savannah River Site. In tests of cesium removal, it was superior to other available resins, such as Duolite CS-100, with the distribution coefficient being limited primarily by competition from potassium and nearly independent of the sodium concentration. The optimum pH was approximately 12.5 in high NaNO 3 concentrations (>2 M). A fairly low flow velocity was required to yield sharp breakthrough of the loaded cesium. The resin was much less effective for strontium removal, which was limited by competition from sodium. If both cesium and strontium must be removed, another resin column or a mixed bed with a chelating resin should be used

  3. Anaerobic digestion of low-level radioactive cellulosic and animal wastes

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Strandberg, G.W.; Patton, B.D.; Harrington, F.E.

    1983-02-01

    A preliminary process design and a cost estimate have been made for a volume reduction plant for low-level, solid radioactive wastes generated at ORNL. The process is based on extension of existing anaerobic digestion technology and on laboratory studies indicating the feasibiity of this technology for digestion of the organic portion of low-level, solid radioactive wastes. A gaseous effluent (CO 2 and CH 4 ) is vented in the process, and a liquid ffluent containing undigested solids is filtered to remove solids, which are buried. The liquid is discharged to the low-level liquid waste system at ORNL. Overall volume reduction of solid waste by this process is estimated to be approximately 20:1. Costs appear to be comparable to costs for compaction. The process design is conservative, and several potential improvements which could increase efficiency are discussed in this report

  4. Outline of facility for studying high level radioactive materials (CPF) and study programmes

    International Nuclear Information System (INIS)

    Sakamoto, Motoi

    1983-01-01

    The Chemical Processing Facility for studying high level radioactive materials in Tokai Works of Power Reactor and Nuclear Fuel Development Corp. is a facility for fundamental studies centering around hot cells, necessary for the development of fuel recycle techniques for fast breeder reactors, an important point of nuclear fuel cycle, and of the techniques for processing and disposing high level radioactive liquid wastes. The operation of the facility was started in 1982, for both the system A (the test of fuel recycle for fast breeder reactors) and the system B (the test of vitrification of high level liquid wastes). In this report, the outline of the facility, the contents of testings and the reflection of the results are described. For the fuel recycle test, the hot test of the spent fuel pins of JOYO MK-1 core was started, and now the uranium and plutonium extraction test is underway. The scheduled tests are fuel solubility, the confirmation of residual properties in fuel melting, the confirmation of extracting conditions, the electrolytic reduction of plutonium, off-gas behaviour and the test of material reliability. For the test of vitrification of high level liquid wastes, the fundamental test on the solidifying techniques for the actual high level wastes eluted from the Tokai reprocessing plant has been started, and the following tests are programmed: Assessment of the properties of actual liquid wastes, denitration and concentration test, vitrification test, off-gas treatment test, the test of evaluating solidified wastes, and the test of storing solidified wastes. These test results are programmed to be reflected to the safety deliberation and the demonstration operation of a vitrification pilot plant. (Wakatsuki, Y.)

  5. Preliminary estimates of cost savings for defense high level waste vitrification options

    International Nuclear Information System (INIS)

    Merrill, R.A.; Chapman, C.C.

    1993-09-01

    The potential for realizing cost savings in the disposal of defense high-level waste through process and design modificatins has been considered. Proposed modifications range from simple changes in the canister design to development of an advanced melter capable of processing glass with a higher waste loading. Preliminary calculations estimate the total disposal cost (not including capital or operating costs) for defense high-level waste to be about $7.9 billion dollars for the reference conditions described in this paper, while projected savings resulting from the proposed process and design changes could reduce the disposal cost of defense high-level waste by up to $5.2 billion

  6. SETTLING OF SPINEL IN A HIGH-LEVEL WASTE GLASS MELTER

    International Nuclear Information System (INIS)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-01

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 decrees C to create a melt that becomes glass on cooling

  7. Characteristics Data Base: Programmer's guide to the High-Level Waste Data Base

    International Nuclear Information System (INIS)

    Jones, K.E.; Salmon, R.

    1990-08-01

    The High-Level Waste Data Base is a menu-driven PC data base developed as part of OCRWM's technical data base on the characteristics of potential repository wastes, which also includes spent fuel and other materials. This programmer's guide completes the documentation for the High-Level Waste Data Base, the user's guide having been published previously. 3 figs

  8. INEEL Radioactive Liquid Waste Reduction Program

    International Nuclear Information System (INIS)

    Millet, C.B.; Tripp, J.L.; Archibald, K.E.; Lauerhauss, L.; Argyle, M.D.; Demmer, R.L.

    1999-01-01

    Reduction of radioactive liquid waste, much of which is Resource Conservation and Recovery Act (RCRA) listed, is a high priority at the Idaho National Technology and Engineering Center (INTEC). Major strides in the past five years have lead to significant decreases in generation and subsequent reduction in the overall cost of treatment of these wastes. In 1992, the INTEC, which is part of the Idaho National Environmental and Engineering Laboratory (INEEL), began a program to reduce the generation of radioactive liquid waste (both hazardous and non-hazardous). As part of this program, a Waste Minimization Plan was developed that detailed the various contributing waste streams, and identified methods to eliminate or reduce these waste streams. Reduction goals, which will reduce expected waste generation by 43%, were set for five years as part of this plan. The approval of the plan led to a Waste Minimization Incentive being put in place between the Department of Energy Idaho Office (DOE-ID) and the INEEL operating contractor, Lockheed Martin Idaho Technologies Company (LMITCO). This incentive is worth $5 million dollars from FY-98 through FY-02 if the waste reduction goals are met. In addition, a second plan was prepared to show a path forward to either totally eliminate all radioactive liquid waste generation at INTEC by 2005 or find alternative waste treatment paths. Historically, this waste has been sent to an evaporator system with the bottoms sent to the INTEC Tank Farm. However, this Tank Farm is not RCRA permitted for mixed wastes and a Notice of Non-compliance Consent Order gives dates of 2003 and 2012 for removal of this waste from these tanks. Therefore, alternative treatments are needed for the waste streams. This plan investigated waste elimination opportunities as well as treatment alternatives. The alternatives, and the criteria for ranking these alternatives, were identified through Value Engineering meetings with all of the waste generators. The most

  9. Impact of transporting defense high-level waste to a geologic repository

    International Nuclear Information System (INIS)

    Joy, D.S.; Shappert, L.B.; Boyle, J.W.

    1984-12-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel and requires the Secretary of Energy to evaluate five potential repository sites. One factor that is to be examined is transportation of radioactive materials to such a repository and whether transportation might be affected by shipments to a defense-only repository, or to one that accepts both defense and commercial waste. In response to this requirement, The Department of Energy has undertaken an evaluation of the cost and risk associated with the potential shipments. Two waste-flow scenarios are considered which are related to the total quantity of defense high-level waste which will be placed in a repository. The low-flow case is based on a total of 6700 canisters being transported from one site, while the high-flow case assumes that a total of 20,000 canisters will be transported from three sites. For the scenarios considered, the estimated shipping costs range from $105 million to $257 million depending upon the mode of transport and the repository location. The total risks associated with shipping defense high-level waste to a repository are estimated to be significantly smaller than predicted for other transportation activities. In addition, the cost of shipping defense high-level waste to a repository does not depend on whether the site is a defense-only or a commercial repository. Therefore, the transportation considerations are not a basis for the selection of one of the two disposal options

  10. Potential of membrane processes in management of radioactive liquid waste

    International Nuclear Information System (INIS)

    Kumar, Surender; Jain, Savita; Raj, Kanwar

    2010-01-01

    Various categories of radioactive liquid waste are generated during operations and maintenance of nuclear installations. The potential of membrane processes for the treatment of low-level radioactive liquids is discussed in this paper

  11. Project Guarantee 1985. Repository for high-level radioactive waste: construction and operation

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    An engineering project study aimed at demonstrating the feasibility of constructing a deep repository for high-level waste (Type C repository) has been carried out; the study is based on a model data-set representing typical geological and rock mechanical conditions as found outside the so-called Permocarboniferous basin in the regions under investigation by Nagra in Cantons Aargau, Schaffhausen, Solothurn and Zuerich. The repository is intended for disposal of high-level waste and any intermediate-level waste from re-processing in which the concentration of long-lived alpha-emitters exceeds the permissible limits set for a Type B repository. Final disposal of high-level waste is in subterranean, horizontally mined tunnels and of intermediate-level waste in underground vertical silos. The repository is intended to accomodate a total of around 6'000 HWL-cylinders (gross volume of around 1'200 m3) and around 10'000 m3 of intermediate-level waste. The total excavated volume is around 1'100'000 m3 and a construction time for the whole repository (up to the beginning of emplacement) of around 15 years is expected. For the estimated 50-year emplacement operations, a working team of around 60 people will be needed and a team of around 160 for the simultaneous tunnelling operations and auxiliary work. The project described in the present report permits the conclusion that construction of a repository for high-level radioactive waste and, if necessary, spent fuel-rods is feasible with present-day technology

  12. Safe disposal of high-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, A E [Australian National Univ., Canberra. Research School of Earth Sciences

    1980-10-01

    Current strategies in most countries favour the immobilisation of high-level radioactive wastes in borosilicate glasses, and their burial in large, centralised, mined repositories. Strong public opposition has been encountered because of concerns over safety and socio-political issues. The author develops a new disposal strategy, based on immobilisation of wastes in an extremely resistant ceramic, SYNROC, combined with burial in an array of widely dispersed, very deep drill holes. It is demonstrated that the difficulties encountered by conventional disposal strategies can be overcome by this new approach.

  13. Management of radioactive low level liquid, gaseous, and solid wastes in the 200 areas

    International Nuclear Information System (INIS)

    White, A.T.

    1976-01-01

    The practices which are currently used for handling radioactive waste are outlined. These include burial of solid waste, scrubbing of off gas streams, and routing liquid effluents (mostly cooling water) to open ponds where the water percolates to the water table

  14. High-level radioactive wastes. Supplement 1

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, L.H. (ed.)

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  15. Decommissioning high-level waste surface facilities

    International Nuclear Information System (INIS)

    1978-04-01

    The protective storage, entombment and dismantlement options of decommissioning a High-Level Waste Surface Facility (HLWSF) was investigated. A reference conceptual design for the facility was developed based on the designs of similar facilities. State-of-the-art decommissioning technologies were identified. Program plans and cost estimates for decommissioning the reference conceptual designs were developed. Good engineering design concepts were on the basis of this work identified

  16. Safe immobilization of high-level nuclear reactor wastes

    International Nuclear Information System (INIS)

    Ringwood, A.; Kesson, S.; Ware, N.; Hibberson, W.; Major, A.

    1979-01-01

    The advantages and disadvantages of methods of immobilizing high-level radioactive wastes are discussed. Problems include the devitrification of glasses and the occurrence of radiation damage. An alternative method of radioctive waste immobilization is described in which the waste is incorporated in the constituent minerals of a synthetic rock, Synroc. Synroc is immune from devitrification and is composed of phases which possess crystal structures identical to those of minerals which are known to have retained radioactive elements in geological environments at elevated pressures and tempertures for long periods. The composition and mineralogy of Synroc is given and the process of immobilizing wastes in Synroc is described. Accelerated leaching tests at elevated pressures and temperatures are also described

  17. Technical baseline description of high-level waste and low-activity waste feed mobilization and delivery

    International Nuclear Information System (INIS)

    Papp, I.G.

    1997-01-01

    This document is a compilation of information related to the high-level waste (HLW) and low-activity waste (LAW) feed staging, mobilization, and transfer/delivery issues. Information relevant to current Tank Waste Remediation System (TWRS) inventories and activities designed to feed the Phase I Privatization effort at the Hanford Site is included. Discussions on the higher level Phase II activities are offered for a perspective on the interfaces

  18. Development of technical information database for high level waste disposal

    International Nuclear Information System (INIS)

    Kudo, Koji; Takada, Susumu; Kawanishi, Motoi

    2005-01-01

    A concept design of the high level waste disposal information database and the disposal technologies information database are explained. The high level waste disposal information database contains information on technologies, waste, management and rules, R and D, each step of disposal site selection, characteristics of sites, demonstration of disposal technology, design of disposal site, application for disposal permit, construction of disposal site, operation and closing. Construction of the disposal technologies information system and the geological disposal technologies information system is described. The screen image of the geological disposal technologies information system is shown. User is able to search the full text retrieval and attribute retrieval in the image. (S.Y. )

  19. Processing vessel for high level radioactive wastes

    International Nuclear Information System (INIS)

    Maekawa, Hiromichi

    1998-01-01

    Upon transferring an overpack having canisters containing high level radioactive wastes sealed therein and burying it into an underground processing hole, an outer shell vessel comprising a steel plate to be fit and contained in the processing hole is formed. A bury-back layer made of dug earth and sand which had been discharged upon forming the processing hole is formed on the inner circumferential wall of the outer shell vessel. A buffer layer having a predetermined thickness is formed on the inner side of the bury-back layer, and the overpack is contained in the hollow portion surrounded by the layer. The opened upper portion of the hollow portion is covered with the buffer layer and the bury-back layer. Since the processing vessel having a shielding performance previously formed on the ground, the state of packing can be observed. In addition, since an operator can directly operates upon transportation and burying of the high level radioactive wastes, remote control is no more necessary. (T.M.)

  20. Answers to your questions on high-level nuclear waste

    International Nuclear Information System (INIS)

    1987-11-01

    This booklet contains answers to frequently asked questions about high-level nuclear wastes. Written for the layperson, the document contains basic information on the hazards of radiation, the Nuclear Waste Management Program, the proposed geologic repository, the proposed monitored retrievable storage facility, risk assessment, and public participation in the program

  1. Method of processing decontaminating liquid waste

    International Nuclear Information System (INIS)

    Kusaka, Ken-ichi

    1989-01-01

    When decontaminating liquid wastes are processed by ion exchange resins, radioactive nuclides, metals, decontaminating agents in the liquid wastes are captured in the ion exchange resins. When the exchange resins are oxidatively deomposed, most of the ingredients are decomposed into water and gaseous carbonic acid and discharged, while sulfur ingredient in the resins is converted into sulfuric acid. In this case, even less oxidizable ingredients in the decontaminating agent made easily decomposable by oxidative decomposition together with the resins. The radioactive nuclides and a great amount of iron dissolved upon decontamination in the liquid wastes are dissolved in sulfuric acid formed. When the sulfuric acid wastes are nuetralized with sodium hydroxide, since they are formed into sodium sulfate, which is most popular as wastes from nuclear facilities, they can be condensated and solidified by existent waste processing systms to thereby facilitate the waste processing. (K.M.)

  2. Advanced waste form and melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-02

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these "troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approached to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.

  3. Low level radioactive waste management and discharge policies in Turkey

    International Nuclear Information System (INIS)

    Oezdemir, T.; Oezdemir, C.; Uslu, I.

    2005-01-01

    The legal infrastructure in Turkey for the management of low-level radioactive waste covers the liquid, solid and gaseous wastes. Management of these radioactive wastes is briefly described in this paper. Moreover, delay and decay tank systems that are used to collect and store the low level radioactive wastes as a part of low-level radioactive effluent discharge policy are introduced. (author)

  4. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  5. Study on the development of safety regulations for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Wei Fangxin

    2012-01-01

    The development of regulations under Regulations on Safety Management of Radioactive Waste has become necessary as the issuance of it. The regulations related to geological disposal of high-level radioactive waste can promote the progress of research and development on geological disposal of high-level radioactive waste in China. This paper has present suggestions on development of regulations on geological disposal of high-level radioactive waste by analyzing development of safety regulations on geological disposal of high-level radioactive waste in foreign countries and problems occurred in China and discussed important issues related to the development of safety regulations on geological disposal of high-level radioactive waste. (author)

  6. Spanish high level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Ulibarri, A.; Veganzones, A.

    1993-01-01

    The Empresa Nacional de Residuous Radiactivos, S.A. (ENRESA) was set up in 1984 as a state-owned limited liability company to be responsible for the management of all kinds of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high-level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international co-operational are also included

  7. Solid and Liquid Waste Drying Bag

    Science.gov (United States)

    Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)

    2009-01-01

    Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.

  8. Preliminary analysis of the ORNL Liquid Low-Level Waste system

    International Nuclear Information System (INIS)

    Abraham, T.J.; DePaoli, S.M.; Robinson, S.M.; Walker, A.B.

    1994-08-01

    The objective of this report is to summarize the status of the Liquid Low-Level Waste (LLLW) Systems Analysis project. The focus of this project has been to collect and tabulate data concerning the LLLW system, analyze the current LLLW system operation, and develop the information necessary for the development of long-term treatment options for the LLLW generated at ORNL. The data used in this report were collected through a survey of Oak Ridge National Laboratory (ORNL) literature, various letter reports, and a survey of all current LLLW generators. These data are also being compiled in a user friendly database for ORNL-wide distribution. The database will allow the quick retrieval of all information collected on the ORNL LLLW system and will greatly benefit any LLLW analysis effort. This report summarizes the results for the analyses performed to date on the LLLW system

  9. Pelleted waste form for high-level ICPP wastes

    International Nuclear Information System (INIS)

    Lamb, K.M.; Priebe, S.J.; Cole, H.S.; Taki, B.D.

    1979-01-01

    Simulated zirconia type calcined waste is pelletized on a 41-cm dia disc pelletizer using 5% bentonite, 2% metakaolin, and 2% boric acid as a solid binder and 7M phosphoric plus 4M nitric acid as a liquid binder. After heat treatment at 800 0 C for 2 hours, the pellets are impact resistant and have a leach resistance of 10 -4 g/cm 2 /day, based on Soxhlet leaching for 100 hours at 95 0 C with distilled water. An integrated pilot plant is being fabricated to verify the process. 1 figure, 4 tables

  10. Pelleted waste form for high-level ICPP wastes

    International Nuclear Information System (INIS)

    Lamb, K.M.; Priebe, S.J.; Cole, H.S.; Taki, B.d.

    1979-01-01

    Simulated zirconia-type calcined waste is pelletized on a 41-cm diameter disc pelletizer using 5% bentonite, 2% metakaolin, and 2% boric acid as a solid binder and 7M phosphoric plus 4M nitric acid as a liquid binder. After heat treatment at 800 0 C for 2 hours the pellets are impact resistant and have a leach resistance of 10 -4 g/cm 2 . day, based on Soxhlet leaching for 100 hours at 95 0 C with distilled water. An integrated pilot plant is being fabricated to verify the process. 1 figure, 4 tables

  11. Crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics for immobilization of simulated sulfate bearing high-level liquid waste

    Science.gov (United States)

    Wu, Lang; Xiao, Jizong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang; Liao, Qilong

    2018-01-01

    The crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics with different content (0-30 wt %) of simulated sulfate bearing high-level liquid waste (HLLW) were evaluated. The sulfate phase segregation in vitrification process was also investigated. The results show that the glass-ceramics with 0-20 wt% of HLLW possess mainly zirconolite phase along with a small amount baddeleyite phase. The amount of perovskite crystals increases while the amount of zirconolite crystals decreases when the HLLW content increases from 20 to 30 wt%. For the samples with 20-30 wt% HLLW, yellow phase was observed during the vitrification process and it disappeared after melting at 1150 °C for 2 h. The viscosity of the sample with 16 wt% HLLW (HLLW-16) is about 27 dPa·s at 1150 °C. The addition of a certain amount (≤20 wt %) of HLLW has no significant change on the aqueous stability of glass-ceramic waste forms. After 28 days, the 90 °C PCT-type normalized leaching rates of Na, B, Si, and La of the sample HLLW-16 are 7.23 × 10-3, 1.57 × 10-3, 8.06 × 10-4, and 1.23 × 10-4 g·m-2·d-1, respectively.

  12. Quality assurance requirements and methods for high level waste package acceptability

    International Nuclear Information System (INIS)

    1992-12-01

    This document should serve as guidance for assigning the necessary items to control the conditioning process in such a way that waste packages are produced in compliance with the waste acceptance requirements. It is also provided to promote the exchange of information on quality assurance requirements and on the application of quality assurance methods associated with the production of high level waste packages, to ensure that these waste packages comply with the requirements for transportation, interim storage and waste disposal in deep geological formations. The document is intended to assist both the operators of conditioning facilities and repositories as well as national authorities and regulatory bodies, involved in the licensing of the conditioning of high level radioactive wastes or in the development of deep underground disposal systems. The document recommends the quality assurance requirements and methods which are necessary to generate data for these parameters identified in IAEA-TECDOC-560 on qualitative acceptance criteria, and indicates where and when the control methods can be applied, e.g. in the operation or commissioning of a process or in the development of a waste package design. Emphasis is on the control of the process and little reliance is placed on non-destructive or destructive testing. Qualitative criteria, relevant to disposal of high level waste, are repository dependent and are not addressed here. 37 refs, 3 figs, 2 tabs

  13. Managing commercial high-level radioactive waste: summary

    International Nuclear Information System (INIS)

    1982-04-01

    This summary presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste - an issue that has been debated over the last decade and that now appears to be moving toward major congressional action. After more than 20 years of commercial nuclear power, the Federal Government has yet to develop a broadly supported policy for fulfilling its legal responsibility for the final isolation of high-level radioactive waste. OTA's study concludes that until such a policy is adopted in law, there is a substantial risk that the false starts, shifts of policy, and fluctuating support that have plagued the final isolation program in the past will continue. The continued lack of final isolation facilities has raised two key problems that underlie debates about radioactive waste policy. First, some question the continued use of nuclear power until it is shown that safe final isolation for the resulting wastes can and will be accomplished, and argue that the failure to develop final isolation facilities is evidence that it may be an insoluble problem. Second, because there are no reprocessing facilities or federal waste isolation facilities to accept spent fuel, existing reactors are running out of spent fuel storage space, and by 1986 some may face a risk of shutting down for some period. Most of the 72,000 metric tons of spent fuel expected to be generated by the year 2000 will still be in temporary storage at that time. While it is possible that utilities could provide all necessary additional storage at reactor sites before existing basins are filled, some supplemental storage may be needed if there are delays in their efforts

  14. An optimal retrieval, processing, and blending strategy for immobilization of Hanford high-level tank waste

    International Nuclear Information System (INIS)

    Hoza, M.

    1996-01-01

    Hanford tank waste will be separated into high-level and low-level portions; each portion will then be vitrified (other waste forms are also being considered for low-level waste) to produce a stable glass form for disposal. Because of the wide variability in the tank waste compositions, blending is being considered as a way to reduce the number of distinct compositions that must be vitrified and to minimize the resultant volume of vitrified waste. Three years of computational glass formulation and blending studies have demonstrated that blending of the high-level waste before vitrification can reduce the volume of high-level waste glass required by as much as 50 percent. This level of reduction would be obtained if all the high-level waste were blended together (Total Blend) prior to vitrification, requiring the retrieval and pretreatment of all tank waste before high-level vitrification was started. This paper will present an overall processing strategy that should be able to match the blending performance of the Total Blend and be more logistically feasible. The strategy includes retrieving, pretreating, blending and vitrifying Hanford tank waste. This strategy utilizes blending both before and after pretreatment. Similar wastes are blended before pretreatment, so as not to dilute species targeted for removal. The high-level portions of these pretreated early blends are then selectively blended to produce a small number of high-level vitrification feed streams

  15. High level waste forms: glass marbles and thermal spray coatings

    International Nuclear Information System (INIS)

    Treat, R.L.; Oma, K.H.; Slate, S.C.

    1982-01-01

    A process that converts high-level waste to glass marbles and then coats the marbles has been developed at Pacific Northwest Laboratory (PNL) under sponsorship of the US Department of Energy. The process consists of a joule-heated glass melter, a marble-making device based on a patent issued to Corning Glass Works, and a coating system that includes a plasma spray coater and a marble tumbler. The process was developed under the Alternative Waste Forms Program which strived to improve upon monolithic glass for immobilizing high-level wastes. Coated glass marbles were found to be more leach-resistant, and the marbles, before coating were found to be very homogeneous, highly impact resistant, and conductive to encapsulation in a metal matric for improved heat transfer and containment. Marbles are also ideally suited for quality assurance and recycling. However, the marble process is more complex, and marbles require a larger number of canisters for waste containment and have a higher surface area than do glass monoliths

  16. Sulphate in Liquid Nuclear Waste: from Production to Containment

    Energy Technology Data Exchange (ETDEWEB)

    Lenoir, M.; Grandjean, A.; Ledieu, A.; Dussossoy, J.L.; Cau Dit Coumes, C.; Barre, Y.; Tronche, E. [CEA Marcoule, DEN/DTCD/SECM/LDMC, Batiment 208 BP17171, Bagnols sur Ceze, 30207 (France)

    2009-06-15

    Nuclear industry produces a wide range of low and intermediate level liquid radioactive wastes which can include different radionuclides such as {sup 90}Sr. In La Hague reprocessing plant and in the nuclear research centers of CEA (Commissariat a l'Energie Atomique), the coprecipitation of strontium with barium sulphate is the technique used to treat selectively these contaminated streams with the best efficiency. After the decontamination process, low and intermediate level activity wastes incorporating significant quantities of sulphate are obtained. The challenge is to find a matrix easy to form and with a good chemical durability which is able to confine this kind of nuclear waste. The current process used to contain sulphate-rich nuclear wastes is bituminization. However, in order to improve properties of containment matrices and simplify the process, CEA has chosen to supervise researches on other materials such as cements or glasses. Indeed, cements are widely used for the immobilization of a variety of wastes (low and intermediate level wastes) and they may be an alternative matrix to bitumen. Even if Portland cement, which is extensively used in the nuclear industry, presents some disadvantages for the containment of sulphate-rich nuclear wastes (risk of swelling and cracking due to delayed ettringite formation), other cement systems, such as calcium sulfo-aluminate binders, may be valuable candidates. Another matrix to confine sulphate-rich waste could be the glass. One of the advantages of this material is that it could also immobilize sulphate containing high level nuclear waste which is present in some countries. This waste comes from the use of ferrous sulfamate as a reducing agent for the conversion of Pu{sup 4+} to Pu{sup 3+} in the partitioning stage of the actinides during reprocessing. Sulphate solubility in borosilicate glasses has already been studied in CEA at laboratory and pilot scales. At a pilot scale, low level liquid waste has been

  17. Treatment of radioactive mixed wastes in commercial low-level wastes

    International Nuclear Information System (INIS)

    Kempf, C.R.; MacKenzie, D.R.

    1985-01-01

    Management options for three generic categories of radioactive mixed waste in commercial low-level wastes have been identified and evaluated. These wastes were characterized as part of a BNL study in which a large number of generators were surveyed for information on potentially hazardous low-level wastes. The general management targets adopted for mixed wastes are immobilization, destruction, and reclamation. It is possible that these targets may not be practical for some wastes, and for these, goals of stabilization or reduction of hazard are addressed. Solidification, absorption, incineration, acid digestion, segregation, and substitution have been considered for organic liquid wastes. Containment, segregation, and decontamination and re-use have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, containment, substitution, chemical reduction, and biological removal have been considered. For each of these wastes, the management option evaluation has necessarily included assessment/estimation of the effect of the treatment on both the radiological and potential chemical hazards present. 10 refs

  18. Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Ray, J. W.; Marra, S. L.; Herman, C. C.

    2013-01-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form

  19. Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. For each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present

  20. Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. For each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present.

  1. Radiolytic decomposition of dioxins in liquid wastes

    International Nuclear Information System (INIS)

    Zhao Changli; Taguchi, M.; Hirota, K.; Takigami, M.; Kojima, T.

    2006-01-01

    The dioxins including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are some of the most toxic persistent organic pollutants. These chemicals have widely contaminated the air, water, and soil. They would accumulate in the living body through the food chains, leading to a serious public health hazard. In the present study, radiolytic decomposition of dioxins has been investigated in liquid wastes, including organic waste and waste-water. Dioxin-containing organic wastes are commonly generated in nonane or toluene. However, it was found that high radiation doses are required to completely decompose dioxins in the two solvents. The decomposition was more efficient in ethanol than in nonane or toluene. The addition of ethanol to toluene or nonane could achieve >90% decomposition of dioxins at the dose of 100 kGy. Thus, dioxin-containing organic wastes can be treated as regular organic wastes after addition of ethanol and subsequent γ-ray irradiation. On the other hand, radiolytic decomposition of dioxins easily occurred in pure-water than in waste-water, because the reaction species is largely scavenged by the dominant organic materials in waste-water. Dechlorination was not a major reaction pathway for the radiolysis of dioxin in water. In addition, radiolytic mechanism and dechlorinated pathways in liquid wastes were also discussed. (authors)

  2. Preparation of plutonium waste forms with ICPP calcined high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Staples, B.A.; Knecht, D.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); O`Holleran, T.P. [Argonne National Lab.-West, Idaho Falls, ID (United States)] [and others

    1997-05-01

    Glass and glass-ceramic forms developed for the immobilization of calcined high-level wastes generated by Idaho Chemical Processing Plant (ICPP) fuel reprocessing activities have been investigated for ability to immobilize plutonium and to simultaneously incorporate calcined waste as an anti-proliferation barrier. Within the forms investigated, crystallization of host phases result in an increased loading of plutonium as well as its incorporation into potentially more durable phases than the glass. The host phases were initially formed and characterized with cerium (Ce{sup +4}) as a surrogate for plutonium (Pu{sup +4}) and samarium as a neutron absorber for criticality control. Verification of the surrogate testing results were then performed replacing cerium with plutonium. All testing was performed with surrogate calcined high-level waste. The results of these tests indicated that a potentially useful host phase, based on zirconia, can be formed either by devitrification or solid state reaction in the glass studied. This phase incorporates plutonium as well as samarium and the calcined waste becomes part of the matrix. Its ease of formation makes it potentially useful in excess plutonium dispositioning. Other durable host phases for plutonium and samarium, including zirconolite and zircon have been formed from zirconia or alumina calcine through cold press-sintering techniques and hot isostatic pressing. Host phase formation experiments conducted through vitrification or by cold press-sintering techniques are described and the results discussed. Recommendations are given for future work that extends the results of this study.

  3. Preparation of plutonium waste forms with ICPP calcined high-level waste

    International Nuclear Information System (INIS)

    Staples, B.A.; Knecht, D.A.; O'Holleran, T.P.

    1997-05-01

    Glass and glass-ceramic forms developed for the immobilization of calcined high-level wastes generated by Idaho Chemical Processing Plant (ICPP) fuel reprocessing activities have been investigated for ability to immobilize plutonium and to simultaneously incorporate calcined waste as an anti-proliferation barrier. Within the forms investigated, crystallization of host phases result in an increased loading of plutonium as well as its incorporation into potentially more durable phases than the glass. The host phases were initially formed and characterized with cerium (Ce +4 ) as a surrogate for plutonium (Pu +4 ) and samarium as a neutron absorber for criticality control. Verification of the surrogate testing results were then performed replacing cerium with plutonium. All testing was performed with surrogate calcined high-level waste. The results of these tests indicated that a potentially useful host phase, based on zirconia, can be formed either by devitrification or solid state reaction in the glass studied. This phase incorporates plutonium as well as samarium and the calcined waste becomes part of the matrix. Its ease of formation makes it potentially useful in excess plutonium dispositioning. Other durable host phases for plutonium and samarium, including zirconolite and zircon have been formed from zirconia or alumina calcine through cold press-sintering techniques and hot isostatic pressing. Host phase formation experiments conducted through vitrification or by cold press-sintering techniques are described and the results discussed. Recommendations are given for future work that extends the results of this study

  4. Use of Novel Highly Selective Ion Exchange Media for Minimizing the Waste Arising from Different NPP and Other Liquids

    International Nuclear Information System (INIS)

    Tusa, Esko; Harjula, Risto; Lehto, Jukka

    2003-01-01

    Highly selective inorganic ion exchangers give new possibilities to implement and operate new innovative treatment systems for radioactive liquids. Because of high selectivity these ion exchangers can be used even in liquids of high salt concentrations. Only selected target nuclides will be separated and inactive salts are left in the liquid, which can be released or recategorized. Thus, it is possible to reduce the volume of radioactive waste dramatically. On the other hand, only a small volume of highly selective material is required in applications, which makes it possible to design totally new types of compact treatment systems. The major benefit of selective ion exchange media comes from the very large volume reduction of radioactive waste in final disposal. It is also possible to save in investment costs, because small ion exchanger volumes can be used and handled in a very small facility. This paper describes different applications of these highly selective ion exchangers, both commercial fullscale applications and laboratory tests, to give the idea of their efficiency for different liquids

  5. Technology status of spray calcination--vitrification of high-level liquid waste for full-scale application

    International Nuclear Information System (INIS)

    Keeley, R.B.; Bonner, W.F.; Larson, D.E.

    1977-01-01

    Spray calcination and vitrification technology for stabilization of high-level nuclear wastes has been developed to the point that initiation of technology transfer to an industrial-sized facility could begin. This report discusses current process and equipment development status together with additional R and D studies and engineering evaluations needed. Preliminary full-scale process and equipment descriptions are presented. Technology application in a full-scale plant would blend three distinct maintenance design philosophies, depending on service life anticipated: (1) totally remote maintenance with limited viewing and handling equipment, (2) totally remote maintenance with extensive viewing and handling equipment, and (3) contact maintenance

  6. Safety analysis of the transportation of high-level radioactive waste

    International Nuclear Information System (INIS)

    Murphy, E.S.; Winegardner, W.K.

    1975-01-01

    An analysis of the risk from transportation of solidified high-level waste is being performed at Battelle-Northwest as part of a comprehensive study of the management of high-level waste. The risk analysis study makes use of fault trees to identify failure events and to specify combinations of events which could result in breach of containment and a release of radioactive material to the environment. Contributions to risk analysis methodology which have been made in connection with this study include procedures for identification of dominant failure sequences, methods for quantifying the effects of probabilistic failure events, and computer code development. Preliminary analysis based on evaluation of the rail transportation fault tree indicates that the dominant failure sequences for transportation of solidified high-level waste will be those related to railroad accidents. Detailed evaluation of rail accident failure sequences is proceeding and is making use of the limited frequency-severity data which is available in the literature. (U.S.)

  7. Method of processing liquid wastes

    International Nuclear Information System (INIS)

    Naba, Katsumi; Oohashi, Takeshi; Kawakatsu, Ryu; Kuribayashi, Kotaro.

    1980-01-01

    Purpose: To process radioactive liquid wastes with safety by distillating radioactive liquid wastes while passing gases, properly treating the distillation fractions, adding combustible and liquid synthetic resin material to the distillation residues, polymerizing to solidify and then burning them. Method: Radioactive substance - containing liquid wastes are distillated while passing gases and the distillation fractions containing no substantial radioactive substances are treated in an adequate method. Synthetic resin material, which may be a mixture of polymer and monomer, is added together with a catalyst to the distillation residues containing almost of the radioactive substances to polymerize and solidify. Water or solvent in such an extent as not hindering the solidification may be allowed if remained. The solidification products are burnt for facilitating the treatment of the radioactive substances. The resin material can be selected suitably, methacrylate syrup (mainly solution of polymethylmethacrylate and methylmethacrylate) being preferred. (Seki, T.)

  8. Argentine project for the final disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Palacios, E.; Ciallella, N.R.; Petraitis, E.J.

    1989-01-01

    From 1980 Argentina is carrying out a research program on the final disposal of high level radioactive wastes. The quantity of wastes produced will be significant in next century. However, it was decided to start with the studies well in advance in order to demonstrate that the high level wastes could be disposed in a safety way. The option of the direct disposal of irradiated fuel elements was discarded, not only by the energetic value of the plutonium, but also for ecological reasons. In fact, the presence of a total inventory of actinides in the non-processed fuel would imply a more important radiological impact than that caused if the plutonium is recycled to produce energy. The decision to solve the technological aspects connected with the elimination of high-level radioactive wastes well in advance, was made to avoid transfering the problem to future generations. This decision is based not only on technical evaluations but also on ethic premises. (Author)

  9. Use of diatomaceous to liquid organic wastes adsorption

    International Nuclear Information System (INIS)

    Sanhueza M, Azucena; Padilla S, Ulises

    1999-01-01

    Background: One of the radioactive wastes that the Radioactive Wastes Management Unit must process are organic liquids from external generators and from sections of the Chilean Nuclear Energy Commission (CCHEN). The wastes from external generators contain H 3 and C 14; while the wastes from the CCHEN are contaminated with uranium. The total volume of liquid organic wastes that must be treated is 5 m3. The options recommended for processing these wastes are incineration or the adsorption of the organic liquid by some adsorbing medium and its subsequent immobilization in cement molds. Due to the cost of incineration, the adsorption method was chosen for study. Objective: To find the optimum amount of adsorbent to be saturated with radioactive organic liquid from liquid scintillation and to study immobilization in cement molds. Methodology: Adsorption granulated (1568 Merck) and diatom earth were tested as adsorbent mediums. The adsorbents were mixed in different ratios of volume with the organic liquid. Then the waste was mixed with different water/cement ratios to define the best immobilization conditions. Conclusions: The tests carried out with 2 adsorbents recommended in the literature and available in the CCHEN show that as adsorbent waste ratio decreases, the percentage of liquid adsorbed increases, as expected: a greater volume of adsorbent retains a greater quantity of liquid, with an increase in the final volume, depending on the adsorbent used. Of these adsorbents, the diatom earth was better for treating liquid organic wastes. It had 100% adsorption and an increased volume of 0%, which is more than enough from the volumetric point of view of waste management. The ratio 0.8 liquid/adsorbent also showed good characteristics, but more study is needed to decide on the above, since liquid remains to be adsorbed. This work must continue to study the repeatability of results, to obtain physical and radiological characteristics for the immobilized products and to

  10. Management of liquid radioactive wastes at PNRI

    International Nuclear Information System (INIS)

    Garcia, C.M.

    1994-10-01

    Liquid wastes accepted at PNRI waste management facility are generated by hospitals and research institutions from all over the country including those generated from the research laboratories within the PNRI. The operation of the Philippine TRIGA Research Reactor is also a potential source of liquid waste to be handled and managed by the facility in the future. This technical report is a result of the study of the present status and development of the management of liquid wastes at PNRI. (auth.). 8 refs.; 3 figs.; 4 tabs

  11. Waste characterization data manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA), Sect. IX.G.1. This manual contains the results of sampling activities that were conducted at the Oak Ridge National Laboratory in 1988. Thirty-three tanks were sampled and analyzed at that time. Sampling of the remaining inactive tanks is currently underway, and data from these tanks will be added to this manual as they become available. Data are presented from analysis of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, radiochemical compounds, and inorganic compounds

  12. Waste characterization data manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA), Sect. IX.G.1. This manual contains the results of sampling activities that were conducted at the Oak Ridge National Laboratory in 1988. Thirty-three tanks were sampled and analyzed at that time. Sampling of the remaining inactive tanks is currently underway, and data from these tanks will be added to this manual as they become available. Data are presented from analysis of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, radiochemical compounds, and inorganic compounds.

  13. A comparison of high-level waste form characteristics

    International Nuclear Information System (INIS)

    Salmon, R.; Notz, K.J.

    1991-01-01

    The US DOE is responsible for the eventual disposal in a repository of spent fuels, high-level waste (HLW) and other radioactive wastes that may require long-term isolation. This includes light-water reactor (LWR) spent fuel and immobilized HLW as the two major sources, plus other forms including non-LWR spent fuels and miscellaneous sources (such as activated metals in the Greater-Than-Class-C category). The Characteristics Data Base, sponsored by DOE's Office of Civilian Radioactive Waste Management (OCRWM), was created to systematically tabulate the technical characteristics of these materials. Data are presented here on the immobilized HLW forms that are expected to be produced between now and 2020

  14. The IAEA's high level radioactive waste management programme

    International Nuclear Information System (INIS)

    Saire, D.E.

    1994-01-01

    This paper presents the different activities that are performed under the International Atomic Energy Agency's (IAEA) high level radioactive waste management programme. The Agency's programme is composed of five main activities (information exchange, international safety standards, R ampersand D activities, advisory services and special projects) which are described in the paper. Special emphasis is placed on the RADioactive WAste Safety Standards (RADWASS) programme which was implemented in 1991 to document international consensus that exists on the safe management of radioactive waste. The paper also raises the question about the need for regional repositories to serve certain countries that do not have the resources or infrastructure to construct a national repository

  15. Disposal of low-level radioactive waste using high-calcium fly ash. Final report

    International Nuclear Information System (INIS)

    Cogburn, C.O.; Hodgson, L.M.; Ragland, R.C.

    1986-04-01

    The feasibility of using calcium-rich fly ash from coal-fired power plants in the disposal of low-level radioactive waste was examined. The proposed areas of use were: (1) fly-ash cement as a trench lining material; (2) fly ash as a backfill material; and (3) fly ash as a liquid waste solidifier. The physical properties of fly-ash cement were determined to be adequate for trench liner construction, with compressive strengths attaining greater than 3000 psi. Hydraulic conductivities were determined to be less than that for clay mineral deposits, and were on the order of 10 -7 cm/sec, with some observed values as low as 10 -9 cm/sec. Removal of radioisotopes from acidified solutions by fly ash was good for all elements tested except cesium. The removal of cesium by fly ash was similar to that of montmorillonite clay. The corrosive effects on metals in fly ash environments was determined to be slight, if not non-existent. Coatings at the fly-ash/metal interfaces were observed which appeared to inhibit or diminish corrosion. The study has indicated that high-calcium fly ash appears to offer considerable potential for improved retention of low-level radioactive wastes in shallow land disposal sites. Further tests are needed to determine optimum methods of use. 8 refs., 4 figs., 7 tabs

  16. Method of cement-solidification of radioactive liquid wastes containing surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Yusa, H

    1979-04-10

    Purpose: To provide the subject method comprising the steps of adjusting the concentration of the surfactant to a value less than the predetermined value even when the concentration of the surfactant is high, and rendering the uniaxial compression strength of the cement-solidification body into more than the defined fabrication reference value. Method: To radioactive liquid wastes there are applied means for boiling and heating liquid wastes by addition of sulfuric acid, means for cracking surfactants by the addition of oxidants and means for precipitating and arresting surfactants. After suppressing the hindrance of the cement hydration reaction by surfactants, the radioactive liquid wastes are cement-solidified. (Nakamura, S.).

  17. Evaporation of low-activity-level liquid waste at Tokai Reprocessing Plant, 1

    International Nuclear Information System (INIS)

    Nojima, Yasuo; Nemoto, Yuichi; Fukushima, Misao; Shibuya, Jun; Miyahara, Kenji

    1983-01-01

    The operation of Tokai reprocessing plant started in 1977. The determination of the decontamination factors (DF) of the evaporators for low activity level liquid waste (LALW) has been made through the operation. This paper deals with the examination of the first evaporator located at the LALW treatment plant. The operational principle and condition of the evaporator system are briefly explained. The effects of wire-mesh demisters and liquid properties on the decontamination factor were examined in this study. The results are summarized as follows: (1) The DF decreased with the increasing vapor mass velocity on account of entrainment. (2) The DF was able to be improved by using wire-mesh demisters when the vapor mass velocity was less than 2,500 kg/m 2 h. Practically, the most suitable vapor velocity for the evaporator was around 2,000 kg/m 2 h. (3) The DF in the evaporator for 137 Cs, 144 Ce, 90 Sr and 106 Ru was between 10 3 and 10 4 . Regarding 106 Ru, the DF in acid evaporation was less than that in alkaline evaporation. (Aoki, K.)

  18. Future radioactive liquid waste streams study

    Energy Technology Data Exchange (ETDEWEB)

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  19. Future radioactive liquid waste streams study

    International Nuclear Information System (INIS)

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL

  20. Physico-chemical treatment of liquid waste on an industrial plant for electrocoagulation.

    Science.gov (United States)

    Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta

    2017-10-01

    Wastewater from washing, oil separators, the metal processing and detergent industries, was tested and treated for treatment of different types of liquid waste at industrial level at Domžale-Kamnik Wastewater Treatment Plant (WWTP). The effect of implementing the electrocoagulation (EC) and flotation processes, respectively, is analysed and includes the duration of the EC implementation, voltage, number of electrodes, and chemical addition, as well as the pH effect and conductivity. The tests were performed not only on various types of liquid waste, but also on different mixtures of liquid waste. Laboratory analysis of the samples before and after EC have shown an effective reduction not only in organic loads in accordance with the COD (chemical oxygen demand) parameter, but also in mineral oil content, toxic metal concentration, and surfactants. The COD in liquid waste from the detergent industry was reduced by 73% and the content of surfactants by 64%. In liquid waste from the metal processing industry, the COD decreased by up to 95%, while the content of toxic metals decreased from 59 to 99%. Similar phenomena were shown in liquid waste from oil separators, where the COD was reduced to 33% and the concentration of mineral oils by 99%. Some of the liquid wastes were mixed together in the ratio 1:1, thus allowing testing of the operation of EC technology in heterogeneous liquid waste, where the final result proved to be effective cleaning as well. After treatment in the process of EC, the limit values of the treated water proved appropriate for discharge into the sewerage system.